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Preface
Ensuring trust into the software has become more and more important over the past
few years with the spread of computers everywhere. Computers (and software) are
not limited to the domains of computer science anymore. They are present in a
variety of applications ranging from mobile phones and ATM machines to cars and
satellites. They are widely used in mission-critical and even life-critical systems like
health-care devices, airplanes, trains, missiles, etc. Hence quality is paramount. This
is the “Grand Challenge of Trusted Components” that Bertrand Meyer describes.

This work takes up the challenge and contributes a few new high-quality
(trusted) components. I am using Bertrand Meyer’s definition of component: for me,
a software component is a reusable software element, typically some library classes,
usually in source form (not binary form), which differs from Clemens Szyperski’s
view of components.

Starting from one design pattern (the Observer), I reviewed all patterns
described in the book by Gamma et al. to evaluate their componentizability and
build the corresponding software component whenever applicable. The working
hypothesis is that design patterns are good but components are better. Indeed,
patterns have many beneficial consequences: they provide a repository of knowledge
(design ideas) that newcomers can learn and apply to their software, yielding better
architectures; they provide a common vocabulary that facilitates exchanges between
programmers and managers, etc. But patterns are not reusable as code: developers
must implement them anew for each application, which is a step backward from
reuse. The motivation of this thesis was to provide users with a “Pattern Library”, a
set of components capturing the intent of the underlying design patterns that they
can reuse directly. I call “componentization” this process of transforming patterns
into components.

The first pattern analysis — targeting the Observer pattern — was also the
first successful “componentization”: it resulted in the Event Library, covering the
Observer pattern and the general idea of publish-subscribe and event-driven
development. Other successful stories followed, including a Factory Library (chapter
8), a Visitor Library (chapter 9), and a Composite Library (chapter 10). To prove the
usability of such “componentized” versions of design patterns, I modified an
existing Eiffel tool (Gobo Eiffel Lint) that was extensively relying on the Visitor
pattern to use the Visitor Library; the experience (reported in section 9.3) was
successful.

Several object-oriented mechanisms of Eiffel proved useful to componentize
patterns: genericity (constrained and unconstrained), multiple inheritance, agents.
The support for Design by Contract™ was also a key to the success of this work.

[Meyer 200?a], p 11.

[Meyer 2003a].

[Meyer 1997].

[Szyperski 1998].

[Gamma 1995].
“componentization” 
is defined on page 26.

[Arnout 2003b].

The first mention of 
the word “compo-
nentization” was in 
[Arnout 2003b].
[Gamma 1995], p 
293-303.
[Meyer 2003b] and 
[Arslan 2003].

[Bezault 2003].

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].



PREFACE6
Because this thesis relies on some mechanisms that are specific to the Eiffel
language, the resulting components are also — for some of them — Eiffel-specific.
This is a limitation. However, the componentization process per se is not Eiffel-
specific and one can imagine having a Composite Library or a Chain of
Responsibility Library written in C# as soon as C# supports genericity.

Nevertheless, a few patterns resisted my attempts at componentization. Some
are too much context-dependent, hence not componentizable. Some require context
information but this information can be filled in by the user through “skeleton”
classes. For patterns of the second category, I developed a Pattern Wizard to
generate skeletons automatically and make it easier to programmers to apply these
patterns by avoiding writing code as much as possible.

I expect my work to be a “little bit” that will count to build more reliable
software and contribute to the “Grand Challenge of Trusted Components”.

See “Conventions”,  
page 14 for a defini-
tion of “componen-
tizable patterns” and 
“non-componentiz-
able patterns”.

See chapter 21.

[Meyer 1999].
[Meyer 2003a].



Abstract
If design patterns are reusable design solutions to recurring design problems, they
are not reusable in terms of code. Programmers need to implement them again and
again when developing new applications. The challenge of this thesis was to bring
design patterns to a higher degree of reusability: transform design patterns into
reusable components that programmers could use and reuse without recoding the
same functionalities anew for each new development.

The contributions of this thesis do not only target program implementers.
They should also be useful to program designers, library developers, and
programming language designers. Indeed, the transformation of patterns into
components, which I call “componentization”, revealed that the traditional
architecture of some design patterns was not optimal. Rethinking the design yielded
solutions that are easier to use, easier to extend, and covering a wider range of
application problems. Besides, considering programming language extensions
permitted to find better solutions in some cases.

This thesis reviews all patterns described in Design Patterns by level of
componentizability (possibility to transform a design pattern into a reusable
component) and describes the corresponding software component whenever
applicable. It uses Meyer’s definition of component: a reusable software element,
typically some library classes, usually in source form (not binary form), which
differs from Szyperski’s view of components. The reusable components (the Pattern
Library) are written in Eiffel because the language offers several object-oriented
mechanisms that were useful for the pattern componentization: genericity
(constrained and unconstrained), multiple inheritance, agents. The support for
Design by Contract™ was also a key to the success of this work. However, the
approach is not bound to Eiffel. It would be easy to develop the Pattern Library in
another programming language on condition that this language provides the object-
oriented mechanisms needed for the componentization process. Chapter 22 gives a
few examples going in that direction, using Java and C# as examples.

Around 65% of the patterns described in Design Patterns could be turned into
reusable components. For example, the componentization of the Observer pattern
resulted in the Event Library, which covers both the Observer pattern and the
general idea of publish-subscribe and event-driven development. The Visitor pattern
resulted in a Visitor Library, which simplifies the implementation of the double-
dispatch mechanism by using the Eiffel agent mechanism. (It could also be achieved
through reflection in other languages although it would not be type-safe anymore.)

The first mention of 
the word “compo-
nentization” was in 
[Arnout 2003b].

[Gamma 1995].
“componentization” 
is defined on page 26.

[Meyer 1997].

[Szyperski 1998].

See [Dubois 1999] 
and chapter 25 of 
[Meyer 200?b] about 
agents.

See chapter 6 for a 
complete description 
of the patterns’ com-
ponentizability and 
the corresponding 
pattern componentiz-
ability classification.
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Among the remaining 35% of patterns that are not componentizable, less than
10% could not been improved at all because they rely on context-dependent
information. It is the case of the Facade and Interpreter design patterns.

For the other 25% that are not componentizable, it is possible to write
skeleton classes, and sometimes even provide a method to fill in these classes. One
of the concrete outcomes of this thesis is a tool called Pattern Wizard, which
generates these skeleton classes automatically. Chapter 21 presents the design and
implementation of the wizard, and explains when and how to use it.

See “Conventions”,  
page 14 for a defini-
tion of “componen-
tizable patterns” and 
“non-componentiz-
able patterns”.



Résumé
Si les patrons de conception sont des solutions réutilisables — au niveau design —
à des problèmes de conception récurrents, ils ne sont pas réutilisables au point de
vue code. Les programmeurs doivent les réimplanter à chaque nouveau
développement. Le défi de cette thèse était d’apporter un nouveau degré de
réutilisabilité: transformer les patrons de conception en composants réutilisables que
les programmeurs peuvent utiliser et réutiliser sans avoir à réécrire les mêmes
fonctionnalités à chaque nouveau développement.

Les contributions de cette thèse ne sont pas simplement destinées aux
programmeurs. Elles devraient également être utiles aux concepteurs d’applications,
aux développeurs de bibliothèques logicielles et aux concepteurs de langages de
programmation. En effet, la transformation de patrons en composants a montré que
l’architecture traditionnelle de certains patrons de conception n’était pas optimale.
Repenser la conception a permis d’obtenir des solutions plus faciles a utiliser, plus
faciles à étendre et couvrant un plus grand nombre de problèmes. Par ailleurs, le fait
de considérer des extensions du langage de programmation a permis de trouver de
meilleures solutions dans certains cas.

Cette thèse examine les patrons de conception décrits dans le livre Design
Patterns en suivant leur niveau de “componentizabilité” (possibilité de transformer
un patron de conception en composant réutilisable), et décrit le composant logiciel
correspondant chaque fois que cela est possible. La définition de composant utilisée
est celle de Bertrand Meyer : un composant est un élément logiciel réutilisable,
typiquement un ensemble de classes de bibliothèque, habituellement sous forme de
code souce (non sous forme binaire), ce qui diffère de l’idée de composant selon
Szyperski. Les composants réutilisables sont écrits en Eiffel parce que le langage
offre plusieurs mécanismes à objets qui se sont avérés utiles pour la transformation
de patrons de conception en composants : généricité (contrainte ou non contrainte),
héritage multiple, agents. Le support pour la conception par contrats (Design by
Contract™) contribua aussi largement au succès de ce travail. Toutefois, l’approche
ne se limite pas à Eiffel. Il serait facile de développer une “bibliothèque de patrons
de conception” dans un autre langage de programmation à condition que ce langage
fournisse les mécanismes à objets nécessaires à la transformation de patrons en
composants. Le chapitre 22 donne quelques exemples allant dans cette direction,
utilisant Java et C# en exemples.

[Gamma 1995].
“componentization” 
est défini page 26.

[Meyer 1997].

[Szyperski 1998].

Voir [Dubois 1999] et 
le chapitre 25 de 
[Meyer 200?b] à pro-
pos des agents.



RÉSUMÉ10
Environ 65% des patrons de conception décrits dans le livre Design Patterns
ont pu être transformés en composants réutilisables. Par exemple, la transformation
du patron de conception Observer a abouti à une bibliothèque nommée Event
Library couvrant non seulement le patron Observer mais aussi l’idée générale de
développement géré par événements. Le patron de conception Visitor a abouti à une
bibliothèque (Visitor Library) simplifiant l’implantation du mécanisme de “double-
dispatch” en utilisant le mécanisme Eiffel des agents. (Ce comportement pourrait
s’obtenir par la réflexion dans d’autres langages de programmation bien que la
sécurité des types ne serait plus garantie.)

Parmi les 35% de patrons de conception restants, moins de 10% n’ont pu être
améliorés du tout car ils reposent sur des informations dépendant du contexte. C’est
le cas des patrons Facade et Interpreter.

Pour les autres 25% qui ne peuvent être transformés en composants
réutilisables, il est possible d’écrire des classes “squelettes” et parfois même de
fournir une méthode pour compléter ces classes. L’un des résultats concrets de cette
thèse est un outil nommé Pattern Wizard générant ces squelettes de classes
automatiquement. Le chapitre 21 présente la conception et l’implantation de l’outil,
et explique quand et comment l’utiliser.

Voir chapitre 6 pour 
une description com-
plète de la compo-
nentisabilité des 
patrons de concep-
tion et la classifica-
tion de 
componentisabilité 
des patrons de con-
ception correspon-
dante.



Introduction
Building quality edifices requires quality bricks. One of the goals of software
engineering is to help develop such high-quality, so-called Trusted Components. The
idea of trusted components is tightly coupled with the idea of reuse, but not any kind
of reuse: reuse with a special emphasis on quality. Because reuse scales up
everything, the good and the bad, reusable components must be of impeccable quality.

The work presented here embraces Bertrand Meyer’s motto and should “help
move software technology to the next level”. It brings a new classification of design
patterns by level of componentizability and a set of high-quality reusable
components: the “componentized” versions of those reusable design patterns.

The benefits of reuse

Software development involves considerable repetition; many applications share
common needs. The purpose of reuse is to take advantage of this commonality by
providing software elements that can be included by all applications that need the
corresponding functionality. Reuse saves costs and benefits quality. It contributes to
timeliness and improves software maintainability. It brings reliability by combining
not just “good enough software” but high quality components produced by
trustworthy third parties. These are user benefits. But reuse also serves the
component supplier. In particular, reuse is a way to build a repository of knowledge,
to save experience and skills.

The notion of “component” on which this thesis relies corresponds to Meyer’s
definition in Object-Oriented Software Construction. It is not restricted to binary,
directly deployable components as described by Clemens Szyperski in his book
Component Software; it includes many other forms of components, from classes of
object-oriented libraries to more large-grain elements provided they satisfy the
following conditions:
• A component can be used by other program elements: its “clients”.
• The supplier of a component does not need to know who its clients are.
• Clients can use a component on the sole basis of its official information.

Design patterns: Idea, benefits, and limitations

A first step towards software reuse is design reuse. The idea of design patterns,
which may be viewed as a form of design reuse, takes root in the mid-nineties and
is now widely accepted. A design pattern is a scheme that programmers can learn
and apply to their software in response to a specific problem or subproblem.

See [Meyer 1998] 
and [Meyer 2003a] 
about Trusted Com-
ponents.

[Meyer 2004].
[Gamma 1995].

The first mention of 
the word “compo-
nentization” was in 
[Arnout 2003b].

[Yourdon 1995].

[Meyer 1997].

[Szyperski 1998].

[Gamma 1995].
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Design patterns are a step forward in building quality software for many
reasons:

• They were built upon the experience of software developers and constitute a
repository of knowledge from which newcomers can benefit, gaining
experience more quickly.

• They help build better quality software: software that has a better structure, is
more modular and extendible.

• They bring a common language for discussion and exchange, both between
developers and between developers and managers. For example, if somebody
tells you: “The system uses a Factory, which is a Singleton, to create new
instances of that class, and relies on the Visitor pattern to print accurate
messages depending on the kind of object being visited”, you are likely to
understand the overall structure of this system — even though that would
sound like a language coming from Mars to your mother or your grandmother.

Design patterns, for all their benefits, are a step backward from the reuse-oriented
techniques promoted by object technology. A pattern is not usable off-the-shelf;
every programmer must program it again for each relevant application.

Design patterns are good, components are better

Design patterns are, by nature, reusable in terms of design. However, they are not
reusable in terms of code. The challenge is to capture these reusable design solutions
into reusable pieces of code (classes or class libraries), which have all the facilities
that applications using this pattern may need. The goal is that a programmer needing
to use a pattern can simply look up the corresponding component.

The first target was the well-known and widely used Observer pattern. A
typical application of this pattern — also known as publish-subscribe — is a
Graphical User Interface (GUI). Let’s imagine for example a simple “e-library”
where the user can borrow books online. It is likely to have some dialogs showing
the user the list of books he or she has borrowed and the list of books still available
in the library. When clicking on a button “OK”, one can imagine both lists to be
updated: the user list is augmented by one element and the library list counts one
free book less. (The book exemplar changes status from free to borrowed.) This
change in the underlying “model” needs to be reflected in the graphical part: the lists
displayed to the user needs to be updated as well. This is usually handled by an
Observer pattern: A subject keeps a list of observers; it can add and remove
observers from this list, and provides a way to notify its observers (typically through
a procedure notify_observers) when the subject changes. Each observer exposes a way
to update itself (typically through a procedure update that refreshes a GUI according
to the new state of the subject). The Java library of utility classes (“java.util”)
already provides an interface Observer and a class Observable (for “subjects”). This
solution is not fully satisfactory though. First, it allows registering to only one kind
of event. Besides, information passing when events occur is quite poor: the update
method of interface Observer takes two arguments, an Observable and an Object
representing the arguments to pass to the notifyObservers method, which is not type-
safe. Chapter 7 gives more detail about the limitations of the traditional Observer
pattern approach.

[Gamma 1995].

[Gamma 1995], p 
293-303.

Observer and Observ-
able are in java.util 
since JDK 1.0; see 
[Java-Web].
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Although the Observer pattern benefits the software architecture by separating
model and graphics, it also introduces many similar routines and code spread over
many classes to handle the notification of observers, which goes against software
readability, maintainability, and reusability. Hence the idea of capturing the idea
behind the Observer pattern and event-handling in general into a reusable
component to avoid such code repetition. A joint effort between Bertrand Meyer,
Volkan Arslan, and me resulted in the Event Library.

Encouraged by this success, I decided to review all design patterns described
in the book by Gamma et al. to analyze to what extent they can be componentized
and write the corresponding components whenever possible. The goal was to
determine the object-oriented mechanisms that make it possible to transform a
design pattern into a reusable software component and establish a fine-grained
componentizability classification of design patterns based on these object-oriented
mechanisms (criteria).

Organization of the thesis

The thesis presents the reviewed patterns by level of componentizability. Each
pattern description follows the same scheme: First, it explains the pattern’s intent
and applicability; then it shows a typical software architecture resulting from the use
of this pattern; finally, for those componentizable patterns, it describes the resulting
“componentized” version (library classes) and presents an example using it,
emphasizing the advantages and flaws of each version — the pattern version vs. the
library version.

Although the thesis was written to be read from cover to cover to get the full
picture of the work, the reader may want to skip a few sections that are not of
particular interest to him or her. To facilitate the navigation, here is a brief
presentation of the different parts and chapters that follow:
• Part A gives an overview of the work performed and a glimpse of the main

contributions of this thesis. 
• Part B provides a general introduction to the notions of software reuse and

design patterns, and explains the reasons that led to combine both concepts.
Chapters 2 and 3 basically equip the reader with the background information
necessary to understand the rest of the thesis. Chapter 4 presents some
previous works related to design patterns, in particular their implementation
using Aspect-Oriented Programming. Chapter 5 gives a preview of pattern
componentization. Chapter 6 explains the componentizability criteria used to
categorize design patterns, and shows the pattern componentizability
classification established as part of this thesis.

• Part C corresponds to the componentizable patterns (for which there exists a
corresponding reusable library). Chapters are in descending order of
componentizability: from fully componentizable to partly “componentizable”
patterns.

• Part D corresponds to the non-componentizable patterns. Here again chapters
follow a descending order of componentizability: from non-componentizable
patterns that can be captured into skeleton classes to possibly not
implementable patterns.

• Part E presents the Pattern Wizard application accompanying this thesis,
which enables users to generate skeleton classes automatically for all non-
componentizable design patterns.

• Part F assesses the work presented here, describes its limitations, and presents
future research directions.

[Meyer 2003b] and 
[Arslan 2003].

[Gamma 1995].

See “Conventions”,  
page 14 for a precise 
definition of “compo-
nentizable pattern”.

Chapter 1.

Chapters 2 to 6.

[Hannemann 2002].

Chapters 7 to 15.

Chapters 16 to 20.

See Conventions for a 
definition of “non-
componentizable 
pattern”.
Chapter 21.

Chapters 22 to 23.
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• Part G provides complementary material including an Eiffel reference
explaining important notions of the language that the reader should know to
understand the thesis (Appendix A), a glossary of keywords (Appendix B),
and a detailed bibliography (Appendix C).

Each chapter ends by a section called “Chapter summary” summing up the important
ideas and concepts introduced in that chapter.

This thesis and its outcome — pattern classification, pattern library and
Pattern Wizard — are available online from [Arnout-Web].

Conventions

• Because the Design Patterns book by Gamma et al. is the main reference of
this thesis, there will be no more bibliographical reference in the margin to it
like for other references. From now on, this dissertation will refer to this book
as just Design Patterns.

• Two major outcomes of this thesis are a pattern componentizability
classification and a Pattern Library. The two main categories are
componentizable patterns and non-componentizable patterns. Although the
componentizability criteria and componentizability classification will only
appear in chapter 6, from now on, the dissertation will already use these
expressions “componentizable patterns” and “non-componentizable patterns”
for convenience.
• “Componentizable patterns” is a short way of saying “Patterns for

which it is possible to provide a reusable library with the same
functionalities as the original pattern”.

• “Non-componentizable patterns” is a short way of saying “Patterns for
which it is impossible to develop a reusable library providing the same
functionalities as the original pattern”. (Of course, a pattern is always
reusable as design; here the separation componentizable/non-
componentizable concerns code reuse and not design reuse.)

• The following color convention will be applied in BON class diagrams
explaining the original patterns and their resulting library if any:
• Classes considered as possible candidates for componentization will be

colored in green.
• Classes belonging to the library resulting from the pattern

componentization will be colored in blue.
• Other classes (typically client classes) will be colored in yellow.

