
Draft 3, 6 December 2015
Theory of Programs
Bertrand Meyer
While the theoretical study of programs fills volumes, a handful of concepts from elementary set
theory suffice to establish a clear and practical basis.

Among the results:
• To describe a specification or a program, it suffices to define one relation and one set.
• To describe the concepts of programming, concurrent as well as sequential, three elementary

operations on sets and relations suffice: union, composition and restriction.
• These techniques suffice to derive the axioms of classic papers on the “laws of

programming” as straightforward consequences.
• To define both program correctness and refinement, the ordinary subset operator “⊆” suffices.
Paragraphs labeled “Intuition” relate the concepts to the experience of readers having done some
programming. Readers familiar with other views of theoretical informatics will find comparisons
in “Comment” paragraphs. Section 5 provides more discussion.

1 Programs
A program is a mathematical object: a constrained relation over a set of states.
Definition: program, specification, precondition, postcondition.

Notation: A ↔ B is the set of binary relations between A and B, that is, P (A × B). The domain of a relation
r is written r and its range .

Intuition: a program starts from a certain state and produces one of a set of possible states satis-
fying properties represented by post. Pre tells us which states are acceptable as initial states.

In the general case, more than one resulting state can meet the expectation expressed by post.
Correspondingly, post is a relation rather than just a function.

The definition covers continuously running programs, such as those embedded in devices,
since they are just repetitions of individual state transformations.

A program, also known as a specification, over a state set S, consists of:
• A relation post: S ↔ S, the program’s postcondition.
• A set Pre ⊆ S, the program’s precondition.

r

THEORY OF PROGRAMS §12
Comment: the usual view treats “program” and “specification” as distinct concepts, but all defi-
nitions of the purported difference are vague: for example, that a specification describes the
“what” and a program the “how”. The reason for the vagueness is that no absolute difference
exists. An assignment is implementation to the application programmer and specification to the
compiler writer. Result2 ≅ input may look like a specification; but some “programming” lan-
guages accept it, letting the compiler derive a square-root algorithm. Any useful distinction must
be relative: a program/specification “specifies” another. Section 3 will take advantage of this
observation to introduce the notion of “contracted program”, a pair of programs/specifications,
one of which specifies the other. Until then, the two words are synonymous.

Particular choices for S and for acceptable post and Pre determine particular styles of pro-
gramming, such as the following.
Definition: deterministic, functional, imperative, object-oriented, object, procedural

Notation: For a relation r in A ↔ B and subsets X of A and B respectively, r (X) denotes the image of X, and
r -1 (Y) the inverse image of Y, by r. The relation is a “function” (short for “possibly partial function”) if
r ({x}), for any element x of A, has at most one element. If it always has one, r is “total”. A → B is the subset
of A ↔ B containing total functions only. An integer interval is written m. .n. Section 4.2 will present a more
elaborate structure for S in which the above characterizations apply to the “store” part.
Sp, postp and Prep are the state set, postcondition and precondition of a program p. For the i-th program
pi in a set of indexed programs we may use Si, posti and Prei.

The principal concepts of programming, studied in the rest of this presentation, are independent
of such choices of style and of the properties of S.
Definition: feasibility

Intuition: Prep tells us when we may apply the program, and postp what kind of result it must then
give us. A program/specification is safe for us to use if it meets its obligation whenever we meet
ours. Feasibility expresses this property: for any input state satisfying Prep, at least one output
state satisfies postp.
Comment: it is possible to avoid introducing feasibility as a separate condition: define the concept
of program by post only, and just define Pre as post. Then every program is feasible. This model,
however, does not fit the practice of programming. Often we are given a general relation (such
as Result2 ≅ input) that is not satisfiable for every possible input state; we must find an input
domain (such as input ≥ 0) on which it is. Hence the definition of “program” as the general con-
cept and “feasible program” as a desirable special case.

A program p is:
• Deterministic if postp is a function, and non-deterministic otherwise.
• Functional if every subset C of S is disjoint from postp (C), and imperative otherwise.
• Object-oriented if S is of the form 1. .n → O for an integer n and a set O of “objects”,

and procedural otherwise.

A program p is feasible if Prep ⊆ .postp

§1 PROGRAMS 3
Definition: program equivalence

Notation: For a relation r and subsets X and Y of its source and target sets, r / X and r \ Y are r restricted
to the domain X (meaning r ∩ (X × S)) and corestricted to the codomain Y (meaning r ∩ (S × Y)). Two
straightforward properties (restriction and corestriction theorems) are that and .

Intuition: the results of a program only matter for input states satisfying the precondition.
Definition: refines, specifies, abstracts

Notation: r ⊆ r’
X

means (r / X) ⊆ r’ ; in other words, whenever r maps an element of X to a result, r’

maps it to the same result. The same conventions applies to other operators on relations, as in r r’. Note
the names (extension, weakening, strengthening) associated with the three conditions of the definition.

Intuition: a refinement of p gives more detail than p, but still satisfies all properties of p relevant
to users of p. So it must cover all of p’s states, accept all the input states p accepts and, for these
states, only yield results that p could also yield. It may have more states, a more tolerant precon-
dition, and yield only some of the results that p could yield (in particular, reduce non-determinism).
Comment: in practice, we might want a refined program to work on a different set of states. Then
S1 would map to a subset of S2, rather than being that subset (P1). It is possible to generalize the
notion of refinement in this spirit.
Theorem: Refinement Theorem

Proof: Since ⊇ is an order relation, reflexivity, antisymmetry and transitivity hold for the pro-
gram’s state set and precondition parts. As to the postcondition part, reflexivity is trivial; for tran-
sitivity, if Y ⊇ X then r3 r2 r1 implies r3 r1. Refinement is not antisymmetric, but if p1refines
p2 and p2 refines p1 it follows from P2 that Pre1 is identical to Pre2 and then from P3 that post1 and
post2 coincide on Pre1, so the programs are equivalent according to the definition above. In other
words, refinement is an order relation if we consider equivalent programs as equal.
Notation: P3 and the refinement theorem justify writing “p2 refines p1” as p2 ⊆ p1. This will be a
general convention: given some operator § on relations, we extend it to programs so that p2 § p1
means post2 § post1, with a suitable condition on preconditions. More examples appear below.
Definition: implementation

Two programs are equivalent if they have the same Pre and the same post / Pre.

A program/specification p2 refines another, p1, and p1 specifies (or abstracts) p2, if:
P1 S2 ⊇ S1 -- Extension
P2 Pre2 ⊇ Pre1 -- Weakening
P3 post2 post1 -- Strengthening

P4 Refinement is a preorder.

An implementation of p is a feasible refinement of p.

r / X ⊆ X r \ Y ⊆ Y

⊆
Pre1

X=

⊆
Y

⊆
X

⊆
X

THEORY OF PROGRAMS §14
Intuition: not every refinement of a specification is feasible. For example the infeasible program
<∅, S> refines every specification over S. Hence the importance of finding feasible refinements,
also known as implementations. This concept still does not provide a distinction between pro-
grams and specifications.

Notation: For a known set of states S, <post, Pre> is the program of postcondition post and precondition Pre.
Theorem: Implementation Theorem

Intuition: the statement — if a specification has a feasible refinement, it is itself feasible — seems
obvious in light of the words it uses, but in fact requires a proof.
Proof: Let p be the specification and i the implementation; we must prove that Prep ⊆ .
Weakening (P2) tells us that Prep ⊆ Prei, and feasibility of i that Prei ⊆ . Hence property A:
Prep ⊆ . Strengthening tells us that posti postp, hence property B: ∩ Prep ⊆ .

From A and B we deduce that Prep ⊆ .

2 Operations on specifications and programs
The fundamental operations of elementary set theory yield fundamental operations on specifica-
tions and programs:
• Union gives choice (intersection, for its part, does not have a directly useful application).
• Restriction gives conditionals.
• Composition of relations gives sequence (“compound” or “block” in programming languages).
• Composition combined with union for symmetry gives concurrency (parallelism).
• Composition of a relation with itself a variable number of times (power) gives loops.
The following definitions cover all these programming constructs and some others. Only the first
three (those of 2.1) refer directly to the basic concepts defined so far; all the rest follow as com-
binations of those three.

2.1 Basic constructs
Definition: choice, composition, restriction

P5 A specification/program having an implementation is feasible.

