
INTEGRATED INTERACTIVE COMPUTING SYSTEMS
P. Degano and E. Sandewall, editors
North·Holland Publishing Company I © ECICS, 1983

TOWARDS A TWO-DIMENSIONAL PROGRAMMING ENVIRONMENT

Bertrand Meyer
Electricite de France, Direction des Etudes et Recherch

S' f . es erVLce In ormatlque et Mathematiques Appliquee
1 avenue du General de Gaulle 92141 Clamart

France

ABSTRACT

167

The use of modern video display terminals for communication with a
computer has a profound effect on the nature of the resulting dialogs.
Screen-oriented interactive programs require a new set of tools, techniques
and methods. We report on studies on these topics performed in a computing
environment based on standard commercial hardware. The paper describes some of
the tools which we have used and the ones we have designed ; it then discusses
the methodological issues involved in designing two-dimensional dialogs, and
shows the kind of program modularity which is required in this framework.
Object-oriented programming appears to provide the right basis ; we have
applied this methodology using the class concept of the Simula 67 language and
the associated prefixing mechanism.

1 - INTRODUCTION

Interactive facilities play an ever increasing part in all the
application areas of computers. Today, this evolution does not only imply that
the traditional "batch" mode of submitting programs to computers yields more
and more to conversational execution; it also impacts the very form of such
executions : whereas dialogs on typewriter-like terminals and the first CRT

. devices would proceed in a "line by line" fashion, current terminal technology
makes it possible to use the full contents of a screen as the basic unit of
communication with the computer, giving rise to the so-called "full-screen" or
"full-page" mode of interaction.

One of the best-known applications of this technique is the preparation
of documents on a computer using one of the "full-screen editors" now
available on many computer systems, most notably mainframes and
word-processing systems. Users of such tools unanimously appreciate their
power and ease of use, to the extent that going back to a line-oriented editor
1S resented as a painful experience. Full-screen facilities also find
applications in many other domains ; examples are software development and
maintenance aids, application programs designed to be used by non-specialist
users under the guidance of successive "menus", business data processing
(where many "transactional systems" are being developed) and Computer-Aided
Instruction. In these and many other areas, programmers in ever growing
numbers would like to be able to provide full-screen dialogs for the execution
of their own programs.

168 B. Meyer

The construction of such dialogs implies that the texts to be exchanged
between the programs and their users are two-dimensional ; this requirement
adds a new set of difficulties to the general problems of conversational
programming, which are themselves far from being fully mastered (in particular
as regards the human engineering, or ergonomic, aspect of dialogs). This paper
studies some of these problems, and describes some of the solutions which have
been implemented at the Direction des Etudes et Recherches of Electricite de
France (EDF), laying the basis for what may be called a two-dimensional
programming environment. The discussion focuses on three of the basic issues
of software engineering, as applied to two-dimensional interactive
programming: tools, methods and languages. The ergonomics of dialog systems,
which is another important topic, is touched upon only briefly.

In some respects, it may be felt that the dis cuss ion below lags behind
the current "frontier" technology in hardware and software. In particular, we
limit ourselves to the manipulation of text objects, even though considerable
experience has been gained in recent years in two neighbouring domains, namely
graphics systems and Computer-Aided Design, where more complicated visual
objects are processed. It is clear, on the other hand, that some research
laboratories have developed two-dimensional environments which are more
sophis tica ted than the one described here ;. two examples worth noting are the
set of tools buil t around LISP /14, 15/ and the Xerox PARC SMALL TALK sys tern
/3/, which utilizes special-purpose terminals and a dedicated operating system.

On the other hand, the tools which are described in this paper do not
appear to be so commonly available in the most widely used environments,
whether in industry or universities ; neither do the underlying ideas. It is
quite interesting in this respect to study two recent papers in the
Communications of the ACM on the subject of interactive programming /4, 10/ ;
although quite different from one another, they both discuss how success ive
questions should be asked from users, how mnemonics and keywords should be
designed, how errors should be dealt with, etc. ; both implicitly assume that
the dialog considered proceeds in a completely sequential, line-by-line
fashion, without even considering that there may exist other cases. Much of
the discussion in these papers becomes pointless when one goes to a
two-dimensional environment.