Appendices A to C.

[Gamma 1995].

See “Business Object 
Notation (BON)”,  
A.5, page 394.
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Part A gives a general overview of the work performed and a glimpse of the
thesis outcome. The subsequent parts describe the results in detail.



1   
Main contributions
“Patterns are not, by definition, fully formalized descriptions. They can’t
appear as a deliverable.”

J-M. Jézéquel et al., Design Patterns and Contracts, 1999.

The thesis challenges this conventional wisdom and asserts that some design
patterns can be transformed into components. It contributes to the “Grand Challenge
of Trusted Components” by providing:

• A new classification of the patterns described in Design Patterns according
to their level of componentizability.

• A Pattern Library with the component versions of the design patterns that
turned out to be componentizable.

• A Pattern Wizard that automatically generates skeleton classes for some of
the non-componentizable patterns.

The rest of this chapter now describes each outcome in more detail.

1.1  NEW PATTERN CLASSIFICATION

To what extent can patterns be turned into reusable, off-the-shelf components, taking
advantage of advanced language features? The thesis addresses this question and
proposes a new classification of the so-called GoF design patterns (the patterns from
Design Patterns) by level of componentizability. 

The componentizability criteria and the full classification are presented in
chapter 6. Here is just an overview. In a nutshell, design patterns can be categorized
into two groups:

• Componentizable patterns group design patterns that can be transformed into
reusable components. The classification presented in this dissertation does not
just restrict itself to “componentizable” versus “non-componentizable
patterns”; it has a more fine-grained level taking into account the object-
oriented mechanisms (genericity, multiple inheritance, etc.) that make
transformation from patterns to components possible. Chapters 7 to 15
describe componentizable design patterns by following this fine-grain level of
the classification. (The libraries corresponding to the patterns classified as
componentizable are written in Eiffel. Nevertheless, the approach extends to
all other programming languages that provide the necessary facilities for
componentization as explained in chapters 6 and 22.)

[Jézéquel 1999], p 
22.

[Meyer 2003a].

The definition is on 
the next page.
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• Non-componentizable patterns correspond to the remaining patterns that are
not reusable (in terms of code). Among these patterns, we can further
distinguish between patterns for which it is possible to implement skeleton
classes that developers will have to fill in and those for which it is impossible
to write such program texts with placeholders. Chapters 16 to 20 show the
different kinds of non-componentizable patterns.

The ultimate goal of this classification is to provide programmers with a
componentizability grid of design patterns that they can consult when starting a new
development. Depending on the componentizability degree of the pattern they want
to apply, they will know whether some of the work is already done for them,
whether they can simply reuse an existing component or fill in some classes with
holes or whether they have to implement everything by themselves. I hope the
componentizability classification of design patterns accompanying this thesis to
become a reference document for programmers.

1.2  PATTERN LIBRARY

The second step of this work was to write the component version of all patterns
categorized as componentizable according to the classification presented in chapter 6
of which there was a glimpse above. The result is a battery of reusable Eiffel
components developed with quality in mind and making extensive use of contracts.
I call “Pattern Library” this set of trusted components built upon the description and
intent of design patterns. For the moment, this pattern library is restricted to patterns
described in Design Patterns but the analysis and “componentization” process do
not restrict to those. The idea is to extend this component repository with other
widely used patterns.

I have just used the term “componentization” but have not given any
definition yet. Here it is:

The first successful componentization was the design of the Event Library from the
Observer pattern. The full-fledged analysis of this transformation is described in a
paper by Bertrand Meyer; this paper also provides a critical analysis of various event
mechanisms such as .NET delegates. Another paper further describes the Event
Library and illustrates its capabilities on an example — a system to observe the
temperature, humidity and pressure in a chemical plant. The section 7.1 will present
the Observer pattern, explain its limitations, and show how it can be turned into a
reusable library, in this case the Event Library.

More components have been developed since then. Chapter 9 will show one
of these: the transformation of the Visitor pattern into a Visitor Library using
genericity and the agent mechanism of Eiffel.

The Pattern Library coming with this thesis is available online from [Arnout-
Web]. It includes the just mentioned Event Library and Visitor Library but also other
reusable components corresponding to the patterns Abstract Factory, Chain of
Responsibility, Composite, Flyweight, Command, Mediator, etc. It also comes with
a set of examples using those components.

Definition: Componentization
Componentization is the process of designing and implementing a reusable
component (library classes) from a design pattern (the book description of an
intent, a motivation, some use cases, and typical software architecture examples).

See chapter 6.

Because Eiffel pro-
vides runtime moni-
toring of contracts, it 
is possible to assess 
the correctness of the 
developed compo-
nents; hence the term 
“trusted” here.

The first mention of 
the word “compo-
nentization” was in 
[Arnout 2003b].

See “1.3 Describing 
Design Patterns” in 
[Gamma 1995], p 6-
7.

[Meyer 2003b].

[Arslan 2003].

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].
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Some of these components rely on each other. For example, the Command
Library (section 12.2) uses the Composite Library (chapter 10); the Flyweight
Library (chapter 11) uses both the Composite Library and the Factory Library
(chapter 8); the Mediator Library (section 7.2) uses the Event Library, etc.

1.3  PATTERN WIZARD

One of the practical outcomes of this work is a Pattern Wizard that automatically
generates skeleton classes for non-componentizable patterns for which it is possible
to do so (patterns of categories 2.1 and 2.2 of the classification appearing in section
6.3). The idea is both to simplify the job of programmers by preparing the code and
to ensure the design pattern gets implemented correctly.

Here is a screenshot of the Pattern Wizard:

[Meyer 1999].

“Design pattern 
componentizability 
classification 
(filled)”,  page 90.

Pattern 
Wizard
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The Pattern Wizard targets five design patterns: Singleton, Adapter, Decorator,
Bridge, and Template Method. For any of these, the GUI has the same layout:
• At the top, the user can choose the pattern (one of the five mentioned above)

for which he wants to generate code.
• Once a pattern has been selected, the bottom part of the GUI changes: it

displays the pattern intent and applicability, and lets the user enter the project
location and choose the name of classes and features to be generated.

The Pattern Wizard has been designed with extensibility in mind, meaning that it can
easily be extended to support the generation of other design patterns. One would
simply need to build the bottom part of the GUI corresponding to the new patterns
and extend the Eiffel class where the pattern-specific information (name of classes,
names of features, etc.) is stored. 

Chapter 21 describes the design, architecture, and usage of the Pattern Wizard
in much more detail.

1.4  CHAPTER SUMMARY
• Some design patterns can be transformed into reusable Eiffel components by

relying on advanced object-oriented mechanisms such as genericity and
agents.

• The thesis establishes a classification of the patterns described in the Design
Patterns by degree of componentizability; this document should serve as a
reference for software developers.

• The thesis also comes with a pattern library corresponding to the set of
reusable Eiffel components built from the reviewed design patterns
categorized as componentizable.

• The thesis finally provides a Pattern Wizard to generate skeleton classes for
some non-componentizable patterns automatically.

• All outcomes of the thesis are available online at [Arnout-Web].

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].
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Part B introduces the notions of software reuse and design patterns; it
explains the flaws of patterns regarding reuse and the reasons why, for all
benefits of patterns, it is an important step-forward to combine both worlds
and create components out of design patterns. It also presents a
componentizability scale of the design patterns described in the book by
Gamma et al.



2   
The benefits of reuse
Software development involves considerable repetition. One can find many recurrent
patterns in yet apparently completely different applications. For example, any
Graphical User Interface (GUI) is likely to contain buttons and other widgets, such
as menus, toolbars, and combo-boxes. Why then redo the same things again and
again, with the risk of falling into the same pitfalls each time? GUI builders use
libraries of basic graphical elements — like Swing or AWT in Java, Windows forms
in C#, and EiffelVision in Eiffel — that they can assemble the way they like in each
of their development. This is the purpose of reuse. 

This chapter gives a more thorough definition of software reuse and
introduces the notion of component; it also describes what the benefits of reuse are
in my opinion, for both the users and the producers of software libraries. Reusing
software, but not any kind of software, is also the message of this chapter: “quality
through contracts on components” is paramount when dealing with reusable code.

2.1  SOFTWARE REUSE
Reusing software permits to improve the overall quality (correctness,
maintainability, sometimes even performance) of software by using components that
were carefully designed, implemented, and tested, or even proved to be correct.

The goal: software quality

The NIST (National Institute of Standards and Technology) report on Testing of
May 2002 estimates that the costs resulting from bad-quality software (insufficiently
tested software) range from 22.2 to 59.5 billion dollars. These figures do not even
reflect the “costs” associated with mission critical software where failure can be
synonymous of loss of life or catastrophic failure. Especially hit is the aerospace
industry: “over a billion dollars has been lost in the last several years that might be
attributed to problematic software”. Thus, software quality is of topmost
importance.

How can we define software quality? What criteria determine high-quality
software? This question is far from trivial. “Defining the attributes of software
quality and determining the metrics to assess the relative value of each attribute are
not formalized processes. Not only is there a lack of commonly agreed upon
definitions of software quality, different users place different values on each attribute
depending on the product’s use”.

The first attempt to define a software quality model was by McCall, Richards,
and Walters in 1977. They divide quality factors into three categories:

[Arnout 2002e].

[NIST 2002].

[NIST 2002], section 
1.4.4, p 1-11.

[NIST 2002], section 
1.1, p 1-3.

[NIST 2002], table 1-
1, p 1-4.
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• Product Operation criteria (correctness, reliability, integrity, usability, and
efficiency) evaluate the software execution: whether it fulfills its specification
(correctness), how it behaves under unexpected conditions (robustness), etc.

• Product Revision criteria (maintainability, flexibility, and testability) evaluate
the cost of changing, updating, or simply maintaining the software.

• Product Transition (interoperability, reusability, and portability) evaluate the
cost of migrating software to make it interact with other pieces of software
(interoperability), or reusing this software to build another application
(reusability), or using it on another platform (portability).

The concept of reusability was already present.
Meyer distinguishes between two kinds of quality factors: external and

internal ones:
• External factors include factors perceptible to the users (for example, speed

or ease of use).
• Internal factors include factors only perceptible to the software programmers

(for example, modularity or readability).
External factors include:
• Reusability: See Definition: Software Reusability at the bottom of the page.
• Extendibility: Ease of adapting a software system to specification changes.
• Correctness: Ability of a software system to perform according to

specification, in cases defined by its specification.
• Robustness: Ability of a software system to react reasonably to cases not

covered by its specification.
• Reliability: Combination of correctness and robustness.

The ellipse symbolizes the program specification (what correctness is about); the wavy
shape around it corresponds to cases outside of the software specification (what
robustness deals with).

• Portability: Ease of transferring a software system to different platforms
(hardware and software environments).

• Efficiency: Ability of a software system to demand as few hardware resources
as possible.

One more time, reusability appears as a key concept of software quality. Meyer
defines it as follows:

Definition: Software Reusability
“Reusability is the ability of software elements to serve for the construction of
many different applications.”

The word “robust-
ness” is used here 
rather than “reliabil-
ity” (as defined in the 
classification by 
McCall et al.) to 
avoid confusion. 
Indeed, “reliability” 
is introduced below 
as the combination of 
“correctness” and 
“robustness”.

[Meyer 1997], p 4-
16.

SPECIFICATION 
 

Correctness 

Robustness 

Correctness 
vs. Robust-
ness

This figure is 
extracted from 
[Meyer 1997], p 5.

[Meyer 1997], p 7.
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The notion of component

We have seen that reusing software to avoid redundancy would help gain in quality.
Now the question is: what should we reuse? Let’s take a look at an example. 

Here is the general pattern of a searching routine:

To be directly executable, this pattern misses the definition of routines initial_
position, exhausted, found, and next, which means that only reusing the searching
routine has is not enough: it has to be coupled with features for table creation,
insertion and deletion of an element, etc. This is Meyer’s “routine grouping”
requirement.

Then, to be reusable, a searching “module” should be applicable to many
different types of elements (not only to elements of type ELEMENT). This is Meyer’s
“type variation” requirement.

A searching module should also provide many possible choices of data
structures and algorithms: sequential table (sorted or unsorted), array, binary search
tree, file, etc. This is Meyer’s “implementation variation” requirement.

But this is not enough for a piece of software to be reusable: it also needs to
satisfy
• Representation independence, and
• Factoring out common behaviors.
The former means that a client should be able to request an operation such as table
search (has) without knowing its internal implementation; the latter means that a
supplier of a reusable module should take advantage of any commonality that may
exist within a subset of the possible implementations and group them into
“families”. In the table search example, one could think of the following
classification:

has (t: TABLE; x: ELEMENT): BOOLEAN is
-- Does item x appear in table t?

local
pos: POSITION

do
from

pos := initial_position (t)
until

exhausted (t, pos) or else found (t, x, pos)
loop

pos := next (t, pos)
end
Result := found (t, x, pos)

end

General pat-
tern for a 
searching 
routine

[Meyer 1997], p 84.

[Meyer 1997], p 84.

[Meyer 1997], p 84.

TABLE 

HASH_TABLETREE_TABLE

FILE_TABLE

SEQUENTIAL_
TABLE

LINKED_TABLEARRAY_TABLE 

has 

start 
after 
found 
forth 

A possible 
classification 
for table 
implementa-
tions



THE BENEFITS OF REUSE §234
A sequential table may rely on an array, a linked list, or a file. But all possible
implementations will need a way to traverse the structure by moving a fictitious
cursor giving access to the position of the currently examined element: this is what
Meyer calls “factoring out common behaviors”. The next figure shows a possible
representation of such a sequential table with cursor:

After “factoring out common behaviors”, our routine has would look as follows:

This simple example has shown the basic properties that should satisfy any reusable
piece of software. Hence the definition of a software component:

The first property distinguishes a component from a program; the second property
avoids having too much coupling between modules; the third property ensures
information hiding.

The information hiding rule states that the supplier of a module must select the subset
of the module’s properties that will be available officially to its client (the “public part”);
the remaining properties build the “secret part”.

This definition does not require the component to be in binary format (a typical
component is a set of library classes), contrary to the definition by Szyperski.

A few words of vocabulary before analyzing the benefits of reuse: when
reading about reuse, you may find the distinction between “white-box” and “black-
box” reuse: 

has (t: SEQUENTIAL_TABLE; x: ELEMENT): BOOLEAN is
-- Does item x appear in table t?

do
from

start (t) 
until

after (t) or else found (t, x)
loop

forth (t)
end
Result := not after (t)

end

Definition: Software Component
A software component is a reusable module with the following supplementary
properties:

• It can be used by other modules (its “clients”).
• The supplier of a component does not need to know who its clients are.
• Clients can use a component on the sole basis of its official information.

 item 

index 
start 

1 count 
forth 

Representa-
tion of a 
sequential 
table with 
cursor

General pat-
tern for a 
searching 
routine

[Meyer 1997], p 51.

Clemens Szyperski 
says that “Software 
components are 
binary units of inde-
pendent production, 
acquisition, and 
deployment that 
interact to form a 
functioning system”, 
[Szyperski 1998] p 3.
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• White-box reuse relies on the object-oriented concept of inheritance and
requires the knowledge of the class parents’ implementation.

• Black-box reuse relies on the concept of object composition and does not need
any other information than the official class interface.

2.2  EXPECTED BENEFITS
Software reuse has many beneficial consequences for both the users (the consumers)
and the suppliers (the producers) of reusable libraries. It is not only a matter of
shortening costs by building on existing reusable components; software reuse is
much broader than that. I will now list its most important advantages.

Benefits for the users

As a user, you can benefit from reusing existing components to build a new
application in several ways:
• Timeliness: You should be able to bring your application faster to market

since you will have less software to develop. This managerial view point of
productivity and timeliness should not be neglected since it is one of the
reasons why software reuse may scale up. Indeed, if programmers can develop
software faster without compromising on quality, there is a better return on
investment.

• Maintainability: Relying on third-party components to develop software also
means relying on these third parties to maintain it; hence you should put less
effort in maintenance, which avoids the “component developer’s paradox”
stating that the more you work and give to users, the more they will start
asking you in return in terms of product evolution and maintainability.

• Reliability: The most important benefit of software reuse in my opinion is
that it helps you build quality reliable software. Indeed, you can expect
reusable components to be extensively checked and be more than just “good-
enough software”. Trying to develop the same functionalities again would be
running the risk of introducing errors that the reusable component does not
have by lack of time for testing and other validation techniques.

Roger Osmond shows that software development projects often fail to provide
clients with the requested desirable quality (see Osmond’s curves below); he also
advocates that the use of quality object-oriented techniques and reusable libraries
should help lower the failure rate of software projects and increase the reliability of
products:

[Meyer 1994], p 51.

[Meyer 1995], p 106-
107 and [Meyer 
1997], p 68-70.

[Meyer 1997].

The concept of “good 
enough software” 
was introduced and 
advocated by Ed 
Yourdon in [Yourdon 
1995].

[Osmond 2002].
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DESIRABLE 

Envisaged 
Early releases 

Other qualities 

Osmond’s 
curves

This figure is based 
on [Meyer 1997], p 
13.
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• Efficiency: Usually, people — being programmers or managers — tend to
think that reusing third-party components, which have been developed for the
large public (without knowledge of the particular environment upon which
they want to develop their software), will have bad consequences on
efficiency, rather than the opposite. In practice however, it appears that
developers do not have time to make fine-tuned optimizations on every piece
of software code — especially when building a large-scale system — as
library suppliers can do. Reusing software means that you take the better of
both worlds: you can save time and effort by relying on someone else’s
expertise — instead of developing some elements that are not in your domain
of competence — and make the most of this time and effort to improve the
elements in which you excel. 

• Interoperability: The primary property of a reusable component is that it has
to be interoperable with other components; it has to be able to communicate
with them through possibly standardized or — at least — well-accepted
formats or mechanisms. Therefore, relying on such reusable components also
confers to the software you are developing a higher degree of interoperability,
and maybe also better consistency through the use of standardized style
conventions for example. Standardization is a great boost to software reuse,
hence to software quality per se.

Benefits for the suppliers

Software reuse is also beneficial to the suppliers of reusable libraries:
• Interoperability: The argument of interoperability and consistency

mentioned above is a benefit for both the consumers and the producers of
software libraries.

• Investment: Making your own software reusable is a way to encapsulate your
best knowledge for the future of software development.

2.3  CONTRACTS AND REUSE
Reuse of software is good, but only if the software is good. In particular, reusable
software should include contracts — in the sense of Design by Contract™ —
binding the supplier to its clients to ensure trust in the software.

Reuse: a demanding activity

“The architecture of component-based systems is significantly more
demanding than that of traditional monolithic integrated solutions. In
the context of component software, full comprehension of established
design reuse techniques is most important.”

Clemens Szyperski, Component Software, 1998.
Szyperski clearly says that developing reusable software is demanding, even more
demanding than developing software suited just for one environment. Indeed, reuse
is double-edged: it scales up everything, including the consequences of possible
flaws. Without quality, the dangers of reusing components may well offset all the
advantages described so far.

Thus, the key issue is to produce “trusted” reusable components: components
whose quality (correctness, robustness, performance, security, etc. — see The goal:
software quality) can be precisely determined and guaranteed. The effort includes
both “low-road” (using testing to establish confidence in software) and “high-road”
aspects (using formal methods).

[Meyer 1997], 
[Mitchell 2002], and 
[Meyer 200?c].

[Szyperski 1998].

[Meyer 1998].

