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Abstract. Reusable software components need well-defined interfaces, rigor-
ously and completely documented features, and a design amenable both to reuse
and to formal verification; all these requirements call for expressive specifica-
tions. This paper outlines a rigorous foundation to model-based contracts, a meth-
odology to equip classes with expressive contracts supporting the accurate de-
sign, implementation, and formal verification of reusable components. Model-
based contracts conservatively extend the classic Design by Contract by means
of expressive models based on mathematical notions, which underpin the precise
definitions of notions such as abstract equivalence and specification complete-
ness. Preliminary experiments applying model-based contracts to libraries of data
structures demonstrate the versatility of the methodology and suggest that it can
introduce rigorous notions, but still intuitive and natural to use in practice.

1 Introduction

Software specifications have many uses. The most widely recognized one is verification:
comparing two independent descriptions of a software module — a specification and
an implementation — is likely to reveal errors, because the probability of making the
same error in both is considered low. Besides, the level of abstraction of the specification
is usually higher than that of the implementation, which makes the latter a more direct
representation of the programmer’s informal intent and further decreases the probability
of an error.

Another use, especially important for reusable software components, is providing
a precise interface for a client. Without specifications client modules can rely on type
information and informal documentation (comments), but in essence they have no guar-
antees about the functional properties of the component.

This is even more critical in presence of inheritance in object-oriented context. If
a client uses a concrete class through an interface of its abstract superclass, the sub-
stitution principle [21] ensures that the behavior observed by the client is compatible
with the specification he relies on. However, if the superclass has no or a very weak
specification, a wide range of unpredictable behaviors are allowed; this makes such an
abstract class essentially unusable from the client’s perspective and strongly depreciates
the advantages of inheritance.

In spite of many benefits of formal specifications, only a little portion of existing
software is actually specified. The situation is different in languages with support for
Design by Contract (DbC), such as Eiffel [22], JML [19] and Spec# [3]. An extensive
study [5] indicates that Eiffel classes in practice contain substantial amount of con-
tracts, however, as shown in [8] these contracts are generally weak compared to the



programmer’s informal understanding of the functional properties of a software mod-
ule. In many cases the restricted specification language used in DbC does not allow a
programmer to express (or at least express easily) all the desired properties.

One of the approaches to increasing the expressiveness of the contract language
is using model classes — immutable classes designed for specification purposes and
representing standard mathematical notions, such as sets, relations or sequences. This
approach is used in JML [7, 20] and Eiffel [28]. The availability of model classes gives
programmers the required expressive power, however it does not by itself guarantee
strong specifications.

Current paper presents model-based contracts — an interface specification method
based on Design by Contract and model classes. The method provides systematic guide-
lines for writing strong specifications and a precise definition of specification complete-
ness, which is easy to reason about.

We performed experimental evaluation of the approach on two Eiffel data structure
libraries: EiffelBase and it’s successor EiffelBase2. The former is a standard library
used for many years in production software, while the latter in a research project in-
tended as a testbed for specification and verification techniques, but still providing the
full functionality of a standard data structures library.

Section 2 motivates the need for more expressive contracts and briefly demonstrates
the advantages of using them on a few concrete examples. Section 3 provides details of
the specification method, discusses the semantics of model-based contracts with respect
to proofs and tests and introduces the notion of specification completeness. Section 4
demonstrates the applicability of the approach on two case studies, section 5 presents
related work and section 6 concludes.

All the examples in the paper are from the EiffelBase library if not specified other-
wise.

2 Motivation and overview

Design by Contract (DbC) is a discipline of analysis, design, implementation, and man-
agement of software. It relies on the fundamental idea of defining the role of any com-
ponent in the system in terms of a contract that formalizes the obligations and benefits
of that component relative to the rest of the system. Concretely, the contract is as a col-
lection of assertions (preconditions, postconditions, and invariants) that constitute the
module’s specification.

2.1 Some limitations of Design by Contract

To emphasize the seamless connection that must exist between specification and im-
plementation, and to make writing contracts palatable to the programmer, DbC uses
the same notation for expressions in the implementation and in the specification. This
choice successfully encourages programmers to write contracts [5]. On the other hand,
it also restricts the assertions that can be expressed — or that can be expressed easily.
This restriction ultimately impedes the formalization and verification of full functional
correctness and even limits the scope of application of DbC for the correct design of an
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2 class LINKED LIST [G]
3 count: INTEGER−− Number of elements
4

5 index: INTEGER−− Current cursor position
6

7 put right (v: G)
8 −− Add ‘v’ to the right of cursor.
9 require 0≤ index≤ count

10 do . . .
11 ensure
12 count = old count + 1
13 index = old index
14 end

16 duplicate (n: INTEGER): LINKED LIST
17 −− Copy of sublist of length ‘n’ beginning at current position
18 require n≥ 0 do . . . ensure Result.index = 0 end
19 end
20

21 class TABLE [G, K]
22 put (v: G ; k: K)
23 −− Associate value ‘v’ with key ‘k’.
24 require valid key (k)
25 deferred end
26

27 end

Table 1. Snippets from the EiffelBase classes LINKED LIST (lines 1–17) and TABLE (lines 19–25).

implementation. Let us demonstrate this on a couple of examples from the EiffelBase
library [12].

Lines 1–14 in Table 1 show a portion of class LINKED LIST, implementing a dy-
namic list. Features (members) count and index record respectively the number of ele-
ments stored in the list and the current position of the internal cursor. Routine put right
inserts an element v to the right of the current position of the cursor, without moving it.
The postcondition of the routine (clause ensure) asserts that inserting an element incre-
ments counter by one but does not change index. This is correct, but it does not capture
the gist of the semantics of insertion: the list after insertion is obtained by all the ele-
ments that were in the list up to position index, followed by element v and then by all
elements that were to the right of index.

Expressing such complex facts is impossible or exceedingly complicated with the
standard assertion language; as a result most specifications are incomplete in the sense
that they fail to capture precisely the functional semantics of routines. Weak specifi-
cations hinder formal verification in two ways. First, establishing weak postconditions
is simple, but confidence in the full functional correctness of a verified routine will be
low: the quality of specifications limits the value of verification. Second, weak contracts
affect negatively verification modularity: it is impossible to establish what a routine r
achieves, if r calls another routine s whose contract is not strong enough to document
its effect within r precisely.

