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Abstract

A re-construction of the fundamentals of programming as a small mathematical theory
(“PRISM”) based on elementary set theory. Highlights:

• Zero axioms. No properties are assumed, all are proved (from standard set theory).

• A single concept covers specifications and programs.

• Its definition only involves one relation and one set.

• Everything proceeds from three operations: choice, composition and restriction.

• These techniques suffice to derive the axioms of classic papers on the “laws of pro-
gramming” as consequences and prove them mechanically.

• The ordinary subset operator suffices to define both the notion of program correctness
and the concepts of specialization and refinement.

• From this basis, the theory deduces dozens of theorems characterizing important
properties of programs and programming.

• All these theorems have been mechanically verified (using Isabelle/HOL); the proofs
are available in a public repository.

This paper is a considerable extension and rewrite of an earlier contribution [24].

1 Overview
The present article is a development of a long-term project to establish computer programming as a mathematical
theory. The core ideas were outlined in reference [24], of which it is a revision and extension, with all properties
now formally verified.
Caveat: The construction of the theory, starting with section 3, assumes no prior knowledge of programming.
While readers may have such knowledge (having possibly, for example, encountered the term “bug” before
discovering its definition in section 3.4), the best way to approach this exposition is most of the time to pretend
to be reading about a new subject — occasionally breaking this rule by relating the formal view (with the help
of “Explanation” and “Justification” paragraphs) to one’s existing understanding of programming concepts.

1.1 Programming and mathematics: two worlds, or one?
Anyone who has both written programs and studied elementary mathematics will have noticed how close the
business of writing programs is to the business of proving theorems.

Instead of taking advantage of this closeness, however, most of the work relating programs to mathematics
proceeds as if the two worlds were separate. It typically considers a program as if it were some pre-existing
object of study, like a bird for an ornithologist or a wave for a physicist, and sets out to explain it in terms
of mathematical concepts. Such an approach follows the time-honored process of using mathematics in the
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Figure 1: Modeling through mathematics

natural sciences: devise a mathematical model of some natural objects; work on the model to deduce interesting
properties; then transpose these properties back to the original objects of interest (Fig. 1). Floyd’s foundational
semantics paper [10] was accordingly titled “Assigning Meanings to Programs”.

The B book [3] provocatively and famously reversed the pairing, promising to “Assign Programs to Mean-
ings”: write very abstract programs with clear mathematical properties, then refine them progressively into
more concrete programs until they are deemed practical enough for direct use.

We go one step further towards simplification by removing any distinction between program and meaning.
The corresponding slogan could be “Meanings As Programs”. A program is a mathematical object, from a
(simple) theory, which happens to be suitable both for execution by a computer and for perusal, under a
suitably designed notation (“syntax”), by human readers.

1.2 Staying in the world of mathematics
The key word in the last sentence of the previous paragraph is “is”: the mathematical object does not provide
a model of some thing endowed with its own existence, it is that thing. Unlike the two-world model of Fig.
1, applicable to the natural sciences, the process resembles the simpler one-world model of pure mathematics,
which only includes (Fig. 2) the top part of the earlier schema.

Figure 2: Reasoning within mathematics

In other words, we start in the world of mathematics, not programming, and do not ever leave it, even when
we go down to concepts that typically appeal to programmers rather than pure mathematicians.

As one does in mathematics, we construct a theory in the usual way, by defining some mathematical objects
and proving that they possess certain properties. That theory happens to cover the concepts of programming
and its objects are programs, data structures, instructions and other artifacts of programming. As they come
from a mathematical theory, they satisfy well-defined properties, proved as theorems.

One difference with the usual (non-software-related) practice of mathematical work has to do with notation.
While mathematicians pay considerable attention to notations, they do not generally have the programmer’s
needs for very large formal texts. In a mathematical article or book, the formal parts each spread over a few
lines or, rarely, a few pages, much less than the thousands to millions of lines taken up by a program text,
from which concerns arise that are unknown to mathematicians: we need modular constructs (routines, classes,
packages...) to organize programs into manageable pieces; to resolve possible ambiguity, we cannot rely on the
common sense of a human reader (who readily sees, for example, that one formula extends over two lines but
the third line starts a new formula), and must rely instead on rigorously defined syntax, with specific properties
(context-free, LL(1), LALR...) enabling compilers to process the texts. To make programs at least moderately
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readable, debuggable and maintainable, the programming language — even if it is of the esoteric, geeky kind,
for example C or Python — must retain some of the verbosity of natural language (usually English) and even
some of its words for use as keywords.

As the present work will show, however, programming languages are in the end just notations (“syntactic
sugar” is the accepted phrase) for mathematical objects. For example, a standard mathematical concept is the
restriction of a relation: C: r , for a set C and a relation r , is the relation identical to r except that its domain
has been restricted to C . For a programming audience, we allow writing it as if C then r end (see section 7).
That form is only an alternative notation for the classical mathematical concept of restriction.

Using this general idea that programs and their components are objects of a mathematical theory couched in
a programmer-ready notation, we can pursue the goal of constructing a fully developed programming language,
or re-constructing an existing language (at least one whose semantics is sufficiently simple and regular), in the
form of programming-oriented representations of objects of the mathematical theory.

The present article falls short of attaining this goal, but moves in its direction, up to the fundamental control
structures of modern programming languages (sequence, various forms of conditional instruction, various forms
of repetition and loops), basic Design by Contract concepts (preconditions, postconditions), and concurrency.
The exposition proceeds (starting with section 3) according to the principles defined above: build a theory,
starting from extremely simple notions (a relation and a function), derive and prove (with mechanical verifica-
tion through Isabelle/HOL) theorems capturing important properties of its mathematical objects, and provide
programming-like syntax — specifically, Eiffel-like syntax, since at the end of the journey we might reach the
entire language — to express them.

1.3 How not to use mathematics for programming (1)
The present work is in part a reaction against some traditional approaches which go in the programs-to-math
direction rather than math-to-programs as developed here. Two well-known contributions by prestigious authors
typify what we are up against.

Consider first Gilles Kahn’s classic “Natural Semantics” paper [19]. It specifies a simple programming lan-
guage and has a list of definitions for programming constructs, assuming a considerable mathematical baggage.
The semantics of the conditional expression (“if ... then ... else ...”), for example, is specified through two
inference rules:

ρ ⊢ E1 ⇒ True ρ ⊢ E2 ⇒ α

ρ ⊢ if E1 then E2 else E3 ⇒ α

ρ ⊢ E1 ⇒ False ρ ⊢ E3 ⇒ α

ρ ⊢ if E1 then E2 else E3 ⇒ α

Conditional expression: “natural” (?) semantics, from [19]

(Explanation of this rule: its purpose is to specify how to evaluate, during program execution, the conditional
expression if E1 then E2 else E3. We characterize the state of the program, at the time of evaluation, by a
“variable binding” ρ, which maps names of variables to their values at that time; for example, after an assignment
of the value True to the variable x , the binding ρ must be such that, under ρ, x is bound to True. Such a
property is written ρ ⊢ x ⇒ True, read aloud as “under binding ρ, the variable x evaluates to True”. The rule of
Fig. 1.3 has two parts, each of which is an “inference rule” telling us that if the properties above the horizontal
line (the hypotheses) hold we may deduce the property below the line (the conclusion). This particular inference
rule states that if, under the binding ρ, E1 evaluates to True, and under that same binding E2 evaluates to
some value α, then, again in that binding ρ, the whole expression if E1 then E2 else E3 will also evaluate to
α. And the second rule gives us the corresponding property for the False case. Wow!)

One can only shake one’s head: the notion of conditional expression can be explained in full to a 6-year-old:
wherever E1 holds use E2 , otherwise use E3 . You may summon Fig. 3 for help. Or realize how easy it is to
interpret an “if... then... else” road sign (Fig. 4) even though most drivers would be surprised to hear that if
they want to avoid ending up in Bern when they would actually like to get to Basel they first have to study
Boolean algebra, variable bindings and inference rules.

If modeling such a basic construct — in a toy functional programming language, which in the cited paper
does not even have assignments, routines or loops — requires such a heavy conglomerate of concepts and
notations, what would we need for the truly hard mechanisms of programming? That cannot be right. The
definition of conditional obtained below will conform to what the last figure suggests: take the union of E2 and
E3 , each restricted respectively to E1 and its complement.
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Figure 3: Visualizing the evaluation of a conditional expression or instruction

Figure 4: A "conditional" road sign

1.4 How not to use mathematics for programming (2)
The second example of how not to approach the relationship between programming and mathematics is another
milestone paper, this one by Tony Hoare and eight co-authors [15], extended and refined over the next 25 years
later with other coauthors [18]. It introduces “Laws of Programming” intended to serve as a basis for the entire
discipline.

There is much to admire in this effort, but one can only balk at the general methodology: postulating desired
laws as axioms. Some of these laws, together with their comments, appear in Fig. 1.4; they are the ones dealing
with the cited authors’ “choice” operator, for which they use the union symbol ∪ (or possibly some sign looking
very much like it).

(1) Clearly, it does not make any difference in what order a choice is offered.
“Tea or coffe?” is the same as “ coffee or tea?”

P ∪Q = Q ∪ P (symmetry)

(2) A choice between three alternatives (tea, coffee, or cocoa) can be offered as
first a choice between on alternative and the other two, followed (if necessary)
by a choice between the other two, and it does not matter in which way the

choices are grouped.

P ∪ (Q ∪R) = (P ∪Q) ∪R (associativity)

(3) A choice between one thing and itself offers no choice at all (Hobson‘s
choice).

P ∪ P = P (idempotence)

(4) The ABORT command already allows completely arbitrary behavior, so an
offer of further choice makes no difference to it.

⊥ ∪ P = ⊥ (zero ⊥)

“Laws of choice”, from [15]

If we cease for an instant to believe the authors, who tell us that ∪ is some newly invented operator on programs,
called “choice”, but chose instead to believe our own lying eyes, which tell us that ∪ is ∪ , meaning union, then
the “laws” enunciated here are trivial; they are just the properties of union, which we learned in kindergarten.
(We have to assume that “⊥” in this context is but a fancy name for the universal set.)

That is not what the article says. It is taking an entirely axiomatic approach, stating at the outset: “we
suggest that a comprehensive set of algebraic laws serves as a useful formal definition (axiomatization) of a set
of related mathematical notations, and specifically of a programming language”[15]. In other words, define a new
mathematical domain through a set of laws, unrelated to anything that already exists. It is inevitable, however,
to ask whether an operation that is commutative like the union of subsets, associative like union, idempotent
like union, has a unit like union (as well as a zero like union), and for which the authors have chosen what seems
to be the same symbol, might not possibly be union.
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This line of articles includes an amazing number of such proudly shoehorned “laws” that turn out, if inter-
preted in the framework of elementary set theory, to be obvious properties. As another example, [17] has a “law
of consequence” stating (parentheses added here for readability):

(p ⊑ p’) ∧ ((p’ ; q) ⊑ r) → (p ; q) ⊑ r

where “⊑” is refinement and “;” is sequential composition. In mathematics, however, “⊆” is subset and “r ; s” is
a notation (an alternative to s ◦ r) for the composition of relations r and s in this order. In such a framework,
this “law of consequence (pre)” is a trivial theorem. (See a precise form, /Compose_specialsafety/, in section
6.5.)