Furthermore, an important characteristics of the tools described below
should be emphasized, namely the fact that they were developed and are being
used in a standard "production" environment rather than in a computer science
laboratory. The computing center at the Direction des Etudes et Recherches of
EDF is based on IBM hardware (3081, 3033, 370-168, 4341, etc.) under the
MVS-SP operating system. The time-sharing system is TSO; full-screen
terminals are of the IBM 3270 or compatible series; most of them are 3278,
3279-2B and 3279-3B models (the latter having seven colors, semi-graphic
possibilities and various other options). Most application programs are
written in Fortran. This environment (which also includes a Cray-l and many
other computers) is quite representative of many large classical computing
centers.

Two-Dimensional Programming Environment 169

2 - THE CHARACTERISTICS OF TWO-DIMENSIONAL DIALOGS

The usefulness of two-dimensional dialogs stems from the combination of
three properties :

The second dimens ion as such, which provides the program user with
an overview of a full page of text, rather than just a single line;

The use of a page as unit of communication with the computer, which
allows the user to design first an overall sketch and then look
back on his decisions, correct errors, reverse some choices, before
he sends a page of information to the system;

The de faul t facility, which makes it poss ib le for the program to
fill some zones where user response is expected by predetermined
values, so that the user will only have to write the answers if
they are different from these values, but not if the questions are
unneeded in his particular case, or call for the same answer as in
the previous use of the system (one of the criticisms heard most
frequently from users of non-page-oriented interactive programs is
that one must answer a whole bunch of seemingly useless ques tions
every time one starts using the system).

It should be noted here that a good page-mode interactive program should
keep a profile of every user, so that the default answer suggested for each
question will be the one chosen by the user during the last execution of the
program, rather than a fixed value assumed to suit all users.

Below is an example of a full-page dialog. It is extracted from the
FORTRAN command procedure in our AL library (see section 3) and shows the
first three screens to be filled when running a Fortran program : the user
types in the names of the files containing source and object code. the
destination of printouts, the compiling options, the libraries used, etc. It
is easy to imagine how many successive questions would have to be answered in
an equivalent line-by-line dialog ; most answers would be indentical from one
use of the procedure to the next. If full-screen is not available, the
designer of such a dialog constantly faces the contradictory demands of two
categories of users : the sophisticated ones, who would like to use many
advanced features and thus request many options, i.e. many questions; and the
more numerous "vulgar" users, who use standard options and want short dialog
sessions.

Worth noting is the presence of an option called "same as las t time"
which allows the user, from then on, to remain entirely silent, and directs
the system not to ask any more questions. This option is particularly useful
in a repetitive task such as the test of a given module.

170 B. Meyer

HELLO BERTRAND
WELCOME TO THE AL FORTRAN EXECUTION SYSTEM

PLEASE CHECK THE APPROPRIATE BOX

SAME AS LAST TIME ===) / /

COMPILATION, LINK-EDIT, EXECUTION ===) / I

LINK-EDIT, EXECUTION ===) I I

EXECUTION ===) / I

COMPILATION, FORTRAN IV EXTENDED

NAME OF THE FILE CONTAINING SOURCE CODE

COMPILATION LISTING DESTINATION
CTER, PRT, LOC, DMY, SYS=x or file name)

CLASS Conly if SYS=C, R, S or U)

NAME OF THE FILE FOR OBJECT CODE

COMPILER OPTIONS
OPTIMIZATION LEVEL
GENERATED CODE LIST

===) tryit.fort(first)

===) prt

===)

===) tryit.obj(first)

===) 2
===) no

Two-Dimensional Programming Environment 171

COMPILATION WAS OK ---

LINK-EDIT

NAME OF THE FILE CONTAINING OBJECT CODE ===) tryit.obj(first)

LIBRARIES TO BE INCLUDED
You may request a library by giving either:

- a keyword (FORTLIB, GENERALE, IMSL, LINPACK, BENSON, ATELBIB ••.)
- the actual name of a file containing the library in load module

form.

