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Abstract 

How can the object-oriented model cover concurrent programming as effectively as it 
addresses sequential computation? The answer proposed in this article suggests that a 
modest adaptation to the semantics of object-oriented programs may suffice. This includes 
introducing an explicit notion of procesSor (but not of process, a concept which object
oriented techniques already cover), explicit declarations for "separate'" entities, a new 
semantics for preconditions on routines handled by different processors, and "'lazy wait" 
for implicit resynchronization. 

17 



1 INTRODUCTION 

Object-Oriented design- and programming techniques appear superior to traditional 
approaches in sequential. programming. The next step, essential for such application 
domains as real-time processing. operating systems and distributed computation, is to 
support concurrent programming as well. 

References [11 and [8] swvey the state of the art in this field. reviewing ongoing 
efforts to extend various object-oriented languages with concurrent mechanisms. Reference 
[2] discusses an Effel-based concurrency model. 

This presentation introduces a method for handling both sequential and concurrent 
object-orien.ted programming in a single frameworlc., starting from two basic observations: 
the retained meclJanism should be as close as possible to sequential object-oriented 
programming. narrowing down the semantic differences between conetpreIlt and sequential 
computation to the strict essentials; and it should retain compatibility with assertion-based 
techniques needed to establish. at least informally, the correctness of object-oriented 
software. 

2 PROCESSES AND PROCESSORS 

In object-oriented programming, the basic concept is the class, describing a set of objects 
(the class's instances). Concurrent programming usually relies on the notion of process, or 
task; a process may be an instance of a process (task) type. 

It is hard to miss the analogies between objects and processes (or between classes 
and process types). Both categories of constructs support: 

• Local variables (attributes of a class, variables of a process or process type). 

• Persistent da~ keeping its value between successive activations. 
• Encapsulated behavior (a single cycle for a process; any number of routines for a 

class). 

Such strong similarities, with the last observation pointing to classes and objects as 
the more general concepts, suggest that concurrent object-oriented programming does not 
need a specific "process" construct 

One may point, of course, to an apparent difference: objects are "passive", waiting 
for external solicitations (calls to routines of their class), whereas processes are "active". 
having a script of their own to execute. 

Closer examination, however, reveals two reasons why we should not attach too 
much significance to this distinction: 

• First, we may view the routines applicable to an object as scripts; the only 
difference, then, is that objects have more than one script The extra generality (not 
being limited to just one script) may then be viewed as a benefit, not a liability. 

• Limiting an object's available scripts to just one raises the problem of how objects 
(processes) request services from each other. The standard object-oriented 
mechanism of feature callI (message passing) would not work directly any more; 
special synchronization mechanisms would be required. 

1 -Feannes" are the ope1'ations (commands or queries) applicable to the instance of a class. They 
include "routines" (computations) and attributes (data field accesses). 
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If we do not need processes and avoid introducing an explicit distinction between 
active and passive objects, what remains to cover the difference between sequential and 
concurrent computation is the notion of processor. 

A processor is a separate thread of control capable of supporting the sequential 
execution of operations on one or more objects. It may be associated with a physical 
processor, for example a computer on a network, but may just as wen be time-shared with 
other processors on a computer. As a result, the mechanism. described below will 
potentially support distributed processing (where the processors are physically distinct 
computers) as well as multiprogramming (where the processors are supported by operating 
system processes) and coroutines (where the processors are threads in a common process). 

The view of object-oriented computation which emerges is that of a triangle: 
computing consists of applying operations to objects; to do so requires the appropriate 
mechanisms - processors. 

Object Action 

Processor 

Object-oriented programming has been quite effective at capturing the first two 
aspects, by attaching the description of actions (routines) to the description of objects 
(classes). In ordinary sequential computation, there is only one processor, and so it remains 
implicit With concurrent computation we need to make processors explicit. 

A processor will be assigned to every object; the processor is in charge of executing 
any feature call on the object (of the fonn a.f, where a is an entity attached to the object, 
and f an exported feature of the corresponding class). The processor is said to handle the 
given object Particular calls are said to be executed on behalf of the processors handling 
the calling objects. 

3 A NOTE ON CSP 

It is useful to compare the approach taken here with the well-known CSP model [3,4]. 

One major difference is the role of processes in CSP; here, as noted, we do not need 
this concept, not because it is irrelevant but because it is covered by the notion of class. 

Another difference is the role of communication as the basic mechanism in CSP t 
synchronization being viewed as a special case (transmission of an empty message). This 
provides an elegant structuring method, unifying various aspects of concurrency. In object-
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oriented programming, however. the situation is different since communication is already 
present as a part of fundamental operation - feature call. This operation is written (using 
Simula or Eiffel notation) as 

target.feature (argJ , ...• ) 

and denotes the application of feature to the object to which target is attached. This is a 
communication action; but if we required this communication to be blocking (forcing the 
caller not to proceed until feature had completed its execution). we would defeat the 
purpose of concurrent computation, which is to let various sub-computations to proceed in 
paralleL 

Instead of using CSP-like mechanisms. then, it is appropriate to continue relying on 
feature call as the basic object-oriented operation, and view the introduction of parallelism 
simply as the introduction of separate processors capable of handling concurrently the 
features applied to various objects. 