1.5 Other law-guided approaches
Denotational semantics [25] is the quintessential approach considering programs and programming languages
as natural objects deserving analysis: for every programming construct c it defines a “meaning” M JcK defined
recursively, starting with special “semantic domains”.

Seminal books by Hehner [12], Morgan[26, 27] and Back [2] have devised theories of programming and
elucidated many issues. They follow the style also found in the Hoare work cited above: define programming
constructs through their properties, in particular refinement. To discuss the conditional instruction, for exam-
ple, chapter 4 of [27] presents a syntax for the construct, provides an informal operational explanation of its
semantics, then throws in a “refinement” law, with no argument that it is sound with respect to some model or
consistent with other laws.

1.6 A public incitation to crime?
The authors of the Hoare-style, axiom-based line of work (pursued in successive articles including [15], [13], [15],
[18], [14], [17], [16]) proudly advertise its benefits, with [14] invoking Bertrand Russell:

The method of postulation has many advantages. They are the same as the advantages of theft over
honest toil.

After reading this citation twice and checking that one is awake, the only reaction — tempered only by the
out-and-out impenetrability of British humor to foreigners — is to wonder what kind of argument it offers. If
such theft is to be commended, mathematics becomes easy: I can postulate that P is equal to NP (or just as
well, if my taste goes the other way, that they are not equal) and win the $1-million Clay prize. Mathematics
is not about postulating all you need but (as Russell brilliantly demonstrated when he was doing actual work
rather than indulging in dubious professor jokes) to minimize the number of axioms and, from them, prove
interesting theorems, maximizing their number.

A fundamental precept of all sciences, not just mathematics, encourages us to strive for the smallest possible
set of hypotheses and to reject unnecessary assumptions (such as specially introduced constants in physics). In
the history of science it has been expressed as “Occam’s Razor”, Newton’s and Laplace’s “we are to admit no
more causes of natural things than such as are both true and sufficient to explain their appearances”, Einstein’s
well-known maxim about simplicity etc.

The number of postulated axioms in the PRISM theory presented below is, exactly, zero. We are happy
to start from the established properties of set theories, whose axioms we take from credible sources (found in
well-known textbooks such as [21]), and set out to prove the properties of programs.

Rejecting axioms, or minimizing their number, is not just a methodological guideline justified by striving
for elegance. There is a downside to “postulating” what you want: how do you know the axioms thrown into
the kitchen sink are all consistent with each other? Consistency proofs are difficult, and when we are dealing
with sophisticated constructions such as occur in computer science often teeter on the brink of undecidability.
Dijkstra, who cites Hoare’s citation of Russell’s provocation [8], raises this question even though he is always
deferential to Hoare:

A possibly more valid doubt may be raised by the question “How do you know that your axioms are
consistent?”.
My inclination — but am I perhaps awfully naive? — is to say “Well, I am pretty sure that they are
consistent. And if they are not, well that is my risk! The worst that I could have done is talking about
an empty universe, and, although fruitless, that cannot have done much harm either.”
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The reader will appreciate the sudden “not much harm” comment from the usually stern disciplinarian of
programming methodology, not known for being indulgent towards imprecision. We should remember that a
primary goal of applying formal methods in software engineering is to help ensure that future software does not
reproduce the behavior of Therac-25 or Ariane 5.

The dangers of an axiomatic approach, to which Dijkstra timidly alluded, are not just theoretical. Shaoying
Liu, studying Morgan’s laws of refinement ([27]), pointed out [20] that they make it possible to refine a feasible
operation into an infeasible one1. The lack of a precise mathematical specification and proofs opens the way
to such consequences, and does not allow determining whether they are intentional — and then how they one
should handle them — or a mistake in the theory. (“Feature or bug?”)

The only way to avoid such predicaments is to move away from axiom inebriation and, having woken up
sober, to shift the focus to theorems and their mechanically-checked proofs.

1.7 A sober approach
Beyond the natural glee that comes from witnessing great men getting entangled in questionable pronounce-
ments, the lesson of the preceding analysis is twofold:

• In analyzing software we should not pretend programs pre-exist their mathematical models but consider
that they are mathematical objects.

• A suitable theory should be “as simple as possible but not simpler” in the following sense: simple program-
ming concepts should have simple mathematical descriptions. There are complex concepts in software,
and we may expect their descriptions to be non-trivial too. But a conditional expression — yes, it is a
straightforward concept and no, it cannot possibly require heaps of advanced mathematical concepts (in-
ference rules, bindings, deductions...) to be modeled mathematically. To paraphrase Alan Kay2, simple
things should have simple specifications, and complex things should have specifications.

The rest of this article presents the starting elements of a theory of software based on elementary (high-school-
level) set-theoretical concepts — intersection, union, subset, relation, function, composition... — and no new
axiom whatsoever. It defines programming constructs as mathematical objects utilizing these concepts, and
proves all the often remarkable properties that they possess. All the properties and their proofs have been
mechanically checked; they are recorded in a repository, which anyone can use to reproduce the proofs. As far
as we have been able to determine, all the “laws” and “axioms” of the cited articles by Hoare and colleagues are
theorems in the present framework, including laws of concurrency such as the “exchange axiom” and associated
exchange laws (see section 10.5).

The PRISM approach of this article leaves the matter of consistency to mathematicians (from Zermelo and
Frankel to Gödel and Cohen) and starts from their axioms, proving all new properties along the way.

Much of the formal work in software is axiom-rich and theorem-poor. One builds a complicated mathe-
matical basis for a fairly small Return On Investment. Since that basis cannot be checked for consistency, it is
fraught with uncertainty (the reverse of what we normally expect from mathematics!): over the entire edifice
hangs the specter of contradiction. Instead, the present approach is not only axiom-poor but axiom-free, and
theorem-rich, hoping to deliver a good ROI to any practicing programmer willing to learn a bit of simple theory.

2 Notations
The discussion relies on standard concepts of elementary set theory and associated notations, sometimes adapted.

(Short version of section 2. A reader familiar with elementary set theory and eager to move to program-
ming concepts may simply skip to section 3 after noting these specifics: {x: A | p (x)} to define a set by
comprehension, with a colon and a vertical bar, also for ∀ and ∃ predicates; r and r for the domain and
range of a relation r ; and r ; s for the composition of two relations in the order of their application.)

2.1 Logic and sets
The boolean operators are ∧ (and), ∨ (non-exclusive or), ¬ (not) and → (implies, also written ⇒). The usual
operations are available on sets: ∈ (member), ∩ (intersection), ∩ (union), ⊆ (subset or equal), × (Cartesian

1In the PRISM framework developed in this article, the infeasible version is, per the formal definitions of
section 6.2, a refinement but not an implementation of the original version.

2Kay’s oft-quoted aphorism is: “Simple things should be simple, complex things should be possible”.
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product). Set difference uses a minus sign, “−”3. Basic sets include N (natural integers), Z (all integers) and B
(booleans). The cardinal (number of elements) of a finite set A is written |A|. P (A), the powerset of a set A,
is the set of all its subsets. Similar conventions apply to universally and existentially quantified predicates: ∀
x: A | p (x) (all members of A satisfy p), ∃ x: A | p (x) (some member of A satisfies p)4.

2.2 Relations and functions
A relation over sets A and B is a subset of A × B : a set of pairs {[x1, y1], [x2, y2], ...} where xi ∈ A and yi ∈
B . An alternative notation for the set P (A × B) of relations between A and B is A ↔ B . The source set of
a relation in A ↔ B is A and its target set is B . The inverse of a relation r is written r−1; if r is in A ↔ B ,
then r−1 is in B ↔ A and its definition is that [x, y] ∈ r−1 if and only if [y, x] ∈ r . The domain of r , written
r , is the set of elements x of A such that r contains a pair [x, y] for some y in B ; its range, written r, is the set
of y of B such that r contains a pair [x, y] for some x in A5. Clearly, r ⊆ A, r ⊆ B , r = r−1 and r = r−1.

For a relation r in A ↔ B and a subset X of A, the image of X by r is written simply r (X); it is the
subset of the target set B made of all the y such that r contains a pair [x, y] for some x in A. Properties
include r (∅) = ∅, r (X’) ⊆ r (X) whenever X’ ⊆ X (referred to in later sections as /Image_subset/), r (X)
⊆ r for any X (/Subset_image/), r (X ∪ Y) = r (X) ∪ r (Y) (/Image_union/), r (X ∩ Y) ⊆ r (X) ∩ r (Y)
(/Image_inter/), and r (A) = r (r) = r. A relation r is total if r (X) is non-empty for non-empty X . (Two
equivalent definitions are: (1) r = S ; (2) for any x in A, r contains at least one pair of the form [x, y] for some
y .)

The restriction r / X and corestriction r \ Y of a relation r in A ↔ B , for subsets X of A and Y of B ,
are the subsets of r containing only the pairs [x, y] for which, respectively, x ∈ X and y ∈ Y. Clearly, r / X
⊆ X and r \ Y ⊆ Y . More precisely, r / X = r ∩ X and r \ Y = r ∩ Y (/Domain_restrict/). Also, r (X) =
r / X ⊆ r (A) (/Image_restrict/).

Composition of relations uses the operator “;” which lists its operands in the order of application: r ; s is
the set of pairs [x, z] such that for some y there is a pair [x, y] in r and a pair [y, z] in s6. (If r ∈ A ↔ B and
s ∈ B ↔ C , then r ; s ∈ A ↔ C .)

A relation f is a function if it includes, for any given x , at most one pair [x, y]. The set of functions from
A to B , a subset of A ↔ B , is written A 7→ B . If f is total (as a relation, according to the definition above)
then it does have one such pair for every x in A; we then say it is a total function. The set of total functions
from A to B , a subset of A 7→ B , is written A → B . A function is said to be partial if it is not total7. For a
function f and an element x of its domain, we may use the function application notation f (x) to denote the
single element y such that [x, y] ∈ f 8. If f is total, this notation is always meaningful; otherwise, using it is
subject to a proof obligation that x ∈ r.

2.3 Lambda notation
Similar to the definition of sets by comprehension as seen above, “lambda notation” is available to define specific
relations and functions by their properties. For a boolean-valued property p (x, y) applicable to x and y
respectively in A and B , and an expression e (x) denoting an element of B for any x in A, we may use:

• λ x: A | e (x): a (total) function in A → B which for every x in A yields e (x).