Weak assertions limit the potential of many other applications of DbC. Specifica-
tions, for example, should document the abstract semantics of operations in deferred
classes (classes without an implementation). Weak contracts cannot fully do so; as a
result, programmers have fewer safeguards to prevent inconsistencies in the design and
fewer chances to make deferred classes useful to clients through polymorphism and
dynamic dispatching.

Feature put in class TABLE (lines 16–19 in Table 1) is an example of such a phe-
nomenon. It is unclear how to express the abstract semantics of put with standard con-
tracts. In particular, the absence of a postcondition leaves it undefined what should hap-
pen when an element is inserted with a key that is already associated to some other ele-
ment: should put replace the previous element with the new one or cancel the insertion
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2 note model: sequence, index
3 class LINKED LIST [G]
4 sequence: MML SEQUENCE [G]
5 −− Sequence of elements
6 do . . . end
7

8 count: INTEGER−− Number of elements
9 ensure Result = sequence.count end

10

11 index: INTEGER−− Current cursor position
12

13 put right (v: G)
14 −− Add ‘v’ to the right of cursor.
15 require 0≤ index≤ count
16 do . . .
17 ensure
18 sequence = old ( sequence.front (index)
19 .extended (v) + sequence.tail (index + 1) )
20 index = old index
21 end
22 end

24 note model: map
25 class TABLE [G, K]
26 map: MML MAP [G, K]
27 −−Map of keys to values
28 deferred end
29

30 put (v: G ; k: K)
31 −− Associate value ‘v’ with key ‘k’.
32 require map.domain [k]
33 deferred
34 ensure
35 map = old map.replaced at (k, v)
36 end
37 end

Table 2. Classes LINKED LIST (left) and TABLE (right) with model-based contracts.

of the new element? Indeed, some heirs of TABLE implement put with a replacement
semantics (such as class ARRAY), while others disallow overriding of preexisting map-
pings with put (such as class HASH TABLE). Some classes (including HASH TABLE)
even introduce another feature force that implements the replacement semantics. This
obscures the behavior of routines to clients and makes it questionable whether put has
been introduced at the right point in the inheritance hierarchy.

2.2 Enhancing Design by Contract with models

This paper presents an extension of DbC that addresses the aforementioned problems.
The extension conservatively enhances DbC with model classes: immutable classes rep-
resenting mathematical concepts that provide for more expressive specifications. Wrap-
ping mathematical entities with classes supports richer contracts without need to extend
the notation, which remains the one familiar to programmers as in DbC. Contracts using
model classes are called model-based contracts.

Table 2 shows an extensions of the examples in Table 1 with model-based con-
tracts. LINKED LIST is augmented with a query sequence that returns an instance of
class MML SEQUENCE, a model class representing a mathematical sequence of ele-
ments of homogeneous type; the implementation, omitted for brevity, builds sequence
according to the actual content of the list. The meta-annotation note declares the two
features sequence and index as model of the class; every contract will rely on the abstrac-
tion they provide. In particular, the postcondition of put right can precisely describe the
effect of the routine: the new sequence is the concatenation of the old sequence up to index
, extended with element v, with the tail of the old sequence starting after index. We can
assert that the new postcondition — including the clause about index — is complete with
respect to the model of the class, because it completely defines the effect of put right on
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the abstract model. This notion of completeness is a powerful guide to writing accurate
specification that makes for well-defined interfaces and verifiable classes.

The mathematical notion of a map — encapsulated by the model class MML MAP
— is the natural model for the class TABLE. Feature map cannot have an implementa-
tion yet, because TABLE is deferred and hence it is not committed to any representation
of data. Nonetheless, the mere availability of a model class supports complex speci-
fications already at this abstract level. In particular, writing a complete postcondition
for routine put requires to commit to a specific semantics for insertion. The example in
Table 2 chooses the replacement semantics; correspondingly, all heirs of TABLE will
have to conform to this semantics, guaranteeing a coherent reuse of TABLE throughout
the class hierarchy.

3 Foundations of model-based contracts

3.1 Specifying classes with models

This subsection describes a rigorous approach to equipping classes with expressive con-
tracts.

Interfaces, references, and objects. The definitions of abstract objects and models
(introduced in the remainder) rely on the following simple assumptions about classes.
Each class C defines a notion of reference equality≡C and of object equality $C ; both
are equivalence relations. Two objects o1, o2 ∈ C of class C can be reference equal
(written o1 ≡C o2) or object equal (written o1 $C o2). Reference equality is meant
to capture whether o1 and o2 are aliases for the same physical object, whereas object
equality is meant to hold for (possibly) physically distinct objects with the same actual
content. The following discussion is however independent of the particular choice of
reference and object equality.

The principle of information hiding prescribes that each class define an interface:
the set of its publicly accessible features [22]. It is good practice to partition features
into queries and commands; queries are functions of the object state, whereas com-
mands modify the object state but do not return any value. IC = QC ∪MC denotes the
interface of a class C partitioned in queries QC and commands MC .1 It is convenient
to partition all queries into value-bound queries Qo

C and reference-bound queries Qr
C .

Value-bound queries should create fresh objects to return (or more generally objects
that were unknown to the client before calling the query), whereas reference-bound
queries give the client direct access, through a reference, to parts of the target object
or of the query arguments. In other words, clients of a value-bound query are insensi-
tive to whether they received a unique fresh object or they are just sharing a reference
to a previously existing one. The chosen partitioning between value-bound and refer-
ence bound queries does not affect the following discussion, although it is usually quite
natural to adhere to this informal distinction when designing a class.

1 Constructors need no special treatment and can be modeled as queries returning new objects.
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Example 1. Query item (Table 3) is reference-bound, as the client receives the very
same physical object that was earlier inserted in the list. Query duplicate (Table 3) is
instead value-bound, as it returns a copy of a portion of the list.

The classification in value-bound and reference-bound extends naturally to argu-
ments of features: if the feature does not rely on having a direct reference to the actual
argument (as opposed to a copy of it), the argument is value-bound; otherwise, it is
reference-bound.