[Meyer 2004].
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Use contracts

Along the “low-road”, reusable software to be “trustable” should include contracts: 

“Reuse without a contract is sheer folly!”

The article by Jean-Marc Jézéquel et al. was in the context of the Ariane 5
crash. Indeed, on June 4, 1996, the first flight of Ariane 5 ended by the explosion of
the launcher just a few minutes after takeoff. Result: half a billion dollars lost in 40
seconds! Reason: bad reuse of existing software from Ariane 4; to be more accurate,
one should rather say bad reuse resulting from badly specified software from Ariane
4. In fact, there was no specification at all associated with the reused code stating
that the horizontal bias of the rocket should fit in 16 bits, which was true for Ariane
4, but not for Ariane 5 anymore. 

With clearly stated preconditions, such an error would have been detected
before launching the rocket, and half a billion dollars may have been saved. Here
Jézéquel et al. are not claiming that one more routine precondition in the software
would have been sufficient to guarantee a successful flight but at least, the
conversion exception described above would not have been the reason of the crash.

Hopefully the Ariane 5 crash did not cause any loss of life; but other
catastrophes due to software failures did: for example, the crash of the Galileo
Poseidon flight 965 in 1996 cost 160 lives. Then, the motto about contracts and
reuse by Jean-Marc Jézéquel et al. cited above takes even more sense; let’s hope that
it will become the motto of any software programmer.

Avoid “reusemania”

We have seen that software reuse is good but not under any conditions. In particular,
one should avoid “reusemania”, namely reuse everything and anything under any
condition with no prior consideration of the quality of what is reused.

Szyperski warns us against bad reuse: “Maximizing reuse minimizes use”.
Indeed, trying to reuse as much as possible also adds context dependency to the
software (i.e. dependency to another component); therefore software designers
always have to strive for the best possible balance between usability and reusability.

Design reuse

People concerned about software reuse — probably because they fear the gap
between reuse and “reusemania” is not so large — often put design reuse forward,
like in design patterns. Szyperski even says that “Reuse of architectural and design
experience is probably the single most valuable strategy in the basket of reuse
ideas”. 

These two views — software reuse vs. design reuse — are not so much
different than one may think at first sight. Indeed, Eiffel advocates the principle of
“seamlessness” and “seamless development”, which tells us that the same
language, method, and environment should apply to the whole software lifecycle:
Designing software becomes like writing software with just specification
information (comments, contracts) and no implementation. Thus, with a language
such as Eiffel, reusing design is — to some extent — like reusing software.

Encouraged by this closeness, I have tried to see whether the so-called design
patterns, which are a way to “reuse” design, could be turned into software
components. The subsequent chapters report on that research.

[Jézéquel 1997].

[NIST 2002], table 1-
4, p 1-11.

[Szyperski 1998], p 
37.

About design pat-
terns, see [Gamma 
1995] and [Jézéquel 
1999].
[Szyperski 1998], p 
132.

[Meyer 1997], p 22-
23.
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2.4  CHAPTER SUMMARY
• Reusability is a key factor of software quality.
• Reusability is made possible because of repetition in the software construction

process.
• A software component is a program element that can be used by “clients”

(other program elements) on the sole basis of its official information (its
“public part”); the supplier of a software component does not need to know
about these clients when developing the component.

• Software reuse has two kinds of benefits: benefits for the users (timeliness,
maintainability, reliability, efficiency, interoperability) and benefits for the
suppliers (interoperability, investment). 

• The use of contracts in the construction of reusable software is paramount.
• Design reuse is close to software reuse in the Eiffel view of seamless

development.



3   
Design patterns
In the previous chapter we saw the benefits of software reuse for both the users and
the suppliers of reusable components. We also noticed that design reuse is not so far
away from software reuse because of the seamless development approach of Eiffel.

This chapter explains the idea of a design pattern, its benefits, and its possible
limitations.

3.1  OVERVIEW

The idea of design patterns takes root in the mid-nineties with the publication of the
books by Pree in 1994 and Gamma et al. in 1995 and is now well-accepted in the
field of software development and widely used in both the enterprise and academic
worlds.

Definition

The term “pattern” is quite vague and can be applied to many domains, including
domains of our daily life. Pree mentions traffic rules (traffic on the right side of the
road in Switzerland, France, the US, etc.; on the left side in Great-Britain and
Australia), tools for eating depending on the country (forks and knifes in Western
countries, chopsticks in Asia), and fashion.

In software development, newcomers learn a lot by looking at other people’s
code and by imitating some “patterns”, some coding style, good practices and
algorithms that stand out on the pieces of code.

One can think of a design pattern as a set of rules to accomplish certain tasks.
In a sense, an algorithm may be viewed as a design pattern.

One can also consider a design pattern as a roadmap for understanding some
software implementation.

Design Patterns gives a more precise definition of what a pattern is and how
it should be used. This view is widely accepted now in the computer science
community. It says that:

“A design pattern names, abstracts, and identifies the key aspects of a
common design structure that make it useful for creating a reusable
object-oriented design”.

All design patterns described in [Gamma 1995] follow the same scheme:

[Pree 1994] and 
[Gamma 1995].

[Pree 1994].

[Gamma 1995], p 3.
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• A pattern has a name, which facilitates discussions and exchanges between
programmers, and between programmers and managers (see “A common
vocabulary”,  page 44).

• A pattern has a structure: it involves a number of classes and describes the
relations between their instances.

• A pattern has a motivation: it answers a particular problem.
• A pattern can be applied in certain circumstances with some particular

consequences.
Summarizing the characteristics just seen, here is a possible definition of a design
pattern:

A repertoire of 23 patterns

Design Patterns does not only come with a definition of design patterns; it also
brings a catalog of 23 patterns — which made the book a pioneer in the field when
it was published. The patterns are divided into three categories according to their intent:
• Creational: The purpose of creational design patterns is to put more

flexibility into the instantiation process. By relying on inheritance or
delegation, creational patterns defer parts of object creation to the class
descendants or to other objects. They make systems independent of:
• What objects get created (the exact concrete type is not required).
• How objects get created.
• When objects get created.
• Who creates the objects.
Creational design patterns encapsulate the knowledge of which class to
instantiate and how to instantiate it.

Design Patterns identifies five creational patterns:

• Abstract Factory enables the creation of families of related objects
without specifying their concrete types.

• Builder enables constructing a complex object part-by-part without
exposing the internal representation of this object to the user.

• Factory Method enables creating an object without specifying its
concrete type; this object will be used by the class declaring the factory
method to perform a particular operation.

• Prototype enables the creation of objects by copying one prototypical
instance.

• Singleton ensures that a class only has one instance and provides a
global access point to it.

Some of the patterns in this list are competitors, like Abstract Factory and
Prototype. Some are complementary; for example, Prototype can use Singletons
in its implementation, and Builder can use other creation patterns to build its
internal parts.

Definition: Design Pattern
A design pattern is a set of domain-independent architectural ideas — typically a
design scheme describing some classes involved and the collaboration between
their instances — captured from real-world systems that programmers can learn
and apply to their software in response to a specific problem.

See section 8.1, page 
117.

See section 13.1, 
page 207.

See section 8.4, page 
128.

See section 5.1, page 
65.

See section 18.1, 
page 289.



§3.1  OVERVIEW 41
• Structural: The structural design patterns serve to compose software elements
into bigger structures. Some use inheritance to achieve a permanent and static
binding of classes whereas others focus on flexibility and target a dynamic
composition of objects. 

Design Patterns identifies seven structural patterns:

• Adapter converts the interface of a class (or the interface of an object)
to make it match the interface the client expects, in the same way you
use a plug adapter for your electric appliances in foreign countries.

• Bridge decouples the class interface from its implementation, making
possible to change the implementation part without breaking any client
code because the interface remains the same.

• Composite provides a uniform way to access individual and composite
objects by using a hierarchical tree structure: composites are tree nodes
and may contain individual objects called “leaves”.

• Decorator attaches new functionalities to an object at run time; it
“decorates” an object dynamically instead of adding this service
permanently into the class, which provides higher flexibility.

• Facade offers a common interface to a set of multiple classes to
facilitate the interaction with clients.

• Flyweight uses shared objects to gain space and improve efficiency
when an application involves a large number of objects, and most
properties of these objects can be externalized rather than stored as
internal attributes.

• Proxy is a “virtual” object having the same interface as the “real” object
(hence its other name of “surrogate”); it enables controlling the access
to the real object by forwarding the requests only when strictly
necessary, otherwise using a cache mechanism.

Because all these patterns rely on the same object-oriented mechanisms of
(single and multiple) inheritance and object composition, the structures
involved are quite similar. For example, the class diagrams involved in the
object Adapter and Bridge patterns look alike. The Flyweight even uses the
Composite pattern, although the two patterns have different intents: the former
focuses on object sharing and efficiency whereas the latter gives clients the
ability to access individual “leaves” and “composite” objects uniformly.

• Behavioral: The behavioral design patterns deal with algorithms, assignment
of responsibilities between objects, and communication between those
objects. Some rely on inheritance; other on object composition (client-supplier
relationships).

Design Patterns describes eleven behavioral patterns:

• Chain of Responsibility avoids dependencies between the sender and
the receiver of a request by creating a chain of possible receivers; the
request is given to the next link until the current element is able to
handle the request.

• Command makes requests — called commands — first-class objects,
which enables having composite commands; it also makes it possible to
parameterize clients with different requests.

• Interpreter enables interpreting the sentences of a simple language by
representing each expression as classes.

See section 16.2, 
page 259.

See section 17.2, 
page 278.

See section 10.1, 
page 147.

See section 16.1, 
page 255.

See section 20.1, 
page 313.

See section 11.1, page 
161.

See section 13.2, 
page 217.

See section 12.3, 
page 200.

See section 12.1, 
page 187.

See section 20.2, 
page 316.
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• Iterator makes it possible to traverse a data structure and access its
elements sequentially without revealing the internal representation of
the structure. An iterator may be internal or external to the data
structure.

• Mediator controls the interactions between a set of objects; it avoids the
“colleague” objects to have to refer to each other explicitly and ensures
a more flexible structure.

• Memento provides a way to store an object’s internal state — typically
the values of some of its attributes — and restore it later on — reset the
attributes’ value to the stored values.

• Observer eases the update of so-called observers — typically GUI
elements — whenever the underlying data — the subject — changes.

• State makes it possible to change the behavior of an object depending
on its state. It follows the idea of an automaton (state machine), which
changes state when a certain condition — transition — is satisfied.

• Strategy encapsulates algorithms as objects and provides the flexibility
to change an algorithm independently from the clients using it.

• Template Method defines the structure of an algorithm by using
successive deferred (abstract) features, which descendants will have to
implement. It is also known as hook operations or “programs with
holes”.

• Visitor provides a way to apply different operations to instances of
different classes with a common ancestor depending on the generating
type of the object. It is often used to visit elements of an abstract syntax
tree (AST).

There are similarities between some behavioral design patterns. For example,
the Strategy Method relies on inheritance to let parts of an algorithm vary; the
Template Method uses delegation. The Mediator and the Observer are even
closer: colleagues of a Mediator may interact with their mediator by using the
Observer pattern. Commands may use a Memento to ensure state consistency
when undoing previously executed commands. (The present dissertation uses a
common example — a LIBRARY system where users can borrow BOOKs and
give them back — to describe all design patterns to highlight the pattern
similarities and differences.)

The classification between creational, structural, and behavioral design patterns is
now well-established and further literature on the topic followed it; for example, the
book by Jézéquel et al., Design Patterns and Contracts.

The componentization work presented in this dissertation targets the 23
patterns of Design Patterns. But it provides a new reading grid of design patterns, a
new “filter”, a new way to look at them: by level of componentizability instead of
by intent. In the view developed by this thesis, a pattern is not a goal in itself but a
first step towards finding the right abstractions to build a reusable component out of
it. (Section “The limits”,  3.3, page 44 will explain the motivation of the
componentization effort in more detail.)

More design patterns

The 23 patterns described by Gamma et al. are not the only existing design patterns.
Further examples include:
• Smalltalk’s Model View Controller (MVC) is popular.

See section 19.1, 
page 305.

See section 7.2, page 
106.

See section 15.1, 
page 243.

See section 7.1, page 
97.

See section 13.3, 
page 224.

See section 14.1, 
page 233.

See section 17.1, 
page 275.

See [Meyer 1997], p 
504-506.

See section 9.1, page 
131.

The classes are not 
shown here because 
their implementation 
will evolve with the 
patterns being pre-
sented.

[Jézéquel 1999].

See “Definition: 
Componentization”,  
page 26.
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• New design patterns have been identified in more specialized branches of
computer science like distributed systems, networking or more recently Web
services.

• Several publishers (Wiley, Addison-Wesley) started “design patterns series”:
The volumes of Pattern-Oriented Software Architecture are well-known; they
describe flavors of patterns appearing in Design Patterns — like the
Publisher-Subscriber, which resembles the Observer pattern — and contribute
new patterns like Master-Slave for parallel computation, Forwarder-Receiver
and Client-Dispatcher-Server for communication, Broker in distributed
systems or Layers for architecture.

The componentization approach described in this dissertation could be extended to
variants of the patterns described in Design Patterns, such as Publisher-Subscriber.
I did not consider domain-specific patterns at all because several of them involve
parallel computing, which is not feasible in Eiffel at the moment (the SCOOP model
is currently being implemented as an Eiffel library at ETH Zurich); others require
knowledge that is too far away from my area of research.

3.2  THE BENEFITS

The effort of capturing design solutions in design patterns has proved very useful
and has helped building better quality software. Here are some benefits of design
patterns.

A repository of knowledge

Design patterns were built upon the experience of software developers. They are a
repository of knowledge of great interest for newcomers who can learn and apply
them to their designs without repeating their elders’ mistakes.

The important point is that design patterns are proven design solutions. One
of the authors of Design Patterns explained how carefully the catalog of 23 patterns
was done: a design scheme was elevated to the rank of pattern and added to the
repertoire only if at least several real-world applications were using it. This careful
construction of the pattern repository gives confidence in relying on those proven
solutions to build software and avoid reinventing the wheel at each development.

Better software design

Applying one or several patterns to the design of a piece of software usually yields
better modularity, hence better extendibility and more robustness.

Some patterns — for example State and Command — result in a system with
many small classes that only have a few features. But it is usually not a problem; on
the contrary, it contributes to better readability, better understandability of the
software and better separation of concerns.

Applying patterns means applying proven good solutions; thus it facilitates
building good designs even early in a career.

Patterns help learn modularity and design right from the start; therefore they
are also good pedagogical tools.

[Bushmann 1996].

.SCOOP: Simple 
Object-Oriented Pro-
gramming; see chap-
ter 30 of [Meyer 
1997].

[Vlissides 1998].
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A common vocabulary

The definition given by [Gamma 1995] of a design pattern clearly says that a pattern
has a name. Insisting on naming every pattern provides a common vocabulary, a
common language, that people will learn together with the pattern and can use to
discuss with others.

Patterns are a valuable communication means for programmers. But they are
also a very good media to interact with higher levels of the hierarchy. Indeed,
managers may not know the exact structure of patterns, but they are more likely to
know the intent of patterns, what they are good for, and will be able to understand
how a system works at a higher lever of abstraction without having to look at the
code in depth — or even not at all.

3.3  THE LIMITS

For all their benefits, design patterns have their limitations. In particular, one may
argue that they fall short of the goals of reusability.

No reusable solution

“Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to this
problem in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”

Gamma et al., Design Patterns, 1995.

Gamma et al. underline that a design pattern is a solution to a design issue that
occurs very often in a particular context. They add that it is specific enough that
whenever you want to apply it, you will have to adapt it to the new context; you
cannot reuse something you have done before, which means that a design pattern is
not reusable (in terms of code). It needs to be adapted to each particular problem and
is inapplicable as an off-the-shelf component.

A step backward from reuse

The above assertion by Gamma et al. should not make us forget reusability. As we
have seen in chapter 2, reusability is a major goal of object technology and a
foundation of quality. Having to re-implement the same schemes anew each time
cannot be satisfactory.

In his book Object-Oriented Software Construction, Meyer was looking
forward to finding better ways to achieve a higher degree of reuse:

“One can hope that many of the “patterns” currently being studied will
soon cease to be mere ideas, yielding instead directly usable library
classes”.

Design Patterns clearly says that design patterns are only design schemes and do not
come with any reusable code. (The book only provides partially implemented
examples.)

See “Definition”,  
page 39.

[Gamma 1995], p 2.

[Gamma 1995], p 2.

[Meyer 1997], p 735.
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Pree was using the word “cookbook”; for example, the section “How to Use a
Design Pattern” of [Gamma 1995] really looks like a cooking recipe:

In this view, software developers, when needing a pattern, should look at a book,
which describes some relations between classes, usually in a graphical form, and
write the corresponding code. It is a step backward from reuse, or at least there is
something missing here.

As Meyer was already writing in 1997: “A successful pattern cannot just be a
book description: it must be a software component”.

This is precisely the purpose and outcome of this thesis.

Software reuse vs. design reuse

Gamma et al. mention that design patterns are useful to create “a reusable object-
oriented design”, meaning they consider design patterns as a certain form of reuse:
design reuse.

We would like to go further and have a reusable software component, not just
a book idea. However, others argue that design reuse is the only valuable form of
reuse; for example, Szyperski asserts that:

“Reuse of architectural and design experience is probably the single
most valuable strategy in the basket of reuse ideas”.

We think that the gap between software reuse and design reuse is not so big,
especially when developing software in Eiffel. Indeed, Eiffel is more than just a
programming language; it is a method that emphasizes the idea of seamless
development. The recommended way to develop software is to use Eiffel right from
the start of the software lifecycle as a tool for analysis and design, and continue
using it for the implementation and maintenance phases. The use of contracts
(preconditions, postconditions, class invariants) ensures consistency between the
design and implementation steps. Therefore, in Eiffel, design reuse and software
reuse are very close to each other.

This thesis basically tries to reconcile both worlds, showing how we can build
a reusable Eiffel component from the book description of a design pattern.

1. Read the pattern once through for an overview.

2. Go back and study the Structure, Participants, and Collaborations
sections.

3. Look at the Sample Code section to see a concrete example of the pattern
in code.

4. Choose names for pattern participants that are meaningful in the
application context.

5. Define the classes.

6. Define application-specific names for operations in the pattern.

7. Implement the operations to carry out the responsibilities and
collaborations in the pattern.

[Pree 1994].
[Gamma 1995], p 29-
30.

How to Use a 
Design Pat-
tern

[Meyer 1997], p 72.

[Gamma 1995], p 3.
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132.
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To come back to the design pattern usage “recipe” presented before, here is
what the recipe would look like when considering the componentized version of
design patterns:

The ultimate goal of this work is to contribute to the migration from purely
manufactured — in the latin sense of the term, meaning hand-made — software to
software built upon high-quality (trusted) components.

3.4  CHAPTER SUMMARY
• A design pattern is a design scheme that can be applied to software in

response to a specific problem.
• [Gamma 1995] provides a catalog of 23 design patterns categorized into three

groups depending on their intent: creational, structural, and behavioral design
patterns.

• Design patterns are not limited to the ones described in Design Patterns.
• Design patterns have many benefits: they constitute a repository of knowledge

upon which developers can rely; they help build better software; they provide
a common vocabulary that facilitates talking about the design of a system and
communicating it to others.

• Design patterns fall short when mentioning reuse.
• Using Eiffel narrows the gap between design reuse and software reuse, which

opens the way to the componentization of design patterns.

