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Abstract—A random testing strategy can be effective at
finding faults, but may leave some routines entirely untested if it
never gets to call them on objects satisfying their preconditions.
This limitation is particularly frustrating if the object p ool does
contain some precondition-satisfying objects but the strategy,
which selects objects at random, does not use them.

The extension of random testing described in this article
addresses the problem. Experimentally, the resulting strategy
succeeds in testing 56% of the routines that the pure random
strategy missed; it tests hard routines 3.6 times more often;
although it misses some of the faults detected by the original
strategy, it finds 9.5% more faults overall; and it causes no
noticeable overhead.

Keywords-random testing; precondition satisfaction; linear
constraint solving

I. I NTRODUCTION

A random testing strategy randomly selects inputs for the
program under test. Random strategies are popular because
they are easy to implement, widely applicable and have
small overhead in choosing test data. Despite the intuition
that random strategies are too naive compared to systematic
strategies, studies [1]–[4] show that they are effective in
detecting faults.

When applied to Object-Oriented (O-O) programs with
contracts, however, a pure random strategy may leave
routines with strong preconditions entirely untested. Such
routines are important because they often perform critical
tasks and failing to test them reduces the quality of the
generated test suite.

Many techniques have been proposed to address the
issue of generating precondition-satisfying tests. Adaptive
random testing [5], [6] produces test data that are evenly
spread over the input domain, increasing the chance to
select precondition-satisfying inputs. Model-based testing
[7] builds up a model for the software embedding the
pre- and postconditions of every state transition, and only
generates tests conforming to that model. Mock objects [8]
encapsulate the constraints required by preconditions and
only return values satisfying those constraints. Search-based
test case generation using evolutionary algorithms [9] has
recently been applied to O-O programs as well.

For random testing, the problem of not being able to select
precondition-satisfying objects effectively can be particu-

larly frustrating if the object pool, from which the strategy
selects objects for routine calls,doescontain objects that
satisfy certain preconditions, but they simply do not get
selected at the right time. To correct this problem, we have
developed an extension of random testing, theguided object
selection strategyfor satisfying preconditions (abbreviated
as ps-strategy). As testing proceeds, the ps-strategy keeps
track of precondition-satisfying objects; when a routine is
to be tested, the strategy selects those objects with a higher
probability.

Our results show that compared to the original random
strategy (or-strategy), the ps-strategy:

• tests 56% of the routines otherwise missed;
• tests hard routines 3.6 times more often;
• finds 9.5% more faults overall, although it misses some

of the faults detected by the original strategy;
• causes no noticeable overhead.

A package1 is available online containing the source code
of the ps-strategy, all the results presented here, and the
instructions to reproduce the corresponding experiments.

This article is organized as follows: Section II explains
the ps-strategy; Section III describes the experiments and
Section IV presents results; Section V discusses the findings;
Section VI includes the related work; Section VII draws
conclusions.

II. GUIDED OBJECT SELECTION STRATEGY

The ps-strategy is an extension of the or-strategy. This
section first introduces the AutoTest [10], [11] tool im-
plementing the or-strategy, then explains the guided object
selection strategy.

A. The AutoTest Tool

AutoTest is an automatic testing tool implementing the
or-strategy for Eiffel. It attempts to test every public routine
in a given set of classes within a given time frame. The
tool is integrated into the EiffelStudio [12] development
environment.

Figure 1(a) shows the workflow of the AutoTest tool
with the or-strategy. Within a given time limit, AutoTest

1http://se.inf.ethz.ch/people/wei/download/pspackage.zip
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Figure 1: AutoTest workflow

repeatedly performs the following three steps to generate
the next test case:
1) Select a routineAutoTest stores the number of times it
tries to test a routine, and randomly chooses one of the least
tried routines. For AutoTest, a test case is always a single
routine call.
2) Select objects randomlyAutoTest maintains an object
pool. All objects created for or returned by routine calls
are put into the object pool for future use. When it needs
an object as target or argument for the routine under test,
AutoTest will either randomly select an object from the pool
or create a new one.
3) Invoke the routine AutoTest invokes the routine with
the selected objects. If those objects satisfy the routine’s
precondition, the invocation defines a valid test case for
that routine; otherwise the test case is invalid. After the
invocation, the whole cycle starts over again.

