
86 Computer

J esse Liberty obviously understands
that it’s not particularly exciting to

devote a book to C# as a language, even
if that hasn’t deterred publishers from
filling bookstore shelves with C# books.
You can’t admit this with a title such as
Programming C#, so he takes care to
define C# in the preface as a language
that “builds on the lessons learned from
C (high performance), C++ (object-ori-
ented structure), Java (security), and
Visual Basic (rapid development).”

This must be meant tongue in cheek:
C# is less close to C than C++ is, so it’s
not clear where the concern for high
performance lies. Nor can object-ori-
ented structure be C++’s key character-
istic when, in response to “Is C++ an
OO language?” the language’s designer
describes it as “multiparadigm.” C#
retains far more than security from
Java, and Visual Basic’s rapid develop-
ment support comes from its environ-
ment rather than the language, with the
exception of features such as loose typ-
ing, which C# doesn’t retain. More
accurately, C# can be defined as Java
plus:

• a consistent type system—as in
Smalltalk and Eiffel, all types are
based on classes;

• a few extensions, including dele-
gates;

• a type-safe way to remedy Java’s
lack of function pointers;

• properties, as in Delphi and Visual
Basic; and

• attributes, program annotations
that compilers retain for compo-
nent-based development.

I am simplifying, but to cut to the

essentials, C# is Java as Microsoft has
always wanted it to be since Visual J++,
its Java implementation whose lan-
guage extensions attracted Sun’s ire.
This doesn’t diminish the book’s value,
but it should be explained in a presen-
tation intended for programmers who
weren’t born yesterday. It would also
facilitate Liberty’s job if he more often
described C# constructs in terms of
their Java counterparts, especially as
he does make comparisons to C++.

.NET GEMS
If C# seems too narrow a topic for an

entire book, the good news is that
Liberty broadened his scope to cover
the .NET framework as well. The first
C# books concentrated on the language:
Christopher Wille’s Presenting C#
(Sams Publishing, Indianapolis, Ind.,
2000) debuted early and served as a
short, general introduction; Eric Gun-
nerson (A Programmer’s Introduction
to C#, 2nd ed., Apress, Berkeley, Calif.,
2001) gave the designing team’s per-
spective; and Tom Archer (Inside C#
Architectural Reference, Microsoft
Press, Redmond, Wash., 2001) pro-
vided an in-depth presentation of the
language’s concepts.

What I found most interesting in
Liberty’s book is what goes beyond the
language. Part 2, which covers using
.NET to build graphical applications
with Windows Forms, Web applica-
tions with Web Forms, Web Services
with ASP.NET, and database applica-
tions with ADO.NET, provides an
excellent overview of the .NET frame-
work’s central tools, part of .NET’s
main attraction to developers.

Part 3 goes further, explaining pro-
gramming techniques for the Common
Language Runtime. These include ver-
sioning, which lets a module specify
when it accepts upgrades of the mod-
ules it relies on, and reflection and
attributes. Unfortunately, the author
does not provide a full explanation of
the innovative .NET concept of meta-
data and its role in getting rid of
COM’s IDL.

Liberty also covers techniques for
concurrent and distributed program-
ming: threads, synchronization, remot-
ing, and asynchronous I/O. He uses
examples from the Visual Studio.NET
environment, which deserves a chap-
ter of its own.

Parts 2 and 3 thus form a useful
introduction for programmers writing
in any of the many languages available
on .NET. That introduction holds its
own against many of the current books
describing .NET as a whole. So it’s
when Liberty seemingly goes off-topic
that his contributions appear most
interesting. I learned a few things about
.NET that I hadn’t seen elsewhere.

PUZZLING LAPSES
I hope I can trust what I read, how-

ever. Some of Liberty’s pronouncements
about general software topics cause me
to wonder. Early on, Chapter 3, “C#
Language Fundamentals,” tells us that

A stack is a data structure used to
store items on a last-in first-out basis
(like a stack of dishes at the buffet
line in a restaurant). The stack refers
to an area of memory supported by
the processor, on which the local
variables are stored.

Assessing a C# Text
Bertrand Meyer, ETH

Programming C#, 2nd ed., Jesse Liberty; O’Reilly, Cambridge, Mass.; http://www.
oreilly.com; ISBN 0-596-00309-9; 658 pp.; $39.95.

B O O K S O F N O T E

In C#, value types (e.g. integers)
are allocated on the stack—an area
of memory is set aside for their
value, and this area is referred to by
the name of the variable.

Reference types (e.g. objects) are
allocated on the heap. When an
object is allocated on the heap its
address is returned, and that address
is assigned to a reference.

