
BERTRAN 0 MEYER
BEYOND

OB.JECTS

What to Compose
Going beyond the definition of

components as units of com

position requires asking what

and how we can compose.

hope you are not expecting a
shouting match between

Clemens Szyperski and myself regarding
his rejoinder ("Point, Counterpoint,"
Feb. 2000, p. 62) to some of my views
on components ("The Significance of
Components," Nov. 1999, p. 57). I
appreciate both Szyperski's points and
the Software Development editors'
insights in setting up this multi-voice
column. It's not a fight, but an opportu
nity for each reader to gain (I hope) a
better understanding of the issues and to

arrive at his or her own conclusions.
A small correction; I didn't write

that "binary components are about
information hiding." Components, bina

ry or not, are about more than that.
What I did write is that information hid

ing is key to the a ttraction of binary
components, in particular for people
who have been working in languages
that do not properly support informa
tion hiding at the source level.

Binary: How and Why?
Let's probe further what components are
really about. Szyperski notes that com
ponents foster not just reusability but
also extendibility and "evolvability. n

Quite true, but improvements in
reusability improve these other two
properties anyway. He reiterates his view
that only binary components qualify as
components. Binary components have
indeed taught us the importance of a
number of points not fully grasped by
the original object-oriented movement;

Bertrand Mayer is the Santa Barbara,
Calif.-based author of Object-Oriented
Software Construction, second edition
(1997 Jolt Award). His home page is at
http://eiffel.com.

most important, as Szyperski is right to
insist, is composability-dynamic as
well as static. How much does it matter

that these components be source or
binary? Before we can answer this ques

tion, we have to be sure that we under
stand what "source" and "binary"
mean. Here I must confess that I don't

quite know any more. In the good old
days (a long, long time ag0-1992, per·
haps?) "source" meant something like C
or Pascal, and "binaryM meant code for
some processor. But now we have
machine-independen t by tee ode and
scripting code, which are supposed to
count as binary. Then there are high
level languages processed by Just-in
Time compilers, or, like ISE Eiffel, com
piled into C and, optionally, bytecode or
a mix of the two; where do components
written in these languages fit?

It's not a question of platform
portability; Visual Basic or COM com

ponents are platform-specific.
It can't possibly be a question of

speed of access. As I am typing this arti
cle, I have cnn.com on my other work

station, and the LiveCam that I tried to
bring up five minutes ago still displays
"This feature requires Java . It will take a
few minutes to load . Thanks for your
patience." (Thanks for whose patience?
Moi? I don't have any such thing .
Patience is for others, such as my editor
when I am past deadline for my next
column.) During that time I could have
compiled a sizable Eiffe! application, so
how does binary help me?

It's not a question of interpretation
vs. compilation; A slow interpreter has
no advantage over a fast, platform
aware compiler. Even a slow compiler

might do, in fact, as long as it is incre
mental; a compiler starting from source

text could work in a kind of ReaJAudio
way, taking its time to start and then
providing the illusion of regularity
through buffering. If the genera ted code
is fast, we may gain overall.

It is not about being self-contained.
Many components have dependencies
on others. Some of these dependencies

are static; it would be naive to think that

components are any less immune than
other approaches to "needed element
not found" errors. This morning I had
the amusing experience of hitting the
same problem twice within a few min

utes under completely different guises;
first because a program that I was trying
to link was missing some externals;
then, when my browser couldn't display

a page because it was missing a plug-in.
Component-based approaches and
source-level composition face the same
issues here. Other dependencies are
dynamic, with both the same benefits
and the same problems with which

DLLs have made us familiar.

Deployment
Is a component just a "unit of deploy
ment"? Perhaps, but this definition is
suspiciously broad. After all, any pro
gram in the traditional sense is a unit of

deployment. Object technology has
brought to light-and tried to free us
from-the limitations of the traditional
view of a program as an execurable that
does one thing. Beyond this simple view,
object technology introduces the notion
of class, providing a number of well
specified operations (commands and
queries) on a certain data abstraction.
We can take a program and make it into
a component, but unless it is a trivial
one-inputlone-output program, we will
need to "componentize" it; Wrap it into

a hull, with a set of openings providing
to the rest of the world the set of opera
tions that we expect the program to per
form for 'us on request. Any idea of
what form such hulls would have? It
doesn't take long to realize that they will
be very much like classes. Even inheri
tance can naturally come into the pic
ture. Oh, and by the way, we have just
reinvented COM and CORBA.

This was only the case of a compo
nent derived from a legacy program. If
we move forward and design new com
ponents, there seems to be little doubt
that classes will provide a convenient

Continued on page 71

htip:/lWNW.sdmagazine.com. SOFTWARE DEVELOPMENT· MARCH 2000 59

Continued from page 59

and effective means of encapsulation.

