
Algorithmic Languages, de Bakker/van Vliet (eds.)
© IFIP, North-Holland Publishing Company, 1981,99-114

The Design of Vector Programs

Alain Bossavit and Bertrand Meyer

Direction des Etudes et Recherches, Electricite de France, Clamar!, France

Current vector computers such as the CraY-I, Cyber 205 S 1, DAP or BSP
pose a special challenge to the software designer as the available software tools
and techniques are far behind the hardware developments, and the goals of
efficient vector programming seem to conflict with some of the basic principles
of good software engineering. After studying some properties of these
computers, with particular emphasis on the Cray-l, we purport to show that a
systematic approach to vector programming is possible and fruitful; the
proposed methods are applied to the systematic, proof-oriented derivation of
several vector algorithms. Language aspects are also considered.

1. Introduction

The advent of 'second-generation' vector processors [8] such as the
Cray-l, CDC Cyber 205, Lawrence Livermore Laboratory SI, ICL DAP
and Burroughs BSP, is one more piece of evidence for the fact that soft­
ware lags far behind hardware as far as practical industrial usage is
concerned. These computers, built with the latest LSI or VLSI technology
in highly optimized architectures, are capable of achieving speeds which
were unheard of before: for example, a Cray-l computer will in good
conditions carry out more than 100 million 'actual' operations, excluding
control, per second. On the other hand, a look at the software provided
with these 'super-computers' will show them to be what may be called
Fortran machines: even though processors for other languages may exist,
these computers are obviously tailored to a philosophy of programming
which has the static array as its only data structure and the DO-loop as its
main control structure. Recipes given for writing efficient programs in that

99

100 A. Bossavit and B. Meyer

framework [6], seem at first glance to be very far from modern ideas about
programming, if not incompatible with them.

Vector programming thus appears as a challenge for the software
specialist. Areas where advances are needed include the following inter­
related topics:

(1) algorithmics (algorithms for vector processing, and methods for
finding such algorithms);

(2) program design (how to find program and data structures which will
lead to efficient use of supercomputers while ensuring other program
qualities such as reliability, clarity, portability, modularity, etc.);

(3) program transformation (methods for adapting existing programs to
efficient execution on vector computers);

(4) languages for vector programming;
(5) proof methods.
The aim of this paper is to lay some foundations for a systematic treat­

ment of vector programming. It is mostly concerned with (1) and (2), with
a brief discussion of (4).

The particular machine which motivated this study is the Cray-l
computer, which seems to be the most widely available among the 'second
generation' vector machines, and is quoted as the fastest currently avail­
able computer, even in scalar mode [4,8]. Most of the discussion is,
however, also valid for the other machines.

In Section 2, we give a software interpretation of the rules which must be
obeyed by a computation in order to be able to use the vectorization
capabilities of the hardware. In Section 3, we give a more abstract interpre­
tation of these rules in terms of the data types involved. Section 4 discusses
language problems. Section 5 is devoted to a study of systematic program
construction techniques applied to vector programming; several
algorithms, in particular a 'vector Cholesky', are derived.

2. Rules for Vectorization

Vector machines require that a program satisfy certain conditions in
order to be vectorizable, i.e. amenable to processing in vector, as opposed
to scalar, mode. The study of these conditions is particularly interesting in
the case of vector computers such as the Cray-l or BSP which accept
standard FORTRAN, so that vectorization rests with the compiler rather

The design of vector programs 101

than the programmer. Abstracting from machine peculiarities, five basic
conditions appear as necessary and sufficient:
- repetitive series of operations;
- primitive operations only;
- regularity;
- no backward dependency;
- no cross dependency.

These conditions are studied in [12] for the Cray case. We shall outline
them here in general terms.

2.1 .. Repetitive series oj operations

The only sequences amenable to vectorization are loops, and, more
precisely, for loops, i.e. counter loops with a number of executions known
at the outset. The/or loop control structure, associated with the array data
structure, is the software representative of the so-called SIMD (Single
Instruction stream, Multiple Data stream) mode of restricted parallelism.

