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ABSTRACT 
 

Can Design Patterns be turned into reusable components? To help answer this question, 
we have performed a systematic study of the standard design patterns. One of the most 
interesting is Abstract Factory, for which we were indeed able to build a reusable 
component fulfilling the same needs as the original pattern. This article presents the 
component’s design and its lessons for the general issue of pattern componentization. 

1. PATTERNS AND COMPONENTS 
In hardly more than a decade, Design Patterns have established themselves as a 
major resource for effective software design.  “Each pattern describes a problem 
which occurs over and over again in our environment and then describes the 
core of the solution to this problem” [17]. Thanks to the published catalogs of 
such solutions, starting with [17] itself, software designers can benefit from the 
wisdom and experience of their predecessors. 

The idea that we should avoid reinventing the wheel in software 
construction predates patterns by a long time; reuse is a running theme in 
standard discussions of software engineering. The idea of reuse is to provide 
software components covering standard needs and make them available through a 
standard API (Abstract Program Interface1) to any program that experiences the 
corresponding needs. 

For all the benefits of design patterns, it is hard to ignore that the idea as 
usually expressed runs contrary to decades of advances in reuse, which have 
profoundly improved the state of software development. Pattern advocates 
themselves often sound skeptical about reuse. The preceding citation was 
actually truncated: the full sentence states that a pattern describes the core of the 
solution to the problem “in such a way that you can use this solution a million 
times over, without ever doing it the same way twice”. The pattern literature 
frequently confirms this view that patterns are not reusable components; for 
example [21]: “Patterns are not, by definition, fully formalized descriptions. They 
can’t appear as a deliverable”. 

Why not? It is hard to accept that patterns, however useful, should force us 
to step back to pre-reuse times, when sorting an array required finding a solution 
                                                           
1 The original expansion of “API”, “Application Program Interface”, apparently going 
back to old IBM software, is no longer meaningful. The acronym itself remains well-
understood and relevant. We expand it as “Abstract Program Interface”, which captures 
the idea precisely. 



outline in an algorithms textbook and then adapting it to your needs. Today we 
use library routines for such tasks. Patterns should provide similarly reusable 
solution at a higher level of granularity. Inexplicably, the pattern literature rejects 
the idea, claiming that patterns are somehow of a higher essence than 
components. We find this view questionable in the absence of concrete evidence 
and suspect that it may be influenced by the limitations of the programming 
languages (typically C++ and Java) in which patterns are generally described. 
Disproving it, at least for some commonly used patterns, would be beneficial, 
since it is almost always preferable to reuse than to redo: everything else being 
equal, performance in particular, relying on a reusable component through a 
well-documented API provides better guarantees of correctness and of general 
quality than if every developer must code the implementation anew; and it’s of 
course much less effort. 

In this view, while patterns as a whole are an admirable advance, a pattern 
that remains just a pattern is an admission of failure: the failure to abstract the 
idea to a level where it can be turned into an off-the-shelf solution — rather than 
studied, understood (or misunderstood), and reimplemented separately by each 
potential beneficiary. The failure can have various causes: 

• Perhaps it is possible to derive a component covering all cases of the pattern, 
but you did not work hard enough. 

• You may be facing a limitation of the programming language you use; 
another programming language would offer a solution. 

• The general assertion (from the pattern literature, as mentioned) that patterns 
somehow transcend components may hold in the case of a particular pattern. 

• For some patterns, you may be able to derive a partial solution in the form of 
a component that doesn’t cover all uses of the pattern, but provides a reusable 
basis, reducing the amount of specific adaptation work that each user of the 
pattern must perform. 

Patterns have become so important in the practice of software design, and the 
benefit of reusable solutions over endless individual reimplementation are so 
compelling, that it is important to examine the principal design patterns in the 
light of this discussion. We may call the overall goal componentization: turning 
design patterns, whenever possible, into reusable components. 

A previous article [30] showed that the “Observer” pattern can be 
profitably replaced by a simple reusable solution, the Event Library, taking 
advantage of Eiffel mechanisms (genericity, tuples, agents); the  benefits 
including ease of use and greatly improved generality. 

Encouraged by that initial success, we set out to perform a systematic 
analysis [5] of the componentization potential of all the design patterns of [17]. 
The results include: 



• An analysis of the challenge of componentization and of the techniques that 
address it. 

• A new classification of design patterns in terms of their suitability, or 
resistance, to componentization. 

• The application of componentization techniques to the major design patterns, 
yielding full or partial componentization in two thirds of the cases. 

• Concretely, a Pattern Library providing reusable implementations of the 
successfully componentized patterns. 

• For the remaining cases, a Pattern Wizard facilitating the semi-automatic 
integration of the patterns into an application. 

Both the Pattern Library and the Pattern Wizard are open-source, freely 
downloadable software available from our download page [16]. 

We report here on some of the results of this effort, with a special 
application to one of the best-known pattern: Abstract Factory. (A companion 
paper [31] details a similar study applied to the Visitor pattern, also resulting in a 
reusable solution as part of the Pattern Library.) In the rest of this discussion: 

• Section 2 presents the componentization effort, describing the criteria we 
considered to determine whether a pattern is componentizable and the overall 
results of the study. 

• Section 3 presents the intent, advantages and limitations of the Abstract 
Factory pattern. 

• Section 4 describes the design and implementation of our reusable solution: 
the Factory component of the Pattern Library. 

