
Writing Correct
Software

Assertion and exception techniques can aid in class
correctness

M
y aim in designing Eiffel was
to produce a major program
ming language for the 1990s,
catering to the needs of those

. software engineers willing to
do what it takes to produce high-qual
ity software. A key aspect of Eiffel,
which makes it original in the world
of object-oriented languages, and in
the world of programming languages
at large, is its strong emphasis on tech
niques that help produce highly reli
able software.

Although, there are many more as
pects to Eiffel (including those described
in my book Object-Oriented Software
Construction, Prentice-Hall, 1988) the
reliability features deserve a presenta
tion of their own. That is the focus of
this article. I will show how it is possi
ble to write software that programmers

. (and users) can place a much higher
degree of confidence in than that writ
ten with traditional techniques. In par
ticular, I will discuss the all important
notion of assertion - the specification
element included within the software
itself. This will lead to a systematic
view of exception handling, and a look
at techniques (such as those offered
by Ada) that I find somewhat unsafe.

Why All the Fuss?
The issue is simple. It is great to have

Bertrand is the preSident of Interactive
Software Engineering and is the main
designer of the Eiffellanguage. His book,
Object-Oriented Software Construction,
was published by Prentice Hall in 1988.
He can be reached at 805-685-1006,
or through e-mail as Bertrand at
Eiffel.com.

48

Bertrand Meyer

flexible software that is easy to build
and easy to maintain, but we also need
to be concerned that the software does
what it is supposed to do.

From reading most of the object
oriented literature, one would think this
is not a problem. Correctness concerns
are hardly ever mentioned. Actually, it
is unfair just to pick on object-oriented
programming. Take any standard text
books you have on programming, al
gorithms, data structures, and similar
topics. See how many of them list "cor
rectness," "reliability," "invariant," or
"assertion" in their indexes. I have quite
a few textbooks on my shelves, but
could not find many that passed this
simple test.

This apparent disregard for correct
ness issues cannot last forever. Even

barring the occurrence of a major ca
tastrophe resulting from faulty software,
sooner or later someone will call the
software engineers' bluff and ask them
exactly why they think their systems
will perform as announced. It is diffi
cult to answer that question convinc
ingly given the current state of the art.

Eiffel won't provide the magical key
to the kingdom of software reliability.
No existing method or tools wilL I do
believe, however, that the EiffeI tech
niques are an impOItant step in the
right direction.

If you are expecting a sermon wliing
you to improve your software's reli
ability by adding a lot of consistency
checks, you are in for a few surprises.
I suggest that one should llstl:.tlly check
less. According to conventional soft
ware engineering wisdom, "dett.>I1sive
programming" is considered to be a
programmer's best shot at reliability. I
believe that defensive programming is
a dangerow; practice that defeats the
velY purpose it tries to achieve. To
program defen!'iively i!'i one of the worst
pieces of advice thm can be given to a
programmer.

That more checking l'ttr1 make soft
ware less reliable may seem foolish.
Remember, though, that in science cmu
mon sense is not al\vays the best gUide.
If YOli have ever hit a \\'(}otk~n table
with your fist, you probably found it
hard to believe rhe physics protf.:ssur
who told you rhar mattl'r is a !'et Df tiny
atoms with mostly nothing in-IX'twt,'(.~n.

Expressing the Specification
111e ideas that hdp achieve corr(.·t'ml';~s.s
in EitTd are mtK~h ()kk~r than EithA it,·

(continued Wl!UIJ{{' 52}

(continued from page 48)
self. They come from work on program
proving and fonnal specification. Oddly
enough, research on these topics has
remained estranged from most "real
world" software development. Part of
the reason, at least in the United States,
is the widespread view that fonnal speci
fication and verification are specialized
research topics whose application is
mostly relevant to "mission-critical" soft
ware. Correctness, however, should be
a universal concern. Eiffellooked at speci
fication and verification work to see
how much of it could be made part of
a standard programming methodology.

Eiffel is a production language and
environment. It is not a research vehi
cle. Eiffel relies on the technology of
the last part of the twentieth century.
It has to work now. This means that no
miracles can be expected. In fact, the
techniques are modest and almost naive.
They are the result of an engineering
trade-off between what is desirable in
an ideal world and what can realisti
cally be implemented today. But they
make a big difference and I can't un
derstand why no widespread language,
other than Eiffel, has made any signifi
cant attempt in a similar direction.

