
Pattern componentization: The Factory example
 KARINE ARNOUT BERTRAND MEYER
 AXA Rosenberg, California ETH, Zurich & Eiffel Software, California

Cite as follows: Karine Arnout, Bertrand
Meyer, Pattern componentization: The Factory
example, to appear in Innovations in Systems
and Software Technology (a NASA Journal)
(Springer-Verlag), 2006

ABSTRACT

Can Design Patterns be turned into reusable components? To help answer this question,
we have performed a systematic study of the standard design patterns. One of the most
interesting is Abstract Factory, for which we were indeed able to build a reusable
component fulfilling the same needs as the original pattern. This article presents the
component’s design and its lessons for the general issue of pattern componentization.

1. PATTERNS AND COMPONENTS
In hardly more than a decade, Design Patterns have established themselves as a
major resource for effective software design. “Each pattern describes a problem
which occurs over and over again in our environment and then describes the
core of the solution to this problem” [17]. Thanks to the published catalogs of
such solutions, starting with [17] itself, software designers can benefit from the
wisdom and experience of their predecessors.

The idea that we should avoid reinventing the wheel in software
construction predates patterns by a long time; reuse is a running theme in
standard discussions of software engineering. The idea of reuse is to provide
software components covering standard needs and make them available through a
standard API (Abstract Program Interface1) to any program that experiences the
corresponding needs.

For all the benefits of design patterns, it is hard to ignore that the idea as
usually expressed runs contrary to decades of advances in reuse, which have
profoundly improved the state of software development. Pattern advocates
themselves often sound skeptical about reuse. The preceding citation was
actually truncated: the full sentence states that a pattern describes the core of the
solution to the problem “in such a way that you can use this solution a million
times over, without ever doing it the same way twice”. The pattern literature
frequently confirms this view that patterns are not reusable components; for
example [21]: “Patterns are not, by definition, fully formalized descriptions. They
can’t appear as a deliverable”.

Why not? It is hard to accept that patterns, however useful, should force us
to step back to pre-reuse times, when sorting an array required finding a solution

1 The original expansion of “API”, “Application Program Interface”, apparently going
back to old IBM software, is no longer meaningful. The acronym itself remains well-
understood and relevant. We expand it as “Abstract Program Interface”, which captures
the idea precisely.

outline in an algorithms textbook and then adapting it to your needs. Today we
use library routines for such tasks. Patterns should provide similarly reusable
solution at a higher level of granularity. Inexplicably, the pattern literature rejects
the idea, claiming that patterns are somehow of a higher essence than
components. We find this view questionable in the absence of concrete evidence
and suspect that it may be influenced by the limitations of the programming
languages (typically C++ and Java) in which patterns are generally described.
Disproving it, at least for some commonly used patterns, would be beneficial,
since it is almost always preferable to reuse than to redo: everything else being
equal, performance in particular, relying on a reusable component through a
well-documented API provides better guarantees of correctness and of general
quality than if every developer must code the implementation anew; and it’s of
course much less effort.

In this view, while patterns as a whole are an admirable advance, a pattern
that remains just a pattern is an admission of failure: the failure to abstract the
idea to a level where it can be turned into an off-the-shelf solution — rather than
studied, understood (or misunderstood), and reimplemented separately by each
potential beneficiary. The failure can have various causes:

• Perhaps it is possible to derive a component covering all cases of the pattern,
but you did not work hard enough.

• You may be facing a limitation of the programming language you use;
another programming language would offer a solution.

• The general assertion (from the pattern literature, as mentioned) that patterns
somehow transcend components may hold in the case of a particular pattern.

• For some patterns, you may be able to derive a partial solution in the form of
a component that doesn’t cover all uses of the pattern, but provides a reusable
basis, reducing the amount of specific adaptation work that each user of the
pattern must perform.

Patterns have become so important in the practice of software design, and the
benefit of reusable solutions over endless individual reimplementation are so
compelling, that it is important to examine the principal design patterns in the
light of this discussion. We may call the overall goal componentization: turning
design patterns, whenever possible, into reusable components.

A previous article [30] showed that the “Observer” pattern can be
profitably replaced by a simple reusable solution, the Event Library, taking
advantage of Eiffel mechanisms (genericity, tuples, agents); the benefits
including ease of use and greatly improved generality.

Encouraged by that initial success, we set out to perform a systematic
analysis [5] of the componentization potential of all the design patterns of [17].
The results include:

• An analysis of the challenge of componentization and of the techniques that
address it.

• A new classification of design patterns in terms of their suitability, or
resistance, to componentization.

• The application of componentization techniques to the major design patterns,
yielding full or partial componentization in two thirds of the cases.

• Concretely, a Pattern Library providing reusable implementations of the
successfully componentized patterns.

• For the remaining cases, a Pattern Wizard facilitating the semi-automatic
integration of the patterns into an application.

Both the Pattern Library and the Pattern Wizard are open-source, freely
downloadable software available from our download page [16].

We report here on some of the results of this effort, with a special
application to one of the best-known pattern: Abstract Factory. (A companion
paper [31] details a similar study applied to the Visitor pattern, also resulting in a
reusable solution as part of the Pattern Library.) In the rest of this discussion:

• Section 2 presents the componentization effort, describing the criteria we
considered to determine whether a pattern is componentizable and the overall
results of the study.

• Section 3 presents the intent, advantages and limitations of the Abstract
Factory pattern.

• Section 4 describes the design and implementation of our reusable solution:
the Factory component of the Pattern Library.

• Section 5 compares the two approaches: use of the Factory Pattern vs. the
reusable solution provided by the Factory component of the Pattern Library.

• Section 6 explains the limitations of the componentization approach.

• Section 7 presents some related work about the implementation of design
patterns using different programming paradigms and the integration of
patterns as programming language features.

• Section 8 draws conclusion about the componentization approach and results.

• Section 9 gives some further research directions.

2. PATTERN COMPONENTIZATION
Before turning to the specific example of the Abstract Factory pattern, we
summarize the componentization study, its assumptions and its results.

2.1 Overview

Our first pattern analysis, targeting the Observer pattern, led to successful
componentization through the Event Library [30, 6] covering the general idea of
publish-subscribe and event-driven development. This provided the basis for the
componentization of other patterns including Visitor [31], Composite, Factory as
described below, and others all yielding reusable components in the Pattern
Library. We confirmed the practical applicability of these components by using
them in a number of production applications.

