
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 8, 3-9 (1978)

A N'ote on Computing Multiple Sums

BERTRAND MEYER
E.D.F., Direction des Etudes et R~cherches, Service l.M.A.,

1 Avenue du G~neral de Gaulle, 92141 Clamart, France

SUMMARY
In a recent paper, 1 ~:method was given for computing multidimensional sums in FORTRAN
in a particular case •. We show that the general problem of computing mUltidimensional sums
is best expressed by a recursive definition which can then be translated into a programming
language. The method is applied to an example optimization"problem. '

"

KEY WORDS ,Summations Recursion. FORTRAN CombinatorialaIgorithms

INTRODUCTION

In, a recent pap~.f1 a method was given, to compute multiple,slIms of the following form
in":FORTRAN: .,' .. '. "

k k k'
sum =.~ ~ ... ~ f(n1, n2, ••• , nm)

'1/-1=1 n2=1nm=l
; .

The methodlielied, upon the fact: that in t~isparticular form al~, indiqes range; over the
sarpe doma~!l, namely {l, 2; '. "., k}; the whol<;!; looping process can thus be controlled by~
siggJe.m-.digit integer; in basek.

The purpQse of~thepresent paper is to show that the. probl~m, above,is jus~, an instance
of the more general one, of computing multiple sums over arbitrary finite sets. A solution
to this general problem IS best' expressed' bya simple recursive formula, which can then be
made into a FORTRAN program by applying the usual rules for recursion removal. We
shall give an application of this method to the solution of an optimization problem which
was recently posed by a programmer atour Centre.2

Although no new theoretical result is presented in this paper, we feel it useful to show
in a particular instance how illuminating a recursive approach can be for certain classes
of problems, such as tree traversal. As a matter of fact, many real-world FORTRAN
programs contain hidden and in most cases unconscious' use of recursion, through the
manipulation of sqm,earrays which are but implementations of stacks. It seems to us, for
instance, that the array IVEC which is used in Reference 1 for the representation of an
m-digit integer in base. k is actually a recursion stack. A good knowledge of recursive
techniques can help' FORTRAN programmers to improve and clarify their programs.

THE PROBLEM

A multiple sum can usually be written (using notations similar to Reference 1):

bl b2 bm
sum = ~ 2: 2: f(nl , n2, ••• , nm) (2)

0038-6644/78/0108-0003$01.00
© 1978 by John Wiley & Sons, Ltd.

nl =al n2=aZ 'n,n=am '

3

Received 5 July 1976
Revised 30 November 1976

4 BERTRAND MEYER

where there is no reason for the a/s and b/s to be all equal. Formula (2) can be viewed as a
summation over the leaves of a tree of depth m, where all internal nodes at a given level
i (1 < i < m) have the same number of sons, the branches to which are labelled ai' ai + 1, ... , bi'
This is shown on Figure 1, where, as in later figures, nodes where the summation has to
be performed are marked by squares.

Figure 1. Tree representation of
3 9 1
~ 'L ~ f(nl' n2, na)

nl=2 n2=7 'n3=O

Quite frequently, however, formula (2) is still too restrictive, and many practical problems
require performing a summation over an arbitrary set of nodes of a given tree; We shall
express f as a function of the sequence of labels from the root to a given node; in particular,
it can have a variable number of arguments. Thus, Figure 2 represents the sum:

/(5,0, -1)+/(5,0) +/(5,1) +/(6) +/(6,2,0)
The general form of the sum to be performed is:

sum = 1: lex)
u:;eT. cond(x) (3)

Figure 2. Tree representation 01
f(5,0, -1)+1(5,0)+1(5, 1) +f(6)+f (6, 2, 0)

LEE a:

A NOTE ON COMPUTING MULTIPLE SUMS 5

where T is a tree; x will range over the set of nodes in T and will be expressed by the
sequence of labels from the root: Xl' X2, "" Xk; and cond is a certain condition on x which
selects the nodes to be taken into account for the summation of f We shall restrict ourselves
to trees of a given depth, m, where all branches at level i (1 < i < m) are labelled
ai' ai + 1, "" hi; the method can be easily generalized to any finite tree,

An interesting case occurs when the predicate cond is such that cond (nI' "" nk) cannot
be true whenever cond (n!) "" nh) is true for some h (1 ~ h < k ~ m), We shall say in such a
case that cond satisfies the 'prefix condition', In such a case, summation only has to be
performed over some of the leaves of some subtree of T (Figure 3), Formulae (1) and (2)
trivially satisfy the prefix condition.