===) fortlib

===) t edf .myownlib .load I

===) I edf .peterslib .load I

==:::)

===)

===)

===)

===) generale

It may be said without overs ta ting the argument that, for the programmer
who writes systems having this kind of interaction with their users, the leap
from traditional, line-by-line conversational programs to page-oriented ones
is as big as the leap from non-interactive "batch" programming to
line-oriented interactive programming. The new discipline may (perhaps
emphatically) be called "two-dimensional programming" ; the second, vertical
dimension introduced by screen dialogs raises many important issues with
respect to the methods, techniques and tools of interactivity.

3 - COMMAND PROCEDURES THE DIALOG MANAGER AND THE AL LIBRARY

The first tool which is available to our users 1S one which is
distributed by the manufacturer. IBM has recently released /8/ a new version
of SPF (System Productivity Facility, previously known as Structured
Programming Facility), a subsystem of TSO, the basic interactive system under
MVS. The main characteristics of SPF, which make it rather nice to use for
such functions as text editing or file management, are the following :

- the use of two-dimensional dialogs ;

- the presence of "user profiles" which keep useful information from one
interactive session to the next

- a par ticular technique for error process ing.

------------------------------------ ------

172 B. Meyer

The main improvement brought about by the new version of SPF is
the set of functions called the "Dialog Manager" /9/. Thanks to this facility,
any programmer writing command procedures in the conunand language of TSO may
use some of the internal tools and techniques of SPF, thus being able to take
full advantage of the three properties mentioned above.

The dialog manager may be called through special func tions which
have been added to the TSO conunand language. It is not, however, easy to use
for novice or occasional users; neither is it readily interfaced with
application programs (in particular those written in Fortran). Its main use in
our environment so far has been the implementation of a general-purpose
command procedure library, called AL (Atelier Logiciel).

The AL library currently contains some forty procedures which
encompass a wide spectrum of tools : access to compilers of the various
available languages (Fortran, Cobol, assembly, Algol W, Pascal, Simula 67,
Reduce), file manipulation and management, use of specialized programs, access
to on-line documentation, etc. Until recently, all were line-oriented
conversa tional procedures, suffering from the drawbacks mentioned above. It is
interesting to note that our desire to keep the dialogs simple, and thence to
limit the number of available options, had resul ted in the proliferation of
"customized ll versions of the more popular procedures : programmers would copy
and modify them, thus hampering our efforts to maintain and improve them.

With the development of two-dimensional versions, these problems
have disappeared: we may now afford to include many options, since the user's
choices are remembered from one session to the next and he will usually change
few of them each time ; no more tedious recoding of the same values is
required. During the first use of a procedure, default standard values are
pre-filled by the system.

Currently available two-dimensional procedures in AL include
Fortran IV (of which the dialog in section 2 was an example), Fortran VS
(offering access to the IBM version of Fortran 77), Simula 67, Pascal,
Algol W, Cobol, Apothece (a system for the management of program libraries).
The entire library will be progressively adapted.

4 - TOOLS FOR TWO-DIMENSIONAL APPLICATION PROGRAMMING GESCRAN

Once one has discovered the delights of tWo-dimens ional
interactivity, perhaps through the use of SPF and AL, one is often tempted to
apply the same techniques to one's own application programs. One available IBM
product makes this possible : GDDM (Graphical Data Display Manager /7 f), a
very powerful tool which also includes semi-graphic facilities. GDDM is also,
however, rather complex and heavy, and closely tied to IBM hardware and
systems. We thus felt it necessary to design a product which, albeit much less
ambitious, would cater for simple uses while remaining rigorous in its
definition and more portable.

