
Automatic Extraction of Notions from Course Material

Michela Pedroni, Manuel Oriol, Bertrand Meyer, Lukas Angerer
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland

{michela.pedroni|manuel.oriol|bertrand.meyer}@inf.ethz.ch; angererl@student.ethz.ch

ABSTRACT

Formally defining the knowledge units taught in a course helps
instructors ensure a sound coverage of topics and provides an
objective basis for comparing the content of two courses. The
main issue is to list and define the course concepts, down to basic
knowledge units. Ontology learning techniques can help partially
automate the process by extracting information from existing
materials such as slides and textbooks. The TrucStudio course
planning tool, discussed in this article, provides such support and
relies on Text2Onto to extract concepts from course material. We
conducted experiments on two different programming courses to
assess the quality of the results.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – curriculum, computer science education.

General Terms
Theory, Standardization.

Keywords
Curriculum design, knowledge modeling, course design, ontology
learning.

1. MODELING COURSES
Teaching is a highly personal endeavor. The human touch is
essential: a course is not an engineering product, and will never be
specified as precisely and rigorously as, for example, a computer
program. Still, applying modeling techniques partly imitated from
software and other engineering disciplines can provide many
benefits, as evidenced by our use of TrucStudio [12], an open-
source tool that produces simple teaching-specific domain models
based on the concepts of cluster, Truc, and notion. Some of the
foremost advantages of the approach are to allow instructors to
define and plan their courses in a systematic way; facilitate
conscious decisions on the topics to teach and those to leave out;
improve the course structure by showing what notions are taught
and when; support comparisons between variants of the same
course (for example across different institutions); and assert that a

course or curriculum complies to given requirements, for example
those defined by accreditation organizations such as ABET, on the
basis of sound, objective evidence.
The main issue with such a system is the amount of work required
for producing the domain models. Tool support, even just semi-
automatic, is essential.
Such tools exist in the context of ontologies. An ontology is a
domain description that uses concepts and relations between these
concepts. The teaching community has come to rely on ontologies
particularly in online teaching, where they help classify “learning
objects” and describe learning and teaching strategies [6].
This article proposes to use ontology learning techniques on
existing textbooks or slides to identify the main concepts covered,
and describes how TrucStudio takes advantage of the open-source
tool Text2Onto [3] for this. In a case study to assess the approach,
we processed teaching materials from two courses, an
introductory one using Eiffel and an advanced one in Java, both
held at ETH Zurich. The study gathers evidence on the quality of
the extracted concepts with respect to the type of input (slides and
textbooks).
Section 2 describes Trucs and TrucStudio in more detail; section 3
explains ontologies, ontology learning, and Text2Onto; section 4
describes our case study and analyses its results. The article
concludes with ideas for future work.

2. TRUCS AND TRUCSTUDIO
Among the concepts underlying TrucStudio, Trucs and notions
are units of knowledge at distinct levels of granularity, identified
for their relevance to teaching the corresponding subject matter;
clusters are knowledge areas gathering such units.

2.1 Trucs, notions, and clusters
A Truc (Testable, Reusable Unit of Cognition) captures a
collection of concepts and operational skills proceeding from one
central idea [9]. It is of general interest (independent of a specific
course) and can be covered in one lecture or a small number of
lectures. Typical Trucs for teaching object-oriented programming
are “object”, “class”, “routine call”, “argument passing”, and
“inheritance”. A Truc description follows a standardized scheme
including a summary, examples, specification of the Truc’s role,
possible applications, dependencies on other Trucs, benefits and
drawbacks. The scheme also includes pedagogical elements:
known common confusions when learning the Truc and typical
assessment questions to determine whether a student has really
mastered the concepts.
While Trucs capture the central teaching units of a course, finer-
grained units of knowledge — notions — help refine the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.