The basic idea is rather trivial. Cor
rectness is a relative notion. No soft-

Bring in manuscript
before March 1st

Publish before
May 1st

Get published telC!
before May 1 st

No need to do
anything if no
manuscript is
received before
March 1st

Figure 1: Contract between a
publisher and an author

Figure 2: Circle intersection

Obligations Benefits

Client Call the routine on ObtaIn as result of
two circles that the function a
Intersect point that is on

both circles

Routine Find a point that is No need to retum
on both circles anything meaningtul

if the circles do not
intersact

Figure 3: A routine contract

EIFFEL

ware element is correct or incorrect per
se; it is correct or incorrect only con
cerning a particular specification, or
statement of its purpose. Correct ele
ments cannot be written unless the time
is taken to express all or part of this
specification.

Writing the specification will not guar
antee that it is met. But the presence
of a specification, even one that is only
partially spelled out, goes a surpris
ingly long way toward helping pro
duce elements that satisfy their correct
ness requirements.

This idea was captured by the title
of an article by Harlan Mills, then of
IBM, published in 1975: "How to Write
Correct Programs and Know Why." If
you are a serious software engineer,
you don't just want to hope that your
programs are correct because you have
been careful, and done a lot of testing,
and so on. You need precise argu
ments that document the correctness
of your software.

In Eiffel, such arguments are ex
pressed as assertions -:- elements of for
mal specification that can be attached
to software components, classes and
their routines.

The Contract
Let's look at routines first. A routine is
the description of some computation
on the instances of a class, made avail
able by that class to its clients (to other
classes relying on its services). How
do we specify the purpose of a routine?

The view I find most helpful is that
a routine provides clients with a way
to contract out for a certain task that
the client's designer finds advantageous
not to implement within the text of the
client. This is the same way that we
humans at times contract out for part
or all of a task that we need to perfonn.

Human contracts have two impor
tant properties:

• Each party expects some benefits and
is prepared to incur some obligations
in return. What is an obligation for
one party is a benefit for the other .

• The obligations and benefits are
spelled out in a contract document.

Figure 1 illustrates an example of a
contract between a publisher and an
author. The author's obligation is to
bring in a manuscript before March 1st.
The benefit to the author is that the
manuscript will be published before
May 1st. The publisher's obligation is
to publish the manuscript before the
second date.

The publisher is not bound by any
obligation if the author violates his part
of the deal. In such a case the publisher

may still publish the manuscript, but
does not have to. The situation is out
side of the contract's bounds.

Routine as Contract
Specifying a routine is based on the
transposition of these observations to
software. First, we need the equivalent
of the contract document. It bewilders
me that no such concept exists in stan
dard approaches to software construc
tion.

The specification consists of two
parts:

• The precondition of a routine states
the obligations of clients, which are
also the benefits for the routine itself.

• The postcondition states the obliga
tions of the routine, which are also
the benefits for the clients.

The precondition is a set of initial con
ditions under which the routine oper
ates. Ensuring the precondition at the
time of any call to the routine is the
clients' responsibility.

The postcondition is a set of final
conditions the routine is expected to
ensure. Ensuring the postcondition at.
return time (if the precondition was
met on entry) is the routine's responsi
bility.

The concept of a contract is one of the
most useful aids to understanding Eif
fel programming. The role of contracts
in Eiffel can be compared to what mes
sage passing represents in Smalltalk.

Figure 3 illustrates this idea. The func
tion intersect1 in a class CIRCIE (as
sumed to be part of some graphic pack
age) returns one of the two intersecting
points of two circles (see Figure 2).
We will look at how to associate the
precondition and the postcondition to
the text of the function in the actual
Eiffel class. In this example:

• The precondition is that the two rec
tangles should intersect.

• The postcondition is that the function
result is a point that is on both circles.

Contract Variants
This is not the only possible specifica
tion. Programmers may feel uneasy
about the just mentioned "demanding"
fonn of the routine, which only works
in some cases. Instead, a tolerant ver
sion implementing a different contract
may be designed. For example:

• There is no precondition. More pre
cisely) the precondition is true, and
automatically satisfied by any client.
Here, the routines will be applicable
in all cases.
• The postcondition is more difficult

<

Dr. Dobb'sjournal, December 1989 -

(continued/rom page 52)
to express in this case. Either the two
circles intersect and the function result
is a point on both circles; or the two
circles do not intersect, the function
result is an arbitrary pOint, and an error
message has been displayed some
where. The awkwardness of stating the
postcondition in such a way is the first
sign of why "demanding" versions are
often better.

