
Object-oriented modeling of Object-Oriented
Concepts

A Case Study in Structuring an Educational Domain

Michela Pedroni and Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
{michela.pedroni|bertrand.meyer}@inf.ethz.ch

Abstract. Teaching introductory object-oriented programming presents
considerable challenges. Some of these challenges are due to the intrinsic
complexity of the subject matter — object-oriented concepts are tightly
interrelated and appear in many combinations. The present work de-
scribes an approach to modeling educational domains and reports on
the results for object-orientation. It analyzes the dependency structure
of object-oriented concepts and describes the implications that the high
interrelatedness of concepts has on teaching introductory programming.

1 Introduction

One of the strengths of the object-oriented mode of software development is
to provide us with a set of powerful and expressive concepts, so powerful and
expressive indeed that they can serve beyond their original target area — pro-
gramming. These concepts, such as classes, message passing, single and multiple
inheritance, were initially programming concepts; but they are in fact useful
for a far more general purpose: designing systems, modeling systems, and more
generally thinking about systems. The systems at hand are not even necessarily
software systems: they can be human and artificial systems of many different
kinds. In this work we apply the concepts to a human-centered problem: teach-
ing. We show that it is possible and useful to take ideas originally developed for
programming and apply them to the modeling of teaching and learning activities.

Partly by coincidence, the pedagogical target area — the topics for which we
hope to support and improve teaching — is programming, and indeed the very
form of programming whose results serve as inspiration for the teaching methods
and tools: object-oriented programming. The work is then about object-oriented
techniques for teaching object-oriented programming.

Teaching introductory programming is a difficult endeavor. On the side of the
learner, programming is a complex activity that involves skills and mental models
that many novices struggle to develop during programming courses. On the side
of the instructor, teaching programming presents considerable difficulties and has
been described as one of the seven grand challenges in computing education [1].

Since the mid 1990s, object-oriented programming has entered the classrooms
of introductory programming courses. Many schools have since then adopted an

“objects-first” or “objects-early” approach for their CS1 courses, and researchers
as well as educators have proposed numerous tools, approaches, and strategies.

It has been asserted that for object-oriented programming “the basic concepts
are tightly interrelated and cannot be easily taught and learned in isolation” [2].
This complexity is intrinsic to object-orientation and cannot be removed making
it important to develop appropriate tools and processes to handle the resulting
challenges.

In programming courses, it seems natural to expose students first to single
programming language features (matching the first stage of Linn’s “chain of
cognitive accomplishments from computer programming instruction” [3]). For
object-oriented programming, it is difficult to isolate single language features
and to find an initial sequence of single language features (a phenomenon known
as “Big Bang problem”). In addition, the tight interrelatedness of O-O concepts
results in a higher number of elements to teach, since the instructor must examine
not only the elementary concepts but also their possible combinations. This
makes it harder to ensure that the teaching sequence meets the prerequisites at
all times and that a course covers all facets of a concept.

This work describes a modeling approach and the supporting tool for model-
ing educational domains through their main concepts and the relations between
these concepts, and its application to the educational domain of introductory
programming.

2 Truc framework

A course will never be specified as precisely and rigorously as, for example,
a computer program. Still, applying modeling techniques partly imitated from
software and other engineering disciplines can help meet some of the challenges
of course design, in particular for object-oriented programming.

The Truc framework [4] used in this work models educational domains and
identifies structural dependencies between concepts. It extends the idea of Truc
(Testable, Reusable Unit of Cognition) [5] by adding two additional types of
knowledge units. The final model then uses three types of knowledge units (in
increasing level of granularity): notions, trucs, and clusters. In addition, it defines
several types of relationships between the entities.

At the highest level, a cluster is a collection of trucs and other clusters
representing a particular knowledge area. A truc belongs to exactly one cluster;
the set of clusters forms a hierarchical structure in a directed acyclic graph.

At the medium level, a truc is “a collection of concepts, operational skills
and assessment criteria” [5]. Its description follows a standardized scheme with
sections on technical properties (for example, its role in the field, benefits of
applying it, and a summary) and pedagogical properties (such as common con-
fusions and sample exam questions). To help instructors check that their teaching
material addresses the misconceptions of students, we have extended the original
“common confusions” section [5] with recommendations applicable to teaching
material such as slides.