3The backslash symbol “\” has another meaning, corestriction of relations, as seen a few paragraphs down.
4A dot it often used instead of the vertical bar, but the latter is more visible and avoids confusion for when

the theory reaches object-oriented programming.
5To avoid any confusion between source set and domain, and between target set and range: stating that a

relation r is in A ↔ B , with domain A and range B , plays the role of a declaration for r , specifying the sets
from which first and second elements (respectively) of pairs in the relation may take their values. The domain
and range specify which elements do appear in r ’s actual pairs.

6A commonly used operator for composition is “◦”, which lists the operands in reverse order. “;” is used
among others by the VDM specification language and goes back to Ernst Schröder in the 19th century)

7It is common to use “partial function” for what is called just “function” here: a function that is possibly
partial. The terminology used in this article is more consistent, with “partial” meaning the opposite of “total”.

8The image notation from relations remains available, but since the notation is “typed” (it always specifies,
for any object in the text, a set of which it is a member) there is no ambiguity: with f in A 7→ B and an element
x of A, the function application f (x), if defined, denotes an element of B ; for a subset X of A, its image f (X),
always defined, denotes a subset of B .
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• Λ x: A; y: B | p (x, y): a relation in A ↔ B which contains the pairs [x, y] such that p (x, y) holds. (It
can also be written {[x, y]: A × B | p (x, y)} but the Λ notation emphasizes that we get a relation.)

Functions as defined so far take a single argument. It can be in a cartesian product: if f is in A × B → C ,
we can apply it to a pair, as in f ([x, y]), but we can also consider it as two-argument function and write the
application as just f (x, y); similarly for more arguments. Lambda notation for functions can similarly use more
than one variable. The notation also makes it possible to define multi-level functions and relations, which use
functions or relations as arguments or results. For example the composition operator “;” can be defined as a
function taking two relations and yielding a relation9:

λ r: A ↔ B ; s: B ↔ C | Λ x: A; z: C | ∃ y: B | [x, y] ∈ r ∧ [y, z] ∈ s

Sometimes it is convenient to restrict functions to one argument. One can resort to this convention without
any loss of generality by applying a scheme known as currying, which from a two-argument function f in A ×
B → C yields a function f ’ in A → (B → C) such that (f ’(x)) (y) = f (x, y).

2.4 Closures
The next notions apply to a relation r that is in A ↔ A for some A (same source and target set). We may
define its powers: r1 is r , r2 is r ; r (r composed with itself) and so on10; r0 is the identity relation Id [A] on
A (defined as Λ x: A | [x, x] ). Another special relation is Univ [A], defined as A × A, the universal relation,
which includes every pair of elements of A. The reflexive transitive closure r∗ of r is ∪ ri for all natural integers
i ; excluding from this union of the relations the case i = 0 yields the (non-reflexive) transitive closure r+. A
relation r is transitive if r ; r ⊆ r11. (Equivalently, if r = r+.) It is symmetric if r = r−1 and reflexive if Id [A]
⊆ r . By construction, the transitive closure (reflexive or not) of any relation is associative, and the reflexive
closure is reflexive. Related concepts for functions of two arguments (often expressed as operators, such as “;”
on relations) are “associative” (f (f (x, y), z) = f (x, f (y, z))) and “commutative” (f (x, y) = f (y, x)).

3 Basic programming concepts
Notational convention: All formal elements (definitions, theorems...) have a unique identifier such as /Basic_def /
below, with a fixed structure (“slash” characters bracketing a two-part name with intervening underscore). The
same names are used in the publicly available Isabelle/HOL repository [30] associated with this article, which
includes the mechanically-verified proofs of all the theorems, enabling any reader to peruse and reproduce them.
A reference such as /Basic_def / is (in the electronic version) a hyperlink to the defining occurrence.

3.1 Definitions: program, specification, precondition, postcondition

A program (or specification), relative to a set S , the state space, consists of: /Basic_def /

• A relation post in S ↔ S , the postcondition. /Post_cond/

• A subset Pre of S , the precondition. /Pre_cond/

It may be written ⟨post, Pre⟩.

Explanation: A program starts from a certain state and produces one of a set of possible states satisfying
properties represented by post . Pre tells us which states are acceptable as initial. In the general case, more
than one resulting state can meet the expectation expressed by post . Correspondingly, post is a relation rather
than just a function. (See 3.2 below about non-determinism.)

Justification: The usual view in software engineering treats “program” and “specification” as distinct concepts,
but all definitions of the purported difference are vague: for example, that a specification describes the “what”
and a program the “how”, not an meaningful distinction since these notions are relative. An assignment is
implementation to the application programmer and specification to the compiler writer. out2 ∼= in may look
like a specification; but some “programming” languages — and AI tools — accept it, letting the compiler derive

9In reading this example, make sure not to confuse the capital “lambda” Λ and the boolean “and” ∧.
10Formally, “and so on” means that ri+1 is defined as ri ; r , or equivalently as r ; ri.
11In other words, whenever r contains two pairs [x, y] and [y, z] it also contains [x, z].
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a square-root algorithm. Any useful distinction must be relative: a program/specification “specifies” another.
The introduction of “contracted program” in section 9) will formalize this idea.

Limitation: The definition covers programs/specifications of the input-to-output kind. It can be extended to
continuously running programs such as operating systems, and to reactive systems — extensions that are beyond
the scope of the present article.

Notation: postp, and Prep (the latter also written p per 3.3 below) are the postcondition and precondition of a
program p. If pi is an indexed list of programs, we may use posti and Prei as abbreviations for postpi

and Prepi
.

Convention: For simplicity, the notations for programs used in this article take the state S for granted, assuming
that all programs act on the same global S . A finer-grain analysis would make the state explicit in each case,
adding the notation Sp, and specify a program with three components as ⟨post, Pre, S⟩ rather than just the
first two. The definitions and proofs in the Isabelle/HOL complement to this article [30] do take this approach
of making the state explicit. A few more observations on the nature of states appear in section 3.9.

3.2 Definition: deterministic

A program p is:

• Deterministic if postp is a function. /Deterministic_def /

• Non-deterministic otherwise. /NonDeterministic_def /

Explanation: For a deterministic program, the postcondition is a function, so that the program always de-
livers at most one result. (For an input in Pre it delivers exactly one result.) In simple sequential program-
ming, programs are usually deterministic; in concurrent and distributed programming, many programs are
non-deterministic.

3.3 Definition: domain and range of a program
The following notations generalize to a program p the domain r and range r notations for a relation. The first
is just an abbreviation for the precondition of a program. The second one denotes the set of states that the
program can reach (if started in its precondition).

Notation Definition Name

p Prep Precondition (“domain”) of a program /Pre_notation/

p postp / p Usable range of a program /Prog_range/

From properties of relations (/Domain_restrict/) it follows, for any set C of states, that:

postp (p) = p
-- Notation reminder: left side is image of p by relation postp.

/Domain_range/

3.4 Definitions: feasible, rounded, exact

A program p is:

• Feasible if p ⊆ postp. /Feasible_prog/

• Rounded if postp ⊆ p. /Rounded_prog/

• Exact if both feasible and rounded. /Exact_prog/

9



Terminology: The following terms will denote departures from feasibility and roundedness (see Fig. 5):

• If a program is infeasible, it cannot handle some legal input states (those in p − postp). We say that the
program is buggy; such unhandled cases signal bugs.

• If the program is unrounded, the relation could handle some input states (those in postp − p) that are,
however, not allowed. We say that the program has dead code.

Figure 5: Categories of input states

Explanation: p tells us when we may apply the program, and postp what kind of result it must then give us. A
program/specification is safe for us to use if it meets its obligation whenever we meet ours. Feasibility expresses
this property: for any input state satisfying p, at least one output state satisfies postp. Roundness, on the other
hand, expresses that the relation is used to its full extent: the program will accept all meaningful input states.

Justification:

A program/specification describes a transformation between states, through the relation post . The
definition, however, also includes a precondition Pre. It is legitimate to ask why Pre is necessary: would
it not be enough to specify the postcondition? Then the precondition would just be post, the domain of
the postcondition.

This approach would simplify the theory but is unfortunately not adequate in practice since we are
often given a previously-known general relation which may not be applicable to all relevant cases; or,
conversely, its application is only relevant for some of the possible cases in its domain. As a simple
example, a real-square-root program is defined by the relation Λ in, out: R | out2 ∼= in, a member of R
↔ R, which is not applicable to every possible input state, but only for a subset of the source set, the
set R≥0 of non-negative numbers, which may serve as the precondition.

We could in this example consider that the relation is in fact a member of R≥0 ↔ R, on which it is total
(and hence does not require a precondition), but even in such a simple case it is inconvenient to have
to define endless special input-restricted variants of general relations. In more advanced examples that
approach would be even more impractical.

The square root example illustrates the need for the precondition to guarantee applicability of the relation;
formally, the condition is p ⊆ postp, “feasibility”, violated for example if we take Pre to be the whole
of R. We may also encounter the converse problem — a precondition that is too small (instead of too
large). To avoid this case the program must satisfy the dual condition, roundedness: postp ⊆ p.

Example: With R as the set of states S , consider the square root program where post is again Λ in, out: R |
out2 ∼= in, so that post is R≥0 since all pairs in the relation have non-negative in. Then (using R• for the set
of non-zero numbers and R+ for the set of positive numbers):

• ⟨post, R•⟩ is not feasible (it accepts negative numbers but cannot process them) and not rounded (the
relation includes the pair [0, 0] which is not accepted).

• ⟨post, R+⟩ is feasible but not rounded (because of that same pair) .

• ⟨post / R≥0, R⟩ is not feasible but is rounded.

• ⟨post / R≥0, R≥0⟩ is feasible and rounded.

Comment: Having to prove feasibility or roundness may seem tedious, but the real culprit is the notion of
precondition. In light of the preceding definition, we may surmise that the need to include this notion is in line
with general results of incompleteness and undecidability in computer science: we cannot limit ourselves to a
comfortable world where all postconditions would be total (and all programs would terminate). We must accept
that many realistic programs will have a non-trivial precondition and that we cannot escape our obligation to
satisfy the precondition when applying the program.
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3.5 Definitions: trimming and rounding a program

For a given program p:

• ⌈p⌉, the feasible version of p, is ⟨postp, p ∩ postp⟩. /Feasible_version/

• ⌊p⌋, the rounded version of p, is ⟨postp / p, p⟩. /Rounded_version/

• [p], the exact version of p, is ⟨postp / p, p ∩ postp⟩. /Exact_version/

Terminology: The feasible version is also called the “trimmed” version. “Making a program feasible”, or
synonymously “trimming” it, means replacing it by its feasible version. “Rounding” it means replacing it by its
rounded version.