This explanation confuses four
notions:

• a variable, an element of the pro-
gram text that denotes possible
run-time values;

• the values themselves, including
both simple ones such as integers
and references to objects;

• such objects themselves; and
• the types of values and objects.

In a typed OO language, program-
mers declare every variable with a type,
restricting the kind of values that it can
take at runtime. This declaration can
be an “expanded” type in Eiffel termi-
nology, or a value type in .NET, mean-
ing that the variable will directly denote
objects or other values. Or it can be a
reference type so that the variable
denotes references to objects of certain
types compatible with its declaration.

The preceding description, however,
commingles everything. The stack
doesn’t store the variables, it stores their
values. Value types are not allocated on
the stack, their instances are. An
instance of a type is a value or object
described by that type. In both cases, the
“e.g.” is wrong: An integer is not
an example of a value type—it’s an
instance of a sample value type, int. Nor
is an object an example of a reference
type—it’s twice remote: the value of a
reference type’s variable is a reference
that, if not void, is attached to an object.

It’s meaningless to “allocate a value
type on the stack” or to “allocate a ref-
erence type on the heap.” You don’t
allocate types, you allocate values cor-
responding to variables declared to be
of that type, or objects attached to the

corresponding references. True, the
.NET terminology doesn’t help by talk-
ing of value versus reference types.
Given that all types have values, this
makes it clumsy to explain that the
possible “values” of a value type are
“values” while the “values” of a refer-
ence type are references. But it is pos-
sible to present these concepts simply
and correctly.

Apart from being confusing, the
explanation is wrong. It’s not true that
values of expanded types are allocated
on the stack and objects are attached
to reference types on the heap. Any
first-year computer science student
who has played with an OO lan-
guage—or with C or Pascal—knows
that you can find many simple values,
such as integers, in the heap.

Yet the comment is repeated through-
out, as in Chapter 4: “The primitive C#
types (int, char etc.) are value types, and
created on the stack; objects, however,
are reference types and are created on
the heap.” This introduces a further
confusion, also occurring several times:
an object is not a type.

We can assume that Liberty knows
the difference, and I did find one hesi-
tation, confined to a parenthetical
remark: “A value type holds its actual
value in memory allocated on the stack
(or it is allocated as part of a larger ref-
erence type object).” But I wonder
about the effect of these constantly
repeated mistakes on the reader, espe-
cially the kind of reader who needs to
be told what a stack is.

When Liberty talks about .NET’s
specific mechanisms, he is cogent and
seemingly accurate. But when he intro-
duces “the this keyword” he writes
that it “refers to the current instance
of an object.” Earlier, he used types
when he meant their instances; now it’s
the other way around. Liberty should

simply have said that this denotes a ref-
erence to the current object.

In Chapter 8, we learn that “your
Document class can be stored and it
also can be compressed,” but this has
nothing to do with zipping the class
text to send it to your friends. Rather,
it’s supposed to mean that you can
store and compress Document objects:
instances of the class. Or take this
explanation, from the same box that
helpfully told us what a stack is: Heap
objects are garbage-collected “some-
time after the final reference to them is
destroyed.” You don’t need a garbage
collector to get rid of values on the
stack. The system simply deallocates
these values from the stack on routine
exit, as in any block-structured lan-
guage since Algol 60.

Overall, these confusions and errors
reflect on the publisher as well as the
author. Liberty must know the differ-
ence between a type and an instance or
between stack-managed and garbage-
collected values. He just doesn’t seem
to know how to explain these things,
feeling more at ease with .NET’s intri-
cacies. Given the list of people who,
according to the preface, the author
and publisher “enlisted” to “ensure
that Programming C# is accurate,
complete and targeted at the needs and
interests of professional program-
mers,” it’s hard to accept the repeated
misstatements of elementary notions.
As usual with O’Reilly books, the text
shows signs of having been checked for
style, although it retains things like
“there are three ways in which this ref-
erence is typically used.” Why wasn’t
similar care applied to basic concepts?

This brings up the more general issue
of the quality of computer books, and
what this column can do about it.

THE GREAT DIVIDE
In the computer section of a book-

store today, you’ll find shelf after shelf
of trade books: hands-on, learn-as-you-
go titles meant to give the reader imme-
diate proficiency in the technology du
jour. In many bookstores, they’re all
there is to see. Something about pub-

April 2002 87

When Liberty talks
about .NET’s specific

mechanisms, he is cogent
and seemingly accurate.

88 Computer

I refuse the rift. What I like most
about Computer is that it doesn’t shy
away from articles on either theory or
practice, as long as they’re good. I
intend to follow the same open outlook.
A good book should have a certain set
of basic qualities: It should tell a story
and tell it well, distinguish facts from
opinion, provide a broad enough back-
ground, treat its reader as a grown-up,
and offer useful information.

