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Abstract. Modern object-oriented languages support higher-order im-
plementations through function objects such as delegates in C#, agents
in Eiffel, or closures in Scala. Function objects bring a new level of
abstraction to the object-oriented programming model, and require a
comparable extension to specification and verification techniques. We
introduce a verification methodology that extends function objects with
auxiliary side-effect free (pure) methods to model logical artifacts: pre-
conditions, postconditions and modifies clauses. These pure methods can
be used to specify client code abstractly, that is, independently from spe-
cific instantiations of the function objects. To demonstrate the feasibility
of our approach, we have implemented an automatic prover, which veri-
fies several non-trivial examples.

1 Introduction

Object-oriented design makes a clear choice in dealing with the basic duality
between data and operations: it bases system architecture on the object, more
precisely the object types as represented by classes, and attaching operations
to one such class. Functional programming languages, on the other hand, use
functions as the primary compositional elements. The two paradigms are in-
creasingly borrowing from each other: functional programming languages such
as OCaml integrate object-oriented ideas, and a number of object-oriented lan-
guages now offer a mechanism to package operations (routines, methods) as
objects. In the dynamically typed world, the idea goes back at least to Smalltalk
with its blocks; among statically typed languages, C# has introduced delegates,
Eiffel agents, and Scala closures.

The concept of agent or delegate is, in its basic form, very simple, with
immediate applications. A typical one, in a Graphical User Interface system, is
for some part of a system to express its wish to observe (in the sense of the
Observer pattern [12]) events of a certain type, by registering a procedure to be
executed in response:
?? This work was done while visiting ETH Zurich.



US map. left click . subscribe (agent show state votes)

This indicates that whenever a left click event occurs on the map, the given
procedure show state votes should be executed. The routine subscribe takes as
argument a function object representing a procedure with two integer arguments.
Since the function object is a formal argument, subscribe does not know which
exact procedure, such as show state votes, it might represent; but it can call it
all the same, through a general procedure call applicable to any function object,
and any target and argument objects.

Function objects appear in such examples as a form of function pointers as
available for example in C and C++. But they go beyond this first analogy.
Firstly, they are declared with a signature and hence provide a statically typed
mechanism, whereas a function pointer just denotes whatever is to be found
in the corresponding memory address. Secondly, a function object represents a
routine abstraction, and can be subject to dynamic dispatch when the receiver
is an open argument4.

Function objects have proved attractive to object-oriented programmers, but
they also raise new verification challenges. To address these problems, we intro-
duce a specification and verification technique. Our approach uses side-effect free
(pure) routines to specify abstractly the pre- and postconditions of function ob-
jects. These pure routines can be used to specify client code independently from
specific function objects. Using previous work on encoding pure routines in Boo-
gie [8,22], these routines are encoded as mathematical functions, which represent
the function object’s pre- and postcondition. The basic idea is that to prove a
property of a function object call, it suffices to prove that the abstract precondi-
tion of the function object holds before the invocation; then we can assume the
abstract postcondition of the function object holds after its invocation.

The main contributions of this paper are: (1) a verification methodology
for function objects, and (2) an automatic verifier for function objects. The
verifier takes an Eiffel program, translates it to Boogie2 [16], and then proves
the Boogie2 code using the Boogie verifier [2]. We demonstrate the practicality of
our approach with a suite of examples, including one previously described as an
open problem, and more function objects intensive programs which implement
graphical user interfaces. Although we focus on Eiffel agents, we believe that
the same ideas apply to similar mechanisms in other languages, such as C#
delegates.

Outline. Section 2 presents example applications of agents and their verifica-
tion challenges. Section 3 describes the verification methodology. This method-
ology is extended to framing in Section 4. Section 5 applies the methodology
to the examples from Section 2. In Section 6, we show a set of examples that
have been verified using the implemented automatic prover. Section 7 discusses
related work; Section 8 summarizes the result and describes future work.

4 An argument is open if it must be provided in the invocation of the agent.



2 Agent Examples and their Verification Challenges

In this section, we present some typical applications of agents.