Two-Dimensional Programming Environment 173

The result of this effort IS a package called Gescran (for "Gestion
d'ecrans", screen management) /1/. Gescran is a set of Fortran subroutines,
des igned according to the methodological principles expounded in /13/ ; it
allows the programmer to des cr ibe and mani pula te objects called "s creens", to

t 1 ". d " . th create rec angu ar WIn ows In ese screens, to define and change the
attributes of these windows (such as associated text, color, brilliance,
protection, etc.), and to visualize all or part of a screen on the available
terminal. It is important to note that screens and windows are in no way bound
to the display hardware: they are purely abstract objects, known to the
program solely through a name, which in Fortran is implemented as an integer
variable, used internally to contain an address and control flags; the only
operation which may be applied to such a variable is its use as an actual
argument in a call to one of the Gescran subroutines. Association with a
physical screen occurs only when a visualisation subroutine is called.

Gescran works on the IBM 3270 series of screen terminals, but was
designed so as to be adaptable to any terminals offering similar capabilities.
The construction and manipulation of the data structures representing screens
and their windows are entirely independent from the physical I/O operations.

Among the current developments, we shall mention a study aimed at
interfacing Gescran with a graphics package, so that the programmer will have
the possibility of describing a Gescran window as graphical and use the
graphics package rather than Gescran to manipulate this particular window,
provided of course the terminal used provides the corresponding facilities.

5 - COMPUTER-AIDED SCREEN DESIGN : OONSCRAN

An important tool for the efficient use of Gescran, called Conscran,
provides a higher-level interface for the design of screens as defined above.

The requirement for Conscran stennned from a problem which had been met
by all Gescran users : before being able to write the sequence of subprogram
calls which describes a set of screens and windows, one must design each
screen by defining the position of its various windows, the parts they play in
the interaction, their contents, color, protection, special features (e.g.
blinking, reverse video), etc~ Until Conscran became available, the best
available teChnique for this phase was to use a sheet of paper and draw a
picture of the screen. Such a medium and method appear rather primitive when
compared with the aim pursued.

Conscran relies explicitly on concepts taken from Computer-Aided Design
to improve the screen design process. It allows the programmer to perform such
design in a two-dimensional interactive fashion: the screens will be "drawn"
at the terminal, with all the resul ting flexibility; various designs may be
tried, observed, modified. Conscran automatically generates the Fortran
subroutine containing the calls to Gescran subroutines which are necessary for
the construction of the corresponding screens, thus freeing the programmer
from a rather tedious task. Conscran stores the resulting screen designs in a
data base, thus allowing for later retrieval and modification. It also
generates a paper "map" of the screen, showing the position of the various
windows, and a "legend" giving their attributes.

Our current efforts go towards extending Conscran to a system allowing
for the design not only of individual screens, but of entire applications as
well, using the same underlying principles.

Conscran itself is a two-dimensional interactive program, written in
Gescran. Its aim is what may be called "Computer-Aided Screen Design".

174 B. Meyer

6 - THE STRUCTURE OF DIALOG PROGRAMS

Even with the world's best tools, two-dimens ional progranuning raises
several difficult issues. One of the most delicate ones is the structure of
dialog programs. The behaviour of such programs may usually be quite
faithfully modeled by a state transition diagram: one execution of the
program will correspond to a path in the associated graph.;

Below is an example of such a graph ; this is one of the applications
which we have written with Gescran, the SVP system /5/, which allows users to
ask (non-urgent) ques tions and get answers from the programming ass is tance
service on their terminal. Only the "user" part is shown.

3

read answers

3

SVP

main menu
confirm user-id

2

EXIT

Except for its small size, this example is quite representative of the
structure of page-oriented, menu-driven interactive programs. At every step
in the execution, associated with one of the states in the diagram, the
program outputs a screen; certain zones are then filled by the user ; after
having checked the validity of the answers, the program will perform some
action (usually reading or updating a data base). The next step depends on the
user's choice, often expressed by his pressing some function key on the
terminal. The labels of the edges in the graph correspond to these poss ible
choices.

