
SPOC-supported Introduction to Programming

Marco Piccioni
ETH Zurich

marco.piccioni@inf.ethz.ch

Christian Estler
ETH Zurich

christian.estler@inf.ethz.ch

Bertrand Meyer
ETH Zurich

bertrand.meyer@inf.ethz.ch

ABSTRACT
MOOCs (Massive Open Online Courses), which have taken
higher education by storm, are an opportunity to elevate the
quality of existing residential courses. We report about an
experimental attempt during the Autumn 2013 semester at
ETH Zurich, involving our “Introduction to Programming”
course. We designed and implemented a MOOC infrastruc-
ture and used it as a SPOC (Small Private Online Course)
to support and complement the existing course. The re-
sults reported in this article are encouraging for two rea-
sons: first, the participation level was good, in spite of the
fact that the online course was an optional addition to the
residential course; second, students really liked the assess-
ments (quizzes and programming exercises), in spite of the
fact that assessments did not count towards the course final
grade. The data we collected suggest that this may, at least
in part, be due to a gamification aspect we introduced in the
course: awarding virtual badges for obtaining full points in
the quizzes.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms
Design, Human Factors

Keywords
CS1, MOOC, Pedagogy, SPOC

1. INTRODUCTION
The paper describes our experience with the Autumn 2013

edition of the “Introduction to Programming” course involv-
ing 286 freshmen at ETH Zurich. This year we decided
to complement the traditional residential course (taught in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’14, June 21–25, 2014, Uppsala, Sweden.
Copyright 2014 ACM 978-1-4503-2833-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591708.2591759.

German, with exercise sessions both in German and in En-
glish) with an online counterpart, taught in English and or-
ganized like a SPOC. The acronym SPOC was used the first
time by Fox [5], who advocates the use of the MOOC ”idea”
to supplement classroom teaching as opposed to replacing
it. In addition to the traditional frontal (live) lectures, exer-
cise sessions, and home assignments, the SPOC provided an
online, streamlined version of the above: lectures divided in
relatively short lecture segments (17 minutes on average),
quizzes both inside and outside the lecture segments, and
programming exercises providing automatic feedback. We
also introduced badges (awarded for submitting 100% cor-
rect answers in quizzes) to increase students’ motivation.
We summarize the results as follows:

• Students liked the course and responded with enthusi-
asm to the SPOC;

• Attendance to the live lectures remained stable with
respect to the previous year;

• Attendance to each online lecture segment involved
71% of the total number of students on average;

• The average number of attempts to solve the online
quizzes was almost five times bigger than the average
number of views per online lecture;

• For any given quiz, an average of 48% of the first
semester students enrolled in the online course scored
100%, and got the corresponding badge;

• On average, students worked on half of the given pro-
gramming exercises, and 22% of them worked on 75%
to 100% of all the exercises.

• In most cases, students completed programming exer-
cises in a single session lasting an average of 20 min-
utes, and in 80% of the sessions students’ solutions
passed all tests.

The above findings suggest that the ideas of awarding a com-
pletion badge in quizzes and providing immediate and de-
tailed feedback in programming exercises is effective in mo-
tivating the students.

The paper is organized as follows: Section 2 provides
some background on our residential “Introduction to Pro-
gramming” course and its structure; Section 3 describes the
software platform we used and the personalizations and ad-
ditions we provided ad hoc; Section 4 summarizes the data
we collected, and our related comments; Section 5 contains
our final comments and lessons learned from the experience.



Table 1: Students’ initial computing experience

Computer experience Number of Students %
Less than 2 years 0 0

2-4 years 4 2
5-7 years 22 8
7-9 years 69 25

More than 10 years 178 65
Total 273 100

Table 2: Students’ initial programming experience

Programming Experience %
Never programmed 16
No O-O experience 25

Less than 100 classes 53
More than 100 classes 6

Total 100

2. OUR “INTRODUCTION TO PROGRAM-
MING” COURSE: STRUCTURE AND STU-
DENT POPULATION

The residential course is 14 weeks long, excluding exams,
which happen approximately 8 months after the course ends.
The course includes four hours of live lectures per week over
two days, and two hours of exercise sessions per week. The
live lectures are of two kinds: traditional, frontal lectures
and more interactive, hands-on exercise sessions. There are
10 home assignments and 2 mock exams to simulate a re-
alistic exam setting. The exercise groups typically include
20 students each and are differentiated by skill level and
language (English or German). Differentiating the exercise
groups according to students’ self-assessed skill levels (be-
ginners, intermediate, and advanced) has proven to be quite
effective in the last five years, because it enforced more ho-
mogeneous groups, which in turn helped to keep students
with different backgrounds interested and motivated. With-
out this differentiation, advanced students tended to loose
interest when teaching assistants were slowing down to ex-
plain basic concepts to beginners, while beginners tended to
become frustrated when teaching assistants were speeding
up to keep advanced students interested. The preliminary
self-assessment questionnaire was useful to know also about
the students’ backgrounds.