2.1 Formatter

The first example comes from a paper by Leavens et al. [20] and is recouched
in Eiffel below. It is of particular interest since they describe it as a verification
challenge beyond current techniques. The class FORMATTER models paragraph
formatting with two alignment routines. The class PARAGRAPH includes a pro-
cedure to format the current paragraph:

class FORMATTER
align left (p:PARAGRAPH) align right (p:PARAGRAPH)
require require

not p. left aligned not p. right aligned
do do

... Operations on p ... ... Operations on p ...
ensure ensure

p. left aligned p. right aligned
end

class PARAGRAPH
format (proc:PROCEDURE [FORMATTER, PARAGRAPH ];

f :FORMATTER)
do

proc . call ( f , Current)
end

end

For illustration purposes, the routines align left and align right require that
the paragraph is not left aligned and not right aligned, respectively. The routines
left aligned and right aligned are pure routines (side-effect free) defined in the
class PARAGRAPH, and return true if the paragraph is left aligned or right
aligned, respectively.

In Eiffel, the contracts of a class are its invariant, and the precondition and
postcondition that can be attached to any routine, with the respective keywords
invariant, require and ensure. Each such clause involves an assertion written
out as a sequence of boolean expressions. An absent contract clause is equivalent
to one specificying True. In the routine format, the signature proc: PROCEDURE

[FORMATTER, PARAGRAPH ]5 declares an agent proc with two open arguments
(the target of type FORMATTER and a parameter of type PARAGRAPH ). The
agent proc is invoked using the procedure call (Current denotes the receiver
object, this in C#).

5 This is a simplification of the Eiffel syntax; the Eiffel declaration is PROCE-
DURE[FORMATTER, TUPLE[PARAGRAPH]]



An example of the use of the format routine is shown in the routine ap-
ply align left :

apply align left ( f :FORMATTER; p:PARAGRAPH)
require

not p. left aligned
do

p. format (agent {FORMATTER}.align left , f )
ensure

p. left aligned
end

The notation agent {FORMATTER}.align left denotes a function object that
represents the align left routine of the class FORMATTER. The keyword agent
is used to distinguish between the function object align left and the invocation
of the routine align left.

The verification challenge in this case is to specify and verify the routine
format in an abstract way, abstracting the pre and postcondition of the agent.
Then, one should be able to invoke the routine format with a concrete agent,
here align left, and to show that the postcondition of align left holds. If the
format routine is called with another routine, say align right, one should be
able to show that the postcondition of align right holds without modifying the
proof of format. Another issue is framing; one should be able to express what
the routine format modifies, but abstracting from the specific routines align left
and align right. When the routine format is invoked using the agent align left,
we should be able to show that format only modifies the locations that align left
modifies.

2.2 Archive Example

This section describes the archive example presented by Leavens et al. [20] and
proved by Müller and Ruskiewicz [23]. This example illustrates the application
of agents with closed arguments6.

Figure 1 presents the example encoded in Eiffel. The class TAPE ARCHIVE

defines a tape with a routine store which stores objects if the device is loaded.
An application of agents is implemented in the routine log of class CLIENT,
which calls the agent log file with the string s. Finally, the class MAIN shows an
example of the invocation of the routine log.

The invocation log file.call(s) invokes the procedure log file with the pa-
rameter s. The declaration PROCEDURE[TAPE;ANY]7 indicates that log file is
an agent with closed argument of type TAPE and one open argument of type
ANY. The target of the invocation is defined in the creation of the agent. In this
example, the target object is t defined by agent t.store.

6 Closed arguments are the arguments of an agent provided in the agent declaration.
7 This is a simplification of the declaration in Eiffel. The declaration in Eiffel is PRO-

CEDURE[TAPE,TUPLE[ANY]].



class TAPE ARCHIVE class TAPE
tape : TAPE save(o: ANY) do ... end
is loaded : BOOLEAN −− other routines omitted
ensure end
Result = (tape /= void)

class CLIENT
make log ( log file :PROCEDURE[TAPE;ANY];

do s :STRING)
create tape do

end log file . call (s)
end

store (o: ANY) end
require class MAIN

is loaded main (c: CLIENT)
do local

tape .save (o) t : TAPE ARCHIVE
end do
−− other routines create t.make
−− omitted c. log (agent t.store , ”Hello World”)

end end
end

Fig. 1. Archive example encoded in Eiffel.

The verification challenge in this case is to verify the routine log in an abstract
way, and being able to show that the precondition of the agent store holds before
its invocation. In the routine log, the methodology has to assume that the target
is closed but the exact target is unknown.

3 Verification Methodology

A verification technique should address both the specification of routines that
uses function objects and the verification of invocation of function objects. Sec-
tion 3.1 considers the first issue; the remainder of this section examines the
second one.

