
Empirical study of novice errors and error paths

Marie-Hélène Ng Cheong Vee
SCSIS, Birkbeck, University of London

Malet Street, Bloomsbury
London, WC1E 7HX, UK

marie-helene@dcs.bbk.ac.uk

Bertrand Meyer
Chair of Software Engineering

ETH - Zurich
ETH Zentrum, 8092 Zurich, Switzerland

bertrand.meyer@inf.ethz.ch

Keith L. Mannock
SCSIS, Birkbeck, University of London

Malet Street, Bloomsbury
London, WC1E 7HX, UK

keith@dcs.bbk.ac.uk

ABSTRACT
What kind of errors do beginners make? Objective answers
to this question are essential to the design and implementa-
tion of curricula that do not just reflect the educators’ the-
ories but succeed in conveying a course’s topics and skills to
the students. In the context of a new introductory program-
ming course based on “inverted curriculum” ideas, and tak-
ing advantage of our ability to instrument the compiler, we
performed an analysis of the - sometimes contorted - paths
students actually take to solve programming exercises on
their own. The results, collected from two different groups
of students across two unrelated universities, include a num-
ber of surprises; they will help improve future sessions of the
course, and are being used in the design and implementation
of an Intelligent Tutoring System.

Categories and Subject Descriptors
K.3 [Computers and Education]: Miscellaneous; D.2.3
[Software Engineering]: Object-oriented programming—
Pedagogy, CS Ed Research, Curriculum Issues

General Terms
Experimentation

Keywords
Errors, Paths, Novices, Inverse curriculum, Data collection

1. INTRODUCTION
The best educational theories are only as good as the stu-

dents’ success with the subject matter. This is particularly
true with an introductory programming course, whose goal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

is to make students comfortable with the basics of software
development; the results are difficult to gauge objectively.
Various methods used in the past involved interviews, “talk-
alouds” and observing students while they solve problems in
a “looking over the shoulder” manner. Although they pro-
vide some insight, these techniques are inefficient, tedious,
time consuming and not immune to observer bias. To obtain
a more objective assessment, we automated data collection,
with the help of the compiler, by storing “snapshots” of
student programs at every compilation. The resulting in-
teraction logs allow us to explore the behavior of students
while they solve programming tasks, usually outside of any
human supervision. We particularly focus on compilation
errors as a way to infer student behavior and interaction
patterns. The analysis of the data gave us insights into
helping students learn programming.

Section 2 briefly presents some related work. Section 3
describes the courses and the organization of the study. Sec-
tion 4 analyzes some of the errors obtained from the interac-
tion logs. Section 5 generalizes this analysis to the concept
of “error path” and proposes a notion of behavior pattern.
Section 6 concludes with a brief discussion of future work.

This article departs from local administrative terminol-
ogy in the sake of consistency: what is called a “module”
at Birkbeck appears here as a “course”, etc. For object-
oriented terminology, we follow the references used for the
course: OOSC [8] and the Touch of class textbook [10].

2. RELATED WORK
Studies similar in their scope to ours were carried out

three decades ago for imperative languages [5] [11] [13]. They
highlighted and classified various common programming er-
rors pertinent to the imperative paradigm [3].

A more recent study [2] used Java and the BlueJ envi-
ronment [4]. It focused on analyzing novice compilation be-
haviors by looking at features such as frequency of compila-
tions, compilation times and others. Although the author’s
stated goal - to determine if novices have different charac-
teristic compilation behaviors - is somewhat different from
ours, he does provide a list of common errors, most of them
syntactic. Moreover, he uses quantitative analysis while we
consider qualitative analysis better suited for our purposes.

bm
Rectangle

3. THE STUDY
This section is divided in two parts: a description of the

courses that were used as the experimental test bed of our
study and a description of the data collection procedure.

3.1 The course
In October 2003, ten years after the first papers propos-

ing an Inverted Curriculum for teaching introductory pro-
gramming [7], ETH Zurich started applying these ideas to
the Introduction to Programming course [9], part of the first
year of the computer science program.

Instead of a bottom-up or top-down approach, the In-
verted Curriculum, also known as “consumer-to-producer
strategy” or “outside-in”, is the process of progressively
opening “black boxes” to unveil the underlying principles
of higher-level concepts gradually. The “black boxes” are
libraries of reusable components. This approach enables be-
ginning students to learn (1) how to re-use libraries as in
real-life, (2) how to build reliable software. In addition to
the sense of achievement, motivation is improved from work-
ing with a real application: It is fun to play with something
that works, is visible and non-trivial. There is greater op-
portunity for active learning.

