
Towards a Calculus of Object Programs

Bertrand Meyer
ETH Zurich, ITMO & Eiffel Software

se.ethz.ch

Abstract
Verifying properties of object-oriented software requires a method for handling references in a
simple and intuitive way, closely related to how O-O programmers reason about their programs.
The method presented here, a Calculus of Object Programs, combines four components:
compositional logic, a framework for describing program semantics and proving program
properties; negative variables to address the specifics of O-O programming, in particular
qualified calls; the alias calculus, which determines whether reference expressions can ever have
the same value; and the calculus of object structures, a specification technique for the structures
that arise during the execution of an object-oriented program.

The article illustrates the Calculus by proving the standard algorithm for reversing a linked list.

1 Addressing the specifics of object-oriented software

Object-oriented programming predominates today; the verification methods we apply
should reflect its distinctive properties. Much of the available work, however, fails to take
into account the specifics of the object-oriented approach, in particular the “general rela-
tivity” principle which makes every operation dependent on a “current object” known only
at run time and potentially different for every execution or evaluation.

The most critical obstacle, for the practice of verification, is that there is still no easily
applicable approach to handle the manipulation of references (pointers), which plays a
central role in the practice of O-O development. Separation logic, the method that has
attracted the most attention, rests on an extensive model of the heap, requires extensive
program annotations, and fails to take advantage of the abstraction mechanisms that define
object technology. A typical example is Bornat’s important work on “proving pointer pro-
grams” [1], which does not consider any object-oriented mechanisms — in fact not even
routine calls, O-O or not — and focuses its discussion on modeling remote field assign-
ments, x.a := c, a mechanism that no careful object-oriented programmer would use. (The
appropriate idiom, whether or not the language imposes it, is to go through a call to a setter
procedure x.set_a (c), or a semantically equivalent variant such as a property setter in C#.)

The present discussion describes an approach to verifying object-oriented programs
with particular emphasis on the handling of references as required for linked data struc-
tures. The techniques closely follow the way object-oriented programmers think about
their programs; it uses standard annotations (contracts) of the form already present in
Eiffel, Spec# or JML, with only small extensions to the concepts of axiomatic (Hoare-
style) specification. It retains the possibility of evaluating assertions at run time, for testing
purposes, in addition to using them for static verification. Although the present paper pre-
sents the concepts only, the integration into a state-of-the-art proof seems within reach.

Cite as follows: Bertrand Meyer,
Towards a Calculus of Object Programs,
ETH/ITMO Technical Report, July 2011.

http://se.ethz.ch

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §22
The approach includes four components:

• Compositional logic (section 3), which describes the semantics of program elements
in terms of their effects on program values, generalizing the assertions of Hoare-
Dijkstra semantics to expressions of arbitrary types.

• The notion of negative variable (section 4), which provides a simple machinery to
model the distinctive properties of object-oriented programming, making it possible
in particular to reason on properties of the fundamental operation of object-oriented
programming, the call x.f (args).

• The alias calculus, an automatic approach (not relying on annotations) to determine
that two given expressions in a program can never denote the same object. The alias
calculus was presented in an earlier paper [16]; section 5 summarizes its results and its
application to the present work.

• The calculus of object structures (section 6), a set of techniques for describing properties
of run-time structures involving references. Reasoning effectively about object
structures requires suitably abstract models; the calculus defines these abstractions, in
particular through the integral operator , and the associated semantic rules.

The “Calculus of Object Programs” is the combination of these four techniques. It yields, as
an example, a simple proof of a program known to be challenging for verification: linked list
reversal. To enable the reader to understand right away how the techniques work, this proof
appears in section 2, where each step includes a forward reference to the formal rule that jus-
tifies it. Sections 3 to 6 detail these rules; section 7 is a comparison with other approaches,
section 8 concludes, and appendix A provides some supplementary theoretical background.

Starting with the example should enable the reader to see the fundamental simplicity
of the method, and encourage the study of the theory in the remainder of the paper.

The approach has limitations, detailed in section 8; for example, it does not yet
address inheritance. Also, the ideas have not yet been implemented; integrating them into
a practical verification environment [31] will, we hope, show their practicability and scal-
ability. Another possible criticism is that not much attention has been devoted so far to
modular provability. In spite of these limitations, the Calculus of Object Programs pre-
sented here may hold some of the elements of a simple method for verifying programs that
routinely manipulate sophisticated object structures.

2 A proof: linked list reversal

The example proof addresses an important and typical problem involving somewhat intri-
cate manipulations of references: the in-place reversal of a linked list.

As evidence that many people consider it tricky, we note that it is a staple interview
question for programmers; dozens of Web pages, which one will readily find through a
search for terms such as “list reversal algorithm”, present variants of the solution, for the
benefit of job candidates preparing such interviews. (A blog entry [17] discusses some of
these pages, noting that they typically fail to mention the loop invariant even though it is
the key to understanding the algorithm.)

§2.1 Algorithm idea 3
Although the steps are simple, we will perform the key part of the proof in almost full
detail, in the way one would present a proof of Euclid’s algorithm in an introductory course
on axiomatic semantics. The intent is to show that the techniques presented here allow pro-
grammers to reason formally about programs manipulating linked data structures as sim-
ply and naturally as about traditional programs involving just integers and booleans.

Terminology note: an object is made of a number of elementary values known as
fields. Of direct interest for the present discussion are fields of reference types (rather than
of basic types such as integers). Every field in an object corresponds to an attribute of the
associated class. Attributes are also called “member variables” (or “fields”, although this
term may cause confusion between the static and dynamic views).

2.1 Algorithm idea

The goal is to reverse a list of cells (of type LINKABLE) linked to each other through fields
labeled right; the first cell is accessed through the field first of the list class:

(The figures and part of the discussion are taken from an introductory programming text-
book [15].) As illustrated, each cell contains both a right link and some other information,
shown here as just an integer. We will assume that the structure induced by the right links
is acyclic; this property, formalized below, must remain invariant throughout the algo-
rithm. The desired final situation is:

By convention, the algorithm reorders the cells by changing their right fields, but does not
change the rest of the cell’s contents (so that in this example each cell in the final picture
is the same object as the one that had the same integer identifier in the original). Other vari-
ants are of course possible.

The best way to understand the basic idea of the algorithm, which relies on a loop, is
to consider the state of the data structure after a typical iteration of the loop:

right rightright right right

1 2 3 4 5

first

LINKABLE cells

rightright right right right

1 2 3 4 5

first

right rightright right

1 2 3 4 5

nextprevious

Reversed order Original order

right

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §2.24
In this intermediate state, we actually have two lists, accessible through the local variables
previous and next. The key property, as illustrated, is that the first list contains an initial
subset of the original sequence, but now in reversed order, and the second list contains the
remaining elements, in their original order. Then the task of the loop body is to preserve
this property but move the boundary between the two lists by one position to the right:

To achieve this change, the loop body will perform a short pointer ballet, which will be
detailed below. Note in particular that it must change the right field of the first item to the
right of the border (in the example, the one with value 4).

Repeating this process, we will eventually reach a state where next is void (null) and
previous points to the last element of the original list, giving us the desired result if we then
set first to previous. The process is easy to initialize: just set previous to void and next to first.

2.2 Algorithm text

All common forms of linked list reversal use the scheme just described, with small varia-
tions. We will work with the following form:

The procedure set_right sets the right field of its target to the value of its argument. A Java
or C# programmer might write the call previous.set_right (temp) as a remote assignment
previous.right := temp, but we restrict ourselves to a proper form of O-O programming
which rules out such violations of information hiding: the only way to set a field of another

reverse
-- Rearrange cells into the reverse of their original order.

local
previous, next, temp: detachable LINKABLE

do
from

previous := Void ; next := first
until

next = Void
loop

temp := previous -- i1
previous := next -- i2
next := next.right -- i3
previous.set_right (temp) -- i4

end
first := previous

end

1 2 3 4 5

nextprevious

§2.3 Specification 5
object is through a setter procedure such as set_right. The detachable declaration marks
variables whose value might be void [14].

Some simplifications are possible: the initial assignment of Void to previous is not
necessary thanks to default initialization rules; we can get rid of the variable previous alto-
gether, and of the final assignment to first, by working directly with first. We omit these
simplifications in the interest of clarity.

For ease of reference in the proof, the four instructions of the loop body have been
given names, i1 to i4.

2.3 Specification

The first step in verifying software is to specify what needs to be verified. Proper notations
are essential: concise, clear, and applicable to a wide class of problems. We need to equip
the routine reverse with a postcondition stating the property illustrated informally in the
preceding figures: that the original list is the concatenation of the list starting at previous,
reversed, and the list starting at next. We express this postcondition as:

The expression old e denotes, as usual, the value of e on entry to the routine. If s is a
sequence (a mathematical object, not a list from programming), – s is the reverse sequence.
The “integral” operator  is a new notation: starting from the current object, b denotes the
sequence containing that object, then the objects attached to b, b.b, b.b.b and so on, for as
long as it makes sense (and stopping at any cycle, although here we are dealing with acy-
clic structures). The sequence p.b similarly contains the objects attached to p, p.b, p.b.b
and so on. The integral notation allows us to express the goal of the routine as /1/.