• Section 5 compares the two approaches: use of the Factory Pattern vs. the 
reusable solution provided by the Factory component of the Pattern Library. 

• Section 6 explains the limitations of the componentization approach. 

• Section 7 presents some related work about the implementation of design 
patterns using different programming paradigms and the integration of 
patterns as programming language features. 

• Section 8 draws conclusion about the componentization approach and results. 

• Section 9 gives some further research directions. 

 

 



2. PATTERN COMPONENTIZATION 
Before turning to the specific example of the Abstract Factory pattern, we 
summarize the componentization study, its assumptions and its results. 

2.1 Overview 

Our first pattern analysis, targeting the Observer pattern, led to successful 
componentization through the Event Library [30, 6] covering the general idea of 
publish-subscribe and event-driven development. This provided the basis for the 
componentization of other patterns including Visitor [31], Composite, Factory as 
described below, and others all yielding reusable components in the Pattern 
Library. We confirmed the practical applicability of these components by using 
them in a number of production applications. 

After this first experience we turned to the systematic study of all the 23 
patterns in “Design Patterns” [17] , the original reference on the topic. 

2.2 Overall componentization results 

Figure 1 summarizes the results; the precise definition of the categories and the 
criteria retained are described next.2  

 

 

 

 

 

Figure 1: Componentization results for the patterns in “Design Patterns” 

As the figure indicates: 

• For two-thirds (65%) of the original patterns we are able to provide a 
componentized replacement, enabling application developers to rely on an 
API from the Pattern Library rather than reimplementing the pattern. More 
precisely the solution is fully satisfactory in 48% of the cases; in 17% of the 
cases, it leaves out some cases of the original pattern. 

                                                           
2 Figure 1 and part of the material in section 2.2 also appear in [31]. 



• A quarter of the patterns have “Wizard or library support”: we cannot 
provide a component ready for off-the-shelf use, but we can help through 
some combination of components addressing part of the problem and the 
support of the Pattern Wizard to integrate the pattern into an application. 

• The remaining 9% are classified as “not componentizable” to reflect that we 
were not able to make any progress towards a reusable solution. This could 
of course just reflect our own failure rather than a problem inherent in the 
patterns themselves.  

2.3 Evaluation criteria 

In assessing the success of componentization we apply the following criteria: 

• Completeness: Does the reusable component cover all cases described in the 
original presentation of the pattern (as given for this study in [17])? 

• Faithfulness: Does the component provide the same benefits as the original 
pattern description? 

• Usefulness: Is it useful to rely on the component rather than merely 
implementing the pattern? 

• Type-safety: Is the component type-safe? 

• Performance: How does the efficiency of using the component compare to a 
solution that implements the pattern? 

• Extended applicability: Does the component cover more cases than the   
pattern? 

2.4 Definition of the categories3

Figure 2 shows the classification, adapted from the fuller discussion in [5]. 

The patterns in the first of the top-level categories, Fully 
Componentizable (48% from figure 1), are the most interesting result of this 
study: we can provide an API that fully covers the need for implementing the 
pattern in an application4. There are three subcategories: 

• Language-supported: no need to do anything at all, the mechanism is already 
provided by the language. This is the case with the Prototype pattern, for 
which Eiffel’s built-in “clone” facility handles the issue. 

 
                                                           
3 Figure 2 and part of the material in section 2.4 also appear in [31]. 
4 The inclusion of one pattern, Memento, in the “Fully Componentizable” category is a 
matter of convention since in that case it is simpler to use the pattern than the component. 
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Figure 2: Pattern componentizability classification 

• Library-supported: in this case the mechanisms of an existing library do the 
job. This subcategory is included for completeness since we have not so far 
uncovered any example. 

• New Component: this is the most original case, indicating that we were able 
to develop a component that removes the need for the pattern. The Factory 
family of patterns, discussed below, is an example. 

The second category, Partially Componentizable, covers patterns for which we 
were also able to develop a component for the Pattern Library, but the resulting 
solution is not quite complete or faithful as defined above. 

In the Wizard or Library Support category, there is no reusable 
component in the Pattern Library, but we are able to help developers integrate the 
pattern into their application through either or both of two techniques: 

• They can use the Pattern Wizard to produce a skeleton describing the 
architecture of the pattern, then fill in the specific elements. 

• They can rely on some partial component support from existing libraries. 
Patterns of the last category, Not Componentizable, have resisted all our efforts: 
we can neither provide a component, even partial, nor generate a skeleton. These 
are the patterns truly justifying the reuse-skeptic attitude of the pattern literature 
highlighted in the citations at the beginning of this article. Fortunately for our 
effort, only two of the standard design patterns belong to that category: Façade 
and Interpreter. 

2.5 Role of specific language and library mechanisms 

The results of componentization are clearly dependent on the target programming 
language. The effort reported here benefits from the mechanisms of Eiffel [27, 
32], as described in the corresponding ECMA standard [14]. The following 
language capabilities play a particularly important role; Table 1 shows their 
actual use in the Pattern Library. 



 

 

Table 1: Eiffel language mechanisms and their use in the Pattern Library 

 

• Genericity, a basic Eiffel facility for defining classes parameterized by 
types, and already used in all Eiffel data structure libraries. Genericity is 
constrained if the actual generic parameter must be a descendant of a specific 
type, unconstrained otherwise. All the Pattern Library classes (for the fully 
componentized patterns) rely on unconstrained genericity; three (Observer, 
Mediator and Flyweight) use the constrained form. 