Abstract object space. The interface IC induces an equivalence relation �C over
objects of class C called abstract equality and defined as follows: o1 �C o2 holds
for two objects o1, o2 ∈ C iff for any applicable sequence of calls to commands
m1, m2, . . . ∈ M∗C and a query q ∈ QC , the qualified calls o1.m1; o1.m2; · · · o1.q and
o2.m1; o2.m2. · · · o2.q (with physically identical actual arguments where appropriate)
respectively return objects t1 and t2 of some class T such that: if q is reference-bound
then t1 ≡T t2, and if q is value-bound then t1 $T t2. Intuitively, two objects are equiv-
alent with respect to �C if a client cannot distinguish them by any sequence of calls to
public features.

Abstract equality defines an abstract object space: the quotient set AC = C/ �C

of C (as a set of objects) by �C . As a consequence, two objects are equivalent w.r.t.
�C iff they have the same abstract (object) state. Any concrete set that is isomorphic
to AC is called a model of C.

Example 2. A queue class typically consists of the queries item, count, and empty —
returning the next element to be dequeued, the total number of elements in the queue,
and a fresh empty queue — and the commands put and remove — to enqueue an element
and dequeue the next element. If remove were not part of the interface, any element in
the queue but the least recently inserted one would be inaccessible to clients; the model
of such a class would then be a pair of type N × G recording the current number of
elements and the latest enqueued element of generic type G. Including remove in the
interface, as it usually is the case for queues, allows clients to read the whole sequence
of enqueued elements. Hence, two queues with full interfaces are indistinguishable iff
they have the very same sequence of elements; the model of a queue class with full
interface is then an abstract sequence of type G∗.

As all the following examples will suggest, the most natural design choice imple-
ments object equality to have the same semantics as abstract equality. Notice, however,
that complying or not with this rule of thumb does not affect the soundness of the defi-
nitions in the present paper, nor does introduce circularities in the definition of abstract
equality.

Model classes. The model of a class C is expressed as a collection DC = D1
C , D2

C ,
. . . , Dn

C of model classes.2 Model classes are immutable classes designed for specifi-
cation purposes; essentially, they are wrappers of rigorously defined mathematical enti-
ties: elementary sorts such as Booleans, integers, and object references, as well as more

2 The model may include the same class multiple times
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complex structures such as sets, bags, relations, maps, and sequences. The MML library
[27] provides a variety of such model classes, equipped with features that correspond to
common operations on the mathematical structure they represent, including first-order
quantification. For example, class MML SET models sets of elements of homogeneous
type; it includes features for operations such as membership and quantification over all
elements of the set that satisfy a certain predicate (passed as a function object).

Example 3. As we discussed in Example 2, a sequence is a suitable model for a queue;
it can be represented by class MML SEQUENCE. To represent the model of a linked
list with internal cursor, we can combine a sequence of class MML SEQUENCE with an
element of class INTEGER to represent the position of the cursor; this assumes that no
information about the pointer structure of the list in the heap is accessible through the
interface of the class.

Model queries. Every class C provides a collection of public model queries SC =
s1

C , s2
C , . . . , sn

C , one for each component model class in DC . Each model query si
C

returns an instance of the corresponding model class Di
C that represents the current

value of the i-th component of the model. (Informally, the values returned by model
queries are analogues to the coefficients expressing the abstract state as a combination
of independent basis vectors spanning the whole space). Since the abstract object state
should always be defined between operations and should not depend on the state of
any other object, model queries are typically argumentless and without precondition.
Clauses in the class invariant can constrain the values of the model queries to match
precisely the abstract states of the model. For example, model query index: INTEGER
returning the cursor position of the LINKED LIST in Table 1 should be constrained by an
invariant clause 0 ≤ index ≤ sequence.count + 1. A meta-annotation note model: s1

C , s2
C , . . .

lists all model queries of the class (see Table 2 for an example).
Programmers can add model queries incrementally to classes developed with DbC.

In fact, it is likely that some model queries are already used in the implementation
before models are added explicitly; for example feature index of class LINKED LIST
(Table 2). Additional model queries return the remaining components of the model for
specification purposes, such as sequence in LINKED LIST.

Our approach prefers to implement new model queries as functions rather than at-
tributes. This choice facilitates a purely descriptive usage of references to model queries
in specifications. In other words, instead of augmenting routine bodies with bookkeep-
ing instructions that update model attributes, routine postconditions are extended with
clauses that describe the new value returned by model queries in terms of the old one.
This has the advantage of enforcing a cleaner division between implementation and
specification, while better modularizing the latter at routine level (properties of model
attributes are typically gathered in the class invariant). A meta-annotation of the form
note specification tags model queries that are not meant for use in implementation; run-
time checking of annotations calling these model queries can be disabled if performance
is a concern.

Model-based contracts. Let C be a class equipped with model queries whose interface
IC is partitioned into queries QC and commands MC . QC now includes the model
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35 note model: sequence, index
36 class LINKED LIST [G]
37 . . .
38 has (v: G): BOOLEAN
39 −− Does list include ‘v’? (Reference equality)
40 do . . .
41 ensure Result iff sequence.has (v) end
42

43 item: G
44 −− Value at cursor position
45 require
46 sequence.domain [index]
47 ensure
48 Result = sequence [index]
49 end

51 duplicate (n: INTEGER): LINKED LIST [G]
52 −− A copy of at most ‘n’ elements
53 −− starting at cursor position
54 require n≥ 0
55 do . . .
56 ensure
57 Result.sequence = sequence.interval (index, index + n− 1)
58 Result.index = 0
59 end
60

61 make empty
62 −− Create an empty list
63 ensure sequence.is empty and index = 0
64 end
65 . . .
66 end

Table 3. Snippets of class LINKED LIST with model-based contracts (continued from Table 2).

queries SC ⊆ QC together with other queries RC = QC \ SC (note that this does
not change the abstract space according to the definitions given at the beginning of the
section). Queries in RC are called standard queries. The rest of the section contains
guidelines to writing model-based contracts for commands in MC and queries in RC .

– The precondition of a feature is a constraint on the abstract values of its value-bound
arguments and, possibly, on the actual references to its reference-bound arguments.
The target object, in particular, can be considered an implicit value-bound argu-
ment. For example, the precondition map.domain [k] of feature put in class TABLE
(Table 2), refers to the abstract state of the target object, given by the model query
map, and to its actual reference-bound argument k.