From Classes to Components
So we are not taking much risk in assert
ing that classes provide the right form of
components. This does not mean that
components and classes are the same

thing, if only because not all classes are
suitable as components. It's obvious that

if you pick a class at random from an
object-oriented system, it will usually
not (as Szyperski points out) yield a
good component. Legacy programs are
not the only ones that need to be com
ponentized; it's tme of object-oriented
systems as well. T he big difference,

though, is that the process is much easi
er, since the necessary mechanisms of
data abstraction are already in place. In

favorable cases, you already have one or
more classes that have been designed as
interfaces into the system for the rest of
the world; these will form the basis for
the componentized version. If such a

class doesn't exist, you will have to write
it as a bridge pattern establishing a link
with the facilities-implemented by
other classes-that you have chosen to

make part of the component. For the
system designer, this process is fairly
straightforward.

In the case of lSE's EiffelCOM
library (http://www.eiffel.comlproducts/
com), which among other things includes

a Wizard to generate COM components
from Eiffel, users were initially expected

to write interface classes in COM's
Interface Definition Language (IDL). But
experience has shown that it is better to
provide (in the latest release) an Eiffel

to-IDL translator. In many practical
cases, you still have to write a bridge
class, but you write it in your program
ming language of choice, providing
among other benefits--easy access to the
other classes of the system. Then you let

the Wizard translate it into the appropri
ate IDL. This approach seems generaliz

able: Rather than use the usual IDL to
programming language compiler, ret
people use their familiar tool to produce
interface classes that then serve as the
basis for componentization of the sur
rounding system.

Client-Oriented Software
All this doesn't define "component," but

it helps us get closer to a good defini
tion. Components are (in the words of
my colleague Christine Mingins from

Monash University) "client-oriented
software." The two basic conditions for

a software element to be considered a
component are that it be:

• Usable by other software elements.
This excludes a program in the tradi
tional sense that is meant to be used
by humans or non-software triggers
unless it has been componentized,
meaning precisely adapted for use by
other software.

• Usable by software elements whose
authors are unknown to the compo
nent's authors. This excludes the case

of routines, classes and other soft
ware elements used by other parts of
the same software. A component
must be of interest to a broad range
of "clients" not directly connected to
the original authors.

These requirements, modest as they
may seem, immediately lead to several
others (see the "Seven Criteria for Com

ponents" sidebar):
• A component must include a specifi

cation of all its dependencies: hard
ware and software platform, versions
and other components. Otherwise
new clients won't be able to make

good use of the component without
going back to the original author.

• For the same reason, a component
must provide a precise specification
of the functionalities that it offers.

• The component must be usable on the
sole basis of that specification, with
out access to non-interface informa
tion (such as the source code even if it
is available). This leads in particular
to the information hiding require
ments discussed in my last column.

• Components must be composable
with other components, since a single
component is not very exciting and
certainly does not justify talking
about component-based development.
In practice, this means that a good
component will usually be part of a

more general component framework
with a dear overall architecture, style
and standard design patterns.

• The process of integrating a compo
nent into the systems that use it
should be fast and smooth.

Varieties of Components
The last point-along with information
hiding, as pointed out in the earlier col
umn-is one of the arguments for binary
components. But it does not imply bina
ry components. For example an on-the
fly compilation mechanism can achieve
results which turn out, as seen from the
outside, to be fast and smooth enough.
These are relative criteria, not absolute
ones; if my compiler generates code
faster than it takes to start the Java Vir
tual Machine, why should I care that I
got my component in source code, Eiffel
generated C code, bytecode or machine
code? Dependencies are also not a sepa
rating factor: there is no fundamental
difference between a source component's
dependence on a compi1ler or other
translator, a machine-specific binary
component's dependence on a certain
hardware architecture, and an inter
pretable component depending on a cer

tain virtual machine.
Binary vs. source is by far not the

only dimension of choice. How do we
access components? How do we pay for
them, if at all? Are they platform-specif
ic (even in a broad sense of the term
platform) or platform·neutral? Is there
built-in versioning? All these and others
are relevant classification criteria.

One issue that I won't address here
Continued on page 74

httP.//wNW.sdmagazlne.com. SOFTWARE DEVELOPMENT· MARCH 2000 71

Continued from page 71
is state-which Szyperski describes as
incompatible with the notion of compo
nent-not because I necessarily disagree
but because I don't quite understand his
point yet, since under the heading of
"state," he actually discusses staying
away from global variables. I certainly
concur that global variables aren't desir
able in Component-Based Development
or elsewhere, especially in object tech
nology. But then again, I work in a lan
guage that doesn't support global vari
ables-for all kinds of good method
ological reasons-and the question
doesn't even arise. It might arise if we
interpret "global variable" in a broader,
non-language sense, but then we need
Szyperski to explain further what he
means by global variable. Are Windows
Registry entries, for example, global
variables, and if so should components
refrain from using them? If not, what is
a global variable, or at least the kind of
global variable we should stay away
from in components? I am sure we will
get answers to these questions, but there
are others that are more pressing.