• Agents [12]: objects encapsulating routines ready to be called. 73% (8 out of 
11) of the fully componentized patterns use agents. 

• Tuples: sequences of values of set types, similar to classes but anonymous. 

• Support for Design by Contract™ [24, 25, 26] to equip the componentized 
patterns with precise semantic properties. All Pattern Library classes take 
advantage of contracts. 

• Client-supplier relationships. 

• Single and multiple inheritance. 



• Automatic type conversion, which exists in all languages for basic types (as 
in converting from integers to reals) but benefit in Eiffel from a full-fledged 
mechanism applicable to any user-defined type and carefully combined with 
inheritance [30]. This facility is mentioned here even though it is not used in 
any of the currently componentized patterns; informal investigations of other 
patterns show that it can play a useful role. 

• Cloning: built-in facilities for duplicating objects. 

3. “ABSTRACT FACTORY” AS A PATTERN 
The Abstract Factory design pattern is a widely used solution to create object 
families without specifying the concrete type of each object. In this section we 
describe the pattern, its benefits and limitations. 

3.1 Pattern description 

The Abstract Factory pattern is intended to “provide an interface for creating 
families of related or dependent objects without specifying their concrete 
classes” [17]. Figure 3 (using, as other class diagrams in this article, the 
conventions of the BON method [34], explained by the legend below) shows the 
classes involved and their relationships. 

In this example and others, some of the names and conventions have been 
changed from [17] for consistency with the rest of the discussion, but this does 
not affect the substance of the patterns. A feature is “effective” if it is 
implemented, “deferred” if it is only specified (with a contract if applicable). A 
class is effective if all its features are effective, deferred otherwise. A deferred 
class does not have to be fully abstract: it may contain a mix of deferred and 
effective features. 

The deferred class FACTORY declares the deferred factory functions, 
new_product_a and new_product_b, which create and return a new instance of 
PRODUCT_A and PRODUCT_B. These functions are effected (made effective) 
in FACTORY_1 and FACTORY_2, in a covariant way: in FACTORY_1, 
new_product_a returns an instance of PRODUCT_A1 and new_product_b of 
PRODUCT_B1; in FACTORY_2, they produce a PRODUCT_A2 or a 
PRODUCT_B2. 
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Figure 3: Class structure for the Abstract Factory pattern 

3.2 Using the pattern 

Because the factory pattern is just a pattern, the above software structure must be 
instantiated anew for each application. Here is such an example, covering a 
traffic simulation system. Cities have people and vehicles; we will use factories 
for both of these kinds of objects. A vehicle — car, bus, tram — has an engine, 
wheels, and doors, which vary with the vehicle type. 



 
Figure 4. Traffic simulation with the Abstract Factory pattern 

Figure 4 shows the structure. The _FACTORY classes implement the pattern; the 
others describe the application domain. To create a new person, clients will use 
the factory class PERSON_FACTORY; to create a vehicle, they use 
VEHICLE_FACTORY, deferred but with three effective descendants 
CAR_FACTORY, BUS_FACTORY and TRAM_FACTORY.  Note how these 
mirror the VEHICLE  hierarchy.  

The example has been spelled out, including classes such as VEHICLE, 
CAR, WHEEL and CAR_WHEEL which have no direct relation to the pattern but 
help make this application of the pattern complete and realistic. Here are possible 
versions of these classes, starting with VEHICLE5: 

note 
 description: "General notion of vehicle for traffic simulation" 
deferred class  
 VEHICLE
feature {NONE} -- Initialization 
 make (e: like engine; w: like wheels; d:like doors)  
   -- Set engine to e, wheels to w, doors to d. 
  require 
   engine_exists: e /= Void 
   wheels_exists: w /= Void 
   wheels_does_not_contain_void: not w.has (Void) 
   wheel_count_positive: w.count > 0 
   wheels_valid: w.count = wheel_count  
                                          and w.count = w.capacity 
   doors_exists: d /= Void 
   doors_does_not_contain_void: not d.has (Void) 
   doors_valid: d.count = door_count and  
                                        d.count = d.capacity 
  do 
   engine := e ; wheels := w ; doors := d 
  ensure 
   engine_set: engine = e 
   wheels_set: wheels = w 
   doors_set: doors = d 
  end 

                                                           
5 All the program examples follow the Eiffel standard [14]. 



feature -- Access 
 engine: ENGINE
   -- Engine 
 
 wheels: ARRAYED_LIST [WHEEL] 
   -- Wheels 
 
 doors: ARRAYED_LIST [DOOR] 
   -- Doors 
 
 wheel_count: INTEGER  
   -- Number of wheels 
  deferred end 
 
 door_count: INTEGER  
   -- Number of doors 
  deferred 
  end 
invariant 
 engine_exists: engine /= Void 
 doors_exists: doors /= Void 
 wheels_exists: wheels /= Void 
 doors_does_not_contain_void: not doors.has (Void) 
 wheels_does_not_contain_void: not wheels.has (Void) 
 wheel_count_positive: wheel_count > 0 
 door_count_valid: door_count = doors.capacity and  
                          doors.count = door_count
 wheel_count_valid: wheel_count = wheels.capacity and 
                           wheels.count = wheel_count
end 

