
The Outside-In method of teaching introductory programming

Bertrand Meyer
ETH Zürich, Chair of Software Engineering

(Also Eiffel Software, Santa Barbara, and Monash University, Melbourne)

se.inf.ethz.ch
e,
ite

or
led

he
f
g

n
e

our

not
ve
e

he

d
e
’s
l
is
m

ral
n-
r-
f

or
es
o

o

d
as
r-
Abstract

The new design for the introductory programming course at
ETH relies on object technology, Eiffel, extensive reuse, a
graphics-rich library (TRAFFIC) built specifically for the
course, a textbook (“Touch of Class”) and an Outside-In
approach based on “inverted curriculum” ideas. This
article presents the key aspects of the approach.

Note: readers interested in following the development of
our course, the “Touch of Class” textbook and the support-
ing TRAFFIC software project may look up the page
se.inf.ethz.ch/touch, where they can also subscribe to mail-
ing lists connected with the approach.

1 The context

Many computer science departments around the world are
wondering today how best to teach introductory program-
ming. This has always been a difficult task, but new chal-
lenges have been added to the traditional ones:

• There is a strong pressure from many sources to
emphasize directly operational skills over deeper, long-
term concepts.

• Pressure also come from student families — more
influential nowadays than in the past — who focus on
the specific skills required in the job ads of the moment,
and don’t necessarily realize that four years later the
acronyms listed in these ads might be different.

• Many academics who push fashionable technologies by
invoking the demands of industry misunderstand
industry’s real needs: real industry recruiters — at least
the good ones — know to look for problem-solving
skills rather than narrow knowledge.

• Students come with a wide variety of backgrounds.
Some have barely touched a computer; others may have
programmed extensively before. It’s tempting to assume
programming experience, but this is unfair to students
from the first category, who will then almost
automatically fail, even though some may have
developed other skills — such as mathematics — and
have the potential to become good computer scientists.

• Of the students who have programming experienc
some may actually possess skills (such as Web s
programming) that the teacher doesn’t.

• For exercises, if the programming language is C++
Java, students increasingly resort to what may be cal
Google-and-Pasteprogramming: find on the Web some
existing program that — among other things — does t
job, and turn off the irrelevant parts. It’s a form o
“reuse” not accounted for in the software engineerin
literature, and may yield solutions of 10,000 lines i
which only a hundred are actually used. Unless w
explicitly forbid this practice (should we?) it’s not
cheating, but it does raise interesting questions about
pedagogical techniques.

• Many courses use an object-oriented language, but
necessarily in an object-oriented way; few people ha
managed to blend genuine O-O thinking into th
elementary part of the curriculum.

• In continental Europe a local phenomenon adds to t
confusion: what we may callConfetti Bolognese, the
tearing into pieces of national university systems —
German, French, Italian..., each with its own logic an
traditions — to make them all conform (as part of th
“Bologna process”) to a standard Bachelor’s/Master
program, in principle devised from the US/UK mode
but in practice missing some of its ingredients. This
both an opportunity to take a fresh look at the curriculu
and a source of instability.

The teaching of computer science at ETH, the Swiss Fede
Institute of Technology in Zurich, is subjected to these co
tradictory pressures as in every other institution. What pe
haps is most specific of ETH is its prestigious tradition o
introducing new techniques both for programming and f
teaching programming, epitomized in the line of languag
designed by Niklaus Wirth: Pascal, Modula-2, Oberon. S
it’s not without trepidation that I accepted the invitation t
take responsibility for “Introduction to Programming”, for-
merly “Informatik I”, starting in the Fall of 2004, and to
teach it in Eiffel. Rather than using safe, time-honore
approaches, I am taking the plunge and trying to apply ide
(“Progressive Opening of the Black Boxes”, Inverted Cu
riculum, full use of object technology) which I previously
described — from the comfort of a position in industry —
in articles and books.

http://se.inf.ethz.ch
se.inf.ethz.ch/touch

ul

ed
ey

ve

;
n
h

de.
m
he

re
om
at
to

d

pts
ke

re
ts
n

hey
in

es
to
rom
n.
ut
n
n
t
y I
in
an
of
s,
so
e
nt

ve
ct

ur
nd

h
g

One of the remarkable traditions of computer science at
ETH is the rule that introductory courses must be taught by
senior professors. This contrasts with the practice of some
institutions which view the teaching of introductory
programming as a chore best handed over to part-timers or
junior faculty. The ETH approach recognizes that those who
have accumulated the most experience in their discipline are
the ones who should teach it to newcomers at the most
elementary level. Being asked to teach such a course is a
great honor, and this article explains what I am trying to do,
with my group, to fulfill that duty.

