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ABSTRACT
Where do contracts — specification elements embedded in exe-
cutable code — come from? To produce them, should we rely on
the programmers, on automatic tools, or some combination?

Recent work, in particular the Daikon system, has shown that
it is possible to infer some contracts automatically from program
executions. The main incentive has been an assumption that most
programmers are reluctant to invent the contracts themselves. The
experience of contract-supporting languages, notably Eiffel, dis-
proves that assumption: programmers will include contracts if
given the right tools. That experience also shows, however, that the
resulting contracts are generally partial and occasionally incorrect.

Contract inference tools provide the opportunity for studying ob-
jectively the quality of programmer-written contracts, and for as-
sessing the respective roles of humans and tools. Working on 25
classes taken from different sources such as widely-used standard
libraries and code written by students, we applied Daikon to in-
fer contracts and compared the results (totaling more than 19500
inferred assertion clauses) with the already present contracts.

We found that a contract inference tool can be used to strengthen
programmer-written contracts, but cannot infer all contracts that
humans write. The tool generates around five times as many rel-
evant contract elements (assertion clauses) as written by program-
mers; but it only finds around 60% of those originally written by
programmers. Around a third of the generated assertions clauses
are either incorrect or irrelevant. The study also uncovered inter-
esting correlations between the quality of inferred contracts and
some code metrics.

1. INTRODUCTION
Embedding contracts (executable specification elements) in soft-

ware texts yields a number of benefits [17]: contracts provide a
basis for program verification techniques; they are essential for au-
tomated testing strategies by helping to filter out invalid inputs and
acting as automated oracles; they support debugging by providing
information about the locations of faults; they serve as documen-
tation aid; they enhance the analysis and design process. These
diverse applications make contracts an invaluable tool in support of
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software quality.
In spite of wide recognition of contracts’ benefits, only a very

small part of existing code is contracted. Part of the reason is no-
tational: as the vast majority of programming languages offers no
built-in support for contracts, programmers have to resort to mech-
anisms such as asserts to include conditions for run-time check-
ing. This is sufficiently awkward and partial (with, for example,
the difficulty of supporting the notion of class invariant, and the
inheritance of contracts) to cause reluctance on the programmers’
part.

The situation is different in languages with support for Design
by Contract (DbC), such as Eiffel [18], JML [16] and Spec# [4].
These languages and their associated environments (IDE) provide
a variety of supporting mechanisms: in the language, the ability
to equip routines (methods) with preconditions and postconditions
and classes with invariants, with associated semantics and well-
defined inheritance rules; in the compiler, options for enabling and
disabling the checking of contracts or their individual elements at
run time; in the IDE, documentation views of a class interface in-
cluding its contracts.

Such support (possibly with other factors) makes a big difference
in developers’ willingness to write contracts, as indicated by an ex-
tensive study [6], which shows that Eiffel classes contain a higher
proportion of assertion clauses1 than classes written in languages
not supporting DbC and that 97% of assertion clauses present in
Eiffel code are located in contracts, rather than in inline checks.
This suffices to disprove the commonly held view that “program-
mers won’t make the effort to write contracts”, suggesting instead
that language and environment issues are what restrains program-
mers.

This is not, however, the full story regarding programmer-written
contracts, since closer examination (for languages with direct sup-
port) shows that such contracts are often incomplete, and some-
times incorrect in the sense of contradicting the implementation or
the informal intent [7]. Contract quality is clearly a prime concern
for all the applications of contracts mentioned above.

To address the difficulty of getting contract-equipped programs
in languages not supporting DbC, researchers have investigated
ways of automatically generating assertions. A notable outcome
of this research is the notion of contract detector, as illustrated in
particular by the Daikon tool [10], which produces likely assertions
by observing properties that hold during executions of the system.
The approach faces some objections of principle: the results de-
pend on the particular input values exercised during execution and

1A contract element (also called assertion) such as a precondition,
postcondition, class invariant or loop invariant consists of a number
of clauses, combined using logical conjunction; the term assertion
clause denotes such a clause.



there is a risk of documenting behavior of the software as it is, bugs
included, rather than intent, which can only come from an explicit
specification. In practice, however, Daikon has proved effective at
inferring interesting contracts [10, 19, 20].

As a result of this effort the community now has at its disposal
two bodies of meaningful contracts: those which programmers
have written in two decades of Eiffel programming and several
years of usage of such languages as JML and Spec#; and those
which Daikon and related tools can infer. Intuitively, we may guess
they have different properties, but no study so far, to our knowl-
edge, has performed a systematic comparison. The benefits of such
a comparison, as performed in the work reported here, include a
better understanding of the possible role of automatically inferred
contracts, the limitations of programmer-written contracts, and how
to improve both kinds.

Contribution.
We performed an experiment to compare contracts written by

programmers in existing, production-grade and student-written Eif-
fel code (freely available, so that others can repeat and continue
our experiment), and assertions inferred for the same code by the
Daikon tool equipped with a front-end for Eiffel that we developed.
We were in particular investigating answers to the following ques-
tions:

• What proportion of the programmer-written assertion clauses
are implied by the inferred assertions and vice-versa?

• What proportion of the inferred assertions clauses are rele-
vant? (to the extent that we can assess this partly informal
property)

• How can contract inference be used to assist programmers or
to improve the programmer-written assertions?

• What factors influence the quality of the inferred contracts?
More precisely, can we find correlations between any code
metrics and the quality of the contracts inferred for that code?

Among the results:

• A high proportion of the inferred assertions clauses are cor-
rect (90%) and relevant (64%).

• Contract inference tools produce around 5 times more rele-
vant (correct and interesting) assertion clauses than program-
mers write.

