
TOOL~METHODSANDLANGUAGESFOR
SCIENTIFIC AND ENGINEERING COMPUTATION
B. Ford, J.C. Rault, F. Thomasset (editors)
Elsevier Science Publishers B.V. (North·Holland) / © INRIA, 1984

Software Engineering for Engineering Software

Genie Logiciel et Logiciel pour l'ingenierie

Bertrand Meyer

Electricite de France, Direction des Etudes et Recherches
1 Avenue du General de Gaulle 92141 C1amart (France)

ABSTRACT

447

This discussion paper surveys the current state of software
for scientific and engineering applications, and the foreseeable
evolutions. It argues that a serious change in the attitude of
scientists and engineers is necessary in order to master the growth
of problem size. The discussion includes aspects of methodology,
tools and languages ; we feel that much progress is needed in all
three areas. The current actions of the ANSI Fortran committee are
seen as particularly obnoxious with respect to the overall goal of
providing scientific programmers with adequate tools.

1 - INTRODUCTION

1.1 - Background

Th is paper can be v iewed as one computer sc;·enti st I s ref lec­
tions about software for scientific and engineering applications:
what it now looks like, how it will evolve (for the better or worse),
and what may be done about it. I am grateful to the organizers of this
Conference for providing me with an opportunity to express these
views.

The ideas expressed below result from an eight-year expe­
r ience as in-house software engineer ing spec ialist in a large
scientific computation center; the author and his group were in
programming education, design and implementation of some software
tools, procurement of those which were available on the market (some
publications which reflect this activity are [4, 7, 8, lO]). Such a
situation, that of a computer scientist working in an environment

448 B. Meyer

where computers are considered as mere tools, implies repeated mi­
sunderstandings: misunderstandings with users whose official
professional interests lie with some application domain other than
programming per se, but also with other computer scientists who may
look down on what they cons ider to be uninterest ing problems
associated with the use of obsolete tools and techniques. As it is
often the case with hybrid situations, this one also has its
advantages, and we think it has provided us with some insights into
the real problems of software engineering.

Needless to sii\.y, the v iews expressed in this paper are those of
the author.

1.2 Methods, tools, languages

The view of software eng ineer ing which forms the bas is for the
ideas expressed in this paper implies in particular that three
aspects should be given equal weight when discussing software :
methods, tools, languages. We think this is more than just a cliche.
In many cases there is a tendency to give undue consideration to one
or two of these factors. Roughly speaking, one can say that as far as
academic resear ch in computer sc ience is concerned, the 60' s were the
decade of languages (when all discussions about programming would
focus on language features), the 70's were the decade of programming
methodo logy, and the current interest in software too Is is obv ious.
Wher eas one can make some pr ogr es s by sw itch ing to abetter languag e ,
or by using adequate design methods with possibly imperfect lan­
guages and tools, or by gaining access to powerful tools, we think it
is impossible to make any real breakthrough in software quality
without advancing in all three areas. The discussion will thus focus
on the three aspects.

2 - SCIENTIFIC AND ENGINEERING SOFTWARE, AS IT IS.

We outline below some of the character istics of scientif ic and
engineering software, as we perceive them and as they distinguish
this type of software from others such as bus iness software (accoun­
ting, transaction processing and the like), real-lime software
(command/control etc.), systems software (compilers, operating
systems, teleprocess ing etc.) or off ice informat ion systems. These
character istics relate to the form and contents of the programs and
to the way they are produced and used.

In the sequel, the term "scientific software" refeato pro­
grams developed for scientific and engineering applications. Itdoes
not cover bas ic software tools which may be developed in connect ion
with such programs, e.g. memory management primitives, language
preprocessors etc. ; although such tools are often wr itten as part of
scientific software projects, their characteristics are rather like
those of system software.

2.1 - Language

The filoat obvious featuI:e of scientific proqrams is the lan-

Software engineering for engineering software 449

guage in which they are wr itten : to an overwhelming major ity, they
use Fortran. Some competition has come from PL/I and APL, the latter
being popular in some circles especially for the implementation of
prototypes, "quick and dirty" versions, etc. i both, however, remain
marginal.

