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Towards practical proofs of class correctness

Bertrand Meyer

ABSTRACT

Preliminary steps towards a theory, framework and process for proving
that contract-equipped classes satisfy their contracts, including when
the run-time structure involves pointers; and its application| to
correctness proofs of routines fromlNKED_LIST class, such as
element removal and list reversal.

1 SCOPE

“Trusted Components” are reusable software elements with guaranteed
quality properties. Establishing a base of trusted components is among the
most promising approaches to improving the general state of software; the
potential for widespread reuse justifies the effort necessary to get the
components rightL1].

The most ambitious guarantee of component properties is a mathematical
proof. The present work is part of an effort to produce a library of object-
oriented components, equipped with contracts in the Eiffel style, and
accompanied with mathematical proofs — mechanically checked — that the
implementations satisfy the contracts.

We introduce a theory for correctness proofs of classes, and apply it to
proofs for a class describing linked lists.

Like any realistic example of object-oriented component, the linked list
class produces run-time structures relying extensively on pointers. A related
set of articles[13] propose a general proof framework for pointers. The
present article uses their results, but can be read independently. For more
details about pointer semantics please refer to the complete series.
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The scope of the Trusted Components effort is, of course, much broader
than the work reported here. A Component Quality Model, under
development, addresses the evaluation of commercial grade components from
various technologies other than O-O classes, for example .NET assemblies
and Enterprise Java Beans. The present discussion focuses on a special case:
proving the correctness of classes. It is not the fulll story, but it's an important
story — or, in the current state of this work, the beginning of an important
story — that a Trusted Components project cannot afford to skip.

2 GUIDELINES

This work is based on some distinctive decisions.

We focus on theobjectstructure. In descriptions of object technology
developing the method’s contribution to software engineerib@], the
emphasis is naturally oolasses the compile-time module and type unit
mechanism. Many formal treatments of object-oriented programming, such as
Abadi and Cardelli’'STheory of Object§l], accordingly start from classes. To
study the semantics of O-O computation, it seems more productive to start by
modeling the run-time object structure, and the associated operations such as
feature call, then work our way up — in a second step of the effort, only
sketched in the present article — to classes and other program-level
mechanisms such as inheritance.

In our study of these run-time object structures we’ll take it for granted
that they may includpointers(also called “references”). Although this is true
of all realistic O-O programs and libraries, pointers have not been at the center
of O-0O theories; Abadi and Cardelli largely ignore them. By using high-level
functions and associated operators we can model pointers in a simple way.

A useful literature exists on the formal treatment of poinfg} 4] [8][15]

[16] [17]. Some of it discusses this problem in a general context, whereas we
will restrict the analysis to object-oriented programs. This means in particular
that unlike many authors we won’'t concern ourselves with general pointer
assignmentsbject.pointer_field:= valuewhich, although still supported by
recent languages from C++ and Java to C#, conflict with data abstraction
principles. In O-O development one obtains the desired effect through a
procedure calbbject.set pointer_fieldvalug whereset_pointer_fields a
procedure of the corresponding class. Then the only legal form of assignment,
and the only one we considerfisld := valug relative to the current object.

This notion of current object(Current in Eiffel, self or this in other
languages) is central to the O-O method and to the model below. One of the
most potent contributions of Simula 67, it is comparable in its depth to the
notion of recursion in general programmir@urrentmakes every operation
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relative: any variable, expression or operation is meaningful only in relation to
the current object, which varies between successive executions of the same
construct. To model this notion we will consider that any mathematical
interpretation of a programming construct is a function whose single argument
represents the current object. (The result of such a function is usually itself a
function, representing for example a state transition.)

This reflects the actual behavior of object-oriented computation. In Eiffel
the rule is explicit: executing a program is defined as creating one object, the
root, and applying to it a specifiedot procedure Upon execution, the root
assumes the role of current object. If the procedure contains a.gadic for
somex of typeC in the root’s class, executing this call really means executing
root.X.proc. If procitself contains an assignmeield := valug bothfieldand
value must also be interpreted relatively, as denotimpt.x.field and
root.x.value This goes on: iproccontains a cal.other_prog any operation
in opin other_procreally meansoot.X.y.op etc.

Even though the execution of any O-O programming construct is relative
to the root-originated chairot. x.y.... which determines its run-time target,
the text of the construct, in the class where it appears, cannot know that target.
To account for this fundamental property, any theory of object-oriented
computation must be a “general relativity” theory.

Another characteristic of this work is that its specification techniques do
not hesitate to take advantagetofh-level functionsand operations such as
composition; assertions using these mechanisms will figure prominently in
contracts, giving a power of expression that seems hard to match through other
means such as first-order predicate calculus. Perhaps the most visible effect of
this approach is that we’ll be able to model the fundamental operation of
object-oriented computation, a feature call (a), through the mathematical
expressionx.f (a) wherexandf are mathematical functions directly modeling
x andf, a models the argumeat and “” is function composition.

The functions arepossibly partial (abbreviated from now on to just
“partial” if there is no ambiguity). Although many authors stay away from
them, partial functions address many issues elegantly. For example we don'’t
need any special concept to describe a void (null) pointer; it's simply a function
applied outside of its domain. The reason for the common distrust of partial
functions is the need to guard every function applicati¢® by a proof that
a belongs tadomain (f). We dodge this by almost never applying a function
directly to its arguments, such @emposition
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A final characteristic is the role ahodels We can only prove a class
correct relative to some view of the intended behavior of its instances. Rather
than relying on a pure algebraic approach, we’ll define such views through a
mathematical model for the instances, interpreting for example a list as a
sequence. Then we can specify the effect of a routine as its mathematical effect
on the model. Combined with the use of high-level functions and operators,
this gives us all the expressiveness we need. We will see that this technique has
important practical consequences on the proof process: a key part will be the
building of an appropriate model for the structures under study.

3 WHAT TO PROVE

Given classes that implement certain structures and associated operations,
with contracts that specify the intended effect of the operations, the goal of the
present effort is to prove that the implementations satisfy the contracts.

