
An Incremental Hint System For
Automated Programming Assignments

Paolo Antonucci
ETH Zurich

paolanto17@gmail.com

Christian Estler
ETH Zurich

christian.estler@inf.ethz.ch

Ðurica Nikolić
ETH Zurich

durica.nikolic@inf.ethz.ch
Marco Piccioni

ETH Zurich
marco.piccioni@inf.ethz.ch

Bertrand Meyer*
ETH Zurich

bertrand.meyer@inf.ethz.ch

ABSTRACT
The advent of Massive Open Online Courses makes it es-
sential to develop tools and techniques that automatically
support computer science students in solving programming
assignments. Complementing existing tools for automati-
cally checking the correctness of students’ programs, we have
developed and evaluated an incremental hint system for pro-
gramming exercises. The hint system displays, upon request
from a student, a series of hints on how to approach a solu-
tion. The hints are created in advance from the source code
of the exercise’s reference solution using our hint generation
tool. This tool can run in fully automatic mode, where hints
reveal more and more parts of the solution code; in manual
mode, where teachers can customize hints by annotating the
input source code; and in a combination of the two modes.
We evaluated the hint system throughout our Introduction
to Programming course which provides a companion online
course. The findings suggest that students who needed as-
sistance with an exercise used the hint system and found
it helpful to guide them through the process of building a
solution.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

Keywords
CS1, MOOC, Pedagogy, SPOC

1. INTRODUCTION
A big hurdle for beginner students attempting to solve a

programming exercise is to come up with an initial, albeit
not perfect, solution. Once such a initial solution is found,
the process of transforming it into a fully correct solution
can be tackled with skill and some patience: refining the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ITICSE’15, July 04–08, 2015, Vilnius, Lithuania.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ACM 978-1-4503-3440-2/15/07 ...$15.00
http://dx.doi.org/10.1145/2729094.2742607.

initial solution through a series of compilation, execution,
and testing steps until the desired result is achieved. But
what can a student do when unable to find such an initial
solution? Asking peers or a teacher is an obvious thing to
try, but sometimes this is not possible or practical, as for
example in the context of online courses and MOOCs.

In the Autumn semester 2014 we offered a companion on-
line course to our Introduction to Programming residential
course, in which we used and evaluated an incremental hint
system for programming exercises. The hint system dis-
plays, upon request from the student, a series of hints, in-
crementally unveiling new suggestions and details of the ex-
pected solution. The hint system also aims at supporting
self-study and minimizing the need to ask for assistance to
a teacher or to peers in a forum. A series of hints for each
given exercise is created in advance by the teacher, using our
tool either in automatic or manual mode (or a combination
of both). The automatic mode obeys to some predefined
(customizable) rules and generates all the needed files com-
pletely automatically. However, teachers can always tweak
and personalize the hints for any given exercise by using an
ad hoc mini-language embedded in the exercise’s code com-
ments. The tool was evaluated by making it available to
the students, logging and observing how it was used, and
administering a final questionnaire. The results are, in gen-
eral, encouraging, and show that the students a) used the
hint system and b) found it to be helpful.

The rest of this paper is organized as follows: Section 2
provides some background on our residential Introduction to
Programming course and its structure; Section 3 describes
the infrastructure we used for our online course; Section 4
describes the hint system in detail; Section 5 summarizes
the data we collected; Section 6 details related work; and
Section 7 concludes with final comments.

2. OUR INTRODUCTION TO PROGRAM-
MING COURSE

Our Introduction to Programming course is a fourteen
week long residential course. It includes four hours of frontal
lectures and two hours of exercise sessions each week. The
live lectures are of two kinds: traditional (frontal) lectures,
and Socratic lectures. There are ten home assignments and
two mock exams that simulate the final exam setting. Ex-
ercise groups typically include twenty students each and are
differentiated by skill level (beginners, intermediate, or ad-
vanced) and language (English or German). Differentiating

320

*Also Politecnico di Milano, Italy, and Innopolis University, Kazan, Russia

the exercise groups according to students’ self-assessed skill
levels proved to be beneficial, as it lead to more homogeneous
groups, which helped to keep students of different skill levels
interested and motivated.

Throughout the rest of this paper we refer to the Intro-
duction to Programming course we taught in the Autumn
semester of 2014. Its students reported, similarly to previous
years, the following distribution of preexisting programming
experience: 64% of students came with some object-oriented
programming experience, 25% had non-object-oriented pro-
gramming experience, and only 11% had never programmed
before. Additionally, 19% of our students attended the res-
idential course while having a part-time job that required
some programming.