Expressing the Contract
Let's see how the preconditions and
postconditions will be integrated. List
ing One, page 125, shows what a class
CIRCLE might look like. Assume the
availability of a class POINT describing
points, and a function distance, such
that p I.distance (P2) is the distance
between any two points (PI and p2).

Result is a predefined variable which,
in a function, denotes the result of that
function. Create is the initialization pro
cedure. It is automatically exported.

The precondition of a routine, if any,
is given by the require clause. The post
condition is given by the ensure clause.
Preconditions and postconditions are
assertions -logical constraints ex
pressed as one or more Boolean ex
pressions, separated by semicolons.
They are essentially equivalent to
Boolean ANDs, but allow assertion com
ponents to be identified individually.
These components can be tagged for
even better identification. For exam-·
pIe, consider Listing Two, page 125.

Note that the first clause in this pre
condition (as well as clauses in the
preconditions of inside and outside)
express that the argument must be non
void. Void is a predefined language
feature expressing whether there is an
object associated with a certain refer
ence.

Uses of Assertions
Along with invariants (discussed later),
preconditions and postconditions play
a fundamental role in the design of
Eiffel classes. They show the purpose
of routines and the constraints on their
uses. A brief look at any well-designed
set of Eiffel classes shows how wide
their application is. The Basic Eiffel
Library, which covers fundamental data
structures and algorithms, is an exam
ple of a set of carefully designed classes
that come fully loaded with expressive
assertions.

The first application of assertions,
perhaps the most powerful, is as a con
ceptual design aid for producing reli
able software. In this role, precondi
tions and postconditions directly sup
pOlt the goal stated earlier: Writing cor
rect software and knowing why it is

'i4

EIFFEL

correct. When a routine is written, its
goal (contract) is expressed. If this goal
cannot be expressed in a formal way,
it should still be expressed as formally
as possible.

Documentation is another key appli
cation of assertions. One of the most
pervasive myths of software engineer
ing literature is the idea that document
ing software is a worthy goal. Instead,
documentation should be viewed as
an evil, made necessary by the insuffi
cient abstraction level of current tools,
techniques, and languages. It is an evil
not just because documentation is tedi
ous to produce, but also because it is
almost impossible to maintain the con
sistency of a software system with its
documentation throughout the system's
evolution. Incorrect or out-of-date docu
mentation is often worse than no docu
mentation at all. .

In an ideal world, software should
be self-documenting, with no need for
outside documentation. Failing this pro
grammer's Eden, we should strive to
have as little need for external docu
mentation as possible. Documentation
should be deduced from the software
itself. "Self-documenting software" does
not mean that the software is its own
documentation. Instead, self-document
ing software should contain part, or
(ideally) all, of its documentation, cor
responding to various levels of abstrac
tion, which can be extracted by auto
matic tools.

Preconditions and postconditions
playa key role because they document
the essential properties of routines: What
each routine expects and what each
ensures in return. The Eiffel environ
ment provides an automatic tool that
yields the documentation of a class
based on its assertion. This tool, the
class abstracter, is implemented by a
command called "short." Applying short
to a class yields the description neces
sary to determine whether the class can
be used in a certain situation, and, if
so, how to use it effectively.

The result of short applied to class
CIRCLE would be of the form shown
in Listing Three, page 125.

As shown in this example, short
keeps, as a complement to formal as
sertions, the natural language header
comments of routines, if present, at a
well-defined place. Only exported fea
tures are kept by short.

short provides documentation "for
free" - it is extracted from the soft
ware. short is the major tool for docu
menting Eiffel classes. A companion
tool, good, produces high-level system
documentation in graphiC form, show
ing the class stmcture with client and
inheritance relationships. Remember,

though, that short is meaningless With
out the presence of assertions in the
language.

Invariants
Preconditions and postconditions can
be used in a non-object-oriented con
text. Another use of assertions that is
inseparable from the object-oriented
approach is the class invariant. This is
an optional clause of Eiffel classes. An
invariant is a consistency constraint that
applies to all instances of the class.

In the CIRCLE example, the invariant
clause might state the following asser
tion:

radius >= 0;
inside (center)

In larger examples the invariants can
be much more extensive.

Invariants can be viewed as general
clauses that are implicitly added to all
contracts of a certain class, without be
ing expressly repeated for each of these
contracts. The precise definition of the
class invariant is that it is an assertion
that:

• Must be ensured by the Create of the
class

• Must be preserved by every exported
routine of the class

In principle, we could do away with
the invariant by adding its clauses to
the precondition and postcondition of
every exported routine, and to the post
condition of the Create. But, besides
making these assertions unduly repeti
tive, this would be losing sight of the
role of the invariant as a glqbal integ
rity constraint on the class, independent
of a particular routine.

