
An IDE-based, integrated solution to Schema
Evolution of Object-Oriented Software

Marco Piccioni∗, Manuel Oriol†, Bertrand Meyer∗ and Teseo Schneider∗
∗Chair of Software Engineering, ETH Zurich, Switzerland

Email: {marco.piccioni,bertrand.meyer}@inf.ethz.ch, teseos@student.ethz.ch
†University of York, United Kingdom

Email: manuel@cs.york.ac.uk

Abstract—With the wide support for serialization in object-
oriented programming languages, persistent objects have become
common place. Retrieving previously “persisted” objects from
classes whose schema changed is however difficult, and may lead
to invalidating the consistency of the application.

The ESCHER framework addresses this issues through an
IDE-based approach that handles schema evolution by managing
versions of the code and generating transformation functions
automatically. The infrastructure also enforces class invariants
to prevent the introduction of any corrupt objects. This article
describes the principles behind invariant-safe schema evolution,
and the design and implementation of the ESCHER system.

Index Terms—versioning; refactoring; persistence; serializa-
tion; object-oriented schema evolution; IDE integration

I. INTRODUCTION

The most widespread approach to handling object-oriented
schema evolution relies heavily on class developers: they have
to provide conversion code to import older object schema
versions into the new ones. To make an informed decision,
developers must have the previous versions of the class avail-
able and prepare conversion code for all versions of the class.
Designing such code is not trivial. Many currently available
persistence solutions are coupled with tolerant retrieval al-
gorithms, automatically making questionable decisions about
the initialization of the retrieved objects. This enforces silent
acceptance of possibly inconsistent objects into the system.
This is a recipe for disaster, as class invariants may be silently
violated.

To tackle these issues, we first study how serializable
classes from the java.util package evolved from Java
1.2.2 to Java 6.0. It appears that 17.5% of the changes have
impacted the persistence of the serializable classes of the
package. This allows the identification of the most frequently
occurring refactorings. We secondly propose a formal model
that represents the refactorings as well as the corresponding
transformation functions.

We then suggest to shift the focus of developers from
runtime to development time by introducing ESCHER (Eiffel
SCHema Evolution suppoRt), a modified EiffelStudio IDE.
The tool aims at guiding and supporting developers through
the schema evolution process at class release time, including
version handling and code template generating features for
the transformation functions. In addition we provide a robust

retrieval algorithm to prevent the acceptance of inconsistent
objects into the system.

Section II presents the analysis of some newly collected
data about the refactorings of java.util. Section III de-
scribes the model for software updates. Section IV details the
implementation of both the IDE integration and the retrieval
algorithm. Section V analyzes contributions and limitations of
the current approach. Section VI summarizes the previous ap-
proaches, from both the authors and others. Finally, section VII
describes our conclusions and future work.

II. SCHEMA EVOLUTION IN PRACTICE

Advani et al. [1] already evaluated refactorings1 in fifteen
open source Java systems and showed that refactorings like
“rename field”, “move field”, “rename method”, and “move
method”, account for approximately 66% of the total refactor-
ings identified. We can also observe that the “rename field”
and “move field” refactorings alone account for 32% of the
total refactorings identified. While these results are calculated
on all classes of the considered systems, there is no evidence
that classes meant to be persistent would exhibit the same
characteristics.

Because instances of Serializable classes might per-
sist, we study the serializable classes from the Java package
java.util to check if persistent classes evolve in a similar
manner. The package java.util itself is particularly inter-
esting because it contains classes whose instances are likely
to be serialized either directly or by transitive closure while
serializing instances of client classes. The package contains
classes that model collections, dates, currencies, and locales.
We considered the 22 classes in the package directly imple-
menting the Serializable interface and analyzed them manually
across five major versions of the language: 1.2.2, 1.3.1, 1.4.2,
5.0, 6.0. We also took into consideration 22 refactoring types,
ten of which are directly relevant to the serialization process.
These 22 refactorings are shown in Table I and were created
by using a systematic approach that considered all possible
changes (addition, removal, modification) over all possible tar-
gets (attribute, visibility, methods etc). Note that the complete

1In this article, consistently to the work from Advani et al. [1] we use the
term refactoring for any minor modifications of the code rather than semantics
preserving modification-only.



raw data are available for download 2.
In line with what was discovered previously, Table I shows

that the persistence-related refactorings consist of 17.5% of
the total number of refactorings.