3.1 Specifying Function Objects

The difficulty of specifying the correctness of agents is that while a variable of
an agent type represents a routine, it is impossible to know statically which
routine that is. The purpose of agents is to abstract from individual routines.
The specification must reflect this abstraction.

What characterizes the correctness of a routine is its precondition and its
postcondition. For an agent, these are known abstractly through the functions



precondition and postcondition of class ROUTINE and its descendants. These
functions enable us to perform the necessary abstraction on agent variables and
expressions. The approach makes it possible for example to equip the routine
format with a contract:

format (proc: PROCEDURE [FORMATTER, PARAGRAPH ];
f : FORMATTER)

require
proc . precondition ( f ,Current)

do
proc . call ( f ,Current)

ensure
proc . postcondition ( f ,Current)

end

Note that the precondition of format uses the routine precondition to query
the precondition of the procedure proc. Finally, we need to specify the routine
call in the class ROUTINE. Its specification is the following:

call ( target : ANY; p: ANY)
require

Current.precondition (target,p)
ensure

Current.postcondition (target,p)

3.2 Reasoning

This section describes the methodology to reason about agents with open argu-
ments. This methodology is presented as a translation from Eiffel to Boogie2 [16].
The translation uses the basic Boogie2 instructions assume, assert, havoc, and
assignment. In the following, we present the translation of agent initialization
and agent invocation. The translation of other instructions such as assignments
and routine invocation is similar to the translation applied in Spec#; for more
details see [15]. The methodology is extended for closed arguments in Section 3.3;
framing is handled in Section 4.

Agent Pre- and Postconditions. The methodology introduces two uninterpreted
functions to model the pre- and postcondition of the agent. The function8 $pre-
condition takes three values (the agent, the target, and the parameter), and the
current heap, and yields the evaluation of the agent’s precondition. The function
$postcondition takes a second heap to evaluate old expressions. The signatures
of these functions are defined as follows9:

$precondition : Value ×Value ×Value ×Heap ⇀ Bool
$postcondition : Value ×Value ×Value ×Heap ×Heap ⇀ Bool

8 We use the prefix $ for the mathematical functions to distinguish them from the
Eiffel routines.

9 ⇀ denotes partial functions.



Invoking Agents. Given an agent a, a target t , and an argument p, the agent
is invoked using the Eiffel routine call. The translation of the agent invocation
a.call(t , p) first asserts the precondition of the agent, and then assumes its post-
condition. The proof obligations are the following:

assert $precondition(a, t , p, Heap)
h0 := Heap
havoc Heap
assume $postcondition(a, t , p, Heap, h0)

The current heap is denoted by Heap. The assignment h0 := Heap saves the
current heap, then h0 is used to evaluate old expressions in the postcondition of
the agent. The havoc command assigns an arbitrary value to the heap.

Initializing Agents. The translation above asserts the abstract precondition of
the agent. This abstract precondition could be any precondition of any proce-
dure. Once the agent is initialized with a procedure pr , the methodology connects
the abstract pre- and postcondition of the agent with the concrete pre- and post-
condition of the procedure pr . Thus, if the precondition of pr holds, the prover
will be able to show that the abstract precondition holds.

Given the agent initialization a := agent pr where pr is a procedure10, the
methodology generates the following assumptions:

assume ∀t , p :ObjectId ; h1 :Heap :$precondition(a, t , p, h1) = $prepr (t , p, h1)
assume ∀t , p:ObjectId ; h1, h2 :Heap :$postcondition(a, t , p, h1, h2) = $postpr (t , p, h1, h2)

where $prepr and $postpr denotes the pre- and postcondition of the procedure
pr , t the target object, and p the argument respectively; we assume that the
agent variable a is a fresh variable.

The translation of agents to Boogie2 is based on the translation of pure rou-
tines [8,22]. The novel concepts are the introduction of the functions $precondition
and $postcondition to model the agent pre- and postcondition, and the gener-
ation of assumptions for the initialization of the agent, which relates the pre-
and postcondition of the agent with the concrete pre- and postcondition of the
procedure.

3.3 Reasoning about Closed Arguments

To model closed arguments, we define two uninterpreted functions: $precondition1

and $postcondition1
11. These functions are similar to the functions defined in the

10 agent pr is an abbreviation for keeping all arguments open (including the target),
as in agent {TYPE}.pr(?).