The two properties used earlier to
define the invariant imply that the in
variant is satisfied in all observable states
in the life of every instance of the class.
Observable states are those immedi
ately following the Create, and before
and after application of exported rou
tines. The life of a typical object is
pictured in Figure 4, with observable
states marked as square blocks. The
idea of an observable state is important
in the context of parallel programming.

In spite of its name, an invariant is
not necessarily satisfied at all times. It
may be temporarily violated during exe
cution of exported routines, so long as
it is restored for the next observable
state.

An invariant captures the semantic
properties of a class, independently of
its current implementation, by a set of
attributes and routines. These proper
ties mLlst be understood in a software

Dr: Dobb :')lournal. December 1989 ---

(continued/rom page 54)
engineering context in which software
is always subject to change. Invariants
can help bring some order to a con
stantly changing environment by ex
preSSing what does not change in a
class - the basic semantics of the class.

Invariants can play a major part in
establishing a scientific basis for soft
ware activities that currently rest on a
rather shaky basis: Quality assurance,
regression testing, and maintenance.
Because an invariant expresses the es
sential semantics of a class that should
be preserved through successive modi
fication and extension, it provides a
framework for making QA and associ
ated activities more systematic.

Limitations of Assertions
The Eiffel assertion techniques are only
partial. The assertion sublanguage is
based on Boolean expressions with
some extensions. Sometimes more is
needed, such as first-order predicates.
In the CIRCLE class it would be nice to
have the invariant express that no point
can be both inside and outside the
circle, or that any such point must also
be "on" the circle. The notation for this
could be:

for p: POINT then
inside (p) and outside (p)

implies on (p)
end

This is not possible in current Eiffel,
although properties involving quantifi
ers ("for all," "there exists") can some
times be expressed through Boolean
expressions involving function calls.
These function calls require some care.
Other limitations of assertions are due
to the reference-based dynamic model
used for objects.

The mechanism is the result of an
engineering trade-off. Though limited,
assertions are a tremendous asset in
Eiffel programming.

c. Create (... J

c.f

c.g

c.f

Figure 4: The life q(a ~ypical object

EIFFEL

Assertions and Inheritance
Assertions also play an important role
in the context of inheritance. Invariants
are always inherited. When a routine
is redefined, its precondition may be
weakened, but not strengthened. Its
postcondition may be strengthened but
not weakened. To understand these
rules, the contracting metaphor must
be viewed in the context of inheri
tance, redefinition (subcontracting), and
dynamic binding.

Monitoring Assertions
The question of what happens when an
assertion is violated (such as if intersect1
is called on two circles that do not
intersect) is secondary. The main ques
tion is: How can we, as responsible
software profeSSionals, make sure that
we produce software that is correct?

The tendency to reverse the priori
ties and ask the secondary question
first is a sign of how insecure most of
us in the software engineering profes
sion feel about our techniques and tools.
This article won't reverse this situation.
Still, we must get our priorities straight.

The answer to what happens when
an assertion is violated depends on
how you have compiled your class. If
you have made the effort of spelling
out the mental hypotheses that under
lie the correctness of your software,
you could expect a theorem prover to
check the software against these hy
potheses. Unfortunately, this is beyond
today's technology. The next best thing
to static proof is run-time monitoring.
If you compile a class under the AU_
ASSERTIONS mode, all assertions (pre
conditions, postconditions, invariants)
are checked at the appropriate times
during execution. If one is found to
be violated, an exception is triggered.
Unless you have made explicit provi
sions to handle it, the exception will
result in program termination with a
clear message identifying the context
of the failure.

There is never a good reason to com
pile a class under any option other
than AU_ASSERTIONS, except perfor
mance. If you are sure your software
is correct and do not want to incur the
overhead of checking, use the NO_AS
SERTION_CHECKmode. If a bug does
remain, though, you are on your own.
The default is an intermediate mode,
which generates code that checks pre
conditions only. Switching modes may
be needed a number of times during
development. This switch is easy. Only
the last stage of compilation is repeated
for the corresponding class.