 
A typical descendant of VEHICLE: 
 

note 
 description: "General notion of car for traffic simulation" 
class  
 CAR
inherit 
 VEHICLE
  redefine engine, wheels, doors end 
create  
 make
 
feature -- Access 
 engine: CAR_ENGINE
   -- Engine 
 
 wheels: ARRAYED_LIST [CAR_WHEEL] 
   -- Wheels 
 
 doors: ARRAYED_LIST [CAR_DOOR] 
   -- Doors 
 
 Wheel_count: INTEGER = 4 ; Door_count: INTEGER = 4 
   -- Number of wheels and doors 
 
invariant 
 four_wheels: wheel_count = 4 
 four_doors: door_count = 4 
end 

 
Other descendants of might include BUS, TRAIN etc. We also need wheels: 



note 
 description: "General notion of wheel for traffic simulation" 
deferred class  
 WHEEL
feature -- Initialization 
 make (d: like diameter)  
   -- Set diameter to d. 
  require 
   diameter_valid: d >= minimum_diameter
                                      and d <= maximum_diameter
  do 
   diameter := d 
  ensure 
   diameter_set: diameter = d 
  end 
feature -- Access 
 diameter: INTEGER 
   -- Diameter (in millimeters) 
 
 minimum_diameter: INTEGER  
   -- Minimum diameter (in millimeters) 
  deferred 
  end 
 
 maximum_diameter: INTEGER  
   -- Maximum diameter (in millimeters) 
  deferred 
  end 
feature -- Status report 
 is_valid: BOOLEAN  
   -- Is wheel meaningful? 
  do 
   Result := (diameter >= minimum_diameter and  
                                     diameter <= maximum_diameter) 
  ensure 
   definition: Result = (diameter >=  
                              minimum_diameter and diameter <= maximum_diameter) 
  end 
invariant 
 minimum_diameter_positive: minimum_diameter > 0 
 min_and_max_valid: minimum_diameter <=  maximum_diameter
 ivalid: is_valid
end 

 
Descendants of WHEEL may include CAR_WHEEL etc.: 
 

Now the factory classes. VEHICLE_FACTORY, deferred, contains the 
factory operations such as 

new_vehicle (p,d,w,h: INTEGER): VEHICLE  
  -- New vehicle with engine power p,  wheel diameter d, 
  -- door width w and door height h 
 require 
  power_valid: p >= minimum_power and p <= maximum_power
  diameter_valid: d >= minimum_diameter and  
                                                 d <= maximum_diameter
  width_valid: w >= minimum_width and w <= maximum_width
  height_valid: h >= minimum_height and  
                                                   h <= maximum_height
 deferred 
 ensure 
  vehicle_exists: Result /= Void 
 end 



 
The contracts use features such as minimum_power, declared in class 
VEHICLE_FACTORY as deferred and made effective in the descendants; these 
features will in practice have to duplicate code that exists in classes ENGINE, 
WHEEL, and DOOR. 

Descendants of VEHICLE_FACTORY, such as CAR_FACTORY, define 
their own factory features, this time effective, for example:  

 
new_car (p, d, w, h: INTEGER): CAR  
  -- New car with engine power p, wheel diameter d, 
  -- door width w and door height h 
 do 
  create Result.make ( 
       new_engine (p), new_wheels (d), new_doors (w, h)) 
 end 

 
new_engine is another factory feature declared in VEHICLE_FACTORY. 
new_wheels and new_doors are not part of the class interface, but deal with the 
implementation; they use the factory features new_wheel and new_door. 

Using the Abstract Factory pattern, the root creation procedure (feature 
make of class SIMULATION) has such calls as: 

zurich_city.vehicles.extend (car_factory.new_car ( 
                    power, wheel_diameter, door_width, door_height)) 

 
We can define car_factory as a once function (creating an object on first call, 
then returning on every subsequent call a reference to that object): 

car_factory: CAR_FACTORY  
  -- Car factory object, shared 
 once 
  create Result 
 ensure 
  car_factory_exists: Result /= Void 
 end 

This technique ensures that we have exactly one “car factory” object in the 
system, and is applied to other factories as well. The rest of the factory-based part 
of the traffic simulation system follows directly from the above models. 

3.3 Abstract Factory as a pattern: an analysis 

From a software engineering perspective, the Abstract Factory pattern lends itself 
to criticism on two grounds: 

• It causes considerable code redundancy; remember in particular that (in the 
general model of section 3.1) classes FACTORY_1, PRODUCT_A and  
PRODUCT_A1 are templates for m, n and m∗ n classes respectively, where m 
is the number of factories (two in this example, 1 and 2) and n the number of 
products (also two, A and B). [17] acknowledges this problem by noting that 



the pattern “requires a new concrete factory subclass for each product 
family, even if the product family differs only slightly”. 

It is well known that code duplication is the source of considerable trouble in 
software construction and maintenance. Future changes made to one variant 
must be carried over to the others; ditto for bug corrections. The software 
becomes uselessly complex, raising new challenges for project and 
configuration management. 

• Another problem is the solution’s lack of flexibility. The deferred class 
FACTORY must specify a fixed number of factory functions and their 
signatures. As a consequence, “supporting new kinds of products is difficult”:  
introducing a new family of products requires changing class FACTORY and 
all its descendants. No wonder this leads to conclusions that patterns are 
inherently non-componentizable. 