B. A Motivating Example

The inability of random testing to select precondition-
satisfying objects manifests itself in the object selection step.
From time to time, there are objects in the object pool
satisfying specific preconditions, but they only constitute
a very small proportion of all the possible combinations;
AutoTest is unlikely to pick them out in pure random
selection.

As an example, Listing 1 shows the interface of
routine remove left cursor and new cursor in class
DS ARRAYED LIST from the Gobo [13] library. Given
a cursor object,remove left cursor removes the list item
to the left of the cursor’s position, andnew cursor returns
a newly created cursor object. The precondition consists of

5 assertions, requiring validity of the cursor and existence
of a position left to the cursor.

In our experiments, AutoTest failed to satisfy
remove left cursor ’s precondition in 30 hours of testing,
leaving the routine untested. There were, however, objects
in the object pool satisfying the precondition. In a randomly
selected test run, at the end of the50th minute, there are
356 list objects and192 cursor objects. But only5 out of
the 356 × 192 = 68, 352 list-cursor combinations satisfied
the precondition. The probability that one such combination
gets picked by random selection is only0.007%.

Listing 1: Example of unsatisfied preconditions
removeleft cursor (a cursor: DS ARRAYEDLIST CURSOR)

−− Remove item to left of ‘acursor ’ position .
−− Move any cursors at this position forth .

require
not empty: not is empty
cursor not void: a cursor /= Void
valid cursor : valid cursor (a cursor)
not before: not a cursor. before
not first : not a cursor. is first

new cursor: DS ARRAYEDLIST CURSOR
−− New external cursor for traversal

ensure
cursor not void: Result /= Void
valid cursor: valid cursor (Result)

C. The Guided Object Selection Strategy

One way to increase the likelihood of selecting
precondition-satisfying objects is to keep track of the objects
which satisfy each precondition. Figure 1(b) shows the
workflow of the ps-strategy. Steps that differ from the or-
strategy are highlighted:



• A heuristic functionPr decides whether to turn on
precondition satisfaction for the selected routine.

• If precondition satisfaction is on, choose precondition-
satisfying objects from the predicate valuation pool.

• After test case execution, evaluate which precondition
predicates hold for objects that were used in the test
case and update the predicate valuation pool.

Precondition-satisfying object selectionThe ps-strategy
maintains, in addition to the object pool, a predicate valua-
tion pool (V-pool). The V-pool keeps track of which objects
satisfy precondition predicate clauses: for a predicatep with
n arguments, the V-pool maintains a setSp of n-tuples, each
representing an object combination that satisfiesp.

To map operands2 for a routine call to object combina-
tions in the V-pool, a functionMp is introduced for every
predicatep:

Mp : TUPLEm → TUPLEn

whereTUPLEi denotes a set ofi-tuples of objects. Given a
m-tuple Tm representing the operands to a routiner, and a
precondition predicatep with n arguments inr, Mp(Tm)
gives a n-tuple containing only the elements needed to
evaluatep, in the order as they appear inTm.

For example, for a list objectl and a cursor objectc,
Mnot first(〈l, c〉) for predicatenot first returns〈c〉 because
the predicate only mentions the cursor.