The most elementary unit, notion, “represents a single concept or operational
skill or facet of a concept” [4]. Since the key unit of granularity of the model
is truc, every notion belongs to exactly one truc. A truc may have a central
notion, which then bears the same name. In our example pedagogical domain,
examples of notions within a “feature call” truc are: the central notion “feature
call” (capturing the general idea of a method call instruction), “multi-dot feature
call” (calls of the form o1.o2.o3.f), and “unqualified feature call” (method calls
without an explicit target).

To capture the dependency structure of the knowledge units, the Truc frame-
work defines two types of relations between notions. A requires link captures that
understanding a notion requires knowing another notion. This relation is com-
parable to the client relationship between classes in object-oriented systems. A
refines link expresses that a notion is a specialization of another notion; it is
comparable to the inheritance mechanism in object-oriented systems. A refined
notion implicitly inherits all the requires links from its ancestor, but may also
introduce additional ones. For simplicity, the methodology prohibits refines links
across truc boundaries.

Dependencies at the notion level contribute to dependencies at the truc level:
a truc A depends on another truc B if any of its notions requires a notion of
B. Since each truc contains a set of notions, the trucs and notions define a
two-layered graph. The graph provides the domain model for the modeling of
courses and their associated lectures as a sequence of covered notions. Figure 1
shows an extract of the truc-notion graph1 for object-oriented programming.
It includes the direct dependencies of truc Feature call and their notions. The
textual description of an example truc is available in Appendix A.

The TrucStudio2 [6] Pedagogical Development Environment supports the
Truc approach. It automatically deduces the truc dependencies from the notion
requirements; it provides a graphical representation of the domain model (such
as the one produced for the truc Feature call shown in Figure 1) and a view
of courses as diagrams. Additionally, it offers a customizable output generation
mechanism to produce Web pages and ontology files, supports the analysis of
transitive dependencies and cycles on notion and truc level, and reports prereq-
uisite violation within a course.

3 Model of object-oriented programming

Several articles and standards have guided the work of selecting concepts and
skills that can serve as a starting point for defining the trucs of OOP. In par-
ticular, the article on “the quarks of object-oriented development” [7] identifies
inheritance, object, class, encapsulation, method, message passing, polymorphism,
and abstraction as “quarks”. Except for abstraction, all of these quarks appear

1 To prevent misunderstandings related to the entity type “cluster”, we use the name
truc-notion graph instead of clustered notions graph as found in an earlier article [4].

2 Available at http://trucstudio.origo.ethz.ch

Argument passing

 Argument
 passing

 Formal
 argument

 Actual
 argument

 Argument
 declaration

Feature

Feature

Attribute

Function
Procedure

Return type

 Feature
 declaration

 Local
 variable

Constant Result

 Feature
 signature

Export status

Feature call

Feature call

 feature call

 Simple

 feature call

 Multi dot
 feature call

Target

Void call

Reference

Reference

AttachmentVoid

Aliasing

System execution

 Current
 object

 System
 entry point

Root class

Root object System
 execution

 Root
 creation
 procedure

Termination

 Object
 structure

Call stack

Expression

Entity

Expression

 operator

 Operator
 expression

 Call
 expression

Required Truc

Notion a requires notion b
Notion a re�nes notion b
Truc A depends on Truc B

Notion

Legend

Fig. 1: Dependencies of the “Feature call” truc

as trucs (encapsulation under the name information hiding and message passing
as feature call).

An experiment by Sanders et al. [8] contrasts the expert view of the quarks
with the view of students who recently had studied object-oriented programming.
They asked them to draw concept maps [9] that summarize their knowledge
of OOP. The most commonly mentioned concepts are class, method, instance,
variable, and object. Other commonly found concepts (implicitly or explicitly) are
data/attribute/instance variable, inheritance, and encapsulation. The developed
trucs contain all of these concepts; instance is integrated in the object truc and
data/attribute/instance variable in the feature truc.

Schulte and Bennedsen [10] carried out a study in 2006 where they asked
computer science teachers from high schools, colleges, and universities in various
countries to rate the difficulty, relevance, and cognitive level of 28 programming
topics. They refer to a set of other studies [11,12,13] that helped develop the list
of topics. The topics with highest relevance are selection and iteration, simple
data structures, parameters, scope, object and class and syntax. The trucs in our
model cover these topics, except for syntax.