• Contract inference tools cannot find all programmer-written
assertions: such tools infer only about 59% of all
programmer-written assertion clauses.

To summarize these results by applying them to a normalized
example of a hypothetical representative class for which the pro-
grammer had written 13 assertion clauses: the tool would infer 100
assertion clauses, out of which 90 would be correct; 64 of these
would also be interesting. 8 of the 13 programmer-written assertion
clauses would also appear among the inferred assertion clauses, or
follow logically from them.

The experiment results also indicate that the quality of contracts
inferred for a class is negatively influenced by the number of classes
on which the class depends and the number of variables that are in
scope at each program point where contracts are inferred.

Overview.
The rest of this paper is organized as follows. The next sec-

tion introduces the basic notions of automated contract inference
and the tool that we used in the experiment. Section 3 describes
the setup of the experiment. Section 4 presents and analyzes the
results; it ends with a discussion of threats to the validity of gener-
alizations of the results. Section 5 presents related work and section
6 draws general conclusions.

2. DYNAMIC CONTRACT INFERENCE
AND ITS APPLICABILITY TO A
CONTRACT-AWARE LANGUAGE

Given a set of passing test cases that exercise a system, a dy-
namic contract inference tool will determine conditions that hold
at various program points for the executions of the system through
the test cases. Generalizing from these observations, the program-
mer can conclude that the corresponding assertions may hold for
all program runs.

One of the best known tools built on this principle is Daikon [10].
This section provides an overview of Daikon, discusses some of
the specifics of contract inference for Eiffel programs, and presents
CITADEL, the Daikon front-end for Eiffel which we have devel-
oped, and which permitted the experiment reported here.

2.1 Daikon
To infer program properties, Daikon observes values of certain

variables at specific program points during program executions.
Interesting program points can be, for instance, routine entries and
exits. Variables are different expressions which make sense at a
program point, such as the currently executing object2, routine ar-
guments, the return value of a function3, attributes of other vari-
ables, etc. Daikon maintains a list of templates which it instantiates
into assertion clauses, using such program variables at specified
program points, and checks if they hold for all executions of the
program through a given set of test cases. As soon as an asser-
tion clause does not hold, it is eliminated and not checked again
for further executions. Ernst [10] and Perkins et al. [22] present a
collection of heuristics that make this simple approach realistic.

Daikon’s dynamic contract inference system consists of several
components, as shown in figure 1. The main steps involved in the
contract inference process are the following:

1. An instrumenter modifies the program source so that, at cer-
tain program points, it saves the values of the variables in
scope to a data trace file. The instrumenter also produces pro-
gram point declarations (static information about program
points and variables).

2. The instrumented program is exercised through a test suite.
Each run of the program results in a data trace file.

3. Daikon instantiates assertion clause templates from its list
using variables of appropriate types. This results in a list of
potential assertion clauses, which are then checked against
the variable values recorded in the data trace files.

4. The inferred assertions can be post-processed, for instance
inserted into the original source code as annotations.

Out of these components, only the instrumenter and the post-
processor depend on the programming language in which the orig-
inal system is written. These two components form a front-end that
2In Eiffel denoted as Current
3In Eiffel denoted as Result



Figure 1: Dynamic contract inference system.

allows the universal assertion detector to work for software systems
written in different languages (and even with data that was gener-
ated through other means than during program execution).

Because the contract inference process is based on checking as-
sertion clause templates on actual executions of a system through a
test suite, the inferred contracts reflect properties of both the origi-
nal software system and the test suite.

2.2 Contract inference in Eiffel
Dynamic contract inference has proved its usefulness for soft-

ware that lacks programmer-written specifications. In Eiffel de-
velopers do include contracts in the programs they write, but, as
was mentioned above, these contracts are generally incomplete and
sometimes incorrect.

We hence conjecture that dynamic contract inference can be used
in Eiffel for the following purposes:

• Strengthening contracts, mainly strengthening programmer-
written postconditions and class invariants. Strengthening
loop invariants and weakening preconditions is also possible,
but maybe less interesting for most programmers.

• Correcting contracts, in particular strengthening precondi-
tions that failed to capture the full conditions necessary for a
routine to work.

• Improving test suite quality: since the quality of the in-
ferred contracts depends on the test suite used to exercise
the system, the inferred contracts can be used to estimate the
quality of the test suite.

Our study addresses the first two items on this list; the last one is
the topic of ongoing work.

Since Eiffel has the built-in support for routine pre- and post-
conditions, class invariants and loop invariants, Eiffel programmers
would like to infer contracts at program points that correspond to
these four kinds of assertions. The variables in scope at each pro-
gram point should correspond to expressions that can appear in the
respective assertions.

If x is a variable at some program point and f is an attribute of
the class of x, then x.f is also added to the set of variables in scope
at that program point. This is called variable unfolding. Unfolding
is typically done up to a fixed small number of iterations (1 or 2).

It is possible to unfold a variable not only through attribute ac-
cess, but also through calls to pure (side-effect free) functions. The

Daikon front-end for Java provides such an option, requiring that
the user supply a “purity file”: a list of functions in the system that
are side-effect free and hence safe to use in unfolding. In Eiffel, the
purity of functions, though not enforced by the compiler, is strongly
encouraged. Therefore we opted for using functions with no argu-
ments in unfolding by default. The user still can specify individual
functions as impure through a command-line option. During this
study we had to use this option only once, which shows that Eiffel
programmers indeed mostly write pure functions.