1. Look up the componentizability scale presented in chapter 6 of this thesis.

2. If the pattern you seek belongs to the “componentizable” category:
• Download the componentized version from [Arnout-Web];
• Write the descendant or client classes needed in your application.
else:
• Download the Pattern Wizard from [Arnout-Web].
• Use it to generate skeleton classes for this pattern.
• Fill in the skeleton classes according to your needs.

How to use 
the compo-
nentizability 
classifica-
tion, Pattern 
Library, and 
Pattern Wiz-
ard
The Pattern Wizard is 
described in chapter 
21, page 323.

Wolfgang Pree was 
already using this 
metaphor in [Pree 
1994].
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Previous work
Chapter 2 recalled the importance of reuse to achieve high-quality software; “quality
through components” was the key idea. The concept of seamlessness — integrated
in the Eiffel method — leads to design reuse. Although design patterns (chapter 3)
are widespread and proved useful to software developers in many cases, they do not
yield the full benefits of reuse.

This chapter presents some previous work in the area of design patterns. First
it describes extensions and refinements of the patterns presented in [Gamma 1995].
Then it explains more recent studies trying to implement patterns with aspects.
Finally it discusses the usefulness of supporting design patterns directly in the
programming language.

4.1  EXTENSIONS AND REFINEMENTS OF PATTERNS
Every pattern description of Design Patterns includes a section “Implementation”,
which mentions a few questions programmers should ask themselves when
implementing the pattern. However, these sections are sometimes unclear or
incomplete; hence the need to clarify, explain, refine, extend the description —
especially the implementation details — of the design patterns. It is a step further
towards a concrete pattern implementation, rather than a mere idea, even if it still
does not bring a reusable component.

Seven State variants

Paul Dyson and Bruce Anderson concentrated on the State pattern described in
Design Patterns. They identified six variants of the pattern, i.e. altogether seven
possible ways to translate the pattern’s book description into a programming
language, Smalltalk in their case.

Dyson et al. distinguish between refinements and extensions of the original
pattern:
• Refinements deal with implementation choices already mentioned —

sometimes briefly — in Design Patterns.
• Extensions document decisions that programmers will have to make to

implement the pattern but that are not even suggested in Design Patterns.
All seven variants of the State pattern described by Dyson et al. are still just paper
descriptions — even if illustrated by concrete examples — but they get closer to
what a possible implementation would look like than the original explanation in
Design Patterns.

[Arnout 2002e].
Seamlessness is 
described in [Meyer 
1997]; design reuse 
in [Meyer 1994].

[Dyson 1996].
[Gamma 1995], p 
305-313.
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The seven identified versions of the State pattern include:
• The original State pattern (called State Object by Dyson et al.): It supports

having different behaviors depending on an object’s state by encapsulating
state-dependent features into a class STATE and possible descendants (if
several possible states).

• Three refinements:
• Pure State is when the STATE classes have no attributes; using sharing

permits to avoid the multiplication of state objects. This was already
suggested in Design Patterns.

• State-driven transitions is when the STATE objects initiate the state
transitions.

• Owner-driven transitions is when the “owning object” (called “context”
by [Gamma 1995]) takes care of changing states. It is useful to reuse
state objects with different contexts (different finite state machines).

• Three extensions:
• State Member explains where to declare attributes — in the context or

in the state classes.
• Exposed State suggests to export to any client the attribute state of the

context when state classes have many attributes — to avoid the
multiplication of state-dependent, state-specific routines in the
CONTEXT class.

• Default State explains how to ensure that the context is in the correct
initial state after creation.

For consistency, we will deviate slightly from Dyson’s terminology:
• Context-driven transitions will be used instead of Owner-driven transitions to

conform to the class names (CONTEXT, and STATE) suggested by Design
Patterns.

• State attribute (rather than State Member) to comply with Eiffel terminology.
• Exported State (rather than Exposed State) to use the same vocabulary as in

Eiffel: one may export rather than expose features to clients.
The six variants (refinements and extensions) of the State pattern solve the same
issues as the original pattern; they simply provide more detail about how to
implement the pattern. If the State pattern is not suited to a particular case, none of
the six variants will be suited either.

The following picture illustrates the relations between the State variants:

[Gamma 1995], sec-
tion “3. State objects 
can be shared”, p 
308.

[Gamma 1995], sec-
tion “1. Who defines 
the state transitions”, 
p 308.
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• Pure State is a State attribute with no attribute.

• Exported State is a State attribute with usually many attributes in class STATE
and its descendants. (The above picture does not represent Exported State and
Pure State as disjoint because an Exported State may have no attribute, even
if it is not the most common case.)

• State-driven transitions and context-driven transitions are mutually exclusive:
either the context or the state controls the transition, not both.

• State attribute and its variants, Default state and X-driven transitions (X being
either Context or State) are orthogonal; you may want to combine them when
implementing the State pattern with your favorite programming language.

The following points explain, for each State variant, what question it answers and
give an example in Eiffel:

• The original State pattern provides a way to make an object react differently
depending on its state. 

Let’s take the example of a library where users can borrow books and
return them later. (This example will be used throughout the thesis to highlight
the similarities and differences between patterns.) Books have two states: free
and borrowed. If the book is free and a user borrows it, the book’s state becomes
borrowed. If the book is borrowed and the user returns it, the book becomes free
again.

A possible implementation would be to have a class BOOK with two
attributes free and borrowed of type BOOLEAN and two features borrow and return
setting the value of these attributes; for example:

This implementation works but is not flexible. Adding a state would mean
adding a new attribute to class BOOK and update the features borrow and return.
If it is not too much work on a simple example like this one, it may quickly
become a pain with dozens of states.

The solution advocated by the State pattern described in Design Patterns
consists in having a class STATE and as many descendants as there are states.

class

BOOK
...
feature -- Basic operation

borrow is
-- Borrow book.

do
if free then

borrowed := True
free := False

elseif borrowed then
-- Display a message to the user.

end
end

end

Readers not familiar 
with Eiffel may look 
at the appendix A, 
page 373, which 
gives the necessary 
background to under-
stand the examples in 
this thesis.

Implementa-
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pattern
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In the above example, we would have a class STATE and two descendants
FREE and BORROWED. Class BOOK would keep a reference to the current state
and features borrow and return would just act as proxies as shown below:

It becomes much easier to add states: you simply need to implement the
corresponding descendant of class STATE; no need to change the existing
routines of class BOOK.

The pattern State will be presented thoroughly in section 13.3, page 224.
• State attribute explains where to declare attributes: in the context class or in

the state classes. The rules Dyson et al. suggest are simply good design rules:
• If an attribute only makes sense in one particular state, put it in the

corresponding state class.
• If an attribute makes sense in several — but not all — states, put it in

a common ancestor of the corresponding state classes.
• If an attribute is state-independent, put it in the context class.
In our library example, we would put an attribute user in the class BORROWED
(because it does not make sense when a book is free); but we would put an
attribute reservations of type LIST [RESERVATION] in class BOOK because it is
applicable to any state.

• Pure State is applicable when the STATE classes do not have attributes. In that
case, STATE objects can be shared between different contexts. 

In our example, the state class FREE has no attribute: it can be shared
between different instances of class BOOK.

• Exported State is interesting if the state classes have many attributes. The idea
is to export the attribute state of the context to any client to avoid multiplying
proxy routines that do nothing but delegate calls to the state object.

In the library example, the class BOOK would look like this:

class

BOOK
...
feature -- Basic operation

borrow is
-- Borrow book.

do
state.borrow

end

feature {NONE} -- Implementation

state: STATE
-- State of the book (i.e. free or borrowed?)

end

class

BOOK

feature -- Access (exported to ANY)

state: STATE
-- Current book state

...
end

Implementa-
tion of a rou-
tine to borrow 
books from a 
library with 
the State pat-
tern

Pure State is an 
example of Flyweight 
(see 11.1, page 161) 
and is typically 
implemented as a 
Singleton (see chap-
ter 18, page 289).

Library book 
whose state is 
exported to 
any client
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Hence clients can access the state object and query it directly (for example, ask
for the current user of a book):

Otherwise we would have needed to pollute the class BOOK with routines like:

and clients would have called the proxy routine user without going through the
book’s state:

The main problem of this approach is that we need to duplicate the features from
class STATE in class BOOK to make them available to the BOOK’s clients. Hence
more work when extending the class STATE with new services and less
extensibility.

class

BOOK_CLIENT
...
feature -- Access

book: BOOK
-- Book

user: PERSON is
-- Current user of book

do
Result := book.state.user

end
...
end

class

BOOK
...
feature -- Access

user: PERSON is
-- Current user of the book

do
Result := state.user

end

feature {NONE} -- Implementation

state: STATE
-- Current book state

...
end

class

BOOK_CLIENT
...
feature -- Access

book: BOOK
-- Book

user: PERSON is
-- Current user of book

do
Result := book.user

end
...
end

Client of 
library book 
accessing the 
current book 
user directly 
through the 
book’s state

“Proxy rou-
tines” giving 
access to state 
properties

Client of 
library book 
accessing the 
current book 
user through 
a proxy rou-
tine
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• State-driven transitions: This pattern variant corresponds to the case when
state objects are responsible for changing the context’s state. (The STATE
classes implement the automaton.)

In the library example, the BOOK class would have a procedure set_state
exported to class STATE and its descendants, which would take care of changing
states when the features borrow or return get called. For example, the
implementation of borrow in class FREE would be:

The componentized version of the State pattern that is part of the Pattern Library
accompanying this thesis follows the State-driven transitions model.

• Context-driven transitions: This pattern variant is the counterpart of State-
driven transitions; it corresponds to cases when the context is responsible for
changing state. It proves especially useful when one wants to reuse the same
state objects with different contexts (that implement different finite state
machines). Even in that case, it is usually possible to use the state-driven
approach with Template Methods.

In our example, we could imagine that the library offers not only books
but also videos and the video recorders to watch them. When a video recorder
is returned by a user, it may not become free right away but go to maintenance
to check nothing was damaged. In that case, books and video recorders would
not have the same state machine but the states FREE and BORROWED are likely
to look the same. Therefore we can let the BOOKs and VIDEO_RECORDERs
change their state when needed and reuse the same FREE and BORROWED state
objects for both. A video recorder will have an extra state MAINTAINED set
when the feature return of class VIDEO_RECORDER gets called:

class

FREE

inherit

STATE
...
feature -- Basic operation

borrow is
-- Borrow book.
--| Create a new state BORROWED and set it to the book.

do
book.set_state (create {BORROWED}.make (book))

end

end

class

VIDEO_RECORDER
...
feature -- Basic operation

return is
-- Return video recorder.
--| Create a new state MAINTAINED and set it.

do
set_state (create {MAINTAINED}.make (Current))

end
...
end

Routine 
responsible 
for changing 
the book’s 
state from 
“free” to 
“borrowed”

See section 13.3, 
page 224.

See section 17.1, 
page 275.

Video 
recorder tak-
ing care of 
changing its 
own state
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• Default State suggests having a function default_state in the context class
called in the creation routine of the class to ensure that the created context is
consistent (is in the correct initial state). This approach also increases
flexibility because descendants of the class CONTEXT may redefine the
function default_state to return their own initial state.

In the library example, we can imagine a common ancestor
BORROWABLE of classes BOOK and VIDEO_RECORDER. The class
BORROWABLE would have a deferred feature default_state:

Class BOOK will effect default_create by returning an instance of type FREE,
VIDEO_RECORDER by returning an instance of type MAINTAINED.

This discussion has shown that the same pattern description may result in many
different concrete implementations. The componentization work presented in the
subsequent chapters will highlight other cases.

Adaptative Strategy

Olivier Aubert and Antoine Beugnard also worked on extending a pattern described
by Design Patterns: the Strategy pattern. More than documenting an implementation
choice that programmers have to make when coding the pattern, Aubert et al.
suggest a new design scheme, which they call Adaptative Strategy.

This refinement of the Strategy design pattern removes a drawback of the
original pattern: it does not require clients to know about the different strategies.
Indeed, in the original Strategy, clients must decide which strategy to use. In the
Adaptative Strategy, clients do not have to worry about selecting a strategy — they
do not even know about it; they are always presented the best possible strategy to
apply according to the context. There are cases when the Adaptative Strategy would be
the only possible alternative because the best strategy cannot be known before run time.

The Adaptative Strategy targets the analysis and design of so-called
“adaptative” systems, namely systems that change their behavior automatically
depending on the context. Aubert et al. give the example of a mobile storage access
system, and identify four actors in the “adaptation process”:

class
BORROWABLE

create
make

feature {NONE} -- Initialization
make is

-- Set initial state.
do

set_state (default_state)
ensure

default_state_set: state = default_state
end

feature {NONE} -- Implementation
default_state: STATE is

-- Default state
deferred
ensure

default_state_not_void: Result /= Void
end

...
end

Context class 
with a default 
state function

[Aubert 2001].
[Gamma 1995], p 
315-323.

See “5. Clients must 
be aware of different 
Strategies” in 
[Gamma 1995], p 
318.
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• The Information Gateway gathers information about the environment (the
context).

• The Controller decides — based on the information given by the Information
Gateway — which strategy is best suited to the current situation.

• The State Adapter ensures the state transition from one strategy to another if
needed. (Some strategies are stateless; hence no need for a State Adapter.)

• The Adaptative Strategy executes the strategy chosen by the Controller: it is
the only part visible to clients. (The Adaptative Strategy is an example of the
Facade pattern.)

Aubert et al. distinguishes between two kinds of adaptative strategies:
• On action: The strategy gets changed when a client calls the adaptive strategy

(i.e. at execution time).
• On change: The strategy is updated whenever the environment changes,

independently from any feature call.
Let’s consider each variant successively:
• First, the “on action” scheme. The adaptation process starts when the client

calls the feature execute of class ADAPTATIVE_STRATEGY. The first task will be
to ask the CONTROLLER for the best_strategy — chosen according to the
environment_state obtained from the INFORMATION_GATEWAY. Then, the
ADAPTATIVE_STRATEGY will call the STATE_ADAPTER to ensure state
consistency between the previous and the newly chosen strategy. Finally the
ADAPTATIVE_STRATEGY can execute the elected CONCRETE_STRATEGY.

The following diagram summarizes the relationships between the classes
involved in the “on action” variant of the Adaptative Strategy pattern:

The feature execute of class ADAPTATIVE_STRATEGY may be implemented as follows:
class

ADAPTATIVE_STRATEGY
...
feature -- Basic operation

execute is
-- Execute strategy.

do
strategy := controller.best_strategy
state_adapter.adapt
strategy.execute

ensure
strategy_set: strategy = controller.strategy

end
...
end

See section 20.1, 
page 313.

ADAPTATIVE_
STRATEGY CONTROLLER INFORMATION_

GATEWAY 

STATE_ADAPTER 

CONCRETE_STRATEGY

execute 

execute 

best_strategy 
environment_state 

adapt 

CLIENT 

Strategy 
adaptation on 
strategy exe-
cution

Sketch of pro-
cedure to exe-
cute the best 
strategy 
(adaptation 
on action)
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• Second, the “on change” scheme. Contrary to the “on action” scheme, the
adaptation process is not governed by any client feature call; it follows
environment changes. If the context changes, the INFORMATION_GATEWAY
will notify the CONTROLLER (its “observer”), which will update its
information. According to this new deal, the CONTROLLER will decide of the
new best algorithm and set_strategy of the ADAPTATIVE_STRATEGY. If the new
strategy involves some state changes, the ADAPTATIVE_STRATEGY will invoke
adapt on the STATE_ADAPTER. At this stage, the ADAPTATIVE_STRATEGY is
on the same wavelength as the environment and is ready to have clients call
its execute feature.

The following diagram shows the relationships between the classes
involved in the “on change” variant of the Adaptative Strategy pattern:

We can imagine the following Eiffel implementation of the class ADAPTATIVE_
STRATEGY:

class

ADAPTATIVE_STRATEGY
...
feature -- Basic operation

execute is
-- Execute strategy.

require
strategy_not_void: strategy /= Void

do
strategy.execute

end

feature {CONTROLLER} -- Element change

set_strategy (a_strategy: like strategy) is
-- Set strategy to a_strategy.

require
a_strategy_not_void: a_strategy /= Void

do
strategy := a_strategy
state_adapter.adapt

ensure
strategy_set: strategy = a_strategy

end

feature {NONE} -- Implementation

strategy: CONCRETE_STRATEGY
-- Strategy to be executed

Aubert et al. use the 
Observer pattern: the 
Information Gateway 
is the Subject and 
Controller is the 
Observer.

ADAPTATIVE_
STRATEGY CONTROLLER INFORMATION_

GATEWAY 

STATE_ADAPTER 

CONCRETE_STRATEGY

execute 

execute 

notify 

adapt 

CLIENT 
update 

set_strategy 

Strategy 
adaptation on 
environment 
change

Possible 
implementa-
tion of an 
Adaptative 
Strategy (on 
change)
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The adaptative variant of the Strategy pattern proposed by Aubert et al. avoids
exposing implementation details to clients, hence better complies with the
Information Hiding principle. It also ensures a good separation of concerns by
distinguishing between the execution of the strategy and the adaptation process (the
selection of the strategy to be executed).

However, it does not facilitate extensibility: it would be difficult to add new
strategies because what Aubert et al. call the controller needs to know about all
strategies and would need to be updated. Besides, the Adaptive Strategy pattern —
in whichever variant — is still only a pattern description; it does not come with any
reusable implementation.

From Visitor to Walkabout and Runabout

To apply different operations on elements of a data structure, you can simply write
dedicated features in the corresponding classes or have big conditional control
structures of the form if ... elseif ... end to select the appropriate feature depending on
the type of the given element. However, this approach is not flexible nor extendible.

The Visitor pattern solves this problem by suggesting a “double-dispatch”
mechanism: On the one hand, a class VISITOR and its descendants should list the
possible operations to be performed on the data structure elements; on the other
hand, the classes corresponding to the elements to be visited should provide a feature
accept taking a VISITOR as argument. This design avoids polluting the visited classes
with code that does not correspond to a real property of the class (that is not part of
the underlying abstract data type).

However, the Visitor pattern does not completely solve the extensibility
problem mentioned above. Indeed, the accept features may be tedious to write
because numerous and often similar. Besides the visited classes may belong to a
third-party library that cannot be changed.

Jens Palsberg and C. Berry Jay provided a variant of the Visitor pattern called
Walkabout that partially answers the problem for the Java programming language.
Their solution takes advantage of the reflection mechanism of Java to find the
appropriate visit feature and to invoke it, removing the need to write accept routines.
It is yet not perfect because it requires the type of the visited object to be exactly the
same as the type of the visit feature. But the biggest problem with this approach is
the performance overhead resulting from the use of reflection. Palsberg et al. report
that an implementation using the Walkabout is about one hundred times slower as an
implementation using the Visitor pattern, which greatly compromises the possibility
to use it in practice. Besides, using reflection is not statically type-safe in general.
(The Visitor Library presented in this thesis is type-safe.)

state_adapter: STATE_ADAPTER
-- State adapter

invariant

state_adapter_not_void: state_adapter /= Void

end

[Aubert 2001].

[Meyer 1997], p 25 
and p 51-53.

[Gamma 1995], p 
331-344.

The Visitor pattern is 
described in more 
detail in section 5.2 
and chapter 9.

See chapter 6 of 
[Meyer 1997].

[Palsberg 1998].

See chapter 9.
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Christian Grothoff refined the work by Palsberg et al. to provide another
variant of the Visitor pattern called Runabout. It also targets the Java programming
language and uses reflection but only to look up the appropriate visit feature. Then,
it generates verifying bytecode at run time to invoke the selected visit procedure,
which results in a big performance gain. Grothoff reports that an implementation
using the Runabout is only twice as slow as the Visitor pattern. Besides, there is no
strict requirement regarding the type of the visited objects; it does not need to be
exactly the same as the argument type of the visit feature (it may be a conformant
type).