The ACM curricular initiative CC2001 [13] defines the body of knowledge
of computer science by specifying 14 knowledge areas ranging from Discrete

Structures, Programming Fundamentals, to Social and Professional Issues. Each
knowledge area contains a set of units, which hold a set of topics. It also defines
six curricular models for introductory courses and proposes a syllabus and set of
units for each variant. The syllabi and description of knowledge units have also
guided the selection of concepts covered by trucs.

The model we have developed for object-oriented programming contains
the two clusters Object-oriented programming and Data structures with 28
trucs: Algorithm, Argument passing, Array, Assignment, Class, Conditional, De-
ferred class, Design by Contract, Dynamic binding, Expression, Feature, Fea-
ture call, Genericity, Hash table, Information Hiding, Inheritance, Instruc-
tion, Linked list, Loop, Multiple inheritance, Object, Object creation, Poly-
morphism, Primitive type, Recursion, Reference, Stack, System execution. The
trucs cover concepts ranging from imperative to object-oriented programming
and simple data structures. They contain 147 notions with 196 requires and
39 refines links. These links result in 85 direct dependencies between trucs.
The entire model is available as Web pages and as a TrucStudio project at
http://se.ethz.ch/people/pedroni/trucs.

4 Analysis of the dependency structure

The first part of this section analyzes the transitive dependencies and cycles
as present in our developed domain model. As the domain model represents
our view of object-oriented programming and is influenced by our context (in
particular the programming language we use, Eiffel), we present a comparison
to a model developed by another instructor using Java in the second part.

4.1 Transitive dependencies

The analysis of the dependency structure relies on the transitive (direct and
indirect) dependencies resulting from the truc-notion graph of our model for
object-oriented programming. The discussion distinguishes between outgoing
and incoming links. The analysis of outgoing links organizes the trucs according
to the number of their dependencies (prerequisites). This gives an intuition of
a truc’s place in a course; trucs with many dependencies are likely to appear
towards the end, while trucs with few dependencies will probably appear at the
beginning. With the incoming links of trucs, the focus shifts to the number of
trucs that rely on a given one. This gives an indication of a trucs’ importance; if
many trucs rely on it, then it is probably central to teaching programming and
will reappear throughout a course. Table 1 presents the trucs grouped by their
transitive outgoing dependencies: if a set of trucs shares their dependencies, then
they are listed in one row.

Outgoing links. The first row of the table shows a core group of trucs. They
constitute a minimal set of requirements for all 28 trucs appearing in the model.

Table 1: Overview of transitive truc dependencies

Truc

Prerequisite

C
o
re

gr
o
u
p

A
lg

o
ri

th
m

A
rr

ay

A
ss

ig
n
m

en
t

C
o
n
d
it

io
n
a
l

D
ef

er
re

d
cl

a
ss

D
b
C

D
y
n
.

b
in

d
in

g
G

en
er

ic
it

y
H

a
sh

ta
b
le

In
f.

h
id

in
g

In
h
er

it
a
n
ce

In
st

ru
ct

io
n

L
in

k
ed

li
st

L
o
o
p

M
u
lt

ip
le

in
h
.

P
o
ly

m
o
rp

h
.

P
ri

m
.

ty
p

e

R
ec

u
rs

io
n

S
ta

ck
#

O
u
tg

o
in

g
li
n
k
s

Core group: Argument passing,
Class, Expression, Feature, Fea-
ture call, Object, Object cre-
ation, Reference, System execu-
tion

x 9

Assignment, Inheritance, Prim-
itive type

Deferred class, Genericity, Mul-
tiple inh.

x x 10

Conditional, Instruction, Loop
x x x x x x 14Algorithm

Design by Contract x x x 11

Polymorphism x x x x 12
Dynamic binding x x x x x 13
Information hiding x x x x x x 14

Array, Linked list x x x x x x x x x 17
Hash table x x x x x x x x x x 18
Stack x x x x x x x x x x x 19

Recursion x x x x x x x x x x x x 20

Incoming links 28 5 3 12 9 0 0 1 8 0 0 12 9 2 9 0 2 10 0 1

The core group contains nine trucs: Argument passing, Class, Expression, Fea-
ture, Feature call, Object, Object creation, Reference, and System execution. Ev-
ery member of the core group depends on itself and on all other members. This
is an indication for cycles in the domain model (see 4.2). The trucs Assignment,
Inheritance and Primitive type share the dependencies of the core group. They
are not part of the core group, because they are not all mutually dependent.