It similarly enables us to express the fundamental invariant property of the loop algo-
rithm. Considered the typical intermediate step, which was illustrated as follows:

We may express the invariant property that this figure represents as:

where “+” denotes sequence concatenation. Proving this property to be a loop invariant is
the key step of a proof of the program. Once we establish this result, it remains only to
prove that the invariant is ensured by the initialization (previous := Void ; next := first),

first.right  – old first.right /1/

– previous.right + next.right  old first.right /2/

right rightright right

1 2 3 4 5

nextprevious

Reversed order Original order

right

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §2.46
and that when combined with the loop exit condition (next = Void) it yields the desired
postcondition /1/. Both of these properties are obvious and any good proof machinery will
discharge them easily; so the rest of this discussion limits itself to proving that the loop
body (when next /= Void) preserves /2/ and that the loop terminates.

We can in fact simplify the problem further since compositional logic generalizes the
notion of loop invariant from boolean expressions to expressions of arbitrary type. We say
that an expression e is an invariant of a loop simply to mean that an execution of the loop
body, performed when the loop exit condition does not hold, preserves its value. (In addi-
tion, an invariant of boolean type must have value true after the initialization, and hence
will remain true, in keeping with the semantics of traditional invariants.) With this conven-
tion the property to prove is that the following expression, which we call INV

is an invariant of the loop; it no longer needs the old operator. (In Eiffel the loop itself
would be written

assuming a suitable extension of the language to accept arbitrary expression types in
invariant clauses.)

A point of notation: in /1/, /2/ and all later assertions involving sequences, the “=”
symbol represents mathematical equality, here between two sequences. In an O-O pro-
gramming language, such assertions will have to use the notation for object equality (“~”
in Eiffel, where “=”, applied to references, represents reference equality).

2.4 Proof approach

In the framework of compositional logic, the property expressing that INV is an invariant is

(under the assumption that the exit condition next = Void does not hold). The notation i ; e,
for an instruction i and an expression e, denotes the value of e after execution of i, stated
as an expression in the state preceding that execution. Note that the semicolon is also used
in its traditional role as separator of sequentially executed instructions, as in i1 ; i2; the two
uses reflect, as we will see, the same mathematical operator. If an expression is present, as
INV here, it must be the last element. (We may think of programming languages such as
Algol W and C where a block may end with an expression, following a sequence of instruc-
tions, and then evaluates to the value of the expression after execution of the instructions.)

– previous.right + next.right /INV/

from until invariant -- Other clauses as above
– previous.right + next.right

loop end

(b ; INV) = INV -- Where b is the loop body: i1 ; i2 ; i3 ; i4

§2.5 Handling the previous part 7
INV is the sum (concatenation) – previous.right + next.right. Since the semicolon
distributes over “+” as over most operators, the proof that b ; INV = INV can be split into
three parts:

• Computing b ; previous.right (section 2.5); call the result bp.

• Computing b ; next.right (section 2.6); call the result bn.

• Computing –bp + bn and showing that it is equal to INV (section 2.7).

In addition, section 2.8 will prove loop termination.

The semicolon is right-associative: (i ; j) ; e is i ; (j ; e). As a consequence, since b is
i1 ; i2 ; i3 ; i4, the computation of b ; e4 (where e4 is previous.right in 2.5 and next.right
in 2.6) will proceed as the computation of e3 = i4 ; e4, then of e2 = i3 ; e3, then of e1 = i2 ; e2,
then of the result as i1 ; e1. The basic form i ; e of compositional logic leads to this backward
order, recalling how the Hoare assignment axiom leads to backward reasoning.

For ease of reference here is the loop body b again:

One of the attractions of the style of proofs presented in this work is that it closely matches
the intuitive semantics of object-oriented programs and the way programmers think about
their execution. To take advantage of this property, the reader may find it useful to relate
intermediate steps of the proofs to intermediate steps of the computation, as reflected in
the illustration of the pointer ballet (on the next page). Going from the bottom up in the
figure, the successively computed expressions e4, e3, e2 and e1 correspond to the states
S4, S3, S2 and S1.

2.5 Handling the previous part

We first compute i4 ; p where p is previous.right and i4 is a call to a setter procedure:
previous.put_right (t). By coincidence this first step of the proof uses one of the most
powerful rules to be seen below, ICX /34/, which states that with a setting procedure set_a
that sets the value of an attribute a in the target object x, then

where <x> denotes the sequence consisting of the single element x. We get:

We can indeed see at the bottom of the figure how p from state S4, that is to say the
sequence starting at previous, corresponds in state S3 to the element <previous> followed
by the sequence starting at temp.

temp := previous -- i1
previous := next -- i2
next := next.right -- i3
previous.set_right (temp) -- i4

x.set_a (c) ; x.a = <x> + c.a,

i4 ; p = <previous> + temp.right /p3/

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §2.58
Next we compute i3 ; p3 where i3 is next := next.right. (In this proof the label given for
each new step, here p3, will denote the value of the expression obtained at that step.) We
apply distributivity to compute the effect of the assignment on the two operands of the “+”
expression. In both cases, the assignment affects none of the elements in the given expres-
sions, and no cycles are involved; these conditions enable us to apply a theorem seen
below, IAY /30/, which indicates that both sides are untouched:

The figure indeed suggests that the assignment i3 only affects the “next” part of the struc-
ture and that the “previous” and “temp” parts are unchanged between states S2 and S3.

i3 ; p3 = p3 = <previous> + temp.right /p2/

1 2 3 4 5

nextprevious

S0

temp

i1: temp := previous

i2: previous := next

i3: next := next.right

i4: previous.set_right (temp)

1 2 3 4 5

nextprevious,

1 2 3 4 5

next,
previoustemp

1 2 3 4 5

previoustemp next


S4

S2

S1

1 2 3 4 5

previoustemp next

S3

§2.6 Handling the next part 9
Continuing up the loop body b, we compute i2; p2 where i2 is the assignment
previous := next. We again consider the two operands separately. The assignment axiom of
compositional logic tells us that:

• ((x := e) ; x) = e; this will be rule AX /5/. It applies here to the first operand since
previous is the assignment’s target.

• For a variable y other than x, ((x := e) ; y) = y; this will be rule AY /6/, generalized to
expressions as IAY /30/ under conditions of acyclicity satisfied here. It tells us that
the assignment has no effect on the second operand.

As a consequence

We may again perform a visual check on the figure: the sequence that starts with previous in state
S4 was, in state S1, the concatenation of the next element and the sequence starting with temp.

In the last proof step, the instruction i1 is the loop’s initial assignment, temp := pre-
vious. Axiom AY /6/ tells us that has no effect on the next operand, but axiom IAX /29/
tells us that (x := y) ; x.a is (again in the absence of cycles) y.a. We get as a result the
value of b ; p on entry to the loop:

which can again be checked for reasonableness in the figure, by looking at the counterpart
in state S0 of the sequence starting with previous in state S4. This completes the computa-
tion of the effect of b on the first operand of our conjectured invariant expression.

2.6 Handling the next part

We now apply the same process to compute b ; n where n is the second operand,
next.right. The reader is invited to follow the intermediate steps in the figure as was done
for the first part.

The frame theorem F indicates that the final instruction i4 of the loop,
call previous.put_right (t), has no effect on next.right:

The condition for the rule to be applicable is that previous must not be aliased to next; the
alias calculus yields it here automatically (although we could also establish it through clas-
sical techniques).

For i3, the assignment next := next.right, theorem IAX /29/ gives the next step:

i2 ; p2 = <next> + temp.right /p1/

b ; (previous.right) = <next> + previous.right /bp/

i4 ; n = n /n3/
-- where i4 is “call previous.put_right (t)”
-- and n is “next.right”.

i3; n3 = next.right.right /n2/

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §2.710
The initial assignments, i1 and i2, have previous and right as their respective targets. Rule
IAY /30/ tells us that they have no effect on the right side of the above: the next two steps
i2 ; n2 and i1 ; n1 give the same result as n2. As a consequence, we get the final answer
for the second operand:

2.7 Combining the results

The value we are computing (the value of the conjectured invariant in the initial state of
the loop) is – bp + bn, or, from the preceding computations

Three simple properties of mathematical sequences are that – (s1 + s2) is (– s2) + (– s1);
that concatenation “+” is associative; and that a one-element sequence is its own inverse:
– <a> = <a> for any element a. We can use them to simplify the result into

Theorem SIE /25/, which follows directly from the definition of the integral operator ,
states that for any attribute a

indicating that the last two terms in bp1 combine into next.right, and finally giving us, for
the entire expression:

This is the original expression, completing the proof that the expression is a loop invariant.

2.8 Termination

So far the proof has not addressed termination. Informally: since the loop’s exit condition
is next = Void, we must make sure that the repeated applications of the loop body finitely
reach a void link, thanks in particular to the instruction i3: next := next.right. This would
not be the case with a cyclic structure; indeed, the routine needs a precondition and should
be written as:

b ; (next.right) = next.right.right /bp/

– (<next> + previous.right) + next.right.right

– previous.right + <next> + next.right.right /bp1/

a = <a> + a.a

– previous.right + next.right

reverse
-- Reverse order of the cells.

require
first. right

 The rest as above 

§3 Compositional logic 11
where the property a, for an attribute a, states that the structure induced by a starting
from the current object has no cycle; more generally, p. a states that the structure induced
by a starting from p has no cycle.