4 THE CONTRACT MODEL 

An important idea of the theory of object-oriented design is the notion of programming by 
contract [5, 6]. The relation between an object requesting a service (by calling a feature) 
and the object providing that service may be viewed as a client-supplier relation, governed 
by mutual obligations and benefits. Assertions serve to express these obligations and 
benefits: a routine's precondition binds clients and protects the supplier (the routine); a 
postcondition binds the supplier and guarantees a certain result to the clients; an invariant 
clause expresses general consistency conditions. 

As an example, here is the outline of a generic BOUNDED ..QUEUE class similar to 
what may be found in the Eiffel Data Structure Library2: 

2 The use of a side-effect-produciDg function gel does not oonfonn to standard conventions in the 
Ubrary. 
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class BOUNDED....QUEUE [1] export 
put, get. full, empty, , .. 

feature 

put (x: n is 
-- Add x to queue. 

require 
notjull 

do 

ensure 
not empty 

end; -- put 

get: Tis 
-- Oldest element. removed from queue 

require 
not empty 

do 

ensure 
not full 

end; -- get 

end - class BOUNDED....QUEUE 

The contract for put (x) is expressed by the following table: 

Obligations Benefits 

Client Queue not full Queue not empty; 
x inserted 

Supplier Must insert x Queue not full 
(some space left) 
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5 CONTRACTS AND CONCURRENCY 

A fundamental consequence of the use of the contract model as a guide to build and 
understand software architectures is the "no hidden clauses" rule: The precondition, 
postcondition and invariant are (within the limitations of the assertion sublanguage) the 
only conditions that govern the relationship between client and supplier. 

This property means that an "obligation" entry in a table such as the above is not 
just "bad news" for the party to which it applies. but also partly good news since it means 
that the party is not expected to meet any other unexpressed condition; in other words. the 
obligation is not just necessary but also sufficient. It expresses the full correctness 
requirement. 

In the above example. then, a client of put may guarantee the correctness of a call by 
making it of the form 

11/: if not q.jull then 
q.put (a) 

end 

or (given the postcondition of get. and assuming the call to get is itself guaranteed to be 
correct): 

fl/: t:= q.ger, 
q.put (a) 

This property is what makes the contract model practically useful. 

Unfortunately, it cannot apply to concurrent situations. Assume that the processor 
handling 111 or fll is different from the processor handling q. Then between the test in III 
(or the call to get in !2/) and the call to put. any number of processors can call features 
such as put on q on behalf of other clients, making the precautions in III and fll totally 
useless. 

In other words, merely ensuring the precondition before a call does not guarantee 
correctness any more if the client and the supplier are handled by different processors. 

This suggests the inescapable consequence: the sequential contract model does not 
hold as such for concurrent computation. 

The requirements expressed by a precondition continue, however, to condition the 
correct execution of a routine. For example, we ,cannot write a correct version of put unless 
we can be sure that the queue is non·full on entry. In other words, we still need the 
precondition, but not (if the call is handled by a different processor) under its usual 
semantics of correctness condition on the caller. ~ 

What then should the semantics be in such a case? The practice of concurrent 
programming suggests that, for a client, the condition 

not q.jull 

means that the request q.put (x) will not be served until the condition is satisfied. We may 
choose, then, to intetpret preconditions as wait conditions, rather than correctness 
conditions, if the client and the caller are on different processors. (If, in light of the 
discussion at the beginning of the paper. we want to draw analogies with established 
approaches to concurrent computation, objects then appear closer to monitors than to 
processes). 
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6 SEPARATE ENTITIES 

The semantics of a correctness condition is, of course, quite different from that of a wait 
condition. .If a client class contains the call 

q.put (x) 

the precondition of put may now mean either of two things: 

• If client and supplier are handled by the same processor, the call is only correct if 
the client guarantees not q.full. 

• If the processors are different, the precondition simply means that the client may 
not be seNed \Pltil the suppliers satisfies q .full. 

With such a considerable difference in semantics, it should be immediately clear from 
the text of the client class which interpretation is the correct one. Otherwise the 
uncertainty would prevent human readers from understanding the class, and compilers from 
generating the correct code. 