To understand the issues, let us start with an informal look at such a class
and the kind of properties that will have to be proved.

A routine

An example from the EiffelBase library is the following routine from the class
LINKED_LIST[G]:

Featurefirst is called
remove—fronts first_elements the ac-

-- Remove first element of list. tual EiffelBase class
require

not_emptyfirst/= Void
do

first := first.right
ensure

one_lesscount=old count—1

... Other postcondition clauses (see text) ...
end
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The figure illustrates the underlying structure and the operation’s effect. Class
LINKABLE [G], complementingLINKED_LIST describes individual list
cells, each with a reference fielght leading to the next cell if any.

Ii_TIiItI?E(I:De ETST Removing the
_ st rignt * right right front element
first
+—p +—> —> T—>
_ right
instances oL.INKABLE \oid 7777

A property of such structures, which all public operations such as
remove_fronmust maintain, is the absence of cycles; more precisely, starting
from aLINKED_LISTinstance and followingight links zero or more times,

we must never encounterldNKABLE element twice, and end with \@id.

The place to express such properties is the class invariant.

We must prove that, whenever the preconditimy(ire clause) and the
invariant both hold, executing the bodyad) will lead to a state in which the
postcondition €nsure holds and the invariant holds again. Such proofs
require a precise semantics for both the instructions and the assertions, as
developed in the remaining sections.

Defining a model

Besides a semantic theory, we will needdelsof the object structures.

The example highlights the issue: contract expressiveness. The
postcondition ofemove_fronstates that the routine must decreasent the
number of list elements, by one, but omits the key property that the remaining
elements are the same as before, except for the first, in their original order.

Contrary to a commonly encountered view, the solution does not have to
involve extending the assertion language with first-order predicate calculus,
which would be inadequate anyway to state many properties of interest. An
example where predicate calculus doesn’t appear to help is the invariant
identified earlier: the absence of cycles.
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It is more effective to focus on the abstract structure that an
implementation class such BENKED_LISTrepresents, and on the effect that
operations have on it. In other words we introduce a model, expressing the
abstraction functiori6] associated with the class. HONKED_LIST[G] the
model should be a sequence of values (each of Gpthe formal generic
parameter). So if we assume the corresponding BB@UENCHG] we will
have, in the class, a feature

model SEQUENCHG]
-- The sequence of values associated with this linked list

used for specification and proof purposes only. Another artiglédiscusses

in detail the use of such model features, showing in particular how to combine
this notion with inheritance: iEINKED_LISTis just one of the descendants of

a more general clagdST, whose other descendants SUCIARERAYED_LIST
provide alternative implementations, theodelmay be introduced ihIST,
and[14] shows how to discharge much of the proof work in that higher-level
class, so that the descendants only require a proof of implementation
consistency. Here we limit ourselves to a simpler framework and do all the
work in LINKED_LIST ignoring inheritance. The immediate consequence is
that we may now specifgmove_fronfully through the new postcondition

ensure
head_chopped_offnodel= old modeltail

wheretall is a function on sequences, with the obvious meaning. Then we don’t
any more need the clausee_lesgstating thatountgoes down by one) except

as a theorem that will follow from the new clausead_chopped_oénd the
property of sequences tratail .count=s.count — 1

It is easy to apply the same approach to a rouging front(x: G) that
inserts an element at the beginnning, as illustrated:
new Inserting atthe

o] front
- > > - %
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The postcond

ition in this case is

ex

tendedmodel= <x> + old model

where+ denotes sequence concatenation<atxda singleton sequence.

Once we have given ourselves a few more operations on sequences, we
will also be able to express invariant properties such as the absence of cycles.

Reversing a list

The use of a model enables us to specify sophisticated operations, such as this
list reversal routine using the procedyset_right from LINKABLE, which
sets theight link. (The following figure helps understand the invariant.)

reverseis
-- Change list to have the same elements in reverse (
local
previous next LINKABLE[G]
do
from
next:= first
invariant -- See figure
spliced old model= [first.right**] o mirror
+ nextright**
variant
nextright** .count
until
next= Void
loop
[previous first, nexi := [first, next nextright]
first.put_right(previoug
end
ensure
reversedmodel= old model o mirror
end

prder.
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wheres o mirror is the mirror image of a sequensand f**, for a partial
function f, is the function that for anybj yields the sequencebj, f (obj),

f (f (obj)) etc., going for as long as defined. This is a generalization of reflexive
transitive closure, hence the notation.

next List reversing
e % intermediate
st . o Y state

inga Nagt ! Fog (EneEpgl]

= | ' 7)77

first.right* next right**

To prove that the routine ensures its postcondition, it will suffice to prove that
the loop body preserves the invariant, since on exit that invariant implies
[first.right**] o mirror =old mode] andmodelwill be defined adirst.right** .

The proof appears in secti@q.

For brevity the invariant usesinstead of the object equality functiequal As
in a postconditionpld v in the loop invariant denotess value on entry to the
routine.[a, b, ...] :=[X, Y, ...] denotes multiple simultaneous assignment.

The specification techniques illustrated by these examples take advantage of:
e The notion of model.

* To define models, any well-defined mathematical concept:. here
sequences, elsewhere sets, functions, relations, graphs etc.

* High-level operators on these structures, such asrror and** .

This appears to give us the modeling power that we need to express the
specifications of all practiacally useful data structures.

It remains to devise the semantic description techniques that will enable
us to prove that the implementations satisfy these specifications.

4 NOTATIONS

The following notations help keep the semantics and proofs simple.
Function abstraction

function a | expressiomenotes a functiohsuch thaft (a) = expressiotior any

applicablea. This is plain lambda notation with keyword syntax. Although the
approach is strongly typed we’ll leave the typaahplicit.
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Basic composition

The semantic models rely throughout on composition of relations and
functions. Function composition will rely on the operator “ ”, used in the loop
invariant and postcondition aéversef o g is thefunction a| g (f (a)). The
operands appear in the order of application:

f g Composition

The symbol differs slightly from the commonly used “ ” to avoid any
confusion, since the order of operands is reversaglis the same aso f.

