SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 8, 3-9 (1978)

- A Note rovn Computlng ‘Multiple Sums

BERTRAND MEYER

E.D.F., Direction des Etudes et Recherches, Service I.M.A.,
1 Avenue du General de Gaulle, 92141 Clamart, France

SUMMARY

In a recent paper,' a method was given for computing multxdxmensronal sums in FORTRAN
in a particular case. We show that the general problem of computing multidimensional sums
is best expressed by a recursive definition which can then be translated into a programming
language. The method is applied to an example optimization problem.

KEY WORDS ,‘Summatlons Recursion . FORTRAN Combinatorialalgorithms

INTRODUCTION

In a recent paper1 a method was given to compute multiple sums of the followrng form

in“'FORTRAN:.
sum = }_‘, > ... 2 f(nl,ng,...,nm) -

n1=1 ns=1

The method relied upon the fact that in this partlcular form all indices range over the
same domain, namely {1,2,. k} the whole looping process can thus be controlled by a
single. m-digit integer in base k ,

The purpose of the present paper is to show that the problem above is Just an 1nstance
of the more general one of computing multiple sums over arb1trary finite sets. A solution
to this general problem is best expressed by a simple recursive formula, which can then be
made into a FORTRAN program by applying the usual rules for recursion removal. We
shall give an application of this method to the solution of an optimization problem which
was recently posed by a programmer at our Centre,?

Although no new theoretical result is presented in this paper, we feel it useful to show
in a particular instance how illuminating a recursive approach can be for certain classes
of problems, such as tree traversal. As a matter of fact, many real-world FORTRAN
programs contain hidden and in most cases unconscious use of recursion, through the
manipulation of some arrays which are but implementations of stacks. It seems to us, for
instance, that the array JVEC which is used in Reference 1 for the representation of an
m-digit integer in base & is actually a recursion stack. A good knowledge of recursive
techniques can help FORTRAN programmers to improve and clarify their programs.

: THE PROBLEM

A ,mnlt.iple sum can usually be Written (using notations similar to Reference 1):

sum = Z E 2 /i (”1, Hy, ..) ‘ | (2)
o : " N1=a1 ne=ag Nym=am
0038-6644/78/0108-0003$01.00 ‘ R Received 5 July 1976
© 1978 by John Wiley & Sons, Litd. ¢ - ’ Revised 30 November 1976

AR

4 BERTRAND MEYER

where there is no reason for the a,’s and 5,’s to be all equal. Formula (2) can be viewed as a
summation over the leaves of a tree of depth m, where all internal nodes at a given level
i (1 < i< m)have the same number of sons, the branches to which are labelled a;, a;+ 1, ..., b;.
This is shown on Figure 1, where, as in later figures, nodes where the summation has to
be performed are marked by squares.

Figure 1. Tree representation of
E Z Z S(ny, 1y, 15)
N31=2 Ne=T7 Ng=0
Quite frequently, however, formula (2) is still too restrictive, and many practical problems
require performing a summation over an arbitrary set of nodes of a given tree. We shall
express f as a function of the sequence of labels from the root to a given node; in particular,
it can have a variable number of arguments. Thus, Figure 2 represents the sum:

| f(8,0, =1)+£(5,0) +(5,1) +£(6) +(6,2,0)
The general form of the sum to be performed is:

Csum= Y fx) ‘ 3)

xeT, cond(zx)

Figure 2. Tree representation of

£(5,0, =1)4+£ (5, 0)+f (5, 1) +£ (6)+7 (6,2, 0) ,

A NOTE ON COMPUTING MULTIPLE SUMS 5

where T is a tree; x will range over the set of nodes in 7 and will be expressed by the
sequence of labels from the root: x;, %,, ..., xy; and cond is a certain condition on x which
selects the nodes to be taken into account for the summation of f. We shall restrict ourselves
to trees of a given depth, m, where all branches at level 7(1<zZ<m) are labelled
a;a;+1,...,b;; the method can be easily generalized to any finite tree.

An interesting case occurs when the predicate cond is such that cond(ny, ...,n;) cannot
be true whenever cond (ny, ..., n;) is true for some 4 (1 <h<k<m). We shall say in such a
case that cond satisfies the ‘prefix condition’. In such a case; summation only has to be
performed over some of the leaves of some subtree of T' (Figure 3). Formulae (1) and (2)
trivially satisfy the prefix condition.

Figure 3. Example of prefix condition

AN EXAMPLE

As an example, consider the following problem,? which arose recently. We want to compute
the expected cost of operating a thermal power system so as to satisfy a global power
requirement R. The system is composed of m ‘plants’; plant ¢ operates at cost
C; (= 1,2,...,m), and produces power r, ; with probability P;; (j = 1,2,...,t;). Concretely,
this means that the different plants will be started in order of increasing cost, and that
plant 7 is composed of #; ‘units’ which have a certain probability of breaking down.