Class Refact. Persistence-related %
ArrayList 18 2 11.1
BitSet 42 6 14.3
Calendar 52 24 46.2
Currency 3 2 66.7
Date 22 9 40.9
EnumMap 1 0 0.0
EnumSet 1 0 0.0
EventObject 1 1 100.0
HashMap 101 11 10.9
HashSet 9 2 22.2
HashTable 41 5 12.2
IdentityHashMap 20 2 10.0
LinkedHashSet 5 1 20.0
LinkedList 50 1 2.0
Locale 34 16 47.1
PriorityQueue 17 1 5.9
Random 13 7 53.8
TimeZone 28 7 25.0
TreeMap 122 13 10.7
TreeSet 39 3 7.7
UUID 0 0 0.0
Vector 30 0 0.0

TABLE II
REFACTORINGS FOUND ACROSS 5 VERSIONS OF THE JDK, BY CLASS AND

KIND.

Table II shows the distribution of refactorings across differ-
ent classes and across all five versions of the Java Development
Kit (JDK). The data suggests that persistence-related refactor-
ings are sufficiently widespread among classes, and confirm
that persisted data might actually change significantly over
time.

Table III shows the number of refactorings per kind, con-
sidered across all versions. Note that “Attribute added” and
“Attribute removed” together constitute 74% of all persistence-
related refactorings.

Refactoring type Refact. % persist.-related
Attribute added 57 50.0%
Attribute removed 28 24.8%
Attribute renamed 3 2.7%
Attribute type changed 15 13.3%
Attribute value changed 3 2.7%
Attribute to constant 6 5.4%
Constant to attribute 1 0.9%
Total 113 100.0

TABLE III
PERSISTENCE-RELATED REFACTORINGS, ACROSS ALL VERSIONS, BY

REFACTORING KIND.

What this short study shows is that classes whom instances
might be serialized change over time. Moreover 17.5% of these
changes directly impact the capability of classes to deserialize
instances of their previous versions. This does not directly

2http://se.inf.ethz.ch/people/piccioni/ASE2009/SchemaEvolutionData.xls
(last visited: 31/8/09)

imply that deserializing will be performed in a semantically
inconsistent way, but it is likely that it will create issues at
some point.

In the next section, we show a model based on this analysis
that allows to represent refactorings and to generate convert-
ers.

III. MODEL

This part presents a model of updates that particularly
emphasizes the generation of conversion functions — contrary
to other previous models of refactoring [2], [3]. For the sake of
brevity, we are only describing the main ideas. All the details
about our model can be downloaded separately [4].

We present a simplified syntax of class definitions in Eiffel
programs. We omit the declaration both of routines and
constraints on generic parameters as they are not included
in the serialized form. We also do not explicitly consider
inheritance because we have access to the flattened version
of the class. This is a valid assumption as serialized objects
are de facto flattened as well.

We call refactoring a basic transformation applied to a class.
A refactoring is a function modifying at most one attribute:

R : class 7→ class

Taking into account the data analysis in the previous section,
we define five standard refactorings that our system recog-
nizes:

• Attribute not changed
• Attribute added
• Attribute renamed
• Attribute type changed
• Attribute removed
They are sufficient to semantically include all the refac-

torings listed in the previous section. The three missing
refactorings are treated as follows: “Attribute value changed”
is taken into account when evaluating the new class invariant
clause, so no special action is needed. “Attribute to constant”
is considered as “Attribute removed”, as constants are not
serialized. “Constant to attribute” is considered as “Attribute
added” for the same reason as above.