To pick objects for a routiner with m operands, the ps-
strategy searches the object combination sets associated with
r’s precondition predicates for candidate objects to construct
a m-tuple Tm, such that for each predicatep, Mp(Tm) ∈
Sp. As long as the V-pool is consistent, a tuple constructed
this way satisfies the routine’s precondition. If no such tuple
exists, the ps-strategy resorts to random object selection; if
there is more than one way to construct the tuple, the ps-
strategy randomly chooses one construction.
Populating the V-pool After the execution of a passing
test case, the ps-strategy populates the V-pool by evaluating
precondition predicates whose signature conforms to the
relevantobjects and then adding the precondition-satisfying
combinations to the V-pool. Relevant objects consist of the
operands provided to the last routine call and the returned
value, if any. The ps-strategy only uses relevant objects for
predicate evaluation because on one hand, those objects are
more likely to get changed during the last executed test
case hence predicates might evaluate to a different truth
value on them; on the other hand, evaluating predicates
on all objects entails a huge overhead which decreases the
overall effectiveness of the strategy. The ps-strategy tries to
populate the V-pool only after passing test cases because a
test case ending with an exception may leave relevant objects
in inconsistent states.

2Operands of a routine call include its target and its arguments, if any.

Using the above example, suppose AutoTest generated a
test case containing the following routine call:

o7 := o5.new cursor

After executing this test case, the ps-strategy evaluates predi-
cates includingo5 .valid cursor(o7 ). Because the predicate
evaluates to true (can be seen from the postcondition of
new cursor ), the ps-strategy stores〈o5, o7〉 in the predicate
valuation pool forvalid cursor .
Linear constraint solving Preconditions with predicates
involing linear constraints occur often; Listing 2 shows a
typical example. The or-strategy is ineffective for testing
routines with such preconditions.

Listing 2: Linearly-constrained precondition
item ( i : INTEGER 32): G

−− Item at index ‘i ’
−− From class DSARRAYED LIST

require
valid index: 1 <= i and i <= count

To solve a linear constraint, the ps-strategy translates the
precondition into a linear programming model and then
consults the lpsolve [14] linear programming solver for
solutions. For a model, lpsolve can generate a minimal and
a maximal solution, consisting of the smallest and largest
integer satisfying the constraint, respectively. The ps-strategy
uses these two boundary values to define an interval from
which a single value is randomly chosen. Although the
chosen value is not necessarily a solution of the constraint,
our experiments showed that it works in most of the cases.
If the chosen value does not satisfy the constraint, the result
will be a precondition violation for the routine under test
without any further consequence.

The ps-strategy introduces two biases in choosing a value
between the boundary values returned by lpsolve3:

• If potentially interesting values such as0, ±1, ±2, ±10,
±100 are in the interval, then with probability0.25 one
of them will be selected randomly. Previous work [1]
showed that AutoTest finds the most faults with this
setting.

• With probability 0.125 a boundary value will be se-
lected randomly, because experience in boundary test-
ing [15] showed that boundary values are more likely
to reveal faults.

Correcting the V-pool As described earlier, the ps-strategy
adds new predicate-satisfying object combinations to the
V-pool after every passing test case. As testing proceeds,
the objects in the object pool may change because AutoTest
reuses existing objects for new routine calls. Consequently

3These probabilities are parameters of AutoTest. The valuesused here
were the ones we empirically found to work best for our experiments with
no formal claim of optimality.



the information stored in the V-pool may become inconsis-
tent, meaning that the V-pool indicates certain objects satisfy
a predicate although this is no longer true.

Keeping track of all the objects affected by the last test
case and re-evaluating relevant predicates in the V-pool
would dramatically slow down the testing process. Instead,
the ps-strategy always lazily assumes that the V-pool is
consistent. Only when the test case fails with a precon-
dition violation will the object combination in the V-pool
corresponding for that failure be removed. As long as the
ps-strategy can suggest precondition-satisfying objectsat an
acceptable success rate, the algorithm can still be effective.
Optimizations A straightforward implementation of the ps-
strategy suffers from a huge overhead. On one hand, search-
ing the V-pool for precondition-satisfying objects takes
time; and this process gradually slows down because the
pool size grows as testing proceeds. On the other hand,
linear constraint solving is much slower than a lookup in
the V-pool. Always enforcing precondition satisfaction can
entail a50% ∼ 70% overhead (measured as the number of
valid test cases generated in a fixed time period), leaving
much less time for actual testing. Although the ps-strategy
can test hard routines more often by always enforcing
precondition satisfaction, the overall effectiveness of the test
process decreases: far fewer faults are found in the same
time.