Thus, the expected value of operating the system so as to meet the power requirement is
given by formula (3) above, where

a;=10G=1,2,...,m)
b=t (=12,...,m)

7

k k
Fl v 2) = (11 Pin) (2 ot

and

ko k=1
cond(xy, Xy, ..., %) is: X7, >R and X7, <R
Co =l i=1

6 BERTRAND MEYER

(Note that the way cond is expressed shows it satisfies the preﬁx condition).
As a simple illustrative case, consider the situation shown in Figure 4. ‘There are three
plants, each of which consists of a single unit. Let us assume that the powers. produced

are:
= 2 for plant 1; 7, = 1 for plant2; ry3= 2 for plant 3

Associated costs are Cj, Cy, Cy, which:are such that Gy < €y < Cy: the plants will be started
in the order 1,2,3. If plants 1,2,3, i.e. their single units, have the respective probabilities
P, P, and P, of being in Workmg order, the powers produced are r,, 7, and 73 with proba-
b111t1es P, P, and-P,, and 0 with probabilities 1— Pl, 1- P2 and 1- P N

power 2,

with probability /;

Figure 4. Tree representation of summation required

If we assume that the global power requirement is R = 3, the admissible configurations
are those represented by square nodes on Figure 4 and the expected operating cost to be
computed is:

o PP2(201+02)+P1(1 PZ)P3(2C1+2C3)+(1 PI)P P3(C’2+2C'3)

THE METHOD

Formula (3) can be computed by the following recursive function: deﬁmtmns (wh1ch make
use of list arguments such as [45¢, of the special empty list called NIL, of the operations
cons (x, list) which adds object x to list list, and of conditional expressmns of the form
if ¢ then e, else ¢, with value ¢; if condition ¢ is true and e, otherwise): :

- sum =s(1,NIL)
where function s is defined as .
s(t, lzst) =ifi>m then 0
| else Z s8(z, cons(7, lzst))

and ss as
 ss(i, list) = [1f cond(lzst) then f(list) else 0]
S ' +s(i+1, bst)

A NOTE ON COMPUTING MULTIPLE SUMS 7

If cond satisfies the prefix condition, ss can be written more simply as

if cond(list) then f(list)
else s(z+1, list)

We shall not glve a formal proof of these formulae, which are easy to justify by considering
the way the tree is traversed.

In the case of our example, f itself has a recursive definition, so that the definition for the
expected cost expected can be written as

expected = expéct(l,R)
where '
expect(i, x) = if i>m then 0

else E jexp (1,7, %)
and

exp(i,, x) = if x<r;; then Cy7,; ,
else if expect(z+ 1,x—7;;)>0 then C;r,;+expect(i+1,x—7,,)
else 0 -

'PROGRAMMING THE METHOD IN FORTRAN

In a language allowmg recursion, the above formulae are readily translated into mutually
recursive function definitions (the Yis bemg replaced by loops in ALGOL, PASCAL,
PL/I, etc, or by further recursive definitions in LISP). In FORTRAN, recursion must be
explicitly programmed using a stack. More precisely:

—mutually recursive function definitions are merged into a single recursive definition;

—a variable is added to control the nesting level of recursive calls. Here it already exists,
viZ. 1.

—each varlable function parameter of function result is replaced- by an array, and each
array by an array with one more dimension; the extra 1ndex will 1nd1cate the recursion
level; a ‘

—each recursive call is replaced by instructions incrementing the recursion level, 1n1t1al1z1ng
array elements which represent function arguments, and then branchmg to the beginning
of the function;

—each function return is replaced by instructions decrementmg the recursion level,
updating the stack element representing the function result, exiting if the recursion level
becomes 0, otherwise leading to the instruction which follows the last recursive call,
In general, return labels would have to be stacked (in an array of integers), and function
return would be implemented as a computed GOTO; here this will not be necessary
since all functions are called from exactly one location.

The application of these rules, with some obvious simplifications, leads to the programs
below for the general case (program 1) and for our example case (program 2). F (the function

f, which has been assumed to be of type REAL), and COND (the predicate cond, of type

LOGICAL) have been treated as external FUNCTION subprograms. ‘The second program

is more efficient since it uses the prefix condition.

The use of recursion in programming and the methods for transforming recursive

programs into iterative ones are further discussed in Reference 3.

8 'BERTRAND MEYER

ACKNOWLEDGEMENT

We would like to thank Mr. Michel Gondran for helping to render more accessible a more
mathematically-oriented first version of this paper.