There is one more problem with using functions for unfolding:
what happens if a function is not applicable in the current context?
For Eiffel functions this problem can be solved by checking, before
any evaluation of x.f , that the programmer-written precondition of
f holds (assuming that programmers usually write correct precon-
ditions). If this is not the case, the front-end uses a special Daikon
keyword to indicate that variable x.f cannot be evaluated.

The Daikon front-end we developed is called CITADEL (Con-
tract Inference Tool Applying Daikon to the Eiffel Language). The
current implementation of the tool supports almost all Eiffel’s lan-
guage constructs; this enables it to perform contract inference for
realistic, production classes.

One limitation of the tool, directly relevant for this study, is that
calls to functions with arguments are currently not used in the un-
folding process and thus cannot appear in the inferred contracts.
Another important limitation is the tool’s inability to instrument
deferred (abstract) and external class members (members of Eiffel
classes implemented in another programming language, typically
C); hence contracts cannot be inferred for such members.

3. EXPERIMENT SETUP
Our experiment consisted of running CITADEL on 25 classes, 15

of them taken from industrial-grade Eiffel libraries, 4 — from an
application that models public transportation in a city and another
6 classes written by Computer Science students. None of these
classes were created especially for the study or modified in any
way. We used classes of different size in terms of various code
metrics and with diverse but clear semantics. Table 1 shows some
metrics for the examined classes.

14 out of 15 library classes come from the standard Eiffel li-
braries version 6.1 (the current version at the time of the experi-
ment), as indicated in the “source” column of table 1: EiffelBase,
EiffelTime and Gobo, all included in the standard distribution of
the most popular IDE for Eiffel (EiffelStudio [2]). Most applica-
tions written in Eiffel rely on some or all of these libraries. Class
MML_DEFAULT_PAIR comes from a Mathematical Model Li-
brary, developed as part of a PhD dissertation. Library classes
are highly reusable and presumably the effort spent to ensure their
quality is accordingly high. In particular, library classes are usually
equipped with relatively high quality contracts.

To diversify the scope of the experiment we also considered ap-
plication classes: we used 4 classes from Traffic [3], a graphical
application that models and visualizes the public transportation sys-
tem of a city. This application was developed at ETH Zurich and is
used in introductory Computer Science courses.

Because we also wanted to include in the experiment code writ-
ten by less experienced programmers, we added classes created
by students of Computer Science at ETH Zurich: classes FRAC-
TION1 and FRACTION2 were implemented as assignments in
an introductory programming course; classes GENEALOGY1 and
GENEALOGY2 were implemented as part of a project given in a
software engineering course; classes NODE and EDGE come from
a graph library implemented as a Master project. For the first four
classes some assertion clauses were inherited from ancestor classes



or predefined in the assignment, which affects the study results as
the quality of the contracts may be higher than if the contracts had
been devised entirely by students.

Since none of the examined classes came with test suites, we
had to write tests ourselves in order to allow Daikon to infer as-
sertions. Because it is known that characteristics of the test suite
such as coverage or number of executions of the tested elements
influence Daikon’s results, we constructed two test suites of differ-
ent sizes: (1) a small test suite, containing approximately 10 calls
with different random inputs to every instrumented routine, exer-
cising the most typical behavior of the class, and (2) a large test
suite, containing about 50 calls to every instrumented routine; this
test suite achieves branch coverage and uses category-partitioning
to cover different behaviors and achieve a high level of coverage of
the object states.

All the studied classes as well as tests and the CITADEL tool
itself are freely available online [1], so that the experiment can be
reproduced and extended. Note however that the results for each
particular run of contract inference can vary slightly because of the
random nature of the tests.

4. RESULTS AND DISCUSSION
The results appear below grouped by the main questions under

investigation: assessing the quality of the inferred assertion clauses
(IA) in absolute terms (§4.1) and comparing the IA to programmer-
written assertion clauses (PA) (§4.2). Since the test suite has a sig-
nificant influence on the results and two different suites were used
for each class, we report the quality measures for each test suite
separately.

In the following we use box plots [25] to concisely represent the
experimental results through their 5-number summary: the lowest
value, the first quartile, the median, the third quartile, and the high-
est value.

4.1 Quality of the inferred contracts
The definition of the quality of inferred contracts used in this

study involves two measures: the proportion of correct assertion
clauses and the proportion of relevant assertion clauses, based on
the following definitions: an IA is correct if it reflects a property
of the source code (rather than a property of the test suite); it is
relevant if it is correct and expresses a property that is interesting.
An IA is said to be uninteresting if it follows one of four patterns:

• Relation between unrelated variables — IA involving vari-
ables whose relation is purely accidental. For exam-
ple, an assertion clause of the form person.age < person.
bank_account_number may always be true for a certain im-
plementation, but most likely uninteresting.

• Equality of constants — IA that are trivially true because
they refer to constants. E.g. time1.hours_in_day = time2.
hours_in_day, where time1 and time2 are instances of class
TIME, which has a constant attribute hours_in_day.

• Redundant — IA that are trivially implied by other IA at the
same program point (where the implication does not depend
on knowledge of the source code). As an example of a triv-
ial implication, if it is already inferred that (sorted_items
/= Void)= Result4, then an assertion clause (sorted_items =
Void)= (not Result) is redundant.

4/= is the Eiffel “not equal” operator; Void denotes detached refer-
ences, also called null in other programming languages.

Table 2: Averages of correctness and relevancy.
(a) Averages of the percentages of correct in-
ferred assertion clauses.

Small TS Large TS
Loop invariants 80% 90%
Preconditions 50% 84%
Postconditions & 72% 91%
class invariants
Total 70% 90%

(b) Averages of the percentages of relevant in-
ferred assertion clauses.