Grouping and function application

Ordinary mathematical notation uses parentheses both for grouping and for
function application; this can cause confusion when the elements grouped are
themselves functions. For that reason, we reserve parentheses for function
application, as iff(a), and use brackets for grouping, as in

[foglch = fo[goh

which, true for anyf, g andh, expresses associativity of composition; applied
to an individual elemerd this gives

[[fedl=h] (&) = [fo[gehl] (&)

using both grouping (brackets) and function application (parentheses).
Associativity lets us omit many brackets, aing o h.

Some functional formalisms write function application simply by juxtaposing
the function and the argument, asfia. This convention has not been retained
here as it would cause confusion. Since our functions are partial, we will
anyway, as noted in secti@nhuse function application as little as possible.

Partial functions

A 4 Bis the set of partial functions from to B; composition, defined for
arbitrary relations, works well with partial functions.

When defining multi-level function spaces suclfas [B + C], we may
omit brackets associating from the right, writiAgh B 4 Cin this example.
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Rightmost composition

We will use two variants of composition, which are fundamentally the same

operation as ¢ " but with different signatures, made necessary by the multi-
level function spaces involved in the semantic models.

The first variant is “rightmost composition”. Considen A + [B + C],
so that thaf (a) for any applicable a is itself a function. Given a functign
similarly in A + [C 4 D], we can’t use the ordinary compositibng (the
signatures don’t match), but we may want to compbé&s andg (a) for a
givena. The resulting function will be writtehs g. This can go over several
levels, with functions il + ... A, + X4 YandA; + ...A,+ Y+ Z for
some set¥, Y andZ; the general definition is then:

fm g = function a; | [function &, | [... | function a, |

(L[ T (@] (8] -] @)] = [[...[[g (@l(a)] -..] @)]]...]

We may similarly define the “rightmost inverse™” of such a functiofias

function a; | [... | function a,| [...[f(ap)]...] @)] 11...]

and, when the rightmost target set IB (booleans), the “rightmost
implication”f § gas

Oay, @, ...aq0] [-[[T(ap] (a)].-] (@)] O [..[[9(@)l(ax)]...] (an)]

as well as the “rightmost conjunctiori

State-curried composition

The other variant of composition arises from the specific nature of our
semantic functions which (as seen in the next sections) all have signatures of
the formA; + ... A, + States} Y, whereStateds the set of possible run-
time states. We will use such functions to model a linked list structure

header Denoting
. . . , successive list
first right right right g cells

cell 1 cell_ 2 cell_ 3
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by representingirst andright as functions irObjects 4 States} Objects

given an objecheader for example]first (heade)] (s) is the object to which

its first link points in states— cell_1on the figure. It's desirable to compose
such functiongpplied in the same stagteor exampldirst andright so that the
result, applied titneadey gives us the object labeleall_2 This is the kind of
expressiveness we need to state properties of the current state, in particular
class invariants, loop invariants and other assertions.

We cannot directly compose two such functione,X + Statesy Yand
ginY 4 Statesp Z. Fixing the state, however, we may compose their variants

function x| [f (X)] (9)
function x| [g (X)] (9)

for a given same statgthe same in both cases. This operation will simply use
a period %.”. The definition off.g is

function x| [function s| [g ([f X)] (9))] (9) ]

This choice of symbol works well for modeling the object structures created
by object-oriented programs: as the previous example indicates, the successive
items of a list will be given by the functiorfgst, first.right, first.right.right

etc. all applied in the same state. It is indeed one of the results of this article
that we can understarféature applicationthe central operation of object-
oriented programming, as the mathematical notidiun€tion compositionin

the case of an attribute, the composition operator’ias just seen; in the case

of a routine it will be rightmost compositior “ ”.

Both of these operators are fundamentally the same as composition; they
simply massage the order of arguments to remove any signature mismatch.
The purpose is clear: express as many properties as possible through
composition operators. On first reading of the following discussion you may
disregard the differences betweer’,““ & and “#, just seeing them as
composition tuned to the required signature in each case. All the examples of
this discussion and other proofs based on the theory must be mechanically
type-checked, to ensure use of the proper variant in each case and justify this
call for the reader’s trust.
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5 BASIC MODELING ASSUMPTIONS

The state

The set of possible state is call&tates An element ofStatesdescribes the
instantaneous state of an object-oriented program’s execution, and is defined
by a seObjectsand a collection of functions:

* Objectsdenotes of set of addresses hosting objects; it's a subset of
Addresseghe set of possible (abstract) memory addregisgsNote that
an element oDbjectsdoesn’t represent the contents of an object, but its
location; this reflects the notion abject identity making it possible to
consider each object individually regardless of its contents.

* There’s also a collection of functions @bjects - Objects(the set of
partial functions fromObjectsto itself) representing objects’ reference
fields. Class LINKABLE for example, has an attribute
right: LINKABLE[G] as illustrated next, which yields a function, also
called right, in the model. When discussing the properties of such
functions in general, we’ll give them names likg, ...

“Right” links

igh igh igh .
U o IR e B EVOid in LINKABLE
“ objects

instances oLINKABLE

« Objects may also have non-reference fields; for example class
LINKABLE[G] has an attributéent G representing the values in cells,
shown as the shaded areas in the figure. For cells of type
LINKABLE[INTEGER, itemfields denote integers. Such attributes are
represented by functions @bjects} ExpandedwhereExpandeds the
set of possible non-reference values including booleans, integers, real
numbers etc. General names for such functions,ase..

Valueswill denote the set of all possible valuébjectsl] Expanded

All the functions involved are partial (meaning, by the earlier convention,
possiblypartial). Partiality helps us in two different ways:

» It gives us a simple interpretation fdoid: we model a void reference,
such as the rightmost link on the last figure, simply by ensuring that the
function, hereight, is not defined for the corresponding object.