– Postconditions should refer to abstract states only through model queries. This em-
phasizes the components of the abstract state that are set by a command or a query,
which in turn facilitates understanding and reasoning on the semantics of a feature.

– The postcondition of a command defines a relation between the prestate and the
poststate of its arguments and the target object; prestate and poststate refer respec-
tively to the state before and after executing the command. More precisely, the
postcondition mentions only abstract values of its value-bound arguments and pos-
sibly the actual references to its reference-bound arguments; the target object is
considered value-bound both in the prestate and in the poststate.
It is common that a command only affects a few components of the abstract state
and leaves all the others unchanged. Accordingly, the closed world assumption is
convenient: the value of any model query s ∈ SC that is not mentioned in the
postcondition is assumed not to be modified by the command, as if s = old s were
a clause of the postcondition. When the closed world assumption is wrong, ex-
plicit clauses in the postcondition should establish the correct semantics. If a com-
mand may modify the value of a model query s but the actual new value is not
known precisely and s is not mentioned in other clauses of the postcondition, add a
clause relevant (s) to the postcondition of the command (in terms of implementation,
relevant is just a constant function that returns true). If a command does not affect
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2 note model: bag
3 class COLLECTION [G]
4 bag: MML BAG [G]
5

6 is empty: BOOLEAN
7 ensure Result = bag.is empty end
8

9 wipe out
10 ensure bag.is empty end
11

12 put (v: G)
13 ensure bag = old bag.extended (v) end
14 end

16 note model: sequence
17 class DISPENSER [G]
18 inherit COLLECTION [G]
19

20 sequence: MML SEQUENCE [G]
21

22 invariant
23 bag.domain = sequence.range
24 bag.domain.for all ( agent (x: G): BOOLEAN
25 bag [x] = sequence.occurrences (x) )
26 end

Table 4. Snippets of classes COLLECTION (left) and DISPENSER (right) with model-based contracts.

the value a model query s but the postcondition of the command mentions s, add a
clause s = old s to the postcondition of the command.

– The postcondition of a query defines the result as a function of the target ob-
ject and its arguments (with the usual discipline of mentioning only abstract val-
ues of value-bound arguments and target object and possibly actual references to
reference-bound arguments). Value-bound queries define the abstract state of the
result, whereas reference-bound queries describe an actual reference to it. For ex-
ample, compare the postcondition of the reference-bound query item from class
LINKED LIST (Table 3), which precisely defines a reference to the returned list el-
ement, with the postcondition of the value-bound query duplicate in the same class,
which specifies the abstract state of the returned list.

– A clear-cut separation between queries and commands assumes abstract purity for
all queries: executing a query leaves the abstract state of all its arguments and of
the targed object unchanged.

Inheritance and model-based contracts. A class C ′ that inherits from a parent class
C may or may not re-use C’s model queries to represent its own abstract state. For
every model query sC ∈ SC of the parent class that is not among the heir’s model
queries SC′ , C ′ should provide a linking invariant to guarantee consistency in the in-
heritance hierarchy. The linking invariant is a formula that defines the value returned
by sC in terms of the values returned by the model queries SC′ of the inheriting class.
This guarantees that the new model is indeed a specialization of the previous model, in
accordance with the notion of subtyping inheritance.

A properly defined linking invariant ensures that every inherited feature has a defi-
nite semantics in terms of the new model. However, the new semantics may be weaker
in that a command whose contract in the parent class characterized it as a function, be-
comes characterized as a relation in the child class; that is, incompleteness is introduced
(see Section 3.2).

Example 4. Consider class COLLECTION in Table 4, a generic container of elements
whose model is a bag. Class DISPENSER inherits from COLLECTION and specializes it
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by introducing a notion of insertion order; correspondingly, its model is a sequence. The
linking invariant of DISPENSER defines the value of the inherited feature bag in terms
of the new feature sequence: the domain of bag coincides with the range of sequence,
and the number of occurrences of any element x in bag correspond to the number of
occurrences of the same element in sequence.

The linking invariant ensures that the semantics of features is empty and wipe out
is unambiguously defined also in DISPENSER. On the other hand, the model-based
contract of command put in COLLECTION and the linking invariant are insufficient to
characterize the effects of put in DISPENSER, as the position within the sequence where
the new element is inserted is irrelevant for the bag.

3.2 Completeness of contracts

The notion of completeness for the specification of a class gives an indication of how
accurate are the contracts of that class with respect to the model. An incomplete con-
tract does not fully capture the effects of a feature, suggesting that the contract may be
more detailed or, less commonly, that the model of the class — and hence its interface
— is not abstract enough. Unlike the notion of sufficient completeness for algebraic
specifications [14] — that serves a similar purpose —, the present definition of com-
pleteness is structurally similar to the concept of completeness for a set of axioms, and
a dual notion of soundness complements it. For simplicity, the following definitions do
not mention feature arguments; introducing them is, however, routine.

Soundness and completeness of a model-based contract. Let f be a feature of class
C. The specification of f denotes two predicates pref and postf . pref represents the
set of objects of class C that satisfy the precondition. If f is a query returning object of
class T , postf is of type C × T and denotes the pairs of target and returned objects. If
f is a command, postf is of type C × C and denotes the pairs of target objects before
and after executing the command.3

– The precondition of a feature f (query or command) is sound iff: for every o1, o2 ∈
C such that o1 �C o2 it is pref (o1)⇔ pref (o2).4

– The postcondition of a command m is sound iff: for every o, o′1, o
′
2 ∈ C such that

o′1 �C o′2 it is postm(o, o′1)⇔ postm(o, o′2).
The postcondition of a command m is complete iff: for every o, o′1, o

′
2 ∈ C such

that postm(o, o′1) and postm(o, o′2) it is o′1 �C o′2.
– The postcondition of a value-bound query q is sound iff: for every o ∈ C and

t1, t2 ∈ T such that t1 �T t2 it is postq(o, t1)⇔ postq(o, t2).
The postcondition of a value-bound query q is complete iff: for every o ∈ C and
t1, t2 ∈ T such that postq(o, t1) and postq(o, t2) it is t1 �T t2.

– The postcondition of a reference-bound query q is sound iff: for every o ∈ C and
t1, t2 ∈ T such that t1 ≡T t2 it is postq(o, t1)⇔ postq(o, t2).
The postcondition of a reference-bound query q is complete iff: for every o ∈ C
and t1, t2 ∈ T such that postq(o, t1) and postq(o, t2) it is t1 ≡T t2.

