
, I 

.. 

WORKSHOP NOTES 

INTERNATIONAL WORKSHOP ON 
MODELS AND LANGUAGES FOR SOFTWARE , 

SPECIFICATION AND DESIGN 

March 30 1984 
Orlando, Florida 

EDITED BY 

Robert G. Babb II 

Oregon Graduate Center 

Ali Mili 

UniversitG Laval 

Spo~sored by: ~ IEEE COMPUTER SOCIETY LeAST OF JAPAN 

P UNIVERSITE ogc 
~:iIlAVAL 

~ CfEQON CIMOUfIJE aHTlA 

In cooperation with: e ACM SIGSOFT 

i 



A SYSTEM DESCRIPTION M£IHQU 

Bertr an d Meyer 
Department of Computer ScIence 

UnIversIty of California 
Santa Barbara, California 93106 

(on leave from Electrlclte de France) 

1 • I NTROOUCT I ON 

SpecIfIcation technIques are used for several purposes: 
documenting projects, managing theIr evolutIon, provIng the 
correctness of programs. We vIew .speclflcatlons as beIng 
prImarIly a design 1QQl: havIng a precIse descrIptIon of the 
objects to be manIpulated by the system Is an essentIal step 
towards understandIng the problem at hand and solvIng It. 

From the lIterature on specIficatIon, It Is clear that 
two quite different schools of thought exist: 

- In the methods most wIdely used by Industry, on the 
one hand, emphasIs Is placed on the management and documen­
tatIon aspects; thIs has resulted In very successful systems 
(e.g. PSL/PSA, ISOOS, SREM, etc.), whIch are very strong on 
aspects such as configuration control, adequate supportIng 
tools, production of up-to-date documents and so forth. 

- On the other hand, many of the studIes undertaken by 
unIversitIes and research laboratorIes concentrate on formal 
notations whIch can be used to produce complete and unambi­
guous descriptIons of systems. Progress In recent years has 
proved that such formal methods (e.g. YOM, HOM, FDM, AfFIRM 
etc.) can be applied successfully to the specIfIcatIon of 
quIte complex systems; It Is faIr to say, however, that use 
of such technIques remains rather rare In Industry, and 
stili requIres more effort that most companies are willing 
to undertake, except In cases where exceptional securIty 
reqUIrements clearly Justify It. 

In this paper, we present a specificatIon system (where 
we take the word "system" In software engineering to mean a 
sat of assocIated methods, notations and tools). ThIs sys­
tem, called M, has the ambitious goal of tryIng to combine 
the best of the above two worlds. The maIn Idea Is that peo­
pie shou I d be perm Ittad to be Just as formal as they can 
afford to be In each partIcular case. Of course, no mIracle 
should be expected: the less you express In a specificatIon, 
the less help you wIll receIve from the system. But It Is 
extremely nice to have a system whIch wi II allow y'ou to gaIn 
some benefIts from having written a specIfIcatIon even If 

42 



• 

you have not completed It down to the last quantIfIer. 

The design of M resulted from a careful study of the 
various specIfIcation methodologIes mentIoned earlIer. It 
has also benefited from prevIous work on the specIficatIon language Z. 

As mentIoned above, M as a system has three facets: a 
set of methods and prIncIples, a lInguistIc basIs and asso-
ciated tools. We shall now sketch them In this order. 

2. PRINCIPLES AND METHODOLOGICAL BASIS 

2.1. Implicitness 

In Our view, the single most Important feature of 
specltlcatlons (as opposed to desIgn documents, code etc.) 
Is that they describe objects lmpl/c[t/~, not expllcltlYi In 
other words, a specifIcation should state propertIes of 
objects, but not gIve a way to construct these objects, ~ 
If this constructIon Is an abstract one, UsIng mathematical 
concepts. This may also be expressed by saying that the role 
of a specIfication Is to say What Objects ~, not what they .au. 