We now summarize the results of this year’s questionnaire.
Table 1 clearly indicates that all the students have been sig-
nificantly exposed to computers (mainly for Internet brows-
ing, social networking, and games) for an average of 8 years
(we also know that all of them have either a computer at
home or a laptop). Though hardly surprising, it is worth
mentioning that we have been having similar results since
2004, so these numbers appear to be rather stable.

To tailor the course to the student population, it is im-
portant to know about previous programming experience.
The data we gathered on students’ such experience is in
line with what we observed in previous years. Table 2 shows
that more than half of the students attending the residential
course come with some object-oriented programming expe-
rience, while only 16% have never programmed before. In
addition, 18% of the students have a part-time job that re-

Table 3: Previous knowledge of programming lan-
guages

Programming language %
Java 23
C# 13
PHP 12

JavaScript 10
C++ 8
Eiffel 7

Python 7
Others 20
Total 100

Table 4: Students’ initial self-assessment

Desired level experience Number of Students %
Beginner 99 36

Intermediate 126 46
Advanced 48 18

Total 273 100

quires some programming.
Table 3 shows the aggregated data about relevant pro-

gramming language knowledge (we only considered answers
claiming a “good” and “very good” knowledge) regardless
of the knowledge distribution among students. To put the
information in the right context, 41% of the total number
of students enrolled in the course declared such a (good or
very good) knowledge, and among them, the average stu-
dent declared to know 2.5 programming languages. From
the data it is clear that we have to deal with a wide selec-
tion of programming languages. This reinforces our choice
to focus on the Eiffel programming language [4, 12] that,
although not the most adopted for “Introduction to Pro-
gramming” courses, makes it easier to express and teach the
object-oriented concepts and methodology, and allows a gen-
tle introduction to program verification through the Design
by Contract technique [10].

Finally, in Table 4 we see students’ self-assessed skill level
that we used to assign them to a corresponding exercise
group in order to avoid the issues of too heterogeneous ex-
ercise groups explained earlier.

Our approach to teaching “Introduction to Programming”
is an extension of the “Inverted Curriculum” approach [11,
16]. In fact, we integrate the exercises based on the main
GUI application (present in the residential course’s home
assignments) with smaller, self-contained examples and case
studies. These allow students to focus on the main con-
cepts in isolation, without the noise that a bigger applica-
tion inevitably brings. The main application remains useful
because it mimics the complexity of software they can find
in real world applications, and lets the students cope with
the software development activity that has been known for a
long time to be the most relevant cost-wise: software main-
tenance [8].



3. OUR CUSTOMIZED ONLINE LEARNING
PLATFORM

The platform we used was made of two distinct parts:
a Moodle [2] installation, enhanced with a plugin we pro-
grammed to provide quizzes integrated in the online lectures,
and a service infrastructure for developing and executing
Eiffel programs in the browser, both running on our servers.

3.1 Virtual Learning Environment
For implementing the SPOC we used the Moodle plat-

form, because it is free, open source, widely used, extensible,
actively maintained, and with a large user community.

The online course sequence is linear and consists of 14
lectures. Every online lecture is divided into one or more
segments (of variable duration), one or more quizzes, and
zero or more programming exercises. Topics’ durations vary
between 5 and 40 minutes, with an average of 17 minutes.
To tackle the well known issues deriving from reduced at-
tention span (see for example [13] for an old but still valid
reference), we embedded quizzes in the longer online lecture
segments. The quizzes provide immediate feedback, can be
attempted an unlimited number of times and are not graded.
Their purpose is twofold: to allow attention span recovery
by breaking the online lecture flow, and to test short-term
topic comprehension.

The quizzes for the online lectures appear in a dedicated
area next to the (paused) video presentation, allowing for a
side-by-side visualization of the quiz and the relevant lecture
material. The quizzes are standard multiple choice quizzes,
consisting on average of 5 questions with each question of-
fering 7 possible answers.

In general, we designed quizzes and exercises to be useful
both in the short term (after taking an online lecture) and
in the long term (for reviewing material for the exam, that
in our case happens 8 months after the course end).