As a consequence of the precondition, the program will maintain the properties pre-
vious. right and next. right. In other words, the figures showing both the previous and
next lists as acyclic do not lie. This property is proved automatically by application of the
alias calculus to the program.

To prove termination formally we need, as usual, a loop variant. If p. a holds, there
is an integer n, the “depth of a after p”, written p.a, such that following the a links n times
from p leads to an object whose own a link is Void. In the example next.right is a variant
for the loop, guaranteeing termination.

This step completes the example proof, which demonstrates the method developed in
this article. We will now review the basis for the properties on which the proof has relied.

3 Compositional logic

The first step is to define a proof framework appropriate for reasoning about complex pro-
grams. Compositional logic is a variation on the familiar forms of programming language
semantics; its main advantage over axiomatic techniques — an advantage of style rather
than substance — is that it does not rely on textual substitutions, except in the case of mod-
eling argument passing.

3.1 Basics

Compositional logic works with formulae of the following form, for an instruction i and
an expression e:

denoting the value of e after the execution of i. For the various kinds of instruction and expres-
sion, the rules of compositional logic define i ; e in terms of expressions evaluated in the state
preceding that execution.

As an example, the following axiom applies to any instruction i if c is a constant:

(For ease of reference, all rules appear in shaded boxes and are given both a name and a
number.) If we extend this property of constants to arbitrary expressions, we get a gener-
alized version of the concept of “relative purity” of an instruction i for an assertion P,
defined in [30] as {P} i {P}: we may say that i is relative pure for an expression e of any
type if (i ; e) = e.

i ; e

i ; c = c -- For any instruction i CONST /3/

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §3.212
In object-oriented programming, a particularly important constant is Current (also
called this or self in various O-O languages), denoting the current object. No construct can
ever change the value of Current:

This rule is our first encounter with the O-O principle of general relativity: as an observer
traveling in a spacecraft can change the contents of that vessel but not move to another
spacecraft, the execution of an operation on an object can change the contents of that
object but not make another object current. (Another analogy is that while you can change
some of your own properties you cannot become someone else.)

The CUR property holds of all basic instructions and must be preserved by rules for
composite instructions such as calls.

The next two axioms define assignment; for variables x and y and an arbitrary expres-
sion e:

Here, and elsewhere unless explicitly noted otherwise, different variable names in the axi-
oms, such as x and y, denote different variables. (The values of the variables could, of
course, be equal at run time.)

AX and AY replace the usual assignment axiom of axiomatic semantics. They apply
to individual variables rather than arbitrary expressions; to determine the effect of an
assignment on a composite expression, we need a distributivity theorem.

3.2 Distributivity and associativity

The distributivity theorem

is applicable to all ordinary operators § on basic types and references. An example proof
using this property and some of the previous ones is:

In words: the value of x + 1 after the assignment x := e is the value of e + 1 (computed in
the initial state).

i ; Current = Current -- For any instruction i CUR /4/

(x := e) ; x = e AX /5/
(x := e) ; y = y AY /6/

i ; (e § f) = (i ; e) § (i ; f) DIST /7/

(x := e) ; (x + 1) = ((x := e) ; x) + ((x := e) ; 1) -- by DIST /7/
= ((x := e) ; x) + 1 -- by CONST /3/
= e + 1 -- by AX /5/

§3.3 Rule for “old” 13
An associativity rule applies, where the semicolon is also used in its traditional role
as instruction sequencer:

3.3 Rule for “old”

The operator old makes it possible to refer to the original value of an expression. The cor-
responding axiom reflects this property:

This property holds of all basic instructions i and must be preserved by rules for composite
instructions such as routine calls.

It must be clear what the scope of i is: as stated in the restriction to the ASSOC rule,
associativity does not apply if old is involved. Compare:

As an example of a proof involving old, consider the following property:

which might appear in a class describing a integer counter, whose value is given by item.
As the expression is to the right of the semicolon is of boolean type, this is the equivalent
to proving the Hoare triple {True} (item := item + 1) {item = old item + 1}. Through DIST
/7/ applied to the equality operator “=”, the property expands to

The left side of this equality is item + 1 by the assignment axiom AX /5/. The right side
can be further expanded through DIST to

The first term is item by OLD /9/; the second term is 1 by CONST /3/, yielding item + 1 for the
right side of /10/, and hence establishing /10/.

In comparing this proof with its counterpart in Hoare semantics or weakest-precon-
dition calculus, we may note that it avoids any use of substitution, relying instead on alge-
braic laws of distributivity and associativity. On the other hand it requires two assignment
axioms, AX /5/ and AY /6/, instead of the single axiom of axiomatic semantics.

(i ; j) ; e = i ; (j ; e) ASSOC /8/
-- If e does not involve old (see next)

i ; old e = e OLD /9/

(x := 0) ; (x := 1)) ; old x = x -- by OLD
-- but:
(x := 0) ; ((x := 1) ; old x) = (x := 0) ; x -- by OLD

= 0 -- by AX /5/

(item := item + 1) ; (item = old item+ 1)

((item := item + 1) ; item) = ((item := item + 1) ; (old item+ 1) /10/

 ((item := item + 1) ; (old item)) + ((item := item + 1) ; 1)

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §3.414
3.4 Calls

Consider a routine r. The body of r, a sequence of instructions, will be denoted by r, and
the list of formal arguments by r .. A call to the routine, with actual arguments l , will be
written call r (l). (Modern languages typically do not need the keyword call, but we keep
it here for clarity.) The compositional logic rule is

where f [v: l] denotes the expression f with every occurrence of an element in the list of
variables replaced by the corresponding element in the list of expressions l. This is the only
place where compositional logic uses substitution, to represent actual-formal argument
association. The rule’s name stands for “Unqualified Call”; the version for qualified calls
(call x.r (l)) will appear later as QC /21/.

Since rule UC defines the semantics of calls in terms of the semantics of their con-
stituent instructions, it preserves the CUR /4/ and OLD /9/ properties.

3.5 Setters

A theorem applies to setter procedures of the form

where a is (in an object-oriented context) an attribute of the enclosing class. We say that a
routine with a postcondition clause a := f, where a is an attribute and f an argument, is a
setter for a. The theorem is:

(“Unqualified Setter” rule). The position of c in the actual argument list is the position of
the setting argument, f above, in the formal argument list.

The proof of US immediately from the previous rule UC /11/, and associativity
ASSOC /8/ which enables us to ignore whatever anything_else does.

It is often important to deduce properties of routines of which we do not have the imple-
mentation but only a contract. UC is applicable whenever the routine has the postcondition
a = f. An informal proof of this property simply notes that the semantics of such a routine
does not change if we add the assignment a := f at the end of its body (including if we do
this in any order for distinct attributes a), so that the previous proof is still applicable.

(call r (l)) ; e = (r ; e) [r .: l] UC /11/

set_a (; f : T ;) /12/
-- Among other possible actions, set the value of a to f.

do
anything_else
a := f

ensure
a = f -- There may be other postcondition clauses.

end

(call r (, c, )) ; a = c US /13/
-- If r is a setter for a

§3.6 Mathematical basis 15
3.6 Mathematical basis

The “;” operator has a simple mathematical meaning. To see it, we start by looking at non-
OO (say Pascal-style) programming, then move to an object-oriented context where the
idea is the same but the functions’ signature more elaborate.

Fundamentally, “;” is a variant of mathematical composition. Let us use the operator
“m” to denote the composition of functions or relations; for functions f and g, their compo-
sition h = f m g is such that h (x) = g (f (x). (Frequent mathematical convention lists the func-
tions in the reverse order, but for programming it makes more sense to write them in the
order of application.)

Consider first a non-OO framework. A  B will denote the set of functions from A
to B where A and B are arbitrary states. Let State be the set of states and Value the set of
run-time values. An instruction is a function in State  State. (More precisely, it may be
a partial function, to account for undefined computations, or a general binary relation, to
account for non-deterministic programs; but these cases do not affect the discussion, so we
keep ““ for simplicity.) An expression is a function in State  Value.

The “;” operator in this context is just function composition “m”. This also explains
why we can apply it both between instructions, as in i ; j, and between an instruction and
an expression, as in the basic formula of computational logic, i; e. Associativity ASSOC
/8/ applies, enabling us to write i1 ; i2;  ; in ; e, as long as we use an expression only as
the last element. The first n functions being composed are in State  State, yielding as
their composition another function with the same signature; we then compose this result
with e, of signature State  Value, giving as overall result another State  Value function
representing an expression.

In object-oriented programming the signatures are different as a consequence of gen-
eral relativity: every instruction and expression is relative to a current object, not specified
in the class text (and not changeable by it, see CUR /4/). With Object representing the set
of objects, the signatures are now:

and the semicolon operator has the following definition, denoting a generalized form of
composition where both operands are applied to the same object:

(In other words, (i ; f) (x), applied to a state , is the result of applying f (x) to the result of
applying i (x) to .) As before, f can be either an instruction or an expression but the defi-
nition is the same, justifying the use of a single operator “;”.

Object  State  State -- For an instruction
Object  State  Value -- For an expression

i ; f =  x: Object |  s: State | (i (x) m f (x)) ()

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §3.716
3.7 Comparison with other semantic description methods

We may assess the level of abstraction of compositional logic against other approaches to
defining the semantics of programs and programming languages.