2 Components

The effort includes the following elements:

• The course itself: lecture schedule, overhead slides,
exercises.

• A new textbook, “Touch of Class”[7], available to the
students in electronic form for the first session, with the
expectation of publishing it as an actual book in 2004.
The developing manuscript is available to other
interested parties from the URL listed at the beginning
of this article.

• An extensive body of supporting software, called
TRAFFIC, also under development.

3 Outside-In: the Inverted Curriculum

The order of topics in programming courses has traditionally
been bottom-up: start with the building blocks of programs
such as variables and assignment; continue with control and
data structures; move on if time permits — which it often
doesn’t in an intro course — to principles of modular design
and techniques for structuring large programs.

This approach gives the students a good practical
understanding of the fabric of programs. But it may not
always teach the system construction concepts that software
engineers must master to be successful in professional
development. Being able to produce programs is not
sufficient any more today; many people who are not
professional software developers can do this honorably.
What distinguishes the genuine professional is a set of
system skills for the development and maintenance of
possibly large and complex programs, open for adaptation
to new needs and for reuse of some of their components.
Starting from the nuts and bolts, as in the traditional “CS1”
curriculum, may not be the best way to teach these skills.

Rather than bottom-up — or top-down — the approach
of the course isOutside-In. It relies on the assumption that
the most effective way to learn software is touse good
existing software, where “good” covers both the quality of
the code — since so much learning happens through
imitation of proven models — and, almost more
importantly, the quality of itsinterfaces, in the sense of
program interfaces (APIs).

From the outset we provide the student with powerf
software: an entire set of sophisticated libraries —
TRAFFIC — where the top layers have been produc
specially for the course, and the basic layers on which th
rely (data structures, graphics, GUI, time and date…) are
existing libraries that have stood the test of extensi
commercial usage for many years.

All this library code is available in source form,
providing a repository of high-quality models to imitate
but in practice the only way to use them for one’s ow
programs, especially at the beginning, is throug
interfaces, also known ascontract views, which provide
the essential information abstracted from the actual co
By relying on contract views, students are able right fro
the start to produce interesting applications, even if t
part they write originally consists of just a few calls to
library routines. As they progress, they learn to build mo
elaborate programs, and to understand the libraries fr
the inside: to “open up the black boxes”. The hope is th
at the end of the course they would be able, if needed,
produce such libraries by themselves.

This Outside-In strategy results in an “Inverte
Curriculum” where the student starts as aconsumerof
reusable components and learns to become aproducer. It
does not ignore the teaching of standard low-level conce
and skills, since at the end we want students who can ta
care of everything a program requires, from the big pictu
to the lowest details. What differs is the order of concep
and particularly the emphasis on architectural skills, ofte
neglected in the bottom-up curriculum.

The approach is intended to educate students so that t
will master the key concepts of software engineering,
particular abstraction. In my career in industry I have
repeatedly observed that the main quality that distinguish
good software developers is their ability to abstract:
separate the essential from the accessory, the durable f
the temporary, the specification from the implementatio
All introductory textbooks indeed preach abstraction, b
it’s doubtful how effective such exhortations can be whe
all the student knows of programming is the usual collectio
of small algorithmic examples. I can pontificate abou
abstraction as much as the next person, but the only wa
know to convey the concepts effectively is by example;
particular, by showing to the student how he or she c
produce impressive applications through the reuse
existing software made of tens of thousands of line
resulting from maybe a hundred person-years of work,
that trying to understand it from the inside, by reading th
source code, would take months of study. Yet the stude
can, in the first week of the course, produce impressi
results by reusing that software through its abstra
interfaces — the contract views.

Here abstraction is not just a nice idea that we ask o
students to heed, another parental incitation to be good a
do things right. It’s the only way to survive when faced wit
an ambitious goal that you can’t fulfill except by standin
on someone else’s shoulders.