*  We can also use patrtial functions to handle type rules of a statically typed
O-0 language, by defining a function suclhrigdt so that its domain is a
subset of the set &iNKABLE objects.
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Other conventions

Names such a§ g, ... denote functions fron®bjectsto either Objectsor
Expandedrepresenting fields that contain either references or other values.
Names such asbj, objl... denote objects, b, ... denote objects or values.

For elements of the software tekt, ... denote instructions; s, ... denote
routines. All our routine calls will have exactly one argument, as (a) or
X.r (a); this causes no loss of generality if we assume that the set of values, as
in Eiffel, includes alUPLEtype.

Assertions, for which we will use names suchHa®), ..., denote boolean
properties applicable to a certain object in a certain state. For example the
assertiom > 0 is a function of the state, true in states for whigtevaluated
on the current object, is positive. Accordingly, class invariants will be modeled
as functions irDbjects4 States} IB, and pre- or postconditions of a routine
with arguments as functions \falues4 Objects Statest IB.

Interpreting state changes

The execution of an object-oriented program consists of a sequence of state
changes reflecting execution of individual constructs, for example a procedure
call x.r (a).

The basic semantics defined below is of tenotationalstyle; this
means we define the meaning of a typical imperative construct as a function in
A b ..A, + Statesy StateswhereAq, ... A, hold the parameters of the
construct, and the resultirfgtates}> Statesfunction describes the new state
produced by the construct in terms of the previous state. This approach is
mathematically simplest.

When applying the specification through a proof workbench such as
Atelier B [2] [5] we may take advantage of a predefined notion of event
covering theStates4 Statestransformations in a moreperational style,
making the functions implicit. Since we are interested in pre-post properties
of routines, proofs will use a partixiomaticstyle.

We may compose state transformations. In the denotational view this
operation uses rightmost composition as defined in sectjoim a more
operationalinterpretation it simply means executing events in sequence. The
formal properties are in direct correspondence.
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Possible state changes

The state being defined by a set of objects and a collection of functions on
these objects, an elementary state change will either

1+ Change the set @bjectsby adding or removing an object.

2 « Change one of the functions; at the most basic level this means changing
the value of one of the functions on one of its possible arguments.

There is no such thing as “changing an object” in this model. The model for
an object is just an integer, representing its abstract “address”. So we may add
or remove an object (events of tyfae but to model the changing of a field in

an existing object — what an O-O programmer would think of as changing the
object — we use events of typ® changing the corresponding function.
Assume for example that claBVIPLOYEEhas an attributeage INTEGER

If we executelill .pass_birthdaywherepass_birthdayis a procedure of the
class that performs

age:=age + 1

the mathematical effect is to change functiage so that its value for that
object,age(Jill), is increased by one.

Events of typel correspond to object allocation (by the program) and
deallocation (by the program or a garbage collector). They are studied in detalil
in the second part (“coarse-grain model”)[@B]. For the present discussion
we don’t consider them: the set of objects is fixed, and all that happens is
procedure calls that modify these objects — meaning, as we have just seen,
changing some values of the applicable functions. The case of a procedure that
may create an object will be handled by combining the two discussions.

Function substitution

The basic operation, representing an event of Bpmodifies the value of a
function for a single object. Given two functidrnasndg, the expression

fi=g

denotes the function i®bjects [States} State$ that informally yields,

for any objectobj, the state transformation that changes nothing except the
value off (obj), which will now beg (ob)) if defined, undefined otherwise (the
functions involved are partial).
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Here is a more formal definition of this operation. We saw that the state has two
components: the s€bjectsrepresenting object identities, and a set of functions
in Objects > Objectsor Objects > Values each with a name such gg, h... We

may denote these functions, for a given stgtass.f, s.g, ... Thenf :=gis a
function inObjects } [States} State$; call it assign For any objecbbj and
states, assign(obj) is a function fromStatesto States so[assign(obj)] (s) is a
state; callits’. Thens'is the same state agxcept for itd component, the function
we're callings'.f. That function is the same ad except abbj:

. s.f(obj') =s.f (obj')  -- Forobj other tharobj
. s'.f (obj) =s.g(obj) -- Orundefined ibbjis not in the domain afg.

The:= operator enjoys two characteristic properties:

[Al] [[f:=qg]=f] = @ Properties are num-
[A2] [[f:=g]l= h]= h -- For a functiorh other tharf bered in a single se-

guencewith different
initial letters, A for axi-

om Sfor semantics etc

where the use of composition (more precisely, rightmost compositio.:
avoids having to worry about the functions being defined or not.

The := operator will, through these properties, enable simple proofs of
attribute assignment instructioms=y in a class text. An advantage is that
unlike traditional assignment axioms the rules do not involve textual
substitutions or other transformations of the program text; they simply rely on
function composition.

Unlike the Hoare assignment axiom, these properties work forward; but
their practical application in the examples that follow leads to a backward style
similar to weakest precondition calculus.

Note the signatur®bjects} [States} State$ of f ;= g: the operation
changes the state of a single function atragle point denoted by th©bjects
argument. The B notation, for a specifigbj in Objects would be
f (obj) := g (obj); the repetition obbj explains why we need a special notation
whereobj appears just once. This special roleadsj illuminates the special
role of the “current object” in object-oriented computation.

We may generalize function substitution to multiple sources and targets:

[fy, fo Bl == [0, Gpy .- G4l

with the corresponding generalization of the characteristic properties,
reflecting that the substitutions are simultaneous:

[A3] [[fl’ ...fn:: 01, gn] [ ] fl] =0 - Forki<n
[A4] [[fy,...f,:= g1, ...0y) mh] = h - Forhotherthan alf,
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6 THE SEMANTIC RULES

We are now ready to examine the semantics of the object-oriented
mechanisms. The denotation of a programming language constructhe
mathematical model far— will be writtenc.