11 As a reminder, we assume that routines have only one parameter, although, the
methodology can be extended easily.



section above but they take an agent with one closed argument (either closed
target or closed parameter) and the heap(s), and yield the evaluation of the pre-
and postcondition. The signatures are:

$precondition1 : Value ×Value ×Heap ⇀ Bool
$postcondition1 : Value ×Value ×Heap ×Heap ⇀ Bool

The translation for initializing agents, and invoking agents are similar to the
section above; Figure 2 presents this translation.

Eiffel code Boggie2 code

(A) a.call(p)

assert $precondition1(a, p, Heap)
h0 := Heap
havoc Heap
assume $postcondition1(a, p, Heap, h0)

(B) a := agent t1.pr

assume ∀p : ObjectId ; h1 : Heap :

$precondition1(a, p, h1) = $prepr (t1, p, h1)

assume ∀p : ObjectId ; h1, h2 : Heap :

$postcondition1(a, p, h1, h2) = $postpr (t1, p, h1, h2)

where t1 is the closed target, and pr a procedure

(C ) a := agent pr(p1)

assume ∀t : ObjectId ; h1 : Heap :
$precondition1(a, t , h1) = $prepr (t , p1, h1)

assume ∀t : ObjectId ; h1, h2 : Heap :
$postcondition1(a, t , h1, h2) = $postpr (t , p1, h1, h2)

where p1 is the closed parameter, and pr a procedure

Fig. 2. Translation of Agents with Closed Arguments to Boogie2: (A) Agent
Invocation with Closed Arguments; (B) Closed Target Initialization; (C) Closed
Parameter Initialization.

Note that Eiffel does not distinguish between an agent with open target and
an agent with open parameter. Both agents are declared with the same notation.
Thus, the methodology uses the functions $precondition1 and $postcondition1

to express the precondition and postcondition with closed target and closed
parameter, and then it uses the assumptions generated in the initialization of
the agent.



4 Framing

A necessary part of a routine specification is the modifies clause, which defines
the locations that are modified by the routine. The problem of defining these
locations is known as frame problem. The frame problem has been addressed for
example using dynamic frames [18], ownership [6], separation logic [31,26], and
regional logic [1]. However, this problem has to be solved for agents. This section
presents a solution for framing agents based on dynamic frames. As future work,
we plan to investigate the integration with other techniques such as separation
logic.

In Section 2.1 we have specified the routine format , however, one needs to
specify what locations this routine modifies. A candidate solution for this prob-
lem is to assume that format modifies all the locations than can be accessed
from the target and the arguments of the agent proc. However, this assumption
is too strong since format may only modify a few attributes of proc’s target.
Note that format can be invoked with different routines, and each routine might
modify different locations.

To address the frame problem for agents, we adapt dynamic frames. Instead of
using a set of locations as in Kassios’s work [18], we introduce a routine modifies
(in the source language), which takes an agent a, its target t and argument
value p, and returns the locations modified by the agent a with target t and
argument p. This function abstracts from the specific locations that the agent
modifies. Thus, the modifies clause of format can be defined as follows (pre and
postconditions are omitted):

format (proc: PROCEDURE [FORMATTER, PARAGRAPH ];
f : FORMATTER)

modify
modifies (proc , f , Current)

do
proc . call ( f , Current)

end

This modifies clause expresses that the routine format modifies the locations
that are modified by the procedure proc. Depending on the routine used to invoke
format , the function modifies will yield a different set of locations.

Following, we describe the encoding of framing for agents with open argu-
ments; framing for closed arguments is presented in our technical report [24].

Modifies Clauses. We have extended Eiffel with modifies clauses. Each routine
contains a modifies clause which is defined as a comma separated list of loca-
tions. To express what locations are modified by an agent, we introduce the
function modifies. The definition of modifies clauses and routine declarations is
the following:



Mclause ::= Mclause, Mclause
| VarId
| modifies(VarId , VarId , VarId)

Routine ::= RoutineId (VarId : Type) : Type
require

BoolExp
modify

Mclause
do

Instr
ensure

BoolExp
end

where boolExp are boolean expressions, RoutineId routine identifiers, VarId vari-
able identifiers, and Instr instructions.