2.2. Primitive operations only

With some slight extensions, only assignments and numerical or boolean
operations are allowed in a vector loop. This precludes in particular jumps,
thence conditional statements other than conditional assignments. The
Cray-1 Fortran compiler (CFT) will also inhibit vectorization of a loop
containing a subprogram call (except the subprogram is known to CFT as
having a vector version) or another loop (thus restricting vectorization to
the innermost loops).

2.3. Regularity

For a loop to be vectorizable, it must involve only 'regular' array
elements, i.e. elements whose indices follow a strictly defined pattern, so
that they can be fetched in advance for vector operations. On the Cyber
205, the only regular elements are those which are stored contiguously; on
the Cray-l, a sequence is regular iff the distance between successive
elements is constant (but not necessarily 1). Thus only certain types of
subarrays may be processed in vector mode.

102 A. Bossavit and B. Meyer

2.4. No backward dependency

Let a loop with i as a counter contain the following array element assign­
ment:

where ALGOL-like brackets are used for array elements, op is some
numerical or logical operation, the fk'S are linear functions (from the
regularity rule), and all arrays are considered as one-dimensional (which is
always possible on a machine with a linear store).

This assignment has a backward dependency, which will inhibit vectori­
zation, iff for some k (1 < k ~ m) b k is a, and for some pair of values p, q in
the range of i, the following holds:

p<q and fk(P)=fo(q).

In other words, the computation of a[fo(q)] will use the value of another
element of a, which was fetched for updating in some previous iteration.
For example, the assignment a[i]:= a[i - 1] + 1 introduces a backward
dependency.

The reason for this rule is that the vector interpretation of such a compu­
tation would use the old value of the array element, not the new one as in
the standard (sequential) interpretation of the loop.

Note that the vector interpretation makes perfect sense; it is only
different from the sequential one.

On the Cray-l the condition is less stringent; a backward dependency
will actually arise only if the above condition holds together with

q-64<p

where 64 is the length of the vector registers, which on the Cray must be
used for the operands and results of vector operations (in contrast, the
Cyber 205 and BSP work directly on vectors stored in memory). Vector
processing on the Cray-l may be considered, for all practical purposes, as
successive processing of 64-element vector slices, all elements in a slice
being processed in parallel.

An important case of backward dependency occurs when the dependency
affects a simple variable (which may be considered as a one-element array,
whose index is constant through the loop), i.e. when the loop contains an
assignment of the form

X:= op(x, b I [Jl (i)], b2[J2(i)], ...).

The design oj vector programs 103

Such an operation is called a reduction; it is particularly unfortunate that
it should not vectorize, since it corresponds to the very common case of
accumulating a result into a variable, as in the computation of the sum of
the elements of a vector, or of the scalar (inner) product of two vectors. In
practice, techniques exist for reducing the loss of efficiency of reductions
as compared to truly vectorizable operations; reductions may thus be
thought of as 'pseudo-vectorizable' operations who execute more slowly
than vectorizable operations but faster than scalar ones.

2.5. No cross dependency

Let a loop contain the following assignments:

a[!o(i)] := op(...);

c[go(i)] := op'(... , a[g,(i)], ...).

They induce a cross dependency, which will inhibit vectorization, iff for
some pair of values p, q in the range of i, the following holds:

g,(p) = !o(q)

with Iq - pi < 64 (on the Cray-l).
For example, the following statements in a loop on i will cause a cross

dependency:

a[i] := 1; c[i] := a[i + 1].

The rule stems from the fact that, due to the limited size of the
instruction buffers, long loops may have to be split into several shorter
ones in order to be vectorized (by slices of 64 on the Cray); thus the two
assignments might end up in two different loops, giving a different
semantics for the program. In our example, assuming a was initially all 0,
then c would receive the previous null values in the sequential case and the
new unity values in the vector case.

3. Basic Thoughts for a Vector Programming Methodology

Considering the preceding rules, even though they do not include many
details which may be found in manufacturers' documentation, it is quite
tempting to dismiss them as too low-level and machine-dependent, and

A

725.·

104 A. Bossavit and B. Meyer

assert that vector programming is just programming with objects of data
type 'vector'. Although we will use this definition as the basis for our
approach to vector program construction, it should be pointed out that it is
not quite sufficient and that the previous rules, especially the last ones on
dependency, must also be taken into account for practical purposes.

