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Towards practical proofs of class correctness

Bertrand Meyer
1 SCOPE

“Trusted Components” are reusable software elements with guaranteed
quality properties. Establishing a base of trusted components is among the
most promising approaches to improving the general state of software; the
potential for widespread reuse justifies the effort necessary to get the
components right[11].

The most ambitious guarantee of component properties is a mathematical
proof. The present work is part of an effort to produce a library of object-
oriented components, equipped with contracts in the Eiffel style, and
accompanied with mathematical proofs — mechanically checked — that the
implementations satisfy the contracts.

We introduce a theory for correctness proofs of classes, and apply it to
proofs for a class describing linked lists.

Like any realistic example of object-oriented component, the linked list
class produces run-time structures relying extensively on pointers. A related
set of articles[13] propose a general proof framework for pointers. The
present article uses their results, but can be read independently. For more
details about pointer semantics please refer to the complete series.

ABSTRACT

Preliminary steps towards a theory, framework and process for proving
that contract-equipped classes satisfy their contracts, including when
the run-time structure involves pointers; and its application to
correctness proofs of routines from aLINKED_LISTclass, such as
element removal and list reversal.
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The scope of the Trusted Components effort is, of course, much broader
than the work reported here. A Component Quality Model, under
development, addresses the evaluation of commercial grade components from
various technologies other than O-O classes, for example .NET assemblies
and Enterprise Java Beans. The present discussion focuses on a special case:
proving the correctness of classes. It is not the fulll story, but it’s an important
story — or, in the current state of this work, the beginning of an important
story — that a Trusted Components project cannot afford to skip.

2 GUIDELINES
This work is based on some distinctive decisions.

We focus on theobject structure. In descriptions of object technology
developing the method’s contribution to software engineering[10], the
emphasis is naturally onclasses, the compile-time module and type unit
mechanism. Many formal treatments of object-oriented programming, such as
Abadi and Cardelli’sTheory of Objects[1], accordingly start from classes. To
study the semantics of O-O computation, it seems more productive to start by
modeling the run-time object structure, and the associated operations such as
feature call, then work our way up — in a second step of the effort, only
sketched in the present article — to classes and other program-level
mechanisms such as inheritance.

In our study of these run-time object structures we’ll take it for granted
that they may includepointers(also called “references”). Although this is true
of all realistic O-O programs and libraries, pointers have not been at the center
of O-O theories; Abadi and Cardelli largely ignore them. By using high-level
functions and associated operators we can model pointers in a simple way.

A useful literature exists on the formal treatment of pointers[3] [4] [8][15]
[16] [17]. Some of it discusses this problem in a general context, whereas we
will restrict the analysis to object-oriented programs. This means in particular
that unlike many authors we won’t concern ourselves with general pointer
assignmentsobject.pointer_field:= valuewhich, although still supported by
recent languages from C++ and Java to C#, conflict with data abstraction
principles. In O-O development one obtains the desired effect through a
procedure callobject.set_pointer_field(value) whereset_pointer_fieldis a
procedure of the corresponding class. Then the only legal form of assignment,
and the only one we consider, isfield := value, relative to the current object.

This notion of current object(Current in Eiffel, self or this in other
languages) is central to the O-O method and to the model below. One of the
most potent contributions of Simula 67, it is comparable in its depth to the
notion of recursion in general programming.Currentmakes every operation
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relative: any variable, expression or operation is meaningful only in relation to
the current object, which varies between successive executions of the same
construct. To model this notion we will consider that any mathematical
interpretation of a programming construct is a function whose single argument
represents the current object. (The result of such a function is usually itself a
function, representing for example a state transition.)

This reflects the actual behavior of object-oriented computation. In Eiffel
the rule is explicit: executing a program is defined as creating one object, the
root, and applying to it a specifiedroot procedure. Upon execution, the root
assumes the role of current object. If the procedure contains a callx.proc for
somex of typeC in the root’s class, executing this call really means executing
root.x.proc. If proc itself contains an assignmentfield := value, bothfieldand
value must also be interpreted relatively, as denotingroot.x.field and
root.x.value. This goes on: ifproccontains a cally.other_proc, any operation
in op in other_proc really meansroot.x.y.opetc.

Even though the execution of any O-O programming construct is relative
to the root-originated chainroot.x.y.... which determines its run-time target,
the text of the construct, in the class where it appears, cannot know that target.
To account for this fundamental property, any theory of object-oriented
computation must be a “general relativity” theory.

Another characteristic of this work is that its specification techniques do
not hesitate to take advantage ofhigh-level functionsand operations such as
composition; assertions using these mechanisms will figure prominently in
contracts, giving a power of expression that seems hard to match through other
means such as first-order predicate calculus. Perhaps the most visible effect of
this approach is that we’ll be able to model the fundamental operation of
object-oriented computation, a feature callx.f (a), through the mathematical
expressionx.f (a) wherex and f are mathematical functions directly modeling
x andf , a models the argumenta, and “.” is function composition.

The functions arepossibly partial (abbreviated from now on to just
“partial” if there is no ambiguity). Although many authors stay away from
them, partial functions address many issues elegantly. For example we don’t
need any special concept to describe a void (null) pointer; it’s simply a function
applied outside of its domain. The reason for the common distrust of partial
functions is the need to guard every function applicationf (a) by a proof that
a belongs todomain ( f). We dodge this by almost never applying a function
directly to its arguments, such ascomposition.



TOWARDS PRACTICAL PROOFS OF CLASS CORRECTNESS §34
A final characteristic is the role ofmodels. We can only prove a class
correct relative to some view of the intended behavior of its instances. Rather
than relying on a pure algebraic approach, we’ll define such views through a
mathematical model for the instances, interpreting for example a list as a
sequence. Then we can specify the effect of a routine as its mathematical effect
on the model. Combined with the use of high-level functions and operators,
this gives us all the expressiveness we need. We will see that this technique has
important practical consequences on the proof process: a key part will be the
building of an appropriate model for the structures under study.