Small TS Large TS
Loop invariants 63% 70%
Preconditions 31% 50%
Postconditions & 60% 69%
class invariants
Total 56% 64%

• Misplaced — IA that conceptually belong in another pro-
gram point than where they were inferred. For instance, an
assertion clause s.count >= 0 inferred in the precondition of
a routine having s of type STRING as argument and where
count is an attribute containing the number of characters in
the string, is not a special property of variable s, but rather
a common property of all instances of class STRING and
should have been placed in its invariant.

While maybe not restrictive enough, this definition of relevancy
has the advantage that it can be assessed objectively. Another op-
tion would have been to ask a developer or maintainer of the tested
code to rate relevancy, but this was not possible for this case study.
Hence we judged both contract correctness and relevancy manually,
using the criteria listed above.

It is possible to implement partial elimination of uninteresting
assertion clauses following these patterns in the Daikon front-end.
This is part of future work, but at the time of the experiment as-
sertion clauses that match the patterns listed above were not sup-
pressed by CITADEL.

Figure 2(a) shows through box plots the 5-number summary of
the percentage of correct IA for the classes used in the experiment.
Table 2(a) shows the averages, over all classes, of the percentage
of correct IA. The large test suite brings a substantial improvement
over the small one. For 21 of the classes, more than 80% of the
assertion clauses inferred for the large test suite are correct; this
percentage is under 50% only for one class. For 8 classes, 100%
of the assertion clauses inferred for the large test suite are correct.
Section 4.4 discusses possible reasons for variations in IA correct-
ness over different classes.

Figure 2(b) shows the percentage of relevant (correct and in-
teresting) IA. Table 2(b) shows the averages, over all classes, of
the percentage of relevant IA. Again, the large test suite gener-
ally brings an improvement over the small one, but for 6 classes
smaller percentages of relevant assertion clauses are found through
the large test suite than through the small one. This can happen
when some correct but uninteresting assertion clauses, inferred for
the large test suite, are not reported for the small test suite, be-
cause in this test suite there are not enough observations of these
assertion clauses holding for system executions to pass Daikon’s
statistical confidence checks.



Table 1: Classes used in the experiment.
Class size Programmer-written assertion clauses

Name Source LOC1 R2 A3 S4 L5 PA6 Pre.7 Post.8 Inv.9 LInv.10 Expr.11
BASIC_ROUTINES EiffelBase 92 6 2 0 0 7 0 7 0 0 43%
BI_LINKABLE EiffelBase 141 8 4 0 0 8 0 6 2 0 88%
BOOLEAN_REF EiffelBase 174 12 3 0 0 25 6 16 3 0 48%
COMPARABLE EiffelBase 117 7 3 0 0 21 7 13 1 0 33%
INTEGER_INTERVAL EiffelBase 469 26 12 0 5 61 18 34 9 0 57%
LINKED_QUEUE EiffelBase 202 5 23 1 2 34 4 3 27 0 29%
LINKED_STACK EiffelBase 159 7 23 3 2 41 7 8 26 0 44%
TIME EiffelTime 401 27 10 16 0 40 14 17 9 0 85%
DS_TOPOLOGICAL_SORTER Gobo 487 21 2 10 9 42 11 23 8 0 69%
ST_COPY_ON_WRITE_STRING Gobo 141 8 3 14 0 27 5 21 1 0 70%
ST_SPLITTER Gobo 387 14 3 24 6 61 24 32 3 2 61%
ST_WORD_WRAPPER Gobo 186 6 3 14 3 16 5 7 4 0 100%
UT_CHARACTER_FORMATTER Gobo 164 6 4 9 0 8 6 2 0 0 100%
UT_VERSION Gobo 272 14 4 0 0 45 12 29 4 0 89%
MML_DEFAULT_PAIR MML 89 5 6 1 0 10 1 7 2 0 20%
TRAFFIC_BUILDING Traffic 209 12 5 9 0 32 11 14 7 0 97%
TRAFFIC_COLOR Traffic 120 7 2 0 0 39 18 15 6 0 100%
TRAFFIC_ROAD Traffic 188 9 3 54 0 28 10 11 7 0 82%
TRAFFIC_TAXI Traffic 198 9 8 16 0 32 14 7 11 0 94%
FRACTION1 Students 166 14 4 0 1 22 8 10 1 3 86%
FRACTION2 Students 156 14 4 0 1 21 8 10 1 2 90%
GENEALOGY1 Students 874 37 2 23 4 76 58 18 0 0 33%
GENEALOGY2 Students 1501 37 2 10 4 86 55 31 0 0 26%
EGDE Students 188 8 2 0 0 27 7 18 2 0 81%
NODE Students 125 6 5 0 0 22 4 15 3 0 91%
Average 288 13 6 8 1 33 13 15 5 0 69%
Total 7206 325 142 204 37 831 313 374 137 7 -
1 Lines of code
2 Number of instrumented routines
3 Number of ancestors (superclasses); note that Eiffel allows multiple class inheritance
4 Number of suppliers (see section 4.3)
5 Number of loops inside instrumented routines
6 Number of programmer-written assertion clauses
7 Number of programmer-written precondition clauses
8 Number of programmer-written postcondition clauses
9 Number of programmer-written class invariant clauses
10 Number of programmer-written loop invariant clauses
11 Percentage of programmer-written assertion clauses expressible in Daikon’s grammar (assertion clauses that match one of Daikon’s templates)
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(a) Percentage of correct inferred assertion clauses.
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(b) Percentage of relevant inferred assertion clauses.

Figure 2: Correctness and Relevancy.



