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ABSTRACT 
The main goal of this PhD thesis is to propose and implement a 
methodology for the construction of programs based on the 
SCOOP model, and for modular reasoning about their correctness 
and liveness properties. In particular, the set of correctness rules 
that guarantee the absence of data races will be refined and 
formalized; an augmented type system will be proposed to 
enforce these rules at compile time. Furthermore, an efficient 
methodology for deadlock prevention, avoidance, detection, and 
resolution will be developed. A working implementation of 
SCOOP will be provided. It will take into consideration the 
proposed mechanisms and serve as a basis for further refinements 
of the model.   

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
parallel programming. D.1.5 [Programming Techniques]: 
Object-Oriented Programming. D.2.4 [Software Engineering]: 
Software/Program Verification – correctness proofs, 
programming by contract. 

General Terms 
Languages, Verification. 

Keywords 
Object-oriented concurrency, SCOOP model, deadlocks, data 
races, ownership types, Eiffel. 

1. STATEMENT OF THE PROBLEM 
The main goal of this PhD thesis is to propose and implement a 
methodology for the construction and verification of programs 
based on the SCOOP model [1]. SCOOP (Simple Concurrent 
Object-Oriented Programming) was introduced by Bertrand 
Meyer as an extension of the Eiffel language. The lack of a 
formal semantics for SCOOP makes it difficult to assess the 
model with respect to other existing approaches. This thesis 
should fill in the gap by carrying out an in-depth analysis of the 
model and proposing adequate solutions to the problems 
encountered. A methodology for modular proofs of safety and 
liveness properties of concurrent programs will be proposed. In 
particular, we will focus on data race and deadlock prevention. 

 

 

2. SCOOP  
SCOOP uses the basic scheme of object-oriented computation:  
feature call, e.g. x.f (a). In a sequential setting, such calls are 
synchronous. To introduce concurrency, SCOOP allows the use 
of more than one processor to handle execution of features. A 
processor is an autonomous thread of control capable of 
supporting the sequential execution of instructions on one or more 
objects. If different processors are used for handling the client and 
the supplier objects, the feature call becomes asynchronous. A 
declaration of an entity or function may be of the form 
x: separate SOME_CLASS. The keyword separate indicates that 
entity x is handled by a different processor, so that calls on x 
should be asynchronous. To provide exclusive locking of objects, 
SCOOP relies on argument passing. For instance, to obtain 
exclusive access to a separate object buf, it suffices to pass it as an 
argument of the corresponding call, as in store (buf, 10). To 
provide conditional synchronization, SCOOP introduces a new 
semantics for preconditions. Preconditions involving calls on 
separate objects change their semantics: they become wait 
conditions. Such preconditions cause the client to wait until they 
are satisfied. 

3. KEY QUESTIONS AND RESULTS 
3.1 Data races 
Concurrent programs should be free from data races. Four 
separateness consistency rules and the separate call rule [1] of 
SCOOP seem to ensure this property. Unfortunately, these rules 
are not strong enough to ensure the absence of data races when 
Eiffel’s agent1 mechanism, introduced after the original SCOOP 
design, is used. Also, expanded types are not well integrated in 
SCOOP. We claim, for example, that the separateness consistency 
rule for expanded types is too restrictive – it rules out useful 
programs. It is necessary to refine the SCOOP rules to integrate 
both agents and expanded types. It is impossible to check the  
rules statically using the standard Eiffel type system because 
separateness is a property of objects, not classes; the conformance 
of separate and non-separate entities cannot be expressed 
statically in terms of subclassing. Therefore, we formalize the 
refined rules by introducing an augmented type system for Eiffel. 
A type checker can check the type conformance (thus data race 
freedom) of SCOOP programs at compile time. The proposed 
type system (inspired by the ownership type system for JavaCard 
[2]) augments Eiffel’s types with context tags. 