Another approach is to use multiple dynamic dispatch. Consider a feature call
x.f (a, b). In single-dispatch languages, the appropriate version of f is selected at run
time according to the dynamic type of the target x. Multiple-dispatch languages also
take the dynamic type of the arguments a and b into account to choose the applicable
feature f. Most of today’s programming languages (Java, C#, C++, Eiffel, etc.) use
single-dispatch. MultiJava is an extension of Java supporting symmetric multiple
dispatch (symmetric because all arguments are considered equally when selecting a
feature at run time).

The multiple dispatch removes the need for accept  features when
implementing the Visitor pattern. Say we want to provide maintenance support for
the borrowable elements (books and video recorders) of our previous example; a
possible implementation in MultiJava would be:

Another advantage of multiple-dispatch compared to a traditional pattern
implementation is that it becomes easier to add new elements to an existing
hierarchy.

However, MultiJava is not the mainstream Java language. It requires
extending the language with the @ signs (like in the above example) to get the
multiple dispatch and change the compiler to support this syntax.

The Runabout solution proposed by Grothoff does not imply any change to
the compiler or to the Java virtual machine; it is a Java library. Using the Runabout
means the following: writing a class (the “visitor”) that extends the interface
Runabout and calling the feature visitAppropriate rather than visit as in a traditional
Visitor implementation. As its name suggests, visitAppropriate calls the appropriate
visit feature depending on the visited object’s dynamic type; if none is found, it calls

public class MaintenanceVisitor{

//...
public void visit (Borrowable b){

throws new Error (“An abstract class cannot be instantiated.”);
}

//...
public void visit (Borrowable@Book b){

// Special maintenance treatment for books
}

//...
public void visit (Borrowable@VideoRecorder vr){

// Special maintenance treatment for video recorders
}

}

[Grothoff 2003].

Because the Walk-
about and below the 
Runabout target the 
Java programming 
language; I use the 
Java convention with 
class and feature 
names not in italic.

[Clifton 2000].

Section 5.2 shows the 
corresponding tradi-
tional pattern imple-
mentation of the 
Visitor using Eiffel.

Visitor with 
multiple dis-
patch (writ-
ten in 
MultiJava)
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a feature visitDefault, which throws an exception. Internally, the selection of the
appropriate visit procedure is performed by a feature lookup that takes an instance of
type Class (of the Reflection library) as argument and returns a Code corresponding
to the visit feature to invoke. (The implementation relies on a hash table with items
of type Code associated with keys of type Class. These Codes are similar to C
function pointers for Java.)

The Runabout is still not perfect: it requires the visit routines to be public
(exported to any client) and to be procedures (have no return type, or more precisely
have the return type void in Java) with only one argument. The last two constraints
are the biggest limitations of the approach.

Still, the Runabout is usable in practice. Christian Grothoff applied it to a Java
bytecode analysis tool called Kacheck/J and reported encouraging results. I made a
similar case study with my componentized version of the Visitor pattern: I changed
the Gobo Eiffel Lint tool, which makes extensive use of the Visitor pattern, to use
the Visitor Library instead and did some comparative benchmarks. (Section 9.3
reports about this experience.)

Observer in Smalltalk

Smalltalk has an original approach because it supports the Observer pattern in the
kernel library. More precisely, the class Object, shared by all objects, has messages
(features) for both observer and subject objects:

• Any object is an observer because “any and every object created in the system
can respond to the messages defined by class Object”.

• A class still needs to inherit from (subclass in Smalltalk terminology) the class
Model to be a subject.

The advantage of this approach is that the pattern is supported by the kernel library
itself, meaning that any Smalltalk application can use these classes. However, it does
not solve the deficiencies of the pattern (difficulty to observe several kinds of events,
etc.). Besides, it does not bring a reusable solution. The Event Library that will be
presented in chapter 7 provides a solution to event-driven programming in general
going beyond the sole cases covered by the Observer pattern.

update: anAspectSymbol
update: anAspectSymbol with: aParameter
update: anAspectSymbol with: aParameter from: aSender

// Receive an update message from a Model (Subject).

changed
changed: anAspectSymbol
changed: anAspectSymbol with: aParameter

// Receiver changed.

addDependent: anObject
removeDependent: anObject

dependents
// Return collection of all dependents.

[Bezault 2003].

[Whitney 2002] and 
[Goldberg 1989], p 
239-243.

Observer and 
Subject mes-
sages of class 
Object in 
Smalltalk

[Goldberg 1989], p 
95.

The drawbacks of the 
Observer pattern are 
described on page 
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4.2  ASPECT IMPLEMENTATION
The interest in design patterns has grown bigger than just refining and extending
patterns. Researchers have recently tried to implement design patterns with aspects.
Even if this thesis does not deal with aspect-oriented programming, this work is
worth mentioning here for at least two reasons:
• The study by Hannemann and Kiczales, which is probably the most well-

known in the area, assesses the reusability of the implemented aspects — even
if the primary goal is not to build reusable aspects. It opens the way to
possibly interesting comparisons with the componentizability scale I
established for the object-oriented world and more particularly for the Eiffel
programming language.

• It has obviously attracted quite some interest in the design patterns
community.

The rest of this section starts by describing the work by Hannemann and Kiczales
and concludes by examining the pros and cons of using aspect-oriented
programming to implement design patterns.

Aspects in a nutshell

The idea of “aspects” is to extend objects with specific language constructs and
mechanisms to separate crosscutting concerns. For example, design patterns assign
“roles” to classes: “subject” and “observer” (or “publisher” and “subscriber”) for the
Observer pattern; each “subject” has to notify its “observers” — which all
implement a feature update — when its internal structure changes, resulting in many
similar pieces of code scattered across all classes of the application. The philosophy
of aspects is to abstract the role of those classes and modularize the corresponding
implementation to build code that is easier to use and reuse.

Many programming languages — including object-oriented languages — now
provide an extended version supporting aspects. AspectJ™ for Java is the currently
best known, but other “aspect languages” exist, including AspectR for the
interpreted scripting language Ruby, AspectS for Smalltalk etc., and there are some
experimentations around C and C++. Research projects in the area of Trusted
Components and aspects include the UMLAUT project led by Jean-Marc Jézéquel
and his team at IRISA in France.

Aspect implementation of the GoF patterns

Hannemann et al. implemented the 23 design patterns described in [Gamma 1995]
in both Java and AspectJ™ (the aspect-oriented extension for Java). They evaluated
the resulting code according to four properties:

• Locality: The pattern code is confined in aspects; it does not extend to existing
classes participating in the pattern.

• Reusability: The abstract aspect can be reused. (Programmers still need to
write concrete aspects.) 

• Composition transparency: Some classes can be involved in many patterns
transparently (because the pattern code is located in an aspect and does not
touch the participant classes).

• (Un)pluggability: Adding a pattern to a system or removing a pattern from a
system is easy because participant classes do not know about their
involvement in the pattern implementation.

[Kiczales 1997].

[Hannemann 2002].

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
293-303.

See [AOSD-Web] 
about aspect-ori-
ented developments; 
see [AspectJ-Web] 
about AspectJ™, 
[Ruby-Web] about 
AspectR, [AspectS-
Web] about AspectS, 
[AspectC-Web] 
about aspects in C 
and in C++. See 
[UMLAUT-Web] 
about the UMLAUT 
project.

The terms “abstract” 
and “concrete” are 
comparable to their 
object-oriented coun-
terparts used about 
class inheritance.
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Hannemann et al. mention that using AspectJ to implement the patterns sometimes
came down to an implementation change and sometimes resulted in a completely
new design structure.

The reusability classification of the aspect implementations is the most closely
related to this thesis. Even if their definition of reusability differs from the one
presented in this dissertation (they deal with aspects whereas this work deals with
object-oriented classes; they concentrate on reuse of abstract aspects whereas this
work also reuses concrete classes), it is interesting to see the similarities between
their results and mine.

First, Hannemann et al. report their experience with the Observer pattern. In
a traditional object-oriented approach, the pattern code usually spreads across
several classes, which makes it more difficult to maintain. For example, concrete
subjects are likely to have many features that look alike and call a procedure update_
observers.

Using aspects solves the problem in the case of the Observer pattern through
the notion of pointcuts: one can define a set of points in the program execution
where the feature update_observers needs to be called — no need to pollute the code
of all concrete subjects anymore.

Hannemann et al. categorize the Observer pattern as reusable using AspectJ.
They found eleven other patterns for which “a core part of the implementation can
be abstracted into reusable code [using AspectJ]”: Composite, Command, Mediator,
Chain of Responsibility, Singleton, Prototype, Memento, Iterator, Flyweight,
Strategy, and Visitor. 

Let’s compare these results with the componentizability classification that will
be presented in chapter 6:
• The pattern componentizability classification agrees with Hannemann and

Kiczales on ten of their twelve reusable patterns: only the Singleton and
Iterator patterns resisted the componentization work. Nevertheless, Iterator is
already supported to some extent by existing Eiffel libraries and extending the
Eiffel language will allow to generate skeleton classes for the Singleton
pattern.

• The pattern componentizability classification considers the Proxy, Builder,
and State patterns as componentizable contrary to Hannemann et al. But there
is probably no fundamental disagreement here. Indeed, these patterns belong
to the category “Componentizable but not comprehensive”; because
Hannemann et al. do not have a fine-grained classification and use Yes or No
answer, their view is consistent with mine.

• The pattern componentizability classification differs from Hannemann and
Kiczales’s results on Abstract Factory and Factory Method. They could not
componentize these patterns with AspectJ whereas it was possible to build a
reusable Factory Library using Eiffel, taking advantage of genericity and
agents.

• The pattern componentizability classification agrees on Adapter, Decorator,
Template Method, Bridge, Interpreter, and Facade not to be componentizable.

Hannemann et al. explain their results (reusability vs. non-reusability) by the nature
of design patterns. They distinguish between patterns with:
• Defining roles: Classes participating in the pattern have no functionality

outside the pattern.
• Superimposing roles: Participating classes do have functionality outside the

pattern.

For more informa-
tion about Aspect-
Oriented program-
ming and AspectJ in 
particular, see [Kic-
zales 1997] and 
[AspectJ-Web].

[Hannemann 2002], 
p 161 and 167.

See “Definition: 
Componentization”,  
page 26.

See chapter 8.
[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].
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They assert that most reusability improvements concern patterns of the second
category, where the superimposed pattern behavior can be moved into an
independent reusable module.

Strengths and weaknesses

The main motivation for developing aspect-oriented implementations of the (object-
oriented) patterns — being those of Design Patterns or others — is that design
patterns usually imply scattering code across many classes, which is typically
addressed by techniques of advanced separation of concerns and aspect-oriented
programming in particular. The study by Hannemann et al. is not the only one; there
is a lot of active research in this area. On the other hand, it is still very much a
research work. For the moment, aspects are not used in industrial projects (or at most
in a few pilot experiments) whereas the work presented in this dissertation is directly
applicable to existing real-world applications.

Even if the componentization of several patterns relies on agents, which are Eiffel-
specific, it is possible to approximate them in other languages with reflection.

Before moving on to the componentization work, let’s say a few words about
the strengths and weaknesses of implementing design patterns with aspects. The
advantages usually put forward are:

• A reduction of the number of pattern’s participants: typically one aspect
instead of several classes.

• A better traceability of the code: it becomes easier to identify the patterns in
a system, thus facilitates design documentation.

• A better localization of the pattern code, hence better readability, adaptability,
and extensibility — of both the pattern implementation and of the classes on
which the pattern is applied.

• A better reusability of the pattern code; for example Hannemann et al. report
that 52% of the GoF patterns are reusable (meaning a core part of the design
pattern can be written as a reusable abstract aspect).

However, aspect-oriented versions of design patterns depend on the aspect language
chosen to implement the pattern. For example, [Hachani 2003] mentions that
translating code from AspectJ to HyperJ is not trivial. But this is also true of object-
oriented implementations. Chapter 22 will explain that the componentization work
depends to some extent on the chosen programming language, in my case Eiffel.

The main concern I have with a pattern implementation using aspects is that
it shifts the problem without solving it. An aspect implementation typically
introduces many small aspects where an object-oriented implementation introduces
several classes. Hence a status quo. I do not question that using aspects can help
identifying better where patterns are located. But it does not help understanding
better how a system works as a whole. Indeed, the programmer needs to know about
both classes and aspects, and the relations between them, which may require some
efforts to understand and to maintain.

The componentization work presented in this thesis relies on pure object-
oriented mechanisms and the outcomes (pattern componentizability classification,
Pattern Library, and Pattern Wizard) are directly usable in real-world software
development, being in Eiffel or in other programming languages.

For example, 
[Hachani 2003] 
describes similar 
work.

For example, in 
[Hannemann 2002] 
and [Hachani 2003].

See the previous sec-
tion about “Aspect 
implementation of the 
GoF patterns”,  page 
59.

[Hachani 2003] 
describes this weak-
ness of AOP imple-
mentations of design 
patterns very clearly.
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4.3  LANGUAGE SUPPORT
In [Chambers 2000], Craig Chambers, Bill Harris, and John Vlissides confront their
opinions about the support of design patterns in tools and programming languages.
It starts from an established fact: “[Design patterns] have proved so useful that some
have called for their promotion to programming language features”.

The problem is to decide which design patterns merit a direct support by the
language, and which do not deserve it, to avoid what Chambers et al. call the
“kitchen sink problem”. This is exactly the spirit of Eiffel: a new functionality should
add a significant power of expressiveness to the language at low cost on the overall
language complexity otherwise it should be rejected as “featurism”. Meyer likes to
talk about keeping a “high signal to noise ratio”.

Chambers has a somewhat extreme view, thinking that tools are only a step
towards a full language integration: “Clearly, languages lacking the appropriate
mechanisms benefit from tool support, but this should be viewed as an undesirable
intermediate stage in language development, to be replaced in the future by true
language support without tools requirements”.

I do not think that adding a new language construct for each particular pattern
is the right way to go. I would rather consider to add a few general language
mechanisms that enable implementing the patterns and cover other situations too.
Singleton is a typical example. The pattern is implementable with frozen classes
(classes from which one cannot inherit). But frozen classes are useful beyond just
writing singletons. For example, the implementation of an Eiffel compiler may
require its basic classes such as INTEGER to be declared as frozen.

However, some design patterns can simply not be transformed into
programming language constructs. The pattern componentizability classification that
will be presented in chapter 6 has a category “1.4 Possible component” for patterns
that would become componentizable thanks to a language extension but this
category is empty for the patterns described in Design Patterns, at least when
considering object-oriented languages.

My opinion comes closer to the one of Vlissides who says: “While several of
the more fundamental design patterns may be transliterated easily into programming
language constructs, many others cannot - or at least should not”.

Componentization seems like an approach on which everybody could agree (a
library does not make the programming language more complicated but it improves
the life of the programmer) and tools like the Pattern Wizard complement it
beneficially.

4.4  CHAPTER SUMMARY
• Design patterns have attracted considerable attention since the mid-nineties;

researchers started to develop refinements and extensions of the patterns
described by [Gamma 1995]:

• document choices that programmers must make when implementing the
patterns in a programming language; it is the case of the study by
Dyson et al. that reports seven State pattern variants.

• provide answers to more domain-specific problems; it is the case of the
Adaptative Strategy described by Aubert et al.

• solve deficiencies of the original pattern; it is the case of the Walkabout
and the Runabout that try to improve the Visitor pattern.

[Chambers 2000], p 
277.

[Meyer 2002].

[Chambers 2000], p 
285.

“Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Chambers 2000], p 
284.

See chapter 21, page 
323.

[Dyson 1996].

[Aubert 2001].

[Palsberg 1998].
[Grothoff 2003].
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• Many studies have also been done regarding the implementation of design
patterns using aspect-oriented programming.

• Hannemann et al. reported that 52% of the patterns in Design Patterns are
reusable when using AspectJ (the aspect-oriented extension for Java); their
classification is close to the one presented in this thesis, even if not as much
fine-grained.

• Using aspects has strengths — better code localization, better traceability —
but also weaknesses: it may become difficult to master a whole system —
really understand what’s going on — where many small aspects are woven
into several classes.

• Supporting design patterns directly in the programming language is not
desirable in my opinion, unless this language construct is general enough to
be useful in many different cases and adds significant power of expressiveness
to the programming language (like frozen classes for the Singleton pattern).

For example, [Han-
nemann 2002] and 
[Hachani 2003].

[AspectJ-Web].
See chapter 6, page 
85.
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5   
Turning patterns into 
components: A preview
The previous chapters gave an overview of the context and scope of this thesis. It is
now time to move to the core of this work: the componentization of design patterns. 

This chapter presents three examples: first, an already componentized pattern
(the Prototype), which is built in the Eiffel Kernel Library; second, a successful
transformation of a pattern (the Visitor) into a reusable component; third, a fruitless
attempt at componentizing a pattern (the Decorator), which will be characterized as
non-componentizable.

5.1  A BUILT-IN PATTERN: PROTOTYPE

In Eiffel, one pattern described in Design Patterns is closely connected to the
language and is directly supported by the Kernel Library: it is the Prototype pattern.
Let’s explain its intent and use the library example already presented in the previous
chapter to show how to use the Eiffel support for prototypes in practice.

Pattern description

The Prototype pattern “specif[ies] the kinds of objects to create using a prototypical
instance, and [explains how to] create new objects by copying this prototype.”

The Prototype pattern is one of the five creational design patterns described
by [Gamma 1995], whose purpose is to bring flexibility into the instantiation
process. Using the Prototype pattern means having just one “seed” to create new
objects: the prototypical instance; other objects are created by cloning this prototype.

We could imagine having a class PROTOTYPE with a feature clone. Typical
CLIENT applications would hold an instance of class PROTOTYPE and clone it to
create new objects. But we don’t need to implement this machinery; it is already
available in the Eiffel Kernel Library. Indeed, a feature clone and a variant deep_
clone (for a recursive clone on each field of an object) are provided by the universal
class ANY, from which any Eiffel class inherits (explicitly or implicitly). 

Therefore all Eiffel objects have the possibility to clone themselves; they are
all “prototypes”. No need for a special design. If the version of clone and deep_clone
inherited from ANY does not satisfy the needs of a particular class, Eiffel provides
the ability to redefine their implementation to do something more specialized (by
redefining the feature copy inherited from ANY).

See “Definition: 
Componentization”,  
page 26.

See next chapter: 
“Pattern componen-
tizability classifica-
tion”,  6, page 85.

See section 4.1.

[Gamma 1995], p 
117.

 [ELKS 1995].
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In Java, a class must implement the interface Cloneable defining a method
clone to have the right to call the method clone defined in class Object. C# has the
same policy with an interface ICloneable defining a method Clone and the class Object
with a method MemberwiseClone providing a default  shallow cloning
implementation.

The next version of Eiffel is likely to change the export status of the cloning
features (clone, deep_clone, copy, deep_copy, etc.) in ANY to make them non-publicly
available (export them to NONE) and enable — among other things — writing
singletons in Eiffel. Classes whose instances should be clonable simply need to
broaden the export status of those cloning features.

Book library example

Let’s illustrate how to use Eiffel “prototypes” on the library example presented in
previous chapters.

The term “library” in “library example” means the concrete location where you can
borrow books and other items. It has nothing to do with reusable software libraries.

