
Automatic Verification of
Advanced Object-Oriented Features:

The AutoProof Approach

Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

Abstract. Static program verifiers such as Spec#, Dafny, jStar, and
VeriFast define the state of the art in automated functional verifica-
tion techniques. The next open challenges are to make verification tools
usable even by programmers not fluent in formal techniques. This pa-
per discusses some techniques used in AutoProof, a verification tool that
translates Eiffel programs to Boogie and uses the Boogie verifier to prove
them. In an effort to be usable with real programs, AutoProof fully sup-
ports several advanced object-oriented features including polymorphism,
inheritance, and function objects. AutoProof also adopts simple strate-
gies to reduce the amount of annotations needed when verifying programs
(e.g., frame conditions). The paper illustrates the main features of Auto-
Proof’s translation, including some whose implementation is underway,
and demonstrates them with examples and a case study.

1 Usable Verification Tools

It is hard to overstate the importance of tools for software verification: tools
have practically demonstrated the impact of general theoretical principles, and
they have brought automation into significant parts of the verification process.
Program provers, in particular, have matured to the point where they can han-
dle complex properties of real programs. For example, provers based on Hoare
semantics—e.g., Spec# [2] and ESC/Java [5]—support models of the heap to
prove properties of object-oriented applications; other tools using separation
logic—e.g., jStar [4] and VeriFast [8]—can reason about complex usages of point-
ers, such as in the visitor, observer, and factory design patterns. The experience
gathered so far has also outlined some design principles, which buttress the de-
velopment on new, improved verification tools; the success of the Spec# project,
for example, has shown the value of using intermediate languages (Boogie [10],
in the case of Spec#) to layer a complex verification process into simpler com-
ponents, which can then be independently improved and reused across different
projects.

The progress of verification tools is manifest, but it is still largely driven
by challenge problems and examples. While case studies will remain important,
verification tools must now also become more practical and usable by “lay” pro-
grammers. In terms of concrete goals, prover tools should support the complete

semantics of their target programming language; they should require minimal
annotational effort besides writing ordinary pre and postconditions of routines
(methods); and they should give valuable feedback when verification fails.

The present paper describes some traits of AutoProof, a static verifier for Eif-
fel programs that makes some progress towards these goals of increased usability.
AutoProof translates Eiffel programs annotated with contracts (pre and post-
conditions, class invariants, intermediate assertions) into Boogie programs. The
translation currently handles sophisticated language features such as exception
handling and function objects (called agents in Eiffel parlance, and delegates in
C#). To reduce the need for additional annotations, AutoProof includes simple
syntactic rules to generate standard frame conditions from postconditions, so
that programmers have to write down explicit frame conditions only in the more
complex cases.

This paper outlines the translation of Eiffel programs into Boogie, focusing
on the most original features such as exception handling (which is peculiarly
different in Eiffel, as opposed to other object-oriented languages such as Java
and C#) and the generation of simple frame conditions. The translation of more
standard constructs is described elsewhere [25]. At the time of writing, Auto-
Proof does not implement the translation of exceptions described in the paper,
but its inclusion is underway. The paper also reports a case study where we au-
tomatically verify several Eiffel programs, exercising different language features,
with AutoProof. AutoProof is part of EVE (Eiffel Verification Environment), the
research branch of the EiffelStudio integrated development environment, which
integrates several verification techniques and tools. EVE is distributed as free
software and available for download at:

http://se.inf.ethz.ch/research/eve/

A version of AutoProof is also integrated into CloudStudio [21] web-based multi-
language integrated development environment, available online at:

http://cloudstudio.ethz.ch/.

Outline. Section 2 introduces the Boogie intermediate language to make
the paper self-contained. Section 3 presents the Boogie translation of Eiffel’s
exception handling primitives; Section 4 describes a translation of conforming
inheritance that supports polymorphism; Section 5 discusses a technique to verify
function objects. Section 6 sketches other features of the translation, such as
the definition of “default” frame conditions; Section 7 illustrates the examples
verified in the case study; Section 8 presents the essential related work, and
Section 9 outlines future work.

2 A Short Introduction to Boogie

Boogie is a language for verification [10], as well as an automated verifier that
takes programs written in the Boogie language as input. AutoProof verifies Eiffel
programs by translating them into the Boogie language and then by calling

2

http://se.inf.ethz.ch/research/eve/
http://cloudstudio.ethz.ch/

the Boogie verifier on the translation. The Boogie verifier generates verification
conditions for the input program, and supports different prover back-ends (e.g.,
Z3 and Simplify) to discharge them. For readers unfamiliar with Boogie, this
section describes the essential features of the Boogie language used in the rest
of the paper.

The Boogie language offers two kinds of constructs: a simple imperative mod-
ular programming language—used to translate the source program (Eiffel, in our
case)—and a specification language based on first-order logic—used to define
specification elements and background logic theories needed to support complex
specifications.

Boogie’s specification language is a typed first-order logic with arithmetic.
The basic types include Booleans (bool) and mathematical (unbounded) inte-
gers (int); the type constructors support the definition of derived types. Line 1
in Figure 1 declares a new type person, which Boogie treats as a fresh sort
for variables. The specification language supports the definition of global vari-
ables and constants, functions (in the sense of mathematical logic), and axioms.
Line 2, for example, declares a global constant eve of type person. Lines 3 and
4 declare two functions age and can vote. Lines 5 and 6 introduce two axioms
about the declared items: age is defined as 23 for argument eve; and can vote is
true precisely for persons whose age is greater than or equal to 18.

1 type person;
2 const eve: person;
3 function age(p: person) returns (int);
4 function can vote(p: person) returns (bool);
5 axiom (age(eve) = 23);
6 axiom (∀ p: person • can vote(p) ⇐⇒ age(p) ≥18);

Fig. 1. Some definitions in Boogie’s specification language.