Encoding of Modifies Clauses. To encode the routine modifies, we introduce an
uninterpreted function $modifies which takes an agent a, its target and argument
values, the current heap, an object value o, and a field name f , and yields true
if the agent a with its target and argument modifies the field f of the object o.
The signature of this function is the following:

$modifies : Value ×Value ×Value ×Heap ×Value × FieldId ⇀ Bool

Modifies clauses are encoded in a similar way to Spec#, but cosidering the
mapping of the Eiffel function modifies. Modifies clauses are a list of applications
of the function modifies and variable identifiers. Given the modifies clause in the
source language:

modifies(a1, t1, p1), ..., modifies(an , tn , pn), v1, ..., vm

this clause is encoded in Boogie2 as:

ensures ∀o : ObjectId ; fId : FieldId :0@ not $modifies(a1, t1, p1, Heap, o, fId) ∧ ...∧
not $modifies(an , tn , pn , Heap, o, fId)
∧ o 6= v1 ∧ ... ∧ o 6= vm

1A⇒ Heap[o, fId ] = old(Heap)[o, fId ]

For example, the modifies clause of the routine format is encoded as follows:

ensures ∀o : ObjectId ; fId : FieldId :
not $modifies(proc, f , Current , Heap, o, fId)⇒ Heap[o, fId ] = old(Heap)[o, fId ]

This property expresses that for all objects o, and all fields fId that are not
modified by the agent proc with the target f and argument Current , the value



of the field o.fId in the current heap is equal to the value of o.fId in the old
heap. The expression Heap[o, fId ] yields the value of the field fId of the object
o in the current heap.

Initializing Agents. To address the frame problem for agents, we need to link
the uninterpreted function $modifies(proc, t , p) with the locations that the rou-
tine proc modifies. We solve this by applying the same approach used to reason
about agent pre- and postconditions. Thus, our methodology connects the un-
interpreted function $modifies with the concrete set of locations that the agent
modifies.

Given a procedure pr , the agent initialization a := agent pr generates the
following assumptions:

assume ∀t , p : ObjectId ; h1 : Heap : $precondition(a, t , p, h1) = $prepr (t , p, h1)
assume ∀t , p : ObjectId ; h1, h2 : Heap :

$postcondition(a, t , p, h1, h2) = $postpr (t , p, h1, h2)
assume ∀t , p, o : ObjectId ; fId : FieldId ; h1 : Heap :

$modifies(a, t , p, h1, o, fId) = $modifiespr (t , p, h1, o, fId)

The assumptions for the functions $precondition and $postcondition are the
same assumptions as described in Section 3.2. The third assumption relates the
uninterpreted function $modifies with the modifies clause of pr . The function
$modifiespr yields true if the procedure pr modifies the field o.fId for the target
t and argument p. The definition of this function is generated from the modifies
clause of the procedure pr .

For example, assuming that the routine align left in the class FORMATTER

(Section 2.1) modifies its argument p, then modifiesalign left is defined as

$modifiesalign left(Current , p, h, o, fId) , (h[o] = p)

Limitations. The current implementation of modifies clauses is not powerful
enough to express some non-interference properties. One can express that an
agent a modifies a set of locations s, and an agent b modifies another set of
locations r , however, we cannot express that these locations are disjoint.

The same problem arises when verifying agents with open targets. An exam-
ple of the use of open target is the routine do all defined in the class LIST of
the Eiffel base library. The do all routine takes an agent with open target, and
invokes the agent for all elements of the list. To verify the routine do all, one
needs to reason about non-interference at an abstract level, because the invoca-
tion of the agent for the ith element of the list might violate the precondition of
the agent for the jth element of the list. To address this problem, a mechanism
to support non-interference reasoning is required, as discussed in our technical
report [24]. Extending our implementation to support this mechanism is part of
future work.



5 Applications

In this section we study the applicability of our methodology to a range of ex-
amples which illustrate challenging aspects of reasoning about function objects.

