WORKSHOP NOTES

INTERNATIONAL WORKSHOP ON
MODELS AND LANGUAGES FOR SOFTWARE
SPECIFICATION AND DESIGN

| March 30 1984
Orlando, Florida

EDITED BY

Robert G. Babb II
Oregon Graduate Center

Ali Mili
Université Laval

Sponsored by: @ |EEE COMPUTER SOCIETY LCRST OF JAPAN
UNIVERSITE
4 LAVAL
mmzcﬁuﬁn
In cooperation with: ACM SIGSOFT

A SYSTEM DESCRIPTION METHOD

Bertrand Meyer
Department of Computer Sclence
University of Callfornia
Santa Barbara, Callifornia 93106

(on leave from Electrlclite de France)

1. INTRODUCTION

Speciflcation technlques are used for several purposes:
documenting projects, managing thelr evolutlion, proving the
correctness of programs. We view .specliflcatlons as belng
primarily a design fool: having a precise description of the
objects to be manipulated by the system |s an essentlial step
towards understanding the problem at hand and solving It.

From the literature on speclflcation, It Is clear that
two quite different schools of thought exist:

- In the methods most widely used by Industry, on the
one hand, emphasis Is placed on the management and documen-
tatlion aspects; this has resulted In very successful systems
(e.g. PSL/PSA, 1SDOS, SREM, efc.), which are very strong on
aspects such as conflguration control, adequate supporting
tools, production of up-to-date documents and so forth.

- On the other hand, many of the studies undertaken by
universities and research l|laboratories concentrate on formal
notations whlich can be used to produce complete and wunambi-
guous descriptlions of systems. Progress In recent years has
proved that such formal methods (e.g. VOM, HDM, FDM, AFFIRM
etc.) can be applied successfully to the speciflcation of
quite complex systems; It Is falr to say, however, that use
of such techniques remalns rather rare In Industry, and
stlll requires more effort that most companies are willing
to undertake, except In cases where exceptional security
requirements clearly Justlfy It.

In This paper, we present a specification system (where
we take the word "system!" in sofftware engineering to mean a
set of assoclated methods, notatlons and tools). This sys-
tem, <called M, has the ambitious goal of trying to combine
the best of the above two worlds. The main [dea Is that peo-
ple should be permitted *to be Just as formal as they can
afford to be In each particular case. Of course, no miracle
should be expected: the less you express In a speciflication,
the less help you will recelve from the system. But It |Is
extremely nice to have a system which will allow you to galn
some beneflts from having written a specification even |f

You have not completed i+ down to the last quantifier.

| f the
The design of M resulted from a careful study o
various spec?f!cafion methodologles mentloned earlier., I+t
has also benefited from previous work on +the speclflcation
74

language

As mentloned above, M as a system has three facets: a
set of methods and principles, a I'nguistic basis and asso-
clated tools. We shall now sketch them in this order,

2. PRINCIPLES AND METHODOLOG |CAL BASIS
2:1. Implicitness

In our view, the single most Important feature of
Specifications (as opposed to deslgn documents, code e)
I's that they descripe objects y Ao¥F expllicitly; 1n
other words, a Specification should state propertlies of
objects, but not give a way to construct these objects, evep
I't #his construction Is an abstract one, using mathemati|cal
concepts. This may also be expressed by sayling that the role
of a speciflication s to say what objects have, not what

they are.