Boogie’s programming language supports the definition of procedures. Each
procedure has a signature, which may include a specification in terms of precon-
ditions (requires), postconditions (ensures), and frame clauses (modifies).
The specification clauses contain formulas in Boogie’s specification language.
Postconditions, in addition, supports the usage of the old keyword to evaluate
expressions in the state before a procedure was called. Modifies clauses, instead,
define a procedure’s frame, that is the set of global variables the procedure may
modify. Pre- and postconditions may be marked as free, which prevents the
generation of proof obligations based on them: a free assertion is assumed to
hold whenever convenient, but need not be checked when required.

Procedure implementations use standard imperative constructs (assignments,
conditionals, loops, jumps, and procedure calls) with the usual semantics. To
write nondeterministic programs, Boogie’s programming language includes the
havoc command, which assigns a nondeterministically chosen value to its argu-

3

ment variables. To constrain the effects of havoc and to express intermediate
verification conditions, Boogie’s programming language also offers assert and
assume statements. Both take an arbitrary formula F as argument. The pro-
gram state of every execution reaching an assert F must satisfy F; otherwise,
verification fails. Conversely, the verification process can assume that F holds
of the program state whenever an execution reaches assume F, which “shapes”
the nondeterministic behavior when convenient.

Figure 2 shows the specification and implementation of a procedure vote to
cast a vote, demonstrating Boogie syntax.

var votes: int;

procedure vote(p: person);
requires can vote(p);
ensures votes = old(votes) + 1;
modifies votes;

implementation vote(p: person) {
votes := votes + 1
}

Fig. 2. A Boogie procedure vote: specification and implementation.

3 Exceptions

Eiffel’s exception handling mechanism is different than most object-oriented pro-
gramming languages such as C# and Java.1 This section presents Eiffel’s mech-
anism (Section 3.1), discusses how to annotate exceptions (Section 3.2), and
describes the translation of Eiffel’s exceptions to Boogie (Section 3.3) with the
help of an example (Section 3.4).

3.1 How Eiffel Exceptions Work

Eiffel exception handlers are specific to each routine, where they occupy an op-
tional rescue clause, which follows the routine body (do). A routine’s rescue
clause is ignored whenever the routine body executes normally. If, instead, ex-
ecuting the routine body triggers an exception, control is transferred to the
rescue clause for exception handling. The exception handler will try to restore
the object state to a condition where the routine can execute normally. To this

1 In related work, we have formalized the semantics of Java exceptions [16] and com-
pared it against Eiffel’s [17].

4

end, the body can run more than once, according to the value of an implicit
variable Retry, local to each routine: when the execution of the handler termi-
nates, if Retry has value True the routine body is run again, otherwise Retry
is False and the pending exception propagates to the rescue clause of the caller
routine.

Figure 3 illustrates the Eiffel exception mechanism with an example. The rou-
tine attempt transmission tries to transmit a message by calling unsafe transmit;
if the latter routine terminates normally, attempt transmission also terminates
normally without executing the rescue clause. On the contrary, an exception
triggered by unsafe transmit transfers control to the rescue clause, which re-
executes the body for max attempts times; if all the attempts fail to execute
successfully, the attribute (field) failed is set and the exception propagates.

attempt transmission (m: STRING)
local

failures : INTEGER
do

failed := False
unsafe transmit (m)

rescue
failures := failures + 1
if failures <max attempts then

Retry := True
else

failed := True
end

end

Fig. 3. An Eiffel routine with exception handler.

3.2 Specifying Exceptions

The postcondition of a routine with rescue clause specifies the program state
both after normal termination and when an exception is triggered. The two
post-states are in general different, hence we introduce a global Boolean vari-
able ExcV, which is True if and only if the routine has triggered an excep-
tion. Using this auxiliary variable, specifying postconditions of routines with
exception handlers is straightforward. For example, the postcondition of routine
attempt transmission in Figure 3 says that failed is False if and only if the
routine executes normally:

attempt transmission (m: STRING)
ensure

ExcV implies failed

5

not ExcV implies not failed

The example also shows that the execution of a rescue clause behaves as
a loop: a routine r with exception handler r do s1 rescue s2 end behaves as
the loop that first executes s1 unconditionally, and then repeats s2 ; s1 until
s1 triggers no exceptions or Retry is False after the execution of s2 (in the
latter case, s1 is not executed anymore). To reason about such implicit loops,
we introduce a rescue invariant [20,22]; the rescue invariant holds after the first
execution of s1 and after each execution of s2 ; s1. A suitable rescue invariant of
routine attempt transmission is:

rescue invariant
not ExcV implies not failed
(failures <max attempts) implies not failed

3.3 Eiffel Exceptions in Boogie

The auxiliary variable ExcV becomes a global variable in Boogie, so that every
assertion can reference it. The translation also introduces an additional precon-
dition ExcV = false for every translated routine, because normal calls cannot
occur when exceptions are pending, and adds ExcV to the modifies clause of
every procedure. Then, a routine with body s1 and rescue clause s2 becomes in
Boogie:

∇(s1, excLabel)
excLabel : while (ExcV)

invariant ∇(Irescue);
{

ExcV := false;
Retry := false;
∇(s2, endLabel)
if (¬Retry) {ExcV := true; goto endLabel} ;
∇(s1, excLabel)
}

endLabel:

where ∇(s, l) denotes the Boogie translation ∇(s) of the instruction s, followed
by a jump to label l if s triggers an exception:

∇(s, l) =

{
∇(s′, l) ; ∇(s′′, l) if s is the compound s′ ; s′′

∇(s) ; if (ExcV) {goto l;} otherwise

Therefore, when the body s1 triggers an exception, ExcV is set and the
execution enters the rescue loop. On the other hand, an exception that occurs
in the body of s2 jumps out of the loop and to the end of the routine.