Name Notation
Mathematical definition Programming

intuitionPostcondition Precondition

Choice
(or: union)

p1 ∪ p2
(Dijkstra: p1 [] p2) post1 ∪ post2 Pre1 ∪ Pre2

Performs like p1
or like p2

Composition
(or: sequence,

compound, block)
p1 ; p2 (post1 \ Pre2) ; post2 Pre1 ∩ post1-1 (Pre2) Performs first like

p1 then like p2

Restriction
(guarded command)

C: p
(Dijkstra: C → p) postp / C Prep

Performs like p
on C

postp
posti

posti ⊆
Prep

posti postp
postp

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 5
Notation: In the “postcondition” column, the semicolon “;” denotes composition of functions or relations,
in the order of application, so that (r ; s) (X) is s (r (X)). (Mathematical texts often use s o r for r ; s.)
“Dijkstra” means the notation of [3].

Comment: the first two operators transpose well-known mathematical operations, union in the
first case and composition in the second, to programs. They consequently retain their symbols,
“∪” and “;”. No confusion results since it is always clear whether the operands are sets (including
relations) or programs.
Comment: in the definition of program composition, it might seem sufficient to use post1 ; post2
for the postcondition (rather than (post1 \ Pre2) ; post2); but that approach is incorrect because
post1 could pass on to post2 some elements that do not satisfy Pre2. An example (with S a set of
integers) is p1 = <{[1, 1], [1, 2]}, {1}> and p2 = <{[1, 1], [2, 2]}, {1}>; here post1 ; post2 is
{[1, 1], [1, 2]}, but results from applying post2 to 2, not part of its precondition. At first sight the
precondition Pre1 ∩ post1-1 (Pre2) appears to guard against this risk, but it does not: this precon-
dition guarantees that p1 yields at least one element satisfying Pre2, but does not stop p1 from
also yielding other results that do not satisfy Pre2. (Underlying this discussion is a mathematical
property of the image operator: r (r-1 (C) ⊇ C, a superset property only, not an equality.) We will
see that invariant preservation (2.7) also requires the corestriction to Pre2. (Instead of corestric-
tion we may use restriction: (post1 \ Pre2) ; post2 is the same as post1 ; (post2 / Pre2).)
Theorem

Proof: the definition of feasibility is Prep ⊆ . For choice, we note that for relations r1 and r2

 = ∪ ; for composition, that = ∩ (r1 -1 ()) (for r1 ; r2 to be applicable to
an element x, r1 must be applicable to x and yield from x at least one element to which r2 is appli-
cable); for restriction, that r / C = r ∩ C.
Theorems
Properties of the basic operators directly reflect those of their mathematical counterparts. Choice, like
union of sets, is commutative; composition of programs, like composition of relations, is not. Choice
and composition are associative, so we may apply them without parentheses to any number of oper-
ands, as in p1 ; p2 ; … ; pn. In addition:

(Choice, however, does not distribute over composition.) The proofs are straightforward but must
cover both postcondition and precondition.

P6 For feasible operands and arbitrary conditions, the above operators yield feasible programs.

P7 C1: (C2: p) = C2: (C1: p) -- Restriction is commutative. In fact:
P8 C1: (C2: p) = (C1 ∩ C2): p
P9 C: (p1 ∪ p2) = (C: p1) ∪ (C: p2) -- Restriction distributes over choice.
P10 C: (p1 ; p2) = (C: p1) ; p2 -- Composition absorbs restriction.
P11 q ; (p1 ∪ p2) = (q ; p1) ∪ (q ; p2) -- Composition distributes left…
P12 (p1 ∪ p2) ; q = (p1 ; q) ∪ (p2 ; q) -- … and right over choice.

postp
r1 ∪ r2 r1 r2 r1 ; r2 r1 r2

THEORY OF PROGRAMS §16
The following special programs are of interest:
• <∅, ∅>, called Fail: nowhere applicable. (Sometimes known as “abort” or “halt”.)
• <S × S, S >, called Havoc: always applicable, but we may assume nothing about the result.
• <(λx: S | {x}), S >, called Skip: always applicable, leaves the state exactly as it was.

Notation: generalized lambda notation serves to define relations in A ↔ B, using either λx: A | Y where
Y is a subset of B (as here for Skip), or λx1: A; x2: B | p (x1, x2) where p is a two-variable predicate. A
program/specification is total if its precondition is S.

Comment: all three are feasible; in the case of Fail note the difference with the infeasible example
<∅, S> used after the definition of “implementation”. Skip and Havoc are total.
Theorems

Comment (varieties of non-determinism): p1 does not generally refine p1 ∪ p2 because of the pre-
condition Pre1 ∪ Pre2. “Internal choice”, which has the same postcondition as choice but the pre-
condition Pre1 ∩ Pre2, satisfies refinement but not P11, distributivity over composition.
(Consider q = <{[0, 1], [0, 2]}, {0}>, p1 =<{[1, 0]}, {1}>, p2 = <{[2, 0]}, {2}>: under internal
choice the precondition is empty for the left side of P11 and {1} for the right side.).

Another terminology is that choice is “angelic” and internal choice can be “demonic”. The
theory of programs has a demonic sister, obtained by choosing internal choice for all the operator
definitions that rely on choice. The discussion will point out places where the difference matters.
Notation: “∪” for choice is a new example (after “⊆” for refinement and “;” for composition) of
extending set operators to programs. The following application of this idea is also useful:

P13 (p ; Skip) = (Skip ; p) = p
P14 (p ∪ Fail) = (Fail ∪ p) = p -- Does not hold in the demonic theory.
P15 (Fail ; p) = (p ; Fail) = Fail
P16 (p ∪ Havoc) = (Havoc ∪ p) = Havoc
P17 (p ; Havoc) = (Prep: Havoc)
P18 p ⊆ (C: p) -- Reminder: “⊆” on programs is refinement.
P19 If D ⊆ C, then (C: p) ⊆ (D: p). -- Order reversal (precondition weakening).
P20 If q ⊆ p, then (C: q) ⊆ (C: p). -- Refinement safety, see below.
P21 If q1 ⊆ p1 and q2 ⊆ p2, then (q1 ∪ q2) ⊆ (p1 ∪ p2) and (q1 ; q2) ⊆ (p1 ; p2).
P22 p ⊆ (Prep: Havoc) for any p.
P23 p ⊆ Havoc for any total p.
P24 p ⊆ Fail if and only if p = Fail -- Fail is refined only by itself…
P25 Fail ⊆ p if and only if p = Fail -- … and refines only itself.

Name Notation Postcondition Precondition Programming intuition

Corestriction p \ C postp \ C Prep ∩ postp-1 (C) p, applied only when
results satisfy C

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 7
(On the other hand we do not need a restriction notation p / C since we already have C: p.)
The first of the following properties shows that corestriction can be defined from restriction

and composition.
Theorems

The restriction and corestriction theorems apply to programs: and .
Notation: in the same spirit, the range and domain notations apply to programs: is a synonym for
Prep; and (more importantly) is a synonym for postp (), the set of values that p can actually yield.
Properties P20 and P21 extend to all well-behaved operators in the following sense.
Definition: refinement safety

Counter-examples: intersection of programs, defined as intersecting both postconditions and pre-
conditions, is not refinement-safe: with a set of integers for S, {0} for all preconditions, and post-
conditions {[0, 0], [0, 1]} for p1 and p2, {[0,0]} for q1 and {[0,1]} for q2, the conditions of the
definition are met, but q1 ∩ q2 has an empty postcondition and hence does not refine p1 ∩ p2,
which is just p1. Another counter-example is program difference (set difference of postcondi-
tions, intersection of preconditions). The theory of programs, however, eschews such operators:
Theorem: refinement safety

In a corresponding sense, the program properties “functional” and “object-oriented” are refine-
ment-safe (but not their opposites, “imperative” and “procedural”).
2.2 Atomic concurrency
Composition, while associative, is not commutative: when we combine existing programs or
specifications, it forces us to decide in which order we want them to perform. If you find this obli-
gation irksome, you need concurrency. Concurrent combination (in its “atomic” form) is sequen-
tial composition made symmetric through association with its commutative colleague, choice.
Definition: concurrency

P26 (p \ C) = (p ; (C: Skip))
P27 (p1 ∪ p2) \ C = (p1 \ C) ∪ (p2 \ C) -- Compare with P9.
P28 (p1 ; p2) \ C = p1 ; (p2 \ C) -- Compare with P10.
P29 (p \ C) ⊆ C -- Refinement. Compare with P18.
P30 If D ⊆ C, then (p \ D) ⊆ (p \ C) -- Compare with P19.