Denotational semantics specifies the programming language by explicitly defining,
for every kind of instruction i, a function in State  State, and similarly a function in
State  Value for every kind of expression. (For O-O languages, the signatures also
involve Object.)

Axiomatic semantics works at a higher level of abstraction by defining the effect of
instructions on boolean properties of the program state (or, for postconditions, of two
states). The weakest-precondition variant attempts to turn such properties into a calculus
whose rules yield the precondition from the construct and the postcondition.

Compositional logic is at a higher level of abstraction than denotational semantics
since it does not explicitly manipulate the state, but only talks about the effect of compu-
tations on expressions of interest to the programmer. Unlike axiomatic semantics, how-
ever, it defines these properties for arbitrary expressions, not just boolean ones.

In the case of boolean expressions, compositional logic reduces to the weakest-pre-
condition calculus: i ; Q is i wp Q (the weakest precondition of the instruction i for the
postcondition Q).

The correspondence with Hoare-style semantics is similar: the Hoare triple {P} i {Q}
expresses that P implies (i ; Q), where implies is implication between assertions.

4 Negative variables: reasoning on object-oriented calls

In the object-oriented style of programming, the basic operation is the “qualified call”

which calls the routine r, with actual arguments l, on the object OX denoted in the current
class text by x. For the duration of the call, OX will be the current object; the previously
current object will become current again upon termination of the call, including any other
calls that it may in turn have triggered.

The terms “client object” and “client class” will denote the caller side (the context
that issues the above call); “supplier object” and “supplier class” refer to the target object
OX and its class:

call x.r (l) /14/

x

Client object

Supplier object

c
Client and
supplier objects

OX

§4 Negative variables: reasoning on object-oriented calls 17
The figure (using the precise conventions of “alias diagrams” introduced in [16] for pre-
senting properties of object structures) also shows a field of the client object, correspond-
ing to an attribute c, which can be used as an actual argument to the call (part of the list l).

The unqualified call rules, such as UC /11/ above, or its equivalent in axiomatic
semantics — which tells us that from {P} r {Q} we may deduce {P [r .: l]} call r (l) {Q
[r .: l]} —, do not directly apply because they fail to take into account the relativity of
expressions in the different contexts of the caller object and the target object. If f is a formal
argument of r (part of r .) and the corresponding actual argument in l is c, we cannot just
substitute c for f in reasoning about the call, since the name c is meaningless for the sup-
plier: it denotes a field of another object, and generally of a different class.

We need, however, to be able to use this field; for example the routine body could
perform the instruction

where y is an attribute of the supplier class. In the execution of call x.r (c), where the for-
mal argument is f, we expect this instruction to assign to y the value of c.item:

Note that item itself is a feature of the class of c. The thick red arrow in the figure illustrates
the intended result of the assignment to y. The figure also shows that the formal argument
f refers, in the supplier’s context for this particular call, to the object known in the client’s
context as c.

One way to deal with these changes of context is to assume a preprocessing step in
which all unqualified references to features of a class (including attributes, but not formal
routine arguments) are prefixed by Current (or this), then to include in the call rule a sub-
stitution of the target, x in the example, for all occurrences of Current. This is the tech-
nique used in [20]. It implies, however, many textual manipulations. We will use instead
an algebraic technique based on the notion of negative variable introduced in [16]. The
idea is that in a call of target x the negated variable x’, applicable to the supplier context,
denotes a link back to the client object, making it possible in the supplier context to refer
to any expression e stated in terms of the client context: simply use x’.e.

y := f.item

x

Client

Supplier

c item

y
f

The supplier may
need access to the
client context

x

Client

Supplier

c item

f

Negated variable

Current object at the time of the call

x’

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §418
For example, passing c as the argument in call x.r (c) means binding the corresponding
formal f not to c (as in an unqualified call call r (c)) but to x’.c.

The following rules apply to negative variables and Current:

(These rules come from [16], with NEG2 adjusted.) The presence of old in NEG2 is nec-
essary to account for a “frame” issue: the possibility that a call x.r () might, through a
callback, change the value of the x field of the current object. Then during the execution
of r, evaluating x’.x might lead to the object newly attached to x, labeled O’ on the next
figure, rather than to the call’s target OX:

Object-oriented languages do permit this behavior, in which a routine call changes the
field that served as the call’s target; NEG2 handles them. Such schemes complicate veri-
fication, however, and break the symmetry between NEG1 and NEG2. It is preferable, as
a matter of programming methodology, to avoid them by requiring routines to satisfy the
following property:

(The name suggests that the routine preserves its relation with its genitors.) No use of old
is necessary in NEG1, since the expression x.x’ only makes sense if used from a client dur-
ing a call of target x, and then x’ always refers back to the client.

The CUR /4/ rule stated that since the current object is given by the context of exe-
cution no instruction may ever change the value of Current. Similarly, you never get a
chance to change the back-link to your client:

(Pursuing the earlier analogy: while you can change other properties of your parents, you
cannot become the child of someone else than your parents.)

x.x’ = Current -- For any variable x NEG1 /15/
x’.old x = Current NEG2 /16/
Current.e = e -- For any expression e CUR1 /17/
e.Current = e CUR2 /18/

Definition: nonprodigal routine
A routine is nonprodigal if for any call of target x it satisfies the postcondition

x’.x = Current. NP /19/

i ; x’ = x’ -- For any instruction i BL /20/

x
Client

Supplier

x’

A callback with side
effect can cause x’.x to
be no longer Current

OX

O’
OC

§4 Negative variables: reasoning on object-oriented calls 19
Negated variables yield a simple semantic description for qualified calls x.r (c), the
central mechanism of object-oriented computation. Appendix A gives the full semantic
rules in both denotational and axiomatic styles. In compositional logic, the rule is

where “” denotes the dot operator “.” distributed over a list (so that x  <u, v, > is
<x.u, x.v, >). The rule determines how to obtain the effect on e of calling x.r (l):

• Transpose the arguments of the original call to the context of the supplier, by
prefixing them with “x’.”. The result of this transposition is call r (x’ l).

• Find out the effect of this call on the expression x’.e, which represents e also
transposed to the supplier context. The result is (call r (x’ l) ; x’.e.

• Interpret this result back in the context of the client by prefixing it with “x.”, giving QC.

This process of transposing the client information to the supplier side then transposing
back to the client side directly reflects the unique nature of object-oriented computation
with its reliance on the current object. A qualified call makes a new object (the target) cur-
rent; when the call terminates, the previous current object resumes this role.

Note that if e is old x, the general rule CUR /4/ governing Current, applied to the
unqualified call, tells us that call x.r (l)) ; Current is Current.Current and hence (from
CUR1 /17/) Current. It follows that the qualified call rule QC also conforms to CUR.

Similarly, (call x.r (l)) ; old x) = x from QC, NEG2 /16/ and CUR2 /18/. It is not nec-
essarily true, however, that (call x.r (l)) ; x) = x because of the frame issue noted above: a
callback in the execution of r might modify the client’s x. field. We may only deduce
(call x.r (l)) ; x) = x if the routine is nonprodigal as defined above /19/

The QC rule relies on the effect of call r (x’ l), the unqualified call. That effect is
given by the rule for unqualified calls UC /11/, which defines it as the effect of the body
after argument substitution. By expanding that earlier rule we get a more detailed version
of QC:

From the qualified call rule (in either form) we get a theorem on qualified calls to setter
procedures. As before (section 3.5), we assume that a is an attribute and set_a (f) has the
postcondition a = f. Then:

(“Qualified Setter” rule, compare with US /13/.) Note that although a setter procedure such
as set_a may have several arguments — per the original definition of this notion in section
3.5 — the rest of the discussion ignores, for brevity, any arguments other than one used in
a setting role.

(call x.r (l)) ; e = x .((call r (x’ l) ; (x’.e)) QC /21/

(call x.r (l)) ; e = x .((r ; x’.e) [r .: (x’ l)] QC’ /22/

(x.call set_a (c)) ; ((old x).a) = c QS /23/

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §520
The proof of QS is as follows:

Often we may wish a property involving x rather than old x:

This property only holds if the routine preserves the link back from its client, as expressed
by the “nonprodigal” property NP /19/.

5 The alias calculus

The third component of the approach is the alias calculus, developed in an earlier article
[16]. For any expressions e and f denoting references, and any program location pl, the
alias calculus yields the answer to the question: can the values of e and f ever denote the
same object when a program execution is at pl? The theory is (barring any errors in [16])
sound, in the sense that if the answer is “no” it provides a guarantee that e and f will always
denote different objects — precisely the guarantee we need for the applications discussed
here. If the answer is “yes”, it could still be the case that e and f never get aliased in prac-
tice. In other words, the alias relation that the calculus determines may be an over-approx-
imation of the real aliasings. The possibility of over-approximation comes not from the
calculus itself but from the simplification it applies to programming languages: it ignores
the conditions in conditionals (defining the aliasings of if c then i else j end to be the union
of those induced by i and j separately, regardless of c) and loops. The over-approximation
is generally harmless; when undesired, it can be corrected through the insertion of an
assertion e /= f (expressed in the calculus as the instruction cut e, f), which needs to be
proved, often trivially, through techniques outside of the alias calculus.