Explanation: In line with the earlier explanations (section 3.4), we may view ⌈p⌉ as p cleaned of dead code,
and ⌊p⌋ as p freed from bugs, in other words restricted to input states that it can actually process.

Example: For square root, with R as the set of states S and p = ⟨post, R•⟩ where post is Λ in, out: R | out2
∼= in, so that p, as seen above, is neither feasible nor rounded:

• ⌈p⌉ is ⟨post, R+⟩ (rejecting “buggy” negative inputs, but retaining “dead code” in the postcondition),
feasible and not rounded.

• ⌊p⌋ is ⟨post / R•, R⟩ (eliminating dead code but retaining buggy input), rounded and not feasible.

• [p] is ⟨post / R•, R+⟩ (without dead code or bugs), exact. The postcondition could also be post / R+.

Feasibility and roundness theorems
For any program p:

⌈p⌉ is feasible.
-- The “feasible version” deserves its name.

/Consistent_feasible/

⌊p⌋ is rounded.
-- The “rounded version” deserves its name.

/Consistent_round/

[p] is exact.
-- The “exact version” deserves its name.

/Consistent_exact/

If p is feasible, so is ⌊p⌋.
-- Rounding preserves feasibility.

/Feasible_round/

If p is rounded, so is ⌈p⌉.
-- Trimming (making feasible) preserves rounding.

/Round_feasible/

Proof idea: /Feasible_round/ follows from a property of restriction: if A ⊆ r, then A ⊆ r / A, applied to the
relation postp and the set p. /Round_feasible/ follows from the elementary set-theoretical property that if A ⊆
B , then A ⊆ A ∩ B , applied to the sets postp and p.

Notations:

• postp / p, the postcondition of ⌊p⌋, may be written ⌊postp⌋.

• p ∩ postp, the precondition of ⌈p⌉, may be written ⌈p⌉.

3.6 Definition: total

A program p is total if it is feasible and p = S . /Total_program/

Explanation: A total program can process all states. In informal parlance, it “has no precondition”. (Formally,
it does have a precondition: the entire state set S , also called True per 3.8 below.)

Comment: This definition of “total” for a program is consistent with the definition of “total” for a relation in
section 2 in the following sense: p is a total program if and only if it is feasible and postp is a total relation.

11



3.7 Definitions: program equality and equivalence

Two programs p and q are:

•
Equal, written p = q , if they have the same postconditions and preconditions
(that is, postp = postq and p = q). /Equal_program/

• Equivalent, written p ≡ q , if their rounded versions are equal (that is, ⌊p⌋ =
⌊q⌋). /Equiv_program/

Comments: The first definition is the usual notion of equality (since a program is defined by its postcondition
and precondition). As elsewhere in this article, we assume that the state set S is the same for all programs.

Justification: The theorems introduced in the following sections sometimes state that two expressions yield
equal programs, but sometimes one or both of the programs have some extra pairs (“dead code”) in their post .
In such cases only the rounded versions are equal and the theorems assert equivalence rather than full equality.

Property: Obviously, equivalence (like any relation of the form “p and q have the same <something>”) is an
equivalence relation in the usual sense (reflexive, symmetric, transitive).

3.8 Conditions
Terminology: In the rest of this article, the term “condition” will denote a subset (usually called C , D or Pre)
of the set of states. S . A precondition is a condition, but a postcondition is not (it is a relation on states). The
following notations from logic can be used in lieu of their set-theoretical counterparts.

Notation Definition

True S /True_def /

False ∅ /False_def /

C ∨ D C ∪ D /Or_def /

C ∧ D C ∩ D /And_def /

¬ C C = False /Not_def /

C ⇒ D C ⊆ D /Implies_arrow/

C implies D C ⊆ D /Implies_keyword/

Comment: C = True is equal to C . The rest of this article uses the notations defined here except for “∨” and
“∧” for which the set operators are just as convenient.

Theorems: properties of special conditions
For any program p:

True: p = p /Restrict_true/

False: p ≡ Fail /Restrict_false/

p \ True ≡ p for feasible p . /Corestrict_true/

p \ False = Fail /Corestrict_false/
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3.9 The nature of states
Other than in specific illustrative examples, this article ignores what the state set S actually is; it is indeed
possible to obtain many properties of programs and programming without considering the structure of S . That
is what the following sections do.

In other contexts (and beyond the scope of the present article) it becomes necessary to look into specific
kinds of state, which yield specific forms of programming. Here we may simply note that useful forms of
states generally include a binding, defining the relationship between elements of programs and elements of their
executions. A binding b is a function in Name 7→ Value for some sets Name (related to a program’s text) and
Value (related to the program’s executions).Two special kinds of program are particularly interesting:

A program p is:

• Functional if b ⊆ (post ; b). /Functional_def /

• Object-oriented if Name is 1 ..n for some integer n. The elements of Value in this
case are called “objects” and the binding is also called a “heap”.

/OO_def /

Explanation:

• A functional program does not modify any existing name-value association. In other words, the binding
that holds in a state s remains in any of the states in post (s): for all s, b (s) ⊆ b (post (s)) as expressed by
the definition. For the binding and the order relation defined by ⊆, the postcondition is non-decreasing.
Execution can enrich the binding with new [name, value] pairs but never remove any pair.

• An object-oriented program manipulates a set of values each with a unique “object id”.

The two definitions are unrelated, with the consequence that a program can be both functional and object-
oriented. The fundamental program constructs and properties reviewed in the rest of this article are entirely
independent of the nature of state and the resulting programming style (such as functional or object-oriented).

4 Fundamental program constructs
The following operations on programs are the basic building blocks of programming. They are not typically
used directly as programming language constructs (although they could be), but serve as a basis for the actual
language constructs introduced from sections 7 on.

The present section also introduces a set of extreme-case programs with simple definitions and distinctive
properties, similar to special values (zero, unity) in other mathematical theories.

4.1 Overview of the basic operators
There are three basic constructs. Informally (for programs p, q and a set of states C ):

• C: p, the restriction of p to C executes like p, but is applicable only in C .

• p ∪ q , the choice (or union) between p and q , executes like either p or q whenever one of them is
applicable. (If both are, the execution could use either one.)

• p ; q , the composition of p and q , executes first like p then like q .

Notation reminder: r / C and r \ D are the restriction and corestriction of a relation r to subsets C of its
source set and D of its target set.
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4.2 Definitions: restriction, choice and composition

Notation Name Postcondition Precondition

C: p Restriction post / C Pre ∩ C /Restrict_def /

p ∪ q
Choice

(or: union) ⌊postp⌋ ∪ ⌊postq⌋ p ∪ q /Choice_def /

p ; q Composition postp ; ⌊postq⌋ Prep ∩ postp \ Preq /Compose_def /

Explanation: See the informal introduction above.

Justification: These definitions embody the core thesis of this work, considering that program operations are
essentially applications of classical operations from elementary set theory:

• Restriction on programs is restriction of the postcondition and precondition.

• Union of programs is union of the (rounded) postconditions and precondition.

• Composition on programs is composition of the postconditions, with the necessary narrowing of the
precondition and again rounding.

Notation: The operators for programs reuse the symbols of the corresponding set operators. “ ∪ ” and “;”
in the first column above are union and composition of programs; in the other columns, they are union of sets
and composition of relations. Restriction for programs could be written p \ C like its relation counterpart; the
semicolon notation reflects programmers’ practice of writing the condition first, as in “if C holds, execute p”.
(The actual “conditional instruction”, based on restriction and choice, appears below in section 7.)

Comment: The rounding of postconditions is necessary for consistency:

• For choice, using only postp ∪ postq without rounding may lead (if the original programs are not rounded)
to wrongly resuscitating dead code; specifically, applying postq in a state in q – p (or conversely). For
example, if p is ⟨{[1, 1], [2, 1]}, {1}⟩ and q is ⟨{[2, 2]}, {2}⟩ then the union of the postconditions — without
rounding — includes [2, 1], which is applicable under the union of the preconditions {1, 2}, even though
it is applicable under neither of the original programs. The definition of choice removes such anomalies
by rounding the two operands.

• Similarly for composition, a dead pair [b, c] of postq (dead because b is not in q) might find its match
in a pair [a, b] of postp, bringing it back to life. For example, if p is ⟨{[1, 10], [1, 20]}, {1}⟩ and q is
⟨{[10, 10], [20, 1000]}, {10}⟩, with the second pair of its postcondition dead, then the composition of
the postconditions — without rounding of the second one — will take advantage of that pair to include,
along with the expected pair [1, 10], the spurious pair [1, 1000] in the result. The definition of composition
removes such anomalies by rounding the second operand.

Notational variants:

• Choice might also be called union and composition sequence, compound or block.

• It would also be possible to use Dijkstra’s symbols for “guarded commands” [9]: p [] q for p ∪ q and C
→ p for C: p.

Comment: In a version of the theory that makes the state explicit, the respective state sets resulting from the
three basic operations are Sp, S1 ∪ S2 and again S1 ∪ S2.

4.3 Basic programs
Notation reminder: True is another notation for S , the set of states, and False for the empty set of states ∅.
Id [X] is the identity relation and Univ [X] in X ↔ X . ⟨post, Pre⟩ defines a program by its postcondition and
precondition, in that order; False denotes the empty relation in the first position (where it may also be written
∅), and ∅ denotes an empty relation in the second position.
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Name Definition

Fail ⟨∅, False⟩ /Fail_def /

Infeasible ⟨∅, T rue⟩ /Infeasible_def /

Havoc ⟨Univ [S], T rue⟩ /Havoc_def /

Skip ⟨Id [S], True⟩ /Skip_def /

SkipC (for C ⊆ S ) ⟨Id [C], C ⟩ /Skip_restr/

Explanation:

• Fail is never applicable — and hence never produces any result. This program is sometimes also known
as “abort”.

• Infeasible is more devious: it accepts any input but never produces any result. Compare with Fail which
at least tells you right away that something is wrong: its execution can never proceed. Infeasible pretends
to proceed but after that nothing more can happen.

• Havoc accepts any input but does not guarantee anything about the resulting state. Something happens
but anything can happen.

• Skip is always applicable but yields a change identical to what it was. Such a program is also called a
“no-op” (short for “no operation”).

• SkipC is like Skip but applicable only on a specific set of states C . Clearly, Skip is the same as SkipC .

Fail , Havoc and Skip are all feasible programs. Infeasible is not.

Comment: These definitions, other than for SkipC , assume a single set of states S . A more fine-grain definition
is also possible, making the state set explicit and indexing all the basic programs with it, as with SkipC .

Properties: It will follow from the theorems below that the set of programs is a monoid (associative, identity
element) for “ ;” and Skip, and a semilattice (monoid, commutative, idempotent) for “ ∪ ” and Fail .