-

s
e

tor
al

is
C
we

in
id

ll
is

in

of
ss
ts

ss
k

ics
if
The student who has gone early and often through this
experience of building a powerful application through
interface-based reuse of libraries does not need to be
harangued much more about the benefits of abstraction and
reuse. These concepts become a second nature. Teaching is
better than preaching, and if something is better than
teaching it must be the demonstration, carried out by the
students themselves, of the principles at work, producing
“Wow!” results.

4 The supporting software

Central to the Outside-In approach of our course is the
accompanying TRAFFIC software, available in source form
on the book’s CD and also on the Web. The choice of appli-
cation area for the library required some care; the problem
domain had to:

• Be immediately familiar to any student, so that we could
spend our time studying software issues and solutions,
not understanding the context.

• Provide a large stock of interesting algorithms and data
structureexamples,applicationsof fundamental computer
science concepts, and new exercises that each instructor
can devise beyond those in theTouch of Classtextbook.

• Call for graphics and multimedia development as well as
advanced Graphical User Interfaces — a requirement
that is particularly important to capture the attention of
a student generation which has grown up with video
games and sophisticated GUIs.

• Unlike many video games, not involve violence and
aggression, which would be inappropriate in a university
setting (and also would not help correct the gender
imbalance which plagues our field).

The application area that we retained meets these criteria.
It’s the general concept oftransportation in a city: model-
ing, planning, simulation, display, statistics. The supporting
TRAFFIC software is a library, providing reusable compo-
nents from which students and instructors can build applica-
tions. Although still modest, the library has the basic
elements of a Geographical Information System, and the
supporting graphical display mechanisms.

Our example city is Paris, with its sights and
transportation networks:

Since the city’s description comes from XML files, it is pos
sible to retarget the example to another city.

The very first application that the student produce
displays a map, highlights the Paris Metro network on th
map, retrieves a predefined route, and shows a visi
traveling that route through video-game-style graphic
animation. The code is:
class PREVIEWinherit

TOURISM
feature

exploreis
-- Show city info and route.

do
Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end
The algorithm is four lines of code, and yet the effect
quite stunning, since these lines call powerful TRAFFI
mechanisms. In this example as in all subsequent ones,
remove any impression of “magic”, since we can expla
everything, at an appropriate level of abstraction. We avo
ever having to say “just code this the way you’re told, it wi
work, you’ll understand later”. Such an approach
unsound pedagogically and does not create confidence
the subject. In this example, even theinherit clause can be
explained in a simple fashion: we don’t go into the theory
inheritance, of course, but simply tell the student that cla
TOURISMis a helper class introducing pre-defined objec
such asParis, Louvre, Metro and Route1, and that a new
class can “inherit” from such an existing class to gain acce
to its features. They’re also told that they don’t need to loo
up the details of classTOURISM, but may do so if they feel
the engineer’s urge to know “how things work”.

So the way we enable our students to approach the top
progressively is always to abstract and never to lie, even
it would be a pedagogical lie.

Line 7

Line
RER-1

-

for
e

-

n
es,
er

is
r.
nt
e

s,
e
h

e
n

a

g,
n
s
d,
nt

n
ur
ry.

er
d

al

d

g

as.
f
d

or
5 Object technology and model-driven architecture

Using an object-oriented language for introductory pro-
gramming is not a new idea. But it’s sometimes done half-
heartedly, with the implicit view that students must be
taken through the same set of steps that their teachers had
to climb in their time. This approach continues the tradi-
tional bottom-up order of concept introduction, reaching
classes and objects only as a reward to the students for
having patiently climbed theGradus ad Parnassumof
classical programming constructs. There’s no good reason
for being so coy about O-O. After all, part of the pitch for
the method is that it lets us build software systems as clear
and naturalmodelsof the concepts and objects with which
they deal. If it’s so good, it should be good for everyone,
beginners included. Or to borrow a slogan from the wait-
ers’ T-shirts at Anna’s Bakery in Santa Barbara, whose
coffee fueled some of the reflections behind this course:
Life is uncertain — Eat dessert first!