Trade books require particular focus
because the tendency to rush to mar-
ket often leads to cutting conceptual
corners. One publisher told me that
this tradeoff occurs because “the first
decent book on a topic captures the
market,” so while it must be both the
first and decent, it doesn’t need to be
better than decent.

As consumers, we need not accept
this situation forever. By submitting
books to serious review, applying to
them the same criteria as to more ambi-
tious intellectual endeavors, we can
increase the rewards of careful research,
writing, editing, and publishing.

Books are important. Many profes-
sionals I know have had their careers
shaped by the first books they read. I
can certainly remember the four or five
books I read as a student that changed
my outlook forever. When hiring soft-
ware development candidates, I have
found that an effective interview ques-
tion, first suggested to me by Ada
designer Jean Ichbiah, is to ask candi-
dates to name a few technical books
they have found particularly useful.
Web pages help, and magazines like
Computer play an invaluable role, but
nothing will replace the good com-
puter book with its wealth of carefully
distilled wisdom.

GROUND RULES
While it may be critical at times, this

column won’t be cowardly. As a book

lishers’ discount schedules plays a role
here, although I don’t claim to under-
stand it.

In the better stores, you’ll find a shelf
or two stocked with technical books
on more highbrow topics. Even there,
however, only a few titles deal with real
concepts.

The two categories seem doomed to
their clichés. The highbrow books are
accurate, boring, and don’t sell. The
trade books are targeted to a specific
market, have a time-limited value, hope
to sell well, and are put together in a
rush to catch their audience before
someone else does. As a result, their
authors don’t care that much about the
solidity of the concepts or even technical
accuracy. Often, they don’t bother to tell
you that developers used anything else
before the appearance of the specific
technology they describe, especially if
the previous product came from another
persuasion: Java Server Pages books
won’t acknowledge Microsoft’s Active
Server Pages, for example, while C#
books pretend that Java never existed.

Once in a while, a book does have the
best of both sides: It talks to the prac-
ticing programmer, provides immedi-
ately applicable material, and is con-
ceptually sound. Design Patterns by
Erich Gamma and colleagues (Addison-
Wesley, Reading, Mass., 1995) is an
example. But usually we must choose
between a book that’s useful and unre-
liable or one that’s solid and inapplica-
ble—or, in the words of David Parnas,
between “gadgets without methods and
theories without applications.”

CALL TO ARMS
It doesn’t have to be that way, and I

hope this column can play a small part
in raising the standards on both sides
of the aisle. I intend to review both aca-
demic and practitioner-oriented books,
examining the former to see that they
are useful and the latter to see that they
are accurate. Who says that an author
who knows about C# and other cool
new stuff shouldn’t exercise the same
care in distinguishing types from
instances?

author myself, I have left so many thou-
sands of my own printed pages behind
—with more yet to come—that anyone
who wants to retaliate to my critiques
can choose from many targets.

I’ve set a few ground rules for this
column. First, I will only review books
that I would have read anyway for my
own sake—books from which I expect
to learn something. This may limit this
column’s scope, but it means that I will
always have a personal interest in the
books reviewed. I may occasionally
ask guest reviewers to cover areas
beyond my purview.

Second, I will not review garbage.
There’s a fair amount of it around, and
it would be easy to have a good laugh
at the expense of some poor author
who put together an incompetent
account of some technology to make a
quick buck. But such a review would
offer little of interest to Computer’s
readers, as I assume you have your
own BIMs—Baloney Identification
Mechanisms—firmly in place.

The target of this first review is typi-
cal: What’s frustrating about this book’s
mangling of basic OO mechanisms is
that, in the end, I can recommend it as a
useful source of information about C#.
A third edition correcting the concep-
tual blemishes would be truly excellent.

So I intend to select interesting
books that cover interesting topics—
ranging from practical descriptions of
specific technologies to the purely the-
oretical—and submit them all to the
same criteria. I will challenge the low-
brow on their conceptual soundness
and the highbrow on their relevance.

I hope these reviews will benefit all
of us—readers, publishers, writers—
and that they will help us to recognize
and promote quality in these ever more
necessary tools of our trade: technical
books. �

Bertrand Meyer is professor of software
engineering at ETH in Zürich, http://
se.inf.ethz.ch, and scientific advisor of
ISE, Santa Barbara, Calif., http://www.
eiffel.com. Contact him at book_review
@eiffel.com.

B o o k s o f N o t e

While it may be critical
at times, this column
won’t be cowardly.