An operator § on programs is refinement-safe if q1 ⊆ p1 and q2 ⊆ p2 implies (q1 § q2) ⊆ (p1 § p2).

P31 All the operators on programs introduced in this article are refinement-safe.

Name Notation Definition Programming intuition

Atomic concurrency p1 || p2 (p1 ; p2) ∪ (p2 ; p1) Performs once like each
of p1 and p2

C: p ⊆ C p \ C ⊆ C
p

p p

THEORY OF PROGRAMS §18
Theorems: properties of atomic concurrency

Concurrency generally does not refine composition, but in one particular case it does.

Definition: commuting programs

Example and counter-example: if S is the set of functions PERSON → Z, recording people’s bank
account balances, consider a set of programs indexed by persons p and integers n: the postcondi-
tions of depositp,n and withdrawp,n express that the output differs from the input only by having
the balance of p respectively increased and decreased by n. All these programs commute with
each other. They do not commute, however, with the program resetp setting p’s balance to zero.
Theorem

(Not just refinement, but equality. Immediate generalization to more than two programs.)

Intuition: commuting programs are a boon for concurrent computation, since they open up many
possible realizations for “computing” program results (finding values satisfying postp) on actual
“computers” (the physical devices that ensure postconditions). Assume for example a large num-
ber of deposit and withdraw operations with various clients and amounts. If the specification is
that at the end of the trading day the balance of each should be correct (initial, plus accumulated
deposits, minus accumulated withdrawals), any distribution of the operations among any number
of computers in any order is suitable. In such cases concurrency is an optimization mechanism.
Comment: Commuting is not refinement-safe: with S = {0, 1}, the total programs of postcondi-
tions λx | {0} and λx | {1} both refine Havoc, which commutes with itself, but do not commute
with each other since composing them in both orders yields for 0 the values 0 and 1 respectively.
Abstraction (the inverse of refinement) also does not preserve commuting: Skip and Havoc do
not commute even though Skip commutes with itself and refines both.

Refinement and abstraction do preserve commuting for deterministic programs with identi-
cal preconditions, but are also of limited interest in this case.

P32 Atomic concurrency “||”is commutative, associative and refinement-safe.
P33 p1 || (p2 ∪ p3) = (p1 || p2) ∪ (p1 || p3) -- Concurrency distributes over choice, left…
P34 (p1 ∪ p2) || p3 = (p1 || p3) ∪ (p2 || p3) -- … and right.
P35 C: (p1 || p2) = (C: p1) || (C: p2) -- Restriction distributes over concurrency…
P36 (p1 || p2) \ C = (p1 \ C) || (p2 \ C) -- … and so does corestriction.
P37 (p1 ; p2) ⊆ (p1 || p2) -- Sequential composition refines concurrency…
P38 (p2 ; p1) ⊆ (p1 || p2) -- … in any order.

Two specifications/programs commute if (p1 ; p2) = (p2 ; p1).

P39 If p1 and p2 commute, then (p1 || p2) = (p1 ; p2).

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 9
2.3 Non-atomic concurrency
The atomic concurrency operator has a fixed level of granularity, defined by its operands: if they
are themselves complex programs built out of simpler components, it will not interleave these
components. For example let on be “switch on the light”, off “switch it off” and p “say whether
the light is on”. Assuming that in the initial state the light is on, (on ; off) || p will always say no,
regardless of which of the operands of the “||” goes first, since (on ; off) is equivalent to Skip.

The practice of concurrency often calls for finer-grain control on concurrency. Here you
might want p to execute at the beginning, in the middle (between on and off), or at the end. Such
flexibility causes much of the difficulty of concurrent programming, since it opens up the possi-
bility of “data races” (inconsistent orderings of operations, in some executions only); but a gen-
eral theory of programming must provide a model for it, given here by a ternary operator.

Notation: the only new symbol is the comma, used at a place where the semicolon of composition could
also appear. The reuse of “||” is only for convenience: the above “Notation” entry describes a new three-
operand operator. Its “Definition” entry relies on the previously defined atomic concurrency operator “||”.
No confusion arises since the non-atomic operator only occurs in conjunction with the comma.

Comment: we do need a specific operator, because proposing a distributive-style law involving
standard composition “;” would raise inconsistencies. For example, (on ; off) || p cannot give any
other result than Skip || p; if you want to allow interleaving, you should specify a finer level of
granularity, as in (on , off) || p. In the first case the atomic unit of concurrency on the left side is
(on ; off); in the second case there are two atomic units, on and off.

Non-atomic concurrency is associative on its first two operands p1 and p2, so you may use
commas to separate any number of program operands of non-atomic concurrency. (Reduced to
one operand, as in (p1) || q, atomic and non-atomic “ || ” coincide, as they should for consistency.)
One may also put q first, writing q || (p1 , p2). In other words, the notation lets us use a comma,
to specify a finer granularity of interleaving, where we might otherwise use a semicolon.
Theorems

Proof of P42: the left side is (p1 ; p2 ; q) ∪ (p1 ; q ; p2), which from P40 (itself a direct consequence
of the definition) is a subset of the right side; similarly for P43. Both of these properties appear
in [8] as fundamental axioms of concurrency, but here they are simple theorems.

It is straightforward to symmetrize the non-atomic concurrency notation to (p1 , p2) || (q1 , q2),
yielding the generalized law of exchange from [8]: (p1 || q1) ; (p2 || q2) ⊆ (p1 , p2) || (q1 , q2).

Name Notation Definition Programming intuition

Non-atomic concurrency (p1 , p2) || q ((p1 || q) ; p2) ∪
(p1 ; (p2 || q))

Performs once like each
operand, with p1 before p2

P40 (p1 , p2) || q = (q ; p1 ; p2) ∪ (p1 ; q ; p2) ∪ (p1 ; p2 ; q)
P41 (p1 ; p2) || q ⊆ (p1 , p2) || q -- Coarser-grained refines finer-grained.
P42 p1 ; (p2 || q) ⊆ (p1, p2) || q -- First “law of exchange” of [8].
P43 (p || q1) ; q2 ⊆ p || (q1, q2) -- Second “law of exchange” of [8].

THEORY OF PROGRAMS §110
2.4 Conditionals
Definition: conditionals

Notation: C’, for a subset C of S, is its complement: S — C. The usual programming notation is “not C ”
(see 2.5 below). The guarded conditional is in fact not new since if q1 [] q2 end was introduced in 2.1 as
a synonym for q1 ∪ q2, but it highlights the important case of q1 and q2 being restrictions.

Theorems: conditional instruction properties

Proof: Refinement properties follow from P19, P21 and other earlier theorems; for P53, see P8 and P9.
Comment: As seen next, “∩” in these rules can also be written “and”. On P44, note that if-then-else
is not commutative (but see P50), and on P46 that conditionals do not distribute over composition.
Notation: As a result of associativity (P45), a conditional of either kind can be applied to more
than two operands. If-then-else uses elseif for the second to next-to-last branches, as in if C1 then
p1 elseif C2 then p2 else p3 end. A conditional can also take just one operand: for the guarded
conditional, if C: p end is the same as C: p; for if-then-else, by convention, if C then p end is an
abbreviation for if C then p else Skip end.

2.5 Conditions
Two special conditions are useful for building programs. True is another name for S, and False
another name for the empty set. They should not be confused with the similarly named constants
of propositional calculus: True and False are, like all conditions, sets (subsets of S). In fact the
theory of programs relies on elementary set theory rather than directly on logic.