3 WHAT TO PROVE

Given classes that implement certain structures and associated operations,
with contracts that specify the intended effect of the operations, the goal of the
present effort is to prove that the implementations satisfy the contracts.

To understand the issues, let us start with an informal look at such a class
and the kind of properties that will have to be proved.

A routine

An example from the EiffelBase library is the following routine from the class
LINKED_LIST[G]:

remove_frontis
-- Remove first element of list.

require
not_empty: first /= Void

do
first := first.right

ensure
one_less: count= old count– 1
... Other postcondition clauses (see text) ...

end

Featurefirst is called
first_element is the ac-
tual EiffelBase class.
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The figure illustrates the underlying structure and the operation’s effect. Class
LINKABLE [G], complementingLINKED_LIST, describes individual list
cells, each with a reference fieldright leading to the next cell if any.

A property of such structures, which all public operations such as
remove_frontmust maintain, is the absence of cycles; more precisely, starting
from aLINKED_LISTinstance and followingright links zero or more times,
we must never encounter aLINKABLE element twice, and end with aVoid.
The place to express such properties is the class invariant.

We must prove that, whenever the precondition (require clause) and the
invariant both hold, executing the body (do) will lead to a state in which the
postcondition (ensure) holds and the invariant holds again. Such proofs
require a precise semantics for both the instructions and the assertions, as
developed in the remaining sections.

Defining a model

Besides a semantic theory, we will needmodels of the object structures.

The example highlights the issue: contract expressiveness. The
postcondition ofremove_frontstates that the routine must decreasecount, the
number of list elements, by one, but omits the key property that the remaining
elements are the same as before, except for the first, in their original order.

Contrary to a commonly encountered view, the solution does not have to
involve extending the assertion language with first-order predicate calculus,
which would be inadequate anyway to state many properties of interest. An
example where predicate calculus doesn’t appear to help is the invariant
identified earlier: the absence of cycles.

Void

LINKED_LIST

LINKABLE

rightfirst

Removing the
front elementright right

right

instance of

instances of

first
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It is more effective to focus on the abstract structure that an
implementation class such asLINKED_LISTrepresents, and on the effect that
operations have on it. In other words we introduce a model, expressing the
abstraction function[6] associated with the class. ForLINKED_LIST[G] the
model should be a sequence of values (each of typeG, the formal generic
parameter). So if we assume the corresponding typeSEQUENCE[G] we will
have, in the class, a feature

used for specification and proof purposes only. Another article[14] discusses
in detail the use of such model features, showing in particular how to combine
this notion with inheritance: ifLINKED_LISTis just one of the descendants of
a more general classLIST, whose other descendants such asARRAYED_LIST
provide alternative implementations, themodelmay be introduced inLIST,
and[14] shows how to discharge much of the proof work in that higher-level
class, so that the descendants only require a proof of implementation
consistency. Here we limit ourselves to a simpler framework and do all the
work in LINKED_LIST, ignoring inheritance. The immediate consequence is
that we may now specifyremove_front fully through the new postcondition

wheretail is a function on sequences, with the obvious meaning. Then we don’t
any more need the clauseone_less(stating thatcountgoes down by one) except
as a theorem that will follow from the new clausehead_chopped_offand the
property of sequences thats.tail.count= s.count – 1.

It is easy to apply the same approach to a routineput_front (x: G) that
inserts an element at the beginnning, as illustrated:

model: SEQUENCE[G]
-- The sequence of values associated with this linked list

ensure
head_chopped_off: model= old model.tail

first

Insertingat the
front

new

x
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The postcondition in this case is

where+ denotes sequence concatenation and<x> a singleton sequence.

Once we have given ourselves a few more operations on sequences, we
will also be able to express invariant properties such as the absence of cycles.

Reversing a list

The use of a model enables us to specify sophisticated operations, such as this
list reversal routine using the procedureput_right from LINKABLE, which
sets theright link. (The following figure helps understand the invariant.)

extended: model= <x> + old model

reverseis
-- Change list to have the same elements in reverse order.

local
previous, next: LINKABLE[G]

do
from

next:= first
invariant -- See figure

spliced: old model= [first.right**]  mirror
+ next.right**

variant
next.right** .count

until
next= Void

loop
[previous, first, next] := [first, next, next.right]
first.put_right(previous)

end
ensure

reversed: model= old model mirror
end
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wheres mirror is the mirror image of a sequences and f** , for a partial
function f, is the function that for anyobj yields the sequenceobj, f (obj),
f (f (obj)) etc., going for as long as defined. This is a generalization of reflexive
transitive closure, hence the notation.

To prove that the routine ensures its postcondition, it will suffice to prove that
the loop body preserves the invariant, since on exit that invariant implies
[ first.right**] mirror = old model, andmodelwill be defined asfirst.right** .
The proof appears in section10.

For brevity the invariant uses= instead of the object equality functionequal. As
in a postcondition,old v in the loop invariant denotesv’s value on entry to the
routine.[a, b, ...] := [x, y, ...] denotes multiple simultaneous assignment.

The specification techniques illustrated by these examples take advantage of:

• The notion of model.

• To define models, any well-defined mathematical concept: here
sequences, elsewhere sets, functions, relations, graphs etc.

• High-level operators on these structures, such as+, mirror and** .

This appears to give us the modeling power that we need to express the
specifications of all practiacally useful data structures.

It remains to devise the semantic description techniques that will enable
us to prove that the implementations satisfy these specifications.

4 NOTATIONS

The following notations help keep the semantics and proofs simple.

Function abstraction

function a |expressiondenotes a functionf such thatf (a) = expressionfor any
applicablea. This is plain lambda notation with keyword syntax. Although the
approach is strongly typed we’ll leave the type ofa implicit.

first

List reversing:
intermediate
state

next

first.right** next.right**
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Basic composition

The semantic models rely throughout on composition of relations and
functions. Function composition will rely on the operator “ ”, used in the loop
invariant and postcondition ofreverse; f g is thefunction a | g ( f (a)). The
operands appear in the order of application:

The symbol differs slightly from the commonly used “ ” to avoid any
confusion, since the order of operands is reversed:f g is the same asg f.