To address these issues, [17] suggests combining Abstract Factory with the 
Prototype pattern. In Eiffel there is no need for this pattern, as its purpose, 
producing clones of objects, is directly addressed by a built-in language and 
library mechanism. 

Combining cloning with genericity leads to the basic idea behind the 
reusable solution — the Factory components of the Pattern Library.  

4. “ABSTRACT FACTORY” AS A COMPONENT 
We now examine the reusable solution devised for the Abstract Factory pattern. 

A reusable component lives or dies by its API — by how easy it is for 
client programmers to take advantage of the component through the purely 
abstract description of its interface. For this reason we first illustrate the Abstract 
Factory component through a typical example of its use; next we study how this 
solution compares, for the application developer, with implementing the pattern 
directly; then we look at the component’s internal design and implementation. 

4.1 Using the Abstract Factory component 

Instead of having to write one factory class per vehicle type, users of the Pattern 
Library’s Abstract Factory component rely on a single generic class 
FACTORY [G]. This is the only class we need to examine. 

The root creation procedure make is similar to its original version: the 
difference is that instead of calls such as 

zurich_city.vehicles.extend (car_factory.new_car 
                                                           (power, wheel_diameter,  door_width, door_height)) 

it suffices to call the factory function new_with_args from class FACTORY [G]: 
zurich_city.vehicles.extend (car_factory.new_with_args ( 
                        [car_power, car_wheel_diameter, car_door_width, car_door_height])) 



 

Function new_with_args returning a new instance of G — the generic parameter 
type of FACTORY — created by calling the creation procedures of G with the 
argument given. The function indeed takes a single argument, an Eiffel tuple, 
given by a list of values in square brackets. The function car_factory is defined 
simply as 

car_factory: FACTORY [CAR]  
   -- Car factory 
 once 
  create Result.make (agent new_car) 
 ensure 
  car_factory_created: Result /= Void 
 end 

and new_car as 
new_car (p, d, w, h: INTEGER): CAR  
  -- New car with power engine p, wheel diameter d,  
  -- door width w and door height h 
 require 
  power_valid: p >= {CAR_ENGINE}.minimum_power and  
                      p <= {CAR_ENGINE}.maximum_power
  diameter_valid: d >= {CAR_WHEEL}.minimum_diameter and 
    d <= {CAR_WHEEL}.maximum_diameter
  width_valid: w >= {CAR_DOOR}.minimum_width and 
    w <= {CAR_DOOR}.maximum_width
  height_valid: h >= {CAR_DOOR}.minimum_height and 
     h <= {CAR_DOOR}.maximum_height
 do 
  create Result.make
    (car_engine_factory.new_with_args ([p]),  
   new_car_wheels (d), new_car_doors (w, h)) 
 ensure 
  car_exists: Result /= Void 
 end 

 

The notation {C}.m yields the value of a constant m declared in a class C . 

4.2 Discussion: pattern vs. reusable component 

On the basis of the API (even though we haven’t seen the implementation yet) 
we can now compare, from a client’s perspective, the component-based solution  
against the original direct implementation of the pattern. The traffic simulation 
program provides an appropriate example. 

On the negative side, the new solution loses some flexibility: it no longer 
uses specific factory classes such as CAR_FACTORY and BUS_FACTORY 
inheriting from a common ancestor VEHICLE_FACTORY; the equivalent code is 
in a single SIMULATION class. This may cause some code redundancy, for 
example between features new_car, new_bus, and new_tram; in addition class 
SIMULATION can be bulky. 

On the positive side we note: 



• Reusability: the single remaining factory class, FACTORY [G] is a library 
class that can be reused in many applications whereas classes such as 
CAR_FACTORY were specific to one application and could not be reused 
without considerable changes. 

• Ease of use: although simplicity of an API is partly a matter of opinion, we 
think the traffic simulation example demonstrates that the Pattern Library 
makes it particularly easy to equip any application with abstract factories.  

• Fewer classes: there is now just one factory class, the general-purpose 
FACTORY [G], instead of five (VEHICLE_FACTORY and one for each other 
type of vehicle). 

• No code duplication for contracts: there no more need to duplicate in the root 
class  SIMULATION the constant features minimum_power, maximum_power 
etc. from ENGINE, WHEEL, and DOOR, since can now just use 
{CAR_ENGINE}.minimum_power etc. This was not possible in the original 
version since {like new_engine}.minimum_power is not a valid notation (a 
language limitation which conceptually seems impossible to remove). 

4.3 Towards a reusable component 

We now examine the internal design of the Abstract Factory component of the 
Pattern Library. Before presenting the final version, which involves several 
advanced language mechanisms such as constrained genericity and agents, we 
briefly present a few intermediate attempts and show why they were not 
completely satisfactory. The reader who is only interested in the final version can 
skip to section 4.4.  