The following table, followed by an explanation of every entry, specifies
the semantics of the core subset of an object-oriented language such as Eiffel.
Each entry gives the denotatiarof a different construct; the last column
gives the signature of that denotation, that is to say the set (of partial functions)
to which it belongs. The last entr{519], gives the cumulative definition of
the correctness of a routine having a pre- and postcondition.

Construct Denotation Signature

Basic constructs

[S5] Name of P _ .

attribute of class f=f Objects+4 States+ Values
[S6] Attribute F—x — F-—n ;

assignment fi=g=f=g Objects 4> States+ States

[S7] Multiple . L

attribute assign- [fy,..f,] :=[01,..9d = [fq, ...fa] := [0y, ...0,]| Objects+ Statess States

ment

[S8] Instruction —_— = = .

sequencing 5] = 1 m| Objects+ States+ States

[S9] Attribute call x.f = x.f Objects + States+. Objects

Routine r (a) is require pre do bodyensurepostend

[S10] Routine
(overall semantics)

=l
1

function a | body Values+ Objects+ Statest States

s11) 0 Objects+ States+ Stgtes
11]Routine call, N _ T -- For procedure
unqualified r(u) Objects+ States+ Values
-- For function

q
[
~
|

[S12] Routine call,

qualified X«r(u) = Xur (u) Same as above enff$11]
[S13] Unary . .

expression (for 8a= 8a Objects+ States+ Values
operatorg) (Use[S11], [S12)

[S14] Binary o

expression (for a8b = asghb Objects + States+ Values

operatorg) (Use[S11], [S12)
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Construct Denotation Signature

Assertions and correctnegs routine r (a))

I[solp?]irs\:/fr?;n?r Use[S11] [S12] [S13] [S14] Objects+ States+ IB
E%f,%]it%ﬁ - orpost: Use[S11], [S12], [S13] [S14] Values+ Objects+ States+ IB
Eiﬂgﬁicondi' ensueQ = r=Q Values+ Objects+ Statest 1B
ﬁ%oﬂgoﬁgﬁﬂn ensuef=oldg = [raf=g] Objects+ States+ IB

[S19] Routine cor- [p_ Hinv § B

rectness = [post inv]]

The left-hand sides of the equalities cite constructs of an object-oriented
programming language; the right-hand sides are their mathematical
denotations. The rightmost column gives the signatures of these denotations
— the mathematical sets to which they belong (sets of functions in all cases).

In case[S5] we simply prescribe that for any attributef the class the
model will include a corresponding function. The riile f indicates that we
use the same name for the function in the model as for the attribute in the
software text.

CasdS6], f:=g, is a standard assignment. The fields representédry
g may be value fields, for example of typRTEGER or reference fields
leading to other objects droid. The mathematical intepretation of such an
assignment as an operation of the state is that it replaces the vd)deratny
objectobjto which the assignment is applied, by the valug @dr that object.

The operator.= on the left-hand side is assignment, from the programming
language;= on the right side is a mathematical operator, function substitution.
Inventing a new operator for the latter purpose would avoid the risk of
confusion but make the notation more complex.

This rule, [S6], captures the essence of the “current object” in object
technology. The key is that we do not specify any particular obfestgis a
function, applicable to an object. Both the target and the source of the
assignment are themselves functions applicable to an object; the effect of the
assignment is to replace the value of the target function on that object,
whatever it is, by the value of the source for the same object.
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Since in this discussion we do not consider such operations as object
creation, all run-time events ultimately reduce to operations sudh-ag
whose model is a function fro@bjectsto state transformers.

Cas€g[S7] is the generalization to multiple sources and targets.

In case[S8]1i ; j is the instruction sequence that executdgenj. As we
model instructions by functions, the model for their sequence is the
composition of their models. We must use rightmost compositon “ ” rather
than ordinary composition=* ” since the denotations @indj are not state
transformers but functions fro@bjectsto state transformergecall thati ] <« Pagell

is the function that, for anybj, yieldsi (obj) composed with (obj).

Cas€S9], “attribute call”, applies an attribute to an object, and is written
x.fin O-O notation; it is pleasant to model it through function composition as
X . f. Callstothe other kind of feature, routines, will have a similar [8IE2].

CasgS10]defines the semantics of a routinas being, for any argument
a, the semantic®ody of the routine’s body as applied o The name is not
by itself a construct, but defining a semanticsifdrelps define the model of
the actual constructs involvingcalls to the routine.

CasgS11], r (u), is the first kind of such callinqualified, that is to say,
executed from a routine of the same class and using the current object as
target. The effect is simply to apply the functionthe semantics df, to the
denotatioru of u.

Cas€g[S12]is the second kind of calqualified: x.r (u) applies a certain
feature to a certain explicitly named target with certain arguments. The
observation here is that as well asu are, mathematically, functions on
objects; so isr with an extra degree of abstraction corresponding to the
argument. The mathematical equivalent is simpiyr (u), closely mirroring
the programming language notation as in attribute [&8l. This rule shows
feature application, the fundamental computational mechanism of object-
oriented development, as function composition and function application.

CasedS13]and[S14] acknowledge the property that (in Eiffel at least)
an expression involving a unary or binary operator is just an abbreviation for
a function call; for exampla + b is formally a function calb.plus(b) where
plusis the functioninfix "+" associated with the operator. So to handle these
cases we just apply the function’s model to the operands’ model. The same
approach will work for predefined equality and inequality operators: the
model fora=bisa=h.

This also gives the model for a class or loop invarigit5] since it's a
boolean-valued expression. The signatureOigjects - [States + IB]:
applied to any object, the model is a boolean-valued function of the state.
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The same holds of a routine’s precondition or postcondit®i6] with
an extra function level — the initidfaluesin the signature — corresponding
to the argument of the enclosing routine

Itis convenient to give a modgb17]to a postcondition clausnsureQ,
the composition of the semanticsradind the semantics ). The signature of
r wQisValuest Objects} Statest IB (this is also the signature &, and
the signature of is Values+ Objects} States}. States.