Grouping and function application

Ordinary mathematical notation uses parentheses both for grouping and for
function application; this can cause confusion when the elements grouped are
themselves functions. For that reason, we reserve parentheses for function
application, as inf (a), and use brackets for grouping, as in

which, true for anyf, g andh, expresses associativity of composition; applied
to an individual elementa this gives

using both grouping (brackets) and function application (parentheses).
Associativity lets us omit many brackets, as inf g h.

Some functional formalisms write function application simply by juxtaposing
the function and the argument, as inf a. This convention has not been retained
here as it would cause confusion. Since our functions are partial, we will
anyway, as noted in section2, use function application as little as possible.

Partial functions

A →| B is the set of partial functions fromA to B; composition, defined for
arbitrary relations, works well with partial functions.

When defining multi-level function spaces such asA→| [B→| C], we may
omit brackets associating from the right, writingA →| B →| C in this example.

[ f g] h = f [g h]

[[ f g] h] (a) = [ f [g h]] (a)

Composition
f g
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Rightmost composition

We will use two variants of composition, which are fundamentally the same
operation as “ ” but with different signatures, made necessary by the multi-
level function spaces involved in the semantic models.

The first variant is “rightmost composition”. Considerf in A →| [B →| C],
so that thatf (a) for any applicable a is itself a function. Given a functiong
similarly in A →| [C →| D], we can’t use the ordinary compositionf g (the
signatures don’t match), but we may want to composef (a) andg (a) for a
givena. The resulting function will be writtenf g. This can go over several
levels, with functions inA1 →| ...An →| X→| YandA1 →| ...An →| Y→| Z, for
some setsX, Y andZ; the general definition is then:

We may similarly define the “rightmost inverse”f –1* of such a functionf as

and, when the rightmost target set is (booleans), the “rightmost
implication” f g as

as well as the “rightmost conjunction” .

State-curried composition

The other variant of composition arises from the specific nature of our
semantic functions which (as seen in the next sections) all have signatures of
the formA1 →| ... An →| States→| Y, whereStatesis the set of possible run-
time states. We will use such functions to model a linked list structure

f  g = function a1 | [ function a2 | [... | [function an |
[[...[[ f (a1)] (a2)] ...] (an)] [[...[[ g (a1)](a2)] ...] (an)] ]...]

function a1 | [... | [function an | [...[ f (a1)] ...] (an)]
–1 ]...]

∀ a1, a2, ...an | [...[[ f (a1)] (a2)] ...] (an)] ⇒ [...[[g (a1)](a2)] ...] (an)]

BI
⇒∗

∧∗

first right right right

cell_1

header

cell_2 cell_3

Denoting
successive list
cells
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by representingfirst andright as functions inObjects→| States→| Objects;
given an objectheader, for example,[first (header)] (s) is the object to which
its first link points in states — cell_1on the figure. It’s desirable to compose
such functionsapplied in the same state, for examplefirst andright so that the
result, applied toheader, gives us the object labeledcell_2. This is the kind of
expressiveness we need to state properties of the current state, in particular
class invariants, loop invariants and other assertions.

We cannot directly compose two such functions,f in X →| States→| Yand
g in Y→| States→| Z. Fixing the state, however, we may compose their variants

for a given same states, the same in both cases. This operation will simply use
a period “.”. The definition off.g is

This choice of symbol works well for modeling the object structures created
by object-oriented programs: as the previous example indicates, the successive
items of a list will be given by the functionsfirst, first.right, first.right.right
etc. all applied in the same state. It is indeed one of the results of this article
that we can understandfeature application, the central operation of object-
oriented programming, as the mathematical notion offunction composition. In
the case of an attribute, the composition operator is “.” as just seen; in the case
of a routine it will be rightmost composition, “ ”.

Both of these operators are fundamentally the same as composition; they
simply massage the order of arguments to remove any signature mismatch.
The purpose is clear: express as many properties as possible through
composition operators. On first reading of the following discussion you may
disregard the differences between “.”, “ ” and “ ”, just seeing them as
composition tuned to the required signature in each case. All the examples of
this discussion and other proofs based on the theory must be mechanically
type-checked, to ensure use of the proper variant in each case and justify this
call for the reader’s trust.

function x |  [f (x)] (s)
function x |  [g (x)] (s)

function x |  [function s | [g ([f (x)] (s))] (s) ]
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5 BASIC MODELING ASSUMPTIONS

The state

The set of possible state is calledStates. An element ofStatesdescribes the
instantaneous state of an object-oriented program’s execution, and is defined
by a setObjects and a collection of functions:

• Objectsdenotes of set of addresses hosting objects; it’s a subset of
Addresses, the set of possible (abstract) memory addresses[13]. Note that
an element ofObjectsdoesn’t represent the contents of an object, but its
location; this reflects the notion ofobject identity, making it possible to
consider each object individually regardless of its contents.

• There’s also a collection of functions inObjects→| Objects(the set of
partial functions fromObjectsto itself) representing objects’ reference
fields. Class LINKABLE, for example, has an attribute
right: LINKABLE[G] as illustrated next, which yields a function, also
called right, in the model. When discussing the properties of such
functions in general, we’ll give them names likex, y, ...

• Objects may also have non-reference fields; for example class
LINKABLE[G] has an attributeitem: G representing the values in cells,
shown as the shaded areas in the figure. For cells of type
LINKABLE[INTEGER], item fields denote integers. Such attributes are
represented by functions inObjects→| Expanded, whereExpandedis the
set of possible non-reference values including booleans, integers, real
numbers etc. General names for such functions areu, v, ...

Values will denote the set of all possible values:Objects∪ Expanded.

All the functions involved are partial (meaning, by the earlier convention,
possibly partial). Partiality helps us in two different ways:

• It gives us a simple interpretation forVoid: we model a void reference,
such as the rightmost link on the last figure, simply by ensuring that the
function, hereright, is not defined for the corresponding object.