Classes and objects appear indeed at the very outset, and
serve as the basis for the entire course. I have found that
beginners adopt object technology enthusiastically provided
the concepts are introduced, without any reservations or
excuses, as the normal, modern way to program.

One of the principal consequences of the central role of
object technology is that the notion ofmodelguides the
student throughout. The emergence of “model-driven
architecture” reflects the growing recognition of an idea
central to object technology: that successful software
development relies on the construction of models of
physical and conceptual systems. Classes, objects,
inheritance and the associated techniques provide an
excellent basis to teach effective modeling techniques.

Object technology is not exclusive of the traditional
approach. Rather, it subsumes it, much in the same way that
relativity includes classical mechanics as a special case: an
O-O program is made of classes, and its execution operates
on objects, but the classes contain routines, and the objects
contain fields on which programs may operate as they
would do with traditional variables. So both thestatic
architecture of programs and thedynamic structure of
computations cover the traditional concepts. We definitely
want the students to master the traditional concepts and
techniques: algorithmic reasoning, variables and
assignment, control structures, procedures, recursion…

6 Eiffel and Design by Contract

The approach relies on Eiffel and the EiffelStudio environ
ment which students can download for free from
www.eiffel.com. (Universities can also limit themselves to
the free version, or they may get an academic license
extended functionality.) This choice directly supports th
pedagogical concepts of the course:
• The Eiffel language is uncompromisingly object

oriented throughout.
• As many people have remarked, Eiffel provides a

excellent basis to learn other programming languag
such as C#, Java, Smalltalk or C++. A software engine
must be multi-lingual, and in fact able to learn new
languages regularly; but the first language you learn
critical since it can open or close your mind foreve
Eiffel provides a general framework that is an excelle
preparation for learning new paradigms later in th
student’s career.

• Eiffel is very easy to learn. In some other language
before you can produce any result, you must includ
some magic formula which you don’t understand, suc
as the famouspublic static void main(string [] args).
This is not the case in Eiffel. The concepts can b
introduced progressively, without interference betwee
basic constructs and those not yet studied.

• The EiffelStudio development environment uses
modern, intuitive GUI, with advanced facilities
including sophisticated browsing, editing, debuggin
automatic documentation (HTML or otherwise), eve
metrics. It produces architectural diagram
automatically from the code and, the other way aroun
lets a user draw diagrams from which the environme
will produce the code, with round-trip capabilities.

• EiffelStudio is available on many platforms including
Windows and Linux.

• The environment includes a set of carefully writte
libraries, which support the reuse concepts of o
approach, and serve as the basis of the TRAFFIC libra
The most directly relevant areEiffelBase, which by
implementing the fundamental structures of comput
science directly supports the study of algorithms an
data structures in part III of the textbook,EiffelTimefor
date and time, andEiffelVision, an advanced portable
graphical library serving as the basis for the graphic
parts of TRAFFIC.

• Unlike tools designed for education only, Eiffel is use
commercially for large mission-critical applications
handling billions of dollars of investment, managin
health care, performing large civil and military
simulations, and others spanning a broad range of are
This is in my opinion essential to effective teaching o
programming; a tool that is really good should be goo
for the professionals as well as for the novices.

• Eiffel is not just a programming language but amethod
whose primary aim — beyond expressing algorithms f
the computer — is to supportthinking about problems

www.eiffel.com

to
at-

—
re
to
in

tion
ot
uld
ly

lly
o
nd
te,

o
o
ted,
by
d

the
ost
es
ses
the
ny
g
al,
ut
h,
s,
d

n
te,

an
n

of
y
t
ate
ver-
.

and their solutions. It enables us to teach aseamless
approach that extends across the software lifecycle,
from analysis and design to implementation and
maintenance. This concept of seamless development,
supported by the two-way diagram tool of EiffelStudio,
is in line with the key modeling benefits of object
technology, and at the heart of the Eiffel approach.

To support these goals, Eiffel directly implements the con-
cepts ofDesign by Contract™, which were developed in
connection with Eiffel and are closely tied to both the
method and the language. By equipping classes with pre-
conditions, postconditions and class invariants, we let stu-
dents use a much more systematic approach than is
currently the norm, and prepare them to become successful
professional developers able to deliver bug-free systems.