Name Notation Definition Programming intuition
Guarded conditional

(Dijkstra) if C1: p1 [] C2: p2 end (C1: p1) ∪ (C2: p2) Performs like p1 on C1
or like p2 on C2

If-then-else if C then p1 else p2 end (C : p1) ∪ (C’: p2) Performs like p1 on C
and like p2 elsewhere

P44 The guarded conditional is commutative.
P45 Both forms of conditional are associative.
P46 Both forms of conditional distribute over choice and concurrency.
P47 If D1 ⊆ C1 and D2 ⊆ C2, then (if D1: p [] D2: q end) ⊆ (if C1: p [] C2: q end).
P48 If q1 ⊆ p1 and q2 ⊆ p2, then (if C: q1 [] C: q2 end) ⊆ (if C: p1 [] C: p2 end).
P49 If q1 ⊆ p1 and q2 ⊆ p2, then (if C then q1 else q2 end) ⊆ (if C then p1 else p2 end).
P50 (if C then p1 else p2 end) = (if C’ then p2 else p1 end)
P51 (C : p) = (if C : p end)
P52 (if C1: p1 [] C2: p2 end) ⊆ C1: p1 -- A conditional refines any of its branches
P53 (D: (if C1: p [] C2: q end)) = (if (D ∩ C1): p [] (D ∩ C2): q end) -- Distributivity.
P54 (if C then p1 else p2 end) = (if C : p1 [] C’: p2 end)
P55 (if C then p1 else p2 end) = (if C’ then p2 else p1 end)

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 11
It is easy, however, to define boolean-like operators on conditions: and and or as other
names for “∩” and “∪”, not as another name for complement (in P55 we may write C’ as not C),
implies or “” as other names for “⊆”, and so on. Here, in addition to P19, are some properties
involving operations on conditionals.
Theorems

Proof: for P59, note that the postcondition of p \ False is postp ∩ (S × False), that is, an empty
relation (since False is the empty set).

2.6 Loop
Definition: repetition constructs

Notation: in the definition of the while loop, it does not matter how we parenthesize the “\”; see P28. Since
composition is associative, the inductive expression for fixed repetition can also be written (pi ; p).

Intuition: loop p end is the program that performs like p repeated some finite (but unknown) num-
ber of times. Cyclic programs, such as those embedded in devices, follow this pattern. The rest
of the present discussion concentrates on the from a until C loop b end loop, which starts like a
then performs like b, the loop’s “body”, as many times as needed (possibly zero) until reaching
a state satisfying C. In slightly different terms: for the loop to yield a result from a given input
state x, that result must be one of the first elements of C reached by successive executions of b
after a. All the previous states are not in C, so they are in C’, meaning that what we are iterating
is not the whole b but just C’: b.

From distributivity follows another expression of the loop:

P56 (True: p) = p
P57 (False: p) = Fail
P58 p \ True = p -- Here “\” is corestriction on programs.
P59 p \ False = Fail
P60 (if True then p1 else p2 end) = p1
P61 (if False then p1 else p2 end) = p2 -- And similarly for guarded conditionals.
P62 and, or, not, implies distribute over choice, restriction and conditionals.

Name Notation Definition Programming
intuition

Fixed repetition pi

for any natural integer i
p0 = : Skip
pi+1 = (p ; pi)

 p repeated i times

Arbitrary repetition loop p end
(or p∗) ∪

i ≥ 0
 pi p repeated any

number of times

“While loop”
from a until C loop b end

(or
a; while not C loop b end)

a ; (loop C’: b end) \ C
a, then p repeated

until C holds

p

THEORY OF PROGRAMS §112
Theorem: Loop Lemma

Notation reminder: , a subset of , is the set of values that p can produce.

Intuition: qi represents a restricted version of the loop, which yields a result (satisfying C) after
exactly i iterations. The loop is the union of all its partial versions.
Comment: unlike previous constructs, the loop does not automatically get feasibility from the fea-
sibility of its operands: it is possible for a and b to be feasible while l is not. (A trivial example
is from Skip until False loop Skip end, for which every qi is Fail.) A loop is feasible if and only
if for every suitable state s there exists an integer i such that (a ; (C’: b) i) ({s}) contains an ele-
ment in C; in other words, that qi ({s}) is not empty.

The feasibility condition for loops relies on the notion of invariant.

2.7 Invariants
Definition: invariant

Intuition: an invariant is called that way because if it holds before application of p it will hold
afterwards. More precisely, for the initial condition we need not the whole of I but just I ∩ ,
since results of p only matter when p starts in its precondition. The following two theorems result
directly from the definition.
Theorems

Comment: image properties involving intersection are usually not as strong as those involving
union, because r (I ∩ J) is only a subset of r (I) ∩ r (J), rather than equal to it as with “∪”; but
P65 has both operators on an equal footing.
Theorem: Invariant Refinement Theorem

Comment: in practice, the precondition often stays the same under refinement, but in the general
case p2 might have a broader precondition; there is no guarantee that the original invariant will
hold for the new states, hence the restriction to Pre1.
Definition: invariant-preserving operator

Example: program composition is invariant-preserving.

P63 The loop l = from a until C loop b end can be written qi, where qi is a ; (C’: b) i \ C).
As a consequence, = ∪ .

A condition I is an invariant of a program/specification p if postp (I ∩) ⊆ I.

P64 Any I disjoint from is an invariant of p.
P65 If I and J are invariants of p, so are I ∪ J and I ∩ J.

P66 If I is an invariant of p1 and p2 ⊆ p1, then I is an invariant of p2 / Pre1.

An operator on programs is invariant-preserving if any invariant of all its program operands
is also an invariant of the operator’s result.

∪
i ≥ 0

l qi

p postp

p

p

p

§2 OPERATIONS ON SPECIFICATIONS AND PROGRAMS 13
Proof: assume I is an invariant of both p1 and p2. The definition of program composition (2.1)
gives (post1 \ Pre2) ; post2 as the postcondition of q = (p1 ; p2). From P26 and properties of image
((r1 ; r2) (A) = r2 (r1 (A))) and restriction ((C: r) (A) = r (C ∩ A)), it follows that
postq (∩ I) = post2 (Pre2 ∩ Res1) where Res1 = post1 (∩ I). Since I is an invariant of p1,
Res1 ⊆ I; since it is also an invariant of p2, then, post2 (Pre2 ∩ Res1) ⊆ I.

Comment: the discussion after the definition of program composition in 2.1 noted that taking just
post1 ; post2 as postcondition for p1 ; p2 would not yield a feasible result: we need the corestric-
tion to Pre2. This property is also essential for invariant preservation: without it we would be
applying post2 not to Pre2 ∩ Res1 but just to Res1, on which post2 does not preserve the invariant.

This result about composition is only a particular case of the following general property.
Theorem: General Invariant Theorem

Proof: the result for all the basic operators (choice, sequence, restriction) follows from the set-
theoretical properties of relational image, including the following in addition to those used in the
preceding proof: r (C ∪ D) = r (C) ∪ r (D); r (C ∩ D) ⊆ r (C) ∩ r (D); (r \ D) (C) ⊆ r (C). The
subsequent operators (concurrency, conditional) are defined from the basic ones and retain their
invariant preservation.

Every element of the infinite unions that define loops is made out of basic operators and, by
induction, is invariant-preserving. Since union maintains this property, the loops themselves pos-
sess it. They benefit, however, from a more specific form of the notion of invariant.
Definition: loop invariant

The Invariant Refinement Theorem, P66, implies that a “loop invariant” is an “invariant”, in the
general sense, of the part of the loop that comes after initialization (a).The following theorem
yields a stronger form of the relationship between the two concepts.
Theorem: Loop Correctness Theorem

Intuition: The theorem characterizes the fundamental property of loops [11] [5]: the goal of a loop
is to obtain on exit () a combination of the exit condition (C) and a judiciously chosen invariant
(I, a weakening of the desired result).

Proof: since I is an invariant of C’: b, it is an invariant of (C’: b) i for any integer i; since I is also
a subset of , it follows that ⊆ I for every i, with qi as defined in the Loop Lemma, P63. Then,
from the second part of the Loop Lemma, ⊆ I. In addition, the corestriction theorem tells us
that ⊆ C as well, again for every i; this property extends to .

P67 All the program operators defined so far are invariant-preserving.

A loop invariant of from a until C loop b end is a subset of that is an invariant of C’: b.

P68 If I is a loop invariant of the loop l = (from a until C loop b end), then ⊆ C ∩ I

q q

a

l

l

a qi

l
qi l

THEORY OF PROGRAMS §114
Comment: despite its fundamental role, the Loop Correctness Theorem does not fully cover the
theory of loops because it says nothing about feasibility. It states that loop results — elements of

 — possess interesting properties, but not that such elements exist for every legal input state. In
fact, a loop yielding no results at all (an empty) would satisfy the theorem. In the traditional
terminology of theoretical informatics, the theorem is a “partial correctness” result, useful only
if we can also guarantee “termination”. The complementary theorem follows.