• We can also use partial functions to handle type rules of a statically typed
O-O language, by defining a function such asright so that its domain is a
subset of the set ofLINKABLE objects.

Void
right right “Right” links

in LINKABLE
objects

right

LINKABLEinstances of
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Other conventions

Names such asf, g, ... denote functions fromObjectsto eitherObjectsor
Expanded, representing fields that contain either references or other values.
Names such asobj, obj1... denote objects;a, b, ... denote objects or values.

For elements of the software text:i, j, ... denote instructions;r, s, ... denote
routines. All our routine calls will have exactly one argument, as inr (a) or
x.r (a); this causes no loss of generality if we assume that the set of values, as
in Eiffel, includes aTUPLE type.

Assertions, for which we will use names such asP, Q, ..., denote boolean
properties applicable to a certain object in a certain state. For example the
assertionn > 0 is a function of the state, true in states for whichn, evaluated
on the current object, is positive. Accordingly, class invariants will be modeled
as functions inObjects→| States→| , and pre- or postconditions of a routine
with arguments as functions inValues→|  Objects→|  States→| .

Interpreting state changes

The execution of an object-oriented program consists of a sequence of state
changes reflecting execution of individual constructs, for example a procedure
call x.r (a).

The basic semantics defined below is of thedenotationalstyle; this
means we define the meaning of a typical imperative construct as a function in
A1 →| ...An →| States→| StateswhereA1, ... An hold the parameters of the
construct, and the resultingStates→| Statesfunction describes the new state
produced by the construct in terms of the previous state. This approach is
mathematically simplest.

When applying the specification through a proof workbench such as
Atelier B [2] [5] we may take advantage of a predefined notion of event
covering theStates→| Statestransformations in a moreoperationalstyle,
making the functions implicit. Since we are interested in pre-post properties
of routines, proofs will use a partlyaxiomatic style.

We may compose state transformations. In the denotational view this
operation uses rightmost composition as defined in section4; in a more
operationalinterpretation it simply means executing events in sequence. The
formal properties are in direct correspondence.

BI
BI
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Possible state changes

The state being defined by a set of objects and a collection of functions on
these objects, an elementary state change will either

1 • Change the set ofObjects by adding or removing an object.

2 • Change one of the functions; at the most basic level this means changing
the value of one of the functions on one of its possible arguments.

There is no such thing as “changing an object” in this model. The model for
an object is just an integer, representing its abstract “address”. So we may add
or remove an object (events of type1), but to model the changing of a field in
an existing object — what an O-O programmer would think of as changing the
object — we use events of type2, changing the corresponding function.
Assume for example that classEMPLOYEEhas an attributeage: INTEGER.
If we executeJill.pass_birthdaywherepass_birthdayis a procedure of the
class that performs

the mathematical effect is to change functionage so that its value for that
object,age(Jill ), is increased by one.

Events of type1 correspond to object allocation (by the program) and
deallocation (by the program or a garbage collector). They are studied in detail
in the second part (“coarse-grain model”) of[13]. For the present discussion
we don’t consider them: the set of objects is fixed, and all that happens is
procedure calls that modify these objects — meaning, as we have just seen,
changing some values of the applicable functions. The case of a procedure that
may create an object will be handled by combining the two discussions.

Function substitution

The basic operation, representing an event of type2, modifies the value of a
function for a single object. Given two functionsf andg, the expression

denotes the function inObjects→| [States→| States] that informally yields,
for any objectobj, the state transformation that changes nothing except the
value off (obj), which will now beg (obj) if defined, undefined otherwise (the
functions involved are partial).

age:= age + 1

f := g



§5 BASIC MODELING ASSUMPTIONS 15
Here is a more formal definition of this operation. We saw that the state has two
components: the setObjectsrepresenting object identities, and a set of functions
in Objects→| Objectsor Objects→| Values, each with a name such asf, g, h... We
may denote these functions, for a given states, ass.f, s.g, ... Thenf := g is a
function inObjects→| [States→| States]; call it assign. For any objectobj and
states, assign(obj) is a function fromStatesto States, so [assign(obj)] (s) is a
state; call its'. Thens' is the same state assexcept for itsf component, the function
we’re callings'.f. That function is the same ass.f except atobj:

• s'.f (obj' ) = s.f (obj' ) -- Forobj' other thanobj

• s'.f (obj ) = s.g (obj ) -- Or undefined ifobj is not in the domain ofs.g.

The:= operator enjoys two characteristic properties:

where the use of composition (more precisely, rightmost composition )
avoids having to worry about the functions being defined or not.

The := operator will, through these properties, enable simple proofs of
attribute assignment instructionsx := y in a class text. An advantage is that
unlike traditional assignment axioms the rules do not involve textual
substitutions or other transformations of the program text; they simply rely on
function composition.

Unlike the Hoare assignment axiom, these properties work forward; but
their practical application in the examples that follow leads to a backward style
similar to weakest precondition calculus.

Note the signatureObjects→| [States→| States] of f := g: the operation
changes the state of a single function at asingle point, denoted by theObjects
argument. The B notation, for a specificobj in Objects, would be
f (obj) := g (obj); the repetition ofobj explains why we need a special notation
whereobj appears just once. This special role ofobj illuminates the special
role of the “current object” in object-oriented computation.

We may generalize function substitution to multiple sources and targets:

with the corresponding generalization of the characteristic properties,
reflecting that the substitutions are simultaneous:

[A1] [[ f := g]  f] = g
[A2] [[ f := g] h] = h -- For a functionh other thanf

[ f1, f2, ... fn] := [ g1, g2, ... gn]

[A3] [[ f1, ... fn := g1, ... gn] fi] = gi -- For 1≤ i ≤ n
[A4] [[ f1, ... fn := g1, ... gn]  h] = h -- Forh other than allfi

Properties are num-
bered in a single se-
quence, with different
initial letters, A for axi-
om, Sfor semantics etc.
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6 THE SEMANTIC RULES

We are now ready to examine the semantics of the object-oriented
mechanisms. The denotation of a programming language constructc — the
mathematical model forc — will be writtenc.