In such a postcondition, we may encounter ¢&3e3], a reference told f
wheref is an expression, of signatu@bjects Statest Values(f may not
involve the routine’s arguments). This represents the valdeseéluated on
the current object on entry to the routineThe mathematical model must
“unwind” the semantics of; rule [S18] addresses the common case of a
postcondition clause of the forfr= old g, which we interpret as . f =g,
expressing that the value 6fin the state resulting from executingis the
original value ofg.

These properties yield a practical strategy for dealing withillustrated
by the example proofs of the following sections. To prove a routine correct, we
computer = Q; as the body of is usually a sequence of instructions.. j; k
this means, from the rule cag®8], computingQ; = ks Q, thenQ, = ks Q,
and so on back ta The practical rule foold is that we may keep anyld x
subexpression unchanged throughout this process; then when we get back to
the beginning of the sequence, to prove [&I9] that the initial assumption
implies the expression we have obtained, we droplthe

Case[S19] gives the basic proof obligation for a routine: that the
precondition and invariant imply the postcondition and invariant evaluated in
the state resulting from executing the routine. A similar rule will apply, for
example, to the proof that a loop body satisfies the loop invariant.

Viewed as definitions of the semantics, these equalities are recursive; for
example the denotation éf:= g refers tog, the denotation ofy. Since the
routines may themselves be recursive, the equalities do not actually provide a
proper definition of the semantics unless we use a fixpoint interpretation. We
can avoid the issue by noting that the goal is to prove properties of routines
through[S19]; if encountering a recursive call, we will assume the property to
prove, in line with Hoare’s axiomatics of routir{&s.
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7/ OPERATOR PROPERTIES

The proofs that follow will use some properties of the functional operators
used in modeling object structures.

Sequence closure

Introduced earlier, “sequence closur&* for a functionf: A + A, is the
function that for any: Ayields the sequence f (X), f (f (X)) ..., up to the first
value that is outside of the domainfo{The formal definition is not included
but poses no difficulty.) For all the examples of this article the structures are
acyclic so the sequence is finite.

In light of the preceding discussion of the”" operator we may
generalize the notation to a functibnepresenting an attribute, and hence of
signatureObjects 4 States} Objectsrather than jusObjects  Objects
we just takef** | for a given states, as denoting the application 6f to
function obj| [function s| [f (obj)] (s)]. Here is an example:

header This sequence of cellsight** ( cell 1)
and alsdirstaright** ( heade) Reflexive-
, I ' transitive
mﬂrst , right right right sequence
item| |——® item| |— item 4E closure
cel_ 1 cell_ 2 cell_3

In a given state, functionght** applied to the first INKABLE cell cell_1,
yields the sequence bfNKABLEcells consisting ofell_1, cell_2andcell_3
Applying first.right** to theheaderobject yields the same sequence.

Sequence closure properties

The following properties involve functiorigy, ... inObjects} Statesp Objects

The state plays no explicit role — it is the same throughout — so the properties
will also hold for functions inObjects} Objectsif we replace " by plain
composition 4 ”. By includingStatesin the signature we cover the intended
application to function§ g, ... representing reference attributes.

The first property relates sequence closure and composition:

[T20] f . P = £ . tail
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In words — as illustrated below in the application of both sides to an argument
obj in a given state —this expresses that if you start from an object and follow
thef link once, thef sequence starting at the resulting object is the tail of the
sequence starting at the original object:

| [f . 4] (obj)
Obj I f f ! Tail and

f
I:I_> +—» | T % composition

| | [ .tail] (obj) ;

** (obj)

Two corollaries are

[T21] f** =<f>+ f,f*
[T22] f . g*=<f>+f.g. g%

We may use the notatiofi™ for the expressiom . f** that appears in both
[T20] and[T21]; it yields for anyx the sequencg(x), f (f (X))..., that is to say
f** (X) deprived of its first elemerf21] indicates that* = < f> + ',

Sequence closure and function substitution

A related property (involving the state) combines sequence closure and
function substitution:

‘[T23] [f:=f.gla[f.g"] = f.g* . tail

which we may illustrate as follows:

Current ] f Tail and
f:=f.g [f .g™] ( Current composition

SN g IRy Ny i

[ f.g** .tail] (Curren)



22 TOWARDS PRACTICAL PROOFS OF CLASS CORRECTNESS §7

In words: consider thg sequence starting at the target of tHimk from the
current object. (It'd . g**, appearing on both sides [gf23].) Replacing thé
link of Currentby f.g implies replacing that sequence by its tail.

Proof of[T23]: the propertyAl] of function substitution lets us simplify
the left-hand side into

f.g.g"

which, by applyindT20] to g, yields the right-hand side.

The next property, illustrated below, enables us to deal with the effect of
remote assignments by deducing that after afca#it_g(h), whereset_g(a)
performsg := a, the value of.g will be h:

[T24] [f.[g:=h]]=[f.g] = h

Effect of
Current g /*/ remote
' assignment
G E TR :
h ——>

f 1

[\

@
I
>

Proof: apply both sides to an objecbj and letobj’ = f (obj). From the
definition ofs the left-hand side i§g := h] (obj’)] . [[f.g] (obj)], that is,
[[g:=h] (obj)] . [g(obj)], which from the definition of function substitution

[A1] ish (obj).

As a consequence:

[T25] [f.[g:=H]] = [f.g™] = <f>+h.g

In words (which you may want to follow on the next figure): calbbj, as
illustrated, the target of thidink from the Currentobject. The left side ofT25
denotes thg sequence frorh obj— the sequence g** — evaluated in the state
resulting from reattaching, in obj, theglink to the targeh_objof thehlink. The
right side is, in the original state, the sequence that startswaithjand continues
with theg sequence beginning lat obj
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Current f_obj Effect of
91— remote
f / g:=h assignment
- h_obj Y
4| (G| (9T Qr«E

<f> + f.g*

Proof: from[T22] we write the left side a§f.[g := h]] s [<f>+ f.g.g**].
Distributings over the concatenation operataand applyindT24] gives the
right side.