A class transformation TR1,...,RN
going from one version of

a class to another can then be described by a list of refactorings
R1, . . . , RN (N ≥ 1):

TR1,...,RN
: class 7→ class

such that:

TR1,...,RN
(class0) = (Rn ◦ . . . ◦R1)(class0)

Note that any modifications to the attributes of a class can
be described by some class transformation — for example by
deleting all attributes whose names are not present in the class
anymore and adding the new ones. Thus, class transformations
are complete with respect to attribute modifications.

While there is always a decomposition, using a straightfor-
ward algorithm might not produce the best results and devising



Persistence-related Non-persistence-related

at
tr

ib
ut

es
ad

de
d

at
tr

ib
ut

es
re

m
ov

ed

at
tr

ib
ut

es
re

na
m

ed

at
tr

ib
ut

es
ty

pe
ch

an
ge

d

at
tr

ib
ut

es
va

lu
es

ch
an

ge
d

at
tr

ib
ut

es
be

co
m

in
g

co
ns

ta
nt

s

co
ns

ta
nt

be
co

m
in

g
an

at
tr

ib
ut

e

at
tr

ib
ut

es
vi

si
bi

lit
y

ch
an

ge
d

m
et

ho
ds

ad
de

d

m
et

ho
ds

re
m

ov
ed

m
et

ho
d

de
fin

iti
on

ch
an

ge
d

in
te

rf
ac

es
ad

de
d

or
re

pl
ac

ed

in
ne

r
cl

as
se

s
ad

de
d

in
ne

r
cl

as
se

s
re

m
ov

ed

in
ne

r
cl

as
se

s
m

od
ifi

ed

vo
la

til
e

m
ar

ke
r

ad
de

d

vo
la

til
e

m
ar

ke
r

re
m

ov
ed

sy
nc

hr
on

iz
ed

cl
au

se
ad

de
d

sy
nc

hr
on

iz
ed

cl
au

se
re

m
ov

ed

st
at

ic
in

iti
al

iz
er

ad
de

d

st
at

ic
in

iti
al

iz
er

re
m

ov
ed

ge
ne

ri
cs

cl
au

se
s

ad
de

d

1.2.2-1.3.1 4 0 0 0 1 0 0 1 6 0 1 0 3 0 0 0 0 0 0 0 0 0
1.3.1-1.4.2 10 13 1 1 0 0 1 5 53 5 1 2 9 4 0 5 0 6 7 0 2 0
1.4.2-5.0 29 6 0 13 2 4 0 1 42 8 151 1 1 0 28 1 0 2 2 0 0 33
5.0-6.0 14 9 2 1 0 2 0 1 81 27 13 3 11 5 11 0 0 0 0 1 1 0

All 57 28 3 15 3 6 1 8 182 40 166 6 24 9 39 6 0 8 9 1 3 33
Category 113 (17.5%) 534 (82.5%)
Total 647

TABLE I
REFACTORINGS FOUND ACROSS 5 VERSIONS OF JAVA.UTIL PACKAGE.

heuristics is essential to use this model as the basis of an
implementation.

The current solution relies on statically comparing the ab-
stract syntax trees (AST) of both classes to detect refactorings.
The extraction relies on a set of heuristics successively applied:

- An attribute that does not change name and declared type
generates an “Attribute not changed” refactoring. The code
generator assigns a release number to every class and creates
a system release. No other action is necessary.

- An attribute that does not change name but changes type
between two versions generates an “Attribute type changed”
refactoring. Here the code generator provides the best results,
being always able to both detect the refactoring and provide
a complete code generation.

- An attribute att in the old version that does not have a
counterpart with the same name in the new version while
having at least a counterpart att’ with the same type in the new
version is a candidate for generating an “Attribute renamed”
refactoring. By only comparing the two classes’ ASTs it is not
possible to determine what happened in this specific case. The
code generator, after detecting this refactoring, will generate
a conversion function template warning about the possibility
of a rename. A better way of analyzing the code to find out
about that point would be to check whether the variables are
used by the same clients in the same context. As it requires
a global analysis of the code we considered it was too time
consuming and could actually be captured in a better way by
tracking user direct use of a renaming function.