The programming language of choice for our course was
Eiffel [6]. Eiffel makes it easy to express and teach object-
oriented concepts and methods, and allows for a gentle in-
troduction to program verification through design by con-
tract [5].

3. OUR ONLINE LEARNING PLATFORM
The residential course described in Section 2 was accom-

panied by an online course, which provided video lectures,
quizzes and programming exercises. The infrastructure we
used for the online course consisted of three parts: a Moo-
dle1 installation, enhanced with a plugin we developed for
in-video quizzes, a web-based programming environment,
Codeboard2, for compiling and executing programs in the
browser, and our incremental hint system.

The online course sequence is linear and consists of 14
lectures. Every online lecture is divided into one or more
segments (of variable duration), one or more quizzes, and
zero or more programming exercises. Topics’ durations vary
between 5 and 40 minutes, with an average of 17 minutes.

To tackle the known issues deriving from reduced atten-
tion span [7], we embedded quizzes within longer video lec-
ture segments. The purpose of the quizzes is twofold: to
allow attention span recovery by breaking the online lecture
flow, and to test short-term topic comprehension. In gen-
eral, we designed quizzes and exercises to be useful in the
short term (after taking an online lecture) and in the long
term (for reviewing material for the exam, that in our case
takes place 8 months after the course end).

Our web-based programming environment, Codeboard,
allows students to write, compile, test, and submit programs
from within the browser. Submissions are automatically
graded based on a set of unit tests provided by the teacher.
Using this web-based tool removes the need to install any ad
hoc software for the students and simplifies the distribution
and grading of exercises for the teacher. Codeboard inte-
grates seamlessly with Moodle (and other e-learning plat-
forms as well), making it possible to exchange data about
students’ progress and grades between the two systems.

4. THE INCREMENTAL HINT SYSTEM
When solving in-browser programming exercises students

have the option to request hints by clicking “hint” buttons.
For each exercise there can be one or more hint buttons. At
the beginning only the first button (corresponding to a level
1 hint) is active. Each other button becomes available after

1https://moodle.org, accessed April 22, 2015
2https://codeboard.io, accessed April 22, 2015

pushing the previous one. This section describes the hint
system in detail.

4.1 Hint mechanism
AutoTeach [3], our hint generator, provides hints directly

from within the source code. Hints are incremental, that
is, they are organized in hint levels, each level containing
more hints than the previous one. In practice, this means
that for every exercise to be solved, which in most cases
consists of a single class file, there are n versions of the class
file that are generated in advance and served to students
upon request, with the first file containing just the skeleton
of the code (feature declarations, possibly routine contracts,
etc.) and the following ones containing incrementally more
information.

Hints are of two kinds:

• Textual hints: comments in the code manually writ-
ten by the teacher which become visible from a specific
hint level on.

• Code-revealing hints: a part of the solution the stu-
dent is expected to implement. They are generated
automatically by AutoTeach according to certain cus-
tomizable rules.

These two kinds of hints can be combined at will for
greater flexibility, allowing teachers, for example, to refer
in a textual hint to a part of the code which they know it
will become visible on the next hint level.3

4.2 Meta-commands and textual hints
Teachers write textual hints directly within the code by

taking the solution files, annotating them with special pro-
cessing directives called meta-commands, and passing them
to AutoTeach. AutoTeach will then scan the file multiple
times, once for each hint level, process the meta-commands,
and generate the output files.

Meta-commands have the form of special comments within
the code. They can either contain a textual hint, which
should be printed to the output, or alter AutoTeach’s de-
fault behavior in processing the code. In both cases, they
may specify a range of hint levels, outside of which they are
ignored. As an example:

−−# [3] HINT: Start by iterating on ‘a numbers’
−−# [0−4] HIDE NEXT if
The first meta-command is a textual hint which must be

printed to the output at hint level three and higher. The
second meta-command shows one of the many supported
processing directives, and indicates that between hint levels
0 and 4, the subsequent ‘if’ instruction should be hidden
from the output.

4.3 Code processing
Although until now we have referred to “code-revealing

hints”, we have in fact developed a multi-level code process-
ing model which determines the visibility of every part of
the code. This model fits particularly well our purpose of
generating hints based on revealing parts of the code, but
nothing prevents it from being used for more general code
processing tasks that need to distinguish between the visi-
bility of different sections of the code.

