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ABSTRACT 

Formally defining the knowledge units taught in a course helps 
instructors ensure a sound coverage of topics and provides an 
objective basis for comparing the content of two courses. The 
main issue is to list and define the course concepts, down to basic 
knowledge units. Ontology learning techniques can help partially 
automate the process by extracting information from existing 
materials such as slides and textbooks. The TrucStudio course 
planning tool, discussed in this article, provides such support and 
relies on Text2Onto to extract concepts from course material. We 
conducted experiments on two different programming courses to 
assess the quality of the results. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – curriculum, computer science education.  

General Terms 
Theory, Standardization. 

Keywords 
Curriculum design, knowledge modeling, course design, ontology 
learning. 

1. MODELING COURSES 
Teaching is a highly personal endeavor. The human touch is 
essential: a course is not an engineering product, and will never be 
specified as precisely and rigorously as, for example, a computer 
program. Still, applying modeling techniques partly imitated from 
software and other engineering disciplines can provide many 
benefits, as evidenced by our use of TrucStudio [12], an open-
source tool that produces simple teaching-specific domain models 
based on the concepts of cluster, Truc, and notion. Some of the 
foremost advantages of the approach are to allow instructors to 
define and plan their courses in a systematic way; facilitate 
conscious decisions on the topics to teach and those to leave out; 
improve the course structure by showing what notions are taught 
and when; support comparisons between variants of the same 
course (for example across different institutions); and assert that a 

course or curriculum complies to given requirements, for example 
those defined by accreditation organizations such as ABET, on the 
basis of sound, objective evidence. 
The main issue with such a system is the amount of work required 
for producing the domain models. Tool support, even just semi-
automatic, is essential.  
Such tools exist in the context of ontologies. An ontology is a 
domain description that uses concepts and relations between these 
concepts. The teaching community has come to rely on ontologies 
particularly in online teaching, where they help classify “learning 
objects” and describe learning and teaching strategies [6]. 
This article proposes to use ontology learning techniques on 
existing textbooks or slides to identify the main concepts covered, 
and describes how TrucStudio takes advantage of the open-source 
tool Text2Onto [3] for this. In a case study to assess the approach, 
we processed teaching materials from two courses, an 
introductory one using Eiffel and an advanced one in Java, both 
held at ETH Zurich. The study gathers evidence on the quality of 
the extracted concepts with respect to the type of input (slides and 
textbooks). 
Section 2 describes Trucs and TrucStudio in more detail; section 3 
explains ontologies, ontology learning, and Text2Onto; section 4 
describes our case study and analyses its results. The article 
concludes with ideas for future work. 

2. TRUCS AND TRUCSTUDIO 
Among the concepts underlying TrucStudio, Trucs and notions 
are units of knowledge at distinct levels of granularity, identified 
for their relevance to teaching the corresponding subject matter; 
clusters are knowledge areas gathering such units.  

2.1 Trucs, notions, and clusters 
A Truc (Testable, Reusable Unit of Cognition) captures a 
collection of concepts and operational skills proceeding from one 
central idea [9]. It is of general interest (independent of a specific 
course) and can be covered in one lecture or a small number of 
lectures. Typical Trucs for teaching object-oriented programming 
are “object”, “class”, “routine call”, “argument passing”, and 
“inheritance”. A Truc description follows a standardized scheme 
including a summary, examples, specification of the Truc’s role, 
possible applications, dependencies on other Trucs, benefits and 
drawbacks. The scheme also includes pedagogical elements: 
known common confusions when learning the Truc and typical 
assessment questions to determine whether a student has really 
mastered the concepts.  
While Trucs capture the central teaching units of a course, finer- 
grained units of knowledge — notions — help refine the 
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specification. A notion “represents a single concept or operational 
skill or facet of a concept” [12] and belongs to exactly one Truc. 
Its description contains a list of alternative names and a summary. 
A Truc may have a central notion, which then bears the same 
name. Examples of notions within the Truc “routine call” are: the 
central notion “routine call”, “multi-level routine call” (calls of 
the form o1.o2.o3.f), “unqualified routine call” (routine calls that 
do not specify their target).  
A cluster is a loose collection of Trucs and/or other clusters. A 
Truc may belong to more than one cluster in the domain model; 
the set of all clusters forms a directed acyclic graph. Clusters 
represent knowledge areas and help keep large numbers of Trucs 
manageable.  
The framework defines two types of relations between notions: is-
a links and requires links. They make it possible to check the 
soundness of a teaching sequence and to detect prerequisite 
violations. Dependencies at the notion level contribute to 
dependencies at the Truc level: a Truc A depends on another Truc 
B if any of its notions requires a notion of B. As an example of 
links between notions, “unqualified routine call” is an “is-a” 
specialization of “routine call” and “routine call” requires the 
“return value”. As a consequence, the Truc “routine call” depends 
on the Truc “object”. 
Notions and Trucs with their links define a two-layered graph (see 
Figure 1), which provides a domain model for organizing courses 
and curricula with TrucStudio. 
This approach may be compared to such models as “Anchoring 
graphs” [8] and MOT [11]. Anchoring Graphs use cognitive load 
to identify dependency relationships between concepts. The main 
intent is to define a partially fixed teaching sequence. Unlike the 
Truc framework, this approach takes teaching decisions in the 
domain modeling phase. The MOT model uses six types of 
knowledge objects and six types of links to model knowledge 
structures. The strength of the Truc framework, in comparison to 
this knowledge modeling approach whose complexity may be 
necessary for the purpose of designing online education systems, 
lies in its simplicity.  