As a tradeoff, the ps-strategy turns on precondition sat-
isfaction only from time to time. It applies the following
heuristic function to decide whether to turn it on:

Pr(t, d) = C

(

1 −
t

d

)

where d is the duration in seconds of the test run so far
(starting from 1) andt is the time relative to the starting
point of the test run whenr was tested for the last time.
If r has not been tested,t is 0. C is a factor in the range
[0, 1]. In our experiments, it was set to0.8. The value of
Pr, also within [0, 1], is used as the probability to turn on
precondition satisfaction forr. If r has not been tested for a

long time,
t

d
becomes very small becaused keeps increasing

as testing proceeds whilet stays the same, as a result, the

value ofPr increases; ifr has been tested quite recently,
t

d
is large, the value ofPr decreases.

The benefits of applying this heuristics are twofold:
1) Our experiments showed that the overhead dramatically
decreased, but the ps-strategy could still test precondition-
equipped routines quite often. 2) Precondition-equipped rou-
tines are tested throughout the whole test run, making it
possible to test a routine in a more diversified (in the sense
of object states) object pool as testing proceeds.

Another optimization addresses linear constraint solving,
the most time consuming part of the ps-strategy. Every
model as well as its solution are cached. The ps-strategy

consults the cache before sending a model to lpsolve. If
there is already a cached solution, it will skip the expensive
solving work.

These two optimizations combined decreased the over-
head dramatically to a mere 0.03% on average. For some
classes, the ps-strategy even generates more tests than the
or-strategy in the same time period.

III. E XPERIMENTAL SETUP

An experiment of 3420 hours of testing was conducted
to evaluate the performance of the ps-strategy. This section
describes the tested classes and the experiment setup.
Class selection92 classes with different semantics and
code structures were chosen from the EiffelBase [16] and
Gobo libraries. Both libraries are widely used in production
software. The classes cover common data structures such
as list, stack, queue, table, tree as well as a lexer based on
regular expressions, and contain routines with preconditions
of various strength.

Table I shows some metrics on these classes. In the table,
Pre-routines means precondition-equipped routines,Hard
routines means hard-to-test routines, for which over90%
of the test cases generated by the or-strategy violate the
associated preconditions, andUntested routinesare routines
that could not tested by the or-strategy.
Test runs The classes were arranged into 57 groups.
Strongly related classes (such as DSARRAYED LIST and
DS ARRAYED LIST CURSOR) were put into the same
group and tested together. When given a class group, Au-
toTest will try to test all the routines in them, which may
result in a better object state diversification.

Each class group was tested in 30 AutoTest runs with
different seeds to the pseudo-random number generator, with
each run 1 hour long, under both the ps-strategy and the or-
strategy, resulting in 3420 hours of testing in total.

Since seeds provided to the pseudo-random number gener-
ator influence the outcome [17], the results presented below
are averaged out through the 30 runs of each class group
using the median. The median often better expresses the
common-run, unlike the mean, which is more affected by
the extreme high or low values.
Computing infrastructure The ps-strategy is implemented
on top of the AutoTest tool in EiffelStudio 6.4, which serves
as the reference or-strategy in the comparison benchmark.
The experiment was conducted on 9 PCs with Pentium 4 at
3.2GHz, 1GB of RAM, running Linux Red Hat Enterprise
4. AutoTest was the only CPU intensive program running
during testing.