Suppose we want to create new books and video recorders using prototypes.
We introduce a class LIBRARY_SUPPORT that contains a prototypical instance of
BOOK (book_prototype) and one of VIDEO_RECORDER (video_recorder_prototype).
Here is a possible implementation:
class

LIBRARY_SUPPORT

create

make

feature {NONE} -- Initialization

make (a_book: like book_prototype;
a_video_recorder: like video_recorder_prototype) is

-- Set book_prototype to a_book.
-- Set video_recorder_prototype to a_video_recorder.

require
a_book_not_void: a_book /= Void
a_video_recorder_not_void: a_video_recorder /= Void

do
book_prototype := a_book
video_recorder_prototype := a_video_recorder

ensure
book_prototype_set: book_prototype = a_book
video_recorder_prototype_set:

video_recorder_prototype = a_video_recorder
end

feature -- Duplication

new_video_recorder: VIDEO_RECORDER is
-- New video recorder from video_recorder_prototype

do
Result := clone (video_recorder_prototype)
Result.default_create

ensure
new_video_recorder_not_void: Result /= Void

end

[Meyer 200?b].

See chapter 18 for 
details about the 
implementation of 
singletons in Eiffel.

Class using 
prototypes to 
create books 
and video 
recorders
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The procedure make initializes the two attributes book_prototype and video_recorder_
prototype with the instances given as argument and ensures the class invariant.

The function new_book creates new BOOK objects in two steps: first, it clones
the book_prototype; then, it reinitializes the new instances by calling the creation
procedure make of class BOOK with the values corresponding to that particular book:
a_title and some_authors. Here we assume a class BOOK with a creation procedure
make that has two arguments, the first one corresponding to the book’s title, the
second one to the book’s authors. For simplicity, we suppose the two arguments are
of type STRING. We also assume that the authors of a BOOK may be unknown (in case
of anonymous works); hence no precondition some_authors /= Void in feature make.

The function new_video_recorder follows the same scheme as new_book: first
cloning the video_recorder_prototype, then reinitializing the object by calling the
creation procedure of class VIDEO_RECORDER. We assume that class VIDEO_
RECORDER has the default creation procedure default_create (inherited from ANY,
maybe redefined) with no argument.

As you can see, there is no need to define the clone feature. Class LIBRARY_
SUPPORT, like any Eiffel class, inherits it from ANY.

One not-so-nice point of using prototypes is this business of having to
reinitialize newly created objects. One can avoid it by using the Factory Library
described in chapter 8. In our example, the class LIBRARY_SUPPORT, which could
be renamed as BORROWABLE_FACTORY, would define a book_factory of type
FACTORY [BOOK] and a video_recorder_factory of type FACTORY [VIDEO_
RECORDER] and use them in features new_book and new_video_recorder. This
example will be used again after introducing the Factory Library.

new_book (a_title, some_authors: STRING): BOOK is
-- New book created from book_prototype
-- replacing title with a_title and authors with some_authors

require
a_title_not_void: a_title /= Void
a_title_not_empty: not a_title.is_empty

do
Result := clone (book_prototype)
Result.make (a_title, some_authors)

ensure
new_book_not_void: Result /= Void
title_set: Result.title = a_title
authors_set: Result.authors = some_authors

end

feature {NONE} -- Implementation

book_prototype: BOOK
-- Book used to create other books

video_recorder_prototype: VIDEO_RECORDER
-- Video recorder used to create other video recorders

invariant

book_prototype_not_void: book_prototype /= Void
video_recorder_prototype_not_void: video_recorder_prototype /= Void

end
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5.2  A COMPONENTIZABLE PATTERN: VISITOR
The Visitor pattern solves a common problem in software design: how to perform
different — usually unrelated — operations on many objects when these operations
depend on the objects’ dynamic type. For example in compiler construction, you
want to analyze your abstract syntax tree in many ways and traverse each node to
check types, generate code, etc.

This section presents a small example explaining the kind of situations where
the Visitor pattern is useful. Then it describes the drawbacks of the approach and
describes my solution: the Visitor Library.

Pattern description

Let’s come back to the book library example used in the previous chapter. The
library has a set of BORROWABLE elements, including BOOKs and VIDEO_
RECORDERs. The users can borrow and return such items; but library employees may
also want to apply different operations on them, like maintain — to ensure that
borrowable items are always of impeccable quality — or display — to display the
list of available items on their computer screen. Besides, maintaining a book and
maintaining a video recorder are not the same thing; also, displaying books and
displaying video recorders are different. Thus, classes BOOK and VIDEO_
RECORDER need their own version of maintain and display; for example:

and

class

BOOK

inherit

BORROWABLE
...
feature -- Basic operations

maintain is
-- Maintain book.

do
check_binding
if damaged then repair end

end

display is
-- Display book properties.

do
print (author)
print (title)

end
...
end

class

VIDEO_RECORDER

inherit

BORROWABLE
...

See also chapter 9 for 
a more detailed pre-
sentation of the Visi-
tor Library (including 
approaches that 
yielded to the final 
design).

See “Seven State 
variants”,  page 47.

Sketch of a 
class BOOK

Sketch of a 
class 
VIDEO_
RECORDER
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Class BOOK may have many such descendants (for example DICTIONARY,
TEXTBOOK, COMICS, etc.), each redefining maintain and display. Here the question
is to know whether it is better to extend the class BORROWABLE with features
maintain and display (and redefine them in the descendants if needed) or to put these
new functionalities in an external class.

This choice corresponds to the functional vs. object decomposition described
by Meyer. Object decomposition is appropriate in most cases: it is better to add the
functionalities in the class to have a more stable and extendible system in the end.
Still, functional decomposition is useful in some cases. The first case is when these
new properties do not correspond to the abstract data type on which the class is
based. Another case is when the class belongs to a third-party library (the source
code may not be available or we may not want to change it). The Visitor pattern
provides a solution for cases of the second category, i.e. when it is desirable to
externalize the new functionalities.

In the previous example, we probably do not want to have services such as
maintain and display cooperate with true properties of the class like borrow and return.
The purpose of the Visitor pattern is precisely to avoid putting into classes code that
is not really a property of the class and to ensure that the software structure remains
extendible (easy to add new operations) and maintainable. The idea is to put those
extra features into VISITOR classes. In our example, we would have two classes:
MAINTENANCE_VISITOR and DISPLAY_VISITOR, each containing as many visit_*
features as there are descendants of BORROWABLE (visit_book, visit_dictionary, visit_
video_recorder, etc.). The VISITOR features will follow the hierarchy of
BORROWABLE elements.

Here is a possible implementation of a class MAINTENANCE_VISITOR:

feature -- Basic operations

maintain is
-- Maintain video recorder.

do
check_reading_heads
if damaged then send_to_reparation end

end

display is
-- Display video recorder properties.

do
print (reading_heads_count)
print (is_pal_secam)

end
...
end

class

MAINTENANCE_VISITOR

inherit

VISITOR

feature -- Basic operations

[Meyer 1997], p 103-
114.

The top of the hierar-
chy will be a deferred 
class VISITOR declar-
ing the visit_* features 
to be effected in 
descendants.

Maintenance 
visitor class
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The “visited” (BORROWABLE) classes need to declare a feature accept that takes a
VISITOR as argument and calls the appropriate visitor feature. For example, a class
BOOK implementing the Visitor pattern would call the feature visit_book like this:

The advantage of the Visitor pattern is that it makes it easy to add new operations
without changing the data structure (here the BORROWABLE elements). It “help[s] us
maintain the Open-Closed Principle”.

On the other hand, the Visitor pattern makes it hard to add new element
classes because it requires changing all VISITOR classes (to add new visit_* features).

It also quickly becomes tedious to write an accept feature for all element
classes if there are many (because they are likely to be similar). Palsberg, Jay, and
Grothoff already proposed alternatives to the Visitor pattern that endeavor to solve
this problem. The componentization effort addresses this issue. Let’s see how.

New approach

Following the works about the Walkabout and Runabout, the first idea was to exploit
the limited reflection capabilities of ISE Eiffel and use the class INTERNAL with a
list of pairs with actions (represented as agents) associated to the corresponding type
names.

visit_book (a_book: BOOK) is
-- Maintain a_book.

do
a_book.check_binding
if a_book.damaged then a_book.repair end

end

visit_video_recorder (a_recorder: VIDEO_RECORDER) is
-- Maintain a_recorder.

do
a_recorder.check_reading_heads
if a_recorder.damaged then 

a_recorder.send_to_reparation
end

end
...

end

class

BOOK
...
feature -- Visitor pattern

accept (a_visitor: VISITOR) is
-- Accept visitor a_visitor and 
-- call the specialized visit_* feature applicable to books.

require
a_visitor_not_void: a_visitor /= Void

do
a_visitor.visit_book (Current)

end

end

The features of class 
MAINTENANCE_VISI-
TOR show no con-
tracts. However, they 
have contracts 
expressed in the par-
ent class VISITOR. 
For example, visit_
book requires that the 
argument a_book is 
not Void.

Class BOOK 
implement-
ing the Visitor 
pattern

[Martin 2002c].
[Meyer 1997], p 57-
61.

[Gamma 1995], p 
336.

See “From Visitor to 
Walkabout and Run-
about”,  page 56.

[Palsberg 1998] and 
[Grothoff 2003].
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An agent is a routine object ready to be called; it may be viewed as an evolved form of
typed function pointer. Agents are not defined in the current edition of Eiffel: The
Language (ETL). They were introduced only in 1999. The draft version of ETL3
describing the next version of Eiffel includes a chapter on agents. Dubois et al. also
published a paper about the agent mechanism.

But storing type names was not type-safe: if the user of the library misspells
a type name (for example “STING” instead of “STRING”), there would not be any
compilation error and yet the program would not work. Therefore the final version
of the library only keeps the list of actions and requires the user to register actions
in the appropriate order (descendants first, parents after). At traversal time, it relies
on the feature valid_operands from class ROUTINE to see whether the action can be
applied to the visited element (instead of using the type name). This approach even
ensures that the executed routine has the appropriate signature.

Chapter 9 explains in full detail the genesis of the Visitor Library.

Visitor Library

Step by step, a reusable component that provides the same facilities as the Visitor
pattern without the pain of declaring accept features in all visited element classes
took shape. The Visitor Library is a componentized version of the Visitor pattern. It
relies on genericity (it is composed of one generic class VISITOR [G]) and makes
extensive use of agents.

The interface of class VISITOR [G] is given below; it includes the signature,
header comments, and contracts of all publicly exported features and the class
invariant.

class interface

VISITOR [G]

create

make

feature {NONE} -- Initialization

make
-- Initialize actions.

feature -- Visitor

visit (an_element: G)
-- Visit an_element. (Select the appropriate action
-- depending on an_element.)

require
an_element_not_void: an_element /= Void

feature -- Access

actions: LIST [PROCEDURE [ANY, TUPLE [G]]]
-- Actions to be performed depending on the element

feature -- Element change

ETL corresponds to 
[Meyer 1992] and 
ETL3 to [Meyer 
200?b]. Agents are 
described in chapter 
25 of ETL3 and in 
[Dubois 1999].

It may reveal that the 
developer is a fan of 
Sting but it would not 
make the program 
work!

The class ROUTINE 
was introduced into 
EiffelBase, [Eiffel-
Base-Web], with the 
agent mechanism.

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].

The full class imple-
mentation appears in 
chapter 9.

Interface of 
the Visitor 
Library
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With this component implementing the pattern, an application that needs to apply the
pattern will simply do the following:

• Declare an attribute visitor of type VISITOR [SOME_TYPE].

• Create visitor and initialize it (typically in the creation procedure of the class).

• Call visit on the visitor with the visited element (obtained through a list
traversal for example).

Let’s apply this scheme to the book library example introduced at the beginning of
this chapter; we simply need to:

• Create a class LIBRARY that has a list of BORROWABLE elements and a feature
to maintain the borrowables depending on their dynamic type.

• Declare an attribute maintenance_visitor of type VISITOR [BORROWABLE] that
we create and initialize in the creation routine make (we fill it with all
applicable actions).

• Implement the feature maintain by simply traversing the linked list of
borrowables and call visit with the visited element on the maintenance_visitor.
(No need to pollute all BORROWABLE classes with accept features.)

extend (an_action: PROCEDURE [ANY, TUPLE [G]])
-- Extend actions with an_action.

require
an_action_not_void: an_action /= Void

ensure
one_more: actions.count = old actions.count + 1
inserted: actions.last = an_action

append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [G]]])
-- Append actions in some_actions to the end of the actions list.

require
some_actions_not_void: some_actions /= Void
no_void_action: not some_actions.has (Void)

invariant

actions_not_void: actions /= Void
no_void_action: not actions.has (Void)

end

class

LIBRARY

create

make

feature {NONE} -- Initialization

Typical exam-
ple use of the 
Visitor Library 
to maintain a 
list of borrow-
able items
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In a traditional implementation of the Visitor pattern, the routines maintain_* would
be in a descendant of class VISITOR. Using the Visitor Library implies a different
design and tends to yield bigger application classes. Chapter 9 discusses this
drawback.

The above example is still quite simple. I made a more extensive case study
to assess the applicability and usefulness of the Visitor Library in a bigger real-world
system: the Gobo Eiffel Lint tool. The results of this experiment are presented in
section 9.3.

make is
-- Initialize borrowables.

do
create borrowables.make
create maintenance_visitor.make
maintenance_visitor.append (<<

agent maintain_dictionary,
agent maintain_textbook,
agent maintain_comics,
agent maintain_book,
agent maintain_video_recorder

>>)
end

feature -- Access

borrowables: LINKED_LIST [BORROWABLE]
-- Items that users can borrow

feature -- Basic operation

maintain is
-- Maintain all borrowable items.

do
from borrowables.start until borrowables.after loop

maintenance_visitor.visit (borrowables.item)
borrowables.forth

end
end

feature {NONE} -- Implementation

maintenance_visitor: VISITOR [BORROWABLE]
maintain_dictionary (a_dictionary: DICTIONARY) is ...
maintain_textbook (a_textbook: TEXTBOOK) is ...
maintain_comics (a_comics: COMICS) is ...
maintain_book (a_book: BOOK) is ...
maintain_video_recorder (a_recorder: VIDEO_RECORDER) is ...

invariant

borrowables_not_void: borrowables /= Void
maintenance_visitor_not_void: maintenance_visitor /= Void

end

The notion of agents 
is explained in 
appendix A, p 389.

[Bezault 2003].
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5.3  A NON-COMPONENTIZABLE PATTERN: DECORATOR

The Visitor example was a successful componentization story for two reasons:

• It was possible to build a reusable component out of the design pattern’s book
description.

• The resulted component solved a core drawback of the original pattern (the
need for accept features).

But componentization may also be elusive. It is the case of the Decorator pattern.
After presenting the pattern’s intent, this section describes (fruitless)
componentization efforts.

Pattern description

The goal of the Decorator pattern is to add some functionalities, known as
“decorations”, dynamically to a particular object, not to all instances of a class. 

To use the book library example again, we may like to decorate one particular
book with a special binding, not all books of the series. Another example: we may
want to equip one car with automatic cruise control to satisfy the special need of one
customer; we don’t want to tell the car factory to change the whole production line.
Hence the idea of a Decorator that encloses the original object in another object to
add this extra functionality.

Inheritance would not provide such flexibility for at least two reasons. First,
adding an extra operation or an extra attribute to a class means that all instances of
the class will have this decoration. The client cannot control when to decorate a
particular component. Second, using inheritance could lead to a combinatorial
explosion of classes if one wants to compose several “decorations”. With
Decorators, it is easy to compose the decorations recursively, opening the way to an
unlimited number of additional functionalities.

How can we implement the Decorator pattern? Design Patterns gives some
hints about how to write a “decorator” in C++. Here is a possible implementation of
the pattern in Eiffel. The corresponding class diagram is given below:

[Gamma 1995], p 
175-184.

* 
COMPONENT

+ 
MY COMPONENT

* 
DECORATED_
COMPONENT

+ 
DECORATED_ 

COMPONENT_B 

+ 
DECORATED_ 

COMPONENT_ASOME_TYPE 

component 

additional_
attribute 

Class dia-
gram of a typ-
ical Eiffel 
system using 
the Decora-
tor pattern

The BON notation 
used in this diagram 
is explained in 
appendix A, p 394.
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The deferred class COMPONENT describes the services offered to the clients. Any
component — decorated (like DECORATED_COMPONENT) or not (like MY_
COMPONENT) — will have to comply with this interface. Thus, the “decoration” is
transparent to clients: because a DECORATED_COMPONENT is itself a COMPONENT,
clients can use it wherever they can use a COMPONENT. (A Decorator may be
viewed as a particular kind of Composite with only one component, DECORATED_
COMPONENT, although the pattern’s intent is somewhat different: the composition
part is just a means, not the goal per se.)

Readers who are familiar with design patterns may have taken notice of the notion of
compatible interfaces and thought of the Adapter pattern (see section 16.2, page 259).
Note the difference between a Decorator and an Adapter: the Decorator only adds extra
behavior to an object (it does not change its interface) whereas an Adapter will
completely change the object’s interface (to make it compatible with another one).

There are two kinds of “decoration”: additional attributes and additional
behaviors to existing features. Hence two classes DECORATED_COMPONENT_A and
DECORATED_COMPONENT_B in the class diagram on previous page. Class
DECORATED_COMPONENT_A has an additional_attribute of SOME_TYPE; class
DECORATED_COMPONENT_B redefines the procedure do_something inherited from
COMPONENT to add extra behavior. (If one needs only one extra functionality, it is
not useful to have the common ancestor class DECORATED_COMPONENT.)

Let’s take the example of a graphical window, which can display itself. (The
feature do_something would be renamed as display.) Suppose we want a decorated
window with a border. Feature display would be redefined in the descendant class,
say DECORATED_WINDOW, to display the border of the window too. This is the case
of a decorated component with additional behavior.

Now suppose we want to display a window with a border of a certain color.
We would extend the class with an attribute color and use it in the display feature to
use that color when displaying the window’s border. This is the case of a decorated
component with additional attribute. Furthermore, the color could be changed
(calling an exported feature set_color) if we have direct access to the DECORATED_
WINDOW (as opposed to polymorphically through a WINDOW).

How does it work in practice? The DECORATED_COMPONENT forwards the
requests to the original COMPONENT (like a Proxy; see section 13.2, page 217) but
may perform additional operations before or after forwarding the call (for example,
drawing a border on a GUI text view). 

The interface of a COMPONENT is quite simple; the class text is given below:

A COMPONENT basically offers a service to clients: this service could be provided
by several features. For simplicity, the above example includes only one procedure
do_something.

deferred class

COMPONENT
...
feature -- Basic operation

do_something is
-- Perform an operation of interest for this particular kind
-- of component.

deferred
end

end

See chapter “Com-
posite pattern”,  10.1, 
page 147.

This additional 
behavior may be the 
call to another fea-
ture of the class; if it 
is a newly introduced 
feature, it does not 
need to be visible to 
clients.

Example 
component 
class
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The class MY_COMPONENT is an effective class providing a certain
implementation for the feature do_something. The class text does not appear here; it
is available for download from [Arnout-Web].

Here is the text of class DECORATED_COMPONENT:

The feature make (creation procedure of the effective descendants of DECORATED_
COMPONENT) takes a COMPONENT as argument; it is the object to which any call
to do_something will be forwarded. (This component may already be decorated in
case we want to combine different decorations.)