The exception handling semantics is only superficially similar to having
control-flow breaking instructions such as break and continue—available in lan-
guages other than Eiffel—inside standard loops: the program locations where the

6

control flow diverts in case of exception are implicit, hence the translation has
to supply a conditional jump after every instruction that might trigger an ex-
ception. This complicates the semantics of the source code, and correspondingly
the verification of Boogie code translating routines with exception handling.

3.4 An Example of Exception Handling in Boogie

Figure 4 shows the translation of the example in Figure 3. To simplify the pre-
sentation, Figure 4 renders the attributes max attempts, failed , and transmitted
(set by unsafe transmit) as variables rather than locations in a heap map. The
loop in lines 24–38 maps the loop induced by the rescue clause, and its invariant
(lines 25 and 26) is the rescue invariant.

4 Inheritance and Polymorphism

The redefinition of a routine r in a descendant class can strengthen r’s original
postcondition by adding an ensure then clause, which conjoins the postcondi-
tion in the precursor. The example in Figure 5 illustrates a difficulty occurring
when reasoning about postcondition strengthening in the presence of polymor-
phic types. The deferred (abstract) class EXP models nonnegative integer expres-
sions and provides a routine eval to evaluate the value of an expression object;
even if eval does not have an implementation in EXP, its postcondition spec-
ifies that the evaluation always yields a nonnegative value stored in attribute
last value , which is set as side effect (see Section 6.1). Classes CONST and
PLUS respectively specialize EXP to represent integer (nonnegative) constants
and addition. Class ROOT is a client of the other classes, and its main routine
attaches an object of subclass CONST to a reference with static type EXP, thus
exploiting polymorphism. Similar issues occur when a descendant class weakens
a some routine r’s precondition with an require else clause.

The verification goal is proving that, after the invocation e.eval (in class
ROOT), eval’s postcondition in class CONST holds, which subsumes the check
statement in the caller. Reasoning about the invocation only based on the static
type EXP of the target e guarantees the postcondition last value ≥ 0, which is
however too weak to establish that last value is exactly 5.

Other approaches, such as Müller’s [15], have targeted these issues in the
context of Hoare logics, but they usually are unsupported by automatic program
verifiers. In particular, with the Boogie translation of polymorphic assignment
implemented in Spec#, we can verify the assertion check e. last value = 5 end
in class ROOT only if eval is declared pure; eval is, however, not pure. The Spec#
methodology selects the pre and postconditions according to static types for non-
pure routines: the call e. eval only establishes e. last value ≥ 0, not the stronger
e. last value = 5 that follows from e’s dynamic type CONST, unless an explicit
cast redefines the type CONST. The rest of the section describes the solution
implemented in AutoProof, which handles contracts of redefined routines.

7

1 var max attempts: int;
2 var failed :bool;
3 var transmitted:bool;
4
5 procedure unsafe transmit (m: ref);
6 free requires ExcV = false ;
7 modifies ExcV, transmitted;
8 ensures ExcV ⇐⇒ ¬ transmitted ;
9

10 procedure attempt transmission (m: ref);
11 free requires ExcV = false ;
12 modifies ExcV, transmitted, max attempts, failed;
13 ensures ExcV ⇐⇒ failed ;
14
15 implementation attempt transmission (m: ref)
16 {
17 var failures : int;
18 var Retry: bool;
19 entry:
20 failures := 0; Retry := false;
21 failed := false ;
22 call unsafe transmit (m); if (ExcV) { goto excL; }
23 excL:
24 while (ExcV)
25 invariant ¬ExcV =⇒¬ failed ;
26 invariant (failures <max attempts) =⇒ ¬ failed ;
27 {
28 ExcV := false; Retry := false;
29 failures := failures + 1;
30 if (failures <max attempts) {
31 Retry := true;
32 } else {
33 failed := true;
34 }
35 if (¬ Retry) {ExcV := true; goto endL;}
36 failed := false
37 call unsafe transmit (m); if (ExcV) { goto excL; }
38 }
39 endL: return;
40 }

Fig. 4. Boogie translation of the Eiffel routine in Figure 3.

8

deferred class EXP
feature

last value : INTEGER
eval

deferred
ensure

last value ≥ 0
end

end

class PLUS inherit EXP feature
left , right : EXP
eval do

left . eval ; right . eval
last value := left . last value +

right . last value
ensure then

last value = left . last value +
right . last value

end
invariant

no aliasing : left 6= right 6=Current
end

class CONST inherit EXP
feature

value : INTEGER
eval

do
last value := value

ensure then
last value = value

end
invariant

positive value : value ≥ 0
end

class ROOT
feature

main
local

e: EXP
do

e := create {CONST}.make (5);
e. eval
check e. last value = 5 end

end
end

Fig. 5. Nonnegative integer expressions.

4.1 Polymorphism in Boogie

The Boogie translation implemented in AutoProof can handle polymorphism
appropriately even for non-pure routines; it is based on a methodology for
agents [19] and on a methodology for pure routines [3,12]. The rest of the section
discusses how to translate postconditions and preconditions of redefined routines
in a way that accommodates polymorphism, while still supporting modular rea-
soning.

Postconditions. The translation of the postcondition of a routine r of class X
with result type T (if any) relies on an auxiliary function post .X.r:

function post.X.r (h1, h2: HeapType; c: ref; res : T) returns (bool);

which predicates over two heaps (the pre and post-states in r’s postcondition), a
reference c to the current object, and the result res. r’s postcondition in Boogie

9

references the function post .X.r, and includes the translation ∇post(X.r) of r’s
postcondition clause syntactically declared in class X:2

procedure X.r (Current: ref) returns (Result: T);
free ensures post.X.r (Heap, old(Heap), Current, Result);
ensures ∇post(X.r);

post .X.r is a free ensures, hence it is ignored when proving r’s implementation
and is only necessary to reason about usages of r.