3For a code example, see http://goo.gl/YBVQpp, accessed
April 22, 2015

321

The main design goal of this code visibility model and
the related code processing system is to be as flexible and
powerful as possible, and at the same time simple enough
to be used in those cases where no particular customization
is required. Ideally, we want our Hint Generator to be able
to run on most exercises without any kind of extra annota-
tion and yield a satisfactory result, which could be further
refined with additional annotations only in cases where a
high granularity of hints is important (mostly very short
exercises).

4.4 Code blocks
An important choice in designing the code visibility model

is the granularity, that is, the elementary units which the
Hint Generator should be able to handle. With respect to
this, we define a list of supported code syntactic elements
which we call “blocks”. Blocks are classified as atomic
blocks and complex blocks. The difference between the
two is that complex blocks may contain other blocks (ei-
ther atomic or complex) nested in them, while atomic blocks
cannot contain any other kind of block. Examples of atomic
blocks are instructions (excluding compound statements such
as ‘if’s and loops), assertions in contracts, and conditions
within ‘if’ statements. Examples of complex blocks are rou-
tine preconditions, ‘if’ statements, and ‘if’ branches. Figure
1 shows the decomposition of a code sample into blocks.

Figure 1: Decomposition of code into blocks.

4.5 Block basic visibility
AutoTeach works by scanning class files sequentially, writ-

ing their content to the output files on the fly and replacing
the sections of the source code that should be hidden at the
selected hint level with a placeholder. As AutoTeach ab-
stracts the input code into blocks, the ultimate question for
every occurrence of a code block is for us: “should we print
this block or should we hide it?”.

The question is answered by a lookup in the basic visibil-
ity table (see Table 1). The basic visibility table is a table
associating block types (rows) with hint levels (columns).
Every cell of the table contains a boolean value indicating
whether or not the corresponding block type should be vis-
ible, and thus be printed to the output, at that level. Cells
can also be undefined (allowing for three possible values:
true, false, and undefined), but we will ignore this for now.

4.6 Block content visibility
The approach shown in the previous section is very simple

and quite flexible, yet not flexible enough. For example,

Table 1: Simplified basic visibility table. Rows cor-
respond to block types, columns to hint levels.

0 1 2

feature True True True

if False True True

instruction False False True

consider the code in Figure 1. Assume that, on a certain
hint level, the teacher wants to show all the instructions
appearing directly within the body of a routine, but wants
to hide all those inside the body of an if statement, having
therefore the output shown in Listing 1.

Listing 1: Desired output processing the code of Fig-
ure 1.

f oo (a boo l : BOOLEAN)
do

pr in t (” He l lo world ! ”)
i f a boo l then

− − Your code here !

end
pr in t (”Goodbye world ! ”)

end

According to what we have said so far, there is no way
to achieve this. Working with the visibility of instruction
blocks will not help, as it will affect both instructions inside
and outside the ‘if’ statement. To make this possible, we
need a new paradigm, which we call content visibility.
This paradigm is orthogonal to and independent from the
paradigm of basic visibility.

Every point in the code, where “point” means any place
in the text on which we could click and set the cursor for
editing, has a content visibility policy in force in that
place. The content visibility policy is a boolean value which,
as an approximate definition, indicates whether or not the
code appearing in that region should be visible (i.e. printed
to the output). The policy may also be undefined, which
effectively allows for three different values for the content
visibility policy (true, false, and undefined). In our case, to
achieve the desired goal, we need to ensure that the content
visibility policy be false within the body of the if instruction
and true outside of it.

The distinction between atomic and complex blocks, which
we introduced in section 4.4, becomes relevant here, as com-
plex blocks can specify a content visibility policy, which
is valid within their body. The content visibility policy for
complex block types is defined in the content visibility
table. This table is totally analogous to the basic visibil-
ity table: every row represents a complex block type and
every column a hint level. The value in every cell (which
may be undefined) indicates the content visibility policy for
that block type on that hint level. Complex blocks for which
the policy is undefined inherit the content visibility of the
parent block, if any.

322

We can now be more precise and state that the effective
visibility of a code block is affected by the content visibility
policy applicable at its position in the following way:

• Atomic blocks: their visibility is defined by the con-
tent visibility policy in force at their location. If the
content visibility policy at their location is true, they
will be printed to the output, if it is false they will be
hidden.

• Complex blocks: no effect. Complex blocks are im-
mune to the content visibility policy in force at their
location. This design choice, which might be perplex-
ing, is motivated by the thought that complex blocks
build up the “boning” of the structure of the code. Set-
ting the content visibility to false indicates the wish of
hiding the “flesh” of the code, not the boning.