IV. EVALUATION

This section presents the results of our experiments. The
results compare the performance between the ps-strategy and
the or-strategy in the following ways: tested routines and
their test frequency; detected faults; the test case generation



Table I: Metrics for tested classes
Type Classes LOC Variations Pre-routines Hard routines Untested routines
Lexer 30 32,108 regular expression, NFA, DFA, lexer 1,290 499 296
List 24 15,482 array, single, double, bidirectional, sorted 913 252 81
Hashed 2 5,156 hash table 66 18 6
Queue 4 7,135 bounded, unbounded, priority 48 2 0
Set 11 15,471 binary tree based, array based, hashed, sorted 299 50 8
Stack 1 1,281 linked list based 15 2 0
String 1 4,815 array based 80 19 8
Tree 19 16,102 binary, n-nary, AVL, red black, search tree 441 144 10
Total 92 97,550 3,152 986 409

speed, followed by an analysis of the ps-strategy success
rate.

A. Increase in the Number of Tested Routines

The primary goal of the ps-strategy is to test more
routines. Figure 2 shows the number of test cases generated
for every hard routine by both strategies. In the figure, the
x-dimension enumerates all the hard routines, and the y-
dimension shows the number of test cases for a hard routine
under both strategies: every vertical line represents a hard
routine. In each line, the height of the dark section represents
the number of test cases generated by the or-strategy for
that routine; and the height of the light section represents
the number of test cases generated by the ps-strategy. To
clearly reveal the test case generation trend, the routinesare
first sorted by the number of test cases generated by the or-
strategy, then by the number of test case generated by the
ps-strategy.
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Figure 2: Number of test cases for hard routines

Figure 2 shows that the ps-strategy could test more
routines than the or-strategy: extending roughly from600 to
800 in the x-axis, only light sections appear, indicating only
the ps-strategy could generate test cases for those routines.

In total, there are986 hard routines; the or-strategy could
test577 (58.5%) of them, and the ps-strategy could test802
(81.3%) of them. The ps-strategy could test 231 (56%) out
of 409 routines that the or-strategy missed. However, the ps-
strategy missed 6 (1%) routines that could be tested by the
or-strategy (Figure 2 is too small to show those 6 routines
clearly).

The figure also shows that the ps-strategy can generate
more test cases (3.6 times more on average) for hard
routines, reflected by that the light section is higher than
the dark section. Since random testing cannot guarantee
complete state coverage, the more test cases for a routine,
the higher the chance that the routine is tested in a different
state.

In Figure 2, the peaks in the light part reveals that
preconditions are much easier to satisfy for some routines
than for others, so the ps-strategy can generate more test
cases for the former category.

B. Increase in the Number of Detected Faults

The number of detected faults4 is the most important
criterion to evaluate the performance of a testing strategy.
Figure 3 shows the histogram of the percentage increase in
the number of faults found by the ps-strategy for all the
class groups. Compared with the or-strategy, out of the 57
groups, the ps-strategy found more faults in28 groups, found
the same number of faults in19 groups, and found fewer
faults in 10 groups. In3 groups, the ps-strategy detected
over 30% more faults.

C. Kinds of Faults Detected by the ps-strategy and the or-
strategy

Previous work [17] of ours showed that random testing
can find different faults with different seeds to the pseudo-
random number generator. In order to access the overall fault
detection ability of these two strategies, we looked at the
actual faults that are found by the ps-strategy and the or-
strategy in all 30 runs in a class group.

Figure 4 shows the number of group-wise distinct faults
that are detected only by the ps-strategy, only by the or-
strategy, and by both strategies in each class group. Group-
wise distinct faults are the set of faults that are detected in

4The faults are real faults in production software.
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Figure 3: Increase in number of faults

at least one run out of the 30 runs for that group. In the
figure, every vertical bar represents a class group. In each
bar, the height of each colored section represents the number
of group-wise distinct faults that are detected by a particular
strategy or by both strategies.
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Figure 4: Group-wise distinct faults detected by the ps-
strategy and the or-strategy

Figure 4 shows that most of the faults were found by both
strategies, but some were found only by the ps-strategy and
some only by the or-strategy.