251

specification. A notion “represents a single concept or operational
skill or facet of a concept” [12] and belongs to exactly one Truc.
Its description contains a list of alternative names and a summary.
A Truc may have a central notion, which then bears the same
name. Examples of notions within the Truc “routine call” are: the
central notion “routine call”, “multi-level routine call” (calls of
the form o1.o2.o3.f), “unqualified routine call” (routine calls that
do not specify their target).
A cluster is a loose collection of Trucs and/or other clusters. A
Truc may belong to more than one cluster in the domain model;
the set of all clusters forms a directed acyclic graph. Clusters
represent knowledge areas and help keep large numbers of Trucs
manageable.
The framework defines two types of relations between notions: is-
a links and requires links. They make it possible to check the
soundness of a teaching sequence and to detect prerequisite
violations. Dependencies at the notion level contribute to
dependencies at the Truc level: a Truc A depends on another Truc
B if any of its notions requires a notion of B. As an example of
links between notions, “unqualified routine call” is an “is-a”
specialization of “routine call” and “routine call” requires the
“return value”. As a consequence, the Truc “routine call” depends
on the Truc “object”.
Notions and Trucs with their links define a two-layered graph (see
Figure 1), which provides a domain model for organizing courses
and curricula with TrucStudio.
This approach may be compared to such models as “Anchoring
graphs” [8] and MOT [11]. Anchoring Graphs use cognitive load
to identify dependency relationships between concepts. The main
intent is to define a partially fixed teaching sequence. Unlike the
Truc framework, this approach takes teaching decisions in the
domain modeling phase. The MOT model uses six types of
knowledge objects and six types of links to model knowledge
structures. The strength of the Truc framework, in comparison to
this knowledge modeling approach whose complexity may be
necessary for the purpose of designing online education systems,
lies in its simplicity.

2.2 TrucStudio
TrucStudio1, the tool supporting the Truc framework, has two
main parts: a domain modeling interface and a course design
interface. The domain modeling interface shows a list of clusters,
Trucs and notions on the left (Figure 1) and a manipulation
interface on the right. Selecting one of the entities updates the
manipulation interface, which can be either a form for editing the
selected entity or a graphical view that shows a clustered notions
graph (as in Figure 1). The graphical view automatically generates
a layout for the graph and lets the user blend in or out any item of
the graph (such as all the notions of a particular Truc, or all the
requires links between notions). The user may also manually
rearrange the nodes, export the image to a PNG file, and load or
save the layout into an XML file format. The graphical view
provides a restricted set of manipulating operations such as
creating or removing clusters, Trucs, notions and links.
The course design interface provides a list of all courses managed
through TrucStudio. A course contains a list of available time
slots (e.g. every Monday 2 p.m. to 4 p.m. in the semester) and a
list of lectures. A lecture presents a sequence of notions.

1 Available at http://trucstudio.origo.ethz.ch

TrucStudio provides a rudimentary soundness check for the
notions covered in a lecture, reporting notions that are repeated in
different lectures and violations of a notion’s dependencies.
TrucStudio requires users to enter an estimate of the time needed
for teaching the lecture and maps it onto the time slots to produce
the course schedule.
The domain model and course design can be copied to and loaded
from XML files. Also available is partial import from OWL, an
ontology storage format. The computing ontology project [1],
intended to support curricular planning by providing a domain
description of the computing disciplines as an OWL file, is of
direct interest here since a computing ontology might serve as a
starting point for devising domain descriptions for courses.

Figure 1 Screenshot of TrucStudio
(: is-a link, : requires link)

3. ONTOLOGY LEARNING FROM TEXT
According to Gruber, an ontology is “an explicit specification of a
conceptualization” [7]. The Trucs-notions framework, intended
only for teaching applications, has a narrower scope than the
general notion of ontology, but (because of this focus on a specific
domain) a richer model within that scope.
Many researchers in e-learning advocate the use of ontologies to
produce metadata information for learning objects [4], but only a
few have considered applying to education ontology learning
techniques (see e.g. [2]), which use machine learning and natural
language processing to extract concepts and build is-a and other
relationships from existing data, natural language descriptions [5].
Text2Onto [3], is one of the available ontology learning tools. It is
open-source and targets data-driven change discovery using an
incremental ontology learning strategy from text. Text2Onto can
extract not only concepts and but also relations between these
concepts, such as subclass-of, part-of, instance-of, equivalence.