The following table, followed by an explanation of every entry, specifies
the semantics of the core subset of an object-oriented language such as Eiffel.
Each entry gives the denotationc of a different constructc; the last column
gives the signature of that denotation, that is to say the set (of partial functions)
to which it belongs. The last entry,[S19], gives the cumulative definition of
the correctness of a routine having a pre- and postcondition.

Construct Denotation Signature

Basic constructs

[S5] Name of
attribute of class f = f Objects→| States→|  Values

[S6] Attribute
assignment f := g = f := g Objects→| States→|  States

[S7] Multiple
attribute assign-
ment

[f1,...fn] := [g1,...gn] = [ f1, ... fn] := [g1, ...gn] Objects→| States→|  States

[S8] Instruction
sequencing i ; j = i j Objects→| States→|  States

[S9] Attribute call x . f = x . f Objects→| States→|  Objects

Routine: r (a) is require predo bodyensurepost end

[S10] Routine
(overall semantics) r = function a | body Values→| Objects→| States→| States

[S11] Routine call,
unqualified r (u) = r (u)

Objects→| States→|  States
-- For procedure

Objects→| States→|  Values
-- For function

[S12] Routine call,
qualified x. r (u) = x r (u) Same as above entry[S11]

[S13] Unary
expression (for
operator§)

§ a = § a
(Use[S11], [S12])

Objects→| States→|  Values

[S14] Binary
expression (for
operator§)

a § b = a § b
(Use[S11], [S12])

Objects→| States→|  Values
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The left-hand sides of the equalities cite constructs of an object-oriented
programming language; the right-hand sides are their mathematical
denotations. The rightmost column gives the signatures of these denotations
— the mathematical sets to which they belong (sets of functions in all cases).

In case[S5] we simply prescribe that for any attributef of the class the
model will include a corresponding function. The rulef = f indicates that we
use the same name for the function in the model as for the attribute in the
software text.

Case[S6], f := g, is a standard assignment. The fields represented byf and
g may be value fields, for example of typeINTEGER, or reference fields
leading to other objects orVoid. The mathematical intepretation of such an
assignment as an operation of the state is that it replaces the value off, for any
objectobj to which the assignment is applied, by the value ofg for that object.

The operator:= on the left-hand side is assignment, from the programming
language;:= on the right side is a mathematical operator, function substitution.
Inventing a new operator for the latter purpose would avoid the risk of
confusion but make the notation more complex.

This rule, [S6], captures the essence of the “current object” in object
technology. The key is that we do not specify any particular object:f := g is a
function, applicable to an object. Both the target and the source of the
assignment are themselves functions applicable to an object; the effect of the
assignment is to replace the value of the target function on that object,
whatever it is, by the value of the source for the same object.

Assertions and correctness(in routine r (a))

[S15] Class or
loop invariant Use[S11], [S12], [S13], [S14] Objects→| States→|

[S16] Pre- or post-
condition Use[S11], [S12], [S13], [S14] Values→| Objects→| States→|

[S17] Postcondi-
tion clause ensure Q = r Q Values→| Objects→| States→|

[S18] “Old” equal-
ity inpostcondition ensure f = old g = [ r f = g ] Objects→| States→|

[S19] Routine cor-
rectness

[ pre inv
r  [ post inv ]]

Construct Denotation Signature

BI

BI

BI

BI

∧∗ ⇒∗ BI
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Since in this discussion we do not consider such operations as object
creation, all run-time events ultimately reduce to operations such asf := g
whose model is a function fromObjects to state transformers.

Case[S7] is the generalization to multiple sources and targets.

In case[S8] i ; j is the instruction sequence that executesi thenj. As we
model instructions by functions, the model for their sequence is the
composition of their models. We must use rightmost composition “ ” rather
than ordinary composition “ ” since the denotations ofi and j are not state
transformers but functions fromObjectsto state transformers;recall thati j
is the function that, for anyobj, yieldsi (obj) composed withj (obj).

Case[S9], “attribute call”, applies an attribute to an object, and is written
x.f in O-O notation; it is pleasant to model it through function composition as
x . f . Calls to the other kind of feature, routines, will have a similar rule[S12].

Case[S10]defines the semantics of a routiner as being, for any argument
a, the semanticsbody of the routine’s body as applied toa. The namer is not
by itself a construct, but defining a semantics forr helps define the model of
the actual constructs involvingr: calls to the routine.

Case[S11], r (u), is the first kind of such call:unqualified, that is to say,
executed from a routine of the same class and using the current object as
target. The effect is simply to apply the functionr, the semantics ofr, to the
denotationu of u.

Case[S12] is the second kind of call,qualified: x.r (u) applies a certain
feature to a certain explicitly named target with certain arguments. The
observation here is thatx as well asu are, mathematically, functions on
objects; so isr with an extra degree of abstraction corresponding to the
argument. The mathematical equivalent is simplyx r (u), closely mirroring
the programming language notation as in attribute call[S9]. This rule shows
feature application, the fundamental computational mechanism of object-
oriented development, as function composition and function application.

Cases[S13] and[S14] acknowledge the property that (in Eiffel at least)
an expression involving a unary or binary operator is just an abbreviation for
a function call; for examplea + b is formally a function calla.plus(b) where
plus is the functioninfix "+" associated with the operator. So to handle these
cases we just apply the function’s model to the operands’ model. The same
approach will work for predefined equality and inequality operators: the
model fora = b is a = b.

This also gives the model for a class or loop invariant[S15] since it’s a
boolean-valued expression. The signature isObjects →| [States→| ]:
applied to any object, the model is a boolean-valued function of the state.

← Page10.

BI
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The same holds of a routine’s precondition or postcondition[S16] with
an extra function level — the initialValuesin the signature — corresponding
to the argument of the enclosing routiner.