Run-time monitoring of assertions pro
vides a powerful debugging mecha
nism. Asseltions are a way to make

explicit the otherwise implicit mental
assumptions that lie behind our soft
ware. It is typical for a bug to cause
one of these assumptions to be vio
lated. When this occurs, run-time moni
toring will catch the violation. This de
bugging technique takes on its full mean
ing in the object-oriented context. I
used it when using the Algol W com
piler in the seventies. Its superiority
over usual de pugging methods is hard
to imagine until you have actually ap
plied it.

Defensive is Offensive
If a routine has a precondition p, de
fensive programming would mean that
the text of the routine should test again
for p, in case the client forgot. For in
stance, consider Listing Four, page 125.

The form as shown in Listing Four
is never acceptable. It is a sloppy style
of programming in which responsibil
ity for ensuring various consistency con
ditions (contract clauses) have not been
clearly assigned. Because the contract
is unclear, the scared programmer in
cludes redundant checks "just in case."
This is a self-defeating policy. Com- .
plexity is the single, worst enemy of
software reliability. The more redun
dant checks, the more complex the
software becomes, and the greater the
risk of introducing new errors.

Reliability is not obtained by cow
ardly adding even more checks, but
by precisely delineating whose responsi
bility it is to ensure each consistency
requirement. A party in a contract may
fail to meet the requirement imposed
on it. This is precisely what a bug is.
The solution, however, is not to make
the software structure more complex
by introducing redundant checking,
which only makes matters worse. For
fault-tolerant design, you should be able
to rely on a general-purpose run-time
checking mechanism. In Eiffel, this
mechanism is the monitoring of asser
tions as described above.

With redundant checking being un
acceptable, we still face a choice be
tween the "demanding" (strong pre
condition) style and the "tolerant" (no
precondition) style, with the intermedi
ate spectrum. Mathematically, tolerant
routines represent total functions and
demanding routines represent partial
functions. Which one to use depends
on the circumstances. The closer a rou
tine is to uncontrolled "end users," the
more tolerant it should be. But even
with general-purpose library routines,
there is a strong case for demanding
routines.

With a strong precondition, a rou
tine can concentrate on doing a well
defined job and doing it well, rather

Dr: Dobb :\' Tournai. December 1989 --'----

(continued from page 56)
being concerned with other things. The
intersectl routine becomes a mess if it
isn't assumed that the circles do inter
sect. Tolerant routines must address
user interface concerns for which the
routines do not have the proper con
text. The intersectl routine must ad
dress problems of geometrical algorith
mics (computing the intersection of two
intersecting circles in the best possible
way). It is difficult to reconcile these
two aspects in a single routine. The
solution that will ensure reliability more
certainly than blindly checking all con
straints all the time, is to separate the
checking and the computation.

Conventional wisdom, which says
"never assume anything, anywhere,"

'is wrong and dangerous. Its perva
siveness can only be explained by the
absence of any notion of contract in
standard approaches to programming.
If clients have no precise specification
of the conditions they are supposed to
observe, they can't be trusted to ob
serve these conditions and there is no
choice but to include as many consis
tency checks as possible. In a system
atic approach to software construction,
however, the contract is clearly and
adequately expressed, independently
of its implementation, through asser
tions. By using the short command to
let client designers see this contract,
you can concentrate on doing your job
rather than checking theirs.

Considered in the perspective of other
engineering disciplines, the often rec
ommended ban on "partial" routines
seems absurd. If you ask an electrical
engineer to design an amplifier that
will work for any input voltage, or a
mechanical engineer to build a bridge
that will hold any load, they will laugh
at you. Any engineering device has
preconditions. There really is no good
reason why software routines should
be required to be total.

The reference to electronic compo
nents is not coincidental. One of the
most exciting advantages of object
oriented techniques is the ability to
work from libraries of standardized,
off-the-shelf, reusable components.
These components are similar to hard
ware components used in electrical en
gineering. These libraries cannot be
successful unless the components are
specified in a precise and standardized
. way. Trying to sell a class without its
invariant, preconditions and postcon
ditions is like trying to sell an amplifier
without its engineering specs.

Programming by Prayer
Assertions are not a way to program
the handling of special cases. An ex-

58

EIFFEL

ception violation is not an expected
situation that you want to handle sepa
rately from the others - it is the mani
festation of a bug. To handle special
cases, there is not much substitute for
what you learned on day two of Intro
duction To Programming 100 - the
if ... then ... else construct.

There seems to be another pervasive
myth in the industry that one can forget
about special cases through a form of
faith healing. This can be called "pro
gramming by prayer." In Ada, the sa
cred word is raise. Whenever you en
counter a situation that threatens to
disrupt the spiritual harmony of your
program, kneel down and say, raise
some_exception and a saint or angel
will come and take your worries away.