The second set of trucs with cyclic dependencies consists of Conditional, Loop,
and Instruction. They are recursively dependent on each other. Additionally to
the core trucs, they depend on Assignment and Primitive type. Algorithm has
the same dependencies, but does not recursively depend on itself. This group
mostly contains trucs associated to imperative programming.

All remaining trucs require Inheritance besides the nine core trucs. This is
the only supplemental requirement for Deferred class, Genericity, and Multiple
inheritance. Design by Contract additionally relies on Primitive type, while Poly-
morphism requires Assignment and Genericity in addition to Inheritance and

the core trucs. Dynamic binding depends on Polymorphism and thus includes all
its dependencies; similarly, Information hiding relies on Dynamic binding and
shares all its requirements. This group mostly contains advanced object-oriented
concepts related to inheritance.

The trucs representing knowledge about data structures combine the depen-
dencies of the imperative programming group with some of the object-oriented
group. Linked list and Array, for example, depend on Algorithm, Conditional,
Instruction, Loop, and Primitive type, as well as on Inheritance and Genericity.
Hash table additionally requires Array ; Stack requires both Array and Linked
list ; and Recursion depends on Stack.

Incoming links. The nine core trucs are a prerequisite for all the trucs of the
domain model. This makes them fundamental for teaching object-oriented pro-
gramming. The second group containing Assignment, Inheritance and Primitive
type are required by 12 respectively 10 other trucs (almost half of all trucs) and
Genericity is a requirement for eight trucs. The second cyclic group containing
Conditional, Loop, Instruction, and Algorithm provides a basis for nine respec-
tively five trucs. Polymorphism, Dynamic binding, Array, Linked list, and Stack
are prerequisite to one to three trucs. The trucs Deferred class, Multiple inheri-
tance, Design by Contract, Information hiding, Hash table and Recursion do not
appear as a requirement for any truc in the model.

Transitive dependencies of notions. The transitive dependencies between
notions exhibit characteristics similar to those of the trucs. Ten notions, out of
147, form a core group such that all notions in the model transitively require
them. The core group contains the notions Argument declaration, Class, Fea-
ture, Feature declaration, Feature signature, Formal argument, Generating class,
Instance, Object, and Type. Additionally, over half of all notions in the model
transitively require the notion Expression. 55 notions are not needed by any
other notions.

4.2 Cycles

On the notion level, the domain model exhibits five circular dependencies, of
which three involve the truc Argument passing. One of these cycles is a mutual
dependency between the notions Argument declaration and Feature signature;
another cycle consists of the notions Argument passing, Actual argument, and
Feature call ; and the third cycle contains the notions Formal argument, Type,
Class, Feature, Feature declaration, Feature signature, and Argument declaration.
The fourth cycle on the notion level involves the trucs Class and Object and illus-
trates their close interrelatedness via a path through the notions Class, Object,
Instance, and Generating class, back to notion Class. The fifth cycle shows the
close connection between Function and Result.

As indicated in 4.1, two groups of trucs contain cycles in their lists of depen-
dencies. Figure 2(a) shows an extract of the graph with the direct dependencies
of the core trucs Argument passing, Feature call, Feature, Class, Expression, Ob-
ject creation, Object, Reference, and System execution. This subgraph exhibits

high interrelatedness between its concepts; in particular, there are multiple pairs
of mutual dependencies (such as between Class and Object, and Feature call and
Expression). Figure 2(b) shows the second group of trucs with mutual depen-
dencies that connect Instruction to, separately, Conditional and Loop.

Argument passing

Class

Feature

Feature call

Reference

Expression

Object

System execution

Object creation

(a) Core group

Conditional

Instruction

Loop

Algorithm

(b) Imperative group

Fig. 2: Cyclic dependencies

4.3 Comparison with another model

Our use of Eiffel to teach programming has some bearing on the model of object-
oriented programming. The choice of trucs and notions, the relationships between
notions, and the descriptions of the trucs reflect this particular choice. The model
may not, as a result, reflect a generally accepted image of object-orientation and
it is not the only form of object-oriented programming.