The main advantage of the calculus is that its application is automatic. Computing
the alias relations induced by a program requires no annotation (except for the occasional
cut). The calculus yields an algorithm, whose implementation described in [16], although
still experimental, covers the entire theory and has been applied to sophisticated examples.

The existence of the alias calculus allows the rest of this discussion to define rules of
the form “Property P holds if e and f can never be aliased at the given program point”. Such
rules are sound — they cannot lead us wrongly to deduce that P holds if it does not — since
the calculus is sound.

(x.call set_a (c)) ; ((old x).a) = x .((call set_a (x’. c) ; (x’.old x.a)))
-- From QC /21/

= x .((call set_a (x’. c) ; (Current.a)))
-- From NEG2 /16/

= x .((call set_a (x’. c) ; a))
-- From CUR1 /17/

= x .(x’. c) -- From US /13/
= Current.c -- From NEG1 /15/
= c -- From CUR1 /17/

(x.call set_a (c)) ; x.a = c -- If r is nonprodigal QSN /24/

§6 Reasoning on data structures 21
To express that at a particular program point the expressions e and f, of reference
types, can never be aliased, we will write e f. (In Eiffel the usual inequality notation e f
suffices, since when applied to references it denotes reference inequality.) This notation
has two useful generalizations:

• If S1 and S2 are sets or sequences of expressions, S1 S2 states that e f for every
e in S1 and every f in S2.

• We may also use S1 and S1 where denotes the set of objects
reachable from EO (the object denoted by e) by following reference fields any
number of times, and denotes its subset obtained by starting from fields
of EO other than a, b, 

These notations are useful to reason about programs, but programmers do not need to
know them as they will not appear in assertions or other program elements.

6 Reasoning on data structures

It remains to define appropriate concepts and notations to express properties of the kind of
object structures, often complex, which routinely arise in object-oriented programming but
still defy the reasoning techniques of the usual approaches to program verification.

6.1 Background: model-based specifications

One of the reasons for the difficulties experienced by traditional approaches may be that
they usually fail to equip themselves with the right abstractions. Typically, they work with
elementary values and individual objects. To reason effectively about lists, trees and other
sophisticated data structures, we need higher-level abstractions, such as sequences, and we
must relate them to the program text; for example, we must be able to refer to the sequence
of objects obtained by repeatedly following, from a given object, the successive references
of a given type.

The notations defined below, in particular the integral operator, address this requiree-
ment. They follow the idea of model-based specification, pursued by the author and col-
leagues [23] [28] but already present in approaches such as JML [11]. This specification
method defines the effect of programs in terms of high-level abstractions, representing
mathematical concepts (sets, sequences, relations and so on) but closely integrated into the
program text and expressed in the host O-O programming language.

In devising these abstractions, we retain one of the key practical properties of the
Design by Contract specification method, its support for verification of both the static
(proofs) and dynamic (tests) kind, by making sure that contract elements (assertions) not
only have a clear mathematical specification but can also be evaluated, under the control
of compiler options [6], during program execution.

6.2 Context

We assume a statically typed object-oriented language, so that any pointer expression x.y
can be considered type-wise valid: there is an attribute of name x in the current class, of
some type T, and in the class defining T there is an attribute of name y.



 

e  e – {a, b, }  e

e – {a, b, }

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §6.322
References can be “void” (or “null”). We do not need to concern ourselves with the
problem of “void calls” (or “null-pointer dereferencing”), even in the absence of a mech-
anism as Eiffel’s Void Safety which removes it entirely at compile time [14], since the con-
ventions defined below will ensure that no void reference is used in an unsafe way.

Object-oriented languages allow attributes from different classes to bear the same
names; in fact the Eiffel style rules promote the systematic use of standard attribute names
such as item. When citing attribute names, the present discussion assumes that they have
been disambiguated first, so that each represents an attribute of a single class (and its
descendants). Another way of stating this assumption is to assume that every attribute
name is prefixed by the name of its class, as in LINKABLE_item and LINKED_LIST_item.

6.3 Paths

The first notion we need (already implicitly used in earlier discussions, with expressions
such as x'.x.c) is that of a path. A path is a sequence of zero or more attribute names. If
the path contains more than one attribute we separate them by periods, as in a.b.c.

We may without risk of confusion apply the dot operator to paths (such as p and q)
as well as attributes (such as a, b, c, d, e), combining them freely as in a.p, p.a and p.q,
with associativity. For example if p is a.b.c and q is d.e, then p.q is a.b.c.d.e. This asso-
ciativity was used in the proof of QS /23/, when it obtained x.(x’. c) and treated it as
(x .x’) . c.

A path always denotes an object, defined (as the relativistic nature of object-oriented
programming requires) in relation to the current object. Informally, we obtain the object
denoted by a path p by starting from the current object and following, for as long as possible,
the references given by the fields corresponding to the elements of p, as in this example:

“As long as possible” means that the process stops if it encounters a void field, so if the c
link in the above figure were void the value of a.b.c would be the same as that of a.b. This
convention of stopping at void links simplifies the discussion considerably; that it obviously
does not reflect the semantics of Void or null in O-O languages does not matter, since the
problem of void safety is not in the scope of the present discussion and should be addressed
through separate techniques, such as the void safety framework presented in [14].

To avoid any ambiguity we may define precisely the object O associated with a path p:

• If p is empty, O is the current object. In the next two cases, let a (an attribute) be the first
element and q the remainder of p (i.e. p = a.q, unless q is void in which case p = <a>).

• If the a link from the current object is void, O is also the current object.

• Otherwise, let O’ be the object to which the a field of the current object is attached.
Then O is the object associated (recursively) with q if O’ is used as current object.

As this definition unambiguously associates an object with every path, the rest of the dis-
cussion often allows itself to talk about “the object p” where p is a path.

a b A path denotes an
object in relation to
the current object

c a.b.c

Current object
O’ O

§6.4 Integrals 23
The length | p | of a path p is the number of attributes in its definition. The empty path
has length 0 and a.b.c has length 3. In the absence of void links, the length is the number
of objects, other than the current object, involved in the path.

If a is an attribute, a0 denotes the empty path, a1 the path <a>, and an+1 for n > 0 the
path an.a (which is also a.an). In line with the general conventions noted above, using this
notation assumes proper typing: the type of the attribute a must be the same as the type of
the current object, or conform to it.

The notation a expresses that a is acyclic, in the sense that from any current object
the sequence an, for all n 0, is acyclic. This property is defined as an Current for all
n — meaning, from the definition of “ ” in section 5, that an can never become aliased to
the current object (and hence, if the property is satisfied for all possible current objects,
that there are no other cycles in the sequence either). One of the principal contributions of
the alias calculus to the Calculus of Object Programs is that it tells us, through an auto-
mated procedure, that certain attributes are acyclic.

The notation generalizes to p. a, stating that there are no cycles after p in the
sequence p.an.

One more notation is p.a, the depth of a after p, defined as the largest n such that
all p.ai, for 0 in are different objects. (For empty p, we talk of just “the depth of a”
and write it a.) This definition covers two cases; calling s the sequence of objects
obtained by starting at p and following a links:
• If s is acyclic (p. a holds), it must reach a

void a link: otherwise it would have to be
infinite, but our object structures are finite.
Then p.an is the first object O in the
sequence whose a field is void.

• If s is cyclic, then p.an is the first object O in
s whose a link leads to O itself or a previous
element of s (p.ai for some i in 0..n).

If we know that an attribute is acyclic, the first case applies and we can think of p.a as the
“distance to Void through a”. As a consequence, x.a can serve as the variant for a loop of exit
condition x = Void, whose body executes x := x.a, as in section 2.8 of the example proof.

6.4 Integrals

A path denotes a single object. We also need a notation for the sequence of objects encoun-
tered by repeatedly following the links corresponding to a certain attribute. The integral
notation serves that purpose. If p is a path, the notation p.a represents the finite sequence
of objects p.ai, for all i in 0..n where n is p.a, In other words, it is the sequence of objects
that starts with p and continues by following a links, up to the first object in which the a
link either is void or leads to an object already in the sequence.

For empty p, we write just a (“simple integral”) denoting a sequence that starts with
the current object and continues until the a link would give Void or a repetition.

In both cases, the sequence has the following properties:




p O

a a a

p O

a a a
a

p.a = 3

a

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §6.424
• It is never empty, since a always contains the current object, and p.a contains the
object associated with p (which always exists as discussed in 6.3).

• It is acyclic by construction.

• It contains objects all of the same type, or of types conforming to a common ancestor
type having a as one of its attributes. (This property follows from the assumptions: a
typed O-O language, and attribute names that have been disambiguated so that each
denotes an attribute of just one class.) In the example, a denotes the same attribute
for all objects in the sequence a or p.a.

The notation is inspired by the integrals of classical analysis: as the integral f in analysis
accumulates the value of the function f, our sequence a accumulates the values of the
attribute a. Our integrals can also be compared to regular expressions, but a regular expres-
sion denotes a set of sequences, whereas an integral denotes a single sequence.

It would also be possible to define expressions of the form p.a.q, or even to include
several simple integrals, but we do not need such extensions in the present discussion.

Other properties of integrals are:

(“Simple Integral Equation” and “Non-simple Integral Equation”.) They follow directly
from the definitions. Note that the second operand of the “+” is an empty sequence if the
a link from (respectively) the current object or p is void.