It is convenient to give a model[S17]to a postcondition clauseensureQ,
the composition of the semantics ofr and the semantics ofQ. The signature of
r Q is Values→| Objects→| States→| (this is also the signature ofQ, and
the signature ofr is Values→|  Objects→|  States→|  States).

In such a postcondition, we may encounter case[S18], a reference toold f
wheref is an expression, of signatureObjects→| States→| Values(f may not
involve the routine’s arguments). This represents the value off evaluated on
the current object on entry to the routiner. The mathematical model must
“unwind” the semantics ofr; rule [S18] addresses the common case of a
postcondition clause of the formf = old g, which we interpret asr . f = g ,
expressing that the value off in the state resulting from executingr is the
original value ofg.

These properties yield a practical strategy for dealing withold, illustrated
by the example proofs of the following sections. To prove a routine correct, we
computer Q; as the body ofr is usually a sequence of instructionsi; ... j; k
this means, from the rule case[S8], computingQ1 = k Q, thenQ2 = k Q2
and so on back toi. The practical rule forold is that we may keep anyold x
subexpression unchanged throughout this process; then when we get back to
the beginning of the sequence, to prove per[S19] that the initial assumption
implies the expression we have obtained, we drop theold.

Case [S19] gives the basic proof obligation for a routine: that the
precondition and invariant imply the postcondition and invariant evaluated in
the state resulting from executing the routine. A similar rule will apply, for
example, to the proof that a loop body satisfies the loop invariant.

Viewed as definitions of the semantics, these equalities are recursive; for
example the denotation off := g refers tog, the denotation ofg. Since the
routines may themselves be recursive, the equalities do not actually provide a
proper definition of the semantics unless we use a fixpoint interpretation. We
can avoid the issue by noting that the goal is to prove properties of routines
through[S19]; if encountering a recursive call, we will assume the property to
prove, in line with Hoare’s axiomatics of routines[7].

BI
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7 OPERATOR PROPERTIES

The proofs that follow will use some properties of the functional operators
used in modeling object structures.

Sequence closure

Introduced earlier, “sequence closure”,f** for a function f: A →| A, is the
function that for anyx: A yields the sequencex, f (x), f (f (x)) ..., up to the first
value that is outside of the domain off. (The formal definition is not included
but poses no difficulty.) For all the examples of this article the structures are
acyclic so the sequence is finite.

In light of the preceding discussion of the “.” operator we may
generalize the notation to a functionf representing an attribute, and hence of
signatureObjects→| States→| Objectsrather than justObjects→| Objects:
we just takef** , for a given states, as denoting the application of** to
function obj | [function s | [f (obj)] (s)]. Here is an example:

In a given state, functionright** applied to the firstLINKABLE cell cell_1,
yields the sequence ofLINKABLEcells consisting ofcell_1, cell_2andcell_3.
Applying first.right**  to theheader object yields the same sequence.

Sequence closure properties

The following properties involve functionsf,g, ... inObjects→| States→| Objects.
The state plays no explicit role — it is the same throughout — so the properties
will also hold for functions inObjects→| Objectsif we replace “.” by plain
composition “ ”. By includingStatesin the signature we cover the intended
application to functionsf, g, ... representing reference attributes.

The first property relates sequence closure and composition:

[T20] f . f** = f** . tail

first

Reflexive-
transitive
sequence
closure

right
item

right
item

right
item

This sequence of cells isright** ( cell_1)

cell_1

header

cell_2 cell_3

and alsofirst.right** ( header)
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In words — as illustrated below in the application of both sides to an argument
obj in a given state —this expresses that if you start from an object and follow
the f link once, thef sequence starting at the resulting object is the tail of thef
sequence starting at the original object:

Two corollaries are

We may use the notationf++ for the expressionf . f** that appears in both
[T20] and[T21]; it yields for anyx the sequencef (x), f (f (x))..., that is to say
f** ( x) deprived of its first element.[T21] indicates thatf** = < f > + f++ .

Sequence closure and function substitution

A related property (involving the state) combines sequence closure and
function substitution:

which we may illustrate as follows:

[T21] f** = < f > + f . f**
[T22] f . g** = < f > + f .g . g**

[T23] [ f := f.g] [ f .g**] =  f .g** . tail

Tail and
composition

f

f** ( obj)

f f

[ f** .tail] (obj)

obj
[ f . f**] ( obj)

Tail and
composition

g g g

[ f .g** . tail] (Current)

[ f .g**] ( Current)

fCurrent
f := f.g
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In words: consider theg sequence starting at the target of thef link from the
current object. (It’sf .g** , appearing on both sides of[T23].) Replacing thef
link of Currentby f.g implies replacing that sequence by its tail.

Proof of[T23]: the property[A1] of function substitution lets us simplify
the left-hand side into

which, by applying[T20] to g, yields the right-hand side.

The next property, illustrated below, enables us to deal with the effect of
remote assignments by deducing that after a callf.set_g(h), whereset_g(a)
performsg := a, the value off.g will be h:

Proof: apply both sides to an objectobj and let obj’ = f (obj). From the
definition of the left-hand side is[[g := h] (obj’)] . [[ f.g] (obj)], that is,
[[g := h] (obj’)] . [g (obj’)], which from the definition of function substitution
[A1]  is h (obj’).

As a consequence:

In words (which you may want to follow on the next figure): callf_obj, as
illustrated, the target of thef link from theCurrentobject. The left side of[T25]
denotes thegsequence fromf_obj— the sequencef.g** — evaluated in the state
resulting from reattaching, inf_obj, theg link to the targeth_objof theh link. The
right side is, in the original state, the sequence that starts withf_objand continues
with theg sequence beginning ath_obj.

f . g.g**

[T24] [ f . [g := h]] [ f.g] =  h

[T25] [ f .[g := h]] [ f.g**] = < f > + h .g**

Effect of
remote
assignment

f

Current g :=h

h

g
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Proof: from[T22] we write the left side as[ f . [g := h]] [ < f>+ f.g.g**] .
Distributing over the concatenation operator+ and applying[T24] gives the
right side.