In building such a course [1], the ETH group devised: (1)
Material for the course: lectures slides and exercises; (2) A
new textbook called “Touch of class”, available online [10];
(3) The software: Traffic library and Flat-hunt game.

In all the courses used for this study students learn pro-
gramming using Eiffel, chosen since it is a pure OO language
with clear syntax, support for Design by Contract and other
mechanisms making it a good choice for teaching, as well as
the stamp of practicality provided by use for large industrial
applications.

3.2 Student groups
Data for this study came from two instances of the course,

taught with minor variations to two groups of students across
two unrelated universities:

• ETH (Introduction to programming)
22 out of a group of approximately 1001 students from
the Introduction to programming course [9] at ETH
(first year of the Computer Science Bachelor’s pro-
gram) participated in the study. The module lasts a
semester (14 weeks). There are two two-hour lectures
per week. Tutorials are organized in small groups of
10-20 students twice a week (three hours in total per
week). In addition to fundamental OOP and proce-
dural concepts such as objects, classes, inheritance,
control structures, recursion, etc., students also study
more advanced topics such as event-driven and concur-
rent programming and fundamental concepts of soft-
ware engineering. Data collection took place in Octo-
ber 2004.

• Birkbeck (MS part-time and full-time)
52 out of a group of approximately 751 students tak-
ing the OOP course in the MS program at Birkbeck2

participated. The course lasts a term (11 weeks). We

1Group sizes are approximations because of drop-outs and
of some re-takes who do not need to submit coursework.
2In full-time mode, the degree lasts 1 year and in part-time
mode, it lasts 2 years.

Table 1: Exercises and topics

Exercise Topic Additional Notes

1 Design by Contract Skeleton code + hints provided

2 Object Creation Code from scratch

3 Refactoring Uses Traffic/Flat-hunt

4 Control Structures Uses Traffic/Flat-hunt

5 Control Structures Code from scratch

6 Inheritance Code from scratch

7 Inheritance Uses Traffic/Flat-hunt

taught OOP in Eiffel, including all the basic concepts
and a few advanced ones (genericity with inheritance,
exception handling) in the first part of the course; the
remaining time was used to teach Java. Data was col-
lected in the spring term 2004/2005.

Most of the Birkbeck students are “mature” students,
many already employed full-time in the IT industry (this
explains their request for inclusion of some Java training).
All of them did an Introduction to programming module in
C++ prior to the OOP module. By contrast, almost all
ETH students are around 20 years old and fresh out of high
school; they have varying exposure to IT and programming,
with a fair number3 being complete novices.

While teaching styles differed slightly between the two
groups and instructors were obviously different in the two
institutions, the teaching material was kept as similar as
possible. The assignments were drawn from the same col-
lection of exercises, but due to time constraints the Birkbeck
students had fewer of them; the data analysis used the same
seven exercises in all cases; table 1 shows these assignments
and their themes.

The time given to the MS students to solve the exer-
cises was adjusted to take into account the different mode of
study. The Birkbeck exercises were graded and contribute
towards the final grading of the degree. For the ETH group,
these exercises are not graded but students are required to
show they have made a reasonable attempt at solving them
to be allowed to sit the exams.

3.3 Data collection

3.3.1 How
We benefited from the “Melting Ice Technology” of the

free EiffelStudio environment used by the students (http:
//www.eiffel.com/products/studio). This incremental com-
pilation mechanism allows speedy and efficient development
by only processing the classes changed since the latest com-
pile step [8].

To collect interaction logs, we were able to use an exist-
ing option of EiffelStudio enabling changes to be recorded
from one incremental compilation (“Melting”) to the next.
The data saved includes a copy of the program and some
information relating to compilation. Thanks to this feature
we did not need to make any change to the compiler: we
simply asked participating students to turn on the option
and share certain files with us. All such data was treated
anonymously, allaying any privacy concerns.

317% describe themselves as complete beginners and 31%
as having programmed a little bit.

http://www.eiffel.com/products/studio
http://www.eiffel.com/products/studio

3.3.2 What
The interaction logs contained a wealth of information.

We obtained information such as the errors novices make,
their frequency (enabling us to focus on the most acute prob-
lems), the amount of time taken to accomplish tasks, the
number of compilations, and time between compilations.