As an example of +his dlsflncflon, consider flrs+ the
Pascal type definitlon

type POINT =

Legord

Xs ¥, 2 : REAL;
speed : YECTOR
2nd

Then consider the following characferlza+lon of POINT by
four functions:

Xy ¥s T 3 POINT <u3 REAL

Speed : POINT ~-> YECTOR

These two ways of definling POINT may at firs+ slght
Seem equivalent, The flrst, however, |s explicit, Whereas
the second |s lmpl!clf; thils also Implies that the flrst |g
'frozea" (po|pNT I's deflned as belng "equaln +o Something);

only with the second s 1+ Possible to adg lat -
perty of POINTs, Say a color; e
color : POINT --3 C

At 2@ specification stage, whep one is e
and trying out different approaches, ifx?éogégglcdfzg7$
Important that nothing should pe frozen ang that new proper=~
tles should pe S¥SY Yo 8dd. |n fact, the conclusion of the
Speciflcation step can be taken tq be that time whep Cne
decides +to freeze all the objects Involved by equafing them.’

with the cartesian product of thelr attributes as deflined so
far. Then Implicit deflinitlions can be transformed (manually
or automatically) Into explicit ones similar In splirit to
the above Pascal type deflnition.

2.2. Syntax and Semantlcs

A system can be described as a set of objects upon
which certain actions are performed. The description of the
relatlonal structure of the system, Il.e. what obJects are
connected to what other objects and what operations apply to
what objects, can be called the syntax of the system. Its
semantics, on the other hand, Is the descriptlion of the pro-
perties of the obJects and the operations.

Describing semantics Is a much more difficult task than
describling syntax |[f one Is to remaln at the speclfication
level. Many Industrial speci|ficatlon systems are mostly good
at describing +the syntax, and thelr attempts at including
the semantics use either natural language or an algorithmic
language. On the other hand, formal specification tech-
niques make [t possible to describe system semantics while
remalining at the speclfication level, but they require a lot
of effort.

The method used In M Is to describe a system by succes-
slve steps; the flrst stages are concerned with syntax, the
later ones add semantics. It will be possible +to benefift
from +the speciflcatlion even if one only stops at one of the
early stages. :

2,3, Object-orlentedness

The description of a system may be structured . around
the objects or around the operations. The former alternatlive
seems to yleld better design descriptions In ferm of flexi-
bility and evolutlivity. The objects are modelled by "sorts",
similar to types of programming languages; mathematically,
however, they are adequately descrlbed as sets.

2.4. Funectlons

The basic modeling tools used In the description of
systems are the - simple mathematical notions of sets and
functions. In particular, no notion of "type®, as may be
derlved from category theory , was deemed necessary. Func-
tions may be elther total or partial; partlial functlions play
an Important role In connection with error situations.

3. LANGUAGE

M speciflcatlions are expressed as a set of paragraphs..

These successive views of the same concept, each of which
glves more detail, are a generalization of +the way Ada

44

packages are described In two successive parts ("speclflica-
tion" and "body").

The successlive paragraphs In the speclification of a
system X are as follows:
system X sorts
-- Lists all the sorts which Intervene In X

end

system X Interface
~-- Lists the elements which are borrowed
-- from other specifications
-- (thls makes It possible to have "libraries"
-~ of basic specifications, and generic speclfica-
tions)

end
system X atiributes

-=- Lists the functlons which give properties of
-- glements of the various sorts of X

end

system X lovariants
-- Lists the properties of attributes
~- whlch must be preserved by transformatlions

end
system X

~~ Llsts the functions corresponding to operations
-~ modifying elements of the various sorts of X

end
sysiem X

-= Deflnes the effect of the transformations
° -= on the attributes
end
system X
-- Lists the domains of all partial functions
-- (attributes or tfransformations)
end

Other possible paragraphs Include one for error pro-
cessing (error processing consists In extending the
domains of non-total functions) and, posslbly, Implemen=
tatlon.

4, TOOLS

To be practical, a specification system requlrés
adequate tools. The tools which are necessary for effi-
cient use of M Inciude:

- A screen-orlented syntax editor, maklng it easy to

enter and change speciflcations;

- VYalldation tools for checking the consistency and
completeness of speclifications;

- Configuration management tools, for monitoring the
development and modification of specifications;

- Automated alds for tThe development of the programs
once the specliflcation has been completed. The most
promising area here seems to be the automatic generation
of data structures from descriptions of attributes and
transformatlons.

46