In a straightforward realization of this scheme, the program for an
interactive, menu-driven application will consist of a number of "paragraphs",
one per state, each looking somewhat like the following:

s tate x :
output screen for sta.te x ;
repeat

read user's answers and his choice c for the next step
if error in answer then

output message
until no error in answer ;
record answer

case c in
CI : proceed to state Xl,
c2 : proceed to state X2, ,
c n : proceed to state Xn

Two-Dimensional Programming Environment 175

Us ing such a scheme for the actual programming will resul t in programs
with an intricate branching structure, belonging to the well-known ''bowl of
spaghettis" type. It has been argued /2/ that such a structure should be
avoided in the first place, by applying to the state graphs of menu-driven
sys tems such res tr icting rules as are imposed by modern programming
methodology upon the control structures of programs. We think that the analogy
is wrong : des igning the internal structure of an engineering product such as
a program is really not at all the same as designing the external structure of
a process involving humans, such as the dialog with a machine. In our opinion,
the structural intricacy of the state graph of many interactive systems is an
inherent property of these systems, and artificial "structuring" rules are
pointless in this domain. The complexity of the graph may stem from various
reasons: there may be temporary detours (corresponding e.g. to "help" keys),
shortcuts (which were introduced at some point because a user requested, quite
legitimately, the possibility to go directly from a certain state to another
one, whereas he previously had to backtrack first to the ini tial menu), and
mul ti-level exits (corresponding to "escape" keys or "quit" connnands). Note
that these requirements will defeat any effort to implement menu-driven
systems by straightforward application of "structured programming" ~n its
naive form.

Some authors have introduced special-purpose control structures to solve
this problem; one example is the language PlAIN /16/, which uses "exceptions"
as in Ada, CLU or PL/I. The use of such constructs seems only marginally
preferable to that of ordinary jumps.

A much better solution, as it seems to us, is to completely disconnect
the description of the overall structure of the dialog, i.e. the traversal of
the graph, from the description of what happens at every step, i.e. the
operations performed while in a given state. The latter may be treated with
ordinary programming constructs ; for the former, the :einite automaton, as
used in compilation or real-time applications, is a helpful model. It will be
quite useful (although not compulsory) to implement the systems in a
table-driven fashion, ~.e. represent the state transition diagram by a data
structure (usually an array) rather than a function subprogram; us ing this
te chn ique, the changes in the s chedul ing 0 f s ta tes, whi ch are qui te common as
projects evolve and users request new facilities, will be easy to accomodate.

More precisely, we shall make use of ten program units on three
hierarchical levels :

176 B. Meyer

SCHEDUlE only defines the traversal of the transition graph ; it knows
nothing about the particular screens of a given application, and should be
identical for all applications :

SCHEDUlE :
CHOICE var current : STATE, label

~rent := INITIAL ;
repeat

J
EXECUTE (current, label) ;
current := TRANSITION (current,

until FINAL (current)

label)

TRANSITION is the function which describes the state diagram:
TRANSITION (s, l) is the new state reached when leaving state s by the branch
labeled 1. As mentioned above, TRANS IT ION may be represented either by a
function subprogram or by a two-dimensional array, the latter leading to a
more easily adaptable program.

EXECUTE does what is required in a given state: ask the right question,
check the answer, perform the necessary action and return the choice c for the
next step

EXECUTE (in s : STATE j out c : CHOICE)
~ c: CHOICE, a : ANSWER
repeat

I

a := QUESTION (s) j

correct := CHECK (a, s)
if not correct then
-- -yMESSAGE Ca:-;T

until correct
RECORD (a, s) ,
c := NEXT (a, s)

QUESTION, CHECK, MESSAGE, REOORD and NEXT, on the other hand, are
applica tion-speci fic. The call QUESTION (s) will output the screen associa ted
with state s and read the user's answers :

QUESTION (in s : STATE) :

I outp1,ltthe screen for state s
read and return the answer a

CHECK (a, s) will return true or false depending on whether answer a is
acceptable or not in state s --;MESSAGE (a, s) outputs the error message
corresponding to answer a in state s, where CHECK (a, s) is false; RECORD
(a, s) records answer a in state s, where CHECK (a, s) is true--;--NEXT (a, s)
determines from the user's answer a the exit label which was chosen for
leaving state s.

It is natural to look for tools which may help in the cons truction of
interactive systems described in the above framework. Some of the "author
languages" In Computer-Aided Instruction (enc's Plato or IBM's IMG for
example) pursue similar goals. Can one use the above scheme to build
general-purpose tools for helping in the design of interactive, full-screen
applications? As mentioned before, this is our aim in the current extensions
to Cons cran.