After this first experience we turned to the systematic study of all the 23
patterns in “Design Patterns” [17] , the original reference on the topic.

2.2 Overall componentization results

Figure 1 summarizes the results; the precise definition of the categories and the
criteria retained are described next.2

Figure 1: Componentization results for the patterns in “Design Patterns”

As the figure indicates:

• For two-thirds (65%) of the original patterns we are able to provide a
componentized replacement, enabling application developers to rely on an
API from the Pattern Library rather than reimplementing the pattern. More
precisely the solution is fully satisfactory in 48% of the cases; in 17% of the
cases, it leaves out some cases of the original pattern.

2 Figure 1 and part of the material in section 2.2 also appear in [31].

• A quarter of the patterns have “Wizard or library support”: we cannot
provide a component ready for off-the-shelf use, but we can help through
some combination of components addressing part of the problem and the
support of the Pattern Wizard to integrate the pattern into an application.

• The remaining 9% are classified as “not componentizable” to reflect that we
were not able to make any progress towards a reusable solution. This could
of course just reflect our own failure rather than a problem inherent in the
patterns themselves.

2.3 Evaluation criteria

In assessing the success of componentization we apply the following criteria:

• Completeness: Does the reusable component cover all cases described in the
original presentation of the pattern (as given for this study in [17])?

• Faithfulness: Does the component provide the same benefits as the original
pattern description?

• Usefulness: Is it useful to rely on the component rather than merely
implementing the pattern?

• Type-safety: Is the component type-safe?

• Performance: How does the efficiency of using the component compare to a
solution that implements the pattern?

• Extended applicability: Does the component cover more cases than the
pattern?

2.4 Definition of the categories3

Figure 2 shows the classification, adapted from the fuller discussion in [5].

The patterns in the first of the top-level categories, Fully
Componentizable (48% from figure 1), are the most interesting result of this
study: we can provide an API that fully covers the need for implementing the
pattern in an application4. There are three subcategories:

• Language-supported: no need to do anything at all, the mechanism is already
provided by the language. This is the case with the Prototype pattern, for
which Eiffel’s built-in “clone” facility handles the issue.

3 Figure 2 and part of the material in section 2.4 also appear in [31].
4 The inclusion of one pattern, Memento, in the “Fully Componentizable” category is a
matter of convention since in that case it is simpler to use the pattern than the component.

Design pattern

Fully
Componentizable

Partially
Componentizable

Partial Library
Support Skeleton

New
Component

Library-
supported

Wizard or
Library Support

Language-
supported

Not
Componentizable

Figure 2: Pattern componentizability classification

• Library-supported: in this case the mechanisms of an existing library do the
job. This subcategory is included for completeness since we have not so far
uncovered any example.

• New Component: this is the most original case, indicating that we were able
to develop a component that removes the need for the pattern. The Factory
family of patterns, discussed below, is an example.

The second category, Partially Componentizable, covers patterns for which we
were also able to develop a component for the Pattern Library, but the resulting
solution is not quite complete or faithful as defined above.

In the Wizard or Library Support category, there is no reusable
component in the Pattern Library, but we are able to help developers integrate the
pattern into their application through either or both of two techniques:

• They can use the Pattern Wizard to produce a skeleton describing the
architecture of the pattern, then fill in the specific elements.

• They can rely on some partial component support from existing libraries.
Patterns of the last category, Not Componentizable, have resisted all our efforts:
we can neither provide a component, even partial, nor generate a skeleton. These
are the patterns truly justifying the reuse-skeptic attitude of the pattern literature
highlighted in the citations at the beginning of this article. Fortunately for our
effort, only two of the standard design patterns belong to that category: Façade
and Interpreter.

2.5 Role of specific language and library mechanisms

The results of componentization are clearly dependent on the target programming
language. The effort reported here benefits from the mechanisms of Eiffel [27,
32], as described in the corresponding ECMA standard [14]. The following
language capabilities play a particularly important role; Table 1 shows their
actual use in the Pattern Library.

Table 1: Eiffel language mechanisms and their use in the Pattern Library

• Genericity, a basic Eiffel facility for defining classes parameterized by
types, and already used in all Eiffel data structure libraries. Genericity is
constrained if the actual generic parameter must be a descendant of a specific
type, unconstrained otherwise. All the Pattern Library classes (for the fully
componentized patterns) rely on unconstrained genericity; three (Observer,
Mediator and Flyweight) use the constrained form.

• Agents [12]: objects encapsulating routines ready to be called. 73% (8 out of
11) of the fully componentized patterns use agents.

• Tuples: sequences of values of set types, similar to classes but anonymous.

• Support for Design by Contract™ [24, 25, 26] to equip the componentized
patterns with precise semantic properties. All Pattern Library classes take
advantage of contracts.

• Client-supplier relationships.

• Single and multiple inheritance.

• Automatic type conversion, which exists in all languages for basic types (as
in converting from integers to reals) but benefit in Eiffel from a full-fledged
mechanism applicable to any user-defined type and carefully combined with
inheritance [30]. This facility is mentioned here even though it is not used in
any of the currently componentized patterns; informal investigations of other
patterns show that it can play a useful role.

• Cloning: built-in facilities for duplicating objects.

3. “ABSTRACT FACTORY” AS A PATTERN
The Abstract Factory design pattern is a widely used solution to create object
families without specifying the concrete type of each object. In this section we
describe the pattern, its benefits and limitations.

3.1 Pattern description

The Abstract Factory pattern is intended to “provide an interface for creating
families of related or dependent objects without specifying their concrete
classes” [17]. Figure 3 (using, as other class diagrams in this article, the
conventions of the BON method [34], explained by the legend below) shows the
classes involved and their relationships.

In this example and others, some of the names and conventions have been
changed from [17] for consistency with the rest of the discussion, but this does
not affect the substance of the patterns. A feature is “effective” if it is
implemented, “deferred” if it is only specified (with a contract if applicable). A
class is effective if all its features are effective, deferred otherwise. A deferred
class does not have to be fully abstract: it may contain a mix of deferred and
effective features.