Finally, we will use the following elementary property, given without
proof, of themirror and concatenation operations on sequences:

[T26] (s1+s9 o mirror = s2 o mirror + s1 o mirror

8 MODELING LINKED LISTS

We will apply the preceding semantic rules to prove the correctness of
LINKED_LISTroutinesremove_frontand reverse This requires expressing
more precisely the properties of the model used for this class. The experience
gained so far in proving properties of classes indicates that this step of
devising a proper model is just as important as the task of performing the
proofs once a model has been devised.

Sequences and their properties

As noted earlier, we associate with an instanceldfKED_LIST[G] amodel

of type SEQUENCHG], representing the sequence of its values. The basic
property of themodelmay be expressed as a class invariant, relative to the
current state:

[A27] model=first. right** . item

The decision to define SEQUENCEmModel for every list object belongs in a
higher-level clasd,IST, of whichLINKED_LISTis a descendant. The linked-

list modelis an implementation of the abstranbdelfrom LIST. This overall
structure and the relation of the proof technique to inheritance are covered in
[14]; in the present discussion we examine the implementation class
independently of its ancestry.
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As illustrated belowfirst. right** is the sequence dfINKABLE [G] cells
making up the list; we could use it as the model, but what is of interest to users
of the list is not the sequence of cells, it's the sequence wdlues they host,
which the definitiorfA27] gives us by composirfgst . right** with item

This relies on the standard definition of a finite sequesas a function from

an integer interval starting at 1 to a 3ethereLINKABLE[G]. If f is a function

in X - G for someG, the compositiors.f describes another sequence, with
values inG, obtained by applyinfjto every element of

first.right** (sequence dfINKABLE[G] cells) _
Modeling a

first linked list as a
st < right /& right (e right sequence of
-‘ item ——I-Il_tem ——I-{ 1 values

first. right** .item (sequence o values)

The functionitem comes, likeight, from clasd.INKABLE

classLINKABLE[G] feature

right: LINKABLE[G]
-- Reference to next cell

item G
-- Value stored in cell
... Routines (see below) ...
end

Like the above definition ofmode| all formulae of interest include the
composition .item’ as their last element; as a result we can remove it in all
equalities between such formulae. For brevity we will from now on ignore
item, using formodelthe simplified version

[A28] model= first. right**

as if we were dealing with a sequenceldNKABLE [G] items rather than a
sequence ofs values. This simplification was already present in the loop
invariant of thereverseprocedure (pagé).

A property of the model is:

[T29] [first = first.right] « model= modeltail
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Proof: the left-hand side, through the definitig27] of mode] is

[ first:=first.right] = [ first . right**]

The propertyfAl] of function substitution lets us simplify this into

first.right . right**

The right-hand side, again from the definitj@27] of mode]| is

first. right** . tail

yielding[T29] as a consequence [0120].
Prohibiting cycles and tail sharing

Our linked list structures must be acyclic. This will give another invariant
clause, which we may express as the requirement that, in ang state

[A30] injective([first. right**] ( s))

whereinjective(r), for a relatiornr (including the case of a function) indicates
thatr never pairs two different source elements with the same target element;
this can be defined asor 0 1d whereld is the identity relation[A30] states

that aright sequence may not include the sabiBlKABLE [G] cell twice,
although two of its cells may of course have the s@mentent.

We must also preclude tail sharing: no two lists may shxé&KABLE [G]
cells (although they may again share cell values). The invariant clause is

[A31] injective([first. right*] (-s+¥)

This is almost the same &30], using the reflexive transitive closureraght
rather than sequence closure. Because this yields a relation, not a function, we
need the image operat@r.. - [13] rather than function application.

The correctness rul&19]requires every exported routine of the class to
maintain[A30] and[A31].
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9 PROVING CORRECTNESS OF LIST REMOVAL

Let’s apply the theory to prove the procedueenove_frontntroduced earlier.

It is in general meaningless to talk of “proving software”: you prove the
correctness of a software element not in the absolute but with respect to a
certain specification. Our classes and their routines, however, are equipped with
contracts, so “proving a routine” simply means proving that it satisfies its
specification as expressed by the contract.

The postcondition, labeled head_chopped_off onpage 6, is
model= old modeltail. [S18]tells us that the property to prove is then

remose_fonts modek modeltail

From[S10], remave_fiontis function a | body wherebodydenotes the body
of the procedure and we can ign@since the procedure has no argument. Its
body is (page}) the single instructiofirst := first.right whose semantics is an
example of casgs7], giving

remove_foont = [first := first. right]

So we have to prove

[ first := first.right] » model= modeltail

that is to say, the properfy29] as proved in the preceding section.

Preservation of the acyclicity invariaf30] follows from the property
that if f** contains no cycle neither does its tail. Preservation of the no-tail-
sharing invariantA31] follows from the property that replacing a sequence by
its tail cannot introduce tail sharing. (These properties can be made more
formal and proved in the style of the properties in sedtipn
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10 PROVING CORRECTNESS OF LIST REVERSAL

We now turn to a more sophisticated algorithm, list reversal (given on pPage

As originally noted, the result to be proved (apart from termination, and
preservation of the class invariants) is that the body preserves the loop
invariant, which read

[132] spliced old model=first.right** o mirror + next.right**

We have to prove that

spliced Body = spliced

whereBodyis the body of the loop:

[previous first, next := [first, next nextright] -- Shift
first.put_right(previous -- Reattach

Let us comput&ody s splicedFrom the instruction sequencing rifs]it is
[ Shift « Reattat] = splicedwhereShiftandReattaclare the two instructions.