Theorem: Loop Feasibility Theorem

Notation: a “well-founded” (or “Noetherian”) relation is one that admits no infinite chain.

Proof: For an arbitrary element s of , define S0 as a ({s}) and Si+1 as (C’: postb) (Si). In other
words, Si is (a ; (C’: b) i) ({s}), the result of iterating the loop i times on s. Then qi ({s}) = Si ∩ C.
We will prove a non-disjointness property: Si and C cannot be disjoint for all i. Then there exists
an i such that qi ({s}) contains at least one element, which is in and hence in , showing that
the loop is feasible.

The proof of non-disjointness is by contradiction. Assume that Si and C are disjoint for all i.
By induction, Si is not empty: since a is feasible, S0 is not empty; and if Si is not empty, the invari-
ant property tells us that Si ⊆ ∪ C; with Si disjoint from C this means Si ⊆ (∩ C’) which
implies, b being feasible, that Si+1, the image of Si by C’: postb, is not empty. But then elements
of successive non-empty sets in the infinite sequence Si are related by C’: postb, an impossibility
since the relation is well-founded.

Comment: while the theorem gives a general condition for loop feasibility, it is often not practical
to check directly that C’: postb, the loop body, is well-founded. A standard technique is to map
states to a simpler domain on which it is easier to check that the counterpart of postb is well-
founded, according to the following definition.

Definition: loop variant

The existence of a variant shows that postb itself is well-founded, fulfilling the second condition
of the Loop Feasibility Theorem. The most frequent choice for V is the set of natural integers and
for “<” the usual order relation on integers.

P69 For feasible a and b, the loop from a until C loop b end is feasible if both:
• ∪ C is a loop invariant.
• C’: postb is well-founded.

A loop variant of from a until C loop b end is a total function v from S to a set V equipped
with a well-founded relation “<”, such that v (s’) < v (s) for any s in C’ and s’ in postb (s).

l
l

b

a

qi l

b b

§3 CONTRACTED PROGRAMS 15
3 Contracted programs
There is, as noted, no difference of principle between specifications and programs. Since this is
not the conventional view, let us see if we can find a place for a meaningful distinction.

We already saw that the first attempt, stating that specifications are abstract and programs con-
crete, does not make the cut, since “level of abstraction” is a relative notion (the example was an
assignment instruction, abstract for some and concrete for others). A seemingly more promising
intuition is that programs are executable while specifications are descriptive; but it does not work
either, since executability is also a relative notion, which has evolved through the history of com-
puting (the example here was Result2 = input, which can be executable in a high-level language).

The relevant criterion is correctness. As captured by the notion of feasibility, a specification
can be inconsistent (if it tells you that the result must be zero and also that it can be one) or con-
sistent; but it makes no sense to ask whether it is correct. Correct with respect to what? Probably
with respect to the customers’ desires, or to their actual needs, but these would have to be written
down as another, higher-level specification, only pushing the problem further. We do know, how-
ever, what it means for a program to be correct: it performs according to a stated specification.
Correctness is a relative notion.

Indeed what truly distinguishes a program from a specification, in the common usage of
these terms, is neither the level of abstraction nor the possibility of execution, but the existence
of two programs/specifications in the sense of the present theory, such that one of them is a refine-
ment of the other. The following notation reflects this analysis.

Definition: contracted program, specification part, contract, implementation part, correctness

Reminder: an implementation of p is a feasible refinement of p. The refinement theorem, P5, indi-
cates that p is feasible as well. The definition of refinement indicates that the precondition of b is
a superset of Pre and its postcondition a subset of post. (The name b stands for “body”.)

Intuition and comment: the notion of contracted program simply introduces a programming nota-
tion for the concept of refinement. Since a program is useless without a precise understanding of
what it is supposed to do, program authors should only produce contracted programs. Regretta-
bly, this practice is not yet universal.

The above definition provides a final clarification of what programs in the usual sense of the
term (contracted programs in the present theory) really are: a program is a proof obligation.
Writing require Pre do b ensure post end is a way to state that b must refine p, and requires the
author, before clicking “Run”, to click “Verify”. Section 5.2 expands on this definition.

The notation require Pre do b ensure post end, a contracted program, asserts that b is an
implementation of the specification/program p = <post, Pre>.
Then p is the specification part, or contract, and b the implementation part.The contracted
program is also said to be a correct program.

THEORY OF PROGRAMS §116
Theorem

Comment: in this case, since we keep the implementation and go to a new specification, we can
only strengthen the precondition and weaken the postcondition.

The following concepts are defined for given Pre, post and b.
Definitions: weakest precondition, strongest postcondition

Intuition: postb — post is the set difference of two relations, giving us the set of pairs that belong
to the first but not to the second. Its domain, , is the set of states for which b pro-
duces at least one result that post could never produce. Subtracting this domain from , the
domain of b, gives us the set of states on which b is guaranteed to agree with post.

The following property justifies the terms “strongest” and “weakest”.
Theorem

Proof: Let p be <post, Pre>. Since b is a refinement of p, postb post by the definition of refine-

ment, yielding the first property of the theorem. By refinement, Pre ⊆ ; the just mentioned prop-
erty postb post implies that is disjoint from Pre, so Pre ⊆ — ,

giving us the second property.
As a corollary, we get a compact definition of program correctness.

Theorem

Theorems

P70 If post ⊆ post’, Pre’ ⊆ Pre, and require Pre do b ensure post end is a contracted
program, so is require Pre’ do b ensure post’ end.

postb / Pre, also written b sp Pre, is the strongest postcondition of b for Pre.
 — , also written b wp post, is the weakest precondition of b for post.

P71 If require Pre do b ensure post end is a correct program, then (b sp Pre) ⊆ post and
Pre ⊆ (b wp post).

P72 require Pre do b ensure post end is correct if and only if Pre ⊆ — .

P73 b sp False = Fail
P74 b wp Fail = False
P75 Fail sp C = Fail
P76 Fail wp p = False
P77 b sp (p ∪ q) = (b sp p) ∪ (b sp q)
P78 b wp (p ∪ q) ⊇ (b wp p) ∪ (b wp q)

b postb — post

postb — post
b

⊆
Pre

b
⊆
Pre

postb — post b postb — post

b postb — post

§4 STATES AND ENVIRONMENTS 17
(and so on). As an example of why P78 is not an equality, consider postconditions {[0, 1], [0, 2]}
for b, {[0, 1]} for p and {[0, 2]}for q, all with precondition {0}. Then both b wp p and b wp q are
empty (since b — p has postcondition {[0, 2]} and b — q has {[0, 1]}), but b wp (p ∪ q) is {0}.
This property is related to the comment (after P25) that in the angelic theory p1 does not generally
refine p1 ∪ p2.
Definition: generalizing refinement to contracted programs

Comment: it is possible to generalize the definition further by having different specification parts.
Definition and theorem: Most Abstract Implementation

Intuition: The most abstract implementation is the specification used as its own implementation.

4 States and environments
The exact nature of S, the state set, varies considerably between application domains and the for-
malisms supporting programming (programming languages as defined next in section 5). Some
properties, however, are common to most variants.

4.1 Mappings
The state tracks the evolution, during the computation, of certain elements of information rele-
vant to the results. As a consequence, a state almost always includes (as its essential components)
one or more mappings between these elements and their current values. “Mapping” is a general
term roughly equivalent to “function”; in programming, since the memories of both humans and
computers are finite, these functions will also be finite. S, then, includes components of the form
Name →|| Value for appropriate sets of names and values.

Notation: A →| B is the set of possibly partial functions, and A →|| B the set of finite functions, from A to B.
Inclusions are: (A →|| B) ⊆ (A →| B) ⊆ (A ↔ B) and (A → B) ⊆ (A →| B).

4.2 Environment and store
It is common for the state to have two clearly identified components: the environment and the
store, also known as the static and dynamic parts. In a simple case, with a set Var (for “variables”)
of names and a set Type representing the types of possible values, the environment is of the form
Var →|| Type and the store of the form Var →|| Value. This division reflects the typical process of
executing programs on a computer:
• A first step known as compilation creates the environment.
• The actual computation, known as execution, takes place in the second step, which builds

and transforms the store, constrained by environment built in the first step.