252

Preliminary tests suggested that the relation extraction
mechanisms would not work well for teaching materials; so the
present study focuses on concept extraction. Text2Onto provides
several algorithms calculating relevance measures for each
extracted concept. The tool can import documents in the usual
teaching formats — PDF, HTML and plain text — and export its
results in OWL, an ontology description format.
Using Text2Onto together with TrucStudio involves the following
steps: (1) Call Text2Onto on a set of input documents. (2) Apply
Text2Onto’s concept extraction algorithm, calculating the
relevance values for each of the concepts found. (3) Still in
Text2Onto, export the resulting concepts into an OWL file. (4) In
TrucStudio, import the OWL file and present the extracted
concepts to the TrucStudio user, who can use them to define
Trucs, notions and clusters.

4. APPLICATION TO TEACHING
MATERIAL
The main goal of the case study was to answer the following
questions: What inputs work best for the text processing (course
slides or textbooks)? Can we generalize over different courses?
How many concepts are extracted and thus need manual
processing? What percentage of the extracted concepts are
actually usable as Trucs or notions?
To answer these questions, the study used teaching materials from
two courses: “Introduction to Programming” (slides2 and
accompanying textbook [10]) and “Java Programming” (slides
and handouts3). Since the inputs to the ontology learning tool are
the slides and textbooks available from the course web pages in
PDF, the results are dependent on the quality of these documents.

2 Available online at http://se.ethz.ch/teaching/ws2006/0001
3 Available online at http://se.ethz.ch/teaching/ss2007/0284

“Introduction to Programming” is a required first-semester course
for all computer science majors. It follows the “Inverted
Curriculum” approach [13] using Eiffel and covers fundamental
object-oriented and procedural concepts such as objects, classes,
inheritance, and control structures. The teaching material has been
used and refined over the past four years. Since the course faces a
very diverse student body including many novice programmers,
its teaching material contains many examples from a real-life
domain: transportation in a city. An initial assumption is that
ontology learning works better on the slides of this course than on
the textbook because the textbook examples are more general and
may include less immediately relevant concepts.
“Java Programming”, an elective course, targets master-level CS
students. Now in its second iteration, it covers advanced Java
concepts such as threads, compilation, and sockets. The course
page provides slides and reading material; in the slides, most code
examples appear as screenshots. The reading material is a digest
of the concepts covered in the course and is meant as
complementary material. (In contrast, the Introduction to
Programming textbook can be used independently of the course.)
These characteristics suggest that the material from this course
would produce better results in ontology learning.
Figure 2 lists on the x-axis the texts used as input to Text2Onto.
For both courses, the study used a selected set of slides and the
corresponding extracts from the reading material, with names
starting with slides and doc respectively. The items alldoc and
allslides show the results when Text2Onto processes all the
reading extracts or all the slides of a course in a batch. Numbers in
parentheses are the number of slides or pages.

4.1 Relevant vs. extracted concepts
All the listed reading extracts and slides were processed by
Text2Onto, resulting in OWL files that contain the concepts and
their estimated relevance. Instructors then categorized the
extracted concepts as relevant or not.

