
I TOOlS '891 

THE NEW CULTURE OF SOFTWARE DEVELOPMENT: 

REFLECTIONS ON THE PRACTICE 

OF 

OBJECT-ORIENTED DESIGN 

Bertrand Meyer 

Interactive Software Engineering Inc. 
270 Storke Road Suite 7 
Goleta, CA 93117 (USA) 

bertrand@eiffel.com 

ABSTRACT 

Object-oriented techniques, when applied seriously and a broad scale, reflect a 
new culture of software engineering, which may be called the product culture. 
After contrasting this new culture with the more traditional project culture, this 
article examines some of the technical, economical and managerial implications 
of the new approach. 

The fundamental object-oriented processes of abstraction and extraction 
(recognizing inheritance structures a posteriori) are explored, as well as the new 
lifecycle model which seems to fit best with object-oriented development of 
reusable software: the Cluster model. 

13 



THE TWO CULTURES OF SOFTWARE DEVELOPMENT 

1 Overview 

Object-oriented design is an old idea and a new idea. Simula introduced the basic 
concepts more than twenty years ago, time for more than a few generations when measured 
against the rate of evolution of computer industry. Only recently, however, have object­
oriented techniques been exposed to enough people and applied to enough projects to yield 
a concrete idea of the practical power, benefits and requirements of the approach. 

This article describes some of the issues that arise when the object-oriented approach 
is implemented on a significant scale. It argues that object-oriented techniques imply a new 
culture of software development, and studies how this new culture can, for the time being, 
coexist with the old. 

The basis for this discussion is the observation of a large number of object-oriented 
applications over a period of twelve years or so, initially in Simula, and later in Eiffel. 
Some of these applications were developed under my leadership; others were built by 
fellow users (trained by us or by others) and by ~sers of our tools. No attempt has been 
made to transpose this experience to environments other than Eiffel, and no claim is made 
regarding the validity of such a transposition. 

2 The two cultures 

Object-orientedness is not just a programming style but the implementation of a certain 
view of what software development should be. Taken seriously, this view implies 
profound rethinking of the software process. 

How profound - this is best understood by contrasting the mode of development 
implied by object-oriented techniques with the most common culture of software 
engineering. 

The traditional culture - implicit in most of the software engineering literature, and in 
the usual software lifecycle models - is project·based~ In other words, the subject of 
discourse is the project, which starts with a certain specification and ends with the delivery 
of a program with the supporting documents. 

Some of the implications of this view, taken to the extreme, are summarized in table 
1. 

14 



THE TWO CULTURES 

Outcome Results 

Economics Profit 

Unit Department 

Time Short-term 

Goal Programs 

Bricks Program elements 

Strategy Top-down 

Method Functional 

Language C, Pascal, ... 

Table 1: The project culture 

The outcome is results, produced by a program in response to user's requirements. 
The economics is one of profit, as produced by the results. 

The organizational unit impacted is usually the department directly affected by the 
project. The time frame is as short as it will take to produce the required solution. The 
goal is a pro gram, or a few programs. The bricks of which this program is made are 
program elements: modules built for the occasion. 

The strategy, as recommended in most textbooks and procurement policies, is top­
down: start from the specific problem requirements and decompose. The method which 
follows naturally is based on analysis of the functions and data flow. The language used is 
one of the classical languages. 

The culture implicit in object-oriented design is quite different. It may be called the 
product culture: the subject of discourse is reusable products rather than individual 
projects. Some of the implications of this view, taken to the extreme, are summarized on 
table 2. -

15 



THE TWO CULTURES OF SOFfWARE DEVELOP:MENT 

Outconle Components, libraries, tools 

Econonlics Investment 

Unit Company, industry 

Time Long-term 

Goal Systems 

Bricks Software components 

Strategy Bottom-up 

Method Object-oriented 

Table 2: The project culture 

The outcome is reusable software elements, meant to be useful to a large number of 
applications. The economics is one of investment - which of course is intended as 
deferred pro fit. 

The unit is, beyond an individual project, a company (or division), sometimes an 
entire industry. The time frame is long-term. More than a program, the goal is to build 
systems. The bricks are software components, which distinguish themselves from mere 
program elements by having a value on their own, independently of the context for which 
they were initially designed. More will be said below about the transition from program 
elements to software components. 