It is noteworthy to compare the differences between our
approach and the “closed laboratory” as advocated by the
ACM/IEEE Joint Curriculum Task Force [3, 19]. A closed
laboratory model is defined as a:

“scheduled, structured, and supervised assignment
that involves the use of computing hardware, soft-
ware or instrumentation for its completion. Stu-
dents attend a closed lab by attending a sched-
uled session, usually 2-3 hours long, at a specific
facility. Supervision is provided by the instruc-
tor. [...] Closed laboratories are particularly im-
portant in situations where the assignment relies
on instructor-student interaction or a team effort
among students to complete the work.”

In our case the online exercises were intended as mostly
optional self-study, they certainly did not rely particularly
on instructor-student interaction (though some interactions
actually took place, mostly by email) and they typically did
not require a team effort among students.

3.2 In-browser programming exercises
We used programming exercises as another form of stu-

dent feedback for some of the more advanced online lectures.
The exercises were designed to train the specific topics, e.g.
recursion, by providing an incomplete program that needed
to be completed by the students. The correctness of stu-
dents’ solutions was evaluated automatically by running a

test-suite on their submitted programs. The number of pass-
ing and failing test cases, together with the individual test
inputs and outputs, were reported back to the students and
they could resubmit new solutions, as many times as they
liked. We persisted each student’s best solution to allow
them to review their submission at a later time. Finally,
the programming exercises provided references to the rel-
evant documentation of library classes and APIs for each
programming exercise.

The infrastructure used for the programming exercises is a
self-contained web service that we developed for this SPOC.
The service, publicly available [1], provides basic function-
alities for writing and running programs in the browser,
thus allowing students to learn and train programming skills
without the need to install any software.

For each programming exercise, a lecturer uploads a tem-
plate program code together with a test suite. Each exer-
cise is then accessible on a separate web page that features
a syntax-highlighted code editor, options for compiling and
running the program, as well as an output window for dis-
playing the results of running the test suite. And example
of such a page is shown in Figure 1. Finally, the exercise
pages are integrated into the main SPOC pages, similar to
the YouTube lecture videos, through HTML frame tags.

3.3 Assessment of student perception of the
SPOC

Overall, students liked the course. With respect to the
SPOC section, from Table 5 we see that for most of the
students who answered the five questionnaires (in total we
collected 318 answers for the various online lectures, quizzes,
and programming exercises), the online lectures and quizzes
were substantially just at the right difficulty level. The pro-
gramming exercises were assessed as “too hard” by 23% of
the respondents. This is consistent with our experience from
previous years.

3.4 Participation
Our SPOC was de-facto open for enrollment to everybody.

However, we did not advertise it, because we wanted to fo-
cus on our students during the first attempt of running this
online course. A the end of the online course we had 327
enrollments, of which 286 were first semester students (de-
termined through analysis of ETH Zurich email domains).
Thus, apart from a few early testers and some outsiders con-
stituting 12% of the enrolled participants, the majority of
participants of the online course were ETH students.

Table 6 reports the hits per online lecture segment. As-
suming that each student accessed each segment once or not
at all, these data suggests that each segment was, on aver-
age, accessed by 71% of the students. Considering that “In-
troduction to Programming” students at our university take
the exam approximately eight months after having attended
the residential course, some may not have done all the ex-
ercises or attended all the online lectures during the course
period, which is the period we used to collected the data
presented here. This implies that our numbers are likely to
be conservative estimates.



Table 6: Hits for online lectures, quizzes, and badges awarded. Column ”Hits” reports how often a unit was
viewed; column ”No. segments” reports how many segments were part of a unit; ”Quiz hits” reports how
quizzes were viewed; ”No. quizzes” reports how many quizzes were part of each unit; ”No. badges awarded”
reports how many badges were awarded in each unit. The second part of the table shows average values for
hits per unit∗, hits per segment∗∗, hits per quiz †, and badges per quiz ‡.

Unit Hits No. segments Quiz hits No. quizzes No. badges awarded
Unit 2 968 1 1597 1 254
Unit 3 588 1 2374 1 191
Unit 4 866 2 1790 1 156
Unit 5 915 3 1406 1 169
Unit 6 859 3 1337 1 139
Unit 7 585 3 703 3 488
Unit 8 1191 5 1255 2 314
Unit 9 654 3 935 1 142
Unit 10 870 5 1114 5 601
Unit 11 213 1 803 1 123
Unit 12 228 2 550 1 77
Unit 13 187 1 661 1 131
Unit 14 636 3 847 1 116
Unit 15 434 5 548 1 67
Unit 16 542 4 733 1 65
Total 9736 42 23583 22 3033

Average 649∗ 232∗∗ — 1072† 138‡

Figure 1: Screenshot of an in-browser programming exercise, showing the code editor and the output window
which displays the passing and failing test cases.