3 These definitions imply the absence of side-effects in evaluating assertions.
4 Completeness of preconditions is not an interesting notion and hence it is not defined.
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Informally, a sound assertion is one that is consistent with the notion of equiva-
lence that is appropriate: sound postconditions of commands and value-bound queries
do not distinguish between objects with the same abstract state; sound postconditions
of reference-bound queries do not distinguish between aliases.5

A postcondition is complete if all the pairs of objects that satisfy it are equivalent
(according to the right model of equivalence). This means that the complete postcondi-
tion of a command defines the effects of the command as a mathematical function (as
apposed to a relation) from the prestate to the abstract poststate. Similarly, the complete
postcondition of a query defines the value of the result as a function of the abstract state
of argument-bound arguments and of actual references to reference-bound arguments.

Example 5. The contracts of features is empty, wipe out, and put in class COLLECTION
(Table 4) are sound and complete; the postcondition of put, in particular, is complete
as it defines the new value of bag uniquely. In the heir class DISPENSER, however,
the inherited postcondition of put becomes incomplete: the linking invariant does not
uniquely define sequence from bag, hence inequivalent sequences (for example, one with
v inserted at the beginning and another one with v at the end) satisfy the postcondition.

Soundness and completeness in practice. As the previous example suggests, reason-
ing informally — but precisely — about soundness and completeness of model-based
contracts is often straightforward and intuitive, especially if the guidelines of Section
3.1 have been followed. Completeness captures the uniqueness of the (abstract) state
described by a postcondition, hence query postconditions in the form Result = exp (s,
a) or Result.s = exp (s, a) and command postconditions in the form s = exp (old s, a) —
where exp is a side-effect free expression, s denotes the value returned by the model
query of some argument, and a is a reference-bound argument — are painless to check
for completeness.

Example 6. Consider the following example, from class ARRAY whose model is a map.

2 fill (v: G ; l, u: INTEGER) −− Put ‘v’ at all positions in [‘l’, ‘u’].
3 require map.domain [l] and map.domain [u]
4 ensure map.domain = old map.domain
5 ( map | {MML INT SET} [[l, u]] ).is constant (v)
6 ( map | (map.domain − {MML INT SET} [[l, u]]) ) =
7 old ( map | (map.domain − {MML INT SET} [[l, u]]) )
8 end

Pre and postconditions are sound because they both refer only to model queries, or func-
tions thereof. The following reasoning shows that the postcondition is also complete:
a map is uniquely defined by its domain and by a value for every key in the domain.
The first clause of the postcondition defined the domain completely. Then, let k be any
key in the domain. If k ∈ [l, u] then the second clause defines map (k)= v; otherwise
k 6∈ [l, u], and the third clause postulates map(k) unchanged.

5 Postconditions of argumentless reference-bound queries are trivially sound for sensible defini-
tions of reference equality.
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Soundness is an irrenounceable requirement for pre and postconditions in the pres-
ence of model-based contracts, as it boils down to writing contracts that are consistent
with the chosen level of information hiding.

On the other hand, how useful is completeness in practice? As a norm, completeness
is a valuable yardstick to evaluate whether the contracts are sufficiently detailed. This is
not enough to guarantee that the contracts are correct — and meet the original require-
ments — but the yardstick is serviceable methodologically to focus on what a routine
really achieves and how that is related to the abstract model. As a result, inconsistencies
in specifications are less likely to occur, and the impossibility of systematically writing
complete contracts is a strong indication that the model is incorrect, or the implementa-
tion is faulty. Either way, a warning is available before attempting a correctness proof.

While complete postconditions should be the norm, there are recurring cases where
incomplete postconditions are unavoidable or even preferable. Three major sources of
benign incompleteness are the following.

– Inherently nondeterministic or stochastic specifications. For example, a class for
random number generation can use a sequence as model, but its specification should
not define the precise content of the sequence unambiguously.

– Usage of inheritance to factor out common parts of (complete) specifications. For
example, class DISPENSER in Table 4 is a common ancestor of STACK and QUEUE.
If its interface includes features item, put and remove, its model must be isomorphic
to a sequence. Then, it becomes impossible to write a complete postcondition for
put in DISPENSER: the specification of put cannot define precisely where an element
is added to the sequence; a choice compatible with the semantics of STACK will be
incompatible with QUEUE and vice versa.

– Imperfections in information hiding. For example, class ARRAYED LIST is an array-
based implementation of lists which exports a query capacity returning the size of
the underlying array; this piece of information is then part of the model of the
class. Default constructors set capacity to an initial fixed value. Their postcondi-
tions, however, do not mention this default value, hence they are incomplete. The
rationale behind not revealing this information is that clients should not rely on the
exact size of the array when they invoke the constructor.

In all these cases, reasoning about completeness is still likely to improve the under-
standing of the classes and to question constructively the choices made for interfaces
and inheritance hierarchies.

3.3 Verification: proofs and runtime checking

This subsection outlines the main ideas behind using model-based contracts for verifi-
cation with formal correctness proofs and with runtime checking for automated testing.
Its goal is not to detail any particular proof or testing technique, but rather to sketch how
to express the semantics of model-based contracts within standard verification frame-
works.
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2 note mapped to: ”Sequence G”
3 class MML SEQUENCE [G]
4 . . .
5 extended (x: G): MML SEQUENCE[G]
6 −− Current sequence extended with ‘x’ at the end
7 note mapped to: ”Sequence.extended(Current, x)”
8 do ... end
9 end

9 type Sequence T = [ int ] T ;
10 function Sequence.extended 〈T〉 (Sequence T, T)
11 returns (Sequence T);
12 axiom (∀ 〈T〉 s: Sequence T, x:T • {Sequence.extended(s, x)}
13 Sequence.extended( s, x) =s[Sequence.count(s)+1 := x]) ;
14 axiom (∀ 〈T〉 s: Sequence T, x: T •
15 {Sequence.count(Sequence.extended( s, x) )}
16 Sequence.count(Sequence.extended( s, x) ) =
17 Sequence.count(s)+1);
18 . . .

Table 5. Snippets from class MML SEQUENCE (left) and the corresponding Boogie theory (right).