5.1 Formatter Example

To verify the routine format, the methodology generates the following Boogie2
code12:

format(proc : PROCEDURE [FORMATTER, PARAGRAPH ]; f : FORMATTER)
1 assume $precondition(proc, f , Current , Heap)
2 assert $precondition(proc, f , Current , Heap)
3 h0 := Heap
4 havoc Heap
5 assume $postcondition(proc, f , Current , Heap, h0)
6 assume ∀o : ObjectId ; fId : FieldId :

not $modifies(proc, f , Current , Heap, o, fId)⇒ Heap[o, fId ] = h0[o, fId ]
7 assert $postcondition(proc, f , Current , Heap, h0)
8 assert ∀o : ObjectId ; fId : FieldId :

not $modifies(proc, f , Current , Heap, o, fId)⇒ Heap[o, fId ] = h0[o, fId ]

The pre- and postcondition of format are translated in the lines 1 and 7,
respectively. The modifies clause of format is translated in line 8. The agent
invocation is translated in the lines 2-6. This translation assumes the postcondi-
tion and the modifies clause of call in lines 5 and 6. The proof is straightforward
since the assume and assert instructions in lines 1 and 2, lines 5 and 7, and
lines 6 and 8 refer to the same heap.

The most interesting case in the verification of function object is the verifica-
tion of clients that use function objects, such as apply align left. The application
of the methodology to this routine generates the Boogie2 code presented in Fig-
ure 3.

Similar to the previous example, lines 1 and 11 are generated by the transla-
tion of the pre- and postcondition; line 12 is the translation of the modifies clause.
The declaration agent {FORMATTER}.align left generates lines 2-5. The pre-
condition and postcondition of the routine align left is denoted by $prealign left

and $postalign left respectively; the modifies clause of align left is denoted by
$modifiesalign left . The invocation of the routine format produces lines 6-10. The
current heap is stored in h0 in line 7 to be able to evaluate the postcondition in
line 9.

The key points in the proof are the assert instructions at lines 6, 11 and 12.
By the definition of $prealign left , $postalign left , and $modifiesalign left we know:

12 To simplify the presentation, we use the signature of the function in Eiffel.



apply align left(f : FORMATTER; p : PARAGRAPH )
1 assume not p.$left aligned
2 a := agent{FORMATTER}.align left
3 assume ∀t1, p1 : ObjectId ; h : Heap :

$precondition(a, t1, p1, h) = $prealign left(t1, p1, h)
4 assume ∀t1, p1 : ObjectId ; h, h ′ : Heap :

$postcondition(a, t1, p1, h, h ′) = $postalign left(t1, p1, h, h ′)
5 assume ∀t1, p1, o : ObjectId ; fId : FieldId ; h : Heap :

$modifies(a, t1, p1, h, o, fId) = $modifiesalign left(t1, p1, h1, o, fId)
6 assert $precondition(a, f , p, Heap)
7 h0 := Heap
8 havoc Heap
9 assume $postcondition(a, f , p, Heap, h0)
10 assume ∀o : ObjectId ; fId : FieldId :

not $modifies(proc, f , p, Heap, o, fId)⇒ Heap[o, fId ] = h0[o, fId ]
11 assert p.$left aligned
12 assert ∀o : ObjectId ; fId : FieldId :

o 6= p ⇒ Heap[o, fId ] = h0[o, fId ]

Fig. 3. Proof obligations of the routine apply align left.

∀t1, p1 : ObjectId ; h : Heap : $prealign left(t1, p1, h) = not p1.$left aligned (1)
∀t1, p1 : ObjectId ; h, h ′ : Heap : $postalign left(t1, p1, h, h ′) = p1.$left aligned (2)

$modifiesalign left(Current , p, h, o, fId) = h[o] 6= p (3)

In particular, $prealign left(f , p, Heap) = not p.$left aligned . Then, the as-
sertion at line 6 is proven using the assumptions at lines 1 and 3, and (1). The
assertion at line 11 is proven in a similar way using the assumptions at lines 4
and 9, and (2). Finally, the assertion at line 12 is proven in a similar way using
the assumptions at lines 5 and 10, and (3).

5.2 Archive Example

In the archive example, the most interesting proof is the proof of the routine
main. The routine log is interesting to show how to specify and prove closed
arguments. To prove these routines, we apply the methodology described in
Section 3.3 (to simplify the example, we omit the the translation for framing).
The proof for the routine log is similar to the proof of the format routine. The
only change is the use of the function $precondtion1 which takes only three
arguments (the procedure log file, the string s and the heap). The generated
proof obligations are the following:



log(log file : PROCEDURE [ANY ; TAPE ]; s : STRING)
1 assume $precondition1(log file, s, Heap)
2 assert $precondition1(log file, s, Heap)
3 log file.call(s)