It doesn't work this way. The "an
gel" has to be programmed, and ust+
ally by you. Postponing a problem does
not solve it.

In Ada, after a raise, a chain of calls
that led to the exception is explored,
in reverse order, until a block is found
that includes an exception clause of
the form:

exception
when

some_exception=>some_action;
when

othecexception =>othecaction;

One of the when branches names the
current exception. Then the code
some_action is executed and control
returns to the handling block's caller.

If your aim was to make your soft
ware simpler by separating the pro
cessing of "normal" and "special" cases,
you will be disappointed. Special cases
will not go away through the raise at
tempt at absolution. Such as old sins,
they will come back to haunt you in
your exception clauses. In the program
text, such clauses are far away from the
source of the exception. They usually
lack the proper context to deal with the
exception.

There are two cases of exception
handling. One is when the exception
must be handled identically for all calls
of the routine. This type of exception
is much better handled by an if ...
then ... else ... clause in the routine
itself. In other words, the routine should
be made more tolerant.

The second is when the handling of
the special case is different for each
client. This can be achieved by protect
ing each call with an if . . . then ...
else. The routine itself remains demand
ing. In either case no special control
structure is needed.

Exceptions
Once the naive faith in exceptions as

exorcism has been dispelled, there is
still room for an exception mechanism
Exceptions should not be used as con~
trol structures. They have no advantage
over standard control structures, and have
many drawbacks. Some mechanism is
needed however, to deal with an op
erati?~ t~a~ might. fail in such a way
that It IS dlfflcult or lmpossible to check
for with a standard control structure.
Following are three main examples:

1. Bugs. By definition, a bug is unex
pected. If you were able to test for its
occurrence, you would correct the bug
in your software, not handle it at run
time. If, in spite of your best efforts, a
bug does occur, you still want the abil
ity to recover from it somehow at run
time, even if only to terminate the exe
cution gracefully.
2. Uncheckable consistency conditions.
Some preconditions may be impossi
ble to check as part of an if ... then ...
else, either because they are too com
plex to express formally, or because
the applicability of an operation can
only be ascertained by attempting the
operation and seeing if it fails. For ex
ample, a write to disk operation may
fail, but it is not useful to ask first and
then write. The only way to know if
you can write is to attempt to write.
Then, if something goes wrong, you
must be able to recover. Another ex
ample, in an interactive system, is the
implicit precondition that the user will
not hit the BREAK key. Obviously, you
cannot test for the occurrence of such
events.
3. Impractical to check before each call.
These are operations for which express
ible preconditions exist in principle,
but for which it is impractical to check
before each call. For example, few pro
grammers want to protect every addi
tion by a test for non-overflow, or ev
ery object allocation (Create) by a check
that enough memory remains. As in the
previous case, but for practical, rather
than theoretical reasons, you want to
be able to attempt the operation, pro
ceed as if everything went all right, but
recover if something goes wrong.

These three cases are ones for which
exceptions are needed. They are not
"special" or expected algorithmic cases, .
but abnormal situations that cannot be
properly handled by standard algo
rithmic techniques.

In Eiffel, an exception occurs in the
following situations:

• Assertion violations (if monitored).
The violation of an assertion is al
ways a bug. A violated precondition
reflects a bug in the client; a violated

Dr. Dobb'sjournal, December 1989

(continued from page 58)
postcondition reflects a bug in the
routine.

• Hardware or operating system sig
nals, such as arithmetic overflow, mem
ory exhaustion, and so forth.

• An attempt to apply an operation to
a non-existent object (Void reference).

• Failure of a called routine.

The range of such exceptions is much
less extensive in Eiffel because of the
disciplined nature of the language. In
particular, the static typing mecJ:lanism
of Eiffel implies that for a correctly
compiled system there is no exception
for a "feature applied to an object that
cannot handle it (a message sent to an
object that cannot process it)."

Dealing with Exceptions
What happens when an exception oc
curs? The Ada answer is dangerous.
Because you can do essentially any
thing you like in a when clause, there
is no guarantee that you will achieve
anything remotely resembling the origi
nal purpose of the routine that failed.