4.4 Corestriction
Symmetrically with restriction on programs (4.2, derived from restriction on relations 2.2, we may define a
corestriction for programs out of corestriction for relations. This operator is less fundamental than the three
basic ones studied earlier, but does have its uses.

Notation Name Definition
p \ D Corestriction ⟨postp \ D, p⟩ /Corestrict_def /

Explanation: D is a set of states. p \ D the corestriction of p to D . executes like p, but only keeps results
that belong to D .

Caveat: A feasible program may become infeasible through corestriction, since some initial states satisfying
p may yield final states not satisfying D . To guarantee feasibility, use ⌈p \ D⌉. An alternative definition of
corestriction, guaranteeing feasibility of the result, would use (instead of p) the precondition p ∩ postp \ C. See
/Compose_prepost/ in 5.3 below.

5 Properties of basic programs and operators
The basic programs and fundamental operators introduced above satisfy important properties, some of which
are listed below. As other theorems in this article, these properties have been proved with Isabelle/HOL [28].
To facilitate connecting the proofs and the present article, the names appearing here for every property, such
as Skip_compleft , also serve as labels of the corresponding proofs in the Isabelle files.
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5.1 Properties of basic programs

Theorems: Properties of Skip

For a program p and a subset C of S :
p ; Skip = p

-- Skip is a neutral element for composition, left...
/Skip_compleft/

Skip ; p ≡ p
-- ... and right.

/Skip_compright/

SkipFalse = Fail
-- Restriction to nothing is failure.

/Skip_empty/

SkipC ; p ≡ C: p
-- Left-composing with restricted Skip yields restriction...

/Skip_comprestrict/

p ; SkipC ≡ p \ C
-- ... and right-composing yields corestriction.

/Skip_composecorestrict/

Comment: In contrast with its properties for composition a, Skip obeys no general property vis-à-vis choice.
Skip ∪ Skip = Skip is a consequence of more general properties of choice (see /Choice_idem/ in 5.4).

Theorems: Properties of Fail and Havoc

For feasible p:

(Fail ∪ p ) ≡ (p ∪ Fail) ≡ p
-- Fail is a neutral element of choice, left and right.

/Fail_choice/

(Fail ; p ) = (p ; Fail) = Fail
-- Fail absorbs composition, left and right.

/Fail_comp/

(a ∪ b) ≡ Fail if and only if a ≡ Fail and b ≡ Fail
-- Choice can only fail if both operands fail.

/Fail_choiceonly/

(p ∪ Havoc) = (Havoc ∪ p) = Havoc
-- Havoc absorbs union.

/Havoc_choice/

5.2 Properties of restriction

Theorems: Properties of restriction
For programs p, q and conditions C , D :

(p: p) = p
-- Restriction to your own precondition is no restriction.

/Restrict_own/

C: (D: p) = (C ∩ D): p
-- Repeated restriction is intersection.

/Restrict_inter/

C: (D: p) = D: (C: p)
-- As a consequence, restriction is commutative.

/Restrict_commute/

C: (C: p) = C: p)
-- Another consequence is that it is idempotent.

/Restrict_idem/

C: (p ∪ q) ≡ C: p ∪ C: q
-- Restriction distributes over choice. Equivalence only:
-- restriction may introduce dead code that choice removes.
-- Example: p = q = ⟨{[1, 1]}, {1}⟩, C = False.

/Restrict_distrib/
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C: (p ; q) = C: p ; q
-- Composition absorbs restriction.

/Compose_absorb/

5.3 Properties of corestriction

Theorems: Properties of corestriction
For a program p and conditions C and D :

(p \C) \ D = p \ (C ∩ D)
-- Repeated corestriction is intersection.

/Corestrict_inter/

(p \ C) \ D = p \D \ (C))
-- As a consequence, corestriction is commutative.

/Corestrict_commute/

C: (C: p ) = C: p
-- Another consequence is that it is idempotent.

/Corestrict_idem/

(p ∪ q) \C= p\C ∪ q\C
-- Corestriction distributes over choice.

/Corestrict_choice/

(p ; q) \ C = p ; (q \ C)
-- Corestriction is only applied to the last element.

/Corestrict_compose/

If p is feasible then ((p ∩ postp \ C): p) \ C is feasible. /Compose_prepost/

5.4 Properties of choice

Theorems: Properties of choice
For programs p, q , v :

p ∪ q = q ∪ p
-- Choice is commutative.

/Choice_commute/

p ∪ (q ∪ v) = (p ∪ q) ∪ v
-- Choice is associative.

/Choice_assoc/

p ∪ p ≡ p
-- Choice is idempotent (equivalence only, not equality)
-- Equality does not always hold as choice removes dead code.
-- Example (equivalence, no equality): p = ⟨{[1, 1]}, False⟩.

/Choice_idem/

p ∪ q = p ∪ q
-- Choice distributes over the range of postconditions.

/Choice_range/

Comment: These properties include the “Laws of Choice” of the Hoare theory papers (section 1.4)12 — but as
(mechanically) proved theorems, not axioms.

12Except for the abort-related property; see 5.7 below.
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5.5 Properties of composition

Theorems: Properties of composition
For programs p, q , v and conditions C and D :

p ; (q ; v) = (p ; q) ; v
-- Composition is associative.
-- So we may apply “;” to several operands
-- without parentheses, as in p ; q ; v
-- and to a list of programs with Σ, see below.

/Compose_assoc/

C: (p ; q) = (C: p) ; q
-- Composition left-absorbs restriction.

/Compose_absorbrest/

(p ; q) \ D = p ; (q \ D)
-- Composition right-absorbs corestriction.

/Compose_absorbcorest/

v ; (p ∪ q) ≡ (v ; p) ∪ (v ; q)
-- Composition left-distributes over choice.
-- Equivalence only, not equality: choice removes dead code
-- but composition may re-introduce some.
-- Example: p = q = v = ⟨{[1, 1], [2, 1]}, {1}⟩

/Compose_choiceleft/

(p ∪ q) ; v ≡ (p ; v) ∪ (q ; v)
-- Composition right-distributes right over choice
-- (equivalence only).

/Compose_choiceright/

If q is feasible then p ; q is feasible.
-- This result is stronger than /Compose_feasible/ (5.6).

/Compose_feasibleleft/

Notation: The composition p1 ; ...; pn of a list of programs may be written Σ pi. Associativity of composition
(Compose_assoc) justifies this notation. For an empty list, the sum is Skip by convention (see 8.1 for details).

5.6 Properties of roundness and feasibility

Theorems: Fundamental operators preserves roundness
For programs p and q and an arbitrary condition C :

⌊C: p ⌋ = ⌊p ⌋ / C /Round_restrict/

⌊p ∪ q⌋ = ⌊p⌋ ∪ ⌊q⌋ /Round_choice/

⌊p ; q⌋ = ⌊p⌋ ; ⌊q⌋ /Round_compose/

⌊p \C⌋ = ⌊p ⌋ \ C /Round_corestrict/

As a consequence, if p and q are rounded:
C: p is rounded. /Restrict_rounded/
p ∪ q is rounded. -- True even if p and q are not rounded. /Choice_rounded/
p ; q is rounded. /Compose_rounded/

Proof idea: For restriction (/Restrict_rounded/), the property to prove, assuming postp ⊆ p, is postp / C ⊆ p
∩ C . It follows from the property of restriction on relations called /Domain_restrict/ in section 2.2: r / X = r
∩ X . For choice, if postp ⊆ p and postq ⊆ q then postp ∪ postq ⊆ p ∪ q; rounding the operands of the union (per
the definition of the postcondition of the choice operation) changes nothing since these operands are already
rounded. Similarly, for composition, the postcondition is postp ; postq and the theorem in this case follows from
the property of composition of relations that r ; s = r ∩ r−1 (s).
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Theorems: Fundamental operators preserve feasibility
For feasible p and p2 and an arbitrary condition C :

C: p is feasible. /Restrict_feasible/
p ∪ q is feasible. /Choice_feasible/

p ; q is feasible. /Compose_feasible/

Proof idea: (From definitions in 4.2): for restriction, the precondition gets narrowed down (strengthened),
preserving the feasibility property p ⊆ postp. For choice, the new precondition is the union of the preconditions,
and the new postcondition is the union of the rounded postconditions; we apply /Feasible_round/ from 3.5.

5.7 A note about choice
The choice operator is “angelic” (as expressed by the theorems /Fail_choice/ and /Fail_choiceonly/ in 5.1) in
the sense that it will yield a result if either operand could do so.

This behavior is what we usually want: if we are writing an Internet routing program which can send a
packet through either of two routers A and B , we will succeed if at least one of them is up and running. The
definition of choice (last column in the table defining basic operators in /Choice_def /, section 4.2) reflects this
property by using p ∪ q as the precondition p ∪ q for the choice.

Another variant is “demonic” choice, which only guarantees a solution if every operand can do so. If we are
using someone else’s packet delivery mechanism (rather than writing our own), and know that it may use either
A or B , we can only assume that the packet will go through if both servers are up.

Demonic choice is easy to add to the present theory as a variant of choice in which the precondition of the
choice is changed to p ∩ q : the intersection, rather than the union, of the preconditions of the operands. A
more complete exposition of the theory will include this variant.

With its “internal” and “external” choice operators, the CSP concurrency calculus [29] provides a distinction
similar to angelic versus demonic. The explanation is that internal choice is made by the system and external by
“the environment”. These concepts are informal and, in practice, difficult to teach. A mathematical distinction
— union of preconditions versus their intersection — seems preferable as it removes any uncertainty.

The last axiom of the “Laws of Choice” by Hoare and colleagues cited earlier (1.4) suggests that those
authors’ understanding of choice is demonic. This example provides further illustration of the dangers of a
purely axiomatic approach: introducing both variants axiomatically would require a repetition of all the other
choice axioms, since the operators share most of their other properties including associativity, commutativity
and relationship with “;” and other operators). With the axiom-free and theorem-oriented approach of the
present work, it suffices to add one definition for a new operator (specifying the new precondition); then its —
possibly numerous — properties, instead of being tediously postulated, can be proved as theorems.

6 Refinement and related notions
Programs and specifications are fundamentally the same, but the reason they have traditionally been distin-
guished from each other is that they may exist at widely varying levels of abstraction. If we consider programs
and specifications relatively to each other, the distinction makes sense: a program/specification may be a more
concrete or more abstract version of another. In that case we might talk of the more concrete version as
the program and of the more abstract one as its specification. The notions of refinement, specialization and
implementation formalize these observations.

6.1 Refinement: preliminary notions
The following notions help define refinement and specialization.

Definition: state-extending, pre-weakening, post-strengthening
For programs q and p:

q state-extends p if Sp ⊆ Sq /Extend_state/

q pre-weakens p if p ⊆ q /Weaken_pre/

q post-strengthens p if (p: q: postq) ⊆ post p /Strengthen_post/
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Caveat: The terms “extends”, “weakens” and “strenghtens” are convenient but should not mislead since all
relationships use ⊆, not ⊂. So these terms should be understood as shorthand for “extends or retains” etc.