The strategy for obtaining quality reusable components embodies a considerable 
bottom-up aspect: working by extension, improvement, specialization and combination of 
previously obtained components. This is exactly what the object-oriented method supports 
thanks to multiple inheritance, genericity, encapsulation. The language used at the 
specification, design and implementation stages should reflect this method. 

3 Cohabitation 

The above characterizations are somewhat extreme. No industrial software development 
environment totally neglects tools; few can afford to neglect results. But the contrast 
between project and product cultures shows some of the problems associated with 
promoting object-oriented techniques on a broad scale. 

Without question, the dominant culture is project-based and will remain so for a long 
time. Customers, users, management, shareholders all want results, and preferably fast. 
Posterity will come later. The immediate issue then is not so much how to replace the 
project culture by a product culture, an impossible goal at least initially, but how to instill 
significant doses of product-oriented concerns into a context which is largely driven by 

16 



COHABITATION 

project preoccupations. 

One of the favorite strategies of all-time subversives - penetrating institutions rather 
than destroying them outright - indeed seems to work here. 

Assume that, being an advance soldier of the object-oriented anny, you are assigned 
the job of MIS director in some large, traditional computing organization. You can hardly 
decide, on your first day on the job, that all requests for specific developments will be 
turned down for two years, time for your department to build the right base of reusable 
components. You have users and customers; and must be ready to respond to their specific 
requests. 

Catering to the short tenn does not mean, however, that you give up on tools and 
reusability. You will fulfil your customers' specific requests, but you will do more than 
these requests, seeing the eventual software components beyond the immediate program 
elements. 

The effort involved in transforming program elements into software components may 
be called generalization and will be studied in more detail below. It involves abstracting 
from the original program elements, so as to make them independent from their Original 
context, more robust, better documented. Giving generalization a systematic role in the 
software development process is the key step in the progressive transition from project to 
product culture. 

By starting from specific requests but going further, you can quietly start 
accumulating a repertoire of ready-made components which, little by little, will play an 
increasing role in your subsequent developments. With such a strategy you can, after a 
while, start having a different attitude towards your users - more active and less reactive. 
You can respond to a new request, with its specific and perhaps baroque set of technical 
requirements, with a counter-proposal, offering to do a somewhat different or perhaps 
simplified job much faster thanks to the use of pre-existing components. Then you can give 
your customers a choice: either tailor-made development, using traditional techniques, in n 
person-months, or "mix-and-match" development using object-oriented techniques in, say, 
0.3 n. Some offers are hard to refuse. 

4 Generalization 

What does it take to transform a program element into a software component? 

Some aspects of this generalization process are obvious, and not specific to the 
object-oriented approach: 

• Writing more complete documentation - perhaps not necessary for an element 
which is only used as part of a given program, but required for its independent use as 
a component. 

• Removing functional limitations - which may be tolerable when you have full 
control over a component's use, but not in a more general context. 

Others, however, are less straightforward: assertions; abstraction through inheritance; 
factoring out commonalities. The next few sections address them. 

17 



THE TWO CULTURES OF SOFTWARE DEVELOPMENT 

5 Generalization: assertions 

One of the fundamental generalization tasks is to add the proper, assertions to the 
components. An assertion is an element of formal specification which characterizes the 
implementation-independent properties of a software unit - routine or class in object­
oriented programming. Assertions include in particular preconditions, postconditions and 
invariants. 

A routine precondition expresses under what condition the routine may correctly be 
called. For example, an insertion routine for a table of bounded capacity might have the 
precondition 

require 
count < max_size 

A routine postcondition expresses the abstract properties of the state resulting from a 
correct call to the routine. The postcondition for an routine inserting x with key k might be 
written as 

ensure 
count = old count + 1; 
item (k) = x 

where old serves to refer to a "snapshot" of a value (here count, the number of elements 
inserted) taken before the call, and a function item is assumed on tables, yielding the value 
associated with a certain key. 

A class invariant expresses global consistency properties associated with all instances 
of a certain class, for example 

count <= 0; 
count <= max_size 

For a mere program element, programmers are sometimes lazy about including the 
proper assertions. For a software component, this would be unacceptable: without 
assertions, it is not possible to produce truly industrial software components. They would 
be like electronic components without a precise specification of their accepted inputs, 
guaranteed outputs, and general conditions of use - the hardware equivalents of 
preconditions, postconditions and invariants. 