To find out which properties, in particular cyclic and transitive dependencies,
might be artifacts of our course’s choices, we asked another instructor teach-
ing introductory object-oriented programming with Java to model parts of his
teaching. His domain model includes the entities required to represent the first
three lectures of his introductory Java course. It contains a cluster Program-
ming with the three trucs Programming language, Memory management, and
Program and a second cluster Object-orientation in Java with the 12 trucs Data
type, Object, Method, Variable, Polymorphism, Compilation unit, Instruction,
Expression, Access modifier, Conditional, Loop, and Identifier. The trucs con-
tain 67 notions with 19 refines links and 33 requires links. Appendix B shows
the model as a truc-notion graph. The notion dependencies are incomplete.

A comparison of this model to ours shows that they cover similar notions,
but their distribution amongst trucs varies. For example, the Java truc Method
combines sets of notions from our trucs Feature and Argument passing with single
notions of System execution. A similar pattern is visible for other trucs, such as
the Java truc Object, which subsumes our truc Object and includes single notions
found in our trucs Feature call, Reference, and Object creation. Our model has no
truc conforming to the Java truc Access modifier, but its notions are integrated in
truc Feature. Additionally, certain trucs have different names although covering
similar notions. For example, the Java truc Polymorphism conforms to our truc
Inheritance and Compilation unit conforms to Class.

Analysis of the transitive dependencies of the Java model results in a core
group containing the trucs Data type, Method, Object, and Variable. These trucs
are suppliers for about half of the trucs in the model. In particular, they are a
prerequisite to themselves and to the trucs Instruction, Polymorphism, Memory
management, and Access modifier.

There are no cycles on the notion level in this model, but four cycles exist at
the truc level: Method and Data type as well as Object and Variable are mutually
dependent; additionally, there is one cycle containing the trucs Method, Variable,
and Object, and one containing Method, Data type, and Object.

A few differences exist between the two models. In the Java model, truc
Compilation unit containing the Class notion is not part of the cyclic group,
while in our model Class is part of the core group. On the other hand, the truc
Data type conforming to our truc Primitive type is part of the core group. This
is due to the notion Command line argument in the Method truc requesting the
notion Array of truc Data type.

Another difference is that most of the other parts of the model are uncon-
nected. This is probably due to the incomplete nature of the model.

The Java model exhibits similar characteristics with respect to transitive
dependencies and cycles as ours. The most striking similarity is the existence
of a group of core trucs that are mutually dependent and that are fundamental
for a large portion of the remaining trucs. This suggests that our model has a
broader reach than just our course.

5 Implications for teaching

Instructors face many challenges when designing courses or textbooks. Besides
pedagogical finesse for presenting material adapted to students’ skills and in-
terests, they must demonstrate the ability to structure the material in a sound
sequence. This task is particularly difficult if the domain of teaching is object-
oriented programming, due to the high interrelatedness of its concepts [14,15],
what Caspersen calls “one of the most challenging inherent complexities of
object-orientation” [2, p. 78]. It complicates finding a starting point where no
prerequisites are necessary, and raises the challenges of how to cover the entire
subject area and how to order the concepts without prerequisite violations.

Analysis of the truc and notion graphs in this article confirms Caspersen’s
observation, but narrows it down to a core group of nine closely interrelated
concepts. This group contains the trucs Argument passing, Class, Expression,
Feature, Feature call, Object, Object creation, Reference, and System execution.
Their transitive and recursive dependencies show that they belong in the initial
phase of an objects-first course.

On the notion level, the ten notions Argument declaration, Class, Feature,
Feature declaration, Feature signature, Formal argument, Generating class, In-
stance, Object, and Type have similar properties with respect to their dependen-
cies as the nine core trucs. With the exception of Argument passing and Formal
argument, which can be omitted if only features without arguments are covered,
it seems necessary to introduce them together.

The circular dependencies in the truc and notion model indicate that teach-
ing object-oriented programming requires a spiral model; “A curriculum as it
develops should revisit these basic ideas repeatedly, building upon them until
the student has grasped the full formal apparatus that goes with them” [16].
The detected cycles also confirm the existence of the “Big Bang problem” [2].