The percentages of relevant assertion clauses vary widely, from
less than 20% to 100%; section 4.4 discusses the relation between
the percentage of relevant assertion clauses and code metrics and
possible explanations. On average, around 64% of IA are relevant
for the large test suite.

Discussion
Overall, these results show that Daikon can infer many relevant
assertion clauses for test suites containing sufficiently many calls to
the routines of the classes under test and achieving high coverage
of the possible states for instances of these classes.

The most frequent reasons for the generation of uninteresting
assertion clauses are assertion misplacement and comparisons be-
tween unrelated variables. Most of the misplaced assertion clauses
reside in loop invariants. A possible reason is that loop invariants
have very specific semantics (describing how the loop iteratively
achieves the goal of computation), which is hard to formalize and
encode in the tool. As a solution, some heuristics can be intro-
duced, such as filtering out the clauses that do not contain vari-
ables used in the loop body. Implementing various techniques for
variable comparability analysis and suppressing assertion clauses
at one program point by clauses inferred at another one [10] would
most likely significantly reduce the number of irrelevant IA.

It is likely that a developer examining the correct and interest-
ing inferred assertion clauses would find some of them more im-
portant than others. We did not investigate the question of how
many inferred assertion clauses would be classified by a developer
as “important” or “worth adding to the code”, because for such a
subjective decision the input of a creator or maintainer of the code
would be necessary and we did not have the possibility of involving
such a person in the study.

4.2 Inferred contracts vs. programmer-written
contracts

The first measure we use to compare inferred to programmer-
written contracts is recall, the proportion of the PA that are also
inferred or implied by the IA. We distinguish between the recall of
PA expressible in Daikon’s grammar, or expressible recall, and the
recall of all PA, which we refer to as total recall.

Figure 3(a) shows the expressible recall and figure 3(b) the total
recall. Tables 3(a) and 3(b) show the averages of the expressible
and total recall over all classes. The results show that not all PA are
inferred by CITADEL, not even all expressible ones: the average
of the expressible recall is 86% and the average of the total recall is
59% for the large test suite. While the expressible recall is higher
than 90% for 12 out of the 25 classes for the large test suite, the
total recall exceeds 90% only for 2 classes.

It is also interesting to note that for all classes containing
programmer-written loop invariants, the expressible recall is 100%
for both test suites for these loop invariants. The same holds for the
total recall, with the exception of class FRACTION1, for which the
total recall is 67% for both test suites. So overall the recall for loop
invariants is very high, but the low number of programmer-written
loop invariant clauses in the code we examined suggests special
care in generalizing this result.

Programmer-written and inferred contracts can also be compared
based on the numbers of clauses they contain. In general, the
number of relevant IA is much higher than the number of clauses
in programmer-written contracts, as illustrated in figure 4, which
shows the ratios of relevant IA to PA, and in table 4, which shows
the averages of these ratios.

For loop invariants, which programmers rarely write in practice,
the ratios are very high.

Table 3: Averages of expressible and total recall.
(a) Expressible recall.

Small TS Large TS
Loop invariants 100% 100%
Preconditions 61% 89%
Postconditons & 77% 85%
class invariants
Total 69% 86%

(b) Total recall.

Small TS Large TS
Loop invariants 89% 89%
Preconditions 48% 72%
Postcondition & 54% 59%
class invariants
Total 50% 59%

A striking difference exists between ratios for preconditions and
those for postconditions and class invariants. With the small test
suite CITADEL finds fewer relevant preconditions than program-
mers write; for the large test suite, it finds only marginally more
preconditions than written by programmers. This factor is signifi-
cantly higher for postconditions and class invariants: with the large
test suite CITADEL finds about 5 times more relevant assertion
clauses in these categories than programmers write.

A hypothesis to explain this difference is that developers using
contract-aware languages view the various kinds of contracts in a
different light: they take care to specify preconditions accurately,
because preconditions make implementing routines easier (precon-
ditions can be assumed, and the routine need not check them); post-
conditions and class invariants have no such immediate benefit and
developers tend to neglect them. In other words, writing precon-
ditions makes it easier to write code, while writing postconditions
makes code easier to use and makes faults in the code easier to
detect. The results seem to indicate that programmers care less
about these code quality measures (ease of use and correctness)
than about the ease of implementation.

One reason why inferred assertion clauses outnumber the
programmer-written ones is that Daikon frequently infers theo-
rems — assertion clauses that follow logically from other assertion
clauses — while programmers almost never write them (except oc-
casionally in class invariants). Nontrivial theorems, whose proofs
require knowledge of source code semantics, can be useful for bet-
ter understanding of the software. For example, in a routine that
pushes an element on a stack the programmer would typically write
a postcondition, stating that the number of elements is increased by
one and that the pushed element is now on top. The tool would
additionally infer that the stack is never empty after calling this
routine, which shows an interesting relation between the number of
elements and emptiness.

Another reason is that many inferred postcondition clauses de-
scribe what is not changed by a routine (in the form x = old x)5 —
so called “frame properties”, which programmers almost never
write. If there were a special notation for specifying frame prop-
erties in Eiffel (such as the “modifies” or “assignable” clauses of
Spec# [4] and JML [16]), then programmers would likely use this
notation and such IA would not strengthen the programmer-written

5In Eiffel old is used in postconditions to refer to the value of an
expression before the routine execution.
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Figure 3: Expressible recall and total recall.
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Figure 4: Ratios of relevant inferred assertion clauses to
programmer-written assertion clauses.

Table 4: Averages of ratios of relevant inferred assertion
clauses to programmer-written assertion clauses.