Adding assertions is thus an important part of the generalization process. Invariants, 
in particular, are not always understood right away; it takes some research into a class and 
often some practical use to obtain all the right invariant clauses. The result is always worth 
the effort, as the process of deriving the invariant yields considerable insights into the 
deeper semantics of the class. 

Although assertions can in principle be added as comments in any language, their 
inclusion as integral parts of the language permits applications such as automatic 
documentation (producing class interfaces from the class text, as with the short tool of the 
Eiffel environment) and debugging (as with the Eiffel compilation options which tum 
assertion monitoring on). 

18 



CLASS ABSTRACTION 

6 Class abstraction 

Another important aspect of generalization is class abstraction. The need for this activity 
is a consequence of a universal characteristic of programmers, which they share with their 
fellow human beings: the yearning for the concrete. 

Object-oriented design is a quest for abstraction. Using inheritance means that you 
write classes that are more general than what is immediately needed for the problem at 
hand. Deferred classes, which describe general mechanisms (scenarios, scripts, iterators ... ) 
without committing the details of each step, are particularly useful here: once you have 
captured a general pattern through a deferred class, you or others may implement specific 
variants by writing effective (non-deferred) classes which implement the parts of the 
pattern that had been left open in the deferred class. Object-oriented techniques ideally 
support this remarkably elegant process of working from the abstract to the concrete, from 
the general to the specific. 1 

In practice, however, the scheme is not always as smooth and intellectually satisfying 
as the theory of object-oriented development would have it. Even if they are convinced of 
the benefits of generality, developers will tend to produce classes which initially are often 
too specific: particular implementations of a certain abstraction, rather than 1he abstraction 
itself. It is hard to blame them: programmers are problem solvers. Nobody will complain if 
they get the job done first. 

If reusable products are part of the goal, however, the process cannot stop there. 
When you realize that a certain class is less general than it could have been, you should 
use this discovery as an opportunity to reorganize the inheritance hierarchy. As a simple 
example, this is what happened in the design of the Eiffel Data Structure Library when we 
realized that our initial TREE class was too specific, describing just one implementation of 
trees rather than the general concept. A deferred class was then written, of which the 
original became an heir. 

This process is aided in the Eiffel environment by a variant of the short class 
abstracter. The command 

short -e class_name 

will produce a deferred version of class_name, with all implementation details removed. 
This is usually a good basis for obtaining a more abstract class while keeping the interface. 

7 Extraction of commonalities 

A related activity arises from the a posteriori realization that duplication of efforts has led 
to similar classes being written by different people, or even by the same person at different 
time. 

Inheritance is the ideal mechanism for capturing commonalities between similar 
components. If the developers initially missed the commonalities, then it is always possible 
to reconstruct the inheritance structure a posteriori. 

1 Because of the common graphical representations for inheritance diagrams, this process 
is sometimes mistakenly viewed as "top-down". It is in fact a typically bottom-up process of 
particularizing general-purpose tools. 

19 



THE TWO CULTURES OF SOFfWARE DEVELOPMENT 

As with the previous case, the result is to produce more abstract classes, often 
deferred, of which the original classes become descendants. 

8 Switching to reverse 

What is common to the previous two activities - abstraction, extraction of commonalities -
is that they depart from the view of inheritance which is usually suggested in the object­
oriented literature: the idea that the bright designer will somehow obtain the proper 
inheritance structure the first time around. ~ 

It is always preferable, of course, to get the inheritance right initially. But it serves no 
useful purpose to pretend that this will always be the case. Better recognize that the 
process may involve trial and 'error, as a result of our yearning for concrete, and our 
frequent failure to detect commonalities early enough. Better be prepared for the inevitable 
changes of direction - switching to reverse, as it were - in building the inheritance 
structure. What counts is that in the end we should get the useful and elegant inheritance 
hierarchies that are condition good object-oriented reuse of components. 

An important aspect of both abstraction and extraction is that they normally do not 
affect the clients of the classes being restructured, since one does not change the interface 
of a class by rewriting it with a different ancestry. In Eiffel, clients will not even be 
recompiled, since the automatic (makefile-free) recompilation mechanism will recognize 
that an interface has remained untouched and that the clients are hence still valid as 
compiled before. 