- An attribute of the new version for which a counterpart
with the same name cannot be found in the old version gener-
ates an “Attribute added” refactoring. The framework always
detects this refactoring, but the only reasonable suggestion that
can be offered is to initialize the attribute with the default
value and to give the hint to check the new class invariant
with respect to the old one. Here we do not see space for
a real improvement, because the initial value of a newly
added attribute is largely determined by a semantics known

to developers only.
- An attribute of the old version that cannot find a coun-

terpart in the new version generates an “Attribute removed”
refactoring. The code generator always detects this refactoring,
and issues a warning when in the new version there is a new
attribute having the same type as the removed attribute. In fact
this could be a possible case of renaming.

To detect the refactorings we iterate through the new class
attributes, search for a correspondence with attributes in the
old class and create a corresponding heuristic. We then repeat
the process starting from the old class, in order to gather more
information, for example to find all the attributes that were
removed.

The next section describes how we implemented this model
and how it is integrated in the EiffelStudio IDE.

IV. IMPLEMENTATION

Though our approach can be applied to any object-oriented
programming language providing support for storing and
retrieving objects, we use Eiffel (and its IDE EiffelStudio)
mainly because of its integrated support for Design by Con-
tract, and in particular for class invariants. Class invariants
occupy a very important role in complementing the work done
by the code generator [5].

The versioning mechanism relies on the notion of release.
A release is a versioned set of classes compiled and thus
released together. While each different class has a different
class version identifier, different versions of the same class
can only be part of different releases. At release time, ES-
CHER automatically increases the class version numbers of
the modified classes. At runtime, objects of two different
versions of the same class will never coexist. Provided the
right conversion functions are there, it will always be possible
to retrieve any object of a certain class and version into an
object of another version of the same class. This applies to
both forwards and backwards updates as customers might be
running an old system (specified by an old release number)



and in need of retrieving objects stored by a newer system
release.

While modest, the support for generating code provided by
ESCHER relieves developers from writing boiler plate code
to transform instances stored in another version to the current
one. At runtime, ESCHER relies on an ad hoc library that
automatically performs the conversions across two different
versions. The algorithm will raise an exception when one of
the following conditions is not met: (1) the specific schema
evolution handler exists, (2) the specific conversion function
between the two versions exists, or (3) every specific field
converter exists.

The algorithm is part of a serialization/deserialization li-
brary which is decoupled from the IDE, and therefore sepa-
rately usable. The detailed documentation about the mecha-
nism, a step-by-step tutorial, the source code and the executa-
bles for the tool are available for download on the ESCHER
project page.3

V. EVALUATION

This work proposes a shift of attitude on how developers
presently cope with class schema evolution. More precisely,
by integrating support into an IDE, the approach elevates
class schema evolution to the status of first-class citizen of
the software development process rather than undesirable side
effect of the software production activities. It also proposes a
significant time shift for any schema evolution effort, moving
it from runtime to release time. A system release becomes then
an event triggering a whole set of tool activities intended to
help developers focus more on possible issues that may arise
from previous versions of the newly released code.

By analyzing some data about a widely used Java library, we
have shown that schema evolution happens also for persistent
classes.

To evaluate ESCHER we check how ESCHER scores with
respect to the 113 persistence-related refactorings previously
detected. This can be done because the considered refactorings
are clearly language-independent and they can be easily recre-
ated using ESCHER. The result obtained is that ESCHER is
able to exactly identify the correct refactorings in all cases
(100%) from the changes in java.util. Even if this is
unlikely in the general case, especially for less stable code,
this result suggest that the simple model we devised is enough
to model a realistic set of refactorings. In Section III we have
analyzed how each refactoring is recognized, and what can
be done to further improve the framework support for code
generation.

It may be interesting to compare the different situations
that in practice may arise when dealing with class schema
evolution:

• No schema evolution handling: old objects will typically
not be retrievable if the corresponding class has evolved
in the meantime.

3http://escher.origo.ethz.ch/wiki/escher

• Minimal schema evolution handling: retrieval problems
will be detected at runtime, if and when they will happen.
If some “transparent schema evolution” is being used,
there is a concrete risk of having inconsistent objects
being granted access to the system.