Along with these semantic concepts we shouldn’t
underestimate the role ofsyntax, both for experienced
programmers and for beginners. Eiffel’s syntax —
illustrated by the above short example of the course’s first
program, to be compared to equivalents in other languages
— seeks to facilitate learning, enhance program readability,
and fight mistakes:

• The language avoids cryptic symbols.

• Every reserved word is a simple and unabbreviated
English word (INTEGER, not int).

• The equal sign=, rather than doing violence to hundreds
of years of mathematical tradition, means the same thing
as in math. (How many students, starting with languages
where= denotes assignment, have wondered what value
a must have fora = a + 1 to make sense, and as noted
by Wirth [9] whya = b doesn’t mean the same asb = a?)

• In many languages, program texts are littered with
semicolons separating declarations and instructions.
Most of the time there is no reason for these pockmarks;
even when not consciously noticed, they affect
readability. Being required in some places and illegal in
others, for reasons not always clear to beginners, they
are also a source of small but annoying errors. Eiffel’s
syntax has been designed so that the semicolon, as
instruction separator, is optional, regardless of program
layout. With the standard layout style of writing separate
instructions and declarations on separate lines, this leads
to a neat program appearance.

Encouraging such cleanliness in program texts must be part
of the teacher’s pedagogical goals. Eiffel includes precise
style rules, explained along the way inTouch of Classto
show students that good programming requires attention to
both the high-level concepts of architecture and the low-
level details of syntax and style: quality in the large and
quality in the small.

More generally, a good teaching language should be
unobtrusive, enabling students to devote their efforts to
learning the concepts (and professional programmers to
applying the concepts). This is one of the goals of using
Eiffel for teaching: that students, ideally, shouldn’t even
have toknow what language they are using.

7 How formal?

One of the benefits of the Design by Contract approach is
expose the students to a gentle dose of “formal” (mathem
ically-based) methods of software development.

The software world needs — among other advances
more use of formal methods. Any serious softwa
curriculum should devote at least one course entirely
mathematics-based software development, for example
the second year, based on a mathematical specifica
language such as B, Z or HOL. In addition — although n
as a substitute for such a course — the ideas sho
influence the entire software curriculum. This is particular
important at the introductory level. It is probably
unrealistic, today at least, to subject beginners to a fu
formal approach; this might turn off some of them wh
might otherwise become good computer scientists, a
would miss the need to start mastering the concre
practical skills of programming.

The challenge is not only to include an introduction t
formal reasoning along with those practical skills, but t
present the two aspects as complementary, closely rela
and both indispensable. The techniques of Design
Contract, tightly woven into the fabric of object-oriente
program structures, permit this.

Teaching Design by Contract awakens students to
idea of mathematics-based software development. Alm
from the first examples of interface specifications, routin
possess preconditions and postconditions, and clas
possess invariants. These concepts are introduced in
proper context, treated — as they should, although ma
programmers still fear them, and most programmin
languages offer no support for contracts — as the norm
obvious way to reason about programs. Witho
intimidating students with a heavy-duty formal approac
we prepare the way for the introduction of formal method
which they will fully appreciate when they have acquire
more experience with programming.

Writing up the material has confirmed that reliance o
mathematics actually helps following a practical, concre
hands-on approach. For example we introduce loops as
approximation mechanism, to compute a solution o
successively larger subsets of the data; then the notion
loop invariant comes naturally, as a key property of an
kind of loop, expressing how big the approximation is a
every stage. We hope that such techniques will help educ
students for whom correctness concerns are a natural, e
present component of the software construction process

ta
to

the

ed
and

of

e
e
on
nts

s
ve
me
-
—

ed

a
is
ed
ste
dy
tal
ss
a

re
ot

o a
s
se

gy
s of
th
as
e

at
8 From programming to software engineering

Programming is at the heart of software engineering, but is
not all of it. Software engineering concerns itself with the
production of systems that may be large, require long-run-
ning development, undergo many changes, meet strong con-
straints of quality, timeliness and cost. Although the
corresponding techniques are usually not taught to begin-
ners, it’s important in our view to provide at least a first
introduction. Topics include debugging and testing (even
with the best of modern programming methodology, this
will account for a good deal of the time spent on the job, so
it would be paradoxical not to teach the corresponding
skills), quality in general, lifecycle models, requirements
analysis (the programmers we are educating shouldn’t just
be techies focused on the machinery but should also be able
to talk to users and understand their needs), GUI design.