A general theorem allows us to deduce properties of integrals from properties of paths:

To use the theorem, it suffices to show that f holds in the most specific case represented by
the first property; in some cases, however, it is just as simple to establish f in the more gen-
eral cases represented by the second property or even the third.

It is useful to generalize the “may not be aliased” operator “ .” to integrals as follows:
a p, for a path p, means that ai p for all i, and similarly for non-simple integrals. To
derive such properties, we may as before apply the alias calculus, an automated process.

a = <Current> + a.a SIE /25/
p.a = p + p.a.a NIE /26/

Integral theorem
Let p be a path and a an attribute; let f a predicate on objects, which can be
generalized to a predicate on sequences of objects (which holds if f holds
of every element of the sequence). Then we may deduce f (a) (resp.
f (p.a)) from any of the following properties:
1 • f (an) (resp f (p.an)) for any n  0 such that an (resp p.an) is acyclic.

2 • f (q) (resp f (p.q)) for any path q such that q (resp p.q) is acyclic.

3 • Either of the previous two without the acyclicity restriction.


 

§6.5 Compositional semantics of paths and integrals: assignment 25
6.5 Compositional semantics of paths and integrals: assignment

It remains to define the effect of instructions on paths and integrals, generalizing the rules
defining their effect on simple variables.

There is no simple rule governing the effect of an arbitrary instruction i on a path p.q
in the general case. In particular, i ; (p.q) is not necessarily the same as (i ; p).q as illus-
trated by the following example where i reattaches the b link of O1 from O2 to O3:

i ; (a.b), is O3, but (i; a) is still O1 so (i ; a).b is O2.

We can, however, generalize the assignment rule for single variables (AX /5/ and AY
/6/) to paths not involving cycles. The generalized assignment rule is as follows (as usual,
y is assumed to denote an attribute other than x):

The basic assignment rules AX and AY (applicable to variables of any type, not just refer-
ences) are special cases of PAX and PAY for an empty path p.

The reason we need an acyclicity restriction is that even though the assignment
updates only one field of a single object (the x field of the current object), the p part of the
path e.p or y.p could also be affected if it cycles back to that object. The following example
shows how a cycle can invalidate PAX. We consider (x := e) ; x.z.x (so that p is z.x) under
the following circumstances:

As illustrated, x denotes O1 before the assignment and O2 afterwards. The example
assumes that z in O2 points back to the current object. So (x := e) ; x.z.x denotes O2. The
value of e.z.x, however, is a reference to O1. Here PAX does not hold.

The rules PAX and PAY as stated above require the paths to be acyclic. This condition
is stronger than needed since it precludes all cycles, including any that are harmless for the
given instruction. A weaker condition suffices: that x (resp. y) be cycle-free for e before p.
This means that no prefix of p is of the form q.x where e.q (resp. y.q) may be aliased to
Current. Acyclic paths are a special case of this condition. Most cases encountered in
practice involve paths that are acyclic by construction.

(x := e) ; x.p = e.p -- If e.p is acyclic PAX /27/
(x := e) ; y.p = y.p -- If y.p is acyclic PAY /28/

-- See less restrictive conditions below

a b

No associativity for
the effect of
instructions on paths

O2

O3

O1


x
e

No associativity for
the effect of
instructions on paths

O1

O2

z



 TOWARDS A CALCULUS OF OBJECT PROGRAMS §6.526
To ascertain acyclicity or cycle-freeness, one may apply the alias calculus.

PAX and PAY have counterparts for integrals:

These properties assume that x is not the attribute a. They follow from extending PAX and
PAY through the integral theorem. Having x (resp. y) cycle-free for e before p — for exam-
ple, acyclic — suffices, since the subsequent elements in the sequence, of the form e.p.a
(resp y.p.a) result from following a links and cannot be modified by an assignment to an
x field of an object.

For the case in which x and a are the same attribute, the following rules apply:

(As a reminder, p.a q means that p.ai cannot be aliased to q for any i.) These rules are
theorems that follow from PAX; in particular the condition of IA, e.x Current, follows
directly from the condition in PAX: since x is by construction acyclic, the only harmful
cycles in e.x could arise from e.xi being aliased to Current (and similarly for IAP).

The following counter-example shows that these conditions are indeed necessary:

Initially x (the x field of the current object, OS) is attached to O1, e to O2 and the x link of
O2 back to O. After the assignment x := e, the value of x will be the sequence <O, O2>,
stopping there because the next x link would cause a cycle. But <Current> + e.x in the
initial state was <O, O2, O, O1>. IA does not hold here; indeed its condition is not satisfied
since e.x was aliased to Current.

The six rules just seen enable us to reason about the effect of assignments on paths
(for the first two of these rules, PAX and PAY) and integrals. It remains to see the rules
defining the effect of calls.

(x := e) ; x.p.a = e.p.a -- If x is cycle-free IAX /29/
-- for e before p

(x := e) ; y.p.a = y.p.a -- If y is cycle-free IAY /30/
-- for e before p

(x := e) ; x = <Current> + e.x IA /31/
-- If e.x Current

(x := e) ; x.x = e.x IAP /32/
-- If e.x x








x

No associativity for
the effect of
instructions on paths

O1

O2

x’ e

O


§6.6 Compositional semantics of paths and integrals: setter calls 27
6.6 Compositional semantics of paths and integrals: setter calls

The final four rules govern the effect of qualified setter calls call x.set_a (c) on paths and
integrals. Their application requires some conditions, whose definitions follow; these defini-
tions strive for generality, but it is important to note that any “simple setter” such as set_right
used in the list reversal example, which simply sets an attribute, trivially satisfies them.

The first two of these rules state the effect of a setter call on a path or sequence start-
ing with the call’s target:

We may apply these rules to x rather than old x if set_a is nonprodigal (NP /19/).
The last two rules are “frame conditions” indicating that there is no effect on paths

starting with an attribute other than the target:

As before, the “P” versions are for paths and the “I” versions for integrals The conditions
are defined as follows, for a routine r and an attribute a:
• Reminder from 3.5: r is a setter for a if it satisfies the postcondition a = f, where f is

one of the routine’s arguments.
• The routine is a simple setter for a if its implementation entirely consists of

assignments f := a, where f is a formal argument of r, and possibly of other such
assignments of a formal argument to an attribute. The routine set_right of list reversal
is an example. A simple setter for a is a setter for a.

• r directly affects a if it may change the value of a. A setter for a affects a.
• r indirectly affects a if it may change the value of p.a for some non-empty path p, or

includes a qualified call to a routine that (recursively) affects a.
A simple setter for a directly affects a, and affects no attribute (a or another) indirectly.

In the list reversal example, the conditions of the above rules are satisfied since
set_right is a simple setter for right. In addition, a simple setter is nonprodigal, so we can
drop the old in PCX and ICX. For more general cases, these conditions should be estab-
lished from the setter’s specification:
• The postcondition should express that the routine is a setter.
• It should also limit the scope of changes by expressing that the routine does not

indirectly affect the relevant attributes, and possibly that it is nonprodigal; it is
preferable, however, to avoid having to state such frame properties explicitly, and rely
instead on simple language conventions [18] which imply them.

(call x.set_a (c)) ; (old x).p = <x> + c.p PCX /33/
-- If set_a is a setter for a
-- and does not indirectly affect a.

(call x.set_a (c) ; (old x).a = <x> + c.a ICX /34/
-- Same condition as previous rule

(call x.set_a (c)) ; y.p = y.p PCY /35/
-- If set_a is a setter for a
-- and does not indirectly affect a.

(call x.set_a (c)) ; (y.a) = y.a ICY /36/
-- Same condition as previous rule

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §728
7 Comparison with previous work

The proper handling of references for a verification environment has occupied researchers
for a long time. An early paper by Morris [19] defined important steps towards making the
problem tractable. Further impetus to research on the topic was spurred by a paper by
Hoare and He at ECOOP 99 [9], which took an object-oriented approach. None of the tech-
niques proposed until recently, however, was anywhere close to allowing practical proofs
of programs manipulating realistic object structures.

Separation logic [24] has enjoyed considerable attention and achieved verification
successes. The basic idea is to allow modular reasoning about the heap thanks to the addi-
tion to Hoare logic of the operator, where P Q means that P and Q separately hold on
disjoint parts of the heap. Bornat [1] has published a proof of list reversal using separation
logic using C-like programs that manipulate heap addresses directly, quite far from the style
of modern object-oriented programming. In recent years, however, there have been appli-
cations of separation logic to object-oriented languages, notably [21], [22] and [30], and the
development of a proof system based on separation logic, jStar [4]. The main problem with
separation logic is the extensive amount of additional annotation that it requires, expressing
properties of the heap that are below the level of abstraction at which object-oriented pro-
grammers normally work. The corresponding issues are handled in the Calculus of Object
Programs through the alias calculus, whose application is automatic. Because of the over-
approximation that follows from ignoring conditional and loop conditions in the alias cal-
culus, the results may not be strong enough to allow the desired proofs, in which case the
proof engineer will have to add cut instructions (section 5 and reference [16]); these
instructions are the counterpart, in the Calculus of Object Programs, to the added annota-
tions of separation logic. Their advantage, however, is that (as consistently suggested by
experience so far) there will be far fewer of them, and they will only involve specific dis-
jointness properties needed for a particular proof, rather than a complete specification of
the heap’s state. For example, establishing the alias properties of the proof of linked list
reversal in this article required no cut instruction whatsoever. This is a good omen for the
ease of applying the approach to other applications.