The translation of the routine main is as follows:

main(c : CLIENT )
1 create t .make
2 assert t .$is loaded
3 a := agent t .store
4 assume ∀p1 : ObjectId ; h : Heap :

$precondition1(a, p1, h) = $prestore(a, t , p1, h)
5 assume ∀p1 : ObjectId ; h, h ′ : Heap :

$postcondition1(a, p1, h, h ′) = $poststore(a, t , p1, h, h ′)
6 assert $precondition1(a, ”HelloWorld”, Heap)
7 c.log(a, ”HelloWorld”)

The proof of routine main translates the agent in lines 3-5. The function
precondition1 is used to express the precondition of the agent with closed target.
Using the assumption at line 4 and the knowledge of line 2, one can prove the
assert instruction at line 7.

6 Experiments

We have implemented an automatic verifier for agents, called EVE Proofs, follow-
ing the architecture of the Spec# verifier [2]. Given an Eiffel program, the tool
generates a Boogie2 [16] file, and uses the Boogie verifier to prove the generated
program. The tool is integrated in EVE [10] (the Eiffel Verification Environ-
ment), and it can be downloaded from http://eve.origo.ethz.ch/. Once the
user has specified pre- and post-conditions, and invariants, the verification is
completely automatic.

EVE Proofs translates each agent initialization into Boogie2 assumptions as
described in Section 3 and Section 4. These assumptions are generated inside
the body of the Boogie2 procedure corresponding to the Eiffel routine. Thus,
Boogie only considers the agent properties inside the procedure where the agent
is used.

Using EVE Proofs, we have automatically proven a suite of examples: the
examples presented in Section 2, and several more agent-intensive programs to
model graphical user interfaces. The examples can be downloaded from http:
//se.ethz.ch/people/tschannen/examples.zip. The experiments were run
on a machine with a 2.71 GHz dual core Pentium processors with 2GB of RAM.

Table 1 presents the results of the experiments. For each example, the table
shows the number of classes, agents, agent calls, and lines of code in Eiffel, as

http://eve.origo.ethz.ch/
http://se.ethz.ch/people/tschannen/examples.zip
http://se.ethz.ch/people/tschannen/examples.zip


Name Classes Agents Agent calls LOC Eiffel LOC Boogie2 Time [s]

1. Formatter 3 2 2 116 414 1.57
2. Archiver 4 1 1 119 440 1.58
3. Command 3 2 4 120 435 1.61
4. Calculator 3 11 11 243 817 25.14
5. ATM 4 13 20 486 1968 73.72
6. Cell / Recell 3 4 4 151 497 1.71
7. Counter 2 2 4 96 356 1.53
8. Sequence 5 2 4 200 526 1.78

Total 27 37 50 1513 5453 108.64

Table 1. Examples automatically verified by EVE Proofs

well as the number of lines of the encoding in Boogie2. The last column shows
the running time of Boogie (the dominant factor in the verification).

The formatter and archiver examples have been discussed in the previous
sections. The third example is a typical implementation of the command pat-
tern [12]. It defines a command class that uses an agent to store an action, which
will be executed when the command’s execute function is called. This pattern is
also used in the calculator and ATM examples, which model applications using
graphical user interfaces (GUI). The calculator example implements the GUI of
a simple calculator with buttons for the digits, and basic arithmetic operations
such as addition, subtraction, and multiplication. The ATM example imple-
ments a GUI for an ATM machine, and it also implements client code where a
pin number is entered, and money is deposited and withdrawn from an account.
These two examples are of particular interest because the GUI libraries in Eiffel
typically use agents to react on events.

The ATM and calculator example make extensive use of the command pat-
tern and therefore have more agents. Due to the increased number of agent
calls and more difficult contracts, the proof of these examples takes significantly
longer than the smaller examples. The ATM example is slower than the Calcu-
lator because the ATM example has more agent calls.

The cell/recell example is an extension of an example by Parkinson and Bier-
man [29] with agents. The counter example implements a simple counter class
with increase and decrease operations. The last example defines a class hierarchy
for integer sequences introducing an arithmetic and Fibonacci sequence.

Graphical user interfaces use agents intensively. We have performed some
experiments to check the verification time in such applications. The results have
shown that increasing the number of agent initializations in a routine slighlty
increases the overall verification time of that routine. This time increase is due
to the additional assumptions that are generated for each agent. The new as-
sumptions are then used by Boogie, and thus slow down the verification. Since
the verification methodology is modular, the assumptions are local to a specific
routine. The increase of agent initializations in one routine does not affect the
verification time of other routines.