2.2 TrucStudio 
TrucStudio1, the tool supporting the Truc framework, has two 
main parts: a domain modeling interface and a course design 
interface. The domain modeling interface shows a list of clusters, 
Trucs and notions on the left (Figure 1) and a manipulation 
interface on the right. Selecting one of the entities updates the 
manipulation interface, which can be either a form for editing the 
selected entity or a graphical view that shows a clustered notions 
graph (as in Figure 1). The graphical view automatically generates 
a layout for the graph and lets the user blend in or out any item of 
the graph (such as all the notions of a particular Truc, or all the 
requires links between notions). The user may also manually 
rearrange the nodes, export the image to a PNG file, and load or 
save the layout into an XML file format. The graphical view 
provides a restricted set of manipulating operations such as 
creating or removing clusters, Trucs, notions and links.  
The course design interface provides a list of all courses managed 
through TrucStudio. A course contains a list of available time 
slots (e.g. every Monday 2 p.m. to 4 p.m. in the semester) and a 
list of lectures. A lecture presents a sequence of notions. 
                                                                 
1 Available at http://trucstudio.origo.ethz.ch 

TrucStudio provides a rudimentary soundness check for the 
notions covered in a lecture, reporting notions that are repeated in 
different lectures and violations of a notion’s dependencies. 
TrucStudio requires users to enter an estimate of the time needed 
for teaching the lecture and maps it onto the time slots to produce 
the course schedule. 
The domain model and course design can be copied to and loaded 
from XML files. Also available is partial import from OWL, an 
ontology storage format. The computing ontology project [1], 
intended to support curricular planning by providing a domain 
description of the computing disciplines as an OWL file, is of 
direct interest here since a computing ontology might serve as a 
starting point for devising domain descriptions for courses. 

 
Figure 1 Screenshot of TrucStudio 
( : is-a link, : requires link) 

3. ONTOLOGY LEARNING FROM TEXT 
According to Gruber, an ontology is “an explicit specification of a 
conceptualization” [7]. The Trucs-notions framework, intended 
only for teaching applications, has a narrower scope than the 
general notion of ontology, but (because of this focus on a specific 
domain) a richer model within that scope.  
Many researchers in e-learning advocate the use of ontologies to 
produce metadata information for learning objects [4], but only a 
few have considered applying to education ontology learning 
techniques (see e.g. [2]), which use machine learning and natural 
language processing to extract concepts and build is-a and other 
relationships from existing data, natural language descriptions [5]. 
Text2Onto [3], is one of the available ontology learning tools. It is 
open-source and targets data-driven change discovery using an 
incremental ontology learning strategy from text. Text2Onto can 
extract not only concepts and but also relations between these 
concepts, such as subclass-of, part-of, instance-of, equivalence.  
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Preliminary tests suggested that the relation extraction 
mechanisms would not work well for teaching materials; so the 
present study focuses on concept extraction. Text2Onto provides 
several algorithms calculating relevance measures for each 
extracted concept. The tool can import documents in the usual 
teaching formats — PDF, HTML and plain text — and export its 
results in OWL, an ontology description format. 
Using Text2Onto together with TrucStudio involves the following 
steps: (1) Call Text2Onto on a set of input documents. (2) Apply 
Text2Onto’s concept extraction algorithm, calculating the 
relevance values for each of the concepts found. (3) Still in 
Text2Onto, export the resulting concepts into an OWL file. (4) In 
TrucStudio, import the OWL file and present the extracted 
concepts to the TrucStudio user, who can use them to define 
Trucs, notions and clusters. 