Composition Requirements
Reusability, extendibility, "evolv

ability"~aH this is great. But wait a
minute: what about reliability? How do
we know that the components we try to
compose (remember, components are
about composition) are composable?
What indeed do we want to compose?

Let me tell you the story of my bllue
phone and my red phone. I have two
almost externally identical cellular
phones~you know, the cute Nokia
phones that allow you to choose (well,
buy) the cover color you like. I use my
blue cell phone to make calls in the u.s.
and Canada and my red GSM phone
everywhere else, and I have a charger for
each. So there I was last month in beau
tiful Melbourne, Australia, conscien
tiously plugging the charger for the red
phone into the electrical outiet, except
that was the charger for the blue phone.
(Strangely enough, they don't have color
covers for the chargers.) U.S. current is
110V, and elsewhere it's 220V; needless
to say, I need a new charger.

As a general rule, in electronics
and elsewhere, plugga ble components
are only pluggable to the extent that

Reusability, extendibility,

"evolvability"-all this

is great. But wait a

minute: What abollt

reliability?

they satisfy the specifications of what
we plug them into. If they don't, you
can't expect much. It will not always do
to your component what it did to my
charger, but it won't usually work. Try
plugging an audio cable into your PS/2
port or a Sun Type 5 keyboard into a
PC keyboard slot.

Software is no different, except in
software we don't have specifications
for the plugs and the outlets. Actually
that's too strong. In most modern com
ponent frameworks-such as the In ter
face Definition Languages of COM and

. CORBA-we can rely on some type
specification for the arguments, but it's
not enough. We badly need semantic
specifications as well. Type-only specifi
cations are like diameter specifications
for the electrical plug: The plug may fit
even if the voltage is wrong. {Now I
have to admit it. Yes, I had to interpose
an electrical adapter-alas, not a con
verter, just the physical adapter-to
plug the U.S. charger into the Aus
tralian outlet. Don't ask. I must have
been jet lagged. Besides, it works for my
laptop and my portable printer, so I put
in the adapter almost without thinking.
But this reinforces my point: type con
formance is not the answer without
semantic conformance, too.}

Even though we are in the software
business, not the electrical-plug busi
ness, the issue is the same. Assume you
have a date component written a few
years ago and it gives you a mechanism
to set the date, with a "year" argument
that expects an integer. What may you
pass to it: a number between 0 and 99,
and, if so, does 24 mean 1924 or 2024?
A number between 0 and 9999? Either
of the above? What if the number is not

74 MARCH 2000· SOFTWARE DEVELDPMENT • hNp:llwwlV.sdmagazine.com

within bounds?
Or take a component that, given a

string representing a site's URL and
another representing a search phrase,
will search the site for the phrase. The
type specification is simple enough, but
to use the component safely and effec
tively you need the semantics: what
happens if you can't reach the URL?
What if the URL is ill-formed-but then
what is a well-formed URL? Will a
missing "http:" be automatically filled
in? A missing "www"? Does the search
exclude files listed in the "robots.txt"
file as specified in the Robot Exclusion
Standard? Does it only look at .htm and
.html pages, or does it peer into Active
Server Pages, J a vascri pts, style sheets
and PDF documents? Will an attempt
be made to search password-protected
pages (one hopes not)? What should the
search phrase look like, and is there
some kind of query language ("and,"
"or" and so on)? In what format will
answers be returned? Answers to these
questions are a critical part of the com
ponent's specification; we may not be
able to express them all formally, but
the current situation where we can
essentially express none is intolerable.

Contracts for Components
We can't seriously have compo

nents without contracts. To start
answering the question: "What can we
compose?" we can say: "At the very
least, contract-equipped components."

