
Flexible Invariants Through Semantic Collaboration?

Nadia Polikarpova, Julian Tschannen, Carlo A. Furia, and Bertrand Meyer

Department of Computer Science, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Modular reasoning about class invariants is challenging in the pres-
ence of collaborating objects that need to maintain global consistency. This pa-
per presents semantic collaboration: a novel methodology to specify and reason
about class invariants of sequential object-oriented programs, which models de-
pendencies between collaborating objects by semantic means. Combined with a
simple ownership mechanism and useful default schemes, semantic collabora-
tion achieves the flexibility necessary to reason about complicated inter-object
dependencies but requires limited annotation burden when applied to standard
specification patterns. The methodology is implemented in AutoProof, our pro-
gram verifier for the Eiffel programming language (but it is applicable to any
language supporting some form of representation invariants). An evaluation on
several challenge problems proposed in the literature demonstrates that it can
handle a variety of idiomatic collaboration patterns, and is more widely applica-
ble than the existing invariant methodologies.

1 The Perks and Pitfalls of Invariants

Class invariants1 are here to stay [21]—even with their tricky semantics in the presence
of callbacks and inter-object dependencies, which make reasoning so challenging [16].
The main reason behind their widespread adoption is that they formalize the notion of
consistent class instance, which is inherent in object-orientated programming, and thus
naturally present when reasoning, even informally, about program behavior.

The distinguishing characteristic of invariant-based reasoning is stability: it should
be impossible for an operation m to violate the invariant of an object o without modify-
ing o itself. Stability promotes information hiding and simplifies client reasoning about
preservation of consistency: without invariants a client would need to know which other
objects o’s consistency depends on, while with invariants it is sufficient that it checks
whether m modifies o—a piece of information normally available as part of m’s speci-
fication. The goal of an invariant methodology (also called protocol) is thus to achieve
stability even in the presence of inter-object dependencies—where the consistency of o
depends on the state of other objects, possibly recursively or in a circular fashion (see
Sect. 2 for concrete examples).

The numerous methodologies introduced over the last decade, which we review in
Sect. 3, successfully relieve several difficulties involved in reasoning with invariants; but
? Work partially supported by SNF grants LSAT/200020-134974, ASII/200021-134976, and

FullContracts/200021-137931; and by Hasler-Stiftung grant #2327.
1 Also known under the names “object invariants” or “representation invariants”.



there is still room for improvement in terms of flexibility, usability, and automated tool
support. In this paper, we present semantic collaboration (SC): a novel methodology for
specifying and reasoning about invariants in the presence of inter-object dependencies
that combines flexibility and usability and is implemented in a program verifier.

A standard approach to inter-object invariants is based on the notion of ownership,
which has been deployed successfully in several invariant methodologies [2,10,15] and
is available in tools such as Spec# [3] and VCC [4]. Under this model, an invariant
of an object o only depends on the state of the objects explicitly owned by o. Owner-
ship is congenial to object-orientation because it supports a strong notion of encapsu-
lation; however, not all inter-object relationships are hierarchical and hence reducible
to ownership. Multiple objects may also collaborate as equals, mindful of each other’s
consistency; a prototypical example is the Observer pattern [6] (see Sect. 2).

Semantic collaboration (introduced in Sect. 4) naturally complements ownership to
accommodate invariant patterns involving collaborating objects. Most existing method-
ologies support collaboration through dedicated specification constructs and syntactic
restrictions on invariants [10,1,14,20]; such disciplines tend to work only for certain
classes of problems. In contrast, SC relies on standard specification constructs—ghost
state and invariants—to keep track of inter-object dependencies, and imposes semantic
conditions on class invariant representations. Its approach builds upon the philosophy of
locally-checked invariants (LCI) [5]: a low-level verification method based on two-state
invariants. LCI has served as a basis for other specialized, user- and automation-friendly
methodologies for ownership and shared-memory concurrency. SC can be viewed as an
improved specialization of LCI for object collaboration. To further improve usability,
SC comprises useful “defaults”, which characterize typical specification patterns.

We implemented SC as part of AutoProof, our automated verifier for the Eiffel
object-oriented programming language. The implementation provides more concrete
evidence of the advantages of SC compared to other methodologies to specify collabo-
rating objects (e.g., [1,11,20,14] all of which currently lack tool support). We present an
experimental evaluation of SC and existing invariant protocols in Sect. 5, based on an
extended set of examples, including challenge problems from the SAVCBS workshop
series [17]. The evaluation demonstrates that SC is the only methodology that supports
(a) collaboration with unknown classes, while preserving stability, and (b) invariants
depending on unbounded sets of objects, possibly unreachable in the heap. The collec-
tion of problems of Sect. 5—available at [18] together with our solutions—could serve
as a benchmark to evaluate invariant methodologies for non-hierarchical object struc-
tures. The website [18] also gives access to the extended version of this paper and to a
web interface to AutoProof.

2 Motivating Examples: Observers and Iterators

The Observer and Iterator design patterns are widely used programming idioms [6],
where multiple objects depend on one another and need to maintain a global invariant.
Their interaction schemes epitomize cases of inter-object dependencies that ownership
cannot easily describe; therefore, we use them as illustrative examples throughout the
paper, following in the footsteps of much related work [11,16,14].