4. APPLICATION TO TEACHING 
MATERIAL 
The main goal of the case study was to answer the following 
questions: What inputs work best for the text processing (course 
slides or textbooks)? Can we generalize over different courses? 
How many concepts are extracted and thus need manual 
processing? What percentage of the extracted concepts are 
actually usable as Trucs or notions? 
To answer these questions, the study used teaching materials from 
two courses: “Introduction to Programming” (slides2 and 
accompanying textbook [10]) and “Java Programming” (slides 
and handouts3). Since the inputs to the ontology learning tool are 
the slides and textbooks available from the course web pages in 
PDF, the results are dependent on the quality of these documents. 

                                                                 
2 Available online at http://se.ethz.ch/teaching/ws2006/0001 
3 Available online at http://se.ethz.ch/teaching/ss2007/0284 

“Introduction to Programming” is a required first-semester course 
for all computer science majors. It follows the “Inverted 
Curriculum” approach [13] using Eiffel and covers fundamental 
object-oriented and procedural concepts such as objects, classes, 
inheritance, and control structures. The teaching material has been 
used and refined over the past four years. Since the course faces a 
very diverse student body including many novice programmers, 
its teaching material contains many examples from a real-life 
domain: transportation in a city. An initial assumption is that 
ontology learning works better on the slides of this course than on 
the textbook because the textbook examples are more general and 
may include less immediately relevant concepts. 
“Java Programming”, an elective course, targets master-level CS 
students. Now in its second iteration, it covers advanced Java 
concepts such as threads, compilation, and sockets. The course 
page provides slides and reading material; in the slides, most code 
examples appear as screenshots. The reading material is a digest 
of the concepts covered in the course and is meant as 
complementary material. (In contrast, the Introduction to 
Programming textbook can be used independently of the course.) 
These characteristics suggest that the material from this course 
would produce better results in ontology learning. 
Figure 2 lists on the x-axis the texts used as input to Text2Onto. 
For both courses, the study used a selected set of slides and the 
corresponding extracts from the reading material, with names 
starting with slides and doc respectively. The items alldoc and 
allslides show the results when Text2Onto processes all the 
reading extracts or all the slides of a course in a batch. Numbers in 
parentheses are the number of slides or pages. 

4.1 Relevant vs. extracted concepts 
All the listed reading extracts and slides were processed by 
Text2Onto, resulting in OWL files that contain the concepts and 
their estimated relevance. Instructors then categorized the 
extracted concepts as relevant or not. 

Figure 2 Relevant vs. irrelevant concepts 
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Figure 2 shows the number of relevant and irrelevant concepts for 
each of the documents. The number at the top of each bar 
indicates the percentage of relevant concepts. 
Extracted concepts. For both courses, the number of concepts 
extracted from slides is significantly lower than the number of 
concepts extracted from reading material. Slides generally present 
material in a condensed form, avoiding verbose explanations and 
full sentences. They reduce the text to include only the most 
relevant concepts and omit most of the noise found in reading 
extracts. As expected, the number of extracted concepts from 
slides is lower than from reading extracts. 
The comparison of the numbers of extracted concepts between the 
two courses indicates that for slides the density of extracted 
concepts per slide is similar (for Introduction to Programming 2.7 
concepts per slide; for Java Programming 1.9 concepts per slide). 
For the reading extracts of the Java course the density is higher 
(22.9 concepts per page) than for the textbook extracts of 
Introduction to Programming (15.1 per page). This can be traced 
back not only to the authors’ different writing styles but also to 
differing purposes: while the reading extracts for Java 
Programming are complementary material summarizing the 
lectures’ topics, the Introduction to Programming document is a 
self-contained tutorial involving thorough explanations and 
examples.  
Relevant concepts. The higher number of extracted concepts for 
reading extracts (in comparison to slides) generally also results in 
a higher number of relevant concepts. A possible explanation is 
that some concepts important to an understanding of the “big 
picture” show up in the instructors’ verbal explanations but not in 
the slides. Assuming that the slides as well as the reading material 
contain the fundamental concepts (Trucs), such missing elements 
can only be at the notion level. A recommendation could thus be 
to use slides as input if a coarse domain description suffices 
(providing the Trucs and most important notions), and reading 
material extracts if a more detailed domain description is needed.  
More significant than the raw numbers of extracted and relevant 
concepts is the percentage of the extracted concepts that are 
meaningful for domain modeling. This measure reveals that for 
both courses the concepts extracted from slides are much more 
likely to be relevant than those extracted from reading material. 
Extracting the concepts on smaller documents provides more 
accurate results than using the entire set of slides or reading 
extracts as input to the ontology learning tool, but comes at the 
tradeoff of a much higher number of concepts to process. 
The comparison of relevant concepts between the courses shows 
that for both the slides and the reading extracts the material of the 
Java course produces higher percentages. This result is also 
reflected in the density of relevant concepts per page or slide. For 
the slides of Introduction to Programming the number of relevant 
concepts per slide is 1.2 as opposed to 1.5 concepts per slide for 
Java Programming. The reading material exhibits the same 
tendency in an extreme form: the reading extracts from Java 
Programming contain 16.0 relevant concepts per page, while the 
Introduction to Programming textbook contains 4.4 relevant 
concepts per page. 