The deferred class FACTORY declares the deferred factory functions,
new_product_a and new_product_b, which create and return a new instance of
PRODUCT_A and PRODUCT_B. These functions are effected (made effective)
in FACTORY_1 and FACTORY_2, in a covariant way: in FACTORY_1,
new_product_a returns an instance of PRODUCT_A1 and new_product_b of
PRODUCT_B1; in FACTORY_2, they produce a PRODUCT_A2 or a
PRODUCT_B2.

*
FACTORY

+
FACTORY_1

+
FACTORY_2

*
PRODUCT_A

+
PRODUCT_A1

+
PRODUCT_A2

+
PRODUCT_B1

+
PRODUCT_B2

*
PRODUCT_B

new_product_a*

new_product_b*

new_product_a+

new_product_b+
new_product_b+

new_product_a+

*
A

+
A

Deferred (abstract) class
with name A

Effective (implemented)
class with name A

inherits from is a client of

f*
Deferred (abstract) feature
(member) called f f+

Effective (implemented)
feature (member) called f

Figure 3: Class structure for the Abstract Factory pattern

3.2 Using the pattern

Because the factory pattern is just a pattern, the above software structure must be
instantiated anew for each application. Here is such an example, covering a
traffic simulation system. Cities have people and vehicles; we will use factories
for both of these kinds of objects. A vehicle — car, bus, tram — has an engine,
wheels, and doors, which vary with the vehicle type.

Figure 4. Traffic simulation with the Abstract Factory pattern

Figure 4 shows the structure. The _FACTORY classes implement the pattern; the
others describe the application domain. To create a new person, clients will use
the factory class PERSON_FACTORY; to create a vehicle, they use
VEHICLE_FACTORY, deferred but with three effective descendants
CAR_FACTORY, BUS_FACTORY and TRAM_FACTORY. Note how these
mirror the VEHICLE hierarchy.

The example has been spelled out, including classes such as VEHICLE,
CAR, WHEEL and CAR_WHEEL which have no direct relation to the pattern but
help make this application of the pattern complete and realistic. Here are possible
versions of these classes, starting with VEHICLE5:

note
 description: "General notion of vehicle for traffic simulation"
deferred class
 VEHICLE
feature {NONE} -- Initialization
 make (e: like engine; w: like wheels; d:like doors)
 -- Set engine to e, wheels to w, doors to d.
 require
 engine_exists: e /= Void
 wheels_exists: w /= Void
 wheels_does_not_contain_void: not w.has (Void)
 wheel_count_positive: w.count > 0
 wheels_valid: w.count = wheel_count
 and w.count = w.capacity
 doors_exists: d /= Void
 doors_does_not_contain_void: not d.has (Void)
 doors_valid: d.count = door_count and
 d.count = d.capacity
 do
 engine := e ; wheels := w ; doors := d
 ensure
 engine_set: engine = e
 wheels_set: wheels = w
 doors_set: doors = d
 end

5 All the program examples follow the Eiffel standard [14].

feature -- Access
 engine: ENGINE
 -- Engine

 wheels: ARRAYED_LIST [WHEEL]
 -- Wheels

 doors: ARRAYED_LIST [DOOR]
 -- Doors

 wheel_count: INTEGER
 -- Number of wheels
 deferred end

 door_count: INTEGER
 -- Number of doors
 deferred
 end
invariant
 engine_exists: engine /= Void
 doors_exists: doors /= Void
 wheels_exists: wheels /= Void
 doors_does_not_contain_void: not doors.has (Void)
 wheels_does_not_contain_void: not wheels.has (Void)
 wheel_count_positive: wheel_count > 0
 door_count_valid: door_count = doors.capacity and
 doors.count = door_count
 wheel_count_valid: wheel_count = wheels.capacity and
 wheels.count = wheel_count
end

A typical descendant of VEHICLE:

note
 description: "General notion of car for traffic simulation"
class
 CAR
inherit
 VEHICLE
 redefine engine, wheels, doors end
create
 make

feature -- Access
 engine: CAR_ENGINE
 -- Engine

 wheels: ARRAYED_LIST [CAR_WHEEL]
 -- Wheels

 doors: ARRAYED_LIST [CAR_DOOR]
 -- Doors

 Wheel_count: INTEGER = 4 ; Door_count: INTEGER = 4
 -- Number of wheels and doors

invariant
 four_wheels: wheel_count = 4
 four_doors: door_count = 4
end

Other descendants of might include BUS, TRAIN etc. We also need wheels:

note
 description: "General notion of wheel for traffic simulation"
deferred class
 WHEEL
feature -- Initialization
 make (d: like diameter)
 -- Set diameter to d.
 require
 diameter_valid: d >= minimum_diameter
 and d <= maximum_diameter
 do
 diameter := d
 ensure
 diameter_set: diameter = d
 end
feature -- Access
 diameter: INTEGER
 -- Diameter (in millimeters)

 minimum_diameter: INTEGER
 -- Minimum diameter (in millimeters)
 deferred
 end

 maximum_diameter: INTEGER
 -- Maximum diameter (in millimeters)
 deferred
 end
feature -- Status report
 is_valid: BOOLEAN
 -- Is wheel meaningful?
 do
 Result := (diameter >= minimum_diameter and
 diameter <= maximum_diameter)
 ensure
 definition: Result = (diameter >=
 minimum_diameter and diameter <= maximum_diameter)
 end
invariant
 minimum_diameter_positive: minimum_diameter > 0
 min_and_max_valid: minimum_diameter <= maximum_diameter
 ivalid: is_valid
end

Descendants of WHEEL may include CAR_WHEEL etc.:

Now the factory classes. VEHICLE_FACTORY, deferred, contains the
factory operations such as

new_vehicle (p,d,w,h: INTEGER): VEHICLE
 -- New vehicle with engine power p, wheel diameter d,
 -- door width w and door height h
 require
 power_valid: p >= minimum_power and p <= maximum_power
 diameter_valid: d >= minimum_diameter and
 d <= maximum_diameter
 width_valid: w >= minimum_width and w <= maximum_width
 height_valid: h >= minimum_height and
 h <= maximum_height
 deferred
 ensure
 vehicle_exists: Result /= Void
 end

The contracts use features such as minimum_power, declared in class
VEHICLE_FACTORY as deferred and made effective in the descendants; these
features will in practice have to duplicate code that exists in classes ENGINE,
WHEEL, and DOOR.