2



class SUBJECT
value: INTEGER
subscribers: LIST [OBSERVER]

update (v: INTEGER)
do
value := v
across subscribers as o do o.notify end

end

register (o: OBSERVER) -- Internal
require
not subscribers.has (o)

do
subscribers.add (o)

end
end

class OBSERVER
subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor
do
subject := s
s.register (Current)
cache := s.value

end

notify -- Internal
do
cache := subject.value

end
invariant
cache = subject.value

end

Fig. 1: The Observer pattern: an observer’s invariant depends on the state of the
SUBJECT, which reports its state changes to all its subscribers. The clients of the sub-
scribers must be able to rely on their cache always being consistent, while oblivious of
the update/notify mechanisms that preserve invariants.

Observer pattern. Fig. 1 shows the essential parts of an implementation of the Ob-
server design pattern in Eiffel. An arbitrary number of OBSERVER objects (called “sub-
scribers”) monitor the public state of a single instance of class SUBJECT. Each subscriber
maintains a copy of the subject’s relevant state (integer attribute value in Fig. 1) into
one of its local variables (attribute cache in Fig. 1). The subscribers’ copies are cached
values that must be consistent with the state of the subject, formalized as the invari-
ant clause cache = subject.value of class OBSERVER, which depends on another object’s
state. This dependency is not adequately captured by ownership schemes, since no one
subscriber can have exclusive control over the subject.

In the Observer pattern, consistency is maintained by means of explicit collabora-
tion: the subject has a list of subscribers, updated whenever a new subscriber regis-
ters itself by calling register (Current)2 on the subject. Upon every change to its state
(method update), the subject takes care of explicitly notifying all registered subscribers
(using an across loop that calls notify on every o in subscribers). This explicit col-
laboration scheme—called “considerate programming” in [20]—ensures that the sub-
scribers’ state remains consistent (i.e., the class invariant holds) between calls to the
public methods of the object structure.

A methodology to verify the Observer pattern must ensure invariant stability;
namely, that clients of OBSERVER can rely on its invariant without knowledge of the reg-
ister/notify mechanism. Another challenge is dealing with the fact that the number of
subscribers attached to the subject is not fixed a priori, and hence we cannot produce ex-
plicit syntactic enumerations of the subscribers’ cache attributes. We must also be able
to verify update and notify without relying on the class invariant as precondition—in
fact, those methods are called on inconsistent objects precisely to restore consistency.

In the Iterator pattern, an arbitrary number of iterator objects traverse a collection
of elements. Fig. 2 sketches an implementation where the COLLECTION uses an ARRAY of

2 Current in Eiffel denotes the current object (this in Java and C#).

3



class COLLECTION [G]
count: INTEGER
elements: ARRAY [G] -- Internal

add (v: G)
do . . . end

remove_last
require
count >0

do
count := count− 1

end
invariant

0≤ count and count≤ elements.count
end

class ITERATOR [G]
target: COLLECTION [G]
before, after: BOOLEAN

item: G
require
not (before or after)

do
Result := target.elements [index]

end

index: INTEGER -- Internal
invariant

0≤ index and index≤ target.count + 1
before = index <1
after = index >target.count

end

Fig. 2: The Iterator pattern: an iterator’s invariant depends on the state of the collection
it traverses, which is oblivious of the iterators. Verification must prove that clients do
not access disabled iterators, without knowing collection’s and iterator’s internal states.

elements as underlying representation. The ITERATOR’s main capability is to return the
item at the current position index in the target collection3. item’s precondition (require)
specifies that this is possible only when the iterator points to a valid element of target,
that is index is between 1 and target.count (included); otherwise, if index is 0 the iter-
ator is before the list, and if it equals target.count + 1 it is after the list. The invariant
of class ITERATOR defines the public state components before and after in terms of the
internal state component index, as well as the acceptable variability range for index.

Since the iterator’s invariant depends on the state of the target collection, modify-
ing the collection (for example, by calling remove_last) may disable the iterator (make
it inconsistent). This is aligned with the intended usage of iterators, which should be
discarded after traversing a collection without changing it. A verification methodology
should ensure that clients of ITERATOR only access iterators in a consistent state, without
knowledge of the iterator’s internal state index or of its relation to the target collection.
An additional obstacle to verification comes from the fact that considerate programming
would be at odds with the ephemeral nature of iterators compared to observers: collec-
tions are normally implemented unaware of the iterators operating on them; a flexible
invariant methodology should allow such implementations.

3 Existing Approaches

A crucial issue is deciding when (at which program points) class invariants should hold:
state-changing operations normally consist of sequences of elementary updates, which
individually may break the class invariant temporarily. To deal with this problem, some
methodologies restrict the program points where class invariants are expected to hold;
others interpret the invariants in a weakened form, which holds vacuously at intermedi-
ate steps during updates (and fully at crucial points).

3 We omit the description of other necessary operations, such as advancing the iterator, since
they are irrelevant for our discussion about invariants.