The suggests that entities which may become attached to object handled by different 
processors should be specially identified. In an approach promoting the static description of 
software properties (such as types),' such identification should be in the fonn of a static 
declaration. The declaration is of the fonn 

/3/: x: separate A 

and means: "Any object to which x may become attached at run-time will be of type A, or 
of a descendant type; any such object may be handled by a processor other than the 
processor handling the current Object; as a consequence, the precondition of any routine 
applied to A will have the semantics of a wait condition". 

In contrast, 'the standard fonn of declaration: 

/4/: x: A 

guarantees that objects attached to x will be handled by the same processor as the current 
object. A declaration of the fonn /3/ does not mean that the processor of x must be 
different, but only that it may be. Because of this possibility, however, preconditions on 
routines applied to an entity declared as "separate" will always have the semantics of wait 
conditions. 

Consistency requires an obvious rule: in an assignment of the fonn 

x :=y 

if the source y is separate, the target x must be separate too. The same rule applies to 
argument passing in routine calls, where x is the fonnal argument corresponding to the 
actual argument y. A composite expression y will be said to be separate if it involves one 
or more entities declared as separate. 

Separate entities yield a special behavior for object creation. The Eiffel instruction 

xl! 

or 

x!!f ( ... ) 

creates a new object, initializes its fields to default values, applies f to it with the 
arguments given (in the second form), and attaches it to ~. If x has been declared as 

3 This syntax for object creation is that of Biffel version3. The earlier fonn was x.Cr~ate ( ... ). 
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separate, this now has the further effect of "grabbing" a new processor, physical or 
virtual, and assigning it to handle the object. 

7 COMMENTS 

Three important obsexvations are in order. 

FJISt, we have narrowed down the semantic difference between sequential and 
concurrent computation to a very simple notion: the difference in precondition semantics 
for routine calls. This seems as· good as any other characterization of parallelism. 

This leads to the second comment Designers or would-be designers of concurrent 
systems often comment that the originator of a request should not have to know which 
processor (for example in a netwodc) will handle the request The "'separate" declaration 
may seem to ron1lict with this laudable goal. But in fact it does not The identity of the 
processor that handles the request is indeed irrelevant to the client; but whether this 
processor is the same as the client's processor or another is very relevant The semantics of 
the call cannot be the same in both cases, if only because in the second case the client may· 
have to wait It would be wrong, then. to take away from the client designer the 
responsibility of indicating whether he wants the call to be handled "separately" or not 
Any further indication (such as which separate processor to use for the call) is an 
implementation decision, and may be left implicit; but that particular decision - handle by 
the same processor or another - is the one which must remain explicit 

The last comment addresses a possible objection to the use of preconditions as the 
central tool to characterize the semantic difference between sequential and concurrent 
computation. As users of Eiffel knows, assertion checking may be turned on or off at run 
time as a result of a compilation switch. Is it not dangerous, then, to attach that much 
semantic importance to preconditions in concurrent object-oriented programming? 

Such an objection misses, however. the true nature of assertions. Assertions are not 
primarily a debugging or run-time checking tool. Instead. one should view assertions as 
full-fledged components of classes. In the fonn for put giv~n in section 4, the precondition 
and postcondition belong to the routine as much as the do clause. They express the 
routine's specification. 

Although this may appear paradoxical, the compilation option that switches run-time 
assertion checking on or off does not affect the semantics of the language. This is because 
the semantics of any language is defined for correct programs only; but a program whose 
execution may violate an assertion is incorrect! (1be definition of a correct class in Eiffel 
is precisely that its do clauses are compatible with its assertions). 

To ·a practicing programmer, the argument may appear specious, since cheCking 
assertions at run-time may be the best way to detennine that a class is incorrect. But in 
principle it should be possible to prove class correctness statically; run-time monitoring is 
only an imperfect solution. 

In any case, assertions are part of the software, whether or not monitored at run-time 
for debugging purposes. For 4'separate" entities, preconditions will always be checked, 
although for a different purpose. 

24 



8 PREDEFINED CONSTRUCTS AND LmRARIES 

The ability to declare an entity as "separate". with the associated change in precondition 
semantics. seems conceptually sufficient to describe general parallelism. 

In practice, programmers will at some point need to give the practical indications 
governing execution: whether it will be truly parallel or quasi-parallel (coroutines); in the 
former case. how many physical processors (or operating system tasks) are available, and 
where they are to be found; etc. 

Rather than through language constructs. programmers will express these indications 
by caUs to routines of a library class (or several) designed specifically for that purpose. 
Qasses which need to use these facilities should normally inherit from the corresponding 
library class. 

Other features of this class serve to tune the details of the mechanism, for example to 
assign priorities to the processors waiting to be served by a certain other processor. This 
does not invalidate the basic semantics of the mechanism, which leaves unspecified the 
order in which these requests will be handled. 

It is also through library features that we can establish the connection between the 
virtual processors used in this presentation and their actual hardware or operating system 
basis. 