The same faults can be found in multiple class groups, for
example, a fault in class ARRAY is likely to be caught in
many groups because they all use ARRAY. After removing
all duplications, the strategy-wise distinct faults are defined
as the set of distinct faults that are detected in at least onerun

in any group under a certain strategy, or a set of strategies.
There were 1124 strategy-wise distinct faults detected by

the two strategies, out of which the or-strategy found 962 and
the ps-strategy found 1053, yielding a 9.5% increase. 891
(79.3%) faults were found by both strategies, 162 (14.4%)
were found only by the ps-strategy and 71 (6.3%) only by
the or-strategy.

D. Fault Detection Probability

Due to its nature, a random strategy may detect different
faults in different test runs. Fault detection probabilitymea-
sures how likely a random strategy detects a fault in a test
run. It has an important practical implication: the higher
the probability, the less runs are needed to detect a fault.
Ideally, a strategy can detect all the faults in any single run,
then only one run is sufficient, which stands in contrast to
the common application of random testing today — test the
same program repeatedly with different seeds.

Our experiments containR = 30 runs per class group, the
detection probability for a group-wise distinct faultf under
strategys can be measured by:

D(f, s) =
N(f, s)

R

whereN(f, s) is the number of runs in whichf is detected
in that group unders.

Figure 5 shows the histogram for group-wise distinct
fault detection probability distribution for both strategies,
revealing that the two strategies are quite similar: around
35% of the faults were detected with probability1, and
22% of the faults were detected with a probability below
0.1. If these two distributions are treated as two stochastic
variables, the Pearson correlation coefficient between them
is 0.99. This indicates that in the sense of fault detection
probability, the two strategies perform almost identically.

Since some faults were found only by a particular strategy,
it is interesting to know whether those faults can be detected
with a high probability by that strategy or just by luck (witha
low probability) due to the random nature. If the probability
is high, the strategy must have some characteristics for
finding such faults.

Figure 6 plots the group-wise distinct fault detection
probability difference between the two strategies. In the
figure, every point in the x-dimension represents a faultf ,
its corresponding y coordinate is the detection probability
difference between the ps-strategy and the or-strategy, which
is calculated asD(f, ps) − D(f, or). 39% of the faults are
detected in both strategies equally often (with0 difference);
37% of the faults are more likely to be detected in the ps-
strategy (with positive detection probability difference); and
24% were more likely to be detected in the or-strategy (with
negative difference). This means both strategies have the
tendency to detect some kinds of faults more often.
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Figure 5: Fault detection probability
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Figure 6: Comparison of fault detection probability

Faults found only by the ps-strategy or only by the or-
strategy are highlighted in different colors in Figure 6. They
appear above or below the x-axis respectively. Some of them
are detected with relatively high probability (The ones to
the very left and to the very right of the figure.) The fact
that some strategy-specific faults were detected with high
probability suggests that they are detected thanks to the
characteristic of that strategy instead of pure luck.

E. Test Case Generation Speed

The test case generation speed is measured as the number
of valid test cases generated per minute. The overhead of
the ps-strategy compared to the or-strategy is defined as

the speed difference between these two strategies. Figure 7
shows the speed of the ps-strategy relative to the or-strategy
over time. Every curve represents a class group. A line above
the x-axis means the ps-strategy is faster, below the0 line
means the ps-strategy is slower. For most of the groups, the
curve is close to the0 line with little variance throughout
the testing period. The thick curve around the0 line is the
median of all groups. It stays close to the0 line, meaning
that the ps-strategy brings almost no overhead (only 0.03%).
This does not mean that the extra steps involved in the
ps-strategy, such as V-pool building and searching, do not
take up time; it means that even though they need time, the
overall speed is compensated by the fact that more test cases
are generated for hard routines while they would otherwise
result in precondition violations.
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Figure 7: Test case generation speed

The two class groups with the highest and lowest speed
are also highlighted in the figure with thick curves, indicat-
ing that the ps-strategy performs best on class group ARRAY
and worst on class group LEXBUILDER. Both classes have
quite a few linearly-constrained preconditions. On ARRAY,
the ps-strategy was10% faster because often there are
solutions to the linear constrains; on LEXBUILDER, the
solution hardly exists, so lpsolve spent a lot of time without
success, resulting in a20% overhead.