4



Methodologies based on visible-state semantics [12,7] only require invariants to
hold when no operation is being executed on their objects, that is in states visi-
ble to clients. Without additional mechanisms, visible-state semantics cannot achieve
modularity in the presence of callbacks and inter-object dependencies. Existing solu-
tions adopt aliasing control measures [15] to deal with hierarchical object structures.
Other solutions [13,14,20], for collaborative invariants, explicitly indicate which objects
might be inconsistent at method call boundaries. These two families of solutions—for
hierarchical and for collaborative object structures—based on visible-state semantics
are not easily combined; this is a practical limitation, since many object-oriented sys-
tems consist of an interplay between both types of structures.

Another family of methodologies, collectively known as Boogie methodologies
after the program verifier where they have originally been implemented, follow the
approach of weakening the default semantics of invariants so that they can be evalu-
ated only when appropriate. In a nutshell, all classes include a ghost Boolean attribute
closed,4 which denotes whether an object is in a consistent state; an invariant inv is then
interpreted as the weaker closed⇒inv, which vacuously holds for open (i.e., not closed)
objects. Methods explicitly indicate whether they expect relevant objects to be closed
or open; this approach is more conducive to modularity than visible-state semantics
(where a method must list all possibly inconsistent objects in the entire program).

The original Boogie methodologies, implemented in the Spec# system [3], are main-
ly based on syntactic mechanisms to express ownership relations. For example, follow-
ing [2], we would annotate attribute elements of class COLLECTION in Fig. 2 with rep, to
denote that it belongs to COLLECTION’s internal representation; thus, modifying elements

is only possible if the COLLECTION object owning it has been opened—a situation where
closed⇒count≤ elements.count vacuously holds. This solution only supports represen-
tations based on bounded sets of objects known a priori and directly accessible through
attributes. Follow-up work [10] partially relaxes these restriction introducing a form of
quantification predicating over an owner ghost attribute (which goes up the ownership
hierarchy), and a mechanism to transfer ownership.

In contrast, the VCC verifier [4] implements a Boogie methodology where owner-
ship is encoded on top of LCI’s semantic approach [5]. Objects include an additional
ghost attribute, owns, storing the set of all owned objects; ghost code modifies this set
explicitly when the owner object is open. In the example of Fig. 2, instead of anno-
tating attribute elements with rep, we would introduce a first-order formula, such as
owns = {elements}, in the invariant of COLLECTION to express that elements is part of the
representation. The advantage of this approach becomes apparent with linked struc-
tures where owned elements are accessible only by following chains of references (e.g.,
a linked list owns all reachable cells). In fact, semantic approaches to ownership provide
the flexibility necessary to specify an unbounded number of owned objects, which may
even be not directly attached to the owner, as well as to implement ownership transfers
without need for ad hoc mechanisms. They also simplify the rules of reasoning; for ex-
ample, invariant admissibility becomes a simple proof obligation that all objects whose
state is mentioned in the invariant are bound, by the same invariant, to belong to owns.
These features have contributed to making VCC applicable to real-world systems [9].

4 We follow VCC’s terminology [4] whenever applicable; other works may use different names.

5



In addition to ownership, some Boogie methodologies also deal with collaborat-
ing objects. [10] introduces the notion of visibility-based invariants, which requires
that a class be aware of the types and invariants of all objects concerned with its
state5. For example, in Fig. 1 SUBJECT must declare its value attribute with a modi-
fier dependent OBSERVER. Whenever the subject changes its value, it has to check that all
potentially affected OBSERVERs are open. If aware of the OBSERVER’s invariant, it can show
that the only affected observers are {o: OBSERVER | o.subject = Current}. Such indi-
rect representations of the concerned objects complicate discharging the corresponding
proof obligations; and relying on knowing the concerned objects’ invariants introduces
tight coupling between the collaborating classes. To lift these complications, [1] sug-
gests instead to introduce a ghost attribute deps storing the set of all concerned objects.
It also introduces update guards, allowing a concerned object to state conditions under
which its invariant is preserved without revealing the invariant itself. Both approaches
[10,1] have shortcomings that derive from their reliance on syntactic mechanisms and
conditions: collaboration invariants can only depend on a bounded number of objects
known a priori and accessible through attributes (called “pivot fields” in [1]); the types
of the concerned objects must be known explicitly; and the numerous ad hoc annotations
(e.g., friend and keeping) and operations (e.g., to modify deps) make the methodolo-
gies harder to present and use. One of the main goals of our methodology (Sect. 4) is
to lift these shortcomings by dealing with collaborative invariants by semantic rather
than syntactic means—similarly to what VCC did to the classic syntactic treatment of
ownership.

Somewhat orthogonally to other Boogie-family approaches, the history invariants
methodology [11] provides for more loose coupling between the collaborating classes,
but gives up stability of invariants.

4 Semantic Collaboration

Our novel invariant methodology belongs to the Boogie family; as we illustrated in
Sect. 3, this entails that objects can be open or closed, and class invariants have to hold
only for closed objects. On top of semantic mechanisms for ownership, similar to those
developed for VCC (see Sect. 3), our methodology also provides a semantic treatment
of dependencies among collaborating objects; hence its name semantic collaboration.
The keywords and constructs specific to SC are underlined in the following.