The “decoration” may be an additional_attribute:

deferred class

DECORATED_COMPONENT

inherit

COMPONENT

feature {NONE} -- Initialization

make (a_component: like component) is
-- Set component to a_component.

require
a_component_not_void: a_component /= Void

do
component := a_component

ensure
component_set: component = a_component

end

feature -- Basic operation

do_something is
-- Do something.

do
component.do_something

end

feature {NONE} -- Implementation

component: COMPONENT
-- Component that will be used for the "decoration"

invariant

component_not_void: component /= Void

end

class

DECORATED_COMPONENT_A

inherit

DECORATED_COMPONENT

Example of a 
decorated 
component

Component 
“decorated” 
with an addi-
tional 
attribute
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or a redefinition of do_something to do_something_more:

create

make, 
make_with_attribute

feature {NONE} -- Initialization

make_with_attribute (a_component: like component; 
an_attribute: like additional_attribute) is

-- Set component to a_component.
-- Set additional_attribute to an_attribute.

require
a_component_not_void: a_component /= Void
an_attribute_not_void: an_attribute /= Void

do
make (a_component)
additional_attribute := an_attribute

ensure
component_set: component = a_component
attribute_set: additional_attribute = an_attribute

end

feature -- Access

additional_attribute: SOME_TYPE
-- Additional attribute

end

class

DECORATED_COMPONENT_B

inherit

DECORATED_COMPONENT
redefine

do_something
end

create

make

feature -- Basic operation

do_something is
-- Do something.

do
Precursor {DECORATED_COMPONENT}
do_something_more

end

feature {NONE} -- Implementation

do_something_more is
-- Do something more.

do
-- Do something more than just do_something.

end

end

Component 
“decorated” 
with some 
additional 
behavior

The notion of Precur-
sor is explained in 
appendix A with the 
notion of inheritance, 
starting on page 383.
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The following class text shows typical client use of “decorated” objects. It creates a
non-decorated component and uses it. Then, it creates decorated components and
uses them in the same way (call to an implementation routine use_component). This
is possible because a DECORATED_COMPONENT is also a COMPONENT (thanks to
inheritance) and has the same interface as a “pure” COMPONENT; in particular, it
exposes the procedure do_something (used in feature use_component), even if the
actual implementation may differ.

At this point, it should be pretty clear of what the Decorator pattern is for. Let’s try
to go beyond the stage of a pattern and transform it into a reusable component.

Fruitless attempts at componentizability

This section reviews all approaches considered to componentize the Decorator pattern.

An attractive but invalid scheme

The first considered technique was genericity to avoid code duplication between
different decorated components. It would be nice to have just one generic class
DECORATED_COMPONENT [G] and several generic derivations: DECORATED_
COMPONENT [BOOK] representing a decorated book, DECORATED_COMPONENT
[VIDEO_RECORDER] representing a decorated video recorder, DECORATED_
COMPONENT [TEXTBOOK] representing a decorated textbook, and so on.

class

CLIENT

create

make

feature {NONE} -- Initialization

make is
-- Illustrate how to create and use decorated objects.

local
c: MY_COMPONENT
a: DECORATED_COMPONENT_A
b: DECORATED_COMPONENT_B

do
create c
use_component (c)

create a.make_with_attribute (c, create{SOME_TYPE})
use_component (a)

create b.make (c)
use_component (b)

end

feature {NONE} -- Implementation

use_component (a_component: COMPONENT) is
-- Use a_component.

require
a_component_not_void: a_component /= Void

do
a_component.do_something

end

end

Client using 
decorated and 
non-deco-
rated compo-
nents
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We have seen that a DECORATED_COMPONENT needs to be a COMPONENT
to enable clients to use one variant or the other transparently, yielding the following
code:

Such code looks nice and would solve our problem, but it is simply illegal in Eiffel.
It would require the language to be interpreted rather than compiled or have a
preprocessor. A technique such as C++ templates would also be possible. Indeed, the
Eiffel compiler needs to know all parents of a class (to detect name clashes, etc.) to
be able to compile it, meaning that here it would need to know all possible actual
generic parameters.

Let’s try to find a way to have a DECORATED_COMPONENT “be” a
COMPONENT while keeping genericity. Conversion sounds like a good candidate.

A valid but useless approach

If there is no way to be a COMPONENT in the sense of being a descendant of class
COMPONENT, it may be possible to become a COMPONENT or more precisely to
convert to COMPONENT. 

class

DECORATED_COMPONENT [G −> COMPONENT]

inherit

G

feature {NONE} -- Initialization

make (a_component: like component) is
-- Set component to a_component.

require
a_component_not_void: a_component /= Void

do
component := a_component

ensure
component_set: component = a_component

end

feature -- Basic operation

do_something is
-- Do something.

do
component.do_something

end

feature {NONE} -- Implementation

component: G
-- Component that will be used for the "decoration"

invariant

component_not_void: component /= Void

end

Decorated 
component 
using 
genericity

(WARNING: 
This code is 
invalid; it 
does not com-
pile.)
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There is no automatic type conversion mechanism in current Eiffel. However,
it will exist in the next version of the language. Hence, it will become possible to
add a COMPLEX to an INTEGER as commonly done in mathematics. 

The mechanism proposed in ETL3 relies on one extra keyword — convert —
and allows conversion from and to a type. The syntax is the following:

Then, it is allowed to write:

Note: It is not permitted to have a type A convert from B and B convert to A.

Would it be possible to have a generic class DECORATED_COMPONENT [G] with a
conversion procedure to_g defined as follows?

class

MY_CLASS

create

from_type_1

convert

from_type_1 ({TYPE_1})
to_type_2: {TYPE_2}

feature -- Conversion

from_type_1 (arg: TYPE_1) is
-- Build from arg.

do
-- Something

end

to_type_2: TYPE_2 is
-- Instance of TYPE_2 built from Current object

do
-- Something

end

end

my_attribute: MY_TYPE
attribute_1: TYPE_1
attribute_2: TYPE_2
...
my_attribute + attribute_1

-- Equivalent to:
-- my_attribute + create {MY_TYPE}.from_type_1 (attribute_1)

attribute_2 + my_attribute
-- Equivalent to:
-- attribute_2 + my_attribute.to_type_2

deferred class

DECORATED_COMPONENT [G]

convert

to_g: {G}

See chapter 14 of 
[Meyer 200?b] about 
conformance rules, 
in particular convert-
ibility.

Syntax of the 
automatic 
type conver-
sion mecha-
nism to be 
added to 
Eiffel

Type conver-
sion examples

Generic deco-
rated compo-
nent using 
conversion

Generic deco-
rated compo-
nent using 
conversion
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This code should compile with a compiler supporting the next version of Eiffel. But
it does not yet give a reusable component.

Let’s consider an object of type DECORATED_COMPONENT [BOOK]. If a
client, say LIBRARY_APPLICATION, wants to use it in a procedure expecting a BOOK
argument, say add_book, the instance will be converted to an instance of type BOOK.
But then, it is not the same object that we add to the library anymore, meaning the
decoration is lost.

feature {NONE} -- Initialization

make (a_component: like component; a_function: like convert_function) is
-- Set component to a_component.
-- Set convert_function to a_function.

require
a_component_not_void: a_component /= Void
a_function_not_void: a_function /= Void

do
component := a_component
convert_function := a_function

ensure
component_set: component = a_component
convert_function_set: convert_function = a_function

end

feature -- Access

component: G
-- Component to be decorated

convert_function: FUNCTION [ANY, TUPLE, G]
-- Function to convert the decorated component
-- into a “normal” component

feature -- Decoration

decoration: ANY
-- Component decoration

decorate is deferred end
-- Decorate component.

feature -- Conversion

to_g: G is
-- Component obtained from decorated component

do
convert_function.call ([])
Result := convert_function.last_result

ensure
component_not_void: Result /= Void

end

invariant

component_not_void: component /= Void
convert_function_not_void: convert_function /= Void

end

(WARNING: 
This is not a 
proper solu-
tion.)
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We could imagine having the conversion feature to_g return an instance of
DECORATED_BOOK inheriting from BOOK (to work on the same object). But then
we don’t need the class DECORATED_COMPONENT [BOOK] anymore; we could use
DECORATED_BOOK directly, meaning we are back to the Decorator pattern.
Therefore, type conversion does not help us build a reusable component. Let’s try
another approach.

What about aspects?

“Decorating” an object with additional attributes or extra behavior sounds close to
the idea of “aspect” introduced by Aspect-Oriented Programming (AOP). Eiffel does
not support aspects; but let’s assume for a moment it does, and examine whether
such a notion would bring what we were missing with the other object-oriented
language mechanisms. In AspectJ™, you can write:

It means you can add some code before a particular routine body, after, or around it
— the difference with after being that you can decide whether you want to continue
proceeding after executing the aspect code or not. It is also possible to add new
attributes to a class. It looks similar to “decorating” a component: we can change
features’ behavior with the before, after or around constructs (advice as they are
called in AOP), even extend the class with new attributes. But, do aspects really
bring us a Decorator?

aspect DecoratedComponent {

/* 
* Special construct (called pointcut) to specify when and where 
* the aspect should be applied.
*
* A pointcut typically lists the features to which the aspect applies.
*/

before: 
pointcutName...{

/* 
*You may view pointcutName as a feature name 
* as a first approximation.
*/
doSomething; 

}

after: 
pointcutName...{

doSomething; 
}

around: 
pointcutName...{

if  (someCondition)
proceed ();

else 
System.out.println (“Error”);

}

}

About AOP, see in 
particular [AspectJ-
Web], [Hannemann 
2002], and [Kiczales 
1997].

Aspect to dec-
orate a com-
ponent 
(approximate 
AspectJ™ 
syntax)

AOP: Aspect-Ori-
ented Programming.
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Remember the scope and intent of the Decorator pattern: it must bring a
flexible way to add functionalities dynamically. When using aspects — supposing we
had aspects in Eiffel — we lose the flexibility. We cannot add the “decoration” to
only some instances of the class any more: either the aspect option is turned on and
all objects are decorated or the option is turned off and no object is decorated. Then,
all objects will have the same decoration. Besides, we miss the ability to compose
decorations as we already noticed for inheritance (see “Pattern description”,  page
74).

Thus, a notion of “aspect” in Eiffel would not help componentizability here.
[Hirschfeld 2003] explains in more detail why aspects do not suffice to implement
the Decorator design pattern.

Skeleton classes

Developing a reusable Eiffel component capturing the intent of the Decorator
pattern proved impossible even when considering extending the Eiffel language. 

For want of full componentizability, it is possible to provide developers with
skeleton classes in the spirit of those presented at the beginning of this section. A
subsequent chapter will give more details about partially implemented decorator
classes.

5.4  CHAPTER SUMMARY
• Support for the Prototype pattern is provided by the Eiffel Kernel Library

through a feature clone and its variant deep_clone in the universal class ANY
from which any Eiffel class inherits. 

• The class ANY — and the features it contains — is part of the Eiffel Library
Kernel Standard (ELKS). Therefore, all Eiffel compilers have it and provide
a feature clone; hence any Eiffel object can clone itself and is a “prototype”.

• The Visitor pattern provides a flexible way to apply operations to many
elements of a data structure without polluting those classes with code that is
not a true property of the underlying abstract data type.

• The Visitor pattern also has drawbacks: first, adding new elements to an
existing hierarchy traversed by visitor classes is hard (it requires changing all
visitor classes); writing accept features in all element classes quickly becomes
painful.

• The Visitor Library is a successful componentization example: it captures the
intent of the Visitor pattern into a reusable component and in addition removes
the need for accept features.

• The Decorator pattern provides a flexible way to add functionalities to a
particular object dynamically.

• It is possible — and very easy — to compose “decorations”. (For example,
adding a border to a GUI text view, and then a scroll bar.) Using inheritance
would not bring such flexibility. (All instances of the descendant class would
have the same “decorations”.)

• The Decorator pattern is not componentizable. It cannot be captured into a
reusable library. Even considering language extensions such as automatic type
conversion — to be allowed in the next version of Eiffel — or aspects would
not help.

• For lack of componentizability, it is possible to provide skeleton classes to
help developers writing correct code.

See “Pattern descrip-
tion”,  page 74

See “Componentiza-
tion outcome”,  page 
258.

See “Pattern descrip-
tion”,  page 74.

See section 16.1.

[Gamma 1995], p 
117-126.

[ELKS 1995].

[Gamma 1995], p 
331-344.

See also chapters 9.

[Gamma 1995], p 
175-184.

See [Meyer 200?b] 
about the next ver-
sion of Eiffel, and 
chapter 14 in partic-
ular about type con-
version.
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6   
Pattern componentizability 
classification
The previous chapters presented the three objectives of this thesis:
• Establish a new classification of the design patterns described in Design

Patterns by level of componentizability.
• Write the Eiffel components corresponding to the componentizable design

patterns to build a “pattern library”.
• Develop a Pattern Wizard to generate skeleton classes automatically for the

non-componentizable patterns.
The present chapter shows the first result: a new pattern classification based on the
degree of componentizability.

6.1  COMPONENTIZABILITY CRITERIA
The first objective of this thesis was to determine whether patterns described in
Design Patterns are componentizable given the mechanisms of an object-oriented
language. We will consider the following set of language mechanisms:
• Client-supplier relationship
• Simple inheritance (of classes; possibly multiple inheritance of interfaces)
• Multiple inheritance (of classes)
• Unconstrained genericity
• Constrained genericity
• Design by Contract™
• Automatic type conversion
• Agents (or reflection for lack of)
• Aspects (if we have a broader view and consider aspect-oriented extensions of

object-oriented languages such as AspectJ™)
The componentization process consists in examining each of these mechanisms (and
combinations of these mechanisms) and see whether it permits to turn the design
patterns into a reusable component.

The design patterns are declared “non-componentizable” if none of these
mechanisms permits to transform the pattern into a reusable component. They are
declared “componentizable” otherwise.

Here are the criteria used to assess the quality of the resulting reusable
component:

See “Definition: 
Componentization”,  
page 26.
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• Completeness: Does the reusable component cover all cases described in
Design Patterns?

• Usefulness: Is the reusable component useful compared to an implementation
from scratch of the design pattern?

• Faithfulness: Is the reusable component faithful to the original pattern
description?

• Type-safety: Is the reusable component type-safe?
• Performance: Is the use of the reusable component as efficient as a traditional

pattern implementation?
• Extended applicability: Does the reusable component cover more cases than

the original design pattern?
The forthcoming chapters present the componentizable and not componentizable
patterns successively, following the pattern componentizability classification
described in 6.3. In the case of componentizable patterns, the chapter ends with a
discussion about the quality of the reusable component compared to the above
criteria. In the case of non-componentizable patterns, the chapter takes the object-
oriented mechanisms given on the previous page one after the other and describes
why it does not help in componentizing the pattern. This systematic treatment
ensures that no case has been forgotten and that the pattern is non-componentizable.

Among the patterns considered for this work, a majority proved
componentizable. The next sections give actual figures about the componentization
ratio and presents the pattern componentizability classification resulting from this
study.

6.2  COMPONENTIZATION STATISTICS
The componentization effort proved successful for a majority of patterns:
• 15 out of 23 examined design patterns, meaning 65%, were componentizable.
• Among the remaining 8 patterns, it was possible to generate skeleton classes

automatically for 5 of them (using the Pattern Wizard developed as part of this
thesis) and one was already supported to some extent by existing libraries.

• Only 2 patterns (Facade, Interpreter) resisted all attempts at making them
more componentizable.

The following two tables summarize the results: 
• The first table includes componentizable patterns and it distinguishes between

non-componentizable patterns (for which skeleton classes can be generated or
there is already some support in existing libraries) and remaining patterns (for
which skeleton classes cannot help and no library support exists).

Category Number of patterns Percentage

Componentizable patterns 15 65%

Non-componentizable patterns 
(possible skeleton classes or 

some library support)

6 26%

Remaining patterns
(no skeleton classes and no 

library support)

2 9%

See chapter 21.

Componentiz-
able, non-
componentiz-
able and 
remaining 
patterns
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• The second table follows the classification presented in the next section:
componentizable and non-componentizable patterns.

6.3  DETAILED CLASSIFICATION

Two main categories of design patterns emerge from the componentization process:
componentizable and non-componentizable patterns. Here is the detailed
classification:

The number associated with each category corresponds to a pattern
componentizability scale: from the most componentizable pattern (1.1) to the least
componentizable (2.4). Here is a more precise description of each pattern category:

• 1. Componentizable: Patterns for which componentization is possible, i.e.
patterns for which it is possible to develop a reusable component giving the
same facilities as the original pattern.

• 1.1 Built-in: Patterns for which the corresponding component is
provided by the Eiffel Kernel Library.

For example, the Prototype pattern describes a way to create
objects from a “prototypical” instance. In Eiffel, the cloning facility is
already provided by the class ANY, from which any Eiffel class inherits.
ANY defines two features clone and deep_clone to duplicate objects.
Because ANY is part of the Eiffel Library Kernel Standard (ELKS), all
Eiffel compilers implement it. No need for a special design to satisfy
the intent of the Prototype pattern; it comes with the Kernel Library.

Category Number of patterns Percentage

Componentizable patterns 15 65%

Non-componentizable patterns 8 35%

Componenti-
zation results 
following the 
pattern com-
ponentizability 
classification
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Design pat-
tern compo-
nentizability 
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See “A built-in pat-
tern: Prototype”,  
5.1, page 65.

[ELKS 1995].

For example, the 
“kernel” cluster of 
EiffelBase, [Eiffel-
Base-Web], is the 
Kernel library of ISE 
Eiffel.
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• 1.2 Library-supported: Componentizable patterns for which the
component corresponding to the original design pattern is already
provided by existing Eiffel libraries.

This case was envisioned during the componentization process
but no pattern of Design Patterns belongs to this category.

• 1.3 Newly componentized: Componentizable patterns that were not
componentized yet (no existing language or library support). The
reusable components are an outcome of this thesis.

• 1.3.1 Fully componentizable: Patterns for which the component
resulting from the componentization process fully captures the
intent of the original design pattern.

For example, the Observer pattern can be transformed into
an Event Library that covers all cases of the original pattern (and
even more). Chapters 7 to 12 present several fully
componentizable patterns.

• 1.3.2 Componentizable but not comprehensive: Patterns for
which it is possible to build a reusable component for some of
the cases covered by the design pattern. The componentized
version is not comprehensive: some cases described in Design
Patterns cannot be implemented with the library built as part of
this thesis. 

For example, some implementations of Builder could be
captured into reusable libraries but not all of them. Likewise,
some cases of the Proxy and State patterns escaped from the
componentization efforts. Chapter 13 relates on this work.

• 1.3.3 Componentizable but unfaithful: Patterns for which the
componentization results in a change in the spirit of the original
design pattern.

For example, the Strategy pattern is componentizable
using agents; but it is arguable whether it is still a true Strategy.
Chapter 14 describes this example in more detail.

• 1.3.4 Componentizable but useless: Patterns for which it is
possible to write a reusable component — that even respects the
original spirit of the pattern — but that is useless in practice.

The only example is the Memento pattern. As described in
chapter 15, developing a Memento Library is feasible; however
there is little chance it would be used in practice by
programmers. Indeed, the pattern is easy and straightforward to
implement; using the library would be too heavyweight and
overkill.

• 1.4 Possible component: Patterns for which it would be possible to
develop a reusable component given an extension of the Eiffel
language.

This case was envisioned during the componentization process
but no pattern of Design Patterns belongs to this category.

• 2. Non-componentizable: Patterns for which componentization is not
possible, i.e. they cannot be turned into reusable Eiffel components.
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• 2.1 Skeleton: Non-componentizable patterns for which it is possible to
write “skeleton” classes (classes with a few features and empty bodies
that programmers would need to fill in). Even if it does not bring the
full power of library components, it already prepares the job for the
programmers; hence makes their life easier and avoids bad
implementations of the pattern. 