Comment: Post-strengthening (strengthening the precondition) means replacing the postcondition by a tighter
one (in the sense of ⊆, meaning one with as many or fewer input-output state pairs. This relation only applies,
however, to input states that satisfy both preconditions. (A similar property applies to contract adaptation in
redeclarations under inheritance in object-oriented programming [23].)

Unlike with earlier discussions, the definitions make the state explicit, as refinement and its variants may
introduce new (concrete) states in addition to the original’s abstract states.

6.2 Refinement, specialization, implementation
With the preceding auxiliary notions we can define three fundamental relations between programs:

Notation Name
Alternative

names Definition

q ⊑ p q refines p
p specifies (or
abstracts) q

q post-strengthens p
and q pre-weakens p
and q state-extends p /Refine_def /

q ⊆ p q specializes p p generalizes q

q post-strengthens p
and p pre-weakens q
and p state-extends q /Special_def /

q implements p
q is feasible
and refines p /Implement_def /

Comment: Because they are based on subsetting, the notations for refinement and specialization use variants
of the subset symbol “⊆”. It is always clear from the operands whether “⊆” denotes “subset” on sets or “refine”
on programs.

Justification: The difference between refinement and specialization is subtle but significant. Both strengthen
the postcondition. Refinement — like the rules governing inheritance in object-oriented programming — accepts
more states and a larger (“weaker”) precondition, meaning that the refined version (q where q ⊑ p) may have
new behavior for states not in covered by the original precondition. With specialization, in contrast, the new
version (q where q ⊆ p) has fewer behaviors. The literature contains many studies of refinement, but some of
them — including by Hoare and colleagues [18, 13] — cover what is here called specialization. Refinements also
figures in formal specification approaches such as Z and B; its definition for Z in the main reference on the topic
takes up 98 book pages (pages 53 to 150 of [5]), making comparisons hazardous. Refinement as defined here is
in line with other approaches, particularly from Dijkstra and Wirth [7, 4, 6, 31, 32].

Notation caveat: The literature often uses q ⊑ p to express that p refines q rather than the converse as
here. The convention the present work (where q ⊑ p means that q refines p, and similarly for specialization)
is consistent with the defining property: for refinement as well as for specialization, the postcondition of q is
a subset of the postcondition of p, not the other way around. (A similarly unfortunate notational paradox
exists in logic, where “p implies q” is sometimes written p ⊃ q even though the implication means, if we view
propositions as sets, that p is a subset of q or equal.)

6.3 Properties of refinement, specialization and implementation
The relations just introduced — refinement, specialization, implementation — satisfy some important properties.

Implementation theorem
A program having an implementation is feasible. /Implement_feasible/

Notation caveat: This important theorem states (from the preceding definitions) that if q refines p and is
feasible, then p itself is feasible.

Comment: The Implementation theorem actually works both ways: it can actually be extended to “a program
is feasible if and only if it has an implementation”, since the “only if” part is trivial (if a program is feasible,
then because of the reflexivity of refinement, seen below, it has an implementation — itself).
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Terminology:

• “Order relation” as used below denotes a non-strict possibly partial order: a relation “≤” that is reflexive
(x ≤ x for all x ), antisymmetric (whenever x ≤ y and y ≤ x then x = y) and transitive (whenever x ≤
y and y ≤ z then x ≤ z ).

• The relations under study — “refines”, “specializes”, “implements” — are antisymmetric only under equiv-
alence. In other words, taking refinement as an example, if p ⊑ q and q ⊑ p both hold, it is not necessarily
the case that p = q (because of possible spurious elements, “dead code”, on either side), but equivalence
p ≡ q does hold. If a relation has this property and is otherwise reflexive and transitive, we will say that,
rather than being an order relation, it induces an order relation. (Formally, the quotient of the relation
by the equivalence relation “≡” is an order relation.)

Theorems: order relations
Refinement (“⊑”) induces an order relation. /Refine_order/

Specialization (“⊆”) induces an order relation /Special_order/

Implementation induces an order relation
(except that it is reflexive for feasible elements only)

/Implementation_order/

Comment: For brevity, the separate components of each of the above properties (reflexivity, antisymmetry,
transitivity) are not individually included. They figure in the Isabelle/HOL repository with their proofs, under
self-explanatory names consistent with the general conventions, such as /Refine_transitive/.

Definition: The following theorems will express when refinement, specialization and implementation are com-
patible with basic operations. An operation will be called refinement-safe if applying it preserves refinement
properties. Similarly: implementation-safe, specialization-safe.

6.4 Refinement and basic operations
As an example:

Theorem: Refinement safety (for restriction)
If q ⊑ p, then C: q ⊑ C: p

-- Restriction is refinement-safe.
/Restrict_refinesafety/

Comment: On the other hand, many operations are not refinement-safe (although many will be specialization-
safe as seen below) because of precondition widening. They include corestriction, composition and choice. In
the last case a form of refinement-safety does hold per the following theorem.

Theorem: Refinement safety for choice
If q ⊑ p and q post-strengthens v , then q ∪ v ⊑ p ∪ v /Choice_refinesafety/

Implementation safety follows directly from refinement safety.

6.5 Specialization and basic operations
Unlike with refinement, all basic operations as well as corestriction are specialization-safe.

Theorems: Specialization safety
If q ⊆ p, then the following properties hold:

C: q ⊆ C: p
-- Restriction is specialization-safe.

/Restrict_specialsafety/

C \ q ⊆ C \ p
-- Coestriction is specialization-safe.

/Corestrict_specialsafety/
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q ∪ v ⊆ p ∪ v
v ∪ q ⊆ v ∪ p

-- Choice is specialization-safe.
/Choice_specialsafety/

q ; v ⊆ p ; v
v ; q ⊆ v ; p

-- Composition is specialization-safe.
/Compose_specialsafety/

6.6 Restriction/corestriction under refinement and specialization
Comment: Even though they are very close, having the same effect on the postcondition, refinement and
specialization have distinct and sometimes inverse effects on restriction and specialization.

Notation reminder: To avoid any confusion, note that “⊆” in properties such as D ⊆ C for subsets of the
state set S is the plain “subset” relation. On programs,“⊆” is specialization and “⊆” is refinement. As another
reminder, “abstraction” was defined in section (6.2) as the inverse of refinement.

Theorems: restriction and corestriction under refinement and specialization
For conditions C and D such that D ⊆ C :

C: p ⊆ p
-- Restriction is a form of specialization. /Restrict_special/

p ⊑ C: p
-- Restriction is a form of abstraction.
-- Note reversal of order from /Restrict_special/.

/Restrict_refine/

p \ C ⊆ p
-- Corestriction is a form of specialization. /Corestrict_special/

C: p ⊑ D: p
-- Under refinement, restriction reverses subsetting.

/Restrict_refineorder/

D: p ⊆ C: pr
-- Under specialization, restriction retains subsetting.

/Restrict_specialsubset/

p \ D ⊆ p \ C
-- Under specialization, corestriction retains subsetting.

/Corestrict_specialsubset/

Comment: The last two properties, governing specialization, have no direct counterparts for refinement.

6.7 Refinement/specialization and basic programs

Theorems: Basic programs under refinement and specialization
Infeasible ⊑ Skip ⊑ Havoc ⊑ Fail

-- Full ordering of basic programs under refinement.
/Refine_special/

Fail ⊆ Infeasible ⊆ Skip ⊆ Havoc
-- Their (different) ordering under specialization.

/Special_special/

p ⊑ p: Havoc /Refine_havoccompose/

p ⊆ p: Havoc /Special_havoccompose/
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p ⊑ Havoc if p is total. /Refine_havoc*/

p ⊆ Havoc /Special_havoc*/

p ⊑ Fail /Refine_fail/

Fail ⊆ p /Special_fail/

Fail ⊆ p if and only if p ≡ Fail . /Refine_failonly/

p ⊆ Fail if and only if p ≡ Fail . /Special_failonly/

Comment: Section 3 noted that the basic programs (not only Skip) have variants such as FailC limited to
specific state subsets. Here are the corresponding properties.

Refinement and specialization properties of state-specific basic programs
For D ⊆ C :

SkipD ⊆ SkipC SkipC ⊑ SkipD
Fail D ⊆ FailC Fail C ⊑ FailD

InfeasibleD ⊆ InfeasibleC InfeasibleC ⊑ InfeasibleD

HavocD ⊆ HavocC -- Not true for refinement.

FailFalse = InfeasibleFalse = SkipFalse = HavocFalse

/Special_nonempty/

Comment: These properties again illustrate the difference between refinement and specialization. Refinement
may introduce new behavior by weakening the precondition.

7 Conditional instructions
Among the basic operators, composition (“;”) is directly reflected in programming languages by the sequencing
operator, usually written with the same symbol. As noted in section 4.2, the other two, restriction and choice, are
fundamental building blocks but not generally used directly for programming. Actual programming languages
generally use higher-level constructs: conditionals (this section) and loops (section 8).

7.1 Forms of conditional instruction
Comment: A conditional instruction is a combination of choice and restriction. It applies to an arbitrary
number of restricted programs, called branches, with special case for one and two branches.

Convention: In the following definitions and theorems:

• C , D and C1, .. ,Cn are conditions. C’ is the complement of C .

• p, q and p1, .. , pn are programs.

Notation Definition

if C1: p1, ..., Cn: pn end
⋃ n

i:=1 Ci: pi /Conditional_set/

if C then p else q end if C: p, C’: q end /Conditional_two/

if C then p end if C then p else Skip end /Conditional_one/
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Definition: As noted, each Ci: pi part of the basic conditional form is called a branch.

Extension: Not included, but easy to add, are variants with an arbitrary number of elseif clauses, with or
without a final else.
Caveat: All the variants given have the effect of a Skip — in other words, no effect — if none of the conditions
are satisfied. Dijkstra’s version of the “guarded form” if C1: p1, ..., Cn: pn end fails in that case. This behavior
can be obtained by introducing a variant produces Fail if

⋃
Ci has value False. The versions with then are not

affected since they cannot fail unless one of their branches does.

7.2 Properties of conditional instructions
Convention: For the purpose of the present discussion, the general conditional (the first form above) may be
abbreviated if Ci: pi end.

Theorems: properties of conditionals
The conditional instruction if Ci: pi end is equal to any other conditional
obtained by permutation of its branches.

/Conditional_commute/

If Di ⊆ Ci for all i then (if Di: pi end) ⊆ (if Ci: pi end). /Conditional_subspecial/

If qi ⊆ pi for all i then (if Ci: qi end) ⊆ (if Ci: pi end).
-- No such properties for refinement
-- (same reason as non-safety of choice, see 6.4).