F. Success Rate of the ps-strategy

As described above, the V-pool may contain inconsistent
information, which can mislead the ps-strategy to make
wrong suggestions. The suggestion success rate reflects the
level of consistency of the V-pool. For a class group, the
success rate is measured as the percentage of the number of
correct suggestions out of the total number of suggestions.
Figure 8 shows the success rate for every class group over



time. Every curve represents the success rate of a class
group. Depending on the class, the success rate varies in
a wide spectrum, from as low as20% to as high as99%.
For most of the class groups, the success rate is above40%.
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Figure 8: ps-strategy suggestion success rate

Figure 8 also shows that for many groups, the success
rate goes down as testing proceeds. This suggests that the
effectiveness of the ps-strategy in terms of precondition
satisfaction decreases over time. The pattern is that if the
class group contains routines that are not testable even by
the ps-strategy, the success rate goes down. This is because
as the testing proceeds, the suggestions are increasingly
targeting only hard routines. Those suggestions must have
very low success rate, otherwise the untestable routines
would be tested.

The success rate may decrease, but it will not go down
to 0, because thePr heuristic function makes sure that
all precondition-equipped routines are tested evenly often
throughout the whole testing process. As a result, the success
rate converges to a certain level which depends on the
number of hard routines in the class. In fact, most of the
curves in the figure reach a plateau. There are some curves
that do not show a plateau, the reason could be that the
testing time was not long enough.

V. D ISCUSSION

This section first discusses the routines still untested by
the ps-strategy, then provides a remark on the importance
of speed in random testing, and finally covers the threats to
validity of the results.

A. Routines Untested by the ps-strategy

The ps-strategy could not test 184 routines, which are
classified into the following three categories:

Unsatisfiable preconditions (19%) Some routines have
unsatisfiable preconditions. This is an artifact of the class hi-
erarchy design. For example, Listing 3 shows the interface of
routinefill and the implementation of routineextendible in
class ARRAY. By design,fill ’s precondition is not satisfiable
becausefill does not make sense for ARRAY, so its precon-
dition is “disabled”. But in ARRAYED LIST, a descendant
class of ARRAY, fill makes sense, so its precondition is
redefined to return True. AutoTest will repeatedly try to
satisfy those unsatisfiable preconditions without success.

Listing 3: Unsatisfiable precondition
fill (other: CONTAINER)

−− Fill with as many items of ‘ other ’ as possible .
require

other not void: other /= Void
extendible: extendible

extendible: BOOLEAN
−− May items be added?

do
Result := False

end

Not supported by AutoTest or by the testing envi-
ronment (32%) Routines of this type have preconditions
only satisfiable on certain environment, for example, some
routines requires to be tested on the .NET platform while
our experiment was conducted only on Linux; or their
preconditions are not satisfiable by current implementation
of AutoTest.
Other (49%) This type is more interesting because it shows
the limitation of the random testing strategy or the guided
object selection strategy. There are four possible cases:

• Objects satisfying the desired preconditions never pop-
ulate the object pool. This is because a random strategy
cannot fully explore object state space.

• The object pool does contain objects satisfying the
desired preconditions, but the ps-strategy does not
consider them during the predicate evaluation phase
because they do not occur to be relevant objects of
the same passing test case.

• Objects satisfying the desired preconditions got dam-
aged before they are selected to test the corresponding
routine. This is because after precondition predicates
evaluation and V-pool updating, the ps-strategy does
not use the objects immediately, instead, it will continue
to randomly choose the next routine to test. One way
to solve this problem is to test a routine immediately
after its precondition is observed to hold. We call this
schemeeager routine selection.

• The test runs were not long enough.
Overcoming these limitations is part of our future work.