Small TS Large TS
Loop invariants 12.4 13.3
Preconditions 0.6 1.2
Postconditions & 4.8 5.6
class invariants
Total 4.0 4.9

specification.
We also calculated the proportion of program points where no PA

exist, but for which there are relevant IA (figure 5). This proportion
varies considerably, from 0% for class COMPARABLE to 46%
for the large test suite for class UT_CHARACTER_FORMATTER.
The averages for loop invariants, preconditions, and postconditions
and class invariants (shown in table 5) show again that program-
mers write more preconditions than postconditions and class invari-
ants, and that they write very few loop invariants. Naturally, these
results are highly dependent on the number of contracts written by
developers, which vary with the class and author of the code, so it is
hard to generalize from them. They do show, however, that contract
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Figure 5: Percentage of program points with relevant inferred
assertions and no programmer-written assertions.

inference tools can indeed produce relevant assertions for program
points for which programmers did not write any assertions.

We define two factors showing how PA and IA complement each
other:

• The strengthening factor α1 of IA over PA reflects how much
stronger PA become when IA are added:

α1 =
Relevant IA + PA− IA implied by PA

PA

• The strengthening factor α2 of PA over IA reflects how much

Table 5: Averages of percentage of program points with rel-
evant inferred assertions and no programmer-written asser-
tions.

Small TS Large TS
Loop invariants 68% 70%
Preconditions 1% 4%
Postconditons & 25% 28%
class invariants
Total 17% 19%



Table 6: A comparison of the strengthening factors.
(a) Averages for the strengthening factor of in-
ferred assertion clauses over programmer-written
assertion clauses.

Small TS Medium TS
Loop invariants 12.6 13.4
Preconditions 1.1 1.1
Postconditions & 5.4 5.9
class invariants
Total 4.6 5.1

(b) Averages for the strengthening factor of
programmer-written assertion clauses over in-
ferred assertion clauses.

Small TS Large TS
Loop invariants 1.0 1.0
Preconditions 2.3 1.4
Postconditions & 1.7 1.3
class invariants
Total 1.5 1.2

stronger IA become when PA are added:

α2 =
PA + Relevant IA− PA implied by IA

Relevant IA

Values strictly greater than 1.00 for these factors mean that
strengthening occurs. These factors are complementary to recall,
in the sense that they show how much the assertion clauses present
in only one set (either that of the programmer-written assertion
clauses or that of the inferred assertion clauses) can strengthen the
ones from the other set.

Table 6(a) shows the averages for α1 for loop invariants, precon-
ditions, postconditions and class invariants, and the averages for
α1 for all assertions. It shows that IA can strengthen PA, but the
strengthening factor for preconditions is generally much lower than
that for postconditions and class invariants.

Table 6(b) shows the averages for α2 for loop invariants, precon-
ditions, postconditions and class invariants, and the averages for α2

for all assertion clauses. It shows that PA can strengthen IA, but to
a lesser degree than IA strengthen PA.

Discussion
The results show that inferred assertion clauses can be used
to strengthen programmer-written contracts (postconditions and
invariants) and sometimes even to correct existing contracts
(strengthening preconditions). At about 19% of program points
the programmer found nothing to specify while Daikon could infer
relevant assertions. Still, not all PA are inferred or implied by the
IA. So although inferred assertion clauses strengthen programmer
contracts to a greater extent than conversely, automated contract
inference does not find a superset of the PA.

Daikon is good at inferring simple and frequently used as-
sertion clauses such as an_argument /= Void6 (in preconditions)
or an_attribute = an_argument (in postconditions of “setter” rou-
tines). The experiment results show that around 97% of the rele-
vant IA use one of a few simple assertion clause templates: x ∼ y

6Such assertion clauses are currently indeed very common in Eiffel
contracts. In future they will likely become less important, since in
the latest versions of the Eiffel compiler void-call safety is built
into the type system.

(where x is a variable, y is a variable or constant and ∼ is one of
the relations =, 6=, <, 6, >, >) or one of two kinds of implications
that Daikon supports.

It is tempting to draw the conclusion that at present the tool
cannot compete with humans on higher levels of abstraction [10].
However, on closer examination it turns out that “abstract” asser-
tions are mostly not expressible by the tool, because they con-
tain functions with arguments, which are not used in the unfolding
process. For about 54% of the inexpressible assertion clauses the
reason was that they contained a call to a function with one argu-
ment. This means that even including functions with only one ar-
gument into the unfolding process can bring a substantial improve-
ment in expressibility. Another 19% of the PA are inexpressible be-
cause of Daikon’s very restrictive templates involving implications,
while programmer-written contracts often contain implications.

These results indicate that for an object-oriented language like
Eiffel the expressive power of contracts lies rather in their ability to
contain calls to arbitrary side-effect free functions from the system,
than in complicated syntax.

Here are some illustrative examples of programmer-written as-
sertion clauses which Daikon could not infer, taken from class
LINKED_STACK (which inherits them from LINKED_LIST):

• Assertion clauses not expressible in Daikon’s grammar:

– occurrences (v)= old (occurrences (v))+ 1 in the post-
condition of a routine that pushes an element on a stack,
which means that the number of occurrences of the
pushed item is increased by one; this property is not ex-
pressible, because it uses function occurrences, which
has an argument.

– is_empty implies off in the invariant, meaning that in an
empty stack the internal cursor cannot point to a valid
position; the property is not expressible because it in-
volves an implication not supported by Daikon.

– not (after and before) in the invariant, saying that
the internal cursor cannot be at the same time af-
ter and before any valid position; this property can
be represented as (after implies not before)and (before
implies not after) and thus could be inferred with bet-
ter support for implications.