Let us illustrate this point with an important vector algorithm: matrix
multiplication. Assume e is initialized to zero; a, b~ e have dimensions
(m,n), (n,p) and (m,p) respectively. The ordinary algorithm will not
vectorize (notations are mostly taken from [11]):

for i in 1.. m do

jor j in 1.. P do

jor k in 1.. n do
(3.1)

I eli,)] := eli,)] + a[i, k] * b[k,)]

In terms of the preceding rules, we may say that c[i,)] has a backward
dependency on itself (the last line is a reduction). Now if we reverse the
loops on) and k, the program becomes vectorizable. This in fact means
that instead of the 'element' formula which forms the basis for algorithm
(3.1) :

n

eli,)] = L aU, k] * b[k,)]
k=!

one relies on the 'vector' formula

n

e[i~ *] = L a[i,k] *b[k, *]
k= 1

(where x[i, *] and x[*,)] respectively denote the ith line and)th column of
matrix x).

However, if we applied a purely functional view of vector programming,
i.e. obtained a program directly from an 'abstract data type' specification
of matrix multiplication, the initial version of our program, as deduced
from the last formula, would require, for each line i, n vector variables:

C J [i, *] : = a [i, 1] * b [1 , *];

C2[i, *] :=a[i,2] *b[2, *] + cI[i, *];

em[i, *] :=a[i,m] *b[m, *] +cm-l[i, *];

c[i, *] :=cm[i, *].

The design o/vector programs 105

For practical reasons (storage) this is excluded; the same variable c[i, *]
has to be used all along. This programming simplification is correct
because it does not conflict with the no backward dependency rule, as every
operation of the form

c[i, *] := op(c[i, *])

will be implemented as a counter loop whose body is c[i,}] := op(c[i,}])
without any reference to c[i, /] for' =f.= j (note that the loop counter here is}).
This condition guarantees that the vectorized form of the new version (Le.
the standard program where loops on j and k have been interchanged) is
indeed semantically equivalent to the standard program.

Such a condition, which is more restrictive but conceptually simpler than
the no backward dependency rule, may be used as a replacement for it in a
systematic approach. It can be formalized in the following way, inspired
from the presentation of sequences in the specification language Z [1]. Let
VEC X[(n)], for n ErN (the set of n-vectors of elements of X) be defined as
the set of all total functions from 1, ... , n to X. Let & be the functional
binary operator such that, if f and g are two functions with the same
domain Y, then f &g is the function h such that, for any y E Y, hey) is the
pair (f(y), g(y». Then for any binary operation p on X (p: XxX-+ Z for
some Z) we may define a vector extension of p, ext(p): VEC[X](n) x
VEC[X](n)-+ VEC[Z](n) , whose value for any two vectors v and w in
vec[X](n) is

ext(p)(v, w) = po (v& w)

where 0 is functional composition; in other words, for any i E 1, ... , n,

ext(p)(v, w)(i) = p(v(i), wei)~.

It is possible to define in the same way (at least if p is associative) a
vector reduction of functionality

red(p): VEC[X]~X

where red(+) = E, etc.
We shall interpret the rules of Section 2 as implying that, in designing

programs for vector computers, one should work on objects of data type
vector, restricting oneself to extension operations as much as possible.
When an extension operation cannot be applied, a reduction will still be
preferable to operations which would perform arbitrary shifting of indices

rr;;m ==

106 A. Bossavitand B. Meyer

(e.g. po«Vo pred)&w) , where pred is the predecessor function on integers,
which would give p(vCi - 1), w(i)) for any i); such operations would
introduce hopeless backward dependencies.

The situation may be depicted using a hierarchy of abstract machines
(Fig. 1). At the matrix level, machine MAT offers the operations of matrix
algebra: multiplication, inversion, etc. At the vector level, several machines
are available to implement these operations: the extension machine EXT,
the reduction machine RED, and others. Choosing one of them will lead to
a definite algorithm, the scalar machine SCAL, which corresponds to
conventional programming languages. It is clear that the standard matrix
multiplication algorithm given above (3.1) stems from the RED' machine,
while its vectorizable counterpart will come out naturally if one uses the
EXT machine.