Proofs. The axiomatic treatment of model classes [6, 27, 9] is quite natural: the seman-
tics of a model class is defined directly in terms of a theory expressed in the underlying
proof language, rather than with “special” contracts. The mapping is often straightfor-
ward, and has the advantage of reusing theories that are optimized for effective usage
with the proof engine of choice. In addition, the immutability (and value semantics)
of model classes makes them very similar to mathematical structures and facilitates a
straightforward translation into mathematical theories.

In this respect, we are currently developing an accurate mapping of model classes
and model-based contracts into Boogie [2]. First, the mapping introduces axiomatic
definitions of MML model classes as Boogie theories; annotations in the form note
mapped to connect MML classes to the corresponding Boogie types. For example, Table
5 shows how a portion of the MML SEQUENCE model class translates into a Boogie
theory: a mapping type [ int ] T represents sequences of elements of generic type T, and
a few axioms constrain a function Sequence.extended to return values in accordance with
the MML semantic of feature extended.

Then, each model query in a class with model-based contracts maps to a Boogie
function that references a representation of the heap; some axioms connect the value
returned by the function to other features in the translated class. For example, the model
query sequence in LINKED LIST becomes function LinkedList . sequence(HeapType, ref )

returns (Sequence ref ).
Finally, model-based contracts are translated into Boogie formulas according to

the mapped to annotations in model classes. For example, the postcondition clause:
sequence = old (sequence.front (index).extended (v)+ sequence.tail (index + 1)) of put right in
LINKED LIST (Table 2) maps to the Boogie formula:

LinkedList . sequence(Heap, Current) = Sequence.concat ( Sequence.extended (
Sequence.front (LinkedList . sequence(old(Heap), Current) ,

LinkedList . index (old(Heap), Current) ) , v ) ,
Sequence.tail (LinkedList . sequence(old(Heap), Current) ,

LinkedList . index (old(Heap), Current) + 1) ) ;

Runtime checking and testing. Most model classes represent finite mathematical ob-
jects, such as sets of finite cardinality, sequences of finite length, and so on. All these
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classes can have an implementation of their operations which is executable in finite
time; this supports the runtime checking of assertions that reference these model classes.

Testing techniques can leverage runtime checkable contracts to fully automate the
testing process: generate objects by randomly calling constructors and commands; check
the precondition of a routine on the generated objects to filter out valid inputs for the
routine; execute the routine body on a valid input and check the validity of the post-
condition on the result; any postcondition violation on a valid input is a fault in the
routine.

This approach to contract-based testing has proved extremely effective at uncov-
ering plenty of bugs in production code [23], hence it is an excellent “lightweight”
precursor to correctness proofs. Contract-based testing, however, is only as good as
the contracts are; the weak postconditions of traditional DbC, in particular, leave many
real faults undetected. Runtime checkable model-base contracts can help in this respect
and boost the effectiveness of contract-based testing by providing more expressive, and
complete, specifications. Section 4 describes some testing experiments that support this
claim.

Consistency of tests and proofs. Using contract-based testing as a precursor to cor-
rectness proofs poses the problem of consistency between two semantics given to model
classes: the runtime semantics given by an executable implementation and the proof se-
mantics given by a mapping to a logical theory. Under reasonable assumptions about
the execution environment, consistency must ensure that a component is proven correct
against its model-based specification if and only if testing the component never detects
a violation of its model-based contracts. Establishing this consistency amounts to prov-
ing that: (1) the implementation of each model class is consistent with the mapping of
the class to a logical theory; and (2) the implementation of each model query satisfies
its specification. Future work will detail and address these problems.

4 Model-based contracts at work

This section describes experiments in developing model-based contracts for real object-
oriented software written in Eiffel. The experiments target two non-trivial case studies
based on data-structure libraries (described in Section 4.1) with the goal of demonstrat-
ing that deploying model-based contracts is feasible, practical, and useful. Section 4.2
discusses the successes and limitations highlighted by the experiments.

4.1 Case studies

The first case study targeted EiffelBase [12], a library of general-purpose data struc-
tures widely used in Eiffel programs; EiffelBase is representative of mature Eiffel code
exploiting extensively traditionial DbC. We selected 7 classes from EiffelBase, for a
total of 304 features (254 of them are public) over more that 5700 lines of code. The 7
classes include 3 widely used container data structures (ARRAY, ARRAYED LIST, and
LINKED LIST) and 4 auxiliary classes used by the containers (INTEGER INTERVAL,
LINKABLE, ARRAYED LIST CURSOR, and LINKED LIST CURSOR). Our experiments

14



2 note model: set, relation
3 class SET [G]
4 . . .
5 has (v: G): BOOLEAN
6 −− Does this set contain ‘v’?
7 ensure
8 Result = not (set ∗ relation.image of (v)).is empty
9 end

10

11 set: MML SET [G]−− The set of elements
12 relation: MML RELATION [G, G]
13 −− Equivalence relation on elements
14 end

16 note model: map
17 class BINARY TREE [G]
18 . . .
19 add root (v: G)
20 −− Add a root with value ‘v’ to an empty tree
21 require map.is empty
22 ensure map.count = 1 and map [Empty] = v
23 end
24

25 map: MML MAP [MML SEQUENCE[BOOLEAN], G]
26 −−Map of paths to elements
27 end

Table 6. Examples of nonobvious models: classes SET and BINARY TREE from EiffelBase2.

systematically introduced models and conservatively augmented the contracts of all
public features in these 7 classes with model-based specifications.

The second case study developed EiffelBase2, a new general-purpose data struc-
ture library. The design of EiffelBase2 is similar to that of its precursor EiffelBase;
EiffelBase2, however, has been developed from the start with expressive model-based
specifications and with the ultimate goal of proving its full functional correctness —
backward compatibility is not one of its primary aims. This implies that EiffelBase2
rediscusses and solves any deficiency and inconsistency in the design of EiffelBase that
impedes achieving full functional correctness or hinders the full-fledged application of
formal techniques. EiffelBase2 provides containers such as arrays, lists, sets, tables,
stacks, queues, and binary trees; iterators to traverse these containers; and comparator
objects to parameterize containers with respect to arbitrary equivalence and order rela-
tions on their elements. The current version of EiffelBase2 includes 46 classes with 460
features (403 of them are public) totalling about 5800 lines of code; these figures make
EiffelBase2 a library of substantial size with realistic functionalities. The latest version
of EiffelBase2 is available at http://eiffelbase2.origo.ethz.ch.