The function post .X.r holds only for the type X; for each class Y which is a
descendant of X (and for X itself), an axiom links r’s postcondition in X to r’s
strengthened postcondition in Y :

axiom (∀ h1, h2: HeapType; c: ref; r : T •
$type(c) <: Y =⇒(post.X.r(h1, h2, c, r) =⇒ ∇post(Y.r))) ;

The function $type returns the type of a given reference; hence the postcondition
predicate post.X.r implies an actual postcondition ∇post(Y.r) according to c’s
dynamic type.

In addition, for each redefinition of r in a descendant class Z, the translation
defines a fresh Boogie procedure Z.r with corresponding postcondition predicate
post.Z.r and axioms for all of Z’s descendants.

Preconditions. Eiffel also supports weakening of preconditions. Therefore, the
precondition of a routine can also depend on the dynamic type. We use a similar
translation as for the postcondition. Given a routine r of type X, a precondi-
tion predicate is generated and used in the signature of the generated Boogie
procedure:

function pre.X.r(h: HeapType; c: ref) returns (bool);

which predicates over one heap and a reference c to the current object. r’s precon-
dition in Boogie references the function pre .X.r, and it includes the translation
∇pre(X.r) of r’s precondition originally declared in class X:

procedure X.r (Current: ref) returns (Result: T);
requires pre.X.r(Heap, Current);
free requires ∇pre(X.r)

Conversely to the postcondition, establishing r’s precondition is a responsibil-
ity of callers of r; clients have to establish the precondition determined by the
dynamic type—captured by the function pre .X.r—, whereas the precondition
originally given in X is given as a free requires and is only used to prove r’s
implementation.

axiom (∀ h: HeapType; c: ref •
h[c, type] <: Y =⇒ (∇pre(Y.r) =⇒ pre .X.r(h, c))) ;

To establish pre .X.r, it is enough to establish any of the clauses ∇pre(Y.r).

2 The translation differs for calls to Precursor (super in Java and base in C#).

10

1 function post.EXP.eval(h1, h2: HeapType; c: ref) returns (bool);
2
3 procedure EXP.eval(current: ref);
4 free ensures post.EXP.eval(Heap, old(Heap), current);
5 ensures Heap[current, last value] ≥ 0;
6 // precondition and frame condition omitted
7
8 axiom (∀ h1, h2: HeapType; o: ref •
9 $type(o) <: EXP =⇒

10 (post .EXP.eval(h1, h2, o) =⇒ (h1[o, last value] ≥0))) ;
11 axiom (∀ h1, h2: HeapType; o: ref •
12 $type(o) <: CONST =⇒
13 (post .EXP.eval(h1, h2, o) =⇒ h1[o, last value] = h1[o, value])) ;
14
15 implementation ROOT.main (Current: ref) {
16 var e: ref ;
17 entry:
18 // translation of : create {CONST} e.make (5)
19 havoc e;
20 assume Heap[e, $allocated] = false ;
21 Heap[e, $ allocated] := true;
22 assume $type(e) =CONST;
23 call CONST.make(e, 5);
24 // translation of e. eval
25 call EXP.eval(e);
26 // translation of : check e.last value = 5 end
27 assert Heap[e, last value] = 5;
28 return;
29 }

Fig. 6. Boogie translation of the Eiffel classes in Figure 5.

11

4.2 An Example of Polymorphism with Postconditions

Figure 6 shows the essential parts of the Boogie translation of the example in
Figure 5. The translation of routine eval in lines 3–6 references the function
post .EXP.eval; the axioms in lines 8–13 link such function to r’s postcondition
in EXP (lines 8–10) and to the additional postcondition introduced in CONST
for the same routine (lines 11–13). The rest of the figure shows the translation
of the client class ROOT.

5 Agents (Function Objects)

Eiffel programs can use agents—called function objects, closures, or delegates in
other languages. Supporting agents in verification poses a number of challenges;
Section 5.1 illustrates the main such challenges while succinctly describing Eiffel
agents’ syntax and semantics with an example. Then, Section 5.2 discusses how
to specify agents; Sections 5.3 and 5.4 describe the translation of agents im-
plemented in AutoProof; and Section 5.5 presents how the translation handles
framing. This section is based on our previous work [19].

5.1 An Example Using Agents

We illustrate the challenges of verifying agents using an example by Leavens
et al. [9] adapted for Eiffel. Consider a class FORMATTER that collects rou-
tines operating on paragraphs. The class includes, among others, the routine
align left (p: PARAGRAPH) that aligns to the left the text in paragraph p,

passed as argument. For some details of its implementation that we need not
delve into, the routine requires that the paragraph is not already aligned to the
left; if executed correctly, it ensures that p is changed so that it is left aligned.
Assuming class paragraph includes a (pure) routine left aligned that returns
true when called on paragraphs that are left aligned, we can write align left ’s
specification in FORMATTER as:

class FORMATTER

align left (p: PARAGRAPH)
require

not p. left aligned
do
−− Operations on p

ensure
p. left aligned

end

end

Class FORMATTER includes other routines that operate on paragraphs, such
as align right , justify , and add margin, each with its proper specification.

12

Clients of class FORMATTER can apply any given routine of the class to
objects of type PARAGRAPH. To this end, class PARAGRAPH offers a rou-
tine format that takes a generic routine of class FORMATTER—wrapped in an
agent—and applies it to the current object of class PARAGRAPH. This is how
format can be written in Eiffel:

class PARAGRAPH

format (proc: PROCEDURE [FORMATTER, PARAGRAPH];
f : FORMATTER)

do
proc . call (f , Current)

end

end

The first argument has type PROCEDURE [FORMATTER, PARAGRAPH];
this denotes an agent, whose target class is FORMATTER, with an argument
of class PARAGRAPH:3 in other words, if f has type FORMATTER, p has type
paragraph, and proc wraps some routine m in FORMATTER, f .m (p) is a type-
correct call. Agent invocation uses the different syntax shown in the example
above: proc . call (f , Current) calls the routine wrapped by proc on the target
f, passing it the Current object of class PARAGRAPH as argument.