Data Type Abstract machi nes

Matrix MAT

-,.,.
r- -- ---------,
I ,
I I

RED I I
I I
I I

Vector EXT
I I :::.::?-- ______ I

Scalar seAL r/------
Fig. 1. Hierarchy of types and virtual machines.

Using the above approach, we will derive vector algorithms by working
on vector objects from the beginning. This should lead to programs which
are both properly structured and efficient on a vector processor. This
should be contrasted with the results obtained through more 'ad hoc'
methods. For example Higbie [6], in a paper on how to write code which
will vectorize on the Cray, warns that 'overly modular or structured
programs' will not be vectorizable (because of the rule which we called
'primitive operations only', precluding subprogram calls inside a vectoriz­
able loop). If this were true, the situation might be considered quite sad for
the programmer, forced to choose between structure and vectorization. On

The design of vector programs 107

the other hand, if one agrees that a program is 'structured' at least as much
from its proper adequation of control structure to data structure as from
its observance of rules regarding control structure only (e.g. many sub­
programs, etc.), then the answer is clear: rather than in-line expansion of
subprogram calls in loop bodies, one should strive to write subprograms
working on entire arrays (to use expressions found in Cray publications,
"put the loop in the subroutine rather than the subroutine in the loop").
This will, in effect, implement the 'vector' data type abstraction. If the
program is indeed vectorizable, i.e. if it does have vectors as its principal
objects, there is a good chance that the version thus 'vectorized' will be
clearer and better 'structured' independently of any machine consider­
ation.

4. Language Considerations

Before we turn to the derivation of a few vector algorithms, we must pay
some attention to language issues. The Cray approach uses a standard
language, FORTRAN, and places the task of detecting vectorizable portions
of code upon the compiler. The BSP also has a 'vectorizer' for standard
FORTRAN code (an introduction to the techniques used for such program
transformations may be found in [10]). Other methods have been used or
suggested (see [9] or [14] for a survey); for example, the Cyber 205 super­
computer only vectorizes calls to special array processing subroutines.
Perrott [14,15,16] has argued repeatedly in favor of using a language
designed specifically for vector programming; he describes such a
language, ACTUS, based on PASCAL. This approach can be justified on
several grounds:
- In the Cray and BSP approach to optimization, the programmer has to

present his code in a 'favorable' way so that the compiler will be able to
detect vectorizable pieces of code; he thus has to know the compiler's
idiosyncracies in this respect. This, however, has to be balanced with the
considerations on program structuring expressed above.

- The search for· vectorizable code amounts to de-compilation (recon­
structing higher-level vector constructs, such as they might be expressed
in ALGOL 68, PL/I or APL, from lower-level FORTRAN scalar operations),
which is a rather silly activity;

- It is quite natural to specify the amount of allowable parallelism in

108 A. Bossavitand B. Meyer

connection with the data structure definition rather than with the
description of the operations performed on it.
On the other hand, the 'vector language' approach seems extremely

difficult to implement in the context of a large scientific computing center
(the typical target for supercomputers), where it is not realistic to imagine
that programmers will turn to a new language for every new kind of appli­
cation and every new machine - especially at a time when concerns for
portability are at last making their way into the scientific programming
community.

Given the failures experienced by all previous efforts to impose
languages other than FORTRAN to this community, it is doubtful that a
proposal applying to vector computers would succeed. In view of the
current state of the art, the Cray approach seems sensible as far as program
coding is concerned. Languages such as ACTUS may, however, be very
useful as intermediary notations for vector program design, and we shall
use similar ways of expression in the examples which follow.

5. Examples of Systematic Vector Program Construction

We turn now to the application of the principles expounded in Section 3
to the construction of some practical programs. We shall use a method and
set of heuristics for constructing programs from specifications which were
exposed in [13]. A similar approach was applied to classical (scalar)
numerical algorithms in [2].