Overview of semantic collaboration. To specify collaboration patterns, we equip
every object o with ghost fields subjects and observers. As their names suggest,6

o.subjects stores the set of objects on which o’s invariant might depend; and o.observers
stores the set of objects potentially concerned with o (analogous to deps in [1]). The
methodology achieves modularity by reducing global validity (all closed objects satisfy
their invariants) to local checks of two kinds: (i) all concerned objects are stored in
observers; and (ii) updates to the attributes of an object o maintain the validity of o and

5 We say that an object o is concerned with an attribute a of another object s if updating s.a
might affect o’s invariant.

6 While the names are inspired by the Observer pattern, they are also applicable to other collab-
oration patterns, as we demonstrate in Sect. 4.4. The formatting should avoid confusion.

6



its observers. Check (i) becomes an admissibility condition that every declared class
invariant must satisfy. Check (ii) holds vacuously for for open observers, thus one way
to satisfy it is to “notify” all observers of a potentially destructive update by opening
them. For more flexibility the methodology also allows subjects to skip “notifying” ob-
servers whenever the attribute update satisfies its guard (a notion also inspired by [1]).
This option is supported by another admissibility condition: an invariant must remain
valid after updates to subjects that comply with their update guards.

4.1 Preliminaries and Definitions

A program is a collection of classes. A class is a collection of attributes, methods, and
logical functions (side-effect free and terminating).

Built-in attributes. Every class is implicitly equipped with ghost attributes: closed
(to encode consistency); owns and owner (to encode the ownership hierarchy); and
subjects and observers (to encode collaboration). We also define the shorthands: o.open
for ¬o.closed; o.free for o.owner.open; and o.wrapped for o.closed∧ o.free. The owner-
ship domain of an object o is {o} if o is open, and the transitive closure of o.owns if o is
closed. Attributes closed and owner are only changed indirectly through the implicitly
defined ghost methods wrap and unwrap, whose semantics is defined below.

Specifications. The specification of a logical function consists of a definition (a
side-effect free expression defining the function value) and a read clause (an expres-
sion that denotes the set of objects on which the value of the function may depend).
The specification of a method consists of a require clause (a precondition), an ensure

clause (a postcondition), and a modify clause (an expression that denotes the set of ob-
jects that the method may modify). The specification of a class includes its invariant
inv. The specification of an attribute a consists of an update guard (a Boolean expres-
sion over Current object, new attribute value y, and generic observer object o—written
guard(Current.a := y, o)).

Expressions. In addition to the standard programming-language expressions, we
support a restricted form of quantification through the syntax all x∈ s : B(x) for univer-
sal and some x∈ s : B(x) for existential quantification, where s is a set expression and B(x)
is a Boolean expression over x. The special expression Void (analogous to null in Java
and C#) denotes an object that is always allocated and open.

The read set reads(e) of a primitive expression e is defined as follows: for an access
x.a to attribute a, reads(x.a) = {x}; for a call x.f (y) to logical function f, reads(x.f (y))
is given by the f’s read clause. The read set of a compound expression e is the union of
the read sets of e’s subexpressions.

The current heap H in which expressions are evaluated is normally clear from the
context and left implicit. Otherwise, eh denotes the value of expression e in heap h; and
h[x.f 7→ e] denotes the heap that agrees with h everywhere except possibly about the
value of x.f, which is e.

Instructions. For the present discussion, we only have to consider method calls
x.m (y), as well as heap update instructions: create x (allocate an object and attach it to
x); x.a := y (update attribute a); and x.wrap and x.unwrap (opening and closing an object).
The write set of an instruction is defined analogously to the read set of an expression,
except we take the closure under ownership domains for every method’s modify clause.

7



4.2 Semantic Collaboration: Goals and Proof Obligations

The goal of any invariant methodology is to provide modular proof obligations to es-
tablish global validity: the property that every object in the program is valid at every
program point. Following SC’s approach, an object is valid if satisfies its invariant when
closed; thus global validity is defined as:

∀o : o.closed⇒ o.inv (G1)

Additionally, maintaining ownership-based invariants requires strengthening global
validity with the property that whenever a parent object p is closed all its owned objects
are closed (and their owner attributes point back to p):

∀o, p : p.closed ∧ o ∈ p.owns⇒ o.closed ∧ o.owner = p (G2)

Proof obligations. The proof obligations specific to SC consist of two types of
checks: (i) every class invariant is admissible according to Def. 1; and (ii) every heap
update instruction satisfies its precondition. Sect. 4.3 describes how establishing the
proof obligations entails global validity, that is subsumes checking (G1) and (G2).

Definition 1 An invariant inv is admissible iff:

1. inv only depends on Current, its owned objects, and its subjects:

inv ⇒ reads(inv) ⊆
(
{Current} ∪ owns ∪ subjects

)
(A1)

2. All subjects of Current are aware of it as an observer:

inv ⇒ ∀s : s ∈ subjects⇒ Current ∈ s.observers (A2)

3. inv is preserved by any update s.a := y that conforms to its guard:

∀s, a, y : s ∈ subjects ∧ inv ∧ guard(s.a := y, Current)⇒ invH[s.a7→y] (A3)

4. (Syntactic check) inv does not mention attributes closed and owner, directly or as
part of the definitions of the mentioned logical functions.

The specifications of the heap update instructions are given below; the instructions
only modify objects and attributes mentioned in the postconditions.