This showed how agents are invoked. Let us now demonstrate agent creation
in Eiffel with a routine apply align left that calls align left on a paragraph
through format:

apply align left (f :FORMATTER; p:PARAGRAPH)
require

not p. left aligned
do

p. format (agent {FORMATTER}.align left , f)
ensure

p. left aligned
end

The expression agent {FORMATTER}.align left denotes an agent that wraps
routine align left of class FORMATTER.4 This agent definition does not bind
the wrapped routine to a specific target or to an argument p; therefore, we call it
an agent with open arguments. In contrast, the expression agent f. align left (p)
denotes an agent with closed arguments: the target is bound to f and the argu-
ment to p.

Verifying apply align left boils down to proving the correctness of the call
p.format. This, in turn, requires: 1) having a specification of format; 2) being

3 For illustration purposes, we slightly simplify Eiffel’s syntax and we limit ourselves
to the case of single-argument routines. The generalization is humdrum.

4 The keyword agent is necessary to disambiguate between a function object wrapping
align left and the invocation of align left .

13

able to discharge format’s precondition by means of apply align left ’s and to
establish apply align left ’s postcondition from format’s; 3) specifying format’s
frame and deduce apply align left ’s frame from it. In conformance with the
general verification style of AutoProof (and Boogie), we should handle these
problems modularly : format’s specification and correctness proof should be in-
dependent of how format is used by clients (and, in particular, which agents
it receives as argument). These are the challenges of verifying function objects:
Section 5.2 discusses how to write specifications for agents; Sections 5.3 and 5.4
shows how AutoProof uses agents; and Section 5.5 deals with agent framing.

5.2 Specifying Agents

Agents are abstract placeholders for routines; the actual routine attached to
an argument of type agent is, in general, known only dynamically. In fact, the
purpose of agents is providing a generic container of routines; the specification
of agents must conform to the same level of abstraction.

In Eiffel, variables referring to agents all belong to class ROUTINE or some
of its descendants (such as PROCEDURE in the FORMATTER example). Spec-
ification of agents can then use the functions precondition and postcondition of
the class, which return a Boolean expression respectively corresponding to the
require and ensure clause of the actual routine wrapped by an agent. In the
running example, we can use these functions to specify format parametrically
with respect to its argument proc of agent type:

format (proc: PROCEDURE [FORMATTER, PARAGRAPH];
f : FORMATTER)

require
proc . precondition (f , Current)

do
proc . call (f , Current)

ensure
proc . postcondition (f , Current)

end

Using the same mechanism, we can also specify the generic pre- and post-
condition of call in class ROUTINE:

call (target : ANY; p: ANY)
require

Current.precondition (target, p)
ensure

Current.postcondition (target, p)

AutoProof’s translation uses such generic specifications to reason modularly
about the correctness of programs using agents, as described in the following
subsections.

14

5.3 Agents in Boogie: Open Arguments

This section describes the basics of AutoProof’s translation of Eiffel agents to
Boogie; the presentation focuses on agents with open target and arguments.
Section 5.4 outlines how AutoProof deals with closed arguments.

Translating agent specification. The translation introduces two uninter-
preted Boolean functions to model the precondition and postcondition of agents:

function $precondition(agent, target , argument: ref, h: HeapType)
returns(bool);

function $postcondition(agent, target , argument: ref, h, h0: HeapType)
returns(bool);

The function arguments represent references to objects for the agent, its target,
and its arguments, plus a copy of the heap h and, for postconditions, the “old”
heap h0 before the agent was invoked.

Translating agent invocation. Consider three reference variables a, t, and
p, respectively representing an agent, a target object, and an argument object
in the Boogie translation. The agent invocation a. call (t , p) is translated as
follows:

assert $precondition(a, t , p, Heap);
h0 := Heap;
havoc Heap;
assume $postcondition(a, t, p, Heap, h0);

That is, verify that a’s precondition holds of the current heap; save the heap
to h0 and nondeterministically change its content; assume that the new heap
satisfies a’s postcondition.

Translating agent creation. When an agent is created, we must bind the
placeholders $precondition and $postcondition to the actual pre- and postcon-
dition of the routine wrapped by the agent, so that they can be used in the
correctness proofs to reason about agent usages. If a represents in Boogie a
reference attached to an agent created as agent pr from some routine pr, the
following two assumptions bind pr’s pre- and postcondition (represented in Boo-
gie by functions pre .pr and post .pr):

assume ∀t, p: ref , h1: HeapType •
$precondition(a, t , p, h1) = pre.pr(t, p, h1);

assume ∀t, p: ref , h1, h2: HeapType •
$postcondition(a, t , p, h1, h2) = post.pr(t, p, h1, h2);

5.4 Agents in Boogie: Closed Arguments

This section discusses the translation of agents with either closed target or closed
argument. The generalization to closed target and argument is straightforward.

15

Translating agent specification. The translation introduces two uninter-
preted Boolean functions with different signature to model the precondition and
postcondition of agents with closed arguments:

function $precondition1(agent, arg: ref, h: HeapType) returns(bool);
function $postcondition1(agent, arg: ref, h, h0: HeapType) returns(bool);

The argument arg represents either a reference to the open target (if the agent’s
argument is closed) or a reference to the open argument (if the agent’s target is
closed). The other function arguments are as in Section 5.1.

Translating agent invocation. Consider two reference variables a and p,
respectively representing an agent (with closed target) and an argument object
in the Boogie translation. The agent invocation a. call (p) is translated as:

assert $precondition1(a, p, Heap);
h0 := Heap;
havoc Heap;
assume $postcondition1(a, p, Heap, h0);

The same translation works if a has closed argument and open target, and p
translates a reference to a target object.