Figure 2 Relevant vs. irrelevant concepts

253

Figure 2 shows the number of relevant and irrelevant concepts for
each of the documents. The number at the top of each bar
indicates the percentage of relevant concepts.
Extracted concepts. For both courses, the number of concepts
extracted from slides is significantly lower than the number of
concepts extracted from reading material. Slides generally present
material in a condensed form, avoiding verbose explanations and
full sentences. They reduce the text to include only the most
relevant concepts and omit most of the noise found in reading
extracts. As expected, the number of extracted concepts from
slides is lower than from reading extracts.
The comparison of the numbers of extracted concepts between the
two courses indicates that for slides the density of extracted
concepts per slide is similar (for Introduction to Programming 2.7
concepts per slide; for Java Programming 1.9 concepts per slide).
For the reading extracts of the Java course the density is higher
(22.9 concepts per page) than for the textbook extracts of
Introduction to Programming (15.1 per page). This can be traced
back not only to the authors’ different writing styles but also to
differing purposes: while the reading extracts for Java
Programming are complementary material summarizing the
lectures’ topics, the Introduction to Programming document is a
self-contained tutorial involving thorough explanations and
examples.
Relevant concepts. The higher number of extracted concepts for
reading extracts (in comparison to slides) generally also results in
a higher number of relevant concepts. A possible explanation is
that some concepts important to an understanding of the “big
picture” show up in the instructors’ verbal explanations but not in
the slides. Assuming that the slides as well as the reading material
contain the fundamental concepts (Trucs), such missing elements
can only be at the notion level. A recommendation could thus be
to use slides as input if a coarse domain description suffices
(providing the Trucs and most important notions), and reading
material extracts if a more detailed domain description is needed.
More significant than the raw numbers of extracted and relevant
concepts is the percentage of the extracted concepts that are
meaningful for domain modeling. This measure reveals that for
both courses the concepts extracted from slides are much more
likely to be relevant than those extracted from reading material.
Extracting the concepts on smaller documents provides more
accurate results than using the entire set of slides or reading
extracts as input to the ontology learning tool, but comes at the
tradeoff of a much higher number of concepts to process.
The comparison of relevant concepts between the courses shows
that for both the slides and the reading extracts the material of the
Java course produces higher percentages. This result is also
reflected in the density of relevant concepts per page or slide. For
the slides of Introduction to Programming the number of relevant
concepts per slide is 1.2 as opposed to 1.5 concepts per slide for
Java Programming. The reading material exhibits the same
tendency in an extreme form: the reading extracts from Java
Programming contain 16.0 relevant concepts per page, while the
Introduction to Programming textbook contains 4.4 relevant
concepts per page.

4.2 Relevance measure
Generally, the number of raw extracted concepts is very high and
results in significant manual work. Text2Onto provides a
relevance rating, which can be used for sorting concepts by

relevance. Assuming the rating is meaningful in the described
setting, can it help removing concepts with low relevance?

Figure 3 Cumulated concepts (extracted, relevant) per
relevance value

To answer this question the first step is to analyze the distribution
of cumulated extracted and relevant concepts for each present
relevance value. Figure 3 shows that the cumulated number of
extracted concepts per relevance value grows dramatically as the
relevance gets close to zero: most concepts have a very low
relevance rating. The power function y=ߙ+rβ (with r the
relevance rating, and α, β constants) provides a good experimental
fitting of all the curves produced from the material of this study.
A power function is also adequate to approximate the cumulated
relevant concepts (see the grey curves in Figure 3), but grows
slower than the cumulated extracted concepts.
It is possible to compute the parameters α and β without user
interaction for cumulated extracted concepts, but not for
cumulated relevant concepts since this requires sampling.

Figure 4 Cumulated percentage of relevant concepts

Figure 4 shows the percentage of cumulated relevant concepts for
all the relevance values. This measure is interesting for the
removal of concepts with a relevance rating below a certain limit.
While the curves are generally very unsteady at high relevance
values (due to the low number of extracted concepts at those
values, see Figure 3), they exhibit a clear decrease pattern at lower
values. This also applies to the curves for documents not included
in Figure 4. This systematic pattern confirms that the relevance

254

rating provided by Text2Onto is a valuable prediction measure,
especially at low rating levels.
It seems impossible to find a fixed value that is suitable in all
cases for optimizing the percentage of relevant concepts by
removing concepts below this value.