By now it should be clear that in our example we can
obtain the output of Listing 1 by using the content visibility
table shown in Table 2.

Table 2: Simplified example of a content visibility
table. Rows correspond to block types, columns to
hint levels.

0 1 2

routine body False True True

if False False True

4.7 Joining the concepts: hint tables
In the previous sections we have introduced the two or-

thogonal concepts of blocks’ basic visibility and content
visibility. In both cases, we left open the question of what
happens if the visibility of a block is undefined. We can now
join the two concepts and provide the final visibility rules
for code blocks, which will answer this question.

• The visibility of complex blocks is simply equal to
their basic visibility. However, they have the ability of
specifying a content visibility policy valid within their
body.

• The visibility of atomic blocks is equal to their basic
visibility, if it is defined. If it is undefined, then their
effective visibility is equal to the content visibility in
force at their location, which in this case has to be
defined (otherwise the table is malformed).

• In addition to the previous rule, no block can be printed
if its parent block is not visible. This is in order to
avoid having “detached” blocks in the output, which
would be confusing to students and possibly break the
syntactic validity of the generated output.

Clearly, these rules require the two visibility tables (basic
and content) to be harmoniously used together, which is
only possible if they are thought from the beginning as the
two sides of the same coin. The combination of both tables
takes the name of hint table.

In addition to these rules, AutoTeach supports overriding
the processing policies defined in hint tables through the
use of specific meta-commands. These make it possible, for

example, to force all argument declarations to be always
visible throughout a file, or a specific crucial instruction to
remain hidden until a higher hint level than the one defined
in the table is reached. The teacher can even decide to load
a blank (all undefined) hint table and exclusively rely on
visibility meta-commands to define how an exercise should
be processed. This is thoroughly discussed in [3].

4.8 Flexibility of the mechanism
AutoTeach ships with a default hint table, for which we

tried to find good general-purpose values which work well
for the majority of exercises without requiring additional
intervention. The table starts by only showing the bare
feature4 declarations at level one, and then incrementally
revealing routine arguments, contracts, and local variable
declarations. The existence of complex instructions is then
revealed, without their content, so that students get an idea
of how the code is structured (for example, how many nested
loops are needed). On the following step, some more infor-
mation about complex instructions is revealed (the condition
of ‘if’ instructions and the termination condition of loops).
At this point, basic instructions are not visible yet. Going
up one more level will then reveal all the instructions which
are not contained in any complex instruction, producing an
output similar to Listing 1. At this point the student sees
almost everything, but still can’t see the instructions within
‘if’ statements and loops, which are often the core of the so-
lution of many programming tasks. Only at the highest hint
level all instructions are eventually shown. For our course
we decided to never show the whole solution, to avoid the
scenario in which a students just unveils all the hints and
then copy-pastes the solution without too much thinking.

In our experience, this table works remarkably well for
most medium-sized exercises, providing good results without
the need of even touching the source code. It is not unrealis-
tic to imagine of using AutoTeach in a setting where teach-
ers writing the exercises have no knowledge at all of the hint
mechanism, and where batches of existing exercises need to
be processed in this fully automated way, which would not
have been possible if the hint system had only consisted of
manual annotations defining the visibility of single instances
of blocks.

AutoTeach also comes with the ability of loading alter-
native custom hint tables. This enables teacher to define a
custom processing policy which may be completely different
from our approach. The flexibility of the hint table model
give teachers ample freedom.

Finally, there are cases where greater accuracy is required
and where teachers may want to define the visibility of sin-
gle instances of blocks. This is especially true for very short
exercises, where students are only required to write a hand-
ful of lines of code and where showing a crucial instruc-
tion too early can spoil the solution. For these exercises,
and wherever else necessary, teachers can use manual visi-
bility annotations, slightly tweaking or radically redefining
the processing policy of AutoTeach.

With AutoTeach, we believe we are providing an extremely
flexible code processing tool. Although the basic processing
is entirely automatic, teachers can step in at any time and
take full control. Besides the AutoTeach tool itself, this
code processing model is general enough to be applicable

4In Eiffel, the term ‘feature’ indicates routines, functions,
and class attributes.