From the logs we were able to reconstruct scenarios of the
student’s problem-solving steps until he reaches the final
solution. This was without recourse to tedious techniques
such as talk-alouds, interviews, etc. Examples of the recon-
struction of such scenarios are shown in Figures 1 and 2 and
discussed in section 5.

4. REVIEW OF ERRORS
We will now examine some of the errors detected by the

study, each selected because of some significant property;
for example some occur in the work of many students, and
some were particularly unexpected. Some of these errors
occur repeatedly across the exercises, while others either
disappear or occur less often as students progress through
the exercises.

• Syntactical Issues
The usual novice errors such as petty syntax errors
occur, although less than in previous studies thanks
to the use of Eiffel with its simple syntax (English
keywords, optional semicolons, no “curly braces” and
other cryptic symbols), which also makes it easier to
analyze these errors. Many of these syntactical errors
are simple mistypings. A common one was to forget
either or both of the colons in a feature declaration
such as:
divisible (other: like Current): BOOLEAN is

Other are: placing = before < or > in relational oper-
ators, forgetting the enclosing double quotes or single
quotes for strings and characters respectively, and us-
ing semi-colons to separate arguments in a call. This
last one may be due to the use of semicolons between
formal arguments in feature declarations, whereas calls
use commas for actuals.

• Type errors
The most common errors were type errors: wrong type
in declaring a variable or argument, assigning to a vari-
able of the wrong type, etc.

• Feature call errors
Various errors relate to feature calls: omitted target
(f () instead of x.f ()), superfluous target (Current.f
(), where Current is redundant or wrong, as detailed
in section 5), wrong target, wrong type or number of
actual arguments, calling a non-existent feature.

At the beginning of the course, many of the complete
novices could not write a basic OO instruction of the
form x.f(a). They would write English-like short sen-
tences (three or four words). These errors were how-
ever no longer present after the first few exercises.

• Rewrite instead of reuse
In the first exercise, students were provided with a
very simple feature is valid type which takes a type of
transportation and returns a boolean value depending
on whether the provided type of transportation is valid

or not. This feature was meant to be used in two of the
contracts they had to write. Some students rewrote
most (if not all) of the body of is valid type instead of
reusing the feature. In later exercises, some students,
it seemed, still had not understood the concepts of
modularity and reuse - they duplicated code or did
not properly modularize their solution.

• Not following hints
Exercise 1 was designed with hints to help students
devise contracts. Some contracts were provided fully
or partially. A number of students did not use the
hints at all.

• Language overlap
It was obvious that some students in the ETH batch
had studied another programming language, to vary-
ing degrees, prior to starting the course. The MS group
at Birkbeck had studied C++ and Java before, so it
came as no surprise to see some language overlap, es-
pecially in terms of syntax. One MS part-timer even
wrote comments showing Java code that he was seem-
ingly converting to Eiffel. Typically, some students
would use the keyword this instead of Current or use
logic operators used in languages other than Eiffel,
such as != instead of /= for inequality.

• Extra variables
Some students used more variables than necessary, in
particular in exercise 2. One subtask of this exercise
was the conversion of a temperature provided in Cel-
sius to its Fahrenheit equivalent. Some students wrote
code similar to the one below:
convalue := 9/5 ∗ value + 32
create fahrenheit.make with fahrenheit (convalue)
Result := fahrenheit

They used two variables: one for storing the results of
the conversion (here convalue) and the other for the
creation of a new object to represent the newly con-
verted temperature (here fahrenheit). The one-line so-
lution which does not require declaring any variables
is:
create Result.make with fahrenheit (9/5 ∗ value+32)

• Assignment
Problems with the notion of assignment were apparent
when students assigned, for example, i to j when they
meant assigning j to i. This was trivial to solve in the
few cases where it happened. More serious were errors
where an entity of some type was assigned to an entity
of an unrelated type. Another error, syntactical by na-
ture, is the confusion of assignment and comparison.
Although Eiffel’s syntax is clear - an equals sign means
exactly what = is in mathematics - some students still
compared when they meant to assign and vice-versa.
This might have occurred because of the influence of
other languages. What was unexpected was to find
students assigning some value to a function. Addition-
ally, in Eiffel, information hiding principles prohibit
one assigning to a feature of a qualified call (as in x.a
:= v) even if the feature ‘a’ is an attribute4. Many