If q ⊆ p (q refines p), require Pre do q ensure post end refines require Pre do p ensure post end.

P79 For feasible p, require do p ensure postp end, the most abstract implementation of
p, is a correct program, which every implementation of p refines.

p

THEORY OF PROGRAMS §118
One of the advantages of this approach is that it requires programmers to define types for every
variable, making it possible to detect mistakes (such as applying a boolean operation to integer
variables) in the first step; in that case the second step does not take place until the programmer
has corrected the mistake. Such a process limits the risk of erroneous computation. Another advan-
tage is that it is not necessary to repeat the first step once it has succeeded: subsequent executions
of the same program, applied to different input states, can use the result of the compilation.
Definitions: declaration, instruction

Intuition: it is good practice to separate the two kinds of operation; declarations set up the environ-
ment; instructions, working in a defined environment, change only the store.
Comment: the characterization of programming styles (functional, object-oriented) in section 1
properly applies to the store component of the state. So do the definitions of Skip and Fail (2.1)
if we wish to treat these operations as instructions.

4.3 Notational principles: cartesian product considered harmful
The preceding discussion has stopped short of specifying S as the cartesian product E × M where
E is the environment and M (for “memory”) the store. It does not even use the common program-
ming-like “record” notation (environment: E; store: M) (mathematically denoting a function in
Tag →|| U, where Tag is the set of names to the left of the colons and U the union of the sets to
their right, with the constraint that the function’s values for the i-th tag are in the i-th set). The
two models are isomorphic and either one would be suitable for a purely mathematical discus-
sion, but for modeling software concepts they are too constraining.

The reason is that the theory of programs, like the development of programs, calls for more
incremental notations, allowing us to extend and adapt existing models. Both cartesian product
and the record notation are closed: if you have defined a concept such as “state” through a par-
ticular set of components, such as the environment and the store, and later want to add a compo-
nent, you must rework all previously defined operations (functions or relations) on states. An
example of such an operation is a declaration, defined as λ e, m | [d (e), m] where d is an function
on the environment (for example, if e is or includes a mapping in Var →|| Type, d yields a new
version of the mapping, extended with a new pair such as [n, INTEGER]). If you add a third com-
ponent to the concept of state, this definition, which yields a pair rather than a triple, no longer
makes sense.

Cartesian product is not the only culprit: definition by alternation is just as bad. It is common
to use definitions of the form L =Δ J | K, specifying that an element of L is disjointly either an
element of J or an element of K. (Again there is a simple mathematical model, applicable even if
J and K are not disjoint: the notation describes pairs in {1, 2} × (J ∪ K) such that the second ele-
ment is in J for 1 and in K for 2, with generalization to any number of alternatives.) This notation
suffers from the same drawback: adding an alternate breaks all previous derivations.

A function in S →| S is a declaration if it leaves the store part unchanged, and an instruction
if it leaves the environment part unchanged.

§4 STATES AND ENVIRONMENTS 19
In programming, the “object-oriented” method of programming, with its concept of “inheri-
tance”, is an effective remedy to these problems. The theoretical side requires such solutions too.

This article does not introduce the details of the appropriate notation but it is useful to see
the principal convention, used as the replacement for cartesian product. When a set needs to be
defined with a number of components, we give each a name, as in

S component
environment: E
store: M

This mathematical notation simply asserts the existence of two total functions, environment in
S → E and store in S → M. Projections are written (for a state s) s.environment and s.store. A
function on composite objects defined from functions on their components is of the form

on S update
environment’ = d (environment)

end
denoting a function in S → S, with the rule that the function leaves unchanged any component
not named, here store; the example denotes the function that for any state of components e and
m yields the state of components d (e) and m. In the end, these notations are equivalent to the
cartesian product and record forms, but there is a practical difference: you can include as many
“component” and “on” definitions as you like, even for the same target set S, in an incremental
fashion. In many cases, the existing specifications can remain as they were, thanks to the rule that
not citing a component in an on ... update ... specification means leaving it unchanged.

Such definitions are cumulative: mathematically, the resulting specification is the cartesian
product of all the component declarations. (This convention assumes that the graph of declara-
tions involves no recursion; it can be extended through fixpoint techniques to support recursive
definitions.) A similar convention applies to sets defined by alternation.

In both cases, a simple notation supports “lifting” an operation on a component into an oper-
ation on the whole. For example if d is an operation on the environment it is convenient to treat
it also as an operation on the state, which as in the above on ... update ... example leaves all other
components unchanged.

This article will not need further details of these techniques, but they are important for the prac-
tical development of specifications and programs.

4.4 Kinds of state
While the precondition is a set of states, the postcondition in the general case is a relation over
two states, initial and final; a common term is “two-state assertion”. For example, we may want
to specify that the initial state contains a positive number (precondition, a set) and the final state
its approximate square root (postcondition, a relation between input and output).

Some postconditions, for example “the output is positive”, do not involve the initial state:

THEORY OF PROGRAMS §120
Definition: Markovian, one-state

Notation: x r y, for a relation r, expresses that [x, y] ∈ r (the relation connects the two elements). The
equality in the definition is equivalence (equality between two boolean properties).

Intuition: a Markovian postcondition characterizes only the final state, regardless of the input.

Comment: a useful program produces different results for different inputs, and so is generally not
Markovian if considered as a whole. But postconditions are often expressed as intersections (con-
junctions) of properties, some of which can be Markovian; for example the result’s square is close
to the input and the result is non-negative. The Markovian property can also characterize inter-
mediate steps in the program. This observation extends to the following state properties.

Definition: trivial, irrelevant, relevant

Intuition: if a state is trivial, a transition to any other state will fulfill the postcondition. If it is
irrelevant, it plays no role in whether the next state satisfies the postcondition.

Theorem

Proof: We may assume a non-empty Pre. () Assume the specification is feasible. If a state s in
Pre is irrelevant and not trivial, s post s1 holds for no s1. Feasibility implies Pre ⊆ , meaning
there is an s1 such that s post s1, yielding a contradiction. (⇐) Assume every state s in Pre is either
trivial or relevant. If s is trivial, it is in . If s is relevant, then there exist s1 and s2 so that either
s post s1 or s post s2, so it is also in .

5 Languages and programming
“Programming” is the act of writing contracted programs according to the preceding definitions.
Such a program has two parts: the contract represents the goal of the program, as advertised to
its users; the implementation represents the operations that will run on the computer. The defini-
tion ensures that the implementation matches the contract.

5.1 Programming languages

If the contract is given, in the form of Pre and post, programming consists of solving require Pre
do b ensure post end, viewed as an equation of which b is the unknown.

A postcondition post is Markovian, or one-state, if ∀ s, s1, s2 | (s1 post s) = (s2 post s)

For a postcondition post, a state s is:
• Trivial if ∀ s1 | s post s1.
• Irrelevant if ∀ s1, s2 | (s post s1) = (s post s2).
• Relevant if not irrelevant (∃ s1, s2 | (s post s1) ≠ (s post s2)).

P80 A specification <post, Pre> is feasible if and only if every state in Pre is either trivial
or relevant.

post

post
post

§5 LANGUAGES AND PROGRAMMING 21
The Most Abstract Implementation, as defined above, yields a trivial solution, often non-deter-
ministic, to the equation: postb = post / Pre, Preb = Pre. The reason why that solution is generally
of little use, and programming an interesting endeavor, is the practical difference between contract
and implementation. For b we seek a relation postb that a material computer can process (not nec-
essarily directly, but through the services of tools such as “compilers”). For the specification, since
the goal is to describe the problem, we can rely on a broader set of mathematical mechanisms.

In both cases we need a repertoire of mathematical tools to build programs and specifications.
Definition: programming language, specification language

Intuition: a programming language is a set of possible programs. Any useful programming lan-
guage is infinite, but it is derived from a few basic postconditions and preconditions, and a few
operators to combine them. Many of these basic elements, introduced in the earlier sections of
this presentation, can be used by programming languages regardless of the application domain:
• Havoc, Skip and Fail as base programs, plus True and False (S and ∅) as base preconditions.
• The program construction operators of section 2, including the three basic ones (choice,

composition and restriction) and those derived from them (concurrency, conditionals, loops).
Beyond these universal elements, a language will offer specific mechanisms for the intended
application domain, beginning with a suitable set S of states and a suitable set of operations over S.