,
I ,

I' I
,

/ ,
/ I \

/
,

6
,

,9. 'q
I \ I \ I \,

I \ i \ I \
I

b 6 b cS b
\

d d 6
Figure 3. Example of prefix condition

AN EXAMPLE

As an example, consider the following problem,2 which arose recently. We want to compute
the expected cost of operating a thermal power system so as to satisfy a global power
requirement R. The system is composed of m 'plants'; plant i operates at cost
Ci (i = 1,2, , .. , m), and produces power ri,j with probability Pi,j (j = 1,2, ... , ti)' Concretely,
this means that the different plants will be started in order of increasing cost,and that
plant i is composed of ti 'units' which have a certain probability of breaking down.

Thus, the expected value of operating the system so as to meet the power requirement is
given by formula (3) above, where

and

ai = 1 (i = 1, 2, ... , m)

hi = ti (i = 1,2, ... , m)

k
cond (Xl) X2) •• " Xk) is: ~ ri.xi ~ Rand

i=l

k-I
,~ri.xi<R
~=l

6 BERTRAND MEYER

(Note that the way cond is expressed shows it satisfies the prefix condition). . .
As a simple illustratiye case, consider the situation shown in Fig:ure 4 .. There are three

plants, each of which consists of a single unit. Let us assume that the powers produced
are:

rl = 2 for plant 1; r 2 = 1 for plantZ; ra = 2for plant 3

Associated costs are Cl , C2, Cal which are such that 0 1 < C2 < Ca: the plants will be .gtarted
in the order 1,2,3. If plants 1,2, 3, i.e. their single units, have the respective probabilities
PI' P2 and Pa of being in working order, the powers produced are r1, r2 andrawith proba­
bilities Ii, P2 and'Pal and 0 with probabilities l-PII 1 -'-P2 and I-Pa•

power 2, 0,

1, 0, 1, '0,

0, 2, 0,

Figure 4. Tree representation of summation required

If we assume that the global power requirement is R = 3, the admissible configurations
are those represented by square nodes on Figure 4, and the expected operating cost to be
computed is: .

PI P2(.2C1 + C2) + P1(l- P2) Pa(2C1 + 2ea) + (~-PI) P2 flC\ + 2ea) " '.
. ..' -"', '

, .
THE METHOD

Formula (3) can be computed by the following recursive function· definitions (which make
use of list arguments such as list, of the special' empty list called NIL, of the operations
cons (x, list) which adds object x to list list, artdofconditional expressions ·of the 'form
if c then el else e21 with value e1 if condition c is true and e2 otherwise):

sum = 's(l,NIL)

where function s is defined as

and ss as

s(£,l£st) = if i> m then 0
. b" .

else ~ ss(i, consU, Hst»
1=al

ss(i, list) = [if cond(list) thenf(list) else 0]
'. ~~(i+ 1,list) .

A NOTE ON COMPUTING MULTIPLE SUMS

If cond satisfies the prefix condition, ss can be written more simply as

if cond(list) thenf(list)
else s(i+ 1, list)

7

We shall not give a formal proof of these formulae, which are easy to justify by considering
the way the tree is traversed.

In the case of our example, f itself has a recursive definition, so that the definition for the
expected cost expected can be written as

expected = expect(1, R)
where

expect(i, x) = if i> m then 0

ii "
else ~ ~,jexp(i,j,x)

3=1

and

exp(i,j, x)= if x ~ ri,j then Ci ri,j
else if expect(i+ 1, X-ri,j) > 0 then Ciri,j+expect(i+ 1,x..:..ri,j)
else 0

PROGRAMMING THE METHOD IN FORTRAN

In a language allowing recursion, the above formulae are readily translated into mutually
recursive function definitions (the ~s being replaced by loops in ALGOL, PASCAL,
PLJI, etc, or by further recursive definitions in LISP). In FORTRAN, recursion must be
explicitly programmed using a stack. More precisely:
-mutually recursive function definitions are merged into a single recursive definition;
-a variable is added to control the nesting level of recursive calls. Here it already exists,

vzz. z.;
-each variable, function parameter of function result is replaced' by an' array, and each

array by an array with one more dimension; the extra index will indicate the recursion
level;

-each recursive call is replaced by instructi9ns incrementing the recursion level, InItializing
array elements which represent function arguments, and then branching to the beginning
of the function;

-each function return is replaced by instructions decrementing the recursion level,
updating the stack element representing the function result, exiting if 'the recursion level
becomes 0, otherwise leading to the instruction which follows the last recursive call.
In general, return labels would have to be stacked (in an array of integers), and function
return would be implemented as a computed GOTO; here this will not be necessary
since all functions are called from exactly one location.
The application of these rules, with some obvious simplifications, leads to the programs

below for the general case (program 1) and for our example case (program 2). F (the function
j, which has been assumed to be of type REAL), and COND (the predicate cond, of type
LOGICAL) have been treated as external FUNCTION subprograms. The second program
is more efficient since it uses the prefix condition.

The use of recursion in programming and the methods for transforming recursive
programs into iterative ones are further discussed in Reference 3.

8 BERTRAND MEYER

ACKNOWLEDGEMENT

We would like to thank Mr. Michel Gondran for helping to render more accessible a more
mathematically-oriented first version of this paper.