As an example of thIs dIstInctIon, consIder fIrst the Pasca I type def In it I on 

~ POINT.:: 
reeoed. 
x, y, Z REALj 
speed : VECTOR 
jUU{ 

The. CO's/der the fO//o'/ ng characterization of PO/NT by four functIons: 
x, y, Z : POINT --> REAL 
speed: POINT --> VECTOR 

These two ways of definIng POINT may at first sIght 
seem equivalent. The fIrst, however, Is eXPlicit, Whereas 
the second Is ImpliCit; thIs also ImplIes that the first Is 
'frozen" CPOCNT Is detlned as beC.g "equaC" to something), 
only with the second Cs Ct PosslbCe to add later a .e. pro­perty of POINTs, say a color: 

color: POINT --> C 

At ~ specifIcation stage, When one Is explorIng Issues 
and trYing out dCfferent approaches, it Is partCcuiarly , 
Cmportant that noth I ng shou Cd be froze. and th at .e. proper- . 
tCes should be easy to add. In fact., the conciusCo. of the' 
speclfreatlon step can be taken to be that tIme when. one 
decCdes to freeze all the objects Covol ved by equat(ng them .; 

& 

" i 



I 
I 
i 
I 
I 
I 

I 
I 
I 
I 

I 
I· 

with the cartesian product of their attrIbutes as defIned so 
hr. Then ImplIcIt def Inltlons can be transformed (manually 
or automatically> Into explicit ones similar In spirit to 
the above Pascal type definition. 

2.2. Syntax and Semantics 

A system can be described as a set of objects upon 
which certain actions are performed. The description of the 
relational structure of the system, I.e. what objects are 
connected to what other objects and what operations apply to 
what objects, can be cal led the syntax of the system. Its 
semantics, on the other hand, Is the description of the pro­
perties of the objects and the operations. 

Descrlbfng semantics Is a much more difficult task than 
describing syntax If one Is to remaIn at the specification 
level. Many fndustrlal specification systems are mostly good 
at descrfblng the syntax, and their attempts at including 
the semantics use either natural language or an algorithmic 
language. On the other hand, formal specification tech­
niques make It possible to describe system semantIcs whl Ie 
remaining at the specIfication level, but they reqUire a lot 
of effort. 

slve 
later 
from ' 
early 

2.3. 

The method used In M Is to describe a system by succes­
steps; the fIrst stages are concerned with syntax, the 
ones add semantics. It wi II be possible to benefIt 
the speCifIcation even if one only stops at one of the 
stages. 

ObJect-orlentedness 

The descrIption of a system may be structured around 
the objects or around the operations. The former alternatIve 
seems to yield better design descriptIons In term of flexi­
bIlIty and evolutlvlty. The objects are modelled by Itsortsll, 
sImilar to types of programming languages; mathematically, 
however, they are adequately described as sets. 

2.4. Functions 

The baSic modeling tools used In the description of 
systems are the ' simple mathematIcal notions of sets and 
functions. In particular, no notion of "type ll , as may be 
derived from category theory, was deemed necessary. Func­
tions may be either total or partIal; partIal functIons play 
an Important role In connectIon with error situatIons. 

3. LANGUAGE 

M specifications are expressed as a set of paragraphs. 
Thes~ successive views of the sa~e concept, each of which 
gives more detail, are a generalizatIon of the way Ada 

44 



packages are described In two successIve parts (llspeclflca­
tlon ll and IIbodyll), 

The successive paragraphs In the speclflcatfon of a 
system X are as follows: 

system X sorts 
LIsts all the sorts which Intervene In X 

system X Interface 
Lists the elements which are borrowed 

-- from other specifications 
-- (this makes It possible to have "libraries" 
-- of basic specifIcations, and generic specifica-
tIons) 

M.d. 

system X attributes 
Lists the functIons which give properties of 
elements of the various sorts of X 

system X Inyariants 
Lists the properties of attributes 

-- whIch must be preserved by transformations 
~ 

system X transformations 
LIsts the functions corresponding to operations 

-- modifyIng elements of the various sorts of X 
~ 

system X effects 
Defines the effect of the transformations 
on the attributes 

system X constraints 
LISTS the domains of all partial functions 
(attr/butes or transformations) 

Other possible paragraphs Include one for error pro­
cessing (error processing consists In extending the 
domains of non-total funCTions) and, possibly, Implemen­
tation, 

4. TOOLS 

To be practical, a specification system requires 
adequate tools. The tools which are necessary for effi­
cient use of M Include: 

- A screen-oriented syntax edlt6r. making It easy to 

45 



enter and change speclflcatlons1 

- ValIdatIon tools for checking the consIstency and 
completeness , of specIficatIons; 

- ConfIguratIon management tools, for monItorIng the 
development and modification of specifications; 

- Automated aids for the development of the programs 
once the specIfIcatIon has been completed. The most 
promISing area here seems to be the automatIc generation 
of data structures from descriptions of attributes and 
transformations. 

46 