/Conditional_multsubspecial/

C: p = if C: p end
-- A plain if ... then ... end is just a restriction.

/Conditional_set_one/

Ci: pi ⊆ (if C1: p1, ..., Cn: pn end) (for 1 ≤ i ≤ n).
-- Every branch of a conditional specializes it.

/Conditional_elements/

D: (if Ci: pi end) ≡ if (D ∩ Ci): pi end
-- Equivalence only because the order of applying
-- restriction and choice matters for dead code.

/Conditional_distrib/

Justification: The following properties explain the use (from 3.8) of the alternative names “True” for S and
False for ∅. Equivalence only.

Theorems: properties of special conditions for conditionals
if True then p1 else p2 end ≡ p1 /If_true/

if False then p1 else p2 end ≡ p2 /If_false/

8 Loops and invariants
Justification: Two key capabilities of computers are: to execute a operation repeatedly (and very fast); and
to evaluate a condition — meaning formally, as we have seen, to perform a membership test between a given
element (a state) and a given set. As a programming construct, the loop in its various forms captures this idea.

8.1 Loops: definition
Comment: To describe loops it is useful to start with a construct — fixed repetition — that reflects the
standard mathematical practice of defining “power” as repeated self-application, and serves as a stepping stone
for defining more general loops. (In the following definitions, p is an arbitrary program as usual.)
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Name Notation Definition
Zero repetition p0 Skipp /Zero_rep/

Fixed
repetition

(or: “power”)
(for n > 0)

pn
(Alternate notation:

for i: 1..n loop p end) Σ n
i=1 p /Fixed_rep/

Unbounded
repetition loop p end

⋃
i: N pi /Arbitrary_rep/

“From” loop from a until C loop b end a ; (loop ¬C: p end) \ C /From_loop/

“Repeat” loop repeat b until C end from b until C loop b end /While_loop/

“While” loop while C loop b end from Skip until ¬C loop b end /Repeat_loop/

Justification: A loop repeats a certain program (in practice, a program part) subject to an exit condition, or
equivalently a continuation condition (these two forms of stating the condition are simply the negation of each
other in the sense of the complement operation “¬”). The from and repeat forms loop until an exit condition
holds; the while form loops until a continuation condition does not hold. Both from and while forms may iterate
the body b zero or more times; repeat, one or more times (it starts by executing b and only then asks whether
to stop). The from form includes an often useful initialization stage b. All three forms are defined on the basis
of the unbounded repetition construct (loop ... end which includes the zero-power p0 among its possibilities.
Although not common in programming languages, unbounded repetition exists for example in Ada.

Comment: The value for p0 (/Zero_rep/) is required for consistency; see /Power_inductive/ below.

Caveat: While an informal description of the fixed-repetition construct is that it “executes p n times”, in reality
it executes it at most n times since the repetition will stop if after any number i of iterations (0 ≤ i ≤ n) p
does not hold.

Theorems: loop properties

pm+n = pm ; pn

-- For any m, n ≥ 0 . For m = 0 , follows from
-- /Zero_rep/, /Restrict_own/ and /Skip_comprestrict/.

/Power_inductive/

while C loop b end ≡
⋃
i ∈ N

(C: b)i \ ¬ C /Loop_choice/

If pi ≡ Fail , then pj ≡ Fail for all j ≥ i
-- Program repetition cannot recover after any step has failed.

/Repetition_fail/

⋃n
1≤i p

i ≡ Fail implies
⋃m

1≤i p
i ≡ Fail for all m and n.

If a loop fails, it fails for any number of iterations.
/Loop_fail/

from a until C loop b end ⊆ C
-- A terminating loop establishes its exit condition. See also /Loop_correct/.

/Loop_range/

If p and q are feasible, p ∩ q = ∅ and q ∩ p = ∅, then:
(loop p ∪ q end) = (loop p end) ∪ (loop q end)

-- Under disjointness conditions, loop distributes over union.
/Loop_distrib/

Comment: The last result, /Loop_distrib/ can serve as a parallelization law in advance of the discussion of
concurrency (section 10).

8.2 Invariants
Notation reminder: r (C), for a relation r , is the image of a set C under r .
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Definition: invariants

A condition I is an invariant of a program p if postp (I ∩ p) ⊆ I . /Program_inv/

Justification: An invariant is called that way because if it holds before application of p it will hold afterwards.
More precisely, for the initial condition we need not the whole of I but just I ∩ p , since results of p only matter
when p starts in its precondition. The following theorems follow directly from the definition.

Invariant properties
If I is an invariant of p and p ≡ q, then I is an invariant of q . /Equiv_inv/

Any I disjoint from p is an invariant of p . /Inv_disjoint/

True and False are both invariants of p. /Inv_truefalse/

postp and p are both invariants of p.
-- Follow from properties of relations, particularly /Image_restrict/.

/Inv_subset/

If I and J are invariants of p , then so are I ∪ J and I ∩ J .
-- Follow from /Image_union/ and /Image_inter/.

/Inv_inter/

If I is an invariant of p and q ⊆ p, then I is an invariant of p: q. /Inv_special/

If I is an invariant of p and q ⊑ p, then I is an invariant of q. /Inv_refines/

Some of the above results are cases of invariant-preserving operators in the following sense:

Definition and theorem: invariant-preserving operator, general invariant theorem
An operator on programs is invariant-preserving if any invariant of all its operands is
also an invariant of the operator’s result.

/Inv_preserve/

All the program operators defined so far are invariant-preserving. /Gen_inv/

Comment: The operators covered are all those of section 4.2.

8.3 Loop invariants
The general notion of invariant just introduced is particularly important in the case of loops.

Definition: loop invariant
A loop invariant of from a until C loop b end is a subset of posta that is an invariant
of ¬ C: b.

/Loop_inv/

Justification: A loop invariant is ensured by the loop initialization (a) and preserved by the loop body (b),
and hence will hold after any execution of the loop as a whole.

Notation reminder: p is short for postp / p: the set of states that p actually produces (3.3).

Theorem: loop invariant properties
If I is a loop invariant of the loop L = from a until C loop b end, then

L ⊆ C ∩ I .
/Loop_correct/

Justification: This theorem is the fundamental property of loop invariants[22, 11]: the goal of a loop is to
obtain on exit (L) a combination of the exit condition (C ) and a judiciously chosen invariant (I , a weakening
of the desired result). From this observation follows a program construction method which splits the desired
final condition into these two parts and produces the corresponding loop.
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A loop invariant of L = from a until C loop b end is also an invariant of
L, of a, and of loop ¬ C: b end.

/Loop_invinv/

Comment: This theorem (which follows from /Inv_subset/ above) relates the notion of loop invariant to the
more general notion of invariant.

9 Contracted programs
As noted at the beginning of section 6, the traditional distinction between specification and implementation is
vague; the formal definitions of refinement, implementation and specialization provided the first steps towards
establishing it on solid ground. To obtain a complete picture, we must also consider the criterion of correctness.

It makes no sense to ask whether a program/specification, by itself is correct. Correct with respect to
what? In the traditional world of programming, we do know what correctness means for a program: it performs
according to a stated specification. A relative notion.

What truly distinguishes a program from a specification, in the common usage of these terms, is neither
just the level of abstraction nor the possibility of execution, but the existence of two programs/specifications
in the sense of the present theory, such that one of them is a refinement of the other. More precisely a feasible
refinement, or “implementation” (6.2 and /Implement_feasible/). The following notation reflects this analysis.

Definition and notation: correctness, contracted program
A program q is correct for a program p if it is an implementation of p. The following
contracted program notation expresses this property:

require p do q ensure postp end
/Correct_def /

Comment: The property is transitive in the sense of the following theorem.

Theorem: rule of consequence
A program v , correct for q which is correct for p, is correct for p. /Rule_consequence/

Comment: The following concepts provide a different perspective on the preceding definitions. They refer to
a program p, a condition C and a relation r in S ↔ S .

Definition: strongest postcondition, weakest precondition,
postp / C is the strongest precondition of p for C , also written

p sp C
/Strongest_postcondition/

p − (postp − r) is the weakest precondition of p for r , also written
p wp r

/Weakest_precondition/

Explanation: postp − r is the set difference of two relations, giving us the set of pairs that belong to the first
but not to the second. Its domain, postp − r, is the set of states for which p produces at least one result that
r could never produce. Subtracting this domain from p , the precondition of p , gives us the full set of states
satisfying the precondition on which p is guaranteed to agree with r .

Convention: In the following properties, p and q are programs, C and D sets of states, r and t relations in
S ↔ S . While an sp expression takes a set as its second operand, a wp expression needs a relation in S ↔ S ;
True↔ will denote the full relation (also written S × S and Univ [S]) and False↔ the empty relation.

Theorems: Properties of strongest postcondition and weakest precondition
If q implements p, then

q sp p ⊆ postp /Post_charac/

and
p ⊆ q wp postp /Pre_charac/

-- Also expressible as q sp p ⇒ postp and p ⇒ q wp postp

p sp False = False /Sp_false/
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p wp False↔ = False for feasible p /Wp_false/

p wp False↔ = p − postp /Wp_infeas/

Fail wp r = False /Wp_fail/

Fail sp C = False /Sp_fail/

p sp True = postp /Sp_true/

p wp True↔ = p /Wp_true/

Havoc sp C = post (Havoc) / C /Sp_havoc/

p sp (C ∪ D) = (p sp C) ∪ (p sp D) /Sp_distrib/

p wp (r ∪ t) = (p wp r) ∪ (p wp t) /Wp_distrib/

10 Concurrency
One of the most important but also most delicate mechanisms of programming is concurrent operation13. The
reason concurrency is delicate is that it involves arbitrary interleaving. As concurrency textbooks usually explain
at the outset (see e.g. [1]), when dealing with concurrency we do not need to assume that two events ever take
place at the same time, or even ask whether that is actually possible: we only have to contend with not knowing
which comes first. So stating that two elementary operations a and b execute concurrently simply means that
the execution could be a ; b or b ; a. This observation suggests a simple concurrency operator, although as we
will see it is not general enough.

10.1 Definition: Atomic concurrency

Name Notation Definition
Atomic concurrency p |||q (p ; q) ∪ (q ; p) /Atomic_conc/

Comment: Atomic concurrency is not associative (as can be seen by noting for example that p ||| (q ||| r)
includes among its choices p ; r ; q , which is not among the choices for (p ||| q ) ||| r). It can be generalized
into an associative operator taking a list of operands, omitted here since it is not needed for the definition of
the more general concurrency operator coming next. The following properties are the most important ones.

Theorems: Properties of atomic concurrency
p ||| q = q ||| p

-- Atomic concurrency is commutative.
/Atomic_commute/

C: (p ||| q) = ( C: p) ||| ( C: q)
-- Restriction distributes over atomic concurrency.