                                                                 
1 Agents are used in Eiffel to encapsulate routine calls. One can 

think of them as a more sophisticated form of .NET delegates. 
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Let TypeId denote the set of declared type identifiers of a given 
Eiffel program. We define the set of tagged types as 

TypeIdseplocTaggedType ×= },{  

where loc and sep are context tags denoting local (non-separate) 
and separate types, respectively. The subtype relation p  on 
tagged types is the smallest reflexive, transitive relation satisfying 
the following axioms, where α is a tag, ,, TypeIdTS ∈ and Eiffelp  

denotes the subtype relation on TypeId : 
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This results in a very simple but sufficiently expressive type 
system for SCOOP. We illustrate it with the feature call rule that 
ensures the mutual exclusion policy:  

  Γ |-  e1:: (α, T),   Γ |-  e2:: (β, S),   (α, T) * (β, S) p  (αp,Tp) 
                        α = sep  ⇒  e1 ∈ FormArg 

                       Γ |-  e1.f (e2) :: (α, T) * (αr, Tr)      

where Γ is the declaration environment, FormArg is the set of 
formal arguments of the routine where the expression is 
evaluated, (αp,Tp) is the type of the formal argument of feature f 
and (αr, Tr) is the type of its result (for simplicity, we assume here 
that f has only one argument). We define the type combinator 

TaggedTypeTaggedTypeTaggedType →×:*  as: 
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In comparison to the state-of-the-art approaches to data race 
prevention (e.g. [3]), this solution is much simpler and less 
restrictive — it allows the programmer to use the full potential of 
the underlying programming language (Eiffel). It does not impose 
complicated code annotations — one keyword separate is 
sufficient. Also, data race freedom is proved compositionally, i.e. 
if feature f has been proved to be data-race-free, the proofs of 
other features that use f can rely of f’s interface without using its 
implementation details. The approach fully supports inheritance 
and other object-oriented techniques.  

3.2 Deadlocks 
SCOOP is deadlock-prone. To eliminate deadlocks, we take the 
following approach. In a first step, we assume that there is a 
perfect run-time mechanism for deadlock detection and 
resolution. Secondly, we classify deadlocks according to their 
nature and devise a strategy for preventing each kind of deadlock. 
The strategy should be based on statically checkable rules for 
features; proofs should be modular and automated. By stepwise 
refinement of these strategies, we weaken the initial assumption 
on the perfect runtime mechanism for deadlock detection and 
resolution: since certain classes of deadlocks are excluded, the 
runtime mechanism can be simplified. We implement the 
mechanism. Finally, we devise an extended axiomatic system à la 
Owicki and Gries [4] that will allow for manual proofs of 
deadlock freedom in case fully automated proofs are impossible. 

We can think of at least two interesting properties of features: 
global deadlock freedom and local deadlock freedom. Feature f is 
globally deadlock free iff it never introduces any deadlock, 

independently of any other features that might be executed in 
parallel with f. Feature f is locally deadlock free iff it does not 
introduce any deadlock, assuming that no other feature is 
executed in parallel with f. 

The proofs should be modular. Therefore, in order to prove a 
property of feature f, we can only rely on the interface and the 
body of f, the interfaces of all the features used in f, and the 
invariant of the class where f is declared. In Eiffel, the interface of 
a feature is represented by its signature and its contract (pre- and 
postconditions). For reasoning about deadlocks, we need to 
extend the interface with some additional information: the set of 
processors that the feature uses. We introduce the concept of 
resource that abstracts a processor (due to space restriction of the 
present document, we only give informal definitions). The set of 
all resources on which feature f depends is denoted as Depf. It 
includes all the resources associated with the entities that the 
feature accesses or modifies. We can express some interesting 
properties ( a denotes the resource associated with the entity a): 

⇒≠∧∈∈∀ CurrentaDepaFormArga ff .(  f  locks a) 

{ }⇒∪⊆ CurrentFormArgDep ff f is globally deadlock-free 

The first rule refines and formalizes the policy for locking 
separate formal arguments. The second result shows how to prove  
deadlock freedom; it could be used in our proof system.  

Global deadlock freedom is certainly more interesting than local 
deadlock freedom – ideally, we would like to prove that our 
programs are globally deadlock free. Unfortunately, in many 
cases it is impossible to prove this property compositionally 
without restricting the amount of potential concurrency. Local 
deadlock freedom is a weaker property but it is strong enough to 
rule out a large number of potential deadlocks. Also, 
compositional proofs of local deadlock freedom are much 
simpler. 

An important contribution of our approach is to integrate static 
techniques for deadlock prevention with a run-time mechanism 
for deadlock detection and resolution. Programmers are given the 
liberty to choose to what extent they want to rely on static 
checking. It allows them to find the right balance between the 
guarantee of complete deadlock-freedom and the potential amount 
of concurrency. This is an important step forward in comparison 
to the current techniques (see [3]). 
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