4In the recent ECMA Eiffel standard (ECMA standard 367:
http://se.ethz.ch/eiffel/standard.pdf), such constructs are al-
lowed; they do not denote the direct assignment to an at-
tribute but rather a call to the appropriate “setter” feature.

http://se.ethz.ch/eiffel/standard.pdf

a_move_of_valid_type a_type_is_valid

is_valid_type(a_move)=true

a_move.is_valid_type(a_move) is_valid_type()=true

Current.is_valid_type(a_move)

is_valid_type(a_move)

is_valid_type(a_move.type)=true

Current.is_valid_type(a_move)=true

Current.is_valid_type(a_type)=true

is_valid_type(a_type)=true

is_valid_type(a_type)

a_type.is_valid_type=true

Figure 1: Student’s path in solving a move of valid type and a type is valid

students made this mistake even though the point was
stressed in class.

• Queries
Many students wrote code of the form:
b=true or is valid type(tram type)=true

rather than
b or is valid type(tram type)

This is not an error in itself but reflects insufficient
mastery of boolean values. This point should be stressed
more explicitly in class.

• Expression used as instruction
Some students did not differentiate between expres-
sions and instructions. This was among the most com-
mon errors.

• Current
Some students consistently used Current unnecessar-
ily. This indicates that they might not have under-
stood the concept of unqualified call and applied Cur-
rent “just in case”. This error might also involve the
influence of other languages, where this or self is more
often necessary.

• Language of instruction
The use of English for the ETH course (where it is a
foreign language for most students) may have affected
the comprehension and completion of the task. One
clear example is in exercise 6 where students had to
implement a class FRACTION. Many ETH students
used variable names such as dominator for denomina-
tor. This is not an error but one particular student
mistook numerator for denominator and consequently
had the wrong algorithm. It took “her” sixty two com-
pilations and quite some time before she realized the
mistake.

• Inheritance
It was interesting to note uses of inheritance early on,
when the concept had not even been introduced in
class, only mentioned briefly in an example from the
Traffic software. We may attribute this to the use of li-
braries, where students have access to the source code.
Many probably looked at them and did some research
on more advanced topics. This is part of the reason
for using libraries: to enable the more inquisitive and
adventurous students to learn on their own, by study
and imitation of carefully written software models.

5. EXAMPLE PATHS AND BEHAVIOUR PAT-
TERNS

We studied with particular care how students deal with
the errors they come across. It was very interesting to ob-
serve the various strategies and patterns used by novices.

Some students were consistent in their ways of solving
problems. If they adopted some particular methodology,
they seemed to use it over and over again. For instance,
some would use lots of backtracking: they would try some-
thing, change it to something else to see how it affects out-
put, then come back to the previous answer and so on; some
would make many changes at one go, while others would
change one thing at a time.

Exercise 1 (see [1] for the exercise text) provides a good
example of this problem-solving style. In this exercise, stu-
dents have to write two very similar assertions: a move of
valid type and a type is valid. Many students made similar
mistakes in producing these two contracts. Figure 1 illus-
trates an example of a student using similar “strategies”
and thus making similar mistakes in producing these two
contracts. This student uses Current where it is not neces-
sary, and compares the result of the query is valid type to
true in both assertions.

One student had an interesting technique for solving prob-
lems. “She” uses a lot of backtracking and was by far the
most prolific producer of answers. Figure 2 shows the path
she used to arrive at an answer to exercise 1, the assertion:

a move.type /=Void and then is valid type(a move.type)
The graph of her paths is very large. It separates into two
different problem-solving “strategies”. At some point, she
nearly has the answer but cannot find the correct argument
to is valid type; then, she drops the first part of the answer.
This graph shows how extensively she explored the possibil-
ities. What is apparent in this example is that she cannot
determine the correct argument, and in trying to find it she
introduces more mistakes. She seems to be trying various
options without really understanding what the problem is
and attending to the error that she is getting, which was
her only obstacle to a correct answer.