Many sites have done some experiments with Pascal in order to
assess a fashionable language, but few have used it on actual
proj ects, since most sc ientif ic programmers who have tr ied it deeply
resent the lack of features they cons ider essential. More important
here than functions such as exponentiation or direct-access I/O
(which can be implemented through external procedures) are proj ect
management tools such as separate compilation, which is indeed
impossible to implement in the strict Pascal framework (if static
type checking and the whole system of types are to be retained). Also,
the notion of Fortran-like conformant arrays, now included as an
optional feature in the ISO standard, but still seldom available on
existing compilers, is essential for scientific computation if
useful procedures are to be written.

So Fortran is still king. It should be noted, however, that the
world is not so simple as it used to be : Fortran means different
things to different people. The Fortran 77 standard has not comple­
tely taken over; in many cases, what is available is still either a
compiler based on the 66 standard, usually complemented by machine­
dependent extens ions, or some hybr id between the 66 and 77 vers ions.
At the same time, some manuf acturer s are taking (h igh-r isk) bets on
the next standard being concocted by ANSI. This results in a rather
fuzzy situation; as S. Feldman had foreseen in his 1976 criticism of
the Fortran 77 draft, which is still good reading [61, Fortran
undoubtedly gained in many respects by becoming Fortran 77, but it
also lost in two of its essential qualities, simplicity and univer­
sality.

When talking about Fortran with respect to scientific soft­
ware, it is impossible not to mention an apparent paradox: in spite
of its almost undisputed position as a vehicle for writing numerical
software and its pretentions to portability, Fortran does not as yet
offer any tool for controlling the numer ical accuracy of programs in
a portable fashion. The recommendations of IFIP Working Group 2.5 on
numerical software did not make their way into the 78 standa1:d
("Fortran 77"), although they are being included in the next standard
(but see below). It is interesting to note that the only widely
publicized language which does offer machine-independent facilities
in this area (following some attempts made in PL/I) is Ada.

2.2 - Program size

Scientific programs vary considerably in size. A typical range
is between 5,000 and 50,000 source lines (whether 01: not one counts
comments usually has a marg inal inf luence on the evaluat ion). There
are bigger programs, but they are not so common; some packages reach
300,000 lines or more, but one seldom hears about sizes comparable to

450 B. Meyer

what is often quoted about e. g. telephone exchange software (500, 000
to ~ million or more). Thus much scientific software can be charac­
ter ized as limed ium-s ize ". There ar e many signs, however, that these
figures may be growing steadily. This apparent tendency is likely to
br ing about much concern regard ing the scaling up of the methods used
for program writing and project management.

2.3 - contents

There is still a widely held view that scientific programs are
essentially computation-oriented. In our experience, this is inac­
curate. Of course, most scientific programs include some non-trivial
ar i thmetic computation. If, however, one looks at the actual code,
one frequently finds out that the part which actually performs
nllmer ical computation is relatively small in size (if not in
execution time), the bulk of the program text being concerned with
manipulation of data structures, storage management, input and
output, pre- and post-process ing, etc. For a large part, scientif ic
programs are data manipulation programs. In most cases, this part is
growing much faster than the purely numerical one, which is often
re~atively stabilized ; many developments have to do with impro­
vements in the user interfaces, inclusion of interactive facilities,
gr aph ical input and output, uses of data base managements systems,
etc.

This aspect of scientific programs should be understood by
those who des ign new machine architectures, programming languages,
software tools or methods aimed at this area.

2.4 - Human aspects.

An important feature of scientific software, which distin­
guishes it quite dramatically from, say, business or systems soft­
war e, is that a large share of the programs in this area is wr itten by
people whose official job title does not include words such as
.. pr ogr ammer ", II analyst", etc. Rather, they ar e cons ider ed to be
specialists in other areas, e.g. engineers, physicists, etc. On the
other hand, many of these people are programmers by any objective
cr iter ion; it is hard to dec ide by what other name one should call a
person who has been devoting four-fifths of his time in the past few
years to writing, maintaining and modifying programs.

This frequent discrepancy between off ic ial class if ication and
actual work has many negative consequences. One is the inevitable
dissatisfaction of people who feel computers prevent them from
spending their time on their "real" jOb. Another is the difficulty
encountered in properly training people who do not want to engage in a
deep study of what they consider to be just a tool.