/Atomic_restrict/

(p ||| q) \ C = (p \ C) ||| (q \ C)
-- Corestriction distributes over atomic concurrency.

/Atomic_corestrict/

p ||| Fail = p |||Fail = Fail
-- Fail absorbs atomic concurrency, left and right.

/Atomic_fail/

13Also known as “parallel”. There are technical differences between the two terms, which do not matter here.
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10.2 Introducing a level of granularity
The “|||” operator gives a general idea of what concurrency is about but is not appropriate for the practical
uses of concurrency. The problem is that the programs we want to run in parallel, say p and q , are generally
themselves composite programs, and a practical notion of concurrency must specify at what level of granularity
we allow their components to run in parallel.

If p = (a ; b) and q = (c ; d), then p |||q only includes two executions: (a ; b ; c ; d) and (c ; d; a ; b). True
concurrent execution would also include all interleavings in which all four appear as long as a is before b and c
before d , including (c ; a ; b ; d), (a ; c ; b ; d) etc. As a simple example, consider programs using one of the
most important resources of Constructor Institute of Technology, shown in Fig. 6 and supporting a variant of
Alfred Renyi’s maxim14: two software engineers are a device for turning coffee into a theory of programming.

Figure 6: A parallel coffee machine
The program p could be

put_capsule_left ; push_button_left ; get_coffee_left

and q the same with left replaced by right . Then p |||q represents making two coffees one after the other, the only
flexibility being afforded by allowing either order. In practice, however, the machine is “more parallel” than that:
it allows any interleaving of the operations on both sides, put_capsule_x , push_button_x and get_coffee_x
where x is left or right , separately preserving the given order for each x . (Practitioners of concurrency know
that such a finer level of granularity can lead to problems, known as “data races”, if these operations use shared
resources, but we are not there yet.) As one of the variants tested as part of the preparation of this article, the
following sequence, not covered by p |||q , was experimentally shown to work15:

put_capsule_right ; put_capsule_left ; push_button_left ;
push_button_right ; get_coffee_right ; get_coffee_left

These observations indicate that obtaining a general notion of concurrency requires choosing the appropriate
level of granularity. We must accordingly express programs in a specific form.

10.3 Civilized programs and Choice Normal Form

Definitions: basic program, basis, civilized program
Given a set B of “basic programs” which includes Skip and Fail , a program is civilized
with basis B if it of one of the following forms, where p and q are (recursively) civilized:

/Civilized_def /

• An element of B /Civilized_basic/

• p ∪ q /Civilized_choice/

• p ; q /Civilized_sequence/

• C: p /Civilized_restrict/

14The original is about one mathematician and is often wrongly ascribed to Renyi’s friend Paul Erdös.
15Order is preserved between the successive composition components of each operand of the |||, but not

between those of different operands. The property, established for full concurrency as a theorem below
/Conc_sound/, is a general feature of concurrency: one cannot assume the existence of a global clock. In
this particular execution trace, while the left button was pushed first, the corresponding coffee came out second.
Perhaps left wanted a large coffee and right a small one.
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The rest of this discussion assumes that we are dealing with civilized programs, for some basis. This assumption
entails no loss of generality, since we can always include all the mechanisms we want — if not covered by sequence,
choice or restriction — in the basis. (But we will not then be able to interleave their components.)

Any civilized program can be expressed in the following normal form:

Definition and theorem: Choice Normal Form (CNF)
Every civilized program can be expressed in Choice Normal Form as:⋃

i: I

∑
j: Ji

pji

where every pji is a basic program possibly with a restriction.

/Normal_form/

Explanation: “With a restriction” means of the form C: p for a condition C . The Ji index sets are finite; I
can be infinite, but the discussion will limit itself to the finite case.

Justification: Intuitively, the Choice Normal Form represents expressing a program as the set of all its possible
execution paths.

Terminology: Each Σ term of the overall
⋃

will be called a sum. An empty sum denotes Fail . For non-empty
sum s, s1 is the first element and s− the remaining (possibly empty) sum after removing the first element.

10.4 Fine-grained concurrency
On civilized programs, we can define a meaningful concurrency operator “||”, which extends the atomic form
“|||” by taking into account a chosen level of granularity.

Definition: Concurrent operation of two programs
The value of both p || q and q || p is defined as follows by structural induction on the definition of civilized
programs (/Civilized_def /), always applying the first rule that matches:

• If both p and q are basic, possibly with a restriction, then p ||| q .
-- This case uses atomic concurrency as defined in 10.1: (p ; q) ∪ (q ; p).

/Conc_basic/

• If p is C: x , then (p’ || q) where p’ is p with one restriction removed through
/Restrict_inter/, /Restrict_distrib/ or /Compose_absorbrest/.

/Conc_restrict/

• If p is u ∪ v , then (p || u) ∪ (p || v). /Conc_choice/

• If both p and q are sums, then
(p1 ; (p− || q)) ∪ (q1 ; (p || q−)).

/Conc_sum/

Notation: A frequently encountered notation for p || q || ... in languages supporting concurrency is parbegin
p, q, .... end, or some other keyword instead of parbegin. The number of operands can be arbitrary thanks to
the associativity of the operator, /Conc_assoc/ below.

Explanation: As noted, the cases have to be applied in order, using the first applicable one, the components
then recursively subjected to the same rules. The four cases reflect the notion of interleaving:

• For basic operands /Conc_basic/, parallel execution means that either of the two possible orders is
possible.

• Case /Conc_basic/ can only apply to non-basic p (otherwise the preceding case would capture it). Then
p must involve another operator; the rules on restriction will remove one restriction operator, enabling
recursive application of the remaining cases (in the end restriction will only apply to basic operators,
triggering the previous case).

• Executing p in parallel with either u or v means either executing p in parallel with u or executing p in
parallel with v — as captured by /Conc_choice/.

• As a result of the repeated recursive application of the previous cases we are only left with the case
/Conc_sum/ of parallel execution of two Σ sums p and q . (If the operator on either side is any other
than “;”, one of the other cases kicks in.) Then parallel execution means that we have a choice between
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only two possibilities: start with the first step of p and continue with the rest of p in parallel with all of
q ; and the other way around. Each is of course subject to recursive expansion through the four cases.

Defining the size of an expression as the number of its operators, every case reduces the size of at least one
operand of every “||” subexpression, ensuring that the recursion will eventually terminate.

Example: Consider (u ∪ v) || (x ; y) (or this expression with its operands of the “∪” switched):

• It is subject to /Conc_choice/, not /Conc_sum/. The rule yields (u || (x ; y)) ∪ (v || (x ; y)).

• Each of the two operands of the resulting choice is a parallel application of two sums (with one of the
sums having only one element). Assuming all operands are basic, applying /Conc_sum/ twice yields ((u
; x ; y) ∪ (x ; u ; y) ∪ (x ; y ; u)) ∪ ((v ; x ; y) ∪ (x ; v ; y) ∪ (x ; y ; v)).

• Removing unneeded parentheses (per associativity of choice /Choice_assoc/) puts this result in CNF.

Comment: The last example illustrates a fundamental property of the parallel operator expressed by the
following theorem, which expresses when in parallel execution we can expect an original order of components
to be preserved, and when not. The theorem relies on the notion of “occurs before” and “interleaved”.

Terminology:

• A (civilized) program q is “part of” another if it is that program or (recursively) part of one of its operands
in the corresponding case of the definition of civilized programs (/Civilized_def /).

• u “occurs before v in p” if some part of p is of the form u’ ; v’ where u is part of u’ and v part of v’ .

• p and q are “ interleaved” in v if both p occurs before q and conversely in v .

For a program in CNF, “occurs before” can be stated non-recursively: u is an element of one of the sums of p,
and v an element of that same sum, with a higher index. This definition, however, is more restricted since it
only applies to basic programs.

10.5 Concurrency properties

Theorem: Concurrency soundness
If u occurs before v in p and x appears before y in q , then in p || q : /Conc_sound/

• These two “occurs before” properties also hold. /Conc_soundpreserve/

• Each of u and v is interleaved with each of x and y . /Conc_soundinterleave/

Proof: Structural induction on the definition of “||”. The theorem holds for basic programs (/Conc_basic/)
and is preserved by each of the other cases if it holds for the operands.

Comment: The theorem is also notable for what it does not guarantee: any order property between individual
components of p and q . Concurrency does not assume any global clock. Order of execution is preserved
between sequentially ordered parts of each operand of the concurrency (each “concurrent process” in frequently
used terminology), but there is no guaranteed order between parts of different operands.

In addition to this fundamental theorem, concurrent operation satisfies a number of important properties:
Theorems: concurrency properties

p || q = q || p
-- Concurrency is commutative.

/Conc_commute/

(p || q) || u = p || (q || u)
-- Concurrency is associative.

/Conc_assoc/

p || (q ∪ u) = (p || q ) ∪ (p || u)
-- Concurrency distributes over choice.

/Conc_choicedistrib/

(p || q) ; u ⊆ p || (q ; u) /Conc_composeleft/

q ; (p || u) ⊆ p || (q ; u) /Conc_composeleftright/
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p ; (q || u) ⊆ (p ; q) || u /Conc_composeright/

(p || u) ; q ⊆ (p ; q) || u /Conc_composerightleft/

(p || q) ; (u || v) ⊆ (p ; u) || (q ; v) /Conc_composegeneral/

Comment: These theorems — in particular /Conc_composegeneral/ — cover the “axiom of exchange” and all
the other “laws of exchange” of the “Laws of Programming” work of Hoare and colleagues.

11 Conclusion and further work
The PRISM theory outlined above illustrate the two principal theses of the present work: that programming
does not need a complex mathematical apparatus (as in most formal methods work), but is entirely definable as
the combination of one relation and one set, on the sole basis of elementary set-theory concepts; and that such
a description requires no new axioms whatsoever, all relevant properties being provable (and actually proved
through a mechanical prover as part of the production of this article).

The part of the theory that we have presented covers fundamental programming constructs: the classical
control structures of “structured programming” (sequence, conditionals and loops) as well as a general framework
for concurrency. Work still lies ahead to cover other programming mechanisms, including those of imperative
programming languages (such as assignment), functional programming languages, object-oriented programming,
as well as specialized mechanisms such as exception handling. The theory can also serve as the basis for numerous
programming tools and for providing facilities for trying out, compiling, interpreting and verifying programming
ideas and constructs.

Acknowledgments: While section 1 has pinpointed perceived limitations of classic formal-methods approaches,
particularly axiomatic ones, this work is obviously based on their insights and indebted to their pioneering
authors. A talk on the topic to the IFIP WG2.3 working group elicited important suggestions by Mark Utting,
Gary Leavens and other members.
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