Allocation creates an open object owned by Void (and thus free), with no observers:
create x require ensure

True x.open ∧ x.owner = Void ∧ x.observers = {}
Unwrapping opens a wrapped object:

x.unwrap require ensure

x.wrapped x.open
Attribute update operates on an open object and preserves validity of its observers:

x.a := y require ensure

(a 6= closed) x.open x.a = y

all o ∈ x.observers : o.open ∨ guard(x.a := y, o)
Wrapping closes an open object, whose invariant holds, and gives it ownership over

all objects in its owns set:
x.wrap require ensure

x.open ∧ x.inv x.wrapped
all o ∈ x.owns : o.wrapped all o ∈ x.owns : o.owner = x

8



4.3 Soundness Argument

The soundness argument has to establish that every program that satisfies the proof
obligations of SC is always globally valid, that is satisfies (G1) and (G2). We outline a
proof of this fact in three parts. See the extended version [18] for the full proofs.

The first part concerns ownership: every methodology that, like SC, imposes a suit-
able discipline of wrapping and unwrapping to manage ownership domains reduces
(G2) to local checks.

Lemma 1. Consider a methodology M whose proof obligations verify the following:

a. freshly allocated objects are open;
b. whenever x.owner is updated or x.closed is set to False, object x is free;
c. whenever x.closed is updated to True, every object o in x.owns is closed and satisfies

o.owner = x;
d. whenever an attribute x.a (with a /∈ {closed, owner}) is updated, object x is open.

Then every program that satisfies M ’s proof obligations also satisfies (G2) everywhere.

Proof (sketch). The proof is by induction on the length of program traces. ut

The second part applies to any kind of inter-object invariants and assumes a method-
ology that, like SC, checks that attribute updates preserve validity of all concerned
objects; we show that such checks subsume (G1). How a methodology identifies con-
cerned objects is left unspecified as yet.

Lemma 2. Consider a methodology M whose proof obligations verify the following:

a. freshly allocated objects are open;
b. whenever x.closed is updated to True, x.inv holds;
c. whenever an attribute x.a (with a 6= closed) is updated to some y, every concerned

object satisfies (o.closed ∧ o.inv)⇒ o.invH[x.a7→y];
d. class invariants depend neither on attribute closed nor on the allocation status of

objects.

Then every program that satisfies M ’s proof obligations also satisfies (G1) everywhere.

Proof (sketch). The proof is by induction on the length of program traces, noting that
rule c explicitly requires that the validity of all concerned objects be preserved. ut

The third part of the soundness proof argues that SC satisfies the hypotheses of
Lem. 1 and 2, and hence ensures global validity.

Proposition 3. Every program that satisfies the proof obligations of SC also satisfies
(G2) and (G1) everywhere.

Proof (sketch). The crucial part is showing that SC satisfies rule c of Lem. 2; namely,
that an attribute update x.a := y preserves the invariants of all closed concerned object of
x. To this end, one proves that all such objects must be contained in x.observers, which
follows from the invariant admissibility conditions (A1) and (A2), and (G2). From the
precondition of the update rule and the admissibility condition (A3) it follows that the
invariants of all closed observers are preserved by the update. ut

9



class SUBJECT
value: INTEGER
subscribers: LIST [OBSERVER]

update (v: INTEGER)
require
wrapped

all o ∈ observers : o.wrapped
modify Current, observers
do
unwrap ; unwrap_all (observers)
value := v
across subscribers as o do o.notify end
wrap_all (observers) ; wrap

ensure
wrapped

all o ∈ observers : o.wrapped
observers = old observers

end

register (o: OBSERVER) -- Internal
require
not subscribers.has (o)
wrapped

o.open
modify Current

do
unwrap

subscribers.add (o)
observers := observers + { o }
wrap

ensure
subscribers.has (o)
wrapped

end
invariant
observers = subscribers.range
owns = { subscribers } and subjects = {}

end

class OBSERVER
subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor
require
open and s.wrapped

modify Current, s
do
subject := s
s.register (Current)
cache := s.value
subjects := { s } ; wrap

ensure
subject = s
wrapped and s.wrapped

end

notify -- Internal
require
open

subjects = { subject }
subject.observers.has (Current)
observers = {}
owns = {}

modify Current

do
cache := subject.value

ensure
inv

end
invariant
cache = subject.value
subjects = { subject }
subject.observers.has (Current)
observers = {}
owns = {}

end

Fig. 3: The Observer pattern using SC annotations (underlined).

4.4 Examples

We illustrate SC on the two examples of Sect. 2: Fig. 3 and 4 show the Observer and
Iterator patterns fully annotated according to the rules of Sect. 4.2. We use the short-
hands wrap_all (s) and unwrap_all (s) to denote calls to wrap and unwrap on all objects
in a set s. As we discuss in Sect. 5, several annotations of Fig. 3 and 4 are subsumed
by the defaults mentioned in Sect. 4.5. We postpone to Sect. 4.6 dealing with update
guards and the corresponding admissibility condition (A3).