Descendants of VEHICLE_FACTORY, such as CAR_FACTORY, define
their own factory features, this time effective, for example:

new_car (p, d, w, h: INTEGER): CAR
 -- New car with engine power p, wheel diameter d,
 -- door width w and door height h
 do
 create Result.make (
 new_engine (p), new_wheels (d), new_doors (w, h))
 end

new_engine is another factory feature declared in VEHICLE_FACTORY.
new_wheels and new_doors are not part of the class interface, but deal with the
implementation; they use the factory features new_wheel and new_door.

Using the Abstract Factory pattern, the root creation procedure (feature
make of class SIMULATION) has such calls as:

zurich_city.vehicles.extend (car_factory.new_car (
 power, wheel_diameter, door_width, door_height))

We can define car_factory as a once function (creating an object on first call,
then returning on every subsequent call a reference to that object):

car_factory: CAR_FACTORY
 -- Car factory object, shared
 once
 create Result
 ensure
 car_factory_exists: Result /= Void
 end

This technique ensures that we have exactly one “car factory” object in the
system, and is applied to other factories as well. The rest of the factory-based part
of the traffic simulation system follows directly from the above models.

3.3 Abstract Factory as a pattern: an analysis

From a software engineering perspective, the Abstract Factory pattern lends itself
to criticism on two grounds:

• It causes considerable code redundancy; remember in particular that (in the
general model of section 3.1) classes FACTORY_1, PRODUCT_A and
PRODUCT_A1 are templates for m, n and m∗ n classes respectively, where m
is the number of factories (two in this example, 1 and 2) and n the number of
products (also two, A and B). [17] acknowledges this problem by noting that

the pattern “requires a new concrete factory subclass for each product
family, even if the product family differs only slightly”.

It is well known that code duplication is the source of considerable trouble in
software construction and maintenance. Future changes made to one variant
must be carried over to the others; ditto for bug corrections. The software
becomes uselessly complex, raising new challenges for project and
configuration management.

• Another problem is the solution’s lack of flexibility. The deferred class
FACTORY must specify a fixed number of factory functions and their
signatures. As a consequence, “supporting new kinds of products is difficult”:
introducing a new family of products requires changing class FACTORY and
all its descendants. No wonder this leads to conclusions that patterns are
inherently non-componentizable.

To address these issues, [17] suggests combining Abstract Factory with the
Prototype pattern. In Eiffel there is no need for this pattern, as its purpose,
producing clones of objects, is directly addressed by a built-in language and
library mechanism.

Combining cloning with genericity leads to the basic idea behind the
reusable solution — the Factory components of the Pattern Library.

4. “ABSTRACT FACTORY” AS A COMPONENT
We now examine the reusable solution devised for the Abstract Factory pattern.

A reusable component lives or dies by its API — by how easy it is for
client programmers to take advantage of the component through the purely
abstract description of its interface. For this reason we first illustrate the Abstract
Factory component through a typical example of its use; next we study how this
solution compares, for the application developer, with implementing the pattern
directly; then we look at the component’s internal design and implementation.

4.1 Using the Abstract Factory component

Instead of having to write one factory class per vehicle type, users of the Pattern
Library’s Abstract Factory component rely on a single generic class
FACTORY [G]. This is the only class we need to examine.

The root creation procedure make is similar to its original version: the
difference is that instead of calls such as

zurich_city.vehicles.extend (car_factory.new_car
 (power, wheel_diameter, door_width, door_height))

it suffices to call the factory function new_with_args from class FACTORY [G]:
zurich_city.vehicles.extend (car_factory.new_with_args (
 [car_power, car_wheel_diameter, car_door_width, car_door_height]))

Function new_with_args returning a new instance of G — the generic parameter
type of FACTORY — created by calling the creation procedures of G with the
argument given. The function indeed takes a single argument, an Eiffel tuple,
given by a list of values in square brackets. The function car_factory is defined
simply as

car_factory: FACTORY [CAR]
 -- Car factory
 once
 create Result.make (agent new_car)
 ensure
 car_factory_created: Result /= Void
 end

and new_car as
new_car (p, d, w, h: INTEGER): CAR
 -- New car with power engine p, wheel diameter d,
 -- door width w and door height h
 require
 power_valid: p >= {CAR_ENGINE}.minimum_power and
 p <= {CAR_ENGINE}.maximum_power
 diameter_valid: d >= {CAR_WHEEL}.minimum_diameter and
 d <= {CAR_WHEEL}.maximum_diameter
 width_valid: w >= {CAR_DOOR}.minimum_width and
 w <= {CAR_DOOR}.maximum_width
 height_valid: h >= {CAR_DOOR}.minimum_height and
 h <= {CAR_DOOR}.maximum_height
 do
 create Result.make
 (car_engine_factory.new_with_args ([p]),
 new_car_wheels (d), new_car_doors (w, h))
 ensure
 car_exists: Result /= Void
 end

The notation {C}.m yields the value of a constant m declared in a class C .

4.2 Discussion: pattern vs. reusable component

On the basis of the API (even though we haven’t seen the implementation yet)
we can now compare, from a client’s perspective, the component-based solution
against the original direct implementation of the pattern. The traffic simulation
program provides an appropriate example.

On the negative side, the new solution loses some flexibility: it no longer
uses specific factory classes such as CAR_FACTORY and BUS_FACTORY
inheriting from a common ancestor VEHICLE_FACTORY; the equivalent code is
in a single SIMULATION class. This may cause some code redundancy, for
example between features new_car, new_bus, and new_tram; in addition class
SIMULATION can be bulky.

On the positive side we note:

• Reusability: the single remaining factory class, FACTORY [G] is a library
class that can be reused in many applications whereas classes such as
CAR_FACTORY were specific to one application and could not be reused
without considerable changes.

• Ease of use: although simplicity of an API is partly a matter of opinion, we
think the traffic simulation example demonstrates that the Pattern Library
makes it particularly easy to equip any application with abstract factories.

• Fewer classes: there is now just one factory class, the general-purpose
FACTORY [G], instead of five (VEHICLE_FACTORY and one for each other
type of vehicle).