9 Topics covered

TheTouch of Classtextbook, in its final form, is divided into
five parts, which a course may not be able to cover entirely.

Part I introduces the basics. It defines the building blocks
of programs, from objects and classes to interfaces, control
structures and assignment. It puts a particular emphasis on the
notion of contract, teaching students to rely on abstract yet
precise descriptions of the modules they use and, as a
consequence, to apply the same care to defining the interface
of the modules they will produce. A chapter on “Just Enough
Logic” introduces the key elements of propositional calculus
and predicate calculus, both essential for the rest of the
discussion. Back to programming, subsequent chapters deal
with object creation and the object structure; they emphasize
the modeling power of objects and the need for our object
models to reflect the structure of the external systems being
modeled.Assignment is introduced, together with references,
only after program structuring concepts.

Part II, entitled “How things work”, presents the internal
perspective: basics of computer organization, programming
languages, programming tools. It is an essential part of the
abstraction-focused approach to make sure that students
also master theconcreteaspects of hardware and software,
which define the context of system development.
Programmers who focus on the low-level, machine-
oriented, fine-control details are sometimes derided as
“hackers” in the older sense (not the more recent one of
computer vandal). There’s nothing wrong with that form of
hacking when it’s the natural hands-on, details-oriented
complement to the higher-level concepts of software
architecture. Students must understand the constraints that
computer technology puts on our imagination, especially
orders of magnitude: how fast we can transmit data, how
many objects we can store in primary and secondary
memories, the ratio of access times for these two kinds.

Part III examines the fundamental “Algorithms and da
structures” of computer science, from arrays and trees
sorting and some advanced examples. Here too
approach is object-oriented and library-based.

Part IV considers some more specialized object-orient
techniques such as inheritance, deferred features
constrained genericity, event-driven design, and a taste
concurrency.

Part V adds the final dimension, beyond mer
programming, by introducing concepts of softwar
engineering for large, long-term projects, with chapters
such topics as project management, requireme
engineering and quality assurance.

Appendices provide an introduction to variou
programming languages of which the students should ha
a general understanding: C#, Java, C — described in so
more detail since it’s an important tool for accessing low
level details of the operating system and the hardware
and C++, a bridge between the C and O-O worlds.

10 Comparing with other approaches

Introductory programming education is a widely discuss
issue and many techniques have been tried.

Today’s commonly used textbooks tend to emphasize
particular programming language, often Java or C++. Th
has the advantage of practicality, and of easily produc
exercises (sometimes subject to the Google-and-Pa
attack cited above), but gives too much weight to the stu
of the chosen language, at the expense of fundamen
conceptual skills. Eiffel as a language avoids making a fu
of itself; its aim, as noted, is to be unobtrusive, serving as
mere mode of expression for concepts of softwa
architecture and implementation. That’s what we teach, n
the specifics of any language.

The justly famous MIT course based on Scheme[1] is
strong on teaching the logical reasoning skills essential t
programmer. We definitely intend to retain this benefit, a
well as the relationship to mathematics (especially in our ca
through Design by Contract), but feel that object technolo
provides students with a more concrete grasp of the issue
system construction. Not only is an O-O approach in line wi
the practices of the modern software industry, which h
shown little interest in functional programming; mor
importantly for our pedagogical goals, it emphasizessystem
building skills and software architecture, which should be
the center of computer science education.

One may also argue that the operational, imperative
aspects of software development, downplayed by
functional programming, are not just an implementation
nuisance but a fundamental component of the discipline of
programming, without which many of its intellectual
challenges disappear. If so, we are not particularly helping
students by protecting them from this component at the
beginning of their education, presumably leaving them to
their own resources when they encounter it later.

.

in
d
e

5.

d

d
s,
at
At the other extreme, one finds suggestions by Guzdial and
Soloway[3] to make full use of modern technologies, such
as graphics and multimedia, to capture the attention of the
“Nintendo Generation”. We retain this analysis, and include
extensive graphics in the TRAFFIC software; but we strive
to establish a proper balance, not letting technological daz-
zle push aside the teaching of timeless skills.