In a first approach, the factory function new returns a new instance of G by 
cloning a prototype, through the built-in function cloned coming in Eiffel from 
the universal ancestor class ANY and hence available to all classes. (In earlier 
versions it was known as clone or twin).  

note 
        description: "[ 
                 Mechanisms for creating objects of type `G' by shallow cloning of a prototype. 
                      ]" 
        version: "Version 1, not final" 
class  
 FACTORY [G]  
create  
 make
feature -- Initialization 
 make (p: like prototype)  
   -- Set prototype to p. 
  require 
   prototype_exists: p /= Void 
  do 
   prototype := p 
  ensure 
   prototype_set: prototype = p 



  end  
feature -- Factory function 
 new: G  
   -- New instance of type G 
  do 
   Result := prototype.cloned 
  ensure 
   Result_exists: Result /= Void 
  end 
feature {NONE} -- Implementation 
 prototype: G 
   -- Prototype from which new objects are created 
invariant 
 prototype_exists: prototype /= Void 
end 

 

Function new uses shallow cloning, as provided by the library feature cloned. It 
is possible to use deep cloning instead (see [5] for more details on this and other 
variants). To define actual factory classes we provide actual generic parameters, 
as in FACTORY [VEHICLE]. 

This solution, however, does not provide a direct way to initialize newly 
created objects. For this we should rely on Eiffel’s constrained genericity: we 
force the generic parameter of FACTORY [G] to provide default_create as 
creation procedure; Eiffel rules imply that in this case the creation instruction 
create x  (without an explicit creation procedure) is valid for x of type G is 
permitted; it will call as creation procedure the version of default_create 
corresponding to the actual generic parameter. The class becomes just: 

note 
 description: "Object factory" 
 version: "Version 2, not final" 
class  
 FACTORY [G -> ANY create default_create end] 
feature -- Factory 
 new: G  
   -- Instantiate a new object of type G. 
  do 
   create Result 
  ensure 
   new_instance_exists: Result /= Void 
  end 
end 

 

In this version FACTORY [PRODUCT] is only valid if class PRODUCT lists 
feature default_create as one of its creation procedures. As a consequence, class 
PRODUCT has to be an effective (non-deferred) class.  

Whenever we need a product, we call the feature new on the appropriate 
factory instead of creating the object directly. As in the original pattern, this 
design helps separate the object creations from the application logic. There is no 
more need for defining a prototype to be cloned.  



A number of drawbacks remain. In our example we need factories of types 
FACTORY [CAR], FACTORY [BUS] etc. A typical one reads: 

car_factory: FACTORY [CAR] 
  -- Car factory 
 once 
  create Result 
 ensure 
  factory_exists: Result /= Void 
 end 

 
(using a once function to guarantee sharing). CAR must now provide 
default_create as a creation procedure. There is no reason it did before since this 
is just an ordinary application class. Even if we accept the prospect of modifying 
the class text, this could break a class invariant clause such as 

 
 engine_exists: engine  /= Void 

which any creation procedure must ensure. This requires redefining 
default_create in CAR : 

default_create  
  -- Set up maze. 
 do 
  create engine.make (…) 
 end 

 
This scheme may be made to work in this particular case, but it does not 
generalize to classes with more sophisticated invariants and creation procedures 
that (correspondingly) require arguments. Updating such classes to make them 
usable as actual generic parameters for FACTORY would break their existing 
clients. In any case the prospect of modifying existing classes from the 
application domain just to enable them to participate in factories is not practical. 

All this indicates that the reusable solution as obtained so far does not 
scale up. 

The root of the remaining problem is that the solution as obtained so far 
requires  creation to be specified statically. We can make the solution more 
dynamic thanks to agents. 

4.4 The factory component: using agents 

An agent in Eiffel is an object that wraps a routine; for a known routine r, agent r 
defines the associated agent; another routine to which this agent has been passed 
as the argument a does not need to know what the original r was, but will be able 
to call it anyway through the call feature available on all agents, in the form 
a.call ([...]), where the argument is a tuple. 

By passing a creation procedure to the factory as an agent, can wait until 
run time to provide every factory object with its tailor-made initialization 
mechanism. 



This observation gives us the final version of the class FACTORY as used 
in the Pattern Library. 

note 
 description: "Object factory" 
 version: "Final version from the Pattern Library" 
class FACTORY [G] create  
 make
feature -- Initialization 
 make (func: like factory_function)  
   -- Set factory_function to func. 
  require 
   func_exists: func /= Void 
  do 
   set_factory_function (func) 
  ensure 
   function_set: factory_function = func 
  end 
feature -- Access 
 
 factory_function: FUNCTION [ANY, TUPLE, G] 
   -- Factory function creating instances of G 
  
feature -- Factory functions 
 new: G  
   -- New instance of G 
  do 
   factory_function.call ([]) 
   Result := factory_function.last_result 
  ensure 
   new_exists: Result /= Void 
  end 
 
 new_with_args (args: TUPLE): G  
   -- New instance of type G initialized with args 
  require 
   valid: factory_function.valid_operands (args) 
  do 
   factory_function.call (args) 
   Result := factory_function.last_result 
  ensure 
   new_exists: Result /= Void 
  end 
   
feature -- Element change 
 set_factory_function (func: like factory_function)  
   -- Set factory_function to func. 
  require 
   func_exists: func /= Void 
  do 
   factory_function := func 
  ensure 
   function_set: factory_function = func 
  end 
invariant 
 factory_function_exists: factory_function /= Void 
end 

 



 

4.5 Component properties 

We note the following properties of the componentization of the Abstract Factory 
pattern using the criteria of section 2.5: 

• Completeness: The Factory component covers all cases described in the 
original Abstract Factory pattern. An apparent limitation is that it is possible 
to create only one kind of product; but this is simply a matter of convention: 
if you need to create two kinds of product, you’ll just use two factories. 

• Usefulness: The Factory component can indeed be used in practice as an 
effective replacement for the pattern. 