– index <= count + 1 in the invariant, stating that the in-
ternal cursor cannot go beyond the last valid position
further than by one; this property is not expressible be-
cause x 6 y + c (with x and y being variables and c a
constant) is not among Daikon’s assertion clause tem-
plates.

• Assertion clauses (taken from the class invariant) expressible
in Daikon’s grammar, but still not inferred by the tool:

– extendible, which says that a new element can always
be added to the stack; this property most likely was
not inferred because it didn’t pass Daikon’s statistical
check.

– index_set.count = count, stating that the number of el-
ements in the stack is the same as the number of el-
ements in the set of indexes which are valid for the
underlying list; this property was not inferred, be-
cause it requires unfolding the variable Current twice
(Current.index_set.count), while in the experiment the
maximum number of unfolding iterations was set to 1.



4.3 Comparative analysis of the results for the
different kinds of classes

As there were three groups of classes participating in the ex-
periment (library classes, application classes and classes written
by students), it is interesting to find out whether there are signif-
icant differences in the contract inference results between them.
Our intuition was that contract strengthening should show more ev-
idently in application classes than in library classes and even more
in classes written by students because of the difference in quality of
the original contracts. Indeed the average strengthening factor α1

for postconditions and class invariants is 4.9 for library classes vs.
8 for application classes (all results in this section are given for the
large test suite); however, the average for student classes — 7.1 —
is not as high as was expected.

Another interesting observation is that the percentage of PA ex-
pressible in the tool for library classes is much lower than for appli-
cation classes (62% vs. 93%), which indicates that in library classes
programmers tend to write more complex and abstract contracts.

Another reason for differences than the quality of the original
contracts seems to be the varying level of difficulty of writing good
unit tests. In particular, we found writing tests for library classes
much easier than for application classes because the former have
less coupling and are intended for modular use. To capture this in-
formal observation we introduce the following metric to measure
the coupling of a class C: the number of suppliers of C (classes
that C uses both directly and through other classes), which are not
also suppliers of class ANY7. The average coupling factor for li-
brary classes turned out to be 6.1 vs. 16 for application classes,
which supports our intuition. This difference influences the con-
tract inference results: correctness (91% for library classes vs.
68% for application classes) and expressible recall (88% vs. 65%).
The difference in recall is especially significant for preconditions
(98% vs. 48%), which is quite intuitive, since inferred precondi-
tions are influenced by the test suite more directly that other kinds
of contracts. This is also reflected in the significant difference in
the α2 factor for preconditions: programmer-written preconditions
strengthen inferred ones by a factor of 1.1 in library classes vs. 2.3
in application classes.

4.4 Correlations
In trying to establish which properties of the classes may influ-

ence the quality of the inferred contracts, in this study we also ex-
amined correlations between class metrics and the quality of con-
tracts inferred for each class. More specifically, we looked for cor-
relations between the following factors:

• Code metrics of the examined classes: number of lines of
code, number of routines implemented, number of ancestors,
coupling (as introduced in section 4.3), number of queries8

with no arguments (also separately for numeric and boolean
queries), number of PA, percentage of assertion clauses ex-
pressible in Daikon’s grammar;

• Metrics of the IA: total number of IA, correctness, relevancy,
expressible recall, total recall, the ratio of relevant IA to PA,
strengthening factors α1 and α2.

All correlations listed below were calculated using the Pearson
product-moment correlation coefficient for assertion clauses (in-
cluding those in loop invariants) inferred for the large test suite.

7ANY in Eiffel is the root of the class inheritance hierarchy, similar
to Object in Java.
8Attributes and functions

Correctness and relevancy of IA have negative correlations, -0.91
and -0.62 respectively, to the total number of IA.

These two measures also have negative correlations to the num-
ber of numeric zero-argument queries in a class (-0.66 and -0.60
respectively). Numeric (integer and real) queries with no argu-
ments increase Daikon’s assertion search space significantly, be-
cause Daikon has many assertion clause templates for numeric vari-
ables, some of these templates involving relations between 2 or 3
variables. The positive correlation (0.69) between the number of
numeric queries with no arguments and the total number of IA also
shows this.

All these results suggest that the increased assertion search space
has a negative influence on the correctness of the IA and a slightly
weaker negative influence on their relevancy.

On the other hand, the total number of IA has strong positive cor-
relations to the ratio of relevant inferred IA to PA and the strength-
ening factor of IA over PA (0.72 and 0.71 respectively). These
correlations indicate that with more assertion clauses inferred, de-
spite of a large proportion of them being irrelevant, the number of
relevant ones also increases.

Correctness and relevancy also have negative correlations to cou-
pling, -0.58 and -0.52 respectively, which seems to confirm the in-
tuition that the worse quality of unit tests for classes with higher
coupling results in lower correctness and relevancy of assertions
inferred from these tests.

4.5 Threats to generalization
Probably the biggest threat to generalization of these results is

the limited number of classes examined in the experiment. We
selected classes written by programmers with various degrees of
experience, classes having different semantics and sizes in terms
of various code metrics, but naturally their representativeness is
limited. Specifically, the relatively low number of application and
student classes examined in the experiment suggests special care in
generalizing the comparative results discussed in section 4.3. Fur-
thermore, the relatively small size of some of the examined classes
may also be a threat to validity of the results.

The study only involved unit testing separate classes; testing en-
tire applications may produce different results.

As shown both by the results of this study and of previous in-
vestigations [20, 11], the quality and size of the test suite have a
strong influence on the quality of the inferred contracts. We ran the
experiment for two different test suites for each class, but test suites
of other sizes and with other characteristics might lead to different
results.