4.2 Results and discussion

This section addresses the following questions based on the experience with the two
case studies of EiffelBase and EiffelBase2.

– How many different model classes are needed to write model-based contracts?
– How many contracts can be complete?
– Do executable accurate model-based contracts boost contract-based testing?

How many model classes? Model-based contracts for EiffelBase used model classes
for Booleans, integers, references, (finite) sets, relations, and sequences. EiffelBase2
additionally required (finite) maps, bags, and infinite maps and relations for special
purposes (such as modeling comparator objects). These figures suggest that a moderate
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number of well-understood mathematical models suffices to specify a general-purpose
library of data structures.

Determining to what extent this is generalizable to software other than libraries
of general-purpose data structures is an open question which belongs to future work.
Domain-specific software may indeed require complex domain-specific model classes
(e.g., real-valued functions, stochastic variables, finite-state machines), and application
software that interacts with a complex environment may be less prone to accurate doc-
umentation with models. However, even if writing model-based contracts for such sys-
tems proved exceedingly complex, some formal model is required if the goal is formal
verification. In this sense, focusing model-based contracts on library software is likely
to have a great payoff through extensive reuse: the many clients of the reusable compo-
nents can rely on expressive contracts not only as detailed documentation but also to ex-
press their own contracts and interfaces by combining a limited set of well-understood,
highly dependable components.

Another interesting remark is that the correspondence between the limited number
of model classes needed in our experiments and the classes using these model classes is
far from trivial: data structures are often more complex than the mathematical structures
they implement. Consider, for example, class SET in Table 6: EiffelBase2 sets are pa-
rameterized with respect to an equivalence relation, hence the model of SET is a pair of
a mathematical set and a relation. Another significant example is BINARY TREE (also
in Table 6): instead of introducing a new model class for trees or graphs, BINARY TREE
concisely represents a tree as a map of paths to values; the model of a path is in turn a
sequence of Booleans.

How many complete contracts? Reasoning informally, but rigorously, about the com-
pleteness of postconditions — along the lines of Section 3.2 — proved to be straight-
forward in our experiments. Only 18 (7%) out of 254 public features in EiffelBase with
model-based contracts and 17 (4%) out of 403 public features in EiffelBase2 have in-
complete postconditions. All of them are examples of “intrinsic” incompleteness men-
tioned at the end of Section 3.2; EiffelBase2, in particular, was designed trying to min-
imize the number of features with intrinsically incomplete postconditions.

These results indicate that model-based contracts make it feasible to write system-
atically complete contracts; in most cases this was even relatively straightforward to
achieve. Unsurprisingly, using model-based contracts dramatically increases the com-
pleteness of contracts in comparison with standard DbC. For example, 42 (66%) out of
64 public features of class LIST in the original version of EiffelBase (without model-
based contracts) have incomplete postconditions, including 20 features (31%) without
any postcondition.

Contract-based testing with model-based contracts. The standard EiffelBase library
has been in use for many years and has been extensively tested, both manually and au-
tomatically. Are the expressive contracts based on models enough to boost automated
testing finding new, subtle bugs? While preliminary, our experiments seem to answer
in the affirmative. Applying the AutoTest testing framework [23] on EiffelBase with
model-based contracts for 30 minutes discovered 3 faults; none of them would have
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2 merge right (other: LINKED LIST [G])
3 −−Merge ‘other’ into current list after cursor position. Do not move cursor. Empty ‘other’.
4 do
5 . . .
6 other first element := other.first element ; other count := other.count ; other.wipe out
7 if before then first element := other first element ; active := first element
8 else . . . end
9 count := count + other count

10 ensure
11 −− Original contract
12 count = old count + old other.count ; index = old index ; other.is empty
13 −−Model based contract
14 sequence = old (sequence.front (index) + other.sequence + sequence.tail (index + 1))
15 end

Table 7. Faulty routine merge right from class LINKED LIST.

been detectable with standard contracts. Running these tests did not require any mod-
ification to AutoTest or model classes, because the latter include an executable imple-
mentation.

The 3 faults reveal subtle mistakes that have gone undetected so far. For example,
consider the implementation of routine merge right in Table 7; the routine merges a
linked list other into the current linked list at the cursor position by modifying references
in the chain of elements. The then branch of the if statement (line 6) deals with the
special case where the cursor in the current list is before the first element; in this case
the first element of the current list (first element) will point directly to the first element of
the other list (other first element). This is not sufficient, as the routine should also link the
end of the other list to the front of the current one, otherwise all elements in the current
list become inaccessible. The original contract does not detect this fault; the clause count
= old count + old other.count is in particular satisfied as count is anyway updated (line 8),
but its value does not reflect the actual content of the new list. On the contrary, the
complete model-based contract (line 13) specifies the desired configuration of the list
after executing the command, which leads to easily detecting the error.

5 Related work

Every fully formal specification ultimately boils down to a mathematical model, and
the research on formal modeling and analysis is so extensive and diverse that it cannot
be summarized concisely. This section focuses on a few major approaches to the formal
specification of object-oriented abstract data types that adopt a stance similar to that of
the present paper: using highly expressive mathematical models geared towards the full
functional correctness specification (and verification) of complex data structures.

Hoare pioneered the usage of mathematical models to define and prove correctness
of data type implementations [16]. This idea spawned much related work, which can be
roughly partitioned in three major lines: algebraic notations, descriptive notations, and
design-by-contract approaches. The following subsections shortly summarize the main
features of each of these techniques; then, Section 5.4 describes the approaches based
on mathematical models that are closest to the present paper.
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5.1 Algebraic notations

Algebraic notations formalize classes in terms of (uninterpreted) functions and ax-
ioms that describe the mutual relationship among the functions. For example, the ax-
iom s.insert(x).member of(x) = True defines the mutual semantics of the operations
insert and member of of a set data type. The most influential work in algebraic speci-
fications is arguably Guttag and Horning’s [14] and Gougen et al.’s [13], which gave a
foundation to much derivative work. The former was also made practical in the Larch
project [15], and introduced a notion of completeness that differs from the one of the
present paper (see Section 3.2), and applies to whole types, not single features.