Translating agent creation. If a represent in Boogie a reference attached to
an agent created as agent u.pr from some routine pr and target u, the translation
generates the following two assumptions:

assume ∀p: ref, h1: HeapType •
$precondition1(a, p, h1) = pre.pr(u, p, h1);

assume ∀p: ref, h1, h2: HeapType •
$postcondition1(a, p, h1, h2) = post.pr(u, p, h1, h2);

Similarly, if b represent in Boogie a reference attached to an agent created as
agent pr (v) from some routine pr and argument v, the translation generates
the following two assumptions:

assume ∀t: ref, h1: HeapType •
$precondition1(a, t, h1) = pre.pr(t, v, h1);

assume ∀t: ref, h1, h2: HeapType •
$postcondition1(a, t, h1, h2) = post.pr(t, v, h1, h2);

5.5 Framing of Agents

Eiffel does not offer explicit support to specify frame conditions, that is the por-
tion of the heap that a routine may modify. In principle, this is not necessary in
many cases, because we can express changed and unchanged entities in postcon-
ditions. Following this intuition, AutoProof offers a simple mechanism that can
generate frame conditions in the simplest cases; we describe it in Section 6.1.

16

When proving programs with agents, however, the kind of annotations nec-
essary to express frame conditions in postconditions become cumbersome. This
is essentially due to the fact that the frame of an agent depends, in general,
also on its dynamically attached target and arguments, which need to be used
in its frame specification. Therefore, we introduce modify clauses in Eiffel to
specify agent framing. In practice, these are implemented as note annotations,
which does not require changing the parser and guarantees compatibility with
any version of the language.

Specifying frame conditions. Following what we did for pre- and postcon-
ditions in Section 5.2, we equip class ROUTINE with a function modifies that
returns the list of locations modified by the actual routine wrapped by an agent.5

modify clauses can then include both lists of object references that may be di-
rectly modified by a routine and lists of calls to modifies functions. The rest of
the presentation considers agents with open target and arguments; the modi-
fications necessary to deal with closed arguments are described in a technical
report [18]. In the running example, we can use this function to specify format’s
frame as being whatever proc may modify when called on target f and argument
Current:

format (proc: PROCEDURE [FORMATTER, PARAGRAPH];
f : FORMATTER)

modify
proc .modifies (f , Current)

Translating modify clauses. The translation introduces an uninterpreted
function $modify:

function $modify(agent, target, arg : ref , h: HeapType,
obj : ref , fid : FieldId) returns(bool);

The function arguments represent references to objects for an agent, its target,
and its arguments, a copy of the heap, as well as an additional generic reference
obj to an object and the identifier fid of one of its attributes (fields). Intuitively,
if $modify(a, t, p, h, o, f) is true, the call a. call (t , p) may modify the value
of o. f in the heap h.

AutoProof translates a generic Eiffel modify clause of some routine r:

modify a1.modifies (t1, p1), ..., am.modifies (tm, pm), o1, ..., on

into a postcondition clause of r’s translation to Boogie:

ensures ∀o: ref , v: FieldId •
(¬ $modify(a1, t1, p1, Heap, o, v) ∧ · · · ∧¬$modify(am, tm, pm, Heap, o, v) ∧

o 6= o1 ∧ · · · ∧ o 6=on) =⇒ Heap[o, v] = old(Heap)[o, v]

5 Since modifies is only used in modify clauses, which are not part of the Eiffel
language, we need not provide any actual implementation of modifies.

17

That is, all objects and attributes not explicitly mentioned in the modify clause
(o1, ...,on) and not modified by the agents (modifies) are certainly not changed
by routine r. For example, the format’s modify clause translates to:

ensures ∀o: ref , v: FieldId •
¬ $modify(proc, f , current , Heap, o, v) =⇒ Heap[o, v] = old(Heap)[o, v]

Frame conditions from agent creation. Finally, when an agent is created,
we bind the placeholder $modify to the actual locations modified by the routine
wrapped by the agent. Similarly to what we showed in Section 5.3 for pre- and
postconditions, if a represents in Boogie a reference attached to an agent created
as agent pr from some routine pr, the translation generates the assumption:

assume ∀t, p, o: ref , v: FieldId , h1: HeapType •
$modify(a, t , p, h1, o, v) = modify.pr(t, p, h1, o, v);

where modify.pr represents the encoding of pr’s frame in Boogie (whose details
are straightforward).

Current limitations. The translation of agent framing currently implemented
in AutoProof does not support the specification of fine-grained frame disjointness
properties. In particular, it is not possible to specify that the locations modified
by two agents are disjoint. This is often necessary when reasoning about agents
working on composite data structures. The Eiffel library class LIST, for example,
offers a routine do all that takes an agent passed as argument and applies it to
every element of the list. Reasoning about do all requires to distinguish between
when the agent is applied to different elements of the list; the simple convention of
modify clauses, however, does not offer this level of granularity. In our technical
report [18], we suggest a mechanism to express such non-interference properties;
its implementation in AutoProof is part of future work.

6 Other Features

This section briefly presents other features of the Eiffel-to-Boogie translation.

6.1 Default Frame Conditions

Frame conditions are necessary to reason modularly about heap-manipulating
programs, but they are also an additional annotational burden for programmers.
In several simple cases, however, the frame conditions are straightforward and
can be inferred syntactically from the postconditions. For a routine r, let modr
denote the set of attributes mentioned in r’s postcondition; modr is a set of
(reference, attribute) pairs. The translation of Eiffel to Boogie implemented in
AutoProof assumes that every attribute in modr may be modified (that is, modr
is r’s frame), whereas every other location in the heap is not modified. Since every
non-pure routine already includes the whole Heap map in its modifies clause,
the frame condition becomes the postcondition clause:

18

ensures ∀o: ref , f : FieldId •
(o, f) /∈ modr =⇒ Heap[o, f] = old(Heap[o, f]) ;

To ensure soundness in the presence of inheritance, the translation always
uses the postcondition of the original routine definition to infer the frame of the
routine’s redefinitions.