• Faithfulness: While the architecture is different, the Factory component 
retains the intent and spirit of the original Abstract Factory pattern. 

• Type-safety: The Factory component mainly relies on type-safe mechanisms 
of constrained genericity and agents. 

• Performance: The main difference between the internal implementation of 
the Factory component and the Abstract Factory design pattern is the use of 
agent calls instead of direct calls to factory functions. Agents carry a 
performance overhead, but that overhead is very small on the overall 
application. Our benchmarks on a typical application show a degradation of 
only 7%. 

• Extended applicability: The Factory component does not cover more cases 
than the original Abstract Factory pattern. 

5. LIMITATIONS OF THE APPROACH 
We have shown on the example of Abstract Factory (confirmed by many others 
in our study) that it is possible to turn that design patterns into reusable 
components. There are, however, some limitations to this approach. 

5.1 One pattern, several implementations 

The first limitation does not apply to the example of this article but to the 
approach as a whole: not all patterns appear fully componentizable. Counter-
examples include “State”, “Builder” and “Proxy”. So we will in the short term 
continue to need some patterns that are only patterns, not components. 

5.2 Language dependency 



We heavily rely on Eiffel mechanisms. We have not tried to transpose the 
approach to other languages. As an initial assessment for two recent languages: 

• Genericity plays an important role and until recently was specific to Eiffel 
(and C++ with its macro-like “template” mechanism). Both Java and C# [22] 
are in the process of adding a generic mechanism, which will help. 

• Neither Java nor C# support multiple inheritance except from interfaces; this 
precludes the direct imitation of the Eiffel solutions using multiple 
inheritance. 

• Neither Java nor C# support contracts; this affects the clarity of reusable 
solutions and the ease of making arguments supporting their correctness, but 
not the architecture per se. We may point here to our earlier work [2, 3] on 
automatically extracting contracts from non-contracted classes, for example 
on .NET, which may prove useful here. 

• C#’s “delegates” are a more limited form of agents, which may be applicable 
to the many Pattern Library solutions relying on agents. 

• Java has explicitly rejected any form of agents or delegates. This puts into 
question the applicability to Java of most of the Pattern Library ideas 
(although reflection might provide some solutions). 

6.3 Usefulness 

Some programmers may prefer to write their own customized design pattern 
implementation for any of the following reasons: 

• Usage complexity: In some cases, using the reusable component may be less 
user-friendly than a customized pattern implementation. It may also be 
somewhat overkill when the pattern implementation is very simple. The 
Memento pattern is an example of this case. 

• Performance: Some componentized versions of design patterns imply a 
performance overhead compared to a “traditional” pattern implementation. 
This is not the case with Abstract Factory, but for example the 
componentized Visitor may imply an overhead of 30% to 50% over direct 
use of the pattern [31]. Although the pattern typically accounts for only part 
of the execution time of an entire application, this overhead may be 
intolerable in some performance-critical cases.  

6.  RELATED WORK 
6.1 C++ implementation of design patterns 



Alexandrescu explains [1] how to implement some design patterns in C++. 
Although related, his work only addresses a few design patterns, and its focus is 
different: providing different implementations of the patterns, many of them 
relying on C++ templates, rather than reusable (componentized) solutions. 

6.2 Aspect implementation of design patterns 

Hannemann and Kiczales [19, henceforth “H & K”] explored how to take 
advantage of aspect-oriented programming (AOP) [23] to implement aspects; 
they implemented the same 23 patterns as our study, in both Java and 
AspectJ [13], an aspect-oriented extension for Java. They evaluated the resulting 
code according to four properties: 

• Locality: The pattern code is confined in aspects; it does not extend to 
existing classes participating in the pattern. 

• Reusability: The abstract aspect can be reused (programmers still need to 
write concrete aspects). 

• Composition transparency: Some classes can be involved in many patterns 
transparently (because the pattern code is located in an aspect and does not 
touch the participant classes). 

• (Un)pluggability: Adding or removing a pattern is easy because participant 
classes do not know about their involvement in the pattern implementation. 

Using AspectJ sometimes came down to an implementation change and 
sometimes resulted in a completely new design structure. 

The reusability classification of the aspect implementations is the most 
closely related to this work. While H & K’s definition of reusability differs from 
the one presented in this article (abstract aspects vs. concrete classes), it is 
interesting to see the similarities. 

H & K note that Observer code usually spreads across several classes, 
making maintenance harder. For example, concrete subjects are likely to have 
many similar features which call a procedure update_observers. Using aspects 
solves the problem through the notion of pointcut: one can define a set of points 
in the program execution where the feature update_observers needs to be called — 
no need to pollute the code of all concrete subjects anymore. As a result H & K 
categorize Observer as reusable with AspectJ. They found eleven other patterns 
for which “a core part of the implementation can be abstracted into reusable 
code”. Comparing these results with our componentizability classification: 

• Our classification agrees on ten of their twelve reusable patterns. The 
Singleton and Iterator patterns resisted componentization work; note 
however that Iterator is already supported to some extent by existing Eiffel 
libraries and that the notion of “frozen class” now introduced in standard 
Eiffel makes it possible to  generate skeleton classes for Singleton. 



• For Proxy, Builder and State we achieve partial componentization. The 
difference simply reflects that our classification is more fine-grained; H & K 
only consider “yes” or “no” answers. 