4.2 Relevance measure 
Generally, the number of raw extracted concepts is very high and 
results in significant manual work. Text2Onto provides a 
relevance rating, which can be used for sorting concepts by 

relevance. Assuming the rating is meaningful in the described 
setting, can it help removing concepts with low relevance? 

Figure 3 Cumulated concepts (extracted, relevant) per 
relevance value 

To answer this question the first step is to analyze the distribution 
of cumulated extracted and relevant concepts for each present 
relevance value. Figure 3 shows that the cumulated number of 
extracted concepts per relevance value grows dramatically as the 
relevance gets close to zero: most concepts have a very low 
relevance rating. The power function y=ߙ+rβ (with r the 
relevance rating, and α, β constants) provides a good experimental 
fitting of all the curves produced from the material of this study. 
A power function is also adequate to approximate the cumulated 
relevant concepts (see the grey curves in Figure 3), but grows 
slower than the cumulated extracted concepts.  
It is possible to compute the parameters α and β without user 
interaction for cumulated extracted concepts, but not for 
cumulated relevant concepts since this requires sampling. 

 
Figure 4 Cumulated percentage of relevant concepts 

Figure 4 shows the percentage of cumulated relevant concepts for 
all the relevance values. This measure is interesting for the 
removal of concepts with a relevance rating below a certain limit. 
While the curves are generally very unsteady at high relevance 
values (due to the low number of extracted concepts at those 
values, see Figure 3), they exhibit a clear decrease pattern at lower 
values. This also applies to the curves for documents not included 
in Figure 4. This systematic pattern confirms that the relevance 
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rating provided by Text2Onto is a valuable prediction measure, 
especially at low rating levels. 
It seems impossible to find a fixed value that is suitable in all 
cases for optimizing the percentage of relevant concepts by 
removing concepts below this value. 

4.3 Summary 
The extraction of concepts from slides results in higher 
percentages of relevant concepts than their extraction from 
reading material. It is thus desirable to use slides for extracting 
concepts. The analysis shows that the rather dry style of slides and 
reading material from the Java Programming course is better 
suited for concept extraction than the illustrative and verbose style 
of the material from Introduction to Programming. 
The relevance ratings provided by Text2Onto come out, in our 
setting, as a good predictor of relevance. Estimating the curves for 
cumulated extracted and cumulated relevant concepts predicts the 
percentage of relevant concepts for a certain relevance value, but 
requires user interaction to determine parameters for the curve fit 
of cumulated relevant concepts. The current user interface of 
TrucStudio does not implement this strategy, but provides a slider 
(see Figure 5) allowing users to select a value for the relevance 
cut point showing the number of concepts to investigate.  

 
Figure 5 Import dialog in TrucStudio 

5. CONCLUSIONS 
TrucStudio is designed to help educators create and manage 
courses and curricula. The automatic extraction of concepts from 
course material is useful to support the creation of Trucs from 
scratch. Current ontology learning techniques cannot extract the 
Trucs automatically but can help with extracting notion and Truc 
names tagged with an estimated relevance value. Depending on 
how the material has been designed, the extraction can lead to 
quite accurate results (80% for slides with no code examples). The 
reading extracts generate more concepts, but with a lower 
accuracy. To increase the accuracy of presented concepts it is 
possible to show concepts with a higher relevance value only. 

In the future, we would like to develop the techniques further and 
devise a tool that extracts the Trucs themselves out of textbooks 
and slides. This could be achieved by using finer-grained 
language processing techniques, more adapted to teaching 
material. 
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