The frame conditions inferred by AutoProof work well for routines whose
postconditions only mention attributes of primitive type. For routines that ma-
nipulate more complex data, such as arrays or lists, the default frame conditions
are too coarse-grained; hence programmers have to supplement them with more
detailed annotations. Extending the support for automatically generated frame
conditions is part of future work.

6.2 Routines Used in Contracts Pure by Default

The translation of routines marked as pure generates the frame condition
ensures Heap =old(Heap) which specifies that the heap is unchanged. Auto-
Proof implicitly assumes that every routine used in contracts is pure, and the
translation reflects this assumption and checks its validity. While the Eiffel lan-
guage does not require routines used in contract to be pure, it is a natural
assumption which holds in practice most of the times, because the behavior of a
program should not rely on whether contracts are evaluated or not. Therefore,
including this assumption simplifies the annotational burden and makes using
AutoProof easier in practice.

7 Case Study

This section presents the results of a case study applying AutoProof to the
verification of the 11 programs listed in Table 1. For each example, the table
reports its name, its size in number of classes and lines of code, the length (in
lines of code) of the translation to Boogie, the time taken by Boogie to verify
successfully the example, and the kind of Eiffel features mostly exercised by the
example.

Example 1 is a set of routines presented in Meyer’s book [14] when describing
Eiffel exceptions; Example 2 is a set of classes part of the EiffelStudio compiler
runtime. To verify them, we extended the original contracts with postconditions
to express the behavior when exceptions are triggered, and with rescue invariants
(Section 3.2).6 The most difficult part of verifying these example was inventing
rescue invariants. Even when the examples are simple, the rescue invariants
may be subtle, because they have to include clauses both for normal and for
exceptional termination.

Examples 3–5 target polymorphism in verification. The Expression example
is described in Section 4. The Sequence example models integer sequences with

6 As the implementation in AutoProof of translation of exceptions is currently under-
way, these two examples were translated by hand.

19

Example name Classes LOC Eiffel LOC Boogie Time [s] Feature

1. Textbook OOSC2 1 106 481 2.33 Exceptions
2. Runtime ISE 4 203 561 2.32 Exceptions

3. Expression 4 134 752 2.11 Inheritance
4. Sequence 5 195 976 2.28 Inheritance
5. Command 4 99 714 2.14 Inheritance

6. Formatter 3 120 761 2.23 Agents
7. Archiver 4 121 915 2.07 Agents
8. Calculator 3 245 1426 9.73 Agents

9. Cell / Recell 3 154 905 2.09 General
10. Counter 2 97 683 2.02 General
11. Account 2 120 669 2.04 General

Total 35 1594 8843 31.36

Table 1. Examples automatically verified with AutoProof

the deferred classes SEQUENCE, MONOTONE SEQUENCE, and STRICT
SEQUENCE, and their effective descendants ARITHMETIC SEQUENCE, and
FIBONACCI SEQUENCE. The Command example implements the command
design pattern [7] with a deferred class COMMAND and effective descendants
that augment the postcondition of COMMAND’s deferred routine execute. The
encoding of inheritance described in Section 4 is accurate but it also significantly
increases the size of the Boogie translation and correspondingly the time needed
to handle it. Since a translation that takes dynamic types into account is not
always necessary, we have introduced an option to have AutoProof translating
contracts solely based on the static type of references. This speeds up verification
in the most common cases, while still having the option to use the more complex
encoding when necessary.

Examples 6–8 use agents and are the same examples as in [19]. The Formatter
example illustrates the specification of functions taking agents as arguments; the
Archiver example uses an agent with closed arguments; the Calculator example
implements the command design pattern using agents rather than subclasses.

Examples 9–11 combine multiple features: a cell class that stores integer
values; a counter that can be increased and decreased; a bank account class with
clients. These examples demonstrate other features of the translation, such as
the usage of default frame conditions.

The source code of the examples is available at http://se.ethz.ch/people/
tschannen/boogie2011_examples.zip. The experiments ran on a Windows 7
machine with a 2.71 GHz dual core Intel Pentium processor and 2GB of RAM.

8 Related Work

Tools such as ESC/Java [5] and Spec# [2] have made considerable progress to-
wards practical and automated functional verification. Spec# is an extension of
C# with syntax to express preconditions, postconditions, class invariants, and

20

http://se.ethz.ch/people/tschannen/boogie2011_examples.zip
http://se.ethz.ch/people/tschannen/boogie2011_examples.zip

non-null types. Spec# is also a verification environment that verifies Spec# pro-
grams by translating them to Boogie—also developed within the same project.
Spec# works on significant examples, but it does not support every feature of
C# (for example, delegates are not handled, and exceptions can only be checked
at runtime). Spec# includes annotations to specify frame conditions, which make
proofs easier but at the price of an additional annotational burden for developers.
To ease the annotational overhead, Spec# adds a default frame condition that
includes all attributes of the target object. This solution has the advantage that
the frame can change with routine redefinitions to include attributes introduced
in the subclasses. AutoProof follows a different approach and tries to rely on
standard annotations whenever possible, which impacts on the programs that
can be verified automatically.

Spec# has shown the advantages of using an intermediate language for ver-
ification. Other tools such as Dafny [11] and Chalice [13], and techniques based
on Region Logic [1], follow this approach, and they also rely on Boogie as in-
termediate language and verification back-end, in the same way as AutoProof
does.