REFERENCES
1. A. J. Guttmann, (Multi-dimensional summations in FORTRAN', Software-Practice and Experience,

6,221-224 (1976).
2. B. Meyer, 'Un probleme recursif', Bulletin du Centre de Calcul des Etudes et Recherches, 40, EDF,

Clamart (1976).
3. B. Meyer and C. Baudoin, Methodes de Programmation, Paris, Eyrolles, to appear, 1978.

APPENDIX
Programs

REAL FUNCTION SUM (M, F, COND, A, B, LIST)
C ** COMPUTE THE SUM OF FUNCTION F OVER THE SET OF I-TUPLES (I < = M) ***
C ** WITH CHARACTERISTIC FUNCTION COND AND LIMITS A(I), B(I) ***

INTEGER M, A(M), B(M), LIST(M)
EXTERNAL F, COND
REALF
LOGICAL COND

C ** ARRAY LIST WILL REPRESENT THE RECURSION STACK
C ** COND(LIST, I) IS COND APPLIED TO THE FIRST I ELEMENTS OF ARRAY LIST
C ** F(LIST, I) IS F APPLIED TO THE FIRST I ELEMENTS OF ARRAY LIST
C

C

SUM=O
1=0

C ***** DEPTH-FIRST DESCENT *****
100 IF (I.EQ.M) GOTO 200

C

1=1+1
LIST(I) = A(I)
GOTO 100

C ***** BACKTRACK *****
200 CONTINUE
C ***** HERE I < = M AND LIST(I) < = B(I) *****

IF (COND(LIST, I» SUM = SUM + F(LIST, I)
LIST(I) = LIST(I) + 1

C

IF (LIST(I).LE.B(I) GOTO 100
I = 1-1
IF (LGT.O) GOTO 200

1000 RETURN
END

REAL FUNCTION EXPCOS (M, R, T, P, COST, POWER, LIST, EXPECT, REMAIN)
C ***** COMPUTE THE EXPECTED COST OF OPERATING A THERMAL *****
C ***** POWER SYSTEM SO AS TO SATISFY POWER REQUIREMENT R *****
C

C

INTEGER M, T, LIST(M)
REAL R, P, COST, POWER, EXPECT(M), REMAIN(M)
INTEGER INDEX
EXTERNAL R, T, P, COST

C ***** R, T, P, COST, POWER ARE THE PARAMETERS OF THE PROBLEM *****
C ***** THEY ARE ASSUMED HERE TO BE FUNCTIONS SUBPROGRAMS, *****
C ***** BUT COULD BE ARRAYS AS WELL. *****
C ***** FOR 1 < = I < = M, T(I) IS THE "SIZE" OF PLANT I, *****
C ***** AND COST(I) IS ITS OPERATING COST. *****
C ***** FOR 1 < = I < = 1\11 AND 1 < = J < = T(I), P(I, J) IS THE *****
C ***** PROBABILITY THAT UNIT J OF PLANT I IS STARTED, *****
C ***** AND POWER(I, J) IS THE POWER IT PRODUCES. *****
C ***** *****
C
C ***** ARRAYS LIST, EXPECT AND REMAIN REPRESENT THE STACK; *****
C ***** THEY CORRESPOND TO NAMES J, EXPECT AND X IN THE *****
C ***** RECURSIVE FORMULATION *****
C

C

C

INTEGER INDEX

1=1
LIST(l) = 1
INDEX = 1
EXPECT(l) = 0

C ***** DEPTH-FIRST DESCENT *****
100 CONTINUE
C THE SPECIAL CASE I = 1 BELOW IS MOTIVATED BY THE FACT
C THAT ARRAY "REMAIN" CANNOT BE INDEXED BY 0

IF (I.EQ.1) REMAIN(I) = R-POWER(I, INDEX)
IF (LGT.l) REMAIN(I) = REMAIN(I -1) - POWER(I, INDEX)
IF (REMAIN(I).LE.O) GOTO 150
IF (I.EQ.M) GO TO 200

1=1+1
LIST(I) = 1
INDEX = 1
EXPECT(I) = 0
GOTO 100

C ***** UPDATE EXPECTED VALUE *****
150 EXPECT(I) = EXPECT(I) +P(I)*COST(I)*POWER(I, INDEX)
C ***** BACKTRACK *****
200 CONTINUE

C

INDEX = INDEX+l
LIST(I) = INDEX
IF (INDEX.LE.T(I)) GOTO 100

1=1-1
IF (I.EQ.O) GOTO 1000

IF (EXPECT(I + l).NE.O) EXPECT(I) =
1 EXPECT(I) + P(I, INDEX)*
2 (EXPECT(I + 1) + COST(I)*POWER(I, INDEX))

GOTO 200

1000 EXPCOS = EXPECT(l)
RETURN
END