Algebraic notations emphasize the calculational aspect of a specification. This makes
them very effective notations to formalize and verify data types at a high level of ab-
straction. In particular, the close connection between rewriting systems [10] and al-
gebraic definitions enables, in many practical cases, the automated or semi-automated
verification of consistency and completeness [14] requirements of abstract specifica-
tions. The algebraic approach, on the other hand, does not integrate as well with real
programming languages to document implementations in the form of pre and postcon-
ditions of single operations.

5.2 Descriptive notations

Descriptive notations formalize classes in terms of simpler types — ultimately grounded
in simple mathematical models such as sets and relations — and operations defined as
input/output relations (that is, pre and postconditions) constrained by logic or arithmetic
formulas. For example, the insert operation of a set data structure could be defined by
the formula ∀s, x • [[s.insert(x)]] = [[s]] ∪ {x}, in terms of the union operation applied
to a model set [[s]].

Descriptive notations can be used in isolation to build language-independent mod-
els, or to give a formal semantics to concrete implementations. Languages and meth-
ods such as Z [29], B [1], and VDM [17] pursue the former approach, usually within
a top-down development framework. Other specification languages and tools such as
RESOLVE [24], AAL [18], and Jahob [30] are examples of the latter approach for the
programming languages C++ and Java.

Descriptive notations are apt to develop correct-by-construction designs and to ac-
curately document implementations, often with the goal of verifying functional cor-
rectness. Using them in contracts, however, introduces a new notation on top of the
programming language, which requires additional effort and expertise from the pro-
grammer and makes it more difficult to to maintain the specification synchronized with
the actual implementation. This weakness is shared by algebraic notations alike.

5.3 Design-by-contract approaches

Design by contract [22] introduces formal specifications in programs using the same
notation for implementation and annotations, in an attempt to make writing the contracts
as congenial as possible to programmers. For example, the insert operation of a multiset
class could have a postcondition clause such as count > 0 that defines an effect of
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the insert operation in terms of the value returned by another function count of the
same class. The Eiffel programming language [11] epitomizes the design by contract
methodology, together with similar solutions for other languages such as APP [26] for
C, Spec# [2] for C#, and many others.

As we discussed also in the rest of the paper, using a subset of the programming
language in annotations helps programmers writing them [5], but it often does not pro-
vide enough expressive power to formalize “complete” functional correctness, or re-
quires cumbersome workarounds to capture the semantics of mathematical concepts in
terms of programming language constructs. Going back to the example of the set class,
it is impossible to express directly (with quantification over the domain) the fact that
insert does not remove any element that was in the set before insertion. The semantics
of quantification could still be expressed as iteration over the data structure. This, how-
ever, is unintuitive and programmers tend not to write such assertions [25]; furthermore,
it does not quite solve the problem but only reduces it to the — arguably simpler but
still error-prone — problem of ensuring that the iteration over the data structure realizes
the intended quantification semantics without incurring in misleading side effects.

5.4 Model-based annotation languages

The Java Modeling Language (JML) [20, 19] is likely the approach that shares the most
similarities with ours: JML annotations are based on a subset of the Java programming
language and the JML framework provides a library of model classes mapping mathe-
matical concepts. While sharing a common outlook, the approaches in JML and in the
present paper differ in several details pertaining scope and technical aspects.

At the technical level, JML prefers model variables [7] while our approach lever-
ages model queries that return the value of immutable model classes; each approach has
its merits, but model queries have the advantage of supporting an axiomatic definition
that is easily grounded in an underlying mathematical theory, and facilitate a seamless
integration with traditional contracts — also typically based on queries. Section 3.1
discusses other advantages of model queries. A notational difference is that JML ex-
tends Java’s expressions with notations for logic operators and quantifiers, while our
method does not extend Eiffel’s syntax and reuses notation such as agents to express
quantifications and other aspects that belong to expressive specifications.

In terms of scope, our approach strives to be more methodological and systematic,
with the primary target of fully contracting a complete library of data structures. Our
method tries to keep the additional effort required to the programmer to a minimum;
this is the case, for example, with frame conditions that are extracted automatically from
postconditions in many cases (although our solution is still partial and certainly requires
further investigation). Finally, let us remark that our usage scenarios are multi-faceted,
ranging from specification and design (also supporting notions such as completeness),
to verification, runtime checking, and automated testing.

The present paper extends in scope the previous work of ours on model-based
classes [28, 27], and systematically applies the results to the re-design and re-implementation
of a rich library of data structures. The experience gained in this practical application
also prompted us to refine and rediscuss aspects of the previous approach, as we dis-
cussed at length in the rest of the paper.
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6 Conclusions and future work

Present work makes the following contributions:

– A method for writing strong interface specifications for reusable object-oriented
components; we give a systematic formal description of the method and define a
notion of specification completeness, which is easy to reason about.

– A library of reusable components supplied with strong specification, which demon-
strates applicability of the proposed specification method and its benefits for auto-
mated contract-based testing.

There are many directions of future work that we wish to pursue. First, the proposed
specification method has to be tried out on more libraries and application from diverse
problem domains. Second, a user study is needed to justify our intuition that model-
based contracts are easy to write, understand and reason about in practice.

As the ultimate goal we see model-based contracts as a part of an integrated verifi-
cation environment: a software development environment that employs a wide range of
tools and techniques to assist a programmer in constructing correct software. Achieving
this goal requires a lot of work in the direction of both proofs and testing.

On the side of proofs our method has to be extended to non-interface specifications:
abstraction functions, representation invariants, loop invariants are often more complex
than public contracts. We also have to refine the model-based approach to specifying
frame properties.

To enable automated proofs we have to implement the translation of model-based
contracts from Eiffel to Boogie. We also have to provide full Boogie theories for all
classes in the MML library. With these tools at hand we plan to prove correctness of the
EiffelBase2 library.

Except for correctness proofs, other interesting types of proofs can be done: for
example, formal proofs of specification completeness as defined in this paper as well as
proofs of consistency between the implementations of model classes and their mappings
into different theories.

In the direction of testing the main issue is the runtime efficiency of model-based
contracts. We plan to experiment with different implementation of model classes and
try to minimize the runtime penalty caused by their immutability.
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