The following notation will be used in addition to the ones defined in
Section 3:
- VEC(n) stands for VEC[REAL](n), the set of vectors of n real elements;
- MTR(m, n) is the set of (m, n) real matrices;
- P,v, where VE VEC(n) and l~ n, is the projection of v on VEC(l).

For a matrixsEMTR(m, n), if i~m andj~n, we will consider line s[i, *]
and column s[*,j] as vectors in VEC(m) and VEC(n) respectively.

5.1. Triangular systems

We saw in Section 3 a vector algorithm for matrix multiplication. Let us
proceed with the inverse operation: solving linear systems. We first
examine triangular systems. This will be a simple example of top-down
synthesis of a numerical algorithm.

The design oj vector programs 109

The first step in the design of the program (called trisolv) is to express it
as a matrix algorithm (which could run on the virtual machine MAT):

in s: MTR(n, n), b: VEC(n); out x: VEC(n);
(P) {I <i:::;n=*Pi-1s[*, i] =0 and s[i, i] :;CO}

trisolv

CQ) {sx= b, i.e. Lk= 1 s[*, k] *x[k] = b}

We must refine trisolv into a predicate transformer (on the vector
machine EXT) from the precondition (P) to the postcondition (Q). Let us
try twice the heuristic called 'uncoupling' [13], i.e. add an auxiliary vector
variable y, and an integer one I, noticing that

(Q) ~ b = L s[*, k] *x[k] ~ (y + Lk::;n s[*, k] *x[k] = band y = 0)

~ (y + Lk::;/S[*, k] *x[k] = band P,y = 0)

and I=n.

SO (Q) ~ (1(1) and 1 = n) if we set 1(1) = the first term of the and above.
Here, 1(1) is a 'weakening' of the exit condition (Q) (which is l(n». We
notice that 1(0) can be trivially obtained. Thus a refinement of trisolv,
using 1(1) as an invariant and 1 = n as the goal (exit condition) will be:

var I: Integer;
1:=O;y:=b {1(1)}
while I<n do

/:=1+1;
reestablish 1(1);

{ 1 = nand 1(1)}

This program is correct (by construction): 1(1) being a loop invariant, it is
true after the completion of the loop, and the exit condition 1 = n is also
true, hence l(n). The statement reestablish is now Gust as trisolv was, one
step backwards) a specification for what is to be done.

Next step: develop reestablish. One must go from 1(1 -1), i.e.

y + Lk<,s[*, k] *x[k] = band p/-1Y = 0

to 1(1), i.e.

1
I

110 A. Bossavit and B. Meyer

Without modifying b, which is part of the input, we must use the assign­
ment y:= y - s[*, I] *x[l] after an x[l] such that PI(Y - s[*, I] *x[l]) = 0 has
been found. But P I - 1S[*, I] = 0 by hypothesis, and P'-IY = 0 also. The
equation thus becomes y[l] - s[*, I] *x[l] = 0, thence x[/]. The final version
of the program is:

1:=0; c:=b; J(O)
while I<n do

1:= 1+ 1;
{reestablish J(l) :}

x[/] := y[*, I]/s[/, I]
y:= y -sf *, I] *x[l]

Starting from a matrix specification and aiming at the EXT vector target
machine, we have just synthesized a program which must be, by con­
struction, vectorizable.

5.2. Vectorized Choleski

We shall now introduce a more difficult algorithm, Choleski factoriz­
ation: given a symmetric positive-definite matrix A, find a lower triangular
S such that sst =A (in view of the resolution in two easy steps, using e.g.
the above program, of the linear system Ax= b). What follows is also valid
for the LV factorization.

We again apply systematic top-down synthesis. Here are the successive
steps. First the specification, expressed in terms of MAT objects:

in a: MTR(n, n); out s: MTR(n, n);
(R) {symmetric(a) and positive-dejinite(a)}

Choleski
{I :s; i < n => Pi -1 [*, i] = O}

(S) {A = sst, i.e. a = Lksn s[*, k] *s[*, k]}

As before, we uncouple (S), after introducing the auxiliary variable c of
type MTR(n, n):

(S) # «c+ LksIS[*, k] *s[*, k] = a and PIC = 0) and 1 = n)

(J(/) and I=n).