4.3 Summary
The extraction of concepts from slides results in higher
percentages of relevant concepts than their extraction from
reading material. It is thus desirable to use slides for extracting
concepts. The analysis shows that the rather dry style of slides and
reading material from the Java Programming course is better
suited for concept extraction than the illustrative and verbose style
of the material from Introduction to Programming.
The relevance ratings provided by Text2Onto come out, in our
setting, as a good predictor of relevance. Estimating the curves for
cumulated extracted and cumulated relevant concepts predicts the
percentage of relevant concepts for a certain relevance value, but
requires user interaction to determine parameters for the curve fit
of cumulated relevant concepts. The current user interface of
TrucStudio does not implement this strategy, but provides a slider
(see Figure 5) allowing users to select a value for the relevance
cut point showing the number of concepts to investigate.

Figure 5 Import dialog in TrucStudio

5. CONCLUSIONS
TrucStudio is designed to help educators create and manage
courses and curricula. The automatic extraction of concepts from
course material is useful to support the creation of Trucs from
scratch. Current ontology learning techniques cannot extract the
Trucs automatically but can help with extracting notion and Truc
names tagged with an estimated relevance value. Depending on
how the material has been designed, the extraction can lead to
quite accurate results (80% for slides with no code examples). The
reading extracts generate more concepts, but with a lower
accuracy. To increase the accuracy of presented concepts it is
possible to show concepts with a higher relevance value only.

In the future, we would like to develop the techniques further and
devise a tool that extracts the Trucs themselves out of textbooks
and slides. This could be achieved by using finer-grained
language processing techniques, more adapted to teaching
material.

6. REFERENCES
[1] L. B. Cassel, A. McGettrick, and R. H. Sloan. A

comprehensive representation of the computing and
information disciplines. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education,
pages 199-200, Houston, Texas, USA, 2006.

[2] P. Cimiano. Ontology Learning and Population from Text -
Algorithms, Evaluation and Applications. Springer US, 2006.

[3] P. Cimiano and J. Völker. Text2Onto - a framework for
ontology learning and data-driven change discovery. In
Proceedings of the 10th International Conference on
Applications of Natural Language to Information Systems
(NLDB), volume 3513 of Lecture Notes in Computer
Science, pages 227-238, Alicante, Spain, 2005.

[4] E. Duval and W. Hodgins. A LOM research agenda. In
Proceedings of the Twelfth International World Wide Web
Conference, WWW2003, Budapest, Hungary, May 2003.

[5] D. Fensel. Ontologies: a silver bullet for knowledge
management and electronic commerce. Springer-Verlag,
2004.

[6] D. Gasevic, J. Jovanovic, and M. Boskovic. Ontologies for
reusing learning object content. In ICALT ’05: Proceedings
of the Fifth IEEE international Conference on Advanced
Learning Technologies, pages 944-945, Washington, DC,
USA, 2005.

[7] T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199-220, 1993.

[8] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. St. Clair,
and L. Thomas. A cognitive approach to identifying
measurable milestones for programming skill acquisition. In
Working Group Reports on ITiCSE on Innovation and
Technology in Computer Science Education, pages 182-194,
Bologna, Italy, 2006.

[9] B. Meyer. Testable, reusable units of cognition. IEEE
Computer, 39(4):20–24, 2006.

[10] B. Meyer. Touch of class - learning to program well with
object technology and design by contract. Available online
under: http://se.inf.ethz.ch/touch.

[11] G. Paquette. Meta-knowledge representation for learning
scenarios engineering. In S. Lajoie and M. Vivet, editors,
Proceedings of AI-Ed99 AI and Education, open learning
environments. Amsterdam, June 1999. IOS Press.

[12] M. Pedroni, M. Oriol, and B. Meyer. A framework for
describing and comparing courses and curricula. In
Proceedings of the 12th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education,
pages 131-135, Dundee, Scotland, 2007.

[13] M. Pedroni and B. Meyer. The inverted curriculum in
practice. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, pages 481-485,
Texas, USA, 2006.

255