Two-Dimensional Programming Environment 177

It is soon realized that this scheme cannot reasonably be implemented as
presented above if what is sought is a modular, easily extendible system. A
simple remark should convince the reader of this impossibility: if procedures
such as RECORD, CHECK, MESSAGE, QUESTION or NEXT were to be put in a library,
so as to be re-usable for various applications, then a closer look at the
above design shows that these procedures must include among their parameters
the state (s), but also the precise interactive application to which this
state belongs. In other words, any such general-purpose should know about and
discriminate amongst all states of all available applications using them 1
This is clearly incompatible with any attempt at modularity.

As it is often the case which such problems, a proper solution may be
found by going from procedure-oriented to object-oriented programming, i.e. by
bas ing the structure of the program on the main data structures rather than on
the functions to be performed. This is the direction that we have taken; we
have been greatly helped in this effort by the availability in our computing
center of one of the few generally available modular, object-oriented
languages: Simula 67.

7 - USING A MODULAR, OBJECT-ORIENTED LANGUAGE : SIMULA

Simula 67 /6/ appears par ticularly well-sui ted for the prac ti cal
application of the methodological principles introduced above. The main
concepts are those which have been emphasized in /12/: abstract data types,
top-down program and data structure design, genericity. Similar techniques
could be applied to a descendant of Simula, Smalltalk /3/.

We will only outline part of the system design. In order to
the above scheme, it is particularly useful to be able to use a
corresponding to the abstract notion of a "state". The
characteristics are associated with every state s

implement
structure
following

attributes of s: state number, screen to be output when s 1S

reached ;

operations which may be requested when the system is in state s
QUESTION, CHECK, MESSAGE, RECORD;

actions to be performed when s is reached EXECUTE.

Such characteris tics correspond closely to what may be included in the
basic program structure of Simula, the class, which is the implementation of
an abstract data type: variables representing the attributes of each state,
procedures (subprograms) representing the admiss ible operations, and
statements representing the initial actions. One is thus quite naturally led
to the design of a class STATE.

A fundamental property of Simula which will be used here is known as
class prefixing: a class may be used as "parent" of other classes, which will
inherit its characteris tics, to wh ich they will add their own refinements.
Procedures may be specified at the level of' the parent.' class, their
realizations being given in the descendants ; usually these wl.ll not ~e the
same in every descendant. Such procedures are declared as vutual m the
parent class. Class prefixing and virtual procedures together form one of the
best-known systems for the authentic top-down design of both program and data
structures. Here they will allow us to define the class STATE with the

following structure:

178 B. Meyer

class STATE ;
comment operations

virtual :
ref (answer) procedure QUESTION
bOOlean procedure CHECK
procedure MESSAGE ;
procedure RECORD ;
ref (choice) procedure NEXT ;

begin--
procedure EXECU'lli (c) ; ref (choice) c

begin boolean correct,
correct := false ;
while not correct do
-----begin ref-Canswer) a

a := QUESTION ;
correct := CHECK (a)
if not correct then
- MESSAGE (a-)-
end validation

REcoRDCa) ;
c := NEXT (a)
end EXECUTE ;

comment attributes :
integer screen commen t Recall that Gescran

integers to denote screens
end STATE

uses

Class STATE defines the general properties of a screen. Procedure
EXECUTE has now become part of this class ; the same is true for procedures
QUESTION, MESSAGE, CHECK, RECORD and NEXT. Note that all these procedures have
lost their "STATE" parameter (s in the procedure-oriented vers ion). There is
an important difference between EXECUTE and the other five : at the level of
class STATE, the latter, while needed, cannot be refined, since their precise
implementation may only be known for a given STATE. They are thus defined at
the STATE level as "virtual", i.e. only the procedure headings (partial
specification) is given. In contrast, procedure EXECUTE is the same for all
STATEs ; thus both its heading and body (which uses calls to the five
virtuals) may be giver. at the level of class STATE.