323

Table 3: Hint system usage: NH is no. of students
not using any hints, Li is usage at hint level i, -
indicates non-existent hint levels.
Exercise NH L1 L2 L3 L4 L5 L6

Object creation 34 40 32 29 - - -
Refs and assignment 39 17 17 14 12 11 10
Control structures 28 21 19 - - - -
Palindrome 25 14 12 9 7 6 5
Queue inverter 21 19 18 16 16 15 -
Recursive gcd 25 11 9 8 8 - -
Decimal to binary

16 21 20 19 18 18 -
converter

to any general-purpose programming language with little or
no changes, and we are looking forward to seeing alternative
implementations of it which will make it available it to a
broader audience.

5. DATA ANALYSIS AND RESULTS
We automatically collected usage data from the hint sys-

tem, and asked students to answer a questionnaire to assess
their experience using it. Table 3 shows which and how
many hints the students used per programming exercise.
These data suggest that a large number of students who
submitted a solution did indeed use the hint system.

The ratio of students using hints (columns “L1” to “L6”)
to those not using them (column “NH”) is non-negligible
for all exercises. It also noteworthy that certain exercises
like the one on object creation, which is perceived as more
difficult, have a high hint usage ratio, while others, like the
one on references and assignments, have a low hint usage
ratio. Such information can be useful when assessing the
exercises and possibly updating them for future iterations
of the course.

Table 4 shows a more detailed view of the data from Table
3. For every exercise we show how many students submitted
correct and incorrect solutions while using or not using the
hint system. We observed that students who did not use the
hints submitted almost all correct solutions (99.5%). In con-
trast, there are much fewer correct submissions by students
who used the hints (63%). A possible explanation is that
students with incorrect solutions (37%) would have needed
further assistance. One way of achieving that could be by
adding more hint levels and explanations within the hints.

Table 4: Number of correct and incorrect submis-
sions, differentiated by usage or non-usage of the
hint system.

Exercise
Submissions

not using hints using hints
correct incorr. correct incorr.

Object creation 33 1 27 13
Refs and assignment 39 0 11 6
Control structures 28 0 11 10
Palindrome 25 0 13 1
Queue inverter 21 0 6 13
Recursive gcd 25 0 9 2
Decimal to binary

16 0 13 8
converter

Total
187 1 90 53

(99.5%) (0.5%) (63%) (37%)

During our data collection students did not get penalties
for using the hint system. Furthermore, students had unre-
stricted access to the hints. The only limitation we enforced
was that students can access the hints only in sequential
order from the least detailed to the most detailed, i.e hint
level Li+1 only became accessible after accessing hint level
Li. We also controlled the students who solved an exercise
more than six hours after using the hint system, as well as
for students who solved an exercise without hints but sub-
sequently accessed the hints out of curiosity. In both cases
the numbers were negligible.

We had 38 students answering the final questionnaire,
among which 16 (42%) actually used the hint system in at
least one exercise. Among those, 5 students (33%) found
the hint system too difficult to use, while for the rest (66%)
it was about right, or easy to use. In general, 73% of the
students who tried the hint system found it useful, and 80%
stated that the level of granularity of the hints was appro-
priate. Among the students who answered the question-
naire and did not use the hint system (58%), 68% said they
did not need hints while solving the programming exercises,
while 32% claimed they did not know they could use a hint
system. The latter finding is interesting, as apparently ad-
vertising the hint system via email, in the lecture, and in
the exercise sessions was not sufficient. Additionally, the
minimalistic GUI we designed (just a “hint” button close to
the frame in which students are supposed to write the code)
might have negatively impacted the ability to notice the tool
for some students.

In conclusion, our data indicates that the hint system was
used by a large number of students and found to be helpful
when solving programming exercises.

6. RELATED WORK
Maximizing learning for students is an obvious goal for

educators, both in a frontal and in an online lecture scenario.
A programming task can become frustrating when a student
does not know where to start.

To the best of our knowledge, this is the first paper in-
troducing an automatic hint system assisting students of an
introductory programming online course in solving program-
ming tasks. In recent years researchers in software engineer-
ing for education have worked on different critical challenges,
such as problem generation [2, 4, 1], intelligent tutoring [8],
automatic grading [10, 11], and facilitating human interac-
tion in an online programming course [12].

Tillmann et al. [11] introduced Pex4Fun, an environment
for teaching and learning programming. Their basic idea
is that, given a task and a sample solution invisible to the
student, the latter tries to work towards the solution by
iteratively supplying code. At each iteration, Pex4Fun re-
turns some passing and failing test-cases for the submitted
code. The test-cases are computed automatically by using
symbolic execution and a theorem prover. Students keep
submitting new versions of the code until the tool cannot
find any more failing test-cases. The failing test-cases can
be seen as a kind of automatically provided semantical hints
that students use to iteratively construct a solution, ide-
ally semantically equivalent to the hidden one. In contrast,
our hints are both syntactic and semantic, they are inferred
from the sample implementation or provided by the teacher,
and are preprocessed, which means they do not depend on
the students’ solutions.Our hints guide the students to our

324

master solution, while alternative solutions are anyway eval-
uated by running them against a series of unit tests.