This observation highlights a fundamental, although often misunderstood, aspect of 
inheritance: inheritance is an implementation mechanism, not an interface mechanism. For 
the clients of a class, what the class inherits from is irrelevant. Such tools as the Eiffel 
flattener (flat) support this view by providing inheritance-free versions of a class when 
needed for the benefit of clients. 

As a result of the abstraction and extraction activities, a general phenomenon may be 
observed in organizations that have consistently and seriously promoted reusability through 
object-oriented techniques. This phenomenon - apparent in our own developments, and 
reported by users of Eiffel - is a progressive elevation of the level of abstraction of the 
classes produced by a group or organization committed to object-oriented programming. As 
you start reusing your previous classes, cataloging them, archiving them into libraries, you 
realize the need for more general versions. It does not make sense to lament that these 
versions were not produced right from the start; what counts is the constant improvement 
in quality and generality that the process yields if properly implemented. 

9 Some organizational aspects 

Object-oriented development, the emphasis on reuse and, more generally, a general trend 
towards the product culture, inevitably have consequences on the organizational and 
managerial aspects of software development. Only a few aspects will be considered here. 

The newest aspect, as discussed above, is the generalization step. This will cost 
money; not necessarily fortunes - depending on one's ambitions, the overhead on standard 
development costs may be anywhere between 10% and 50% -, but hardly invisible. 

?O 



SONtE ORGANIZATIONAL ASPECTS 

This means, among other consequences, that serious object-oriented development 
cannot be done "on the side". Without management support, you can perfonn a few 
hannless experiments, not implement true object-oriented design and programming with 
their immediate consequence: the development of investment-oriented tools and 
components. 

The budgeting problem should not be overlooked. In most corporate environments, 
budgets reflect the surrounding project culture and are allocated on a project basis; 
"general" funds, not earmarked for a particular project, are usually much more limited. Yet 
the generalization activity does not profit the current project so much as the next few 
projects (which, adding insult to injury, may well be under the responsibility of the project 
leader's peers and rivals!). Mechanisms must be found to obtain funding for such 
undertakings - project-foolish, product-wise. 

Another practical caveat concerns productivity. Standard productivity measurements, 
based on lines per person-months, may be deceptive. Assume a project that enthusiastically 
adopts object-oriented techniques. At the end of an initial development, a first measurement 
is made: 

PROD] = LINES] / EFF] 

where PROD] is the productivity, measured as the ratio of the number of produced lines, 
LINES], to the effort in person-months, EFF].2 

No doubt that if object-oriented techniques have been applied well and with good 
tools, PROD] will be a pleasant surprise to management as compared to the usual results. 
Assume now, however, that the project leader decides to go on and apply the 
generalization step. After a while, a new measurement is made: 

PROD2 = LINES2 / EFF2 

Obviously, EFF2 is greater than EFF]. But it may very well be the case that LINES2 
is less than LINES]: after all, much of the generalization work consists in removing 
duplicate elements (in particular as a result of "extraction of commonalities") and other 
dead wood. Unless properly briefed, management (and software engineers) will not like 
these figures. 

If anything, this hypothetical story highlights the danger of simplistic approaches to 
assessing productivity improvements (see also [2]). It also serves to remind us of the need 
to involve and educate management, and to emphasize that, real as the short-tenn 
productivity gains are with a good Object-oriented environment, the really big prize is to be 
won over the long term, thanks to reuse. 

9.1 The cluster model of the software lifecycle 

We will conclude with a brief discussion of the lifecyc1e model that seems most 
appropriate for the object-oriented product culture. (This section draws heavily on a 
previous article [3] and on a very interesting report by Eiffel users from Thomson [5J.) 

2 Such simple productivity measures are of course subject to criticism. Cle.arly~ concepts 
such as "person-month" and "line" need to be defined precisely. Once this is done, 
however, the result is usable within limits. A survey of the software engineering literature 
will readily show that no decidedly better measurement has been proposed. 

21 



THE TWO CULTURES OF SOFTWARE DEVELOPMENT 

The well-known waterfall model has been repeatedly criticized. Yet no satisfactory 
replacement has gained widespread acceptance. It is fair to ask what kind of lifecycle is 
appropriate to object-oriented design. 

Here are some of the the main ingredients of a possible answer: 

• The merging of the design and implementation activities, traditionally considered to 
be different phases of the lifecycle. 

• The general bottom -up approach, which de-emphasizes the immediate requirements 
of the current project in favor of a long-term view of software production, and 
suggests that general-pufJ2ose utility modules should be built first, specific ones last. 