For any given application, there will be a certain number of instances
of class STATE, corresponding to the various states of the application. This
instantiation concept is readily implemented by the prefixing mechanism:

STATE class INITIAL_MENU ; begin end ;
STATE class COMPILATION OPTIONS begin-- end
etc.

The body of each of these subclasses will include the corresponding body
for the procedures QUESTION, CHECK, MESSAGE, RECORD and NEXT.

One of the main benefits of this method is that it allows a truly
modular construction of interactive applications, the general-purpose and
application-dependent parts being programned separately. All problems
pertaining to a certain state (formulation of the question, treatment of
errors, recording of answers, etc.) are dealt with in the module (class) for
that state, and there only; on the other hand, the module for a state does
not know anything about its connections with the rest of the application's
graph. Thus it becomes possible to add or change states, transitions between
states etc. without disturbing anything in any module other than the ones
associated with the states directly involved in the modification. Apart from
its elegance, such a modular, object-oriented progrannning yields software
products on which modifications and extensions ,are much easier to perform than
with programs structured in a IOOre conventional, procedure-oriented fashion.

Two-Dimensional Programming Environment 179

8 - CONCLUS ION

. We hope to have shown that the two-dimensional aspect of screen dialogs
has l.mportant.e~fects on .the structure and use of interactive systems. We hope
that the ambl.tl.ous ongol.ng developments in the area of integrated software
environments will take into consideration the key issues which arise in the
design of systems for successful corranunication between man and machine.

BIBLIOGRAPHY

/1/ E. Audin, G. Brisson, B. Meyer : Gescran ; EDF Report, Atelier Logiciel
nO 22, December 1980 (version 4, December 1981).

/2/ J.W. Brown : Controlling the Complexity of Menu Networks
of the ACM, 25, 7, pp. 412-418, July 1982.

Conunun ica tions

/3/ BYTE Magazine: Special issue on SMALLTALK, August 1981.

/4/ B. Dwyer: A User-Friendly Algorithm; Communications of the ACM, 24, 9,
pp. 556-561, September 1981.

/5/ E. de Drouas : Manuel d'Utilisation de SVP
nO 32, October 1981.

EDF Report, Atelier Logiciel

/6/ O. J. Dahl and K. Nygaard Sirnu1a 67 Conunon Base Language; Norsk
Regnesen tra1 (Norwegian Compu ting Cen ted, Os 10, 1970.

/7/ IBM : Graphical Data Display Manager - Release 2
October 1981.

order no. SC33-0l0l-l,

/8/ IBM: System Productivity Facility for MVS - Program Reference
SC34-2038-0, December 1980.

order no.

/9/ IBM : Sys tern Productivity Facil ity for· MVS - Dialog Management Services
order no. SC34-2036-l, March 1981.

/10/ H. Ledgard, J.A. Whiteside, A. Singer, W. Seymour: The Natural Language
of Interactive Systems Communications of the ACM, 23, 10, pp. 556-563,
October 1980.

/11/ B. Logez, M.-P. Nardy
Atelier logicie1 nO 38, 1982.

Conscran, manuel d 'utilisation EDF report,

/12/ B. Meyer : Quelques Concepts des Langages de Programmation modernes, et
leur Application a SIMULA 67 ; Bulletin AFCET-GROPLAN nO 9, 1979.

/13/ B. Meyer : Principles of Package Design ; Conununications of the ACM, 25,
7, pp. 419-428, July 1982.

/14/ E. Sandewall : Progranuning in the Interactive Environment
Experience, ACM Comp_ Surv., 10, 1, March 1978, pp. 35-72).

The LISP

/15/ W. Teitelman : A Display Oriented Progranuner's Assistant, in ~roc. 5th
Int. Jt. Conf. on Artificial Intelligence, Dpt. Compo Sc., Carnegl.e-Mellon
Univ., Pittsburgh, 1977, pp. 905-915

/16/ T. Wasserman PLAIN An Algorithmic
Information Sys terns in Algorithmic Languages,
(Eds.), North-Holland, 1981, pp. 29-47.

Language
de Bakker

for Interactive
and van Vliet