Finally, we will use the following elementary property, given without
proof, of themirror and concatenation operations on sequences:

8 MODELING LINKED LISTS
We will apply the preceding semantic rules to prove the correctness of
LINKED_LISTroutinesremove_frontand reverse. This requires expressing
more precisely the properties of the model used for this class. The experience
gained so far in proving properties of classes indicates that this step of
devising a proper model is just as important as the task of performing the
proofs once a model has been devised.

Sequences and their properties

As noted earlier, we associate with an instance ofLINKED_LIST[G] amodel
of type SEQUENCE[G], representing the sequence of its values. The basic
property of themodelmay be expressed as a class invariant, relative to the
current state:

The decision to define aSEQUENCEmodel for every list object belongs in a
higher-level class,LIST, of whichLINKED_LISTis a descendant. The linked-
list modelis an implementation of the abstractmodelfrom LIST. This overall
structure and the relation of the proof technique to inheritance are covered in
[14]; in the present discussion we examine the implementation class
independently of its ancestry.

[T26] (s1 + s2) mirror =  s2 mirror + s1 mirror

[A27] model= first. right** . item

Effect of
remote
assignment

g g

f

Current

g :=h

h

g

< f > +

f_obj

f .g**

g
h_obj
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As illustrated below,first. right** is the sequence ofLINKABLE [G] cells
making up the list; we could use it as the model, but what is of interest to users
of the list is not the sequence of cells, it’s the sequence ofG values they host,
which the definition[A27] gives us by composingfirst. right**  with item.

This relies on the standard definition of a finite sequences as a function from
an integer interval starting at 1 to a setX, hereLINKABLE[G]. If f is a function
in X → G for someG, the compositions.f describes another sequence, with
values inG, obtained by applyingf to every element ofs.

The functionitem comes, likeright, from classLINKABLE:

Like the above definition ofmodel, all formulae of interest include the
composition “.item” as their last element; as a result we can remove it in all
equalities between such formulae. For brevity we will from now on ignore
item, using formodel the simplified version

as if we were dealing with a sequence ofLINKABLE [G] items rather than a
sequence ofG values. This simplification was already present in the loop
invariant of thereverse procedure (page7).

A property of the model is:

class LINKABLE[G] feature
right: LINKABLE[G]

-- Reference to next cell

item: G
-- Value stored in cell

... Routines (see below) ...
end

[A28] model= first. right**

[T29] [ first := first.right] model= model.tail

first

Modeling a
linked list as a
sequence of
values

right
item

right
item

rightitem

first. right** . item (sequence ofG values)

first.right** (sequence ofLINKABLE[G] cells)
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Proof: the left-hand side, through the definition[A27] of model, is

The property[A1]  of function substitution lets us simplify this into

The right-hand side, again from the definition[A27] of model, is

yielding [T29] as a consequence of[T20].

Prohibiting cycles and tail sharing

Our linked list structures must be acyclic. This will give another invariant
clause, which we may express as the requirement that, in any states

whereinjective(r), for a relationr (including the case of a function) indicates
thatr never pairs two different source elements with the same target element;
this can be defined asr r -1 ⊆ Id whereId is the identity relation.[A30] states
that aright sequence may not include the sameLINKABLE [G] cell twice,
although two of its cells may of course have the sameG content.

We must also preclude tail sharing: no two lists may shareLINKABLE[G]
cells (although they may again share cell values). The invariant clause is

This is almost the same as[A30], using the reflexive transitive closure ofright
rather than sequence closure. Because this yields a relation, not a function, we
need the image operator(. ... .) [13] rather than function application.

The correctness rule[S19] requires every exported routine of the class to
maintain[A30] and[A31].

[ first := first.right] [ first . right**]

first.right . right**

first. right** . tail

[A30] injective([first. right**] ( s))

[A31] injective([first. right*] (.s.))
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9 PROVING CORRECTNESS OF LIST REMOVAL

Let’s apply the theory to prove the procedureremove_frontintroduced earlier.

It is in general meaningless to talk of “proving software”: you prove the
correctness of a software element not in the absolute but with respect to a
certain specification. Our classes and their routines, however, are equipped with
contracts, so “proving a routine” simply means proving that it satisfies its
specification as expressed by the contract.

The postcondition, labeled head_chopped_off on page 6, is
model= old model.tail. [S18] tells us that the property to prove is then

From[S10], remove_front is function a | body wherebodydenotes the body
of the procedure and we can ignorea since the procedure has no argument. Its
body is (page4) the single instructionfirst := first.right whose semantics is an
example of case[S7], giving

So we have to prove

that is to say, the property[T29] as proved in the preceding section.

Preservation of the acyclicity invariant[A30] follows from the property
that if f** contains no cycle neither does its tail. Preservation of the no-tail-
sharing invariant[A31] follows from the property that replacing a sequence by
its tail cannot introduce tail sharing. (These properties can be made more
formal and proved in the style of the properties in section7.)

remove_front model= model.tail

remove_front = [ first := first. right]

[ first := first.right] model= model.tail
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10 PROVING CORRECTNESS OF LIST REVERSAL
We now turn to a more sophisticated algorithm, list reversal (given on page7).
As originally noted, the result to be proved (apart from termination, and
preservation of the class invariants) is that the body preserves the loop
invariant, which read

We have to prove that

whereBody is the body of the loop:

Let us computeBody spliced. From the instruction sequencing rule[S8] it is
[Shift Reattach] splicedwhereShiftandReattachare the two instructions.