Observer pattern. The OBSERVER’s invariant is admissible (Def. 1) because it en-
sures that subject is in subjects (A1) and that Current is in the subject’s observers

(A2). Constructors normally wrap freshly allocated objects after setting up their state.
Public method update must be called when the whole object structure is wrapped and
makes sure that it is wrapped again when the method terminates. This specification
style is convenient for public methods, as it allows clients to interact with the class
while maintaining objects in a consistent state, without having to explicitly discharge

10



class COLLECTION [G]
count: INTEGER
elements: ARRAY [G] -- Internal

make (capacity: INTEGER) -- Constructor
require
open

capacity≥ 0
modify Current

do
create elements(1, capacity)
owns := { elements } ; wrap

ensure
count = 0
observers = {}

end

remove_last
require
count >0
wrapped

all o ∈ observers : o.wrapped
modify Current, observers
do
unwrap ; unwrap_all (observers)
observers := {}
count := count− 1
wrap

ensure
wrapped

observers = {}
all o ∈ old observers : o.open

end
invariant

0≤ count and count≤ elements.count
owns = { elements } and subjects = {}

end

class ITERATOR [G]
target: COLLECTION [G]
before, after: BOOLEAN
index: INTEGER -- Internal

make (t: COLLECTION) -- Constructor
require
open and t.wrapped

modify Current, t
do
target := t ; before := True
t.unwrap
t.observers := t.observers + { Current }
t.wrap
subjects := { t } ; wrap

ensure
target = t
before and not after
wrapped

end

item: G
require
not (before or after)
wrapped and t.wrapped

do
Result := target.elements [index]

end
invariant

0≤ index and index≤ target.count + 1
before = index <1
after = index >target.count
subjects = { target }
target.observers.has (Current)
observers = {} and owns = {}

end

Fig. 4: The Iterator pattern using SC annotations (underlined).

any condition. Methods such as register and notify, with restricted visibility, work
instead with open objects and restore their invariants so that they can be wrapped upon
return. Since notify explicitly ensures inv, update does not need the precise definition
of the observer’s invariant in order to wrap it (it only needs to know enough to establish
the precondition of notify). Thus the same style of specification would work if OBSERVER
were an abstract class and its subclasses maintained different views of subject’s value.

Let us illustrate the intuitive reason why an instance of SUBJECT cannot invalidate
any object observing its state. On the one hand, by the attribute update rule, any change
to a subject’s state (such as assignment to value in update) must be reconciled with its
observers. On the other hand, any closed concerned OBSERVER object must be contained
in its subject’s observers set: a subject cannot surreptitiously remove anything from
this set, since such a change would require an attribute update, and thus, again, would
have to be reconciled with all current members of observers.

Iterator pattern. The main differences in the annotations of the Iterator pattern
occur in the COLLECTION class whose non-ghost state is, unlike SUBJECT above, unaware of
its observers. Method remove_last has to unwrap its observers according to the update

11



rule. However, it has no way of restoring their invariants (in fact, a collection is in
general unaware even of the types of the iterators operating on it). Therefore, it can
only leave them in an inconsistent state and remove them from the observers set. Public
methods of ITERATOR, such as item, normally operate on wrapped objects, and hence
in general cannot be called after some operations on the collection has disabled its
iterators. The only way out of this is if the client of collection and iterators can prove
that a certain iterator object i_x was not in the modified collection’s observers; this is
possible if, for example, the client directly created i_x. The fact that now clients are
directly responsible for keeping track of the observers set is germane to the iterator
domain: iterators are meant to be used locally by clients.

4.5 Default Annotations

The annotation patterns shown in Sect. 4.4 occur frequently in object-oriented pro-
grams. To reduce the annotation burden in those cases, we suggest some default anno-
tations: for example, to any public procedure (a method not returning values) we add
implicit pre- and postcondition that Current, its subjects, and its observers be wrapped,
as well as implicit ghost instructions to unwrap Current at the beginning and wrap it at
the end. The defaults are only optional suggestions that can be overridden by providing
explicit annotations; this ensures that they do not tarnish the flexibility and semantic
nature of our methodology. (See the extended version of this paper for more details.)

4.6 Update guards

Update guards are used to distribute the burden of reasoning about attribute updates be-
tween subjects and observers, depending on the intended collaboration scheme. At one
extreme, if a guard(x.a := y, o) is identically False, the burden is entirely on the subject,
which must check that all observers are open whenever a is updated; in contrast, the
admissibility condition (A3) holds vacuously for the observer o. At the other extreme,
if a guard is identically True, the burden is entirely on the observer, which deals with
(A3) as a proof obligation that its invariant does not depend on a; in contrast, the subject
x can update a without particular constraints.

Another recurring choice for a guard is inv(o) ⇒ inv(o)H[x.a 7→y]. For its flexibility,
we chose this as the default guard of SC. Just like False, this guard also does not burden
the observer, but is more flexible at the other end: upon updating, the subject can estab-
lish that each observer is either open or its invariant is preserved. The subject can rely
on the latter condition if the observer’s invariants are known, and ignore it otherwise.

When it comes to built-in ghost attributes, owns and subjects are guarded with True,
since other objects are not supposed to depend on them, while observers has a more
interesting guard, namely guard(x.observers := y, o) = o ∈ y. This guard reflects the
way this attribute is commonly used in collaboration invariants, while leaving the sub-
ject with reasonable freedom to manipulate it; for example, adding new observers to
the set observers without “notifying” the existing ones (this is used, in particular, in the
register method of Fig. 3).