To obtain a satisfactory solution, it
is necessary to think in terms of the
contract that a routine is meant to en
sure. The routine initially tries to satisfy
its contract by following a certain strat
egy, implemented by the routine's body
(the do clause). An exception occurs
when this strategy fails. In the disci
plined approach, only two courses of
action make sense:

• The routine (contractor) may have a
substitute strategy. If so, it should bring
the target object back to a stable state
and use this strategy. This is the re
sumption case.
• If no substitute strategy is available,
the routine should bring the target ob
ject back to a stable state, concede
failure, and pass the exception to its
client. This is the failure case.

Object Class Routine

2FB44 INTERFACE m_creation

2F188 MATH quasUnverse

EIFFEL

In the exception history table shown
in Figure 5, some exceptions are dealt
with in each of these two modes. The
table, shown as it is printed at run time,
is divided into periods, separated by
double lines. Each period, except the
last, ended with a retry.

The absence of a clear-cut choice
between resumption and retry is what
makes the Ada mechanism too gen
eral, and hence dangerous. Some Ada
examples show cases in which a rou
tine reacts to an exception, fails to cor
rect the cause of the exception, and
returns to its caller without signalling
the exception. This is extremely dan
gerous.

Eiffel enforces the choice between
resumption and retry. The key idea is
that of routine failure - a routine may
succeed or fail. If it fails to achieve its
contract, it may either try again or give
up. It should not conceal the failure
from its caller.

This explains the fourth case in the
earlier list of Eiffel exceptions. The fail
ure of a routine automatically triggers
an exception in its caller. This is imple
mented by the optional routine clause
rescue. If present, the rescue clause is
executed whenever an exception oc
curs during the routine's execution.

If a rescue clause is executed to the
end, the routine terminates by failing.
As noted, this automatically raises an
exception in the caller, whose own
rescue clause should handle it. If a
routine has no rescue clause, as will
typically be the case with most rou:
tines, then it is considered to have an
empty rescue clause - any exception
occurring during the execution of the
routine leads to immediate failure and
an exception in the caller. If no routine
in the call chain has a rescue clause,
the entire execution fails and an appro
priate message, recording the history
of recent exceptions in reverse order,
is printed. Note the use of assertion

Name of exception Effect

Feature "quasUnverse"; Retry
Applied to void reference

"positive_oenul/"; Fail
(from BASIC_MATH) Precondition violated

2F188 MATH raise "Negative_ value"; Fail
(from EXCEPTIONS) Programmer exception

2F188 MATH filter "Negative_ value "; Fail
Programmer exception

2F321 MATH new_matrix "square_matrix"; Fail
(from BASIC MATH) Invariant violated

2FB44 INTERFACE create Routine failure Fail

Figure 5: An exception history table

tags, when present, in the messages
shown in Figure 5.

Not all exceptions cause failure. A
rescue clause may execute a retry in
struction, in which case the body (do
clause) of the routine must be tried
again, presumably because a substitute
s~rategy is available. This is the resump
twncase.

For example, consider the routine
in Listing Five, page 125, for attempting
to write to disk, from a generic class C.

Here it is assumed that the actual
write is performed by a lower-level ex
ternal routine attempt-to-write, written
in another language, over which we
have no control. If this routine fails, it
triggers an exception, which is caught
by the rescue clause. This results in a
retry. Local routine variables are initial
ized on routine entry. An integer vari
able such as attempts, is initialized to O.

The routine write never fails. Its con
tract says, "write if you can, otherwise
record your inability to do so by setting
the value of attribute write_successful
to false, so that the client can deter
mine what happened." It is always pos
sible to satisfy such a contract.

The version of write shown in Listing
Six, page 125 is a variant of the class
that does not include attribute write
successful. It may succeed or fail. -

In this version, after five attempts,
the routine terminates through the bot
tom of its rescue clause. This means
the routine fails, triggering an excep
tion in the caller. This contract is more
restrictive than the one shown in List
ing Three. It requires that the routine
be able to write. If this contract cannot
be fulfilled, the only exit is through
failure.

Formal Requirements
The deeper meaning of the rescue
clause can be understood in the object
oriented context, and with reference
to the contract of a routine, as expressed
by assertions.

The following expresses the require
ments on a contractor that implements
software element e:

{P}e{QI

This means the contractor must write e
in such a way that, whenever P is satis
fied on entry, Q will be satisfied on
exit. The stronger P is, the easier the
contractor's job (more can be assumed);
the stronger Q is, the harder the con
tractor'S job is (more must be produced).