Since we could not discuss the IA with the developers of the
classes used in the study, we judged the correctness of the IA based
on the implementation and we used a fixed set of rules for deter-
mining which IA are interesting and which not, as explained in
section 4.1. The results might have been different had the original
developers performed the classification.

Other factors likely to influence the results and providing cau-
tion against hasty generalization are the technical characteristics of
Daikon and of the front-end we developed for it, and specifically
the potential faults in these tools.

5. RELATED WORK
Several studies on Daikon-inferred contracts have been per-

formed, but we are not aware of any studies comparing these to
contracts written by programmers independently of the tool.

Some studies investigate the effect of the test suite on Daikon-
inferred contracts. Nimmer and Ernst [19] showed that Daikon pro-
duces, even from relatively small test suites, assertion clauses that



are consistent and sufficient for (proving the absence of runtime er-
rors with very little change. Nimmer and Ernst [20] also showed
that test cases that mainly exercise corner cases are not suited for
contract inference. Gupta et al. [11] and Harder et al. [13] showed
that existing code coverage criteria (branch coverage, definition-
use pair coverage) do not provide test suites that are good enough
for invariant detection, but test suites that satisfy these traditional
criteria produce more relevant assertion clauses than random.

A study of users’ experience with Daikon [20] showed that using
Daikon neither speeds up nor slows down users trying to annotate
programs with contracts, but improves recall (how many assertion
clauses from the intended specification do finally appear in con-
tracts). Half of the users participating in their study considered
Daikon to be helpful, especially because they could use the gener-
ated assertion clauses as support for finding others. More than half
the users found removing incorrect assertion clauses easy. That
study showed how developers can use Daikon as support in the
assertion-writing process; in the present study there was no inter-
ference between running the contract inference tool on the code and
the manual process of writing contracts, since we wanted to inves-
tigate the contributions of each approach to providing classes with
high-quality executable specifications.

A substantial amount of work uses Daikon-inferred contracts as
support for automated testing. The Eclat [21] tool uses contracts
inferred by Daikon as filters for invalid inputs and as an automated
oracle. Xie and Notkin [26] developed the operational violation
approach, which uses Daikon to infer likely assertions and auto-
matically generates tests, verifying the inferred assertions. Tests
violating these assertions are presented to users for examination,
since they exercise behavior that the tool has not seen before. The
DSD-Crasher tool [9] employs Daikon for inferring contracts, ex-
ports these contracts as JML contracts, and uses these to guide the
input generation of the Check’n’Crash tool [8]. Substra [27] gener-
ates integration tests based on Daikon-inferred constraints on com-
ponent interfaces.

DIDUCE [12] is another tool which infers contracts from pro-
gram executions. DIDUCE is built on the same principles as
Daikon, but can operate in two modes: the training mode and the
checking mode. In the training mode, the tool infers assertions
from executions of the system, by starting out with the most re-
strictive conditions and relaxing them as if finds states that violate
them. The checking mode is an extension of the training mode, in
the sense that in the checking mode, when an assertion violation
occurs, DIDUCE also reports the violation, in addition to relaxing
the assertion in question.

Pytlik et al. [23] developed the Carrot assertion detector which
uses the same principles as Daikon, but has a different implemen-
tation. Other work [14, 15] investigates dynamic inference tech-
niques for algebraic specifications.

Some of the ideas developed in academic research on contract
inference were also adopted by industry. AgitatorOne [5], previ-
ously called Agitator, implements a Daikon-like approach for in-
ferring assertions. Users have the option of promoting these in-
ferred assertions to contracts included in the program or discard-
ing them. The Axiom Meister tool [24] developed at Microsoft
Research uses symbolic execution for finding routine contracts for
.NET programs.

6. CONCLUSIONS
From the experiment results we can draw the following conclu-

sions:

• A high proportion of the inferred assertion clauses are correct

(reflect true properties of the source code): around 90% for
the large test suite.

• A high proportion of the inferred assertion clauses are rele-
vant (correct and interesting): around 64% for the large test
suite.

• Contract inference can be used to strengthen programmer-
written specifications, as shown by a strengthening factor av-
eraging at 5.9 for postconditions and class invariants and at
13.4 for loop invariants for the large test suite.

• Contract inference cannot find all assertion clauses writ-
ten by programmers; this is evidenced by an average recall
value of 59%, meaning that only a bit more than half of the
programmer-written assertion clauses are also inferred or im-
plied by the inferred assertions.

• The quality of inferred contracts decreases with the growth
of coupling between classes and the size of the assertion
search space: the more suppliers and zero-argument numeric
queries a class has, the higher the percentage of incorrect and
uninteresting inferred assertion clauses.

These results suggest that contract inference cannot completely
replace the manual work of writing assertions. Nor should it: in
the Design by Contract software development method, the manual
process of writing contracts starts already before the implemen-
tation work and can expand until after the implementation is fin-
ished, while contract inference tools can only be used when the
implementation is ready. Only relying on such a tool to produce
contracts loses all the benefits of writing contracts from software
analysis and design through implementation. Nevertheless, when a
complete or partial implementation of the system is ready, contract
inference tools can be used to strengthen the existing programmer-
written assertions, resulting in more accurate specification.

Future work includes improving both Daikon and its front-end
for Eiffel, based on the insights gained through this study. A
promising idea that we intend to explore is “push-button infer-
ence”: using an automated testing tool to generate the test suites
necessary for the contract inference instead of handmade tests. An-
other direction for future work is to explore the use of contract in-
ference for estimating test suite quality, based on the idea that the
quality of inferred contracts is indicative of the quality of a test
suite, which should relate to the test suite’s fault-revealing capabil-
ity.
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