In particular, a, "separate" entity need not be the target of a Create operation and (as 
described above) grab a new processor; instead. it may become associated, through a 
library call or some other mechanism, with a physical processor - for example a node in a 
network of workstations. 

The appro~ch followed here is the same as for exception handling: a simple language 
mechanism, an library mechanisms for fine-tuning specific details. 

9 ATOMICITY AND DUELS 

The contract model implies that the unit of granularity is the execution of routines. 

The principal criterion for a class to be correct is that for every routine r: 

{INV & prer } (/or {INV & post,} 

In other words: starting fro a state satisfying the class invariant and the routine 
precondition, the body will yield a state satisfying the invariant and the postcondition. 

Consider a processor which is executing a routine on an object on behalf of some 
client. We might think of some mechanism allowing another "more important" client to 
interrupt this execution and get served right away; only then would the original client's 
execution resume. This concept is known as express messages {8]. 

Such a mechanism would. however, conflict with correctness requirements: if we 
allow executions to be intenupted, we cannot guarantee any more that they will preserve 
the invariant. Producing an object which does not satisfy the invariant of .its own class is 
probably the worst disaster that may occur during the execution of an object-oriented 
program. (Another source of such a situation is static binding). 

As a consequence, the mechanism described here does not directly support express 
messages. 
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It may be necessary in some cases, however, to cancel the execution of a routine (to 
free its processor). The library mechanism supporting this is used under the fonn 

a.stop 

and may only have an effect if some processor is executing a routine on a. The effect is 
then to raise an exception in that routine. 

The resulting situation may be called a duel. Let b be the originator of the above stop 
request If a has protected itself against the "stop" execution, then a's execution is not 
impacted and an exception is raised for b. OlheIWise it is a which gets the exception. 

With proper settings this in fact makes it possible to obtain the equivalent of express 
messages. This solution avoids the danger mentioned above since it raises an excepti<;>n if a 
routine is intenupted before nonnal tennination; then part of the task of the exception 
handler (rescue clause) is to restore the invariant [5, 6]. 

10 STRICTNESS AND LAZY WAIT 

Assume that a processor P executes the following routine call on behalf of a certain object: 

x.rout 

Assume x is separate. Then P may proceed with the subsequent operations without waiting: 
not having to wait is indeed the aim of making x separate,· and the central benefit of 
parallel Computation. In most cases, however, P will eventually need to use some of the 
results produced by rout; at that stage it should wait if the processor in charge of x has not 
finished executing rout or is busy V(ith some other computation. 

An important idea behind the mechanism described here is that in such a situation 
programmers should not have to write an explicit re-synchronization instruction to request 
waiting; instead. the wait, if needed, should occur automatically whenever P needs access 
to the value of x. More precisely. P will wait for x to be available when (but only when) it 
must perfonn a strict operation on x. 

Strict operations on an object include the following cases (see [7] for a more general 
definition of strictness): 

• Arithmetic operation such as addition. 

• External operations such as print. 

• Use as target of a routine or attribute application: x.rout or x.attr require x to be 
ready an so will make P wait if the server processor is not ready. 

On the other hand, some operations are not strict in Eiffel and will not make P wait 
These operations include in particular: 

• Use of t as right-hand side of an assigrunent instruction u := t, at least for the most 
common case in which the values of t and u are references to objects, not the 
object themselves. (Then it does not matter that the object's processor is not 
available as long as we have a reference to that object). 

• Use of t as argument to a routine. for arguments passed by reference. 
The resulting mechanism, which yields a simple and general method for programming 

concurrent applications. may be called lazy wait. An earlier use may be found in [2]. 
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As a simple example, consider the following extract from a binary tree class. where 
function nodes gives the number of nodes in the tree: 

class BINARY_TREE [T] export 
left. right, nodes • ... 

feature 

left. right: BINARY_TREE [11; 

nodes: INI'EGER is 
- Number of nodes in this tree 

local 
In. rn: INTEGER 

do 
if not left. Void then 

In:= left. nodes 
end; 
if not right. Void then 

rn:= right.nodes 
end; 
Result := In + ,n + 1 

end.; ..:. nodes 

end - class BINARY_TREE 

The routine nodes is a standard recursive computation. 
If. however. some parallel hardware is available, we can go further: by declaring left 

and right as separate.- we let the subcomputations left.nodes and right.nodes proceed in 
parallel. themselves sprouting many others (dispatched according to the number of 
physically available processors); the only strict operation is the addition, and only it may 
cause waiting. 

11 CONCLUSION 

This presentation has described an approach to concurrent object-oriented computation, and 
the rationale that led to it 

No implementation is available as yet, and some details clearly require further work. 
The design described seems, however, to ensure a minimal departure from the concepts of 
sequential object-oriented computation, and to retain compatibility with the assertion 
concepts which are so essential to the understanding of this field. 
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