• No code duplication for contracts: there no more need to duplicate in the root
class SIMULATION the constant features minimum_power, maximum_power
etc. from ENGINE, WHEEL, and DOOR, since can now just use
{CAR_ENGINE}.minimum_power etc. This was not possible in the original
version since {like new_engine}.minimum_power is not a valid notation (a
language limitation which conceptually seems impossible to remove).

4.3 Towards a reusable component

We now examine the internal design of the Abstract Factory component of the
Pattern Library. Before presenting the final version, which involves several
advanced language mechanisms such as constrained genericity and agents, we
briefly present a few intermediate attempts and show why they were not
completely satisfactory. The reader who is only interested in the final version can
skip to section 4.4.

In a first approach, the factory function new returns a new instance of G by
cloning a prototype, through the built-in function cloned coming in Eiffel from
the universal ancestor class ANY and hence available to all classes. (In earlier
versions it was known as clone or twin).

note
 description: "[
 Mechanisms for creating objects of type `G' by shallow cloning of a prototype.
]"
 version: "Version 1, not final"
class
 FACTORY [G]
create
 make
feature -- Initialization
 make (p: like prototype)
 -- Set prototype to p.
 require
 prototype_exists: p /= Void
 do
 prototype := p
 ensure
 prototype_set: prototype = p

 end
feature -- Factory function
 new: G
 -- New instance of type G
 do
 Result := prototype.cloned
 ensure
 Result_exists: Result /= Void
 end
feature {NONE} -- Implementation
 prototype: G
 -- Prototype from which new objects are created
invariant
 prototype_exists: prototype /= Void
end

Function new uses shallow cloning, as provided by the library feature cloned. It
is possible to use deep cloning instead (see [5] for more details on this and other
variants). To define actual factory classes we provide actual generic parameters,
as in FACTORY [VEHICLE].

This solution, however, does not provide a direct way to initialize newly
created objects. For this we should rely on Eiffel’s constrained genericity: we
force the generic parameter of FACTORY [G] to provide default_create as
creation procedure; Eiffel rules imply that in this case the creation instruction
create x (without an explicit creation procedure) is valid for x of type G is
permitted; it will call as creation procedure the version of default_create
corresponding to the actual generic parameter. The class becomes just:

note
 description: "Object factory"
 version: "Version 2, not final"
class
 FACTORY [G -> ANY create default_create end]
feature -- Factory
 new: G
 -- Instantiate a new object of type G.
 do
 create Result
 ensure
 new_instance_exists: Result /= Void
 end
end

In this version FACTORY [PRODUCT] is only valid if class PRODUCT lists
feature default_create as one of its creation procedures. As a consequence, class
PRODUCT has to be an effective (non-deferred) class.

Whenever we need a product, we call the feature new on the appropriate
factory instead of creating the object directly. As in the original pattern, this
design helps separate the object creations from the application logic. There is no
more need for defining a prototype to be cloned.

A number of drawbacks remain. In our example we need factories of types
FACTORY [CAR], FACTORY [BUS] etc. A typical one reads:

car_factory: FACTORY [CAR]
 -- Car factory
 once
 create Result
 ensure
 factory_exists: Result /= Void
 end

(using a once function to guarantee sharing). CAR must now provide
default_create as a creation procedure. There is no reason it did before since this
is just an ordinary application class. Even if we accept the prospect of modifying
the class text, this could break a class invariant clause such as

 engine_exists: engine /= Void

which any creation procedure must ensure. This requires redefining
default_create in CAR :

default_create
 -- Set up maze.
 do
 create engine.make (…)
 end

This scheme may be made to work in this particular case, but it does not
generalize to classes with more sophisticated invariants and creation procedures
that (correspondingly) require arguments. Updating such classes to make them
usable as actual generic parameters for FACTORY would break their existing
clients. In any case the prospect of modifying existing classes from the
application domain just to enable them to participate in factories is not practical.

All this indicates that the reusable solution as obtained so far does not
scale up.

The root of the remaining problem is that the solution as obtained so far
requires creation to be specified statically. We can make the solution more
dynamic thanks to agents.

4.4 The factory component: using agents

An agent in Eiffel is an object that wraps a routine; for a known routine r, agent r
defines the associated agent; another routine to which this agent has been passed
as the argument a does not need to know what the original r was, but will be able
to call it anyway through the call feature available on all agents, in the form
a.call ([...]), where the argument is a tuple.

By passing a creation procedure to the factory as an agent, can wait until
run time to provide every factory object with its tailor-made initialization
mechanism.

This observation gives us the final version of the class FACTORY as used
in the Pattern Library.

note
 description: "Object factory"
 version: "Final version from the Pattern Library"
class FACTORY [G] create
 make
feature -- Initialization
 make (func: like factory_function)
 -- Set factory_function to func.
 require
 func_exists: func /= Void
 do
 set_factory_function (func)
 ensure
 function_set: factory_function = func
 end
feature -- Access

 factory_function: FUNCTION [ANY, TUPLE, G]
 -- Factory function creating instances of G

feature -- Factory functions
 new: G
 -- New instance of G
 do
 factory_function.call ([])
 Result := factory_function.last_result
 ensure
 new_exists: Result /= Void
 end

 new_with_args (args: TUPLE): G
 -- New instance of type G initialized with args
 require
 valid: factory_function.valid_operands (args)
 do
 factory_function.call (args)
 Result := factory_function.last_result
 ensure
 new_exists: Result /= Void
 end

feature -- Element change
 set_factory_function (func: like factory_function)
 -- Set factory_function to func.
 require
 func_exists: func /= Void
 do
 factory_function := func
 ensure
 function_set: factory_function = func
 end
invariant
 factory_function_exists: factory_function /= Void
end

4.5 Component properties

We note the following properties of the componentization of the Abstract Factory
pattern using the criteria of section 2.5:

• Completeness: The Factory component covers all cases described in the
original Abstract Factory pattern. An apparent limitation is that it is possible
to create only one kind of product; but this is simply a matter of convention:
if you need to create two kinds of product, you’ll just use two factories.

• Usefulness: The Factory component can indeed be used in practice as an
effective replacement for the pattern.

• Faithfulness: While the architecture is different, the Factory component
retains the intent and spirit of the original Abstract Factory pattern.

• Type-safety: The Factory component mainly relies on type-safe mechanisms
of constrained genericity and agents.