The design of vector programs

The next refinement is, quite naturally:

1:= 0; c:= a; {/(On
while I<n do

I : = 1+ 1; {c + r k < I = a and P, _ 1 C = O}
reestablish /(1);

{c+ Lk<l=a-s[*,/] *s[*,/] and P,c=O}.

111

To reestablish /(1), one must perform the assignment c:= c - s[*, I] *s[*, l]
once an s[*, I] such that PI-IS' = 0 and

P,(c - s[*, l] *s[*, I]) = 0

has been found. As P, -1 C = 0, row I is the only one concerned, and must
satisfy I-column(c - s[*, I] * s[*, I]) = 0, that is to say c[l, *] - s[l, I] * s[*, l] = 0,
which implies (I component)

c[l, l] = (s[/, 1])2.

Thence the two instructions for reestablish /(1):

s[/,/] :=sqrt(c[l,/])); s[*,l] :=c[l, *]ls[l,l].

As c is symmetric (this fact is itself a loop invariant), P'-l c[*, I] = ° implies
P'-l c[l, *] = 0, therefore P'-lS[*, I] = O.

The final version will thus be:

1:= 0; c:= a;
while I<n do

1:=1+1;
pivot:= sqrt(c[l, I]);
s[*, I] : = c[/, *]1 pivot;
c:= c - s[*, l] *s[*, I]

A FORTRAN translation appears on Fig. 2 and 3. It exhibits some of the nice
properties of programs resulting from top-down design (high-level built-in
documentation, etc.) and the safety guaranteed by the systematic synthesis
method.

m

112 A. Bossavil and B. Meyer

CCcccccccccccccccccc
SUBROUTINE

C H 0 V E C.
(N, A, S, NDP)

c
cc
c c
c PURPm;E: C,
c c
C FACTORIZATION OF A SYMMETRIC MATRIX, VECTORIZABLE VERSION. C
C C
cc
c
C INPUT
C

INTEGER

r~EAL.

N

A (1)
Order of the matri~ A

C Array of the entries of A. Aij is at
C the position «J - 1)(2N - J) + 21)/2.
C ('column-symmetric storage mode')
C OUTPUT
C

c
C
G

REAL.

INTEGER

s

NDP

(1)
Array of the entries of A. Aij is at
the position «J - 1)(2N - J) + 21)/2
On e~it, if NDP = N, A = S tr(S)RT

C Number of columns actually taken into
C account during the factori2ation.
C If NDP (N, a non-positive radi~ ap-
e peared in the treatment of column
C NDP + 1
c---
c
C LOCAL VARIABLES:
C

c

INTEGEH 1..., NNF'lS;:~, ADRLI..., ADFUl.., ADF~ • .JJ, 1. ,J, LF'l
REAL PIVOT, MUL, RADlC

r ARITHMETIC FUNCTION:
C

INTEGEF~ ADDf~ESS,
ADF~ESB(I. ~J) "" «J _. U*(2*NJ) + 2U)/:':~

c

Fig. 2. Head of the vectorizable Choleski program (FORTRAN).

6. Conclusion

The field of numerical and scientific programming, although the oldest
and one of the best established among the application domains of
computers, has shown strong resistance to the practical implementation of
software research and advances in programming methodology. With the

The design oj vector programs 113

c---
C

NDP :::: 0
C :i. (--- 0 ;

L. ::: 0'
C C (-•• - A ;

NNP1S2:::: (N*(N + 1»/2
DO 1 I :::: 1. NNP1S2

1 SCI) :::: A(I)
C -- The array S contains both C and A.
r while i (n do
2 IF (L "GE" N) GOTO 7
C i C--- i + 1 ;

L :::: L + 1
ADRLL ~ ADRESS(L. L)

C pivot (--- sqrtCCll) ;
RADIC "" S (ADRLU
IF CRADIC "LE" 0") GOTO 7

r -- Exception if A is not positive definite
PIVOT::: SQRTCRADIC)
NDP ::: L.