• Schema evolution-aware development: developers are
aware of schema evolution issues, and take full responsi-
bility for writing transformation functions by themselves.
No integrated support is provided by existing tools with
this respect.

• ESCHER invariant-safe schema evolution: developers are
guided through the whole process while using the IDE. At
runtime there are two checks on retrieved objects: firstly
by the algorithm, and secondly by the retrieving class
invariant.

Note that developers have to be particularly absent-minded to
bypass all the checks mentioned in the last item. They should
write wrong conversion functions first, then write wrong class
invariants or disable runtime checks for them altogether.

Unfortunately class invariants are not widely accepted and
coded among developers not using the Eiffel language. An
obvious question is then the following: what can a Java
developer do if he wishes to emulate the ESCHER mechanism
with respect to class invariants? While analyzing the Java
libraries, we discovered something that may help. The class
BitSet, during the transition from version 5.0 to 6.0, shows that
the importance of class invariants is clearly recognized and
can be put into effect. In fact a new method checkInvariants()
is introduced, with the idea of enforcing some class-wide
properties. This method is then invoked from every public
method in the class, emulating the Eiffel invariant checking
mechanism.

Threats to validity. While we think that ESCHER ad-
dresses most practical challenges, it still needs a broader
validation than the limited testing that we were able to
perform. In particular the ease of use of the interface and
the actual refactorings detection and code generation should
be further investigated through extensive acceptance testing
and the actual development and maintenance of applications
that use persistence extensively. The ideal case would be that
independent developers who use persistence in Eiffel would
pick ESCHER to handle it. Not having such a study or such
acceptance threatens the validity of our approach.

VI. PREVIOUS APPROACHES

The most widespread approach relies on class modification
to accommodate the changes in the class schema. The idea is to
devise a class descriptor representing the information to seri-
alize. To convert objects from an older version into the current
ones, developers typically implement conversion functions.
The Java language and the .NET framework with Version
Tolerant Serialization (VTS) 4 both follow this approach
[6]. The db4o OODB [7] advertises a ”transparency” which

4http://msdn2.microsoft.com/en-us/library
/ms229752.aspx (last visited: 31/8/09)



seems overly optimistic, considering that retrieved objects with
default values for attributes can be automatically accepted into
the system.

The versioning approach, for example implemented in the
Versant Fastobjects OODB,5 keeps the information about all
the versions of each class. While providing a consistent view
of the logical structure of the repository, it enables handling of
backward and forward evolution of class schemata. Again, is-
sues arise when dealing with a semantically consistent objects
retrieval. To convert a stored object of a certain version into
an object of the current version, CLOSQL [8] uses update
or backdate routines. An unfortunate requirement is that a
database administrator is needed every time a class is created,
to specify which update or backdate routines have to be
executed.

PJama [9], [10] is an extension of the Java Virtual machine
together with a persistent store, in which the state of an
executing application is kept. The system state is checkpointed
atomically and periodically to be able to recover from ex-
ceptions and crashes. PJama provides an approach to schema
evolution that involves persisting both objects and classes, but
again does not solve the fundamental consistency problem
cited before. When a certain class evolves over time, it may be
considered a different type, and named differently, or it may be
considered the same type, leaving the same name but providing
some other means of taking into account the different inner
structure and semantics. While the second is mainstream, the
first approach has been already explored [11] by the authors.

Another example of making different, parallel versions
explicit can be found in UpgradeJ [12], though not focused
neither on object persistence nor on enforcing semantical con-
sistency. The automated detection of refactorings has been also
extensively explored in literature, both with respect to existing
libraries and software configuration systems, for example by
Dig et al. [13]. A similar idea of using a transformational
approach and a classification of modifications, but applied to
assist metamodel evolution by stepwise adaptation instead, is
presented in [14][15][16][17]. Analyzing the AST in meta-
models and applying similarity metrics to detect changes has
been done in [18]. All the cited works about metamodels
are of interest because class schemas are a particular kind of
metamodels. The automatic generation of converters through
type transformers generation has been described by Neamtiu
et al. [19]. It focuses on updating structs in C programs whose
layout might evolve. However, it is not per se linked to object-
orientation and it does not benefit from having a model or an
integration into an IDE.