The Inverted Curriculum [17,18] approaches the Big Bang problem by us-
ing a large body of supporting software that, through information hiding and
inheritance, allows the initial examples and exercises used in class to rely on ad-
vanced mechanisms without introducing them formally yet. For example, it first
introduces feature calls on predefined objects inherited from an ancestor class.
The difficulty of the Inverted Curriculum approach is that the preparation of
the software framework and all examples and exercises needs to happen before
the students receive the software. This produces the need for more planning and
may lead to a restricted set of possible exercises.

Another approach to handling the Big Bang problem is to use an “example-
driven” approach, where the “progression in a course is defined by increasing
complexity of class models rather than being dictated by a bottom-up ordering
of language constructs” [19]. For introducing association, for example, this ap-
proach first uses recursive 0..1 association (a PERSON class having an attribute
married_to), then it covers 0..∗ associations (extending PERSON with attribute
friends), and finally it shows associations between different classes. The language
constructs and concepts required for understanding the examples are introduced
when they are needed (such as collections for recursive 0..∗ associations).

The concept interrelatedness also makes it difficult to ensure that an existing
course is compatible with the prerequisites and covers all the concepts. We have
modeled our Introduction to Programming course using TrucStudio and detected
one critical prerequisite violation (the Result entity is used before introducing
Function) and five notions missing in the course slides (Multi-dot feature call,
Manifest constant, Constant, Precursor, and Polymorphic creation).

The complexity of O-O concepts also leads to misconceptions in students’
understanding when they first learn about them. The created trucs and their
common confusions sections help check whether the teaching material addresses
these misconceptions. In a first analysis of our teaching material, we have found

that it addresses only a small part of the misconceptions. The conjecture is that
this phenomenon is not specific to our material, but more general: although a
large body of studies on novices’ misconceptions is available, it rarely influences
actual teaching.

6 Conclusions

This article has presented a modeling approach for educational domains and
reported on its application to object-oriented programming. The approach uses
knowledge units at three levels: clusters (describing knowledge areas), trucs (de-
scribing skills and concepts following from a central idea), and notions (describ-
ing single facets of a concept). It also includes links between the entities to
capture the dependency structure of a domain.

The resulting domain model for object-oriented programming consists of 28
trucs and 147 notions. The analysis of the dependency structure confirms that
the basic object-oriented concepts are tightly interrelated. It identifies a core
group of trucs containing Argument passing, Class, Expression, Feature, Feature
call, Object, Object creation, Reference, and System execution. The core trucs are
mutually dependent; all other trucs in the model rely on them. The core group
of trucs indicates that the associated concepts are mostly responsible for the Big
Bang problem — the problem of finding a proper order of introduction for the
basic concepts of object-oriented programming.

The developed domain model is influenced by our context (in particular by
the programming language we use, Eiffel). To ensure that the findings from our
domain model apply to a more general context, we have analyzed a second model
of object-oriented programming developed by an instructor using Java for his
introductory programming course. In spite of differences in the trucs and in links
between notions, his model also contains a mutually dependent core group, on
which approximately half of all trucs rely. This indicates that the model for Eiffel
is similar to the one for Java and that the results are likely to apply to yet other
settings. In the future, we would like to develop a more complete model for Java
(possibly based on the Eiffel trucs) and to investigate whether mechanisms from
mathematics and computing can help teach tightly coupled notions (as proposed
by a reviewer of this article).

Acknowledgements
We thank D. Herding from RWTH Aachen for testing TrucStudio and providing
a partial model of object-oriented programming in Java. We are grateful to the
anonymous referees for many useful comments.