Associativity applies so we first compuReattab = spliced From[S12],
Reattat is firsts put_right (previous. Procedureput_right (x), in class
LINKABLE, performs the assignmenght := x, so its semanticput_rightis,
from the assignment ru[&6] and the procedure rulg10]

put_right = function a |right :=a

Combining this with the qualified call rul&12] gives:

Reattat = firsta [right := previoug

Applying this tosplicedand retaining theld expression as pgs18]yields

Reattat = spliced =
[old model= [firstm [right := previoug] =
[first.right** o mirror + nextright**]]
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Distributing over+ and applyindT25]:

Reattat = spliced =
[old model= [<first> + previous. right**] o mirror +
next. right**]

What we are computing iShifts Reattat = spliced so we must compose
Shiftwith the right-hand side. From the multiple assignment ax®m

Shift= [previous first, next:= first, nex{ nextright]

so that, applying the properitf4] of multiple assignment to all operands:

Body = spliced=
[old model=[<next + first. right**] o mirror +
next. right. right**]

so that from the properfyf 26] of mirror we may writeBody = splicedas

[133] old model=[first. right**] o mirror +
<next + next. right. right**]

That this is an immediate consequence of the loop invasgltedis clear
from the picture that illustrated the invariant

next List reversing
1 first * * intermediate
state
- 1 - | > |
- | - ' 77

|
old model= first.right** + nextright**
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and is proved by using22] to simplify the second line ¢f33], giving

[I34] old model=[first. right**] o mirror +
next. right**

which is the original invarianspliced[I32]. So we have proved thapliced
impliesBody = spliced

To prove termination we may use a similar technique to compute
Body = [nextright** .couni, the value of the loop variant (the length of the
sequencaextright** ) after an execution of the loop body, and find that it is
one less than the initial value.

Preservation of the class invariants follows from the property that
replacing themodelby its reversed form, as expressed by the postcondition,
cannot introduce any cycle or tail sharing.

The proof of procedurgut_frontor other routines that create object
present no particular difficulty but needs the associated modeling of object
creation and management discusseld 3.

11 CONCLUSION AND PLAN OF WORK

The approach described here appears to provide a workable basis for a
systematic effort at proving the classes of a contracted library such as
EiffelBase, covering the fundamental structures that application developers
use daily.

The process

The example of cladssINKED _LISTsuggests a standard approach for proving
library classes.

P1+Devise a model Choose a mathematical structure that will support
expressing the properties of the instances of the class.

P2 «Build a static theory. In this step one must explore the properties of the
model in a fixed state, independently of any execution (hence the term
“static”), and prove them. We have seen typical examples of such
properties: for sequencd3$26] stating that the mirror of a concatenation
sl + s2is the concatenation of the mirror sfand the mirror o61; the
properties of sequence closure in secfipand the properties of linked
lists, such as acyclicity and non-tail sharing in seddion
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P3 « Extend the contracts Typical contracts, written without the benefit of a
model, only include a subset of the relevant properties. More precisely,
preconditions must be exhaustive — otherwise the class is not safely
usable — but postconditions and class invariants often miss important
information that are hard to express without a model, for example, in an
insertion operation, that all previous elements are still there. Loop
invariants and variants are often omitted. All these must be filled in.

P4 « Translate the class to mathematical form The denotational semantics
of section6 is the basis here. This step should be performed by an
automated tool relying on a parser of the source language.

P5 ¢ Perform the proofs. Although this paper has used a manual approach,
the intent is to perform proofs mechanically; this explains the need for the
previous step, since a proof tool will need to manipulate formulae
expressed in an appropriate notation. The mechanically-checked proof
effort may still, of course, require substantial manual support.

In line with the rest of the present discussion, this description covers proofs of
individual classes. The framework described[1d], taking advantage of
inheritance, involves both an effective (concrete) class suthiNtSED_LIST

and its deferred (abstract) ancestors, such.l&5 describing general lists
independent of an implementation. In this case there may be both an abstract
model and a concrete one, requiring two extra steps:

P6 < Prove that the abstract assertions imply the model assertionis the
deferred class.

P7 «Prove the consistency of the concrete model against the abstract
model in the effective class.

Contrary to appearances this actually simplifies the process, sincEGtep

the case of multiple descendants describing specific implementations of an
abstract structure, moves up to the common ancestor part of the work that
would have to be done anew for each descendanil&g®r details.

Even for a single class, the process is unlikely to be strictly sequential.
The proof ste@5 may in particular encounter obstacles that require refining
the model (stepl) or proving new properties of it (St€g).
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One may also need to go back to the class texts. It is well known that the
prospect of picking an ordinary piece of software and proving its correctness
is an illusion: the software must have been written with correctness proofs in
mind. We are starting from a better situation than usual since our target is the
EiffelBase library, equipped with extensive contracts that are part of the design
and documentation, not an afterthought, and indeed the idea of possible proofs
has been there from the beginning. But we still expect that the proof process
will require — aside from the correction of any actual bugs that it might
uncover — simplifications and other changes to EiffelBase as it exists today.

Other object-oriented mechanisms

The present discussion has not accounted for classes, genericity, inheritance,
the resulting type system, and dynamic binding. To add these mechanisms, the
envisioned strategy is: introduce the notion of class, with room for generic
parameterization, into the model; include support for expressing the inheritance
relation between classes; and add a funaj@meratothat, for any object, gives

the corresponding type (class plus actual generic parameters if any). The
generator is set on object creation and does not change thereafter. One of the
basic type rules is that for each attribute functitrere is a typ& such that

domain (f) O instanceg: {T} ¥

whereinstancess the inverse ofjenerator Note subset operator rather than
equality, to account for possibly void references; for expanded attributes,
which can't be void, it's an equality. The other significant change to the model
of the present paper is that in the interpretatiof (a) of a feature calf is
obtained no longer directly frornbut asdynamic(f, generator(x)) where the
function dynamic¢ accounting for dynamic binding, yields the version of a
certain feature for a certain type.

Future work

Aside from the extension of the model to cover the whole of object-oriented
programming, the tasks lying ahead are clear: apply the above process to a
growing set of classes covering the fundamental data structures and algorithms
of computing science. This involves building models, developing the
associated theories, completing the contracts of the corresponding classes,
attempting the proofs, and refining the library in the process.
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