When discussing the human aspect of scientif ic programs, it is
necessary to mention the overwhelming influence of the Fortran

Software engineering for engineering software 451

tradition. It does have some positive aspects, such as the systematic
use of separate compilation, which may be considered a good infor­
mation hiding device (although it also implies breaches in the
already weak mechanisms for type checking). These are, however,
largely balanced by some very obnox ious char acter istics ; the worst
two, in our opinion, are the purely static nature of the language
(which prompts programmers to develop ad hoc storage management
tools, intermixed with the application code) and the lack of data
structUl:; ing mechanisms (everything must be descr ibed us ing arrays).

2.5 - Programming Methodology.

The appearance of many scientific programs is a sufficient
witness of the methods, or lack thereof, used for writing such
softWare and managing the corresponding projects. This is all the
more interesting since, in the past fifteen years, researchers in
programming methodology have developed techniques which, to some
extent, make it possible to apply the criteria of scientific rigor to
software development. It looks like the area of sc ientif ic software
will be one of the last to be influenced by these developments. One is
always impressed by the amount of erratic program text which Ph. D' s
and high-bred engineers are able to produce, and in some cases be
proud of.

2.6 - Tools.

The use of programming tools, beyond such standard ones as
editors and compilers, is fair ly limited in many installations. It is
remarkable to see, for example, how often the machine-format dump
still plays the role of the basic debugging aid. Here again, the
discrepancy in levels of abstraction between the sophistication of
the applications and the people who conceive them, on the one hand,
and the characteristics of the underlying software, on the other
hand, are striking. Also, one can again notice the negative effect of
the language although Fortran is much more pr imitive by its
concepts than, say, Pascal, Lisp or Simula, it is often less amenable
to language-dependent tools such as syntaX-directed editors, sym­
bolic debuggers etc. because of its baroque features, strange format
and irregular structure.

It should be mentioned, however, that one kind of tool or iented
towards scientific software can claim a fair amount of success:
subroutine librar ies. Several numer icallibrar ies now exist which in
our opinion count among the best pieces of reusable software ever
des igned in any application area. That these librar ies are still not
used as much as they should is a fact to which many installations can
testify; several reasons can be found to this situation, some of
which are probably just connected with human laziness, others having
deeper technical roots.

Scientific software has also been the prime target for other
successful tools: Fortran static (and, to a lesser extent, dynamic)

452 B. Meyer

analyzers. Again, these tools are underused ; it is clear, however
(in particular from our own exper ience with General Research's RXVP)
that they can provide a host of services which, although conceptually
limited, are extremely useful in connection with the development,
acquisition, debugging and documentation of scientific software.
Although it is true that some of the checks performed by Fortran
static analyzers (e.g. type checking) are only needed because of the
language's deficiencies, this is is only part of the picture; some of
the ideas could be prof itably adapted to more elaborate languages,
which are still lagging behind Fortran with respect to availability
of such tools.

3 - HOPES AND FEARS FOR SCIENTIF IC SOFTWARE

We now turn to the future and try to ascertain what will happen
of scientific software and of the methods, tools and languages used
to develop it.

3.1 - Characteristics of future software

It is likely that the average size and complexity of important
sc i entif ic programs will grow cons iderably in the coming years. We
see two main reasons for this evolution:

- increased demand for sophisticated user interfaces, gra­
ph ics process ing etc. ;

- new ambitions generated by faster machines (in particular
vector and parallel processors) with increased storage, solid-state
aux iliary memory, which will tr igger requests for developments of
programs for problems which were previously considered intractable.

If these predictions come true, the current techniques of
software development will not permit to control the added complexity
of sc ientif ic software. It is well-known that the diff iculty of
wr iting a program and managing its development is not a .linear
function of its size; much of today' s scientif ic software seems to be
just below one of the "complexity barriers" which have been met in
other application domains.

A change of attitude on the part of scientists and engineers is
necessary if the hopes which they put in computers are to be
ful.f illeld. It is interesting to note that some of the more lucid
members of that community are now realizing, for example [11], that
Fortran may not be the last word. Such a change of attitude will be
necessary if some of the hopes which scientists and engineers place
in computers are to be fulfilled.

·1

r
I

Software engineering for engineering software 453

3.2 - Methodology

One area in which progress is badly needed is, clearly, prog­
ramming methodology. We now mention the advances in this area which
we consider most relevant to the area under study. We shall list three
: abstract data types; formal specif ication techniques; assertion­
guided program construction.