Table 5: Student evaluation for SPOC online lec-
tures, quizzes, and programming exercises (%)

Assessment Lectures Quizzes Progr. exercises
Too easy 11 11 9
Just right 84 84 69
Too hard 5 5 23

4. COLLECTED DATA AND RESULTS

4.1 Assessment of quizzes
While we allowed just one submission for the standard

homework assignments that were independent of the SPOC,
we allowed unlimited attempts for the online quizzes, to fo-
cus students on the formative aspect of the assessment [15,
17]. With the same objective in mind, we provided de-
tailed feedback in most of the quiz answers [6]. Interestingly
enough, we received feedback from the students who asked
for even more feedback to foster their learning. Every quiz
was made of several questions, and for each quiz attempt
the questions were presented in different order and the corre-
sponding answers randomly shuffled. Each quiz attempt was
independent from the previous attempts, so students had to
provide previously given correct answers again. We intended
the quizzes to be not too time consuming (5 to 15 minutes
each) and intended to help consolidate the corresponding
online lecture topics. We also added to the quizzes a gam-
ification aspect [7]: to motivate students to solve each quiz
100% correctly—a goal we decided to be reasonable given
the quiz complexity—we designed and awarded an electronic
badge for each entirely correctly solved quiz. There were no
penalties for multiple quiz attempts, to encourage motivated
students to get the associated badge if they really wanted
to.

Indeed the quiz data in Table 6 show that students on
average attempted quizzes almost five times more than they
viewed online lectures. This is a surprising result, suggest-
ing that the choice of awarding such badges for correct com-
pletion may have worked out well. Another interpretation
could be that students might have clicked randomly on the
quiz answers until they got the completion badge, without
actually learning anything. Though this is in principle pos-
sible, we believe it is very unlikely: the probability for such
students of achieving a 100% score on our quizzes (a quiz
has, on average, 5 questions with 7 randomly shuffled an-
swer options per question) is only 0.006%. Thus, it is clear
that it would take many more than five attempts to achieve
a perfect score in the quiz.

An interesting aspect emerging from our data is that stu-
dents of our online course took many of the quizzes despite
of the fact that quizzes did not influence the final grade.
This suggest that the students were not only trying to op-
timize their learning efforts towards achieving good grades
[14, 18] but were also motivated to prove to themselves that
they can solve the various quizzes and receive all the badges.

Table 6 shows that for each quiz, an average of 138 stu-
dents scored 100% and got the corresponding badge. These
138 students constitute 48% of the total number of first
semester students enrolled in the online course. An inter-
esting result, considering that only 20 students (6%) partic-
ipated in all the online course activities.

While the quizzes fall under the category of multiple choice,
they vary considerably in structure. For example, to test un-
derstanding of source code, we have one type of quiz in which
students have to fill in the blanks in an existing incomplete
program by choosing among options in several drop-down
menus (one option each menu). The catch is that given a
set of drop-down menu options, many of them can be cor-
rect if considered in isolation. However, only one of them is
correct when considered in combination with the options in
the other menus.

4.2 Assessment of programming exercises
We also collected basic usage statistics for the program-

ming exercises. For the analysis shown in this section, we
focus on the main SPOC target group, consisting of the 286
first semester students. Out of those 286 students, a total of
105 (37%) worked on at least one of the four programming
exercises we provided.

For all numbers reported in this section, we removed pro-
gramming sessions that lasted less than two minutes as they
are likely to represent students ”having a quick look”but not
actually working on the exercise.

We found that, on average, students worked on 1.7 out of
the 4 programming exercises. About 22% completed three
or four of the exercises.

The work on the exercises spreads over 190 distinct ses-
sions, implying that, on average, a student worked in 1.8
distinct sessions (where a session is recorded as a browser
session). This number indicates that, in most cases, students
complete an exercise within a single session and do not re-
turn at a later time to try the programming exercise again.
The average length of a student session, starting from the
first compilation until the last compilation/execution, was
about 20 minutes with at least 50% of all sessions lasting
longer then 15 minutes.

Looking at the number of compilations (2004) and exe-
cutions (826) of programs that were written by students,
we observe, on average, 2.5 times more compilations than
executions. We interpret this as an indicator that it takes
students 2-3 attempts before they write syntactically cor-
rect code that can then be executed. This is in line with the
amount of effort we expected from the average student to
solve these kinds of programming exercises.

We believe that the feedback about passing and failing test
cases motivates students in similar way the badges motivate
them to complete the quizzes. We found that in almost 80%
of all cases, students continued to work on their exercise
solution until it passed all test cases.