Consider routine r with body do,
precondition pre, and postcondition
post, in a class with invariant INV. The

(continued on page 63)

p

EIFFEL

(continued from page 60)
requirement on the author of the do
clause is:

Ipre and INV} do Ipost and INV}

In other words, the invariant and the
precondition can be assumed, the in
variant must be preserved, and the post
condition must be ensured. Now, con
sider a branch rescue, of the rescue
clause, not ending with a retry. The
requirement here is:

Itrue} do IINV}

The' input condition is the weakest
possible (hardest from the contractor's
viewpoint), because an exception may
occur in any state. The rescue clause
must be prepared to work under any
condition, but the output condition only
includes the invariant. Ensuring the in
variant brings the object back to a sta
ble state. Integrity constraints play a
similar role in data base systems. The
rescue clause is not, however, con
strained to ensure the entire postcondi
tion. This is the sole responsibility of
the do clause. If the contractor satisfies
the routine's contract, there is no need
for the rescue clause.

This shows the clear separation of
concerns between the do clause and
the rescue clause. The former is re
sponsible for achieving the contract
when possible. The latter takes over in
case the do clause falters. The rescue
clause restarts the do clause under im
proved conditions, or closes the store
after putting things in order. The re
quirements on the rescue clause are
both harder (a weaker precondition)
and easier (a weaker postcondition).

Fine-Tuning the Mechanism
Those are the basics of Eiffel exception
handling. In practice, some fine-tuning
may be needed for particular applica
tions. This is done not through the
language itself, but through the library
class EXCEPTIONS. Classes needing the
corresponding facilities should inherit
this class.

It is sometimes necessary to treat
various exceptions differently. Attrib
ute exception in class EXCEPTIONS has
the value of the code of the last excep
tion that occurred. Exception codes are
integer symbolic constants (attributes)
defined in that class. Examples include
Precondition (precondition violated)
and other assertion-related exceptions,
No_object, No_more_memory, operat
ing system signals (Sighup and so on.)
and others. A rescue clause may con
tain a test of the form:

if exception=No_more_ memory
then ... elsif and so on.

Generally, it is wise to resist the temp
tation to attach too much meaning to
the precise nature of an exception. An
exception usually points to a symp
tom, rather than a cause.

For programmers who want to define
and raise their own exceptions, the rou
tine raise is available in class EXCEP
TIONS. The default handling of certain
exceptions, especially operating sys
tem Signals, can be changed by rede
fining certain routines from class EX
CEPTIONS. By using class EXCEPTIONS,
application software can access infor
mation about the last exception. This
information includes the exception type,
its meaning expressed as a plain Eng
lish string, and so on. This is particu
larly useful for printing informative er
ror messages.

Why Not Make It Right?
Reliability is a primary concern in any
serious view of software construction.
In the object-oriented' approach, it is
even more essential. Reusability of soft
ware is meaningless unless the reusable
components are correct and robust.
Static typing is an important aspect of
Eiffel's contribution to this goal (see
the article "You Can Write, but Can
You Type?" in the March 1989 issue of
the journal of Object-Oriented Program
ming for more on this subject).

The assertion and exception tech
niques described in this article provide
the complement to static typing. They
don't absolutely guarantee that your
classes will be correct and robust, but
they sure can help.

Availability
All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif. residents add sales
tax) to Dr. Dobb'sjournal, 501 Galves
ton Dr., Redwood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the DDj Forum on Compu
Serve (type GO DDJ). The DDjListing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
I-stop bit. Press SPACEBAR when the
system answers, type: listings (lower
case) at the log-in prompt.

DDJ

(listings begin on page 125.)
Vote for your favorite feature/article.

Circle Reader Service No.4.

Learn in
3 Intensive Days

How Object-Oriented
Approaches Will Change

the World of Software
Development in the 1990s.

Larry L Constantine
Chairperson

Speakers Include:
• Bertrand Meyer
• David W Embley
• Robert Howard &:

Marie Lenzi
• Burt Rubenstein
• Stephen Schur
• Paul Ward
• Rebecca Wirfs-Brock

Product Education
Sessions By:

• AICorp, Inc.
• Aion Corporation
• Complete Computer

Corporation
• Interactive Development

Environments, Inc.
• Object Design, Inc.
• Softlab, Inc.
• The Stepstone Corp.
• Symbolics, Inc.
• The Whitewater Group

Chicago
December 5-7, 1989

Tutorial Session:
December 4, 1989

Digital Consulting,
Inc.

~
(~i

For detailed 8-page brochure:

Call (508) 470-3880
lA29DW

CIRCLE NO. 70 ON READER SERVICE

63