Associativity applies so we first computeReattach spliced. From[S12],
Reattach is first put_right (previous). Procedureput_right (x), in class
LINKABLE, performs the assignmentright := x, so its semanticsput_right is,
from the assignment rule[S6] and the procedure rule[S10]

Combining this with the qualified call rule[S12] gives:

Applying this tospliced and retaining theold expression as per[S18] yields

[I32] spliced: old model= first.right** mirror + next.right**

spliced Body spliced

[previous, first, next] := [ first, next, next.right] -- Shift
first.put_right(previous) -- Reattach

put_right = function a | right := a

Reattach = first  [right := previous]

Reattach spliced =
[old model= [first  [right := previous]]

[first.right** mirror +  next.right**]]

⇒∗
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Distributing over+ and applying[T25]:

What we are computing isShift Reattach spliced, so we must compose
Shift with the right-hand side. From the multiple assignment axiom[S7]:

so that, applying the property[A4]  of multiple assignment to all operands:

so that from the property[T26] of mirror we may writeBody spliced as

That this is an immediate consequence of the loop invariantsplicedis clear
from the picture that illustrated the invariant

Reattach spliced =
[old model = [<first> + previous. right**] mirror +

next. right**]

Shift= [previous, first, next:= first, next, next.right]

Body spliced=
[old model = [<next> + first . right**] mirror +

next. right.right**]

[I33] old model = [first. right**] mirror +
<next> + next. right.right**]

first

List reversing:
intermediate
state

next

first.right** next.right**old model = +
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and is proved by using[T22] to simplify the second line of[I33], giving

which is the original invariantspliced[I32]. So we have proved thatspliced
impliesBody spliced.

To prove termination we may use a similar technique to compute
Body [next.right** .count], the value of the loop variant (the length of the
sequencenext.right** ) after an execution of the loop body, and find that it is
one less than the initial value.

Preservation of the class invariants follows from the property that
replacing themodelby its reversed form, as expressed by the postcondition,
cannot introduce any cycle or tail sharing.

The proof of procedureput_front or other routines that create object
present no particular difficulty but needs the associated modeling of object
creation and management discussed in[13].

11 CONCLUSION AND PLAN OF WORK

The approach described here appears to provide a workable basis for a
systematic effort at proving the classes of a contracted library such as
EiffelBase, covering the fundamental structures that application developers
use daily.

The process

The example of classLINKED_LISTsuggests a standard approach for proving
library classes.

P1 •Devise a model. Choose a mathematical structure that will support
expressing the properties of the instances of the class.

P2 •Build a static theory. In this step one must explore the properties of the
model in a fixed state, independently of any execution (hence the term
“static”), and prove them. We have seen typical examples of such
properties: for sequences,[T26] stating that the mirror of a concatenation
s1 + s2is the concatenation of the mirror ofs2and the mirror ofs1; the
properties of sequence closure in section7; and the properties of linked
lists, such as acyclicity and non-tail sharing in section8.

[I34] old model = [first. right**] mirror +
next. right**
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P3 •Extend the contracts. Typical contracts, written without the benefit of a
model, only include a subset of the relevant properties. More precisely,
preconditions must be exhaustive — otherwise the class is not safely
usable — but postconditions and class invariants often miss important
information that are hard to express without a model, for example, in an
insertion operation, that all previous elements are still there. Loop
invariants and variants are often omitted. All these must be filled in.

P4 •Translate the class to mathematical form. The denotational semantics
of section6 is the basis here. This step should be performed by an
automated tool relying on a parser of the source language.

P5 •Perform the proofs. Although this paper has used a manual approach,
the intent is to perform proofs mechanically; this explains the need for the
previous step, since a proof tool will need to manipulate formulae
expressed in an appropriate notation. The mechanically-checked proof
effort may still, of course, require substantial manual support.

In line with the rest of the present discussion, this description covers proofs of
individual classes. The framework described in[14], taking advantage of
inheritance, involves both an effective (concrete) class such asLINKED_LIST
and its deferred (abstract) ancestors, such asLIST describing general lists
independent of an implementation. In this case there may be both an abstract
model and a concrete one, requiring two extra steps:

P6 •Prove that the abstract assertions imply the model assertionsin the
deferred class.

P7 •Prove the consistency of the concrete model against the abstract
model in the effective class.

Contrary to appearances this actually simplifies the process, since stepP6, in
the case of multiple descendants describing specific implementations of an
abstract structure, moves up to the common ancestor part of the work that
would have to be done anew for each descendant. See[14] for details.

Even for a single class, the process is unlikely to be strictly sequential.
The proof stepP5 may in particular encounter obstacles that require refining
the model (stepP1) or proving new properties of it (stepP2).
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One may also need to go back to the class texts. It is well known that the
prospect of picking an ordinary piece of software and proving its correctness
is an illusion: the software must have been written with correctness proofs in
mind. We are starting from a better situation than usual since our target is the
EiffelBase library, equipped with extensive contracts that are part of the design
and documentation, not an afterthought, and indeed the idea of possible proofs
has been there from the beginning. But we still expect that the proof process
will require — aside from the correction of any actual bugs that it might
uncover — simplifications and other changes to EiffelBase as it exists today.

Other object-oriented mechanisms

The present discussion has not accounted for classes, genericity, inheritance,
the resulting type system, and dynamic binding. To add these mechanisms, the
envisioned strategy is: introduce the notion of class, with room for generic
parameterization, into the model; include support for expressing the inheritance
relation between classes; and add a functiongeneratorthat, for any object, gives
the corresponding type (class plus actual generic parameters if any). The
generator is set on object creation and does not change thereafter. One of the
basic type rules is that for each attribute functionf there is a typeT such that

whereinstancesis the inverse ofgenerator. Note subset operator rather than
equality, to account for possibly void references; for expanded attributes,
which can’t be void, it’s an equality. The other significant change to the model
of the present paper is that in the interpretationx. f (a) of a feature callf is
obtained no longer directly fromf but asdynamic(f, generator(x)) where the
function dynamic, accounting for dynamic binding, yields the version of a
certain feature for a certain type.

Future work

Aside from the extension of the model to cover the whole of object-oriented
programming, the tasks lying ahead are clear: apply the above process to a
growing set of classes covering the fundamental data structures and algorithms
of computing science. This involves building models, developing the
associated theories, completing the contracts of the corresponding classes,
attempting the proofs, and refining the library in the process.

domain (f) ⊆ instances(. { T} .)
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