Since specification and implementation are often considered separate activities, it is fre-
quent to find separate specification and programming languages. Another approach is to use a
single language; this approach is in fact required if we want to produce correct programs (con-
tracted programs), which include both a contract and an implementation. (As noted after the defi-
nition of refinement, it is possible to define a variant of the theory in which the state set changes
under refinement, but at the price of much added complexity.) Approaches to producing reliable
software can be hampered by a failure to understand the fundamental unity of the programming
process: in spite of the obvious differences in levels of abstraction, the problems and solutions,
for which this presentation offers a mathematical framework, are the same. (Reference [13] dis-
cusses the seamlessness of the development process in a software-engineering rather than math-
ematical context, and [14] develops its application to software requirements.)

Absent such a single framework, not only is it hard to produce correct software; even
expressing what it means for the program to be correct is a challenge, since the implementation
and specification belong to different worlds (such as an ordinary programming language and
some specification framework). One must define a mapping between these two worlds, poten-
tially adding complexity and supplementary correctness issues.

A programming language over a state set S, also known as a specification language over S,
is a set of feasible programs over S. In practice it is given by:.

• A finite set of base programs, obtained from a finite set of relations in S ↔ S (serving as
base postconditions) and a finite set of subsets of S (serving as base preconditions).

• A finite set of operators for deriving new correct programs from previously defined ones.

THEORY OF PROGRAMS §122
With a single S and a single specification and programming language, the language descrip-
tion will identify, among the language’s mechanism, the subset suitable for implementation. Then
the requirement on program authors is simply to produce a final version require Pre do b ensure
post end of the program in which the implementation part b only relies on that subset. Establish-
ing correctness means establishing:
• Refinement: b ⊆ <post, Pre>.
• Feasibility: Pre ⊆ (or alternatively, thanks to the implementation theorem P5,

Preb ⊆ if the preceding condition holds).
One can express these properties convincingly, and prove them, since all three components, post,
Pre and b, are part of the same mathematical framework, even if the last one restricts itself to a
subset of that framework’s mechanisms.

5.2 Approaches to programming
The most common approach to programming today ignores the Pre and post elements of the defi-
nition, concentrating only on building implementations b from a programming language with the
hope that in some informal sense they will match the corresponding user needs. We may call this
the “hacking approach”; it has little to commend itself if correctness is part of the objectives.

At the other extreme, a “refinement approach” [17] [1] [15] has made its mark in informatics
research and led to such development methods as B. If we set out to implement a given contract,
the Most Abstract Implementation theorem P79 tells us that we may use the contract itself — spe-
cifically, <post, Pre> — as its own first implementation. Refinement as a software development
method starts with this first version and repeatedly takes advantage of theorems to choose a
“refinement” in the sense of the formal definition, P2 and P3, of the previous implementation
until reaching an implementation that belongs to the implementation part of the language.

This approach is elegant but faces some obstacles:
• Hindsight: we seldom know the entire specification in advance. This uncertainty is not

necessarily a mark of incompetent software engineering: the very process of implementation
suggests new elements of specification — “esprit de l’escalier” as discussed in [13].

• Extendibility: even if the specification is initially clear, it usually changes as a project
progresses and after initial deliveries. If a change affects a property that was used in an early
step of the refinement process, it becomes necessary to redo much of the work. (Invariants,
which play an important role in refinement methods, can help control this change process [2].)

• Reusability: A top-down refinement process does not easily take into account
implementations previously produced for variants or subsets of the problem. It is desirable
for a development process to accommodate a bottom-up component, supporting reuse.

The ideal process should combine the best elements of the “hacking” and “refinement”
approaches, retaining the practicality of the first and the rigor of the second. It is not the goal of
the present discussion to present such a process, but a general definition helps set the stage.

post
postb

§6 DISCUSSION 23
Definition: programming

The starting point for any step in the process may indifferently be:
• A contract element, for which we have to devise a satisfactory implementation (top-down).
• Existing implementation elements (bottom-up). Ideally these elements already have full

contracts. In practice, they often have no contracts, or incomplete ones; part of the process
then involves a form of reverse engineering: uncovering the precise intent of the
components and writing the contracts.

This approach seems to yield the necessary flexibility while accommodating the need for rigor
and proofs. It yields a useful view of programs.
Slogan: program

6 Discussion
This article applies to programming the standard method on which science and engineering rely
to solve practical problems in any application domain:
• Develop a mathematical model resulting in equations (in the present case, the feasibility

equation Pre ⊆ and the program equation require Pre do b ensure post end, where b
is the unknown).

• Solve the equation.
• Build the solution in the application domain.
The main argument for the model developed in the preceding sections is the simplicity of its
premises: the mathematical baggage is elementary set theory, learned in high school around the
age of 15. The construction relies on just three mechanisms from that theory: union, composition
and restriction. The approach seems to have the potential to cover all the relevant concepts of pro-
gramming, although the present article takes only a first dig.

6.1 Axioms or theorems?

In theoretical informatics the habit has often been different: devising axiomatic theories. The
most developed example is the admirable work of Hoare and colleagues [7][8]. A notable prop-
erty of these efforts is that they postulate their laws; then “of course, the mathematician should
also design a model of the language, to check completeness and consistency of the laws, to pro-
vide a framework for the specifications of programs, and for proofs of correctness” [7]. The jus-
tification for this method — postulate your ideal laws, the model will follow — is that it has, in
Russell’s words cited in [9], “the advantages of theft over honest toil”.

Programming is the process of devising interesting contract-implementation pairs and dis-
charging the associated proof obligations.

Program = Contract + Implementation + Proof obligation

post

THEORY OF PROGRAMS §124
However good the wisecrack, this is not how normal mathematics works. Unless your last
name is Euclid or Peano, or your first name Alfred or Bertrand (and even in this last case, only if
you inherited a peerage), few people will pay attention to axioms you assert on them as if walking
down from Mount Sinai. Imagine a world where every mathematical concept were defined axi-
omatically; in trigonometry, sine and cosine would be postulated as functions satisfying certain
properties — the sum of their squares is 1, the derivative of the former is the latter, and so on;
and similarly for every important notion. People would quickly tire of having to make incessant
leaps of faith.

We expect instead, when presented with new results, to see them derived, in the form of defi-
nitions and theorems, from what we already know. True, it is often a mark of elegance, for the
presenter of a theory and of its laws, to prove that the theory is the simplest possible construction
satisfying the laws; but it is a mark of politeness to perform this feat only as a bonus step, coming
after an explanation relying only on material already familiar to the reader.

Stretching Russell’s aphorism, we may note that even if Balzac’s observation (“The secret
of great fortunes without apparent cause is a forgotten crime”) may explain the origin of some
hereditary peerages, just as axioms explain the foundations of mathematics, in practice most
hereditary peers find it less bothersome to obtain the objects of their daily desires through “honest
toil”, or at least honest means, than by stealing.

These observations do not rule out occasional reliance on the axiomatic method in the intro-
duction of theories. Aphorisms aside, however, it is hard to justify asserting properties as postu-
lates when they can be proved as theorems. When a manageable mathematical derivation from
known concepts exists, it should be the first choice.

As the presentation of the theory of programs has attempted to show, such exactly is the sit-
uation with programming. Programs are just relations over sets. An informal and non-exhaustive
review of the axioms of classic articles such as [7] and its extension to concurrency [8] (not con-
sidering properties specific to individual calculi), as well as [6] and [10], suggests that the prop-
erties they introduce can be derived, often straightforwardly, from the framework of this article;
many indeed appear above as theorems.

Many authors seem to have a suspicion, conscious or not, of the set-theoretical basis of pro-
gramming; but most — an important exception is Hehner with his “predicative programming”
[6] — resist the obvious solution of explicitly building the theory on that basis. They prefer to
posit axioms, even if these axioms mimic the elementary properties of set operators. An example
is the seminal “Laws of Programming” article [7] (with its recent extension to concurrency [8]),
whose authors axiomatically introduce operators with names such as “∪” for non-deterministic
choice and “⊆” for refinement. They never suggest that these could actually be the standard math-
ematical operators bearing the same names; but they cover several pages of Communications of
the ACM with such fascinating “axioms” as P ∪ (Q ∪ R) = (P ∪ Q) ∪ R. One wonders whether
the thought ever arose that if it associates like union, commutes like union, distributes like union,
and typographically uses the exact symbol of union, perhaps it is union.