Separation logic [23] is an extension of Hoare logic with connectives that
define separation between regions of the heap, which provides an elegant ap-
proach to reasoning about programs with mutable data structures. Verification
environments based on separation logic—such as jStar [4] and VeriFast [8]—can
verify advanced features such as usages of the visitor, observer, and factory de-
sign patterns. On the other hand, writing separation logic annotations requires
considerably more expertise than using standard contracts embedded in the pro-
gramming language; this makes tools based on separation logic more challenging
to use by practitioners.

In our previous work [26], we have presented a verification tool that integrates
static proofs and dynamic testing techniques.

9 Future Work

AutoProof is a component of EVE, the Eiffel Verification Environment, which
combines different verification tools to exploit their synergies and provide a uni-
form and enhanced usage experience, with the ultimate goal of getting closer to
the idea of “verification as a matter of course”.

Future work will extend AutoProof and improve its integration with other
verification tools in EVE. In particular, the design of a translation supporting
the expressive model-based contracts [24] is currently underway. Other aspects
for improvements are a better inference mechanism for frame conditions and
intermediate assertions (e.g., loop invariants [6]); a support for interactive prover
as an alternative to Boogie for the harder proofs; and a combination of AutoProof
with the separation logic prover also part of EVE [28].

Acknowledgments. This work has been partially funded by the SNF grant
LSAT (200020-134974) and by the Hasler foundation on related projects. A

21

preliminary version of this work has been presented at the First International
Workshop on Intermediate Verification Languages (Boogie’11), held in Wroc law,
Poland, in August 2011 and is available as technical report [27].

References

1. A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In In European Conference on Object Oriented Program-
ming, ECOOP. Springer-Verlag, 2008.

2. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In CASSIS, volume 3362 of LNCS, pages 49–69. Springer, 2004.

3. A. Darvas and K. R. M. Leino. Practical reasoning about invocations and imple-
mentations of pure methods. In FASE, LNCS. Springer-Verlag, 2007.

4. D. Distefano and M. J. Parkinson. jStar: Towards Practical Verification for Java.
In Proceedings of OOPSLA, pages 213–226, 2008.

5. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI, pages 234–245. ACM, 2002.

6. C. A. Furia and B. Meyer. Inferring loop invariants using postconditions. In Fields
of Logic and Computation, volume 6300 of Lecture Notes in Computer Science,
pages 277–300. Springer, 2010.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

8. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In Proceedings of APLAS 2010, 2010.

9. G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification
challenges for sequential object-oriented programs. Formal Aspects of Computing,
19(2):159–189, 2007.

10. K. R. M. Leino. This is Boogie 2. Technical report, Microsoft Research, 2008.
11. K. R. M. Leino. Dafny: an automatic program verifier for functional correctness.

In Proceedings of the 16th international conference on Logic for programming, arti-
ficial intelligence, and reasoning, LPAR-16, pages 348–370. Springer-Verlag, 2010.

12. K. R. M. Leino and P. Müller. Verification of equivalent-results methods. In ESOP,
volume 4960 of LNCS, pages 307–321. Springer-Verlag, 2008.

13. K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs.
In Proceedings of the 18th European Symposium on Programming Languages and
Systems, ESOP ’09, pages 378–393. Springer-Verlag, 2009.

14. B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

15. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer-Verlag, 2002.

16. P. Müller and M. Nordio. Proof-transforming compilation of programs with abrupt
termination. In SAVCBS ’07: Proceedings of the 2007 conference on Specification
and verification of component-based systems, pages 39–46, 2007.

17. M. Nordio. Proofs and Proof Transformations for Object-Oriented Programs. PhD
thesis, ETH Zurich, Switzerland, 2009.

18. M. Nordio, C. Calcagno, B. Meyer, and P. Müller. Reasoning about Function
Objects. Technical Report 615, ETH Zurich, 2008.

19. M. Nordio, C. Calcagno, B. Meyer, P. Müller, and J. Tschannen. Reasoning
about Function Objects. In Proceedings of TOOLS-EUROPE, LNCS, pages 79–96.
Springer, 2010.

22

20. M. Nordio, C. Calcagno, P. Müller, and B. Meyer. A Sound and Complete Program
Logic for Eiffel. In M. Oriol, editor, TOOLS-EUROPE, volume 33 of Lecture Notes
in Business and Information Processing, pages 195–214, 2009.

21. M. Nordio, H.-C. Estler, C. A. Furia, and B. Meyer. Collaborative software devel-
opment on the web, 2011. arXiv:1105.0768v3.

22. M. Nordio, P. Müller, and B. Meyer. Proof-Transforming Compilation of Eiffel
Programs. In R. Paige and B. Meyer, editors, TOOLS-EUROPE, Lecture Notes
in Business and Information Processing, pages 316–335. Springer-Verlag, 2008.

23. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In POPL ’04, pages 268–280, 2004.

24. N. Polikarpova, C. A. Furia, and B. Meyer. Specifying reusable components. In
Proceedings of VSTTE’10, volume 6217 of Lecture Notes in Computer Science,
pages 127–141. Springer, 2010.

25. J. Tschannen. Automatic verification of Eiffel programs. Master’s thesis, Chair of
Software Engineering, ETH Zurich, 2009.

26. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable verification of object-
oriented programs by combining static and dynamic techniques. In Proceedings
of the 9th International Conference on Software Engineering and Formal Methods
(SEFM ’11), LNCS, pages 382–398. Springer, 2011.

27. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Verifying Eiffel programs with
Boogie. In First International Workshop on Intermediate Verification Languages
(BOOGIE), 2011. Available at http://arxiv.org/abs/1106.4700.

28. S. van Staden, C. Calcagno, and B. Meyer. Verifying executable object-oriented
specifications with separation logic. In Proceedings of ECOOP’10, volume 6183 of
Lecture Notes in Computer Science, pages 151–174. Springer, 2010.

23

http://arxiv.org/abs/1106.4700

	Automatic Verification of Advanced Object-Oriented Features: The AutoProof Approach
	Tschannen, Furia, Nordio, Meyer