• H & K’s results did not succeed in handling Abstract Factory and Factory 
Method through AspectJ aspects; we were able to componentized them 
thanks to Eiffel’s genericity and agents. 

• Both classifications find Adapter, Decorator, Template Method, Bridge, 
Interpreter and Façade not to be componentizable. 

H & K explain their results by the nature of design patterns. They distinguish 
between patterns with defining roles (classes participating in the pattern have no 
functionality outside the pattern) and those with superimposing role 
(participating classes have outside functionality) and state that most reusability 
improvements concern patterns of the second category, since superimposed 
pattern behavior can be moved into an independent reusable module. 

In addition to H & K there is considerable activity in the area of applying 
aspects to patterns; see for example [18]. The expected advantages include a 
reduction of the number of pattern participants (typically one aspect instead of 
several classes); better traceability of the code and hence better documentation; 
more localized pattern code; and more reuse. We may note, however the 
following limitations: 

• Just as our componentization work depends on the programming language 
used to write the components, AOP approaches depend on the choice of 
aspect language. For example [18] mentions the difficulty of translating code 
from AspectJ to HyperJ. 

• An aspect implementation typically introduces (as also pointed out by [18]) 
many small aspects, which are necessary to understand the design. As a result 
it is not so clear to us what exactly is gained over a standard pattern 
implementation. With full componentization, the pattern implementation 
resides entirely in a class or a few classes from a library, understandable 
through the sole provision of its API. 

6.3 Language support of design patterns 

Chambers et al. write [11] that design patterns “have proved so useful that some 
have called for their promotion to programming language features”. As an 
example, Bosch describes [8] a new language called LayOM with original 
support for design patterns through such constructs as “layer” and “state”, which 
permit to represent patterns. 

Clearly, the inability to componentize patterns fully is an interesting source 
of language design ideas. An example is the introduction of “frozen” classes into 
standard Eiffel, which was motivated in part by the need to support better 
componentization of Singleton [4]. But to avoid what Chambers et al. call the 



“kitchen sink problem” one cannot add a language feature for every need. The 
spirit behind Eiffel’s design is that every new functionality should add a 
significant power of expressiveness to the language at low cost on the overall 
language complexity, avoiding “featurism” and keeping instead a “high signal to 
noise ratio” [27, 14, 32]. A programming language is, in any case, a complex 
engineering construction; while it is possible and pleasurable to play with 
tentative language constructs in an academic environment with the hope of 
influencing future industrial languages, the industrial languages themselves tend 
to evolve slowly, and the addition of any new concept is a major endeavor that 
must be reconciled with many engineering criteria: backward compatibility, 
consistency with other language constructs, implementability at reasonable cost, 
possible performance hits (compile-time and run-time), teachability, insertion 
into release schedules etc. So we cannot envision turning every great language 
design idea, however attractive on paper, into a realistic language feature. 

Componentization, whenever applicable, seems the more desirable 
approach. Only when it fails for reasons that appear fundamental (rather than 
lack of insight on the part of those attempting it) should one turn to the 
investigation of possible language extensions. 

6.4 Automatic code generation from patterns 

Budinsky et al. [9] describe a tool (dating back to as early as 1996) for generating 
code from design patterns; this is a precursor to our Pattern Wizard. There are, 
however, important differences. Some are of implementation (HTML browser 
and Perl scripts instead of an object-oriented design, generation of C++ rather 
than Eiffel). More fundamentally: our Pattern Wizard is simpler to use and meant 
solely to complement the use of the Pattern Library. 

The “Presenter” part of the tool by Budinsky et al., on the other hand, 
provides more options and in general more flexibility, from which the Pattern 
Wizard could benefit.  

7. CONCLUSION 
The goal of this work was to explore a conjecture from [28]: “A successful 
pattern cannot just be a book description: it must be a software component, or a 
set of components”; see also Pinto et al. [33]: “The Design Patterns fail providing 
a solution because it is necessary to apply and implement the same design 
pattern over and over, for each component”. The results obtained so far show 
that, for a large part, patterns can indeed be replaced by components. The success 
ratio cited in 2.2 (48% full componentization, 17% partial) are encouraging. The 
Abstract Factory example shows the process at work. 

The results of componentization — the classes in the Pattern Library — 
are of good quality: type-safe and contract-equipped. Significant practical usage, 
including in industrial applications, has demonstrated their practicality. 



Another directly usable result is the componentizability classification, 
which gives programmers a reference to know where to look for help: in the best 
case, just go to the applicable API and don’t bother any further; otherwise, use 
the Pattern Wizard if applicable; in the couple of remaining cases, you know you 
have no one to turn to but yourself. 

The progress of software engineering suggests that it is usually better to 
reuse than to redo; the componentization results shows that, for design patterns, it 
is often possible to use the better alternative. 

8. FUTURE WORK 
The following directions appear interesting for continuation of this work. 

• Componentizing more design patterns: there are plenty of patterns beyond 
those we studied so far; see e.g. [10].  

• Testing componentized patterns: Testing the reusable components resulting 
from pattern componentization is essential because reuse increases both good 
and bad aspects of the software. Robert Binder explains that “components 
offered for reuse should be highly reliable; extensive testing is warranted 
when reuse is intended” [7]. The AutoTest environment [15] supports the 
automatic testing of contracted components and could be fruitfully applied to 
the results of pattern componentization. 
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