• Performance: The main difference between the internal implementation of
the Factory component and the Abstract Factory design pattern is the use of
agent calls instead of direct calls to factory functions. Agents carry a
performance overhead, but that overhead is very small on the overall
application. Our benchmarks on a typical application show a degradation of
only 7%.

• Extended applicability: The Factory component does not cover more cases
than the original Abstract Factory pattern.

5. LIMITATIONS OF THE APPROACH
We have shown on the example of Abstract Factory (confirmed by many others
in our study) that it is possible to turn that design patterns into reusable
components. There are, however, some limitations to this approach.

5.1 One pattern, several implementations

The first limitation does not apply to the example of this article but to the
approach as a whole: not all patterns appear fully componentizable. Counter-
examples include “State”, “Builder” and “Proxy”. So we will in the short term
continue to need some patterns that are only patterns, not components.

5.2 Language dependency

We heavily rely on Eiffel mechanisms. We have not tried to transpose the
approach to other languages. As an initial assessment for two recent languages:

• Genericity plays an important role and until recently was specific to Eiffel
(and C++ with its macro-like “template” mechanism). Both Java and C# [22]
are in the process of adding a generic mechanism, which will help.

• Neither Java nor C# support multiple inheritance except from interfaces; this
precludes the direct imitation of the Eiffel solutions using multiple
inheritance.

• Neither Java nor C# support contracts; this affects the clarity of reusable
solutions and the ease of making arguments supporting their correctness, but
not the architecture per se. We may point here to our earlier work [2, 3] on
automatically extracting contracts from non-contracted classes, for example
on .NET, which may prove useful here.

• C#’s “delegates” are a more limited form of agents, which may be applicable
to the many Pattern Library solutions relying on agents.

• Java has explicitly rejected any form of agents or delegates. This puts into
question the applicability to Java of most of the Pattern Library ideas
(although reflection might provide some solutions).

6.3 Usefulness

Some programmers may prefer to write their own customized design pattern
implementation for any of the following reasons:

• Usage complexity: In some cases, using the reusable component may be less
user-friendly than a customized pattern implementation. It may also be
somewhat overkill when the pattern implementation is very simple. The
Memento pattern is an example of this case.

• Performance: Some componentized versions of design patterns imply a
performance overhead compared to a “traditional” pattern implementation.
This is not the case with Abstract Factory, but for example the
componentized Visitor may imply an overhead of 30% to 50% over direct
use of the pattern [31]. Although the pattern typically accounts for only part
of the execution time of an entire application, this overhead may be
intolerable in some performance-critical cases.

6. RELATED WORK
6.1 C++ implementation of design patterns

Alexandrescu explains [1] how to implement some design patterns in C++.
Although related, his work only addresses a few design patterns, and its focus is
different: providing different implementations of the patterns, many of them
relying on C++ templates, rather than reusable (componentized) solutions.

6.2 Aspect implementation of design patterns

Hannemann and Kiczales [19, henceforth “H & K”] explored how to take
advantage of aspect-oriented programming (AOP) [23] to implement aspects;
they implemented the same 23 patterns as our study, in both Java and
AspectJ [13], an aspect-oriented extension for Java. They evaluated the resulting
code according to four properties:

• Locality: The pattern code is confined in aspects; it does not extend to
existing classes participating in the pattern.

• Reusability: The abstract aspect can be reused (programmers still need to
write concrete aspects).

• Composition transparency: Some classes can be involved in many patterns
transparently (because the pattern code is located in an aspect and does not
touch the participant classes).

• (Un)pluggability: Adding or removing a pattern is easy because participant
classes do not know about their involvement in the pattern implementation.

Using AspectJ sometimes came down to an implementation change and
sometimes resulted in a completely new design structure.

The reusability classification of the aspect implementations is the most
closely related to this work. While H & K’s definition of reusability differs from
the one presented in this article (abstract aspects vs. concrete classes), it is
interesting to see the similarities.

H & K note that Observer code usually spreads across several classes,
making maintenance harder. For example, concrete subjects are likely to have
many similar features which call a procedure update_observers. Using aspects
solves the problem through the notion of pointcut: one can define a set of points
in the program execution where the feature update_observers needs to be called —
no need to pollute the code of all concrete subjects anymore. As a result H & K
categorize Observer as reusable with AspectJ. They found eleven other patterns
for which “a core part of the implementation can be abstracted into reusable
code”. Comparing these results with our componentizability classification:

• Our classification agrees on ten of their twelve reusable patterns. The
Singleton and Iterator patterns resisted componentization work; note
however that Iterator is already supported to some extent by existing Eiffel
libraries and that the notion of “frozen class” now introduced in standard
Eiffel makes it possible to generate skeleton classes for Singleton.

• For Proxy, Builder and State we achieve partial componentization. The
difference simply reflects that our classification is more fine-grained; H & K
only consider “yes” or “no” answers.

• H & K’s results did not succeed in handling Abstract Factory and Factory
Method through AspectJ aspects; we were able to componentized them
thanks to Eiffel’s genericity and agents.

• Both classifications find Adapter, Decorator, Template Method, Bridge,
Interpreter and Façade not to be componentizable.

H & K explain their results by the nature of design patterns. They distinguish
between patterns with defining roles (classes participating in the pattern have no
functionality outside the pattern) and those with superimposing role
(participating classes have outside functionality) and state that most reusability
improvements concern patterns of the second category, since superimposed
pattern behavior can be moved into an independent reusable module.

In addition to H & K there is considerable activity in the area of applying
aspects to patterns; see for example [18]. The expected advantages include a
reduction of the number of pattern participants (typically one aspect instead of
several classes); better traceability of the code and hence better documentation;
more localized pattern code; and more reuse. We may note, however the
following limitations:

• Just as our componentization work depends on the programming language
used to write the components, AOP approaches depend on the choice of
aspect language. For example [18] mentions the difficulty of translating code
from AspectJ to HyperJ.

• An aspect implementation typically introduces (as also pointed out by [18])
many small aspects, which are necessary to understand the design. As a result
it is not so clear to us what exactly is gained over a standard pattern
implementation. With full componentization, the pattern implementation
resides entirely in a class or a few classes from a library, understandable
through the sole provision of its API.