12



5 Experimental Evaluation

We arranged a collection of representative challenge problems involving inter-object
collaboration, and we specified and verified them using our SC methodology. This sec-
tion presents the challenge problems (Sect. 5.1), and discusses their solutions using
SC (Sect. 5.2), as well as other methodologies described in Sect. 3 (Sect. 5.3). See [18]
for full versions of problem descriptions, together with our solutions, and a web inter-
face to the AutoProof verifier.

5.1 Challenge Problems

Beside using it directly to evaluate SC, the collection of challenge problems described
in this section can be a benchmark for other invariant methodologies. The benchmark
consists of six examples of varying degree of difficulty, which capture the essence of
various collaboration patterns often found in object-oriented software. The emphasis is
on non-hierarchical structures that maintain a global invariant.

We briefly present the six problems in roughly increasing order of difficulty in terms
of the shape of references in the heap, state update patterns, and challenges posed to
preserving encapsulation. The first two problems in our set are Observer [11,16,14,17]
and Iterator [11,17], which have already been described in Sect. 2.

master

slave

slave

Master clock [1,11]. The time stored by a master clock can in-
crease (public method tick) or be set to zero (public method reset).
The time stored locally by each slave clock must never exceed the
master’s but need not be perfectly synchronized. Therefore, when
the master is reset its slaves are disabled until they synchronize
(similar to iterators); when the master increments the time its slaves

remain in a consistent state without requiring synchronization. Additional challenges:
tick’s frame does not include slaves; perform reasoning local to the master with only
partial knowledge of the slaves’ invariants.

Variants: a simplified version without reset (slaves cannot become inconsistent).

node rightleft

Doubly-linked list [10,13]. The specification expresses the
consistency of the left and right neighbors directly attached to
each node. Verification establishes that updates local to a node
(such as inserting or removing a node next to it) preserve con-

sistency. Unlike in the previous examples, the heap structure is recursive; the main chal-
lenge is thus avoiding considering the list as a whole (such as to propagate the effects
of local changes).

Composite [21,20,8], (see also SAVCBS ’08 [17]). A
tree structure maintains consistency between the values
stored by parent and children nodes (for example, the value
of every node is the maximum of its children’s). Clients can
add children anywhere in the tree; therefore, ownership is

unsuitable to model this example. Two new challenges are that the node invariant de-
pends on an unbounded number of children; and that the effects of updates local to a
node (such as adding a child) may propagate up the whole tree involving an unbounded

13



Table 5: The challenge problems specified and verified using SC.

SIZE TOKENS (no defaults) TOKENS (with defaults) TIME

PROBLEM (LOC) CODE REQ AUX SPEC/CODE AUX SPEC/CODE (sec.)
Observer 129 156 52 296 2.2 185 1.5 8
Iterator 177 168 176 315 2.9 247 2.5 12
Master clock 130 85 69 267 4.0 190 3.1 6
DLL 147 136 83 435 3.8 320 3.0 18
Composite 188 124 270 543 6.6 427 5.6 18
PIP 152 116 310 445 6.5 402 6.1 18
Total 923 785 960 2301 4.2 1771 3.5 80

number of nodes. Specification deals with these unbounded-size footprints; and verifi-
cation must also ensure that the propagation to restore global consistency terminates.
Clients of a tree can rely on a globally consistent state while ignoring the tree structure.

Variations: a simplified version with n-ary trees for fixed n (the number of children
is bounded); more complex versions where one can also remove nodes or add subtrees.

PIP [21,20]. The Priority Inheritance Protocol [19] de-
scribes a compound whose nodes are more loosely related
than in the Composite pattern: each node has a reference to
at most one parent node, and cycles are possible. Unlike in
the Composite pattern, the invariant of a node depends on

the state of objects not directly accessible in the heap (parents do not have references
to their children). New challenges derive from the possible presence of cycles, and the
need to add children that might already be connected to whole graphs; specifying foot-
prints and reasoning about termination are trickier.

5.2 Results and Discussion

We specified the six challenge problems using SC, and verified the annotated Eiffel
programs with AutoProof. Tab. 5 shows various metrics about our solutions: the SIZE
of each annotated program; the number of TOKENS of executable CODE, REQuirements
specification (the given functional specification to be verified), and AUXiliary anno-
tations (specific to our methodology, both with and without default annotations); the
SPEC/CODE overhead, i.e., (REQ + AUX)/CODE; and the verification time in Auto-
Proof. The overhead is roughly between 1.5 (for Observer) and 6 (for PIP), which is
comparable with that of other verification methodologies applied to similar problems.
The default annotations of Sect. 4.5 reduce the overhead by a factor of 1.3 on average.

The PIP example is perfectly possible using ghost code, contrary to what is claimed
elsewhere [21]. In our solution, every node includes a ghost set children with all the
child nodes (inaccessible in the non-ghost heap); it is defined by the invariant clause
parent 6= Void⇒parent.children.has (Current), which ensures that children contains ev-
ery closed node n such that n.parent = Current. Based on this, the fundamental con-
sistency property is that the value of each node is the maximum of the values of nodes
in children (or a default value for nodes without children), assuming maximum is the
required relation between parents and children.