6. CONCLUSION AND FUTURE WORK
The initial results of this study have provided valuable

insights into the ways in which students learn to program:
the errors they make and the ways in which they overcome
them. In this paper we focused on the qualitative rather
than quantitative results. Therefore, we did not provide

a_move /= Void and then is_valid_move(a_move)

a_move /= Void and then is_valid_type(a_move)

a_move /= Void and then is_valid_type(a_type)

a_move /= Void and then is_valid_type(a_type:STRING) a_move /= Void and then is_valid_type a_move /= Void and then is_valid_type(move_type) a_move /= Void and then move.is_valid_type(a_type) a_move.is_valid_type(a_type)

a_move.is_valid_type(a_type:STRING) a_move.is_valid_type(a_move.type)is_valid_type(a_type) a_move.is_valid_type(a_move) is_valid_type(a_move.type)

a_move.is_valid_typeis is_valid_type(a_type)

a_move = is_valid_type(a_type)

Figure 2: a move of valid type

detailed statistics for the different kinds of errors. In the
analysis we try to understand why these errors occur and
why students tackle them the way they do, with direct feed-
back into the design and teaching of the course, for which
the results are full of lessons.

The data so far has been processed manually. We are
now exploring ways of automating the processing of the data
from the next iteration of this study. Various methods from
compiler and debugging literature will be explored, for ex-
ample program slicing [12], Advanced Object-oriented Pro-
gram Dependence Graph (AOPDG) [6], Abstract Syntax
Trees, etc.

We will continue to work on representing the informa-
tion obtained in the study in a suitable format for provi-
sion of automated diagnosis and feedback in order to help
students while they are learning using a prototypical intelli-
gent tutoring system - the ultimate aim of this research.
An initial attempt at automating the extraction of rules
for the above was made with see5 (http://www.rulequest.
com/see5-info.html). The results are nonconclusive at this
stage and require reworking the derivation of attributes and
classes. It might be necessary to explore other clustering
and categorisation methods.

7. ACKNOWLEDGEMENTS
We are grateful to the assistants in the “Introduction to

Programming course” at ETH for their support and help
in setting up the experiment as well as for motivating their
students to participate in the study. Many thanks also to
Emmanuel Stapf for his help with EiffelStudio. And most
of all many thanks to the participants of the study.

8. REFERENCES
[1] Introduction to programming. Retrieved 7 July 2005

from, http://se.inf.ethz.ch/teaching/ws2004/0001.

[2] M. Jadud. A first look at novice compilation behavior
using bluej. Computer Science Education, 15(1):25–40,
2005.

[3] A. J. Ko and B. Myers. A framework and
methodology for studying the causes of software errors
in programming systems. Journal of Visual Languages
and Computing, 16:41–84, 2005.

[4] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The bluej system and its pedagogy. Journal of
Computer Science Education, Special issue on
Learning and Teaching Object Technology, 13(4), 2003.

[5] C. Litecky and G. Davis. A study of errors,
error-proneness, and error diagnosis in cobol.
Communications of the ACM, 19(1):33–38, 1976.

[6] J. McGregor, B. Malloy, and R. Siegmund. A
comprehensive program representation of
object-oriented software. Annals of Software
Engineering, 2:51–91, 1996.

[7] B. Meyer. Towards an oo curriculum. Journal of
Object-Oriented Programming, 6(2):76–81, 1993.

[8] B. Meyer. Object-oriented software construction.
Prentice hall, 2nd edition, 1997.

[9] B. Meyer. The outside-in method of teaching
introductory programming. In Manfred Broy and
Alexandr Zamulin(Ed.), Perspective of System
Informatics, Proceedings of fifth Andrei Ershov
Conference., pages 66–78, Novosibirsk, July 2003.
Lecture Notes in Computer Science 2890,
Springer-Verlag, 2003.

[10] B. Meyer. Touch of class - learning to program well.
http://se.inf.ethz.ch/touch/, online edition, 2003.

[11] P. Moulton and M. Muller. Ditran - a compiler
emphasizing diagnostics. Communications of the
ACM, 10(1):45–52, 1967.

[12] F. Tip. A survey of program slicing techniques.
Journal of programming languages, 3(3), 1995.

[13] M. Zelkowitz. Automatic program analysis and
evaluation. In ICSE’76: Proceedings of the 2nd
inernational conference on software engineering, pages
158–163. IEEE Computer Society Press, 1976.

http://www.rulequest.com/see5-info.html
http://www.rulequest.com/see5-info.html

	INTRODUCTION
	Related Work
	The study
	The course
	Student groups
	Data collection
	How
	What

	Review of Errors
	Example paths and behaviour patterns
	Conclusion and Future work
	Acknowledgements
	References