C 81 (--- Cl/pivot ;
DO 3 I :::: L. N

:'3 8(ADRLL t I ... U .- S(ADRL.L t I - U/PIVOT
C C C--- C - 51 * Sl

L.P1 ::: L + 1
IF CLPl " EQ" N) GOTO 6
DO 5 J ~.:: L.P1, N

ADRJJ :::: ADRESSCJ. J)
ADRJL :::: ADRESS(J. L)
HUL :::: S (ADF~ Jl.)
DO 4 I ::: ~J. N

S(ADRJJ+I-J) :::: S(ADRJJtI-J) - HUL.*SCADRJL+I-J)
C -- This loop is the only vectori2ab1e one
4 CONTINUE
5 CONTINUE
6 CONTINUE

GOTO 2
"7 RETURN

END

Fig. 3. Body of the Choleski program.

popularization of new 'number-crunching' machines, there is again a
strong temptation to go back to low-level, machine-dependent, program­
ming techniques, and to dismiss any attempts at better software engineer­
ing as incompatible with the efficient use of these very fast computers. We
hope to have shown that such an attitude has no justification, and that
systematic methods can be applied for the rational and efficient use of this
new technology.

114 A. Bossavit and B. Meyer

References

[1] J .R. Abrial, S.A. Schuman and B. Meyer, Specification language, in: Proceedings
Summer School on Program Construction, Belfast (September 1979).

[2] A. Bossavit and B. Meyer, On the constructive approach to programming: the case for
partial Choleski factorization (a tool for static condensation), in: Vichnevetsky and
Stepleman (Eds.), Advances in Computer Methods for Partial Differential Equations III
(IMACS. 1979).

[3] Cray-l Computer System, FORTRAN (CFT) Reference Manual, Cray Document No.
2240009, Version E (1981).

[4] M. Dungworth, The Cray 1 computer system, in: Infotech State of the Art Report on
Supercomputers, Volume 2: Invited papers (Maidenhead, 1979) pp. 51-76.

[5J P.M. Flanders, FORTRAN extensions for a highly parallel processor, in: Infotech State of
the Art Report on Supercomputers, Volume 2: Invited Papers (Maidenhead, 1979) pp.
117-134.

[6] L. Higbie, Vectorization and conversion of FORTRAN programs for the Cray-l (CFT)
compiler, Cray Document No. 2240207 (June 1979).

[7] Infotech State of the Art Report on Supercomputers, Volume 1: Total Systems Issues;
Volume 2: Invited papers (Maidenhead, 1979).

[8] E. W. Kozdrowicki and D.J. Theis, Second-generation of vector supercomputers,
Computer (IEEE), Special Section on Sypersystems for the 80's, 13 (11) (1980) 71-83.

[9] D.J. Kuck, Languages and compilers for parallel and pipeline machines, in: CREST
Conference on Design of Numerical Algorithms for Parallel Processing, Bergamo,
Italy (June 1981).

[10] D.l. Kuck, Automatic program restructuring for high-speed computation, in: W.
Handler (Ed.), CONPAR 81, Niirnberg, June 1981, Lecture Notes in Computer Science
111 (Springer, Berlin, 1981) pp. 66-84.

[11] B. Meyer and C. Baudoin, Methodes de programmation (Eyrolles, Paris, 1978).
[12] B. Meyer, Un calculateur vectoriel: Le Cray-l et sa programmation, EDF Report

HII3452-01, Atelier logiciel No. 24 (May 1980).
[13] B. Meyer, A basis for the constructive approach to programming, in: S.H. Lavington

(Ed.), Information Processing 80 (North-Holland, Amsterdam, 1980).
[14] R.H. Perrott, Parallel languages, in: Infotech State of the Art Report on Super­

computers, Volume 1: Total Systems Issues (Maidenhead, 1979) pp. 117-149.
[15] R.H. Perrott, A standard for supercomputer languages, in: Infotech State of the Art

Report on Supercomputers, Volume 2: Invited Papers (Maidenhead, 1979) pp. 291-308.
[16] R.H. Perrott, A language for array and vector processors, TOPLAS (Transactions on

Programming Languages and Systems, ACM) 1 (2) (1979) 177-195.