14



Table 6: Comparison of invariant protocols on the challenge problems.
VISIBLE-STATE SEMANTICS BOOGIE METHODOLOGIES

Cooperation [14] Considerate [20] Spec# [10] Friends [1] History [11] SC
Observer ⊕ + + ⊕ ⊕d ⊕
Iterator −a −a + + ⊕d ⊕
Master clock −a −a + ⊕ ⊕d ⊕
DLL + + ⊕ + +d ⊕
Composite −b ⊕c −b −b −b ⊕
PIP −b ⊕c −b −b −b ⊕
a Only considerate programming b Only bounded set of reachable subjects
c No framing specification d No invariant stability

The main challenge in Composite and PIP is reasoning about framing and termi-
nation of the state updates that propagate along the graph structure. For framing spec-
ifications, we use a ghost set ancestors with all the nodes reachable following parent

references. Proving termination in PIP requires keeping track of all visited nodes and
showing that the set of ancestors that haven’t yet been visited is strictly shrinking.

5.3 Comparison with Existing Approaches

We outline a comparison with existing invariant protocols (discussed in Sect. 3) on our
six challenge problems. Tab. 6 reports how each methodology fares on each challenge
problem: − for “methodology not applicable”, + for “applicable”, and ⊕ for “applica-
ble and used to demonstrate the methodology when introduced”.

Only SC is applicable to all the challenges, and other methodologies often have
other limitations (notes in Tab. 6). Most approaches cannot deal with unbounded sets of
subjects, and hence are inapplicable to Composite and PIP. The methodology of [20] is
an exception as it allows set comprehensions in invariants; however, it lacks an im-
plementation and does not discuss framing, which constitutes a major challenge in
Composite and PIP. Both methodologies [14,20] based on visible-state semantics are
inapplicable to implementations which do not follow considerate programming; they
also lack support for hierarchical object dependencies, and thus cannot verify imple-
mentations that rely on library data structures (e.g., Fig. 1 and 2).

Another important point of comparison is the level of coupling between collabo-
rating classes, which we can illustrate using the Master clock example. In [10], class
MASTER requires complete knowledge of the invariant of class CLOCK, which breaks in-
formation hiding (in particular, MASTER has to be re-verified when the invariant of CLOCK
changes). The update guards of [1] can be used to declare that slaves need not be no-
tified as long their master’s time is increased; this provides abstraction over the slave
clock’s invariant, but class MASTER still depends on class CLOCK—where the update guard
is defined. In general, the syntactic rules of [1] require that subject classes declare all po-
tential observer classes as “friends”. In SC, update guards are defined in subject classes;
thus we can prove that tick maintains the invariants of all observers without knowing
their type. Among the other approaches, only history invariants [11] support the same
level of decoupling, but they cannot preserve stability with the reset method.

15



6 Future Work

In an ongoing effort, we have been using SC to verify a realistic data structure library.
This poses new challenges to the verification methodology; in particular dealing with
inheritance. Rather than imposing severe restrictions on how invariants can be strength-
ened in subclasses, we prefer to re-verify most inherited methods to make sure they still
properly re-establish the invariant before wrapping the Current object. We maintain that
this approach achieves a reasonable trade-off.

References

1. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over shared
state. In: MPC. pp. 54–84 (2004)

2. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3 (2004)

3. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Commun. ACM 54(6), 81–91 (2011)

4. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: TPHOLs. LNCS, vol.
5674, pp. 23–42. Springer (2009)

5. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invariants in
concurrent programs. In: CAV. pp. 480–494 (2010)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley (1994)
7. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Behavioral

Specifications of Businesses and Systems, pp. 175–188 (1999)
8. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-

quential object-oriented programs. Formal Asp. Comput. 19(2), 159–189 (2007)
9. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with VCC. In: FM.

LNCS, vol. 5850, pp. 806–809 (2009)
10. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: ECOOP. pp. 491–516

(2004)
11. Leino, K.R.M., Schulte, W.: Using history invariants to verify observers. In: ESOP. pp. 80–94

(2007)
12. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, 2nd edn. (1997)
13. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Cooperation-based invariants for OO

languages. Electr. Notes Theor. Comput. Sci. 160, 225–237 (2006)
14. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Invariants for non-hierarchical object

structures. Electr. Notes Theor. Comput. Sci. 195, 211–229 (2008)
15. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-

tures. Sci. Comput. Program. 62(3), 253–286 (2006)
16. Parkinson, M.J.: Class invariants: the end of the road? In: IWACO. ACM (2007)
17. SAVCBS workshop series. http://www.eecs.ucf.edu/~leavens/SAVCBS/ (2001–2010)
18. Semantic Collaboration website. http://se.inf.ethz.ch/people/polikarpova/sc/
19. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to real-

time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)
20. Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design pattern.

In: VMCAI. pp. 328–344 (2010)
21. Summers, A.J., Drossopoulou, S., Müller, P.: The need for flexible object invariants. In:

IWACO. pp. 1–9. ACM (2009)

16

http://www.eecs.ucf.edu/~leavens/SAVCBS/
http://se.inf.ethz.ch/people/polikarpova/sc/

	Flexible Invariants Through Semantic Collaboration