• The new lifecycle phase described above: generalization, which seems to be 
profitably merged with the more usual phase of component vali.dation. 

One more concept is needed to complete the picture: the cluster concept. A cluster is 
a group of classes which relate to a common aim; for example a system could contain a 
basic cluster (the Basic Eiffel Library), a graphics cluster (the Eiffel Graphics Library or 
another set of graphics classes), a simulation cluster, a synchronization cluster etc. 

In Biffel there is no need to define "cluster" as a language construct because the 
notion of directory, available on all modem operating systems, provides the ideal basis. 
Eiffel classes are stored in files; quite naturally, the fIles containing a set of logically 
related classes will be maintained in the same directory. The notion of cluster has also 
been integrated with the Eiffel automatic recompilation mechanism: once compiled, the 
classes of a cluster are linked together, so that no intermediate relinking is necessary if 
nothing has changed in the cluster. 

With this notion in mind we can take a fresh look at the waterfall model. The 
continued success of this model in the software engineering literature, in spite of its known 
deficiencies, should perhaps be credited to two of its properties, already noted by Boehm 
[1]: the lifecycle steps (requirements, specification, design, implementation, validation, 
distribution) reflect meaningful and necessary activities of software construction, although, 
as we have seen, it may be appropriate to merge some adjacent pairs; and it is hard to 
imagine of a theoretically more satisfying order than the one given: who would seriously 
advocate distributing before specifying? 

We may realize, however, that nothing really forces us to apply this sequence of 
steps to the system as a whole. This would be keeping the negative legacy of top-down 
design: the all-or-nothing approach which considers a system as a monolithic entity 
fulfilling a frozen specification. The notion of cluster provides the appropriate unit to which 
each sub-lifecycle should be applied. As shown on Figure 1, these sub-lifecycles may 
overlap in time, and I believe they should. 

The other ideas developed so far help further define this new lifecycle model, the 
cluster model of software development: 

• The best order for starting cluster development is bottom-up: from the most general 
clusters, providing utility functions, to the most application-specific ones. Of course, 
some of the lower-level clusters will be available from the start as part of the 
standard delivery (in Eiffel, the Data Structure and Graphical Libraries); and as the 
method is applied to repeated projects within an organization, other reusable clusters 
will become readily available. 

• As opposed to the all too frequent advice of getting the interface right first (what 
may be called the "Potemkin approach", where the facade must be right at all costs, 
even if there is nothing behind), this strategy suggests that the key functions should 
be designed and implemented first, and one or (usually) more interfaces should then 

22 



THE CLUSTER MODEL OF THE SOFTWARE LIFE CYCLE 

be built to satisfy specific needs. These may be program interfaces, command-line­
oriented interfaces, full-screen interfaces, graphical ones and so on. 

• A possible sequence to apply to each sub-lifecycle includes the following three 
steps: specification (labeled SPEC on Figure 1); design and implementation 
(DESIMPL); validation and generalization (V ALGEN). 

• Each cluster may be a client of lower-level ones. The client relation enables the 
"DESIMPL" of the classes in a cluster to rely on the specification of classes in 
another. In contrast with hierarchical abstract machine methods, we should not 
require that each cluster only be a client of the immediately lower one; we may 
restrict, however, cycles of the client relation to occur within clusters only. 

I have found this approach to yield a software development process which is 
smoother and more effective than traditional approaches because it integrates at its very 
basis the concern for change and the concern for reuse; in other words, because it helps in 
the key transition that is required for the turning of software development into a real 
industry: the transition from a project culture to a product culture. 

Oustcr2 

t· .. ~ L~!'ii~H'X~~) 01l5tcr I 

lime 

Figure 1: The Cluster Model 

References 

[1] B.W. Boehm: Software Engineering Economics, Prentice-Hall, 1985 

[2] T.C. Jones: Programmer Productivity, McGraw-Hill, 1986 

[3] B. Meyer: Object-Oriented Software Construction, Prentice-Hall, 1988 

[4] B. Meyer: From Structured Programming to Object-Oriented Design: The Road to 
Eiffel, in Structured Programming, January 1989. 

[5] C. Gindre, F. Sada: A Development in Eiffel: Design and Implementation of a Network 
Simulator, in Journal of Object Oriented Programming, May 1989. 

23 