Singh et al. [10] introduced an error-model language used
to model possible errors that students might make while try-
ing to solve a programming assignment. Starting from these
error models, from an implementation provided by a stu-
dent, and from the one provided by a teacher, their approach
produces hints suggesting students how to modify their code
in order to remove the errors. In contrast our hints, rather
than analyzing the student’s solutions, guide the students
through the construction of the master solution.

CodeSkulptor [12] is a system helping students to learn
programming in Python, that also assists them during the
construction of an assignment’s solution. However, this as-
sistance is not automatic, it is provided by other students
via a forum or by a teaching assistant via email. Our hint
system is totally automatic and hints are obtained immedi-
ately by a simple click.

Peddycord et al. [9] introduce a technique based on BOTS,
an educational programming game teaching the basic con-
cepts of programming through block-moving puzzles. The
goal of their hints is to help a student solving a puzzle pass
from the current state to another one, which is closer to the
goal. The hints are generated by using successful solutions
of other students who dealt with the same puzzle and who
were in the same state. Although the approach is supposed
to be used for teaching concepts of programming languages,
it does not use any concrete programming language. The
idea of hint generation starting from the correct solutions
of other students is, however, interesting, and we plan to
investigate it in the future as part of our hint generation.

7. CONCLUSIONS
Finding ways to assist introduction to programming stu-

dents in an automatic fashion is, nowadays, with the advent
of MOOCs, becoming even more relevant. We contribute a
programming environment in the cloud with an associated
hint system, which gradually unveils parts of the desired
solution to students that require support to produce a solu-
tion. We designed our hint system to provide flexibility in
how teachers can generate hints while requiring little to no
input when using default settings.

Our hint system was able to effectively process most of our
programming exercises without any extra annotation in the
source files, yielding satisfactory hints. Wherever needed,
teachers could easily step in and redefine the processing pol-
icy by defining a custom hint table.

The data we collected using questionnaires and usage logs
suggest that the hint system is a beneficial addition to our
teaching programming platform in the cloud. We are now
running a larger experiment in the edX MOOC“Computing:
Art, Magic, Science” in Spring 2015, and we are developing
a Java version of our hint system.

Acknowledgments
We would like to thank Andre Macejko for his work on many
technical aspects of our online course.

8. REFERENCES
[1] U. Z. Ahmed, S. Gulwani, and A. Karkare. Automatically

Generating Problems and Solutions for Natural Deduction.
In IJCAI, 2013.

[2] E. Andersen, S. Gulwani, and Z. Popovic. A Trace-based
Framework for Analyzing and Synthesizing Educational
Progressions. In SIGCHI, pages 773–782, 2013.

[3] P. Antonucci. Autoteach: incremental hints for
programming exercises. Master’s thesis, ETH Zurich, sep
2014.

[4] S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing
Geometry Constructions. In PLDI, pages 50–61, 2011.

[5] B. Meyer. Applying Design by Contract. Computer,
25(10):40–51, 1992.

[6] B. Meyer. Object-Oriented Software Construction, 2nd
edition. Prentice Hall, 1997.

[7] J. Middendorf and A. Kalish. The “change-up” in lectures.
The National Teaching & Learning Forum, 5(2), 1996.

[8] T. Murray. Authoring Intelligent Tutoring Systems: an
Analysis of the State of the Art. Intern. Journal of
Artificial Intelligence in Education, (10):98–129, 1999.

[9] B. Peddycord III, A. Hicks, and T. Barnes. Generating
hints for programming problems using intermediate output.
In EDM, pages 92–98, 2014.

[10] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated
Feedback Generation for Introductory Programming
Assignments. In PLDI, pages 15–26, 2013.

[11] N. Tillmann, J. De Halleux, T. Xie, S. Gulwani, and
J. Bishop. Teaching and Learning Programming and
Software Engineering via Interactive Gaming. In ICSE,
2013.

[12] J. Warren, S. Rixner, J. Greiner, and S. Wong. Facilitating
Human Interaction in an Online Programming Course. In
SIGCSE, pages 665–670, 2014.

325