Abstract data types are one of those power ful ideas that look
so simple once they have been invented. Abstract data types make it
possible to describe data structures through their external proper­
ties, defined by the operations which outside users (usually pro­
grams) may perform on them and the properties of these operations,
without any reference to the physical representation of the corres­
ponding objects.

Abstract data types provide very helpful tools for specifying
precisely yet abstractly the objects which are manipulated by a
program. They are particularly useful as a basis for the modular
decomposition of software systems; they yield modular structures
which are often more solid, error- and change-reSistant than those
obtained with the classical procedural decomposition. This idea
forms the basis for the very promising technique of object-oriented
programming.

Formal specif ication is the application of mathematical for­
malism to the description of programs and program objects. This
technique, combined with abstract data types, is nothing else than
the adaptation of the classical axiomalic method to programming.
However, the two can be applied separately. Practic ing programmers,
even with a higher education in mathematics, are often reluctant to
use formal techniques ; they fear the benef it wi 11 not be worth the
amount of work needed. Only through regular application of these
techniques does one begin to appreciate the help they bring with
respect to problem understanding, inter-programmer communication,
existence of a fixed and unambiguous bas is against which the eventual
programs can be validated.

Assertion-gUided program construction, a f ie.ld of study based
on Dijkstra 1 s work [5], is concerned with methods of program
construction which work in a systematic way, starting with the text
of the formal spec if icat ion. Although there have been no reports of
systemat ic applicat ion of such methods to the des ign of large
programs, they undoubtedly provide a framework in which it becomes
much easier to reason explicitly and precisely about the program
design process.

One of the major problems which remain to be solved is, to my
opinion, the des ign of a practical axiomatic system which would make
it possible to apply the Hoat:e-Dijkstra methods for formal reasoning
about programs to programs involving floating-point computations.
There have been sevet:al attempts at this. The kind of questions

454 B. Meyer

involved includes determination of rules for computing assertions
such as

wp (x)o y, x: = y + z)

where wp (P, A) is the weakest precondition which will ensure
validity of P after execution of A.

3.3 -Tools

It is soon realized that in a sufficiently rich software
environment, the merits of individual tools become almost less
important than the consistency of the various available tools.
Consistency here means not only ability to communicate, but also
shar ing of a common set of calling conventions, user interfaces and
general philosophy. Only if these conditions are met does the
buzzword "integrated" apply. For this to be the case, a strong
unifying concept must be found. One of the most promising areas of
research focuses on the idea that a programming language may play
this role, at least if viewed with a sufficient level of abstraction,
hence the ;mport~nce of the notion of abstract syntax. One key
development in systems such as the INRIA's Mentor or Carnegie­
Mellon's Gandalf has been to show that, for software environments,
language-based does not mean language-bound : the language can be a
parameter, in such a way that adaptation of a language-based
environment to a new language is a relatively simple task. In such a
framework, the definition of a language may be considered to include
such aspects as coding standards, comment conventions etc.

Another kind of tools which should be of much help for the
development of scientific software includes tools which are not as
common in this area as they are e.g. in business software, namely what
may be called "customizable packages", or "application generators".
These are programs which will generate programs adapted to parti­
cular problems; their position lies in-between fixed subroutine
libraries (whose rigidity is one of the reasons why they are not
universally used, as mentioned above), and general-purpose program­
ming languages (which often provide too much freedom and too many
poss ibilities when applied to a class of similar problems). Program
generators are of course an old idea; however, with the advent of new
powerful devices for man-machine interaction, they may take on a new
life. Many of the underlying concepts can be studied in the context of
language-based environments as seen above.