Another property that sets apart the present work from separation logic is its use of
properties of object structures, expressed by paths and, through the integral operator,
sequences. In separation logic the basic properties of references apply to a single pair of
objects, in the form x y expressing that the reference in x points to y. One of the assump-
tions behind the preset work is that proofs, and hence specifications, should rely on con-
cepts at a level of abstraction, corresponding to how programmers normally think about
their programs; the high-level specification techniques that we have seen above pursue this
goal, part of a general scheme of model-based specification [29] [23]. Recent work [30]has
started to apply separation logic in connection with such specifications. More generally, it
is possible that separation logic and the present Calculus of Object Programs could be
applied together; the Calculus might for example benefit from the inclusion of some sep-
aration logic assertions when it encounters delicate cases. Conversely, the alias calculus
may be able to infer or at least suggest separation logic assertions, relieving programmers
from having to invent them from scratch.

|

§7 Comparison with previous work 29
Another approach that has provided significant advances in the search for techniques
to prove object-oriented programs is dynamic frames [10] (see also [29] which applies the
ideas to an object-oriented language). The theory of dynamic frames addresses the prob-
lem of specifying and verifying, in a modular way and in the presence of references, the
properties that an operation will not modify. While the method is elegant and theoretically
attractive, it again requires a significant annotation effort on the programmer’s part, to
specify frame properties. While it is legitimate, for software reliability, to require program-
mers to write down the functional specification of the program, it is harder to justify forc-
ing them to state frame properties, since such properties are accessory to the program’s real
goals. Another objection is that if the program is decently written many frame properties
can be inferred automatically from the program text. In the Calculus of Object Programs,
the alias calculus is responsible for performing this automatic inference, avoiding the extra
specification effort required by dynamic frames. As was noted for separation logic, manual
annotations, in the form of cut instructions, will only be required if the proof hits a snag;
there should be few such cases.

Also like with separation logic, there may be room for combining dynamic frames
with the Calculus of Object Programs, for example by using the alias calculus to infer
dynamic frame specifications automatically.

Unlike the previous approaches cited — but like the Calculus of Object Programs —
shape analysis does not require an extensive annotation effort and is instead intended to be
automatic. Its roots go back to a long history of work on compiler optimizations, but more
recent references [25], [26], [12] have developed it in new directions for the benefit of pro-
gram verification. (The first two references cited use as an example the list reversal algo-
rithm in a form very close to the version of the present article.) This recent work uses
abstract interpretation [3] to construct a Static Shape Graph (SSG) representing an ideal-
ized version of the concrete heap. It can then perform analyses of the SSG and relate them
back to the actual store; an example, pursuing the same goal as the alias calculus as used
here, is a “may-alias” analysis, but the approach can also be applied to many other prop-
erties, including proofs, for which an experimental tool, TVLA [27], has been developed.
The tool has been applied to a successful automatic proof of a difficult pointer algorithm,
Deutsch-Schorre-Waite binary tree traversal [12]. A practical obstacle to using the method,
however, is combinatorial explosion of the size of SSGs, resulting in a 9-hour computation
time for the example in [12]. The Calculus of Object Programs does not perform any
abstraction step but relies on high-level primitives such as the integral operator to capture
relevant properties of object structures and reason directly on them in the standard frame-
work of Hoare semantics. It could benefit from the insights of shape analysis; in particular,
[26] uses a number of predicates describing high-level properties of object structures:
reachability, reachability-from-x, sharing, cyclicity, reverse cyclicity. Integrating some of
them into the calculus of object structures, in addition to paths and integrals, might
increase the expressiveness of the calculus and facilitate proofs.

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §830
8 Conclusion

The work presented here suffers from several limitations:

• While the alias calculus has been implemented, the rest of the approach has not. It
has been designed for integration into an automated proof environment, which should
progress quickly.

• The techniques do not yet address inheritance. The main step in adding inheritance is
to handle calls to routines that may have several redeclarations in descendant classes.
The rules of the Calculus have been defined in reference to specifications of routines
— more precisely, their postconditions — rather than their implementation; since
these specifications are binding on routine redeclarations through the principles of
Design by Contract [13] [5], which limit changes to precondition weakening and
postcondition strengthening, their application in the presence of inheritance appears
to be a natural extension.

• While the rules should be applicable in a modular way, no particular attention has
been devoted to this point as yet.

• The list reversal example is the most significant covered so far. Many more should
be tried, involving a variety of data structures.

• The Calculus of Object Structures may need some generalization, for example with
a disjunction operator to allow path sets of the form root.(left | right) in a tree
example. It has so far been kept as simple as possible.

• On the theoretical side, a proof of soundness is needed to justify the rules of this paper.

All these problems will have to be addressed. I believe, however, that in its present state
the Calculus of Object Programs holds the promise of a comprehensive approach to prov-
ing full functional correctness of object-oriented programs involving possibly complex
run-time object structures. The approach should live up to the claims made on its behalf
through the preceding discussion:

• It closely fits the way programmers using modern object-oriented programming
languages devise their programs and reason about them.

• The annotations it requires — as any approach addressing functional correctness
must — are minimal (alias properties, in particular, are for the most part computed
automatically); they express abstract properties of O-O structures, meaningful to the
programmer, not low-level descriptions of the makeup of the heap. In fact the notions
of heap and stack do not appear, as they are inappropriate at the level of reasoning
suitable for modern programming.

• The notations for expressing correctness properties are a small extension to usual
Design by Contract mechanisms and remain amenable to run-time evaluation; the
approach thereby retains support for both of the dual forms of verification: static
(proofs) and dynamic (tests).

The continuing development of the Calculus will endeavor to make these benefits directly
available to programers building and verifying object-oriented programs.

§8 Conclusion 31
Appendix A: Using negative variables in other semantics

Here is the background for the rules involving negative variables. For the Calculus of
Object Programs we only need the rule of compositional logic QC /21/, allowing us to
prove properties of programs involving qualified routine calls call x.r (l), the central
mechanism of object-oriented computation. That rule, however, is a consequence of a
more fundamental property, giving the denotational definition of qualified calls:

The two sides of the equality are functions in Object  State  State. The rule states that
the effect of calling x.r (l) is obtained by calling r on arguments transposed to the context
of the supplier, as expressed by prefixing them by x’, then interpreting the result transposed
back to the context of the client, as expressed by prefixing it by x. In this result, no occur-
rences of x’ will remain as they go away through the rules on negated variables (NEG1 /15/
to NP /19/).

Some technical notes on this rule:
• The value of call r (x’.l) is given by the formula for unqualified calls, which states

that call r (l)) () is (r ( [r .: l]). This formula is the basis for the corresponding
compositional logic rule UC /11/.

• For a generally applicable form of DC and its unqualified counterpart it is necessary
to add to the right side a term that limits the scope of the resulting function to the
domain of the original state, getting rid of any temporary associations (affecting for
example local variables) that only make sense in the context of the called routine.
This restriction is not important for the Calculus of Object Programs.

• DC is an equation rather than a definition, since in the presence of recursion the right-
side expression could expand to an expression that includes an occurrence of the left-
side expression. Such fixpoint equations are routine in denotational semantics and the
theory handles them properly.

• The rule does not require any use of substitution, although it relies on the semantics
of the unqualified call call r (x’.l) which can be defined as r [r .: l] (where, following
notations introduced earlier, r is the semantics of the loop body, r . denotes the
formal arguments, and e [x: y] denotes substitution of y for x in e).

From this denotational rule we can deduce the axiomatic semantic rule, the object-oriented
variant of Hoare’s procedure rule [8]:

where x.e, for a non-reference expression e (here e is P or Q, an assertion. treated as a bool-
ean expression), applies “.“ distributively, for example x.(a = b) means x.a = x.b. In the
application of this rule, P and Q may contain occurrences of x’; for example the rule enables
us to deduce {True} call x.set_a (c) {x.a = c} from {True} call set_a (c) {a = x’.c}.

call x.r (l) = x (call r (x’.l)) DC /37/

{P} call r (x’.l) {Q} ______________________ AC /38/
{x.P} call x.r (l) {x.Q}

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §832
To establish this last property, and more generally the antecedent of any application
of AC, we use the ordinary Hoare procedure rule for unqualified calls call r (l). Expanding
this rule (ignoring recursion) in AC gives us a directly applicable version of AC:

Since the denotational rule DC /37/ describes the nature of object-oriented calls at the most
fundamental level, we may use it to express properties of such calls in any semantic frame-
work. More generally, let  be a property of program elements, such that the dot operator
“.“ distributes over . Then we may use the general rule

AC, the axiomatic rule, is just one instance of GC. Another instance appears in the alias
calculus article [16], which for the various kinds of instructions i and an arbitrary relation
a (a set of pairs of expressions that might become aliased to each other) defines a » i, the
alias relation resulting from executing i in a state where the alias relation was a. The rule
for qualified calls (with “”denoting “.” distributed over a set of pairs) is

A final example of applying GC is the weakest precondition rule for qualified calls (using
i wp Q to denote the weakest precondition ensuring that execution of the instruction i will
ensure the postcondition Q):

The simplicity of these rules appears to confirm the usefulness of negative variables as a
tool for reasoning about object-oriented computations.