6.3 Language support of design patterns

Chambers et al. write [11] that design patterns “have proved so useful that some
have called for their promotion to programming language features”. As an
example, Bosch describes [8] a new language called LayOM with original
support for design patterns through such constructs as “layer” and “state”, which
permit to represent patterns.

Clearly, the inability to componentize patterns fully is an interesting source
of language design ideas. An example is the introduction of “frozen” classes into
standard Eiffel, which was motivated in part by the need to support better
componentization of Singleton [4]. But to avoid what Chambers et al. call the

“kitchen sink problem” one cannot add a language feature for every need. The
spirit behind Eiffel’s design is that every new functionality should add a
significant power of expressiveness to the language at low cost on the overall
language complexity, avoiding “featurism” and keeping instead a “high signal to
noise ratio” [27, 14, 32]. A programming language is, in any case, a complex
engineering construction; while it is possible and pleasurable to play with
tentative language constructs in an academic environment with the hope of
influencing future industrial languages, the industrial languages themselves tend
to evolve slowly, and the addition of any new concept is a major endeavor that
must be reconciled with many engineering criteria: backward compatibility,
consistency with other language constructs, implementability at reasonable cost,
possible performance hits (compile-time and run-time), teachability, insertion
into release schedules etc. So we cannot envision turning every great language
design idea, however attractive on paper, into a realistic language feature.

Componentization, whenever applicable, seems the more desirable
approach. Only when it fails for reasons that appear fundamental (rather than
lack of insight on the part of those attempting it) should one turn to the
investigation of possible language extensions.

6.4 Automatic code generation from patterns

Budinsky et al. [9] describe a tool (dating back to as early as 1996) for generating
code from design patterns; this is a precursor to our Pattern Wizard. There are,
however, important differences. Some are of implementation (HTML browser
and Perl scripts instead of an object-oriented design, generation of C++ rather
than Eiffel). More fundamentally: our Pattern Wizard is simpler to use and meant
solely to complement the use of the Pattern Library.

The “Presenter” part of the tool by Budinsky et al., on the other hand,
provides more options and in general more flexibility, from which the Pattern
Wizard could benefit.

7. CONCLUSION
The goal of this work was to explore a conjecture from [28]: “A successful
pattern cannot just be a book description: it must be a software component, or a
set of components”; see also Pinto et al. [33]: “The Design Patterns fail providing
a solution because it is necessary to apply and implement the same design
pattern over and over, for each component”. The results obtained so far show
that, for a large part, patterns can indeed be replaced by components. The success
ratio cited in 2.2 (48% full componentization, 17% partial) are encouraging. The
Abstract Factory example shows the process at work.

The results of componentization — the classes in the Pattern Library —
are of good quality: type-safe and contract-equipped. Significant practical usage,
including in industrial applications, has demonstrated their practicality.

Another directly usable result is the componentizability classification,
which gives programmers a reference to know where to look for help: in the best
case, just go to the applicable API and don’t bother any further; otherwise, use
the Pattern Wizard if applicable; in the couple of remaining cases, you know you
have no one to turn to but yourself.

The progress of software engineering suggests that it is usually better to
reuse than to redo; the componentization results shows that, for design patterns, it
is often possible to use the better alternative.

8. FUTURE WORK
The following directions appear interesting for continuation of this work.

• Componentizing more design patterns: there are plenty of patterns beyond
those we studied so far; see e.g. [10].

• Testing componentized patterns: Testing the reusable components resulting
from pattern componentization is essential because reuse increases both good
and bad aspects of the software. Robert Binder explains that “components
offered for reuse should be highly reliable; extensive testing is warranted
when reuse is intended” [7]. The AutoTest environment [15] supports the
automatic testing of contracted components and could be fruitfully applied to
the results of pattern componentization.

ACKNOWLEDGMENTS

We are grateful to Éric Bezault for comments on this article and the
componentization work in general.

BIBLIOGRAPHY

1. Alexandrescu, A. Modern C++ Design, Generic Programming and Design
Patterns applied, Addison-Wesley, 2001.

2. Arnout, K. and Meyer, B. Finding Implicit Contracts in .NET Components.
In Proc. FMCO 2002 (First International Symposium on Formal Methods for
Components and Objects, Leiden, The Netherlands, November 2002), eds. Frank
de Boer, Marcello Bonsangue, Susanne Graf, Willem-Paul de Roever, LNCS
2852, Springer-Verlag, pages 285-318, 2003.

3. Arnout, K. and Meyer, B. Uncoverring Hidden Contracts: The .NET
Example. IEEE Computer 36, 11, pages 48-55, 2003.

4. Arnout, K. and Bezault, E. How to get a Singleton in Eiffel? In Proc.
TOOLS USA 2003 (44th International Conference on the Technology of Object-
Oriented Languages and Systems), Santa Barbara, CA, September 2003, in

Journal of Object Technology, 3, 4, pages 75-95, 2004. Available (March 2006)
at www.jot.fm/issues/issue_2004_04/article5.

5. Arnout, K. From Patterns to Components, PhD thesis, ETH Zurich, April
2004. Available (March 2006) at se.ethz.ch/people/arnout/patterns/.

6. Arslan, V., Nienaltowski, P. and Arnout, K. An object-oriented library for
event-driven design. In Proc. JMLC (Joint Modular Languages Conference),
Klagenfurt, Austria, August 2003, eds. Laszlo Böszörmenyi, Peter Schojer,
LNCS 2789, Springer-Verlag, 2003, pages 174-183.

7. Binder, R. V. Testing Object-Oriented Systems, Models, Patterns and Tools.
Addison-Wesley, 1999.

8. Bosch, J. Design Patterns as Language Constructs. Journal of Object-
Oriented Programming, 11, 2, pages 18-32, 1998.

9. Budinski, F., Finnie, M., Yu, P. and Vlissides, J. Automatic Code
Generation from Design Patterns. IBM Systems Journal, 35, 2, pages 151-171,
1996. Available (March 2006) at
www.research.ibm.com/designpatterns/pubs/codegen.pdf.

10. Bushmann, F, Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.
Pattern-Oriented Software Architecture: A System of Patterns, Volume 1. Wiley,
1996.

11. Chambers, C., Harrison, B. and Vlissides, J. A debate on language and tool
support for design patterns. In Proc. POPL 2000 (27th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages), Boston, MA, January
2000, ACM Press, pages 277-289, 2000.