3 .4 - Languages

It is impossible to end this discussion without mentioning
the appalling effort which has been going on in ANSI in order to find a
successor to Fortran 77 ; the current working name is Fortran ax. This
incredible construction [1] results from adding to the Fortran
framework all kinds of incoherent ideas which have occurred in the
past five years to various people. We thus find, along with the
class ical Fortran constructs, such things as new control structur es

Software engineering for engineering software 455

(but there still iS,n I t a while construct), Pascal-like record
structures (but no pOlnters), array manipulation pr imitives (as part
of the, language, with a specif ic syntax), dynamic storage and
recurSlve procedures, etc. Although the language "architecturel! was
sUPPo,sed to have been fixed some time ago, new br ight ideas seem to
come 1n at every meeting; for example, the last report [2] includes a
proposal (adopted by "straw vote"), which adds to the language a
concept called "bundle", which is supposed to implement abstract
data,types. Th~ report contains minutes of a discussion over the
posslble confllcts of this notion with ... the doubling of quotes in
FORMAT statements! It is part icular ly sad to see the amount of time
money and energy which has been spent in many countr ies over the world
to produ~e a document which looks like a survey of fashionable
programmlng language concepts by a group of high-school students.

An idea of the elegance of the language will be readily
obtained by considering the syntax for the primitives which give
access to the characteristics of the host machine floating-point
number system (probably one of the legitimate additions, given the
nature of Fortran usage). A call such as PRECISION (X) returns the
number of digits for objects of the type of the actual argument X :
i.e. the number of digits for integers if X is a variable of type
integer, etc. This quaint convention (which, to our knowledge, is a
first in programming languages), is incons istent with every known
notion of parameter passing : what is passed here is neither X's
value, nor its address, nor its name, but its type! Incidentally,
this convention makes it impossible for a local computation center to
implement these facilities by anticipation without modifying the
compiler.

Many lessons have been learned in the past fifteen years on the
des ign of programming languages. In every univers ity course on the
subject, it is taught that a language design (as a program design)
should be seen not as an accumulat ion of features, but as a
homogeneous and regular construction. This is exactly the contrary
of what the 8X proposal curently looks like.

One of the reasons why the current proposal is so bad is
probably that few respectable computer scientists today will agree
to partiCipate in anything which has the name Fortran. I should like
to point out that, whereas such an attitude is understandable, it is
still necessary to have a few reasonable people partiCipate in the
necessary cleanup of the language. Fortran is one of the very few
available languages which come close to achieving true portability.
It is almost the realization of the UNCOL myth of the 1950' s [9], 1. e.
a universal assembly language. It has, or had, in D. Barron's words
[3], the rugged simplicity of a Ford Model-T. One should not let
people add a nose, a tail and wings to it and pretend it has been
transformed into a supersonic jet.

456 B. Meyer

4 - CONCLUSION

The ideas ex£:,ressed in this paper are clearly designed to stir
u£:, a fruitful discuss ion. I ho£:,e to have been able to convey ideas to
members of two communities ;

- to practicing scientific progr~ers, I hope to have shown
that it may be useful to devote some time to the study of some formal
as£:,ects of programming in order to eventually spend less time
programming, and to have given them some hints about Fortran not
being the last word ;

- as for computer scientists, I have tried to emphasize that
scientif ic computation, the oldest applicat ion field of computers,
still has some interesting challenges to offer.

BIBLIOGRAPHY

[1] ANS I : Proposals approved for Fortran 8X (X3J3 / S6. 81) ; March 2,
1981.

[2] ANSI : Minutes of 85th Meeting; February 7-11, 19;83.

[3] D. Barron (Ed.) ; Pascal: The Language and its Implementation
(Wiley, New York, 1981.

[4] A. Bossavit, B. Meyer : Methods for vector Programming, in de
Bakker and van Vliet (Eds.) : Algorithmic Languages (North-Holland,
Amsterdam, 1981).

[S] E.W. Dijkstra : A Discipline of Programming (Prentice-Hall,
1976).

[6] 5.1. Feldman: A Fortranner's Lament, SIGPLANNotices, Dec. 1976,
25-34.

[7] B. Meyer, C. Baudoin: Methodes de Programmation (Eyrolles,
Pal: is, 1978).

[8] B. Meyer: Principles of Package Design; Communications ACM,
vol. 25, no. 7, July 1982, 419-428

[9] T.B. Steel: Uncol, the Myth and the Fact ; inR. Goodman (Ed.):
Annual Review in Automatic Programming, Vol. 2 (Pergamon Press, New
YOl:k, 1961), 32S-344.

[10] F. Vapne et al : 101 Conseils pour la Programmation en Fortran,
EDF Report Ateliel: Logiciel n. 35, to appeal: in book form.

[11] K. Wilson : A Program of Computing Support for Physical
Reseal:ch, to appear.