B. Importance of Speed

As in the or-strategy, speed plays an important role in
the ps-strategy because the algorithm relies on randomness



to diversify the object pool, and a diversified pool greatly
contributes to fault detection. In the prototype of the ps-
strategy, we tried two other variations for better precondition
satisfaction by sacrificing speed, but they suffered from a
slow object pool diversification process, and detected fewer
faults in the end:

• Iterating through all objects in the object pool searching
for precondition-satisfying combinations. While this
made sure that every suggestion is correct, it brought
a huge overhead. Even with turning on precondition-
satisfaction only from time to time, the overhead was
still above50%.

• Always enforcing precondition satisfaction for a rou-
tine. As mentioned earlier, this also came with a huge
overhead.

Previous work [6] of ours also showed that speed loss
can influence the effectiveness of random testing in finding
faults. So the fact that the ps-strategy involves only 0.03%
overhead is plausible.

C. Threats to Validity

The following three threats may influence the generaliza-
tion of our results:

• Although the chosen classes have different semantics
and complexities, they may not be representative for
all O-O programs.

• AutoTest is one implementation of random testing using
a pseudo-random number generator. We tried to keep
the algorithm of AutoTest as general as possible, but
other implementations of random testing may produce
different results.

• At the end of a 1 hour test run, for many of the classes,
the number of faults did not reach a plateau. Given
more time, AutoTest may continue to find new faults.
The results, especially the faults found only by the ps-
strategy or the or-strategy may be different from those
reported here if the classes are tested for a longer time.
It is also possible that more routines can be tested with
longer testing time.

VI. RELATED WORK

Tools such as JCrasher [18], Eclat [19], Jartege [20]
and Jtest [21] for random testing O-O software drew a lot
of interest in recent years. Although they target languages
without contracts (mostly Java), the fact that object behavior
depends on its state requires implicit preconditions anyway:
generating a test case to insert a value into a list at an non-
existing position does not make sense. These tools either
cannot detect precondition violations or ignore invalid test
cases, like what AutoTest does with the or-strategy.

Adaptive random testing [5] is an enhancement of random
input selection. Previous work [6] of ours showed that
adaptive random testing based onobject distancecan detect
new faults in O-O programs. The idea of enhancing the data

selection part of the random testing strategy is similar to
the work presented here but we focused on precondition
satisfaction, and the method that we used was quite different.

Model-based testing is closely related to this work be-
cause it generates precondition-satisfying test cases. Spec
Explorer [22] requires a model of the software under test
and only generates valid test cases conforming to that
model. However, software models are manually provided,
while ps-strategy is fully automatic. Although tools such as
ADABU [23] used contract inference technique to construct
the model automatically, the test suite used for the inference
is manually written.

Mock objects are also commonly used in precondition
satisfaction and are usually provided manually. Pex [24] used
manually provided mock objects to return values satisfying
the path conditions derived from symbolic execution (can
be treated as strengthened preconditions). One criticism on
mocks is that one may end up testing a different program
if the mocks provide inconsistent behavior. Compared to
mocks, the guided object selection uses objects that were
correctly constructed before.

Korat [25] generates all non-isomorphic inputs satisfying
a given predicate (precondition) from a given bound size
and a set of primitive objects, which are used to construct
the final input object. But it is difficult to apply Korat to
classes with complex internal structures, such as the regular
expression based lexer we used in the experiments.

Several methods [9], [26], [27] based on evolutionary
algorithms have been applied to testing O-O software. But
so far, we have not seen large-scale experiments showing its
applicability in general.

VII. C ONCLUSIONS ANDFUTURE WORK

The guided object selection strategy is a fully auto-
matic method for satisfying routine preconditions in random
testing O-O programs. Compared to the original random
strategy, it is able to test 56% of the routines that were not
testable before, it generates 3.6 times more test cases for
hard routines, finds almost10% more faults over all tested
classes and has negligible overhead. The results suggest
that even though the guided object selection strategy missed
some routines and faults that are tested or detected by the
original strategy, it is more effective than the latter.

Future work includes: 1) testing classes in longer runs;
2) experimenting with eager routine selection for better
precondition satisfaction; and 3) understanding why the
guided object selection strategy misses some faults detected
by the original random testing.
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