Appendix B: References

[1] Richard Bornat: Proving Pointer Programs in Hoare Logic, in MPC ‘00 (Mathematics
of Program Construction), eds. R. Backhouse and J. Oliviera, Lecture Notes in Computer
Science 1837, Springer Verlat, pages 102-126, 2000.

[2] David Clarke, John Potter and James Noble: Ownership Types for Flexible Alias
Protection, in OOPSLA 1998, ACM SIGPLAN Notices, vol. 33, no. 10, Oct. 1998, pages
48-64.

[3] Patrick and Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction of Approximations of Fixed Points, in POPL 77
(ACM Symposium on Principles of Programming Languages), 1997, pages 232-245.

{P} r (r .: x’.l) {Q} ______________________ AC’ /39/
{x.P} call x.r (l) {x.Q}

(call x.r (l)) = x (call r (x’.l)) GC /40/

a » call x.r (l) = x ((x’ a) » call r (x’.l))

(call x.r (l)) wp x.Q = x ((call r (x’.l)) wp Q) GC /41/

§8 Conclusion 33
[4] Dino Distefano and Matthew Parkinson: jStar: towards practical veri cation for Java,
in OOPSLA '08, Proceedings of the 23rd ACM SIGPLAN conference on Object-Oriented
Programming Systems, Languages and Applications, 2008, pages 213-226.

[5] ECMA International: Standard ECMA-367: Eiffel: Analysis, Design and Programming
Language, 2nd edition, June 2006, ed. B. Meyer; also International Standards
Organization standard ISO/IEC 25436:2006. Text available online at www.ecma-
international.org/publications/standards/Ecma-367.htm;

[6] Eiffel Software: EiffelStudio documentation (in particular on contract monitoring), at
docs.eiffel.com.

[7] C.A.R. Hoare: An Axiomatic Basis for Computer Programming, in Communications of
the ACM, vol. 12, no. 10, Oct. 1969, pages 576–580.

[8] C. A. R. Hoare: Procedures and parameters: an axiomatic approach, in Symposium on
Semantics of Algorithmic Languages, ed. E. Engeler, Springer Lecture Notes in
Mathematics Vol. 188, 1971, pages 102-16.

[9] C. A. R. Hoare and Jifeng He: A Trace Model for Pointers and Objects, in ECOOP
1999 (13th European Conference on Object-Oriented Programming), ed. Rachid
Guerraoui, Springer Lecture Notes in Computer Science 1628, pages 1-17.

[10] Ioannis Kassios: Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions, in Formal Methods 2006, eds. J. Misra, T. Nipkow and E. Sekerinski,
Lecture Notes in Computer Science 4085, Springer Verlag, 2006, pages 268-283.

[11] Gary T. Leavens, Albert L. Baker and Clyde Ruby. Preliminary Design of JML: A
Behavioral Interface Specification Language for Java. in ACM SIGSOFT Software
Engineering Notes, vol. 31, no 3, pages 1-38, March 2006. Additional JML documentation
at www.eecs.ucf.edu/~leavens/JML/.

[12] Alexey Loginov, Thomas Reps and Mooly Sagiv: Automated verification of the
Deutsch-Schorr-Waite tree-traversal algorithm, in Static Analysis Symposium, 2006,
pages 261-269.

[13] Bertrand Meyer, Object-Oriented Software Construction, 2nd edition, Prentice Hall,
1998.

[14] Bertrand Meyer, Alexander Kogtenkov and Emmanuel Stapf: Avoid a Void: The
Eradication of Null Dereferencing, in Reflections on the Work of C.A.R. Hoare, eds. C. B.
Jones, A.W. Roscoe and K.R. Wood, Springer-Verlag, 2010, pages 189-211.

[15] Bertrand Meyer: Touch of Class: Learning to Program Well, Using Objects and
Contracts, Springer Verlag, 2009.

[16] Bertrand Meyer: Towards a Theory and Calculus of Aliasing, in International Journal
of Software and Informatics, July 2011, to appear. Slightly updated version available at
se.ethz.ch/~meyer/publications/aliasing/alias-revised.pdf.

[17] Bertrand Meyer, Publish no loop without its invariant, blog entry at
bertrandmeyer.com/2011/05/12/publish-no-loop-without-its-invariant/, 12 May 2011.

http://bertrandmeyer.com/2011/05/12/publish-no-loop-without-its-invariant
http://www.eecs.ucf.edu/~leavens/JML/
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://docs.eiffel.com
http://se.ethz.ch/~meyer/publications/aliasing/alias-revised.pdf

 TOWARDS A CALCULUS OF OBJECT PROGRAMS §834
[18] Bertrand Meyer, If I’m not pure, at least my functions are, blog entry at
bertrandmeyer.com/2011/07/04/if-im-not-pure-at-least-my-functions-are/, 4 July 2011
(intended as a first step to an actual article on language conventions to specify purity and,
more generally, frame properties).

[19] Joseph M. Morris: A General Axiom of Assignment; Assignment and Linked Data
Structure; A Proof of the Schorr-Waite Algorithm (three articles), in Theoretical
Foundations of Programming Methodology, Proceedings of the 1981 Marktoberdorf
Summer School, eds. M. Broy and G. Schmidt, Reidel, 1982, pp, 25-61.

[20] Peter Müller: Modular Specification and Verification of Object-Oriented Programs,
Springer Verlag, 2002.

[21] Matthew Parkinson and Gavin Bierman: Separation Logic and Abstraction, in POPL
‘05 (ACM Symposium on Principles of Programming Languages), January 2005, pages
247-258.

[22] Matthew Parkinson and Gavin Bierman: Separation Logic, Abstraction and
Inheritance, in POPL ‘08 (ACM Symposium on Principles of Programming Languages),
January 2008, pages 75-86.

[23] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable
Components, in Verified Software: Theories, Tools, Experiments (VSTTE ' 10), Edinburgh,
UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010.

[24] John C. Reynolds: Separation Logic: A Logic for Shared Mutable Data Structures, in
Logic in Computer Science, 17th Annual IEEE Symposium, 2002, pages 55-74.

[25] Mooly Sagiv, Thomas Reps and Reinhard Wilhelm: Solving shape-analysis problems
in languages with destructive updating, in TOPLAS (ACM Transactions on Programming
Languages and Systems), vol. 20, no. 1, January 1998, pages 1-50.

[26] Mooly Sagiv, Thomas Reps and Reinhard Wilhelm: Parametric shape analysis via 3-
valued logic, in ACM Transactions on Programming Languages and Systems, vol. 24, no.
3, May 2002, pages 217–298.

[27] Mooly Sagiv et al., TVLA home page, at www.math.tau.ac.il/~tvla/.

[28] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications
Complete Through Models, in Architecting Systems with Trustworthy Components, eds.
Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer
Science, Springer-Verlag, 2006.

[29] Bernd Schoeller: Making Classes Provable through Contracts, Models and Frames,
PhD thesis, ETH Zurich, 2007, se.inf.ethz.ch/old/people/schoeller/pdfs/schoeller-diss.pdf.

[30] Stephan van Staden, Cristiano Calcagno and Bertrand Meyer: Verifying Executable
Object-Oriented Specifications with Separation Logic, in ECOOP 2010, 24th European
Conference on Object-Oriented Programming, Maribor (Slovenia), 21-25 June 2010,
Lecture Notes in Computer Science, Springer-Verlag, 2010.

http://se.inf.ethz.ch/old/people/schoeller/pdfs/schoeller-diss.pdf
http://www.math.tau.ac.il/~tvla/
http://bertrandmeyer.com/2011/05/12/publish-no-loop-without-its-invariant
http://bertrandmeyer.com/2011/07/04/if-im-not-pure-at-least-my-functions-are/

§ Acknowledgments 35
[31] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer: Verifying
Eiffel Programs with Boogie, to appear in Boogie 2011, First International Workshop on
Intermediate Verification Languages, Wroclaw, August 2011. See documentation about
the EVE project at eve.origo.ethz.ch.

Acknowledgments

The software verification work of the Chair of Software Engineering at ETH Zurich has
been supported by a generous grant from the Hasler Foundation as part of the MANCOM
program, by several grants from the Swiss National Science Foundation (FNS/SNF), and
by two internal research grants (TH-Gesuch, now ETHIIRA) from ETH Zurich. While not
directly performed in response to any of these grants, the work reported here would not
have been possible without them.

Part of the work was carried out in the Software Engineering Laboratory of ITMO
State University in Saint Petersburg, which also provides an excellent environment.

Revision history
Version 0 (not circulated) April 2011, Zurich/Saint Petersburg
Version 1 (posted to ArXiv) 11 July 2011, Saint Petersburg
Version 2 (posted to ArXiv) 15 July 2011, Saint Petersburg (following comments by John Pinto, added
leftward void links in some of the figures).

http://eve.origo.ethz.ch

	Towards a Calculus of Object Programs
	1 Addressing the specifics of object-oriented software
	2 A proof: linked list reversal
	3 Compositional logic
	4 Negative variables: reasoning on object-oriented calls
	5 The alias calculus
	6 Reasoning on data structures
	7 Comparison with previous work
	8 Conclusion
	Appendix A: Using negative variables in other semantics
	Appendix B: References
	Acknowledgments