REFERENCES
1. A.J. Guttmann, ‘Multi-dimensional summations in FORTRAN’, Software—Practice and Experience,

6, 221-224 (1976). :
2. B. Meyer, ‘Un probléme récursif’, Bulletin du Centre de Calcul des Etudes et Recherches, 40, EDF,

Clamart (1976).
3. B. Meyer and C. Baudoin, M¢thodes de Programmation, Paris, Eyrolles, to appear, 1978.

APPENDIX

Programs :
REAL FUNCTION SUM (M, F, COND, A, B, LIST)
C # COMPUTE THE SUM OF FUNCTION F OVER THE SET OF I-TUPLES (I < = M) #x*x*
C s+ WITH CHARACTERISTIC FUNCTION COND AND LIMITS A(I), B(I) dok
INTEGER M, A(M), B(M), LIST(M)
EXTERNAL F, COND
REAL F
LOGICAL COND

C x* ARRAY LIST WILL REPRESENT THE RECURSION STACK
C #% COND(LIST,I) IS COND APPLIED TO THE FIRST I ELEMENTS OF ARRAY LIST
C . F(LIST,I) ISF APPLIED TO THE FIRST I ELEMENTS OF ARRAY LIST
C . .
"SUM =0
I=0

C ;
C xxkxk DEPTH-FIRST DESCENT ks
100 IF (I.LEQ.M) GOTO 200

I=1+1

LISTI) = A(D)

GOTO 100
C :
C #x%xx BACKTRACK s##s*x
200 CONTINUE
C ‘ #t+xx HERE I <=M AND LIST(I) < = B(I) s##kxx

IF (COND(LIST, I)) SUM = SUM+ F(LIST, I)

LIST{I) = LIST(I)+1

IF (LIST(I).LE.B(I)) GOTO 100

=1-1
IF (I.GT.0) GOTO 200

C ,

1000 © RETURN
END

REAL FUNCTION EXPCOS (M, R, T, P, COST, POWER, LIST, EXPECT, REMAIN)

C sx¢xkx COMPUTE THE EXPECTED COST OF OPERATING A THERMAL *kokokok
C xsxkx POWER SYSTEM SO AS TO SATISFY POWER REQUIREMENT R Kokl
C

INTEGER M, T, LIST(M)

REAL R, P, COST, POWER, EXPECT(M), REMAIN(M)

INTEGER INDEX

EXTERNAL R, T, P, COST
C
C sxxxx R, T, P, COST, POWER ARE THE PARAMETERS OF THE PROBLEM sekokok &
C xxkx% THEY ARE ASSUMED HERE TO BE FUNCTIONS SUBPROGRAMS, okt o
C #xkx% BUT COULD BE ARRAYS AS WELL. Aeokokok ok
C ok ke ok FOR1<=I1<=M, T() IS THE “SIZE” OF PLANT I, odokok
C sk o AND COST() IS ITS OPERATING COST. shokok e ke
C ek ok FOR1<=I<=MAND1<=]<=T®{),P,]) IS THE sk ok
C ek ok PROBABILITY THAT UNIT J OF PLANT I IS STARTED, sk ko s
C ke o AND POWER(, J) IS THE POWER IT PRODUCES. skokk ok o
C Sekkokok ko sk
C
C skxkx ARRAYS LIST, EXPECT AND REMAIN REPRESENT THE STACK; kot o ok
C xxxkk THEY CORRESPOND TO NAMES J, EXPECT AND X IN THE ook o ok
8 xikkx RECURSIVE FORMULATION Aekdok %

INTEGER INDEX
C

I=1

LIST{) =1

INDEX =1

EXPECT(1) =0
C

C sxskkx DEPTH-FIRST DESCENT s#skskx
100 CONTINUE
THE SPECIAL CASE I = 1 BELOW IS MOTIVATED BY THE FACT
THAT ARRAY "REMAIN" CANNOT BE INDEXED BY 0
IF (1.EQ.1) REMAIN(I) = R-POWER(I, INDEX)
IF (1.GT.1) REMAIN(I) = REMAIN(I - 1) - POWER(I, INDEX)
IF (REMAIN(I).LE.0) GOTO 150
IF (1.EQ.M) GOTO 200
I=1+1
LISTI) =1
INDEX =1
EXPECT{) =0
GOTO 100
C sk UPDATE EXPECTED VALUE sk
150 EXPECT(I) = EXPECT() +P(I)*COST(I)*POWER(I, INDEX)
C #xkxk BACKTRACK s#x%*
200 CONTINUE
INDEX = INDEX +1
LIST(I) = INDEX
IF (INDEX.LE.T(I)) GOTO 100
I=1-1
IF (I.EQ.0) GOTO 1000
IF (EXPECT(I+1).NE.0) EXPECT(I) =
1 EXPECT(I)+P(I, INDEX)*
2 (EXPECT(I +1)+ COST(1)*POWER(, INDEXY)
GOTO 200

Qo

C
1000 EXPCOS = EXPECT(1)
RETURN
END