Szyperski, in fact, explains this
very well in his book Component Soft
ware: Beyond Object-Oriented Pro
gramming (Addison-Wesley, 1998); and
one may also note that he is well known
in language circles for his work on
Sather, an Eiffel-like language with
built-in Design by Contract mecha
nisms, devised in the mid-1980s at the
International Computer Science Insti
tute at Berkeley. To me, this makes
some of his column's comments surpris
ing. For example: "Classes rarely 'pay
the price' for being fully explicit about
what they offer and what they require."
Rarely maybe, but not for programmers
using languages with Design by Con
tract! True, Component Software's con
tract chapter relies for its contracts on
ad hoc comments in a non contract
aware language and doesn't mention

ADVERTISER INDEX ~

languages (such as Eiffel or Sather)
where the contracts are part of the basic
fab,ric of programming, tied in with
good design, automatic and precise doc
umenta tion, goal-directed debugging,
and exception handling. That's hardly
representative of the actual use of the

concepts.
Not to claim, by the way, that the

contract mechanisms introduced in an
Eiffel spirit in my book Object-Orient
ed Software Construction (Prentice
Hall, 1997), necessarily transpose iden
tically to component-based develop
ment. Its chapter on concurrency and
distribution already analyzes some of
what needs to be adapted, but there is
more work to be done on Design by
Contract in the context of independent,
possibly distributed components.

The solutions must be realistic;
they must be language-independent, at
least for a broad class of languages
such as C, C++, Java, Visual Basic and
of course, Eiffel (where the framework

is already present); they must enable
programmers to work in the Ilanguage
they know and love (well, at least
know), in the spirit illustrated in the
earlier mention of the EiffelCOM wiz
ard: Generate the IDL or equivalent
from the programming language, not
the other way around.

All this leads to the idea of a Con
tract Definition Language (which may
take on a d ifferent name in its final
incarnation). I hope you will agree it's a
rather exciting project, addressing what
I see as the central issue in component
based development today. Few people
would deny that it is at least one of the
very top issues. In my next installment,
I will present the first design and archi
tecture for such a Contract Definition
Language, a design whose appeal will,
1 hope, be broad enough to be accept
able to many people working with
many programming languages, many
design methods and many component
architectures. •

Name Page I

Abraxas Softwa re Inc. 13 I

ABT Corporation 57
Aladdin Knowledge Systems Inc 77
American Institute for Computer Science 77
BARNES & NOBLE 50-51
BBI Computer Systems 77
BumbleBee Software 76

I
Cambridge University Press 75
Career Centra I for Oevelopers 76
Com puter Associ ates C4
NuMega Labs 10
Dell Computer 14-15
Distributive Software 24
Geodesic Systems Inc 48
IBM OS/2 37
Kenonic Controls 77
MacMillan Publishing 16
Mathis Computer Consulting 76
Microsoft 41,43,46-47
Microsoft 60-61
Microsoft C2,CI-C4
Microsoft Press 46-47

I Parasoft Corp 49
Programmer's Paradise 8-9

IPromind Systems 77
RSA Security C3

I Seq u iter Softwa re 77
Soffront 20

I StarBase Corporation 55
TeamShare Inc. 25
TechExcel 6
Visual Object Modelers 76
WIBU-SYSTEMS AG 77

lIQildDiI: IlI....aIl.Illln.n.~_.m-I IIII1.-=-

Get ahead in the world of e-business with the help of two brand-new books!

e-Enterprise
Business Models, Architecture, and Components
Faisal Hoque
Foreword by
Tom Trainer, Executive VP and CIO, Citigroup

'The e-Enterprise methodology described in this book is providing
essential guidance as we develop strategy and implementation plans
to transform CompUSA to an e-Enterprise. This stuff works. "

-Honorio Padron, Executive VP and CIO, CompUSA

'/1. must-read This is the recipe for rapid development of highly
scalable e-systems that maximize return on investment. It should
be required readingfor e-business decision-makers and technologists
alike. "

-Ron Griffin, Senior VP and CIO, The Home Depot

Aimed at eIOs, CEOs, and technologists alike, e-Enterprise
explores the strategic challenges faced by companies as they
embrace business in the networked economy of the future. It
takes a step beyond the simple transaction-based e-commerce
model and shows how a business can truly take advantage of
rapidly evolving technology.
Breaktbrougbs in Application Development 2

2000 300 pp.
0-521-77487-X Paperback $34.95

The Business of E-Commerce
From Corporate Strategy to Technology
Paul Richard May
Foreword by
u.s. Secretary of Commerce William M. Daley

The Business of E-Commerce explains how ro conduct business
over the Web. This highly useful book describes the relevant
business issues to technologists and technical issues ro business
managers. Paul May, a seasoned consultant ro both blue chip
companies and Internet startups, provides a generic model for
understanding e-commerce opportunities and makes accessible
all of the pertinent technologies. His book empowers technical
and business decision-makers ro maximize the opportunities of
e-commerce.
Breakthrougbs in Application Developmntt 1

2000 300 pp.
0-521-77698-8 Paperback $34,95

http:lhmw,sdmagazine.com· SOFTWARE DEVELOPMENT· MARCH 2000 75