11 Outlook

The preparatory work described here is in a state of flux; the
course has not yet been taught. In October of 2003 the first
batch of ETH students will take it.

Only their reaction and, more significantly, their success
in later parts of the computer science curriculum — if we
can’t wait for the ultimate test, their careers — will tell
whether the Outside-In method can deliver on its promise of
providing a modern computer science education based on
reuse, object technology, Eiffel, Design by Contract and the
principles of software engineering.

Acknowledgments

My understanding of how to teach programming has been
shaped by discussions with numerous professional educa-
tors over the years, too numerous in fact to be listed here
(see, however, the long list in chapter 29 of[5]). I should
single out Bernard Cohen for his original work on the
Inverted Curriculum[2], and Christine Mingins for imple-
menting the ideas at Monash University, in a program[8]
running continuously with Eiffel for almost ten years. Peter
Henderson first pointed out to me the phenomenon called
“Google-and-Paste programming” above. The work
reported here is a collective effort of my group at ETH,
involving in particular Susanne Cech, Karine Arnout, Bernd
Schoeller and Michela Pedroni; the design and implementa-
tion of TRAFFIC is the work of Patrick Schoenbach and Till
Bay with the support of the rest of the team and critical help
from Julian Rogers and Ian King at Eiffel Software. I am
grateful to other ETH professors, especially Jürg Gutknecht
and Hans Hinterberger, for advice and numerous discus-
sions, and to the FILEP project of ETH for financially sup-
porting the development of the course and the software.

A preliminary version of this article appeared in the
proceedings of the Japanese Symposium on Object
Orientation (IPSJ-SIGSE), edited by Mikio Aoyama,
Tokyo, August 2003.

Bibliography

[1] Harold Abelson and Gerald Sussman,Structure and
Interpretation of Computer Programs, 2nd edition, MIT
Press, 1996.

[2] Bernard Cohen:The Inverted Curriculum, Report,
National Economic Development Council, London, 1991

[3] Mark Guzdial and Elliot Soloway:Teaching the
Nintendo Generation to Program, in Communications of the
ACM, vol. 45, no. 4, April 2002, pages 17-21.

[4] Bertrand Meyer, Towards an Object-Oriented
Curriculum, in Journal of Object-Oriented Programming,
vol. 6, no. 2, May 1993, pages 76-81. Revised version
TOOLS 11(Technology of Object-Oriented Languages an
Systems), eds. R. Ege, M. Singh and B. Meyer, Prentic
Hall, Englewood Cliffs (N.J.), 1993, pages 585-594.

[5] Bertrand Meyer, Object-Oriented Software
Construction, 2nd edition, Prentice Hall, 1997, especially
chapter 29, “Teaching the Method”.

[6] Bertrand Meyer,Software Engineering in the Academy,
in Computer (IEEE), vol. 34, no. 5, May 2001, pages 28-3

[7] Bertrand Meyer,Touch of Class: Learning to Program
Well — With object technology, Design by Contract, an
steps to software engineering, to be published, draft
versions currently available fromse.inf.ethz.ch/touch

[8] Christine Mingins, Jan Miller, Martin Dick, Margot
Postema:How We Teach Software Engineering, in Journal
of Object-Oriented Programming(JOOP), vol. 11, no. 9,
1999, pages 64-66, 74.

[9] Niklaus Wirth: Computer Science Education: The Roa
Not Taken, opening address at ITiCSE conference, Aarhu
Denmark, June 2002, available (September 2003)
www.inr.ac.ru/~info21/greetings/wirth_doklad_eng.htm.

Design by Contract is a trademark of Eiffel Software.

se.inf.ethz.ch/touch
http://www.inr.ac.ru/~info21/greetings/wirth_doklad_eng.htm

	1 The context
	2 Components
	3 Outside-In: the Inverted Curriculum
	4 The supporting software
	5 Object technology and model-driven architecture
	6 Eiffel and Design by Contract
	7 How formal?
	8 From programming to software engineering
	9 Topics covered
	10 Comparing with other approaches
	11 Outlook
	Acknowledgments
	Bibliography