References

1. McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., Mander, K.: Grand
Challenges in Computing: Education – A Summary. The Computer Journal 48(1)
(2005) 42–48

2. Bennedsen, J., Caspersen, M.E., Kölling, M.: Reflections on the Teaching of Pro-
gramming. Springer Berlin/Heidelberg (2008)

3. Linn, M.C., Dalbey, J.: Cognitive consequences of programming instruction. In:
Studying the Novice Programmer. Lawrence Erlbaum Associates (1989) 57 – 81

4. Pedroni, M., Oriol, M., Meyer, B.: A framework for describing and comparing
courses and curricula. SIGCSE Bull. 39(3) (2007) 131–135

5. Meyer, B.: Testable, reusable units of cognition. IEEE Computer 39(4) (2006)
20–24

6. Pedroni, M., Oriol, M., Meyer, B., Albonico, E., Angerer, L.: Course management
with TrucStudio. In: ITiCSE ’08: Proceedings of the 13th annual conference on
Innovation and technology in computer science education, New York, NY, USA,
ACM (2008) 260–264

7. Armstrong, D.J.: The quarks of object-oriented development. Commun. ACM
49(2) (2006) 123–128

8. Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J.E., Thomas, L.,
Zander, C.: Student understanding of object-oriented programming as expressed
in concept maps. SIGCSE Bull. 40(1) (2008) 332–336

9. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to con-
struct them. Technical report, IHMC CmapTools, Florida Institute for Human
and Machine Cognition (January 2006)

10. Schulte, C., Bennedsen, J.: What do teachers teach in introductory programming?
In: ICER ’06: Proceedings of the second international workshop on Computing
education research, New York, NY, USA, ACM (2006) 17–28

11. Milne, I., Rowe, G.: Difficulties in learning and teaching programming - views of
students and tutors. Education and Information Technologies 7(1) (March 2002)
55 – 66

12. Dale, N.: Content and emphasis in CS1. SIGCSE Bull. 37(4) (2005) 69–73
13. The Joint Task Force on Computing Curricula: Computing Curricula 2001 (final

report). Technical report, ACM and IEEE (December 2001) Available online at:
http://www.acm.org/sigcse/cc2001.

14. Gries, D.: A principled approach to teaching OO first. SIGCSE Bull. 40(1) (2008)
31–35

15. Shultz, G.: Using a restricted subset of Java in the first part of CS1. J. Comput.
Small Coll. 23(1) (2007) 212–218

16. Schwill, A.: Fundamental ideas in computer science. Bulletin European Association
for Theoretical Computer Science 53 (1994) 274 – 295

17. Meyer, B.: The outside-in method of teaching introductory programming. In Broy,
M., Zamulin, A.V., eds.: Ershov Memorial Conference. Volume 2890 of Lecture
Notes in Computer Science., Springer (2003) 66–78

18. Pedroni, M., Meyer, B.: The inverted curriculum in practice. In: SIGCSE ’06: Pro-
ceedings of the 37th SIGCSE technical symposium on Computer science education,
New York, NY, USA, ACM Press (2006) 481–485

19. Bennedsen, J., Caspersen, M.: Model-Driven Programming. In: Reflections on the
Teaching of Programming. Springer-Verlag, Berlin, Heidelberg (2008) 116–129

Appendix A – An example truc: Feature call

Alternative names Method invocation, Message passing
Dependencies Feature, Object, Argument
Notions Feature call, Multi dot feature call, Simple qualified fea-

ture call, Target, Unqualified feature call, Void call

Summary. Feature call is the mechanism of applying a feature to a target
object [Meyer, 2009]. The target may be explicitly defined through an expression,
which at run time will be attached to a certain object. If no explicit target is
given, the target is the Current object. Feature calls may contain arguments.
Role. Feature call is the “basic mechanism of object-oriented computation”.
In an object-oriented software system, all computation is achieved by calling
features on objects and no software element will ever be executed except as part
of a feature call [Meyer, 1997].
Applicability. Need to modify an object or access object data or state.
Benefits.

– Fundamental to create running programs.
– Favors reuse of code by outsourcing a set of instructions into a feature and

replacing them by a single feature call.

Pitfalls. Using non-pure queries (queries that change the state of an object)
in feature calls may produce side effects. Side effects may lead to mysterious
failures that are difficult to locate and fix.
Examples. Consider class COORDINATE with attributes x: REAL and y: REAL

and procedures set_x_y (u,v: REAL) and translate (a,b: REAL), and a query
distance (other: COORDINATE): REAL. Assuming that p1 and p2 are entities of
type COORDINATE and have been instantiated, sample feature calls could be:

p1.set_x_y(17.2, 3.7)

p2.set_x_y (p1.x, 0)

p1.translate (-0.5, p1.distance (p2))

Common confusions.