While not all students worked on the programming exer-
cises, individual feedback was mostly positive. For example,
a student reported that

“The cool thing about MOOC is you don’t need
[an IDE] or even a Computer but . . . you can’t
debug it unless you copy it into [the IDE].”

This quote is in line with our impression that the conve-
nience of in-browser programming exercises is appreciated
but more advanced features should be added to improve the
student’s experience.

5. CONCLUSIONS
Research shows that even though MOOCs offer autonomy

and connectedness, the lack of support and guidance can be



an issue [9]. With our Autumn 2013 “Introduction to Pro-
gramming” course, we tried to take the best of residential
courses and MOOCs by integrating a SPOC into our stan-
dard residential course. The results have been encouraging:
students’ response was positive, and so were the participa-
tion and completion rates, given that the material was not
mandatory. In addition, we are left with the impression that
gamification seems to motivate students to learn.

Individual students’ comments included:

“The MOOC was helpful to understand the the-
ory. ”

“The MOOC is an awesome thing. However,
some things could still be improved. Shorter
videos and more precise titles are desirable. This
way, it could be used as a better learning aid, i.e.
looking up a specific topics, watching the same
section multiple times.”

“The MOOC is a very good idea to repeat/test
what you have learned.”

“The MOOC, which was introduced as a sec-
ondary learning instance, complements the lec-
ture perfectly and should absolutely be continued
and advanced in the next year. ”

As future research, we will analyze the final exam results
(once the students have taken the exam) to measure the
effect of the SPOC on the students’ performance. We are
also planning to advertise the online course as a MOOC
to the outside world, so others can attend it or use it for
teaching. Finally, we will use the insights and findings from
this paper to improve our online course for its next iterations
in the future.

6. ACKNOWLEDGMENTS
The Authors would like to thank Andre Macejko for his

work on the implementation of the Moodle plugin for quizzes
in online lectures, Carlo A. Furia for his comments on the
paper draft, and the anonymous referees for their useful re-
marks.

7. REFERENCES
[1] Eiffel 4 mooc. http://se.inf.ethz.ch/data/spoc/.

Accessed April 14, 2014.

[2] Moodle virtual learning environment.
https://moodle.org. Accessed April 14, 2014.

[3] C. Chang. Computing curricula 2001 computer
science: The joint task force on computing curricula.
http://www.acm.org/sigcse/cc2001/cc2001.pdf.
Accessed April 14, 2014.

[4] E. Committee. ECMA International Standard 367:
Eiffel Analysis, Design and Programming Language.
ECMA International, 2006.

[5] A. Fox. From MOOCs to SPOCs. Communications of
the ACM, 56(12):38–40, Dec. 2013.

[6] G. Gibbs and C. Simpson. Conditions under which
assessment supports students’ learning. In Learning
and Teaching in Higher Education, 2005.

[7] J. J. Lee and J. Hammer. Gamification in education:
What, how, why bother? Academic Exchange
Quarterly, 15(2), 2011.

[8] B. P. Lientz and E. B. Swanson. Software Maintenance
Management. Addison Wesley, Reading, MA, 1980.

[9] J. Mackness, S. F. J. Mak, and R. Williams. The
ideals and reality of participating in a mooc. In 7th
International Conference on Networked Learning,
pages 266–274, 2010.

[10] B. Meyer. Applying design by contract. Computer,
25(10):40–51, 1992.

[11] B. Meyer. Towards an object-oriented curriculum. In
TOOLS (11), pages 585–594, 1993.

[12] B. Meyer. Object-Oriented Software Construction, 2nd
edition. Prentice Hall, 1997.

[13] J. Middendorf and A. Kalish. The “change-up” in
lectures. The National Teaching & Learning Forum,
5(2), 1996.

[14] C. Miller and M. Parlett. Up to the mark: a study of
the examination game. Guildford: Society for Research
into Higher Education, 1974.

[15] P. F. Mitros, K. K. Affidi, G. J. Sussman, C. J.
Terman, J. K. White, L. Fischer, and A. Agarwal.
Teaching electronic circuits online: Lessons from
MITx’s 6.002x on edX. In ISCAS, pages 2763–2766,
2013.

[16] M. Pedroni and B. Meyer. The inverted curriculum in
practice. SIGCSE Bull., 38(1):481–485, Mar. 2006.

[17] V. J. Shute. Focus on formative feedback. Review of
Educational Research, pages 153–189, Mar. 2008.

[18] B. Snyder. The hidden curriculum. In Learning and
Teaching in Higher Education, 2005.

[19] A. B. Tucker. Computing Curricula 1991: Report on
the ACM/IEEE-CS Joint Curriculum Task Force.
ACM Press, 1991.