VII. CONCLUSIONS AND FUTURE WORK

Classes which produce persistent instances evolve over time.
In our study more than one change out of six impacted the
compatibility of persistent instances. This high ratio implies
that the basic mechanisms that support persistence — like

5www.versant.com (last visited: 31/8/09)

serialization— need a way to handle the schema evolution
of their classes.

This article presents the ESCHER platform to cope with
this issue. It relies on an IDE which identifies refactorings
and generates semi-automatically migration code.

Thanks to the use of class invariants and seamless integra-
tion into the development life cycle, ESCHER takes a step
forward towards a more reliable schema evolution handling,
and seems a valuable addition to the current scenario of
software development.

In the near future we plan to improve the quality of the
code generation and to run usability studies with practitioners
from industry and academia to further validate our approach.

REFERENCES

[1] D. Advani, Y. Hassoun, and S. Counsell, “Extracting refactoring trends
from open-source software and a possible solution to the ’related
refactoring’ conundrum,” in SAC, 2006, pp. 1713–1720.

[2] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman, “Lazy
modular upgrades in persistent object stores,” in OOPSLA, 2003, pp.
403–417.

[3] E. Franconi, F. Grandi, and F. Mandreoli, “Schema evolution and
versioning: A logical and computational characterisation,” in FMLDO,
2000, pp. 85–99.

[4] M. Piccioni, M. Oriol, B. Meyer, and T. Schneider, “An ide-based,
integrated solution to schema evolution of object-oriented software,”
ETH Technical Report, Tech. Rep. 638, 2009. [Online]. Available:
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/638.pdf

[5] ECMA International standard: Eiffel Analysis, Design and Programming
Language, ECMA committee TC39-TG4 Std. 367, 2005.

[6] M. Jordan, “A comparative study of persistence mechanisms for the java
platform,” Sun Microsystems Laboratories Technical Report, Tech. Rep.
TR-2004-136, 2004.

[7] J. Paterson, S. Edlich, H. Hörning, and R. Hörning, The Definitive Guide
to db4o. Apress, 2006.

[8] S. R. Monk and I. Sommerville, “Schema evolution in oodbs using class
versioning,” SIGMOD Record, vol. 22, no. 3, pp. 16–22, 1993.

[9] M. P. Atkinson and M. Jordan, “A review of the rationale and archi-
tectures of pjama: a durable, flexible, evolvable and scalable orthogo-
nally persistent programming platform,” Sun Microsystems Laboratories
Technical Report, Tech. Rep. SMLI TR-2000-90, 2000.

[10] M. Dmitriev, “Safe class and data evolution in long-lived java appli-
cations,” Sun Microsystems Laboratories Technical Report, Tech. Rep.
SMLI TR-2001-98, 2001.

[11] M. Piccioni, M. Oriol, and B. Meyer, “Ide-integrated support for schema
evolution in object-oriented applications,” in RAM-SE, 2007, pp. 27–36.

[12] G. M. Bierman, M. J. Parkinson, and J. Noble, “Upgradej: Incremental
typechecking for class upgrades,” in ECOOP, 2008, pp. 235–259.

[13] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-aware
configuration management for object-oriented programs,” in ICSE, 2007,
pp. 427–436.

[14] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in
ECOOP, 2007, pp. 600–624.

[15] B. Gruschko, D. S. Kolovos, and R. F. Paige, “Towards synchronizing
models with evolving metamodels,” in MODSE, 2007.

[16] M. Herrmannsdoerfer, S. Benz, and E. Jürgens, “Automatability of
coupled evolution of metamodels and models in practice,” in MoDELS,
2008, pp. 645–659.

[17] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio, “Automating
co-evolution in model-driven engineering,” in EDOC, 2008, pp. 222–
231.

[18] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut, “Metamodel
matching for automatic model transformation generation,” in MoDELS,
2008, pp. 326–340.

[19] I. Neamtiu, M. W. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic
software updating for c,” in PLDI, 2006, pp. 72–83.