– Static-text execution. Many novices have an incorrect model of control
flow for feature calls. It is difficult for them to understand that a feature
call results in the suspension of the calling feature (caller), a transfer of the
execution control and sometimes data to a new and unique specimen of the
called feature (callee), then a transfer of control and data back to the caller
after the callee has finished. This knowledge is especially important when
recursion is introduced. [George, 2000]

– Availability of features. “Calling a non-existent feature” seems a recur-
ring mistake [Ng Cheong Vee et al., 2006]. Writing feature calls demands
thorough knowledge of what features are available for an entity. This requires
looking up the type of the entity and the sufficiently exported features.

– Wrong target. Various errors in connection with feature calls originate from
specifying wrong targets. For example, students use an unqualified feature
call where a qualified feature call is necessary, or they explicitly specify the
target to be Current for features that are only available for unqualified feature
calls. [Ng Cheong Vee et al., 2006]

– Object state. Novices have difficulties in understanding that feature call
instructions modify object state. [Ragonis and Ben-Ari, 2005]

– Query as command. It seems difficult for novice programmers to distin-
guish between queries and commands for feature call instructions. In certain
programming languages it is possible to use a query (with a resulting val-
ue/object) as a statement, but the result is then lost. This is a common
mistake. [Hristova et al., 2003]

� Examples show control flow of feature calls.
� Examples include lookup of available features.
� Examples include feature calls on composite targets.
� Examples show when qualified or unqualified calls are appropriate.
� Examples include feature calls that modify object state.
� Examples show invalid (or unwanted) use of expression as instruction.
Sample questions. Consider a class WORD that has an attribute word: STRING, a
procedure set_word(s: STRING), and a procedure print that displays the word on
a console. It also has a function substring(i, j: INTEGER): WORD, which returns
a new WORD object containing the part of the original word defined through the
indices i and j. Given is an entity w: WORD. Write an instruction that sets the word

entity of w to ”summertime”. Then write an instruction that uses the substring

function to extract ”time” from w.

Feature Call Bibliography

[George, 2000] George, C. E. (2000). Erosi – visualising recursion and discovering new
errors. SIGCSE Bull., 32(1):305?309.

[Hristova et al., 2003] Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003).
Identifying and correcting Java programming errors for introductory computer sci-
ence students. SIGCSE Bull., 35(1):153–156.

[Meyer, 1997] Meyer, B. (1997). Object-Oriented Software Construction. Prentice-Hall,
2nd edition.

[Meyer, 2009] Meyer, B. (2009). Touch of class: Learning to program well with objects
and contracts. Springer.

[Ng Cheong Vee et al., 2006] Ng Cheong Vee, M.-H., Meyer, B., and Mannock, K. L.
(2006). Empirical study of novice errors and error paths in object-oriented program-
ming. In 7th Annual HEA-ICS conference, Dublin, Ireland.

[Ragonis and Ben-Ari, 2005] Ragonis, N. and Ben-Ari, M. (2005). On understanding
the statics and dynamics of object-oriented programs. SIGCSE Bull., 37(1):226–230.

Appendix B – Java model of object-oriented programming

Program

algorithm

 data
structure

 Euclid’s
algorithm

 user
interface

source �le

Programming
language

syntax

semantics

pragmatics

 programming
language

Java

compiler

 virtual
 machine

syntax error

Memory
managment

Heap

Stack

 Garbage
 Collector

Method

 main-
 method

method

parameter

 command
line

argument
 return value

 equals-
 method

Instruction

 System.out.
 println()

 variable
assignment

variable
declaration

instruction

Expression

condition

Loop

loop

 while-
 loop

Conditional

conditional

Compilation
unit

class

Polymorphie

inheritance

super class

sub class

 overriding

 UML
 class diagram

Object

object

new

 dot operrator

null

object com-
munication

Variable

 local
 variable

attribute

 reference
 semantics

variable

Data type

int

long

double
byte

charboolean

short

String Array

ArrayList multi-dimen-
 sional array

primitive
data type

 value range

Object

Literal

void Identi�er

 identi�er key word

public

private

access
modi�er

Access modi�er

ProgrammingObject-orientation in Java

Fig. 3: truc-notion graph of Introduction to Programming at RWTH Aachen (done by
D. Herding, German terms translated into English)