12. Dubois, P., Howard, M., Meyer, B., Schweitzer, M. and Stapf, E. From calls
to agents. JOOP (Journal of Object-Oriented Programming),12, 6, 1999.
Available (March 2006) at www.inf.ethz.ch/~meyer/publications/joop/agent.pdf.

13. Eclipse. aspectj project. Available (March 2006) at eclipse.org/aspectj.

14. ECMA International. ECMA Standard 367: Eiffel: Analysis, Design and
Programming Language, approved 21 June 2005. (Expected to become ISO
standard in 2006.)

15. ETH Zurich, Chair of Software Engineering: AutoTest project pages and
articles, available (March 2006) from se.ethz.ch/people/leitner/auto_test/.

16. ETH Zurich, Chair of Software Engineering: Pattern Library and Pattern
Wizard; available (March 2006) from the download page, se.ethz.ch/download

17. Gamma, E., Helm, R., Johnson, R., Vlissides. J. Design Patterns. Addison-
Wesley, 1995.

http://www.jot.fm/issues/issue_2004_04/article5
http://se.ethz.ch/people/arnout/patterns/
www.research.ibm.com/designpatterns/pubs/codegen.pdf
www.inf.ethz.ch/%7Emeyer/publications/joop/agent.pdf

18. Hachani, O. and Bardou, D. On Aspect-Oriented Technology and Object-
Oriented Design Patterns. In Proc. the workshop on Analysis of Aspect-Oriented
Software, held in conjunction with ECOOP 2003 (17th European Conference for
Object-Oriented Programming), Darmstadt, Germany, July 2003. Available
(March 2006) at
www.comp.lancs.ac.uk/computing/users/chitchya/AAOS2003/Assets/hachani_ba
rdou.pdf.

19. Hannemann, J., Kiczales, G. Design Pattern Implementation in Java and
AspectJ. In OOPSLA 2002 (17th ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, Seattle 4-8 November
2002, ACM Press, 161-173.

20. Hilsdale, E., Hugunin, J., Isberg, W., Kiczales, G., Kersten, M.. Aspect-
Oriented Programming with AspectJ™, 2002. Available (March 2006) at
aspectj.org/doc/dist/tutorial.pdf.

21. Jézéquel, J-M., Train, M. and Mingins, C. Design Patterns and Contracts.
Addison-Wesley, 1999.

22. Kennedy, A. and Syme, D. Design and Implementation of Generics for the
.NET Common Language Runtime. In Proc. PLDI 2001 (ACM Conference on
Programming Language Design and Implementation), Snowbird, UT, June 2001.
Available (March 2006) at research.microsoft.com/projects/clrgen/generics.pdf.

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C.,
Loingtier J-M., Irwin, J. Aspect-Oriented Programming. ECOOP 1997 (European
Conference for Object-Oriented Programming), Jyväskylä, Finland, 9-13 June,
1997, eds. Mehmet Aksit, Satoshi Matsuoka, LNCS 1241, Springer-Verlag,
pages 220-242, 1997. Available (March 2006, registration required) at
link.springer.de/link/service/series/0558/papers/1241/12410220.pdf.

24. Meyer, B. Applying ‘Design by Contract’. Technical Report TR-EI-12/CO,
Interactive Software Engineering Inc, 1986.; also in IEEE Computer 25, 10,
pages 40-51, 1992.

25. Meyer, B. Object-oriented Software Construction, Prentice Hall, 1988.

26. Meyer, B. Design by Contract, in Advances in Object-Oriented Software
Engineering, eds. D. Mandrioli and B. Meyer, Prentice Hall, 1991, pages 1-50.

27. Meyer, B. Eiffel: The Language, Prentice Hall, 1991 (second printing,
1992).

28. Meyer, B. Object-oriented Software Construction, 2nd edition, Prentice Hall,
1997. See archive.eiffel.com/doc/oosc/.

29. Meyer, B. Conversions in an Object-Oriented Language with Inheritance, in
JOOP (Journal of Object-Oriented Programming), 13, 9, pages 28-31, January 2001.
Available (March 2006) at se.ethz.ch/~meyer/publications/joop/conversion.pdf.

www.comp.lancs.ac.uk/computing/users/chitchya/AAOS2003/Assets/hachani_bardou.pdf
www.comp.lancs.ac.uk/computing/users/chitchya/AAOS2003/Assets/hachani_bardou.pdf
http://aspectj.org/doc/dist/tutorial.pdf
http://link.springer.de/link/service/series/0558/papers/1241/12410220.pdf
http://archive.eiffel.com/doc/oosc/
http://se.ethz.ch/%7Emeyer/publications/joop/conversion.pdf

30. Meyer, B. The Power of Abstraction, Reuse and Simplicity: An Object-
Oriented Library for Event-Driven Design, in From Object-Orientation to
Formal Methods: Essays in Memory of Ole-Johan Dahl, eds. Olaf Owe, Stein
Krogdahl, Tom Lyche, Lecture Notes in Computer Science 2635, Springer-
Verlag, 2004, pages 236-271. Available (March 2006) at
se.ethz.ch/~meyer/publications/lncs/events.pdf.

31. Meyer, B., Arnout, K.: Componentization: The Visitor Example, to appear in
Computer (IEEE), 2006. Draft available (March 2006) at
se.ethz.ch/~meyer/publications/patterns/visitor.pdf.

32. Meyer, B. Eiffel: The Language, third edition, in preparation. Draft
available at se.ethz.ch/~meyer/ongoing/etl/.

33. Pinto, M., Amor, M., Fuentes, L., Troya, J.M. Run-time coordination of
components: design patterns vs. Component & aspect based platforms. In ASoC
workshop (Advanced Separation of Concerns), 18-22 June 2001, Budapest.
Available (March 2006) at www.lcc.uma.es/~lff/papers/pinto-asoc-eccop01.pdf.

34. Waldén, K., and Nerson, J.-M. Seamless Object-Oriented Software
Architecture, Prentice Hall, 1995.

http://se.ethz.ch/%7Emeyer/publications/lncs/events.pdf
http://se.ethz.ch/%7Emeyer/publications/patterns/visitor.pdf
http://www.lcc.uma.es/%7Elff/papers/pinto-asoc-eccop01.pdf