7 Related Work

Jacobs [14] as well as Müller and Ruskiewicz [23] extend the Boogie verification
methodology to handle C# delegates. They associate pre- and postconditions
with each delegate type. When the delegate type is instantiated, they prove that
the specification of the method refines the specification of the delegate type.
At the call site, one has to prove the precondition and may assume the post-
condition of the delegate. By contrast, the methodology presented here “hides”
the specification behind abstract predicates. Callers will in general require the
predicates to hold that they need in order to call an agent. The approach taken
by Jacobs, Müller, and Ruskiewicz splits proof obligations into two parts, the
refinement proof when the delegate is instantiated and the proof of the precon-
dition when the delegate is called. This split makes it difficult to handle closed
parameters, in particular, the closed receiver of C# delegates. Both previous
works use some form of ownership [21] to ensure that the receiver of a delegate
instance has the properties required by the method underlying the delegate. Our
methodology requires only one proof obligation when the agent is called and can
be generalized to several closed parameters more easily.

Parkinson and Bierman [28,29] introduce abstract predicates to verify object-
oriented programs in separation logic. Abstract predicates are a powerful means
to abstract from implementation details and to support information hiding and
inheritance. Distefano and Parkinson [9] show the applicability of abstract pred-
icates by implementing a tool to verify Java programs. The tool handles several
design patterns such as the visitor pattern, the factory pattern, and the observer
pattern. The predicates we use for the preconditions and postconditions of agents
are inspired by abstract predicates. Even though Parkinson and Bierman’s work
and Distefano and Parkinson’s work do not handle function objects, we believe
that the ideas presented in this paper also apply to their setting.

Birkedal et al. [4] present higher-order separation logic, a logic for a second-
order programming language, and use it to verify an implementation of the
Observer pattern [19]. In contrast to separation logic, the methodology presented
in this paper is designed to work with standard first-order theorem provers.

Contracts have been integrated into higher-order functions. Findler et al. [11]
integrate contracts using a typed lambda calculus with assertions for higher-
order functions. Honda et al. [13,3] introduce a sound compositional program
logic for higher-order functions. Régis-Gianas and Pottier [30] develop a Hoare
logic for a call-by-value programming language equipped with higher-order func-
tions. Kanig and Filiatre [17] present a tool to verifier higher-order functions.
The tool uses an intermediate language; the tool is intended to be used for
verification tools targeting ML-like programming languages. Function objects
in object-oriented languages are more complex than higher-order functions in
functional languages because of the heap and side-effects. Although the pre- and
postconditions of agents are side-effect free, agent calls are not: agent calls can
access the heap, and can modify any attribute. This makes the verification of
function objects harder compared to functional programming languages.



Börger et al. [5] present an operational semantics of C# including delegates.
The semantics is given using abstract state machines. However, this work does
not describe how to apply this model to specify and verify C# programs.

Schoeller [32] has developed an automatic verifier for a subset of Eiffel. The
tool generates Boogie code, and uses the Boogie verifier to prove the generated
Boogie program. However, Schoeller’s tool does not handle agents. Paige and
Ostroff [27], and Nordio et al. [25] have formalized semantics for a subset of
Eiffel, but these works do not include agents. Our encoding of the routines
precondition and postcondition is based on previous work on pure routines by
Darvas and Leino [8,7], and Leino and Müller [22].

8 Conclusions and Future Work

We have introduced a verification methodology to verify higher-order functions,
and we have implemented an automatic verifier for function objects. The verifier
takes an Eiffel program, translates it to Boogie2, and uses the Boogie verifier to
prove the generated code. Our experiments with automatic proofs indicate that
the methodology is able to specify and verify function objects by introducing
side-effect free routines which model abstractly the pre- and postcondition of
the function objects. The experience so far suggests that a complete verification
chain leading to fully automatic verification of object-oriented programs with
function objects is possible.

Although presented in Eiffel, the verification methodology is not dependent
on a specific programming language; we see no major obstacles in applying it to
other languages supporting function objects.

As future work we plan to extend the framing methodology to handle non-
interference. In particular, we plan to extend the implementation to be able to
prove library classes such as linked lists. Furthermore, we plan to investigate how
to apply a similar methodology to generics (in particular constrained generics).
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