§6 DISCUSSION 25
6.2 Keeping simple things simple

Because informatics already struggles to describe inherently complex phenomena, we should not
introduce complexity of our own making. Programming theory does not always keep the complex-
ity of the descriptions commensurate with the complexity of the described. Another seminal paper
of great elegance [10] introduces the “natural semantics” of the if-then-else conditional thus:

 ρ |– (E2 α)

 ρ |– (if True then E2 else E3 end) α

with a similar rule for the False case. In words: if in the environment ρ the expression E2 evaluates
to α, then in ρ the expression if True then E2 else E3 end also does. The companion rule tells us that
if E3 evaluates to β the expression with False instead of True evaluates to β.

In reality, if-then-else is a very simple concept. It expresses that one may solve a problem
by partitioning the domain into two parts and using a different solution in each. Euler would
undoubtedly have explained it to his 15-year-old princess pupil [4] by a little illustration:

and she would have understood on the spot. (A pedagogical presentation of the theory of pro-
grams’ concepts should indeed use Euler-Venn diagrams throughout, although this article has
shunned them under the presumption that its putative audience does not need pictures.)

Instead, the above “natural” semantics refers to advanced concepts of mathematical logic
and notions such as the “environment” (ρ), which are a distraction from the idea of a conditional
instruction. These observations do not put into question the value of [10] and other classic seman-
tic articles, which were conceived as research advances, not tutorials. But they highlight the ben-
efit, as a domain gets understood better, of seeking simplicity and trimming down the set of
prerequisite concepts to the indispensable.

6.3 De-emphasizing the program text

One source of complication in theories of programming is reverence for the program text.

Almost every discussion of programming — saying “almost” just to be on the safe side —
starts by defining a programming language. (Denotational or operational semantics often starts
with two languages, one to express programs and the other to express their meanings.)

p q
C C’

THEORY OF PROGRAMS §126
This attitude seems to be a leftover from the early days when parsing was the difficult prob-
lem. Programmers and theorists were awe-struck when Backus, Bauer, Hopper and others
showed that instead of coding with zeros and ones it was possible to use a human-readable nota-
tion and have it translated automatically. The program text became the alpha and omega of pro-
gramming. But it is only an artifact. A computer is a mathematical machine for computing pairs
in relations. All the rest is decoration.

Programming is no more about programs than electricity is about plugs.

Parsing is the original informatics problem and even though it has long lost its theoretical
difficulty it remains our unconscious template for all others. Semantic specification, for example,
often looks like a smarter kind of parsing, also starting from program texts and deriving its prop-
erties — just more interesting properties. Denotational semantics defines “meaning functions”
operating on program texts. Electrical engineers, if they worked that way, would start from plugs,
dutifully noting how different Swiss, French and Italian plugs are from each other. In reality, of
course, what counts is the electrical current — the same in all three countries, with their intercon-
nected networks — and specifically the relevant equations.

In programming too a more productive approach — the application to semantics of the idea
of unparsing, the reverse of parsing — is to start from an analysis of what we need mathemati-
cally: what kinds of postconditions and preconditions give rise to useful specifications and real-
istic implementations. From this analysis we construct programming notations, not the other way
around. For example we do not start from if-then-else as a given construct of interest, but identify
the union of two relations as a relevant concept. We consequently derive suitable notations to
express it, each adapted to different mathematical situations: if the relations’ domains are prov-
ably disjoint, if C then p else q end; otherwise, the guarded conditional if C: p [] D: q end. The
notation for contracted programs, require Pre do b ensure post end, continues in this spirit: it is
simply a way to express the mathematical property that b implements <post, Pre>.

Far from lessening the value of the traditional objects of interest in informatics, such as pro-
grams and programming languages, this reversal of perspective makes them even more interest-
ing, turning them from arbitrary products of taste and circumstance into rationally justified
modes of expression for useful mathematical concepts.

6.4 The basic duality

The presentation of the theory has highlighted a characteristic property of programming: the nat-
ural need for two distinct methods to assess what a program can do and whether it will actually
get to do it. This separation is hardly a revelation: in theoretical discussions of programming it
recurs under many guises, such as partial correctness versus termination, safety versus liveness,
loop invariants versus loop variants. The present discussion provides more evidence of its inev-
itability. Note the two loop theorems (Loop Correctness, P68, and Loop Feasibility, P69) and the
separate definitions of “program” and “feasible program”. Even the attempt to define “correct
program” in a single formula, P72, requires two operands reflecting the two sides of the question.

§7 PERSPECTIVES 27
In [3] Dijkstra also attempted to cover loops through a single rule, but in practice one must still
separately use an invariant and a variant. Partly blessing, partly curse, the duality seems to be an
inescapable part of informatics, reflecting built-in limits of human reason.

7 Perspectives
The thesis of this article is that it is possible to found all of programming on a small set of con-
cepts from elementary set theory. The discussion has shown the basic applications, but is only a
start. (Also note that the theorems have not been mechanically checked.) Future tasks include:
• Reconstructing entire programming languages on that basis.
• Using the theory to build a “Formal Language Innovation Platform” (FLIP) for

experimenting with programming language mechanisms.
• Developing it towards specific approaches to programming, particularly object-oriented.
• Assessing whether the approach can produce effective program verification tools.
• Assessing whether it can help teach programming, including at the elementary level.

8 Acknowledgments
The authors invoked explicitly or not in section 6 (Hoare and coauthors, Kahn, Dijkstra,
Scott/Strachey/Plotkin and other pioneers of denotational semantics), complemented by Abrial
for his work on Z and B and by Mills and Gries, deserve deep acknowledgments for pioneering
the formal approach to programs and programming. Back’s and Morgan’s seminal work on
refinement (following Wirth’s) is another fundamental inspiration. Hehner’s work on Predicative
Programming is a comprehensive theory of programming based on binary relations, correspond-
ing to the postconditions of the present work. (I am also indebted to him for a particularly careful
reading of the first draft.) Also influential have been informal comments by David Parnas on the
merits of different assertion styles. A note by Shaoying Liu [16], criticizing a purported defi-
ciency in classical refinement approaches (the risk of refining into an unfeasible program), sug-
gested the need for a proper notion of feasibility.

I am grateful to Daniel de Carvalho and Colin Adams for corrections on the first draft.

9 References
[1] Back, refinement papers.
[2] Michael Butler, personal communication.
[3] Dijkstra, A Discipline of Programming.
[4] Euler, Lettres à une Princesse d’Allemagne sur divers Sujets de Physique et de Philosophie,
1760-1762.
[5] Furia, Meyer, Velder, Computing Surveys invariant article.
[6] Hehner, Predicative Programming

THEORY OF PROGRAMS §128
[7] Hoare, original paper on Laws of Programming.
[8] Hoare and van Staden, newer article.
[9] Hoare and van Staden, slides accompanying [8].
[10] Kahn, Natural Semantics.
[11] Meyer, IFIP 1980 paper.
[12] Meyer, ETL.
[13] Meyer, OOSC.
[14] Meyer, Multirequirements.
[15] Morgan, Programming from Specifications.
[16] Shaoying Liu, paper and slides from the 2014 Futatsugi Festschrift.
[17] Wirth, stepwise refinement.

	1 Programs
	2 Operations on specifications and programs
	2.1 Basic constructs
	2.2 Atomic concurrency
	2.3 Non-atomic concurrency
	2.4 Conditionals
	2.5 Conditions
	2.6 Loop
	2.7 Invariants

	3 Contracted programs
	4 States and environments
	4.1 Mappings
	4.2 Environment and store
	4.3 Notational principles: cartesian product considered harmful
	4.4 Kinds of state

	5 Languages and programming
	5.1 Programming languages
	5.2 Approaches to programming

	6 Discussion
	6.1 Axioms or theorems?
	6.2 Keeping simple things simple
	6.3 De-emphasizing the program text
	6.4 The basic duality

	7 Perspectives
	8 Acknowledgments
	9 References