• 2.1.1 Method: Non-componentizable patterns for which it is
possible to generate skeleton classes and even provide a method
(an algorithm) to fill in the skeletons.

The Decorator pattern, which was presented as an
example of non-componentizable pattern in the previous chapter,
belongs to this category together with the Adapter pattern.
Sections 16.1 and 16.2 give further details about the algorithms
to fill in the skeleton classes. (One could even imagine extending
the Pattern Wizard to automate the completion of the generated
skeleton classes.)

• 2.1.2 No method: Non-componentizable patterns for which it is
feasible to develop skeleton classes, but not possible to provide a
method to complete the skeleton classes (programmers have to
decide depending on the context).

The patterns Template Method and Bridge fit into this
group. Sections 17.1 and 17.2 describe them in more detail.

• 2.2 Possible skeleton: Non-componentizable patterns that cannot be
even implemented correctly with the current version of Eiffel.

This is the case of the Singleton pattern: writing fully correct
singletons would be possible if Eiffel is extended with the notion of
frozen classes (classes from which one cannot inherit) and the cloning
facilities of the top-hierarchy class ANY are made private (not exported
to clients). These two conditions would make the pattern implementable
in Eiffel but it would still not be componentizable.

Chapter 18 explains how to extend Eiffel with frozen classes and
gives the semantics of this new facility.

• 2.3 Some library support: Non-componentizable patterns for which
there exists some support in existing Eiffel libraries.

For example, the main Eiffel Data Structure libraries already
provide several flavors of Iterator facilities. The traversable containers
of EiffelBase have routines like start, forth, after, etc. that enable
providing an internal iteration mechanism; SmartEiffel has a class
ITERATOR for external iteration; Visual Eiffel has a class CURSOR_ and
a class ITERATOR_; Gobo has a class DS_CURSOR and a class DS_
ITERATOR is under development. Chapter 19 gives more detail about
library-supported patterns.

• 2.4 Design idea: Non-componentizable patterns for which it even
appears unfeasible to write skeleton classes to help application
developers who want to use them. The patterns are too much context-
dependent.

It is the case of the patterns Facade and Interpreter, which are
described in chapter 20. They are “remaining” design patterns that
eluded any attempt at making them more componentizable.

See “A non-compo-
nentizable pattern: 
Decorator”,  5.3, 
page 74.

[EiffelBase-Web], 
[SmartEiffel-librar-
ies], [Object-Tools-
Web], and [Bezault 
2001a].
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The figure below summarizes the componentizability classification of the patterns
described in Design Patterns:

6.4  ROLE OF SPECIFIC LANGUAGE AND LIBRARY 
MECHANISMS

Language and library mechanisms condition the success of componentization. The
following two tables summarize the constructs involved in the componentization of
the patterns described in Design Patterns. The first table corresponds to
componentizable patterns; the second table to non-componentizable patterns.

The mechanisms listed are the componentizability criteria given in 6.1. The
tables distinguish between library mechanisms (cloning, iteration) on the one hand
and language mechanisms (genericity, agents, etc.) on the other hand. (They are
separated by a double line.)

The patterns listed are those described in Design Patterns and their variants.
For example, the Pattern Library provides two versions of the Composite Library: a
transparency variant and a safety variant. The table on the next page lists both.
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See section 10.2, 
page 150 about the 
two variants of the 
Composite Library.
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The following table lists the mechanisms used to write the reusable Eiffel
components corresponding to the componentizable patterns of Design Patterns:

It is clear from this table that language mechanisms are not independent when it
comes to pattern componentization. Rather, we see a number of specific mechanism
combinations that help componentize specific categories of patterns:

• Fully componentizable thanks to genericity and agents: The
componentized version of all fully-componentizable patterns (Flyweight, ...,
Chain of Responsibility) relies on unconstrained genericity, and three demand
constrained genericity (Observer, Mediator, and Flyweight). 72.7% (8 out of
11) of the fully componentizable patterns also require the Eiffel agent
mechanism.
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Client/supplier 
mechanism

X X X X X X X X X X X X X X X X X X X

Simple 
inheritance

X X X X X X X X X

Multiple 
inheritance

X X

Unconstrained 
genericity

X X X X X X X X X X X X X

Constrained 
genericity

X X X X X X X

Design by 
Contract

X X X X X X X X X X X X X X X X X X X

Type 
conversion

Agents X X X X X X X X X X X

Frozen classes

Aspects

Cloning 
facilities

X

Iteration 
facilities

Mechanisms 
used to trans-
form compo-
nentizable 
patterns into 
reusable 
Eiffel compo-
nents
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• Fully componentizable thanks to unconstrained genericity: The Composite
and Chain of Responsibility patterns are fully componentizable. Their
componentized version relies on the Eiffel support for unconstrained
genericity.

The other (non-fully) componentizable patterns also rely either on genericity
(constrained or unconstrained) or agents or both. For example, the componentized
version of the Builder pattern relies on constrained genericity and agents. The
Strategy Library (corresponding to the original Strategy pattern) is componentizable
using constrained genericity. The second variant of the Strategy Library relies on the
Eiffel agent mechanism.

The following table gives the number and percentages of newly
componentized patterns for which genericity (constrained or not) and agents played
a key role in the pattern componentization:

Compone
ntizable 
patterns

Fully 
compone
ntizable

Compone
ntizable 
but not 

comprehe
nsive

Compone
ntizable 

but 
unfaithful

Compon
entizable 

but 
useless

Nb % Nb % Nb % Nb % Nb %

Unconstrained 
genericity 

(only)

3 16.7
%

3 27.3
%

0 0% 0 0% 0 0%

Constrained 
genericity 

(only)

2 11.1
%

0 0% 1 25% 1 50% 0 0%

Agents (only) 1 5.6
%

0 0% 0 0% 1 50% 0 0%

Unconstrained 
genericity and 

agents

5 27.8
%

5 45.6
%

0 0% 0 0% 0 0%

Constrained 
genericity and 

agents

0 0% 0 0% 0 0% 0 0% 0 0%

Unconstrained
/ constrained 

genericity and 
agents

5 27.8
%

3 27.3
%

2 50% 0 0% 0 0%

Unconstrained 
genericity 

(non-exclusive)

13 72.2
%

11 100
%

2 50% 0 0% 0 0%

Constrained 
genericity 

(non-exclusive)

7 38.9
%

3 27.3
%

3 75% 1 50% 0 0%

Agents (Non-
exclusive)

11 61.1
%

8 72.7
%

2 50% 1 50% 0 0%

Combina-
tions of lan-
guage 
mechanisms 
useful for pat-
tern compo-
nentization
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Basic object-oriented mechanisms such as client-supplier relationship and simple
inheritance are needed in almost all componentizations. Multiple inheritance also
appears useful. The support for Design by Contract™, although not a necessary
condition for the pattern componentization, is useful to write better components in
all cases; it enables writing robust and correct code.

The following table shows the mechanisms that enable writing skeleton
classes for the non-componentizable patterns:

Like for the componentizable patterns, inheritance (simple and multiple) and client/
supplier mechanism are needed to write skeleton classes. The support for Design by
Contract™ helps generating correct code.

Unlike componentizable patterns, the presence of genericity and agents is not
crucial: only the variant of Strategy uses it.
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Client/supplier 
mechanism

X X X X X X X X X X

Simple 
inheritance

X X X X X X

Multiple 
inheritance

X X

Unconstrained 
genericity

X

Constrained 
genericity

Design by 
Contract

X X X X X X X X X X

Type 
conversion

Agents X

Frozen classes X

Aspects

Cloning 
facilities

Iteration 
facilities

X

Mechanisms 
used to write 
skeletons cor-
responding to 
non-compo-
nentizable 
patterns
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The subsequent chapters of this dissertation follow the order described in the
componentizability classification given on page 90: from the most componentizable
patterns to the least componentizable.

6.5  CHAPTER SUMMARY
• Componentization relies on object-oriented mechanisms (inheritance,

genericity, etc.). If no mechanism enables transforming a pattern into a
component, the pattern is called “non-componentizable”. Otherwise, it is
called “componentizable” and a set of criteria (type-safety, completeness, etc.)
assets the quality of the resulting component.

• An outcome of this thesis is a new classification of the patterns described by
Design Patterns depending on their level of componentizability. It
distinguishes between two main groups: componentizable, and non-
componentizable patterns. The full scale is more fine-grained; it has 12
categories in total.

• More than 65% of the examined patterns proved componentizable.
• Fifteen patterns can be turned into reusable Eiffel components taking

advantage of various Eiffel mechanisms including genericity (unconstrained /
constrained) and agents.

• Among the 15 componentizable patterns, some are not “fully”
componentizable: their componentized version covers only some cases,
modifies the spirit of the original pattern, or is too heavy to be useful in
practice.

• Eight patterns proved non-componentizable. For five of them, it is possible to
write skeleton (partially implemented) classes to facilitate the life of
programmers. One pattern (Iterator) is already supported — to some extent —
by existing Eiffel libraries. Two patterns (Facade / Interpreter) depend too
much on the context and cannot be captured into skeleton classes.

• Extending the Eiffel language (with frozen classes) would help implementing
the non-componentizable Singleton pattern better, but it would still not make
it componentizable.

See “Componentiz-
ability criteria”,  6.1, 
page 85.

[Meyer 1992].
[Dubois 1999], and 
chapter 25 of [Meyer 
200?b].
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Part B explained the motivation for trying to componentize design patterns; it
also presented the goals of this thesis and showed an overview of the results,
including a new fine-grained classification of design patterns by degree of
componentizability; Part C will focus on componentizable patterns and
present the resulting Pattern Library.



7   
Observer and Mediator
Fully componentizable
The pattern componentizability classification presented in the previous chapter
showed that a majority of patterns described in Design Patterns  are
componentizable. 

The present chapter shows how to build the library version of two design
patterns. First, it focuses on the Observer pattern, from which the Event Library is
derived; second, it describes the Mediator pattern, whose resulting library relies on
the Event Library.

7.1  OBSERVER PATTERN

The Observer pattern provides useful guidelines for event-driven design. However,
it is a limited solution and it is not reusable (in terms of code). Let’s look at the
pattern in detail to understand its deficiencies and the interest of the Event Library.

Pattern description

The Observer pattern “define[s] a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated
automatically”.

A typical application using the Observer pattern would involve the following
classes:

“Pattern componen-
tizability classifica-
tion”,  6, page 85.

[Meyer 2003b], and 
[Arslan-Web].

[Meyer 2003b], and 
[Arslan-Web].

Class dia-
gram of a typ-
ical 
application 
using the 
Observer pat-
tern

[Gamma 1995], p 
293.

 * 
OBSERVER

* 
SUBJECT 

+ 
MY_OBSERVER 

+ 
MY_SUBJECT 

update* 

update+ 

add_observer* 

add_observer+ 

remove_observer* 

remove_observer+ 

notify_observers* 

notify_observers+ 

subject 

observers 
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A SUBJECT keeps a list of observers and gives the ability to add or remove observers
from this list. Whenever its state changes (typically the values of some of its
attributes change), the SUBJECT will notify its observers. Indeed, all OBSERVERs
provide a feature update; notify_observers from SUBJECT will simply iterate through
all observers and call update on them.

A class must inherit from OBSERVER to be an “observer”; it must inherit from
SUBJECT to become a “subject” (be “observable”). Therefore an application can
have many descendants of SUBJECT and OBSERVER.

In the description found in Design Patterns, OBSERVER and SUBJECT are
deferred and the features update, add_observer, remove_observer, and notify_observers
as well. In Eiffel, deferred classes may be partially (or totally) implemented. Thus,
the class OBSERVER can be fully implemented; no need to write the same code again
and again in all descendants of class SUBJECT. 

Here is a possible implementation of the deferred class SUBJECT:

deferred class

SUBJECT

inherit

ANY
redefine

default_create
end

feature {NONE} -- Initialization

default_create is
-- Initialize observers.

do
create observers.make

end

feature -- Observer pattern

observers: LINKED_LIST [OBSERVER]
-- List of observers

add_observer (an_observer: OBSERVER) is
-- Add an_observer to the list of observers.

require
not_yet_an_observer: not observers.has (an_observer)

do
observers.extend (an_observer)

ensure
one_more: observers.count = old observers.count + 1
observer_added: observers.last = an_observer

end

remove_observer (an_observer: OBSERVER) is
-- Remove an_observer from the list of observers.

require
is_an_observer: observers.has (an_observer)

do
observers.search (an_observer)
observers.remove

ensure
observer_removed: not observers.has (an_observer)
one_less: observers.count = old observers.count − 1

end

[Gamma 1995], 293-
303.

Deferred sub-
ject

Class SUBJECT rede-
fines feature default_
create from ANY 
instead of providing a 
feature make to avoid 
descendants having 
to write explicitly the 
creation clause.
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The class OBSERVER cannot be fully implemented. Descendants have to provide
their own variant of update. The code of OBSERVER could be the following:

These two implementations of classes SUBJECT and OBSERVER are general enough
to be reused. But their design is not completely satisfactory. The next paragraphs
explain why.

Book library example using the Observer pattern

We can illustrate the Observer pattern on our book library example.
Consider a class APPLICATION — it can be a GUI or just a command line

interface — that wants to “observe” the list of books of the class LIBRARY introduced
in an earlier chapter. Suppose we want to use the Observer pattern.

The class LIBRARY needs to inherit from SUBJECT and call notify_observers
whenever its data changes, meaning when a book is added to the library. Here is a
possible implementation:

notify_observers is
-- Notify all observers. (Call update on each observer.)

do
from observers.start until observers.after loop

observers.item.update
observers.forth

end
end

invariant

observers_not_void: observers /= Void

end

deferred class

OBSERVER

feature -- Observer pattern

update is
-- Update observer according to the state
-- of the subject it is subscribed to.

deferred
end

end

class

LIBRARY

inherit

SUBJECT
redefine default_create end

feature {NONE} -- Initialization

default_create is
-- Create and initialize the library with an empty list of books.

do
Precursor {SUBJECT}
create books.make

end

Deferred 
observer

See chapter 5.

Concrete sub-
ject

The class LIBRARY 
does not have a create 
clause: by default, the 
creation procedure is 
the feature default_
create (inherited from 
ANY and redefined 
here).
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The class APPLICATION needs to inherit from OBSERVER, effect its feature update,
and add itself to the list of observers from class LIBRARY (inherited from SUBJECT).
A possible implementation follows:

feature -- Access

books: LINKED_LIST [BOOK]
-- Books currently in the library

feature -- Element change

add_book (a_book: BOOK) is
-- Add a_book to the list of books and notify all library observers.

require
a_book_not_void: a_book /= Void
not_yet_in_library: not books.has (a_book)

do
books.extend (a_book)
notify_observers

ensure
one_more: books.count = old books.count + 1
book_added: books.last = a_book

end
...

invariant

books_not_void: books /= Void

end

class

APPLICATION

inherit

OBSERVER
rename

update as display_book
redefine

default_create
end

feature {NONE} -- Initialization

default_create is
-- Initialize library and
-- subscribe current application as library observer.

do
create library
library.add_observer (Current)

end

...

feature -- Observer pattern

library: LIBRARY
-- Subject to observe

All subscribed 
observers are notified 
when a new book is 
added to the library.

Concrete 
observer

The feature update is 
renamed as display_
book to explain better 
what the update does; 
this is not compulsory 
(feature display_book 
appearing below 
could also be called 
update like in the par-
ent OBSERVER).

The class APPLICA-
TION does not have a 
create clause: by 
default, the creation 
procedure is the fea-
ture default_create 
(inherited from ANY 
and redefined here).
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The implementation of feature display_book — called whenever a new book is added
to the library — supposes that the new book is added to the end of the books list.
Therefore it calls the last list item and displays its title. The issue is that the class
APPLICATION knows that a new book has been added to the library (it has been
notified by the LIBRARY) but does not know which one.

The problem gets worse if we want to observe different events, for example
observe changes to the list of books but also changes to the list of video_recorders. A
possibility would be to write a new class OBSERVER with a feature update taking the
event as argument. The next section explains why this solution is not satisfactory.

The Java library of utility classes provides an interface Observer and a class Observable
(for “subjects”). However, this pattern implementation is rarely used in practice because
of the lack of multiple inheritance (of classes) in Java. Indeed, subjects must inherit from
Observable but they may already inherit from another class, making the library
implementation unusable in practice. 

Typically, Java programmers use an event-based implementation: subjects
defines the registration methods:

void addXxxListener (XxxListener l)
void removeXxxListener (XxxListener l)
Whenever a property being observed by listeners changes, the subjects iterates

over its listeners and calls the method defined by the XxxListener interface.

Smalltalk has a different approach: messages for observers and subjects are
provided by the class Object, which is shared by all objects.

Drawbacks of the Observer pattern

The Observer pattern, for all its benefits, also has weaknesses:
• In the Observer pattern, the subject knows about its observers. More precisely,

it has a list of observers and it knows that each observer conforms to
OBSERVER, hence has a feature update. It does not know the exact type of the
list elements given at run time. Thus, coupling between the subject and its
observers is not so tight. Still, from a design point of view, I would have
expected observers to know about their subject but not the other way around.

• The architecture proposed by Design Patterns does not allow passing
information from the subject to the observer when an event occurs (for
example transmit some event data). [Gamma 1995] mentions this issue and
suggests two models:
• push: The SUBJECT sends to all its OBSERVERs a detailed description

of what has changed;
• pull: The SUBJECT just notifies its OBSERVERs that something has

changed and it is up to the OBSERVERs to query the SUBJECT to
understand what has changed. (The example presented before follows
the pull model.)

display_book is
-- Display title of last book added to library.

do
print (library.books.last.title)

end

invariant

library_not_void: library /= Void
consistent: library.observers.has (Current)

end

Observer and Observ-
able are in java.util 
since JDK 1.0; see 
[Java-Web].

[Geary 2003a].

[Goldberg 1989] and 
[Whitney 2002].

[Meyer 2003b].

[Gamma 1995], p 
298.
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But no model is really satisfactory.

• An OBSERVER can register to at most one action from one SUBJECT. There is
no possibility to observe several kinds of events. This limitation, which we
already encountered in our library example, is mentioned in Design Patterns.
They suggest adding an argument to the feature update of class OBSERVER
(the SUBJECT would pass itself as argument). The problem is that there is still
just one feature update per OBSERVER that needs to know all relevant
SUBJECTs to distinguish between them. Hence a scheme where everybody
needs to know everybody, which is hardly flexible.

Convinced that there should be a better approach, we investigated ways to capture
the Observer pattern machinery into a reusable library. This research work resulted
in the Event Library.

Event Library

The Event Library is a simple library relying on just one generic class EVENT_TYPE
and three main features: publish, subscribe, and unsubscribe. However, it is a powerful
solution that provides the necessary mechanisms for typical event-driven application
development. It can also be extended easily to satisfy more advanced needs. The
Event Library takes advantage of the constrained genericity and agents mechanisms
of Eiffel.

It makes a clear distinction between the notions of events and event types:

• An event is a signal: it can result from an action from the user or it can be a
state change in some parts of the system.

• An event is an instance of an event type.

The Event Library relies on the notions of “publisher” and “subscriber”. Here are the
definitions:

• The publisher is responsible for triggering (“publishing”) events. It
corresponds to the subject of the Observer pattern.

• The subscriber registers subscribed objects to a given event type. It
corresponds to the observer of the Observer pattern.

The text of class EVENT_TYPE is given below. (An example of how to use the
library will follow.)

class

EVENT_TYPE [EVENT_DATA −> TUPLE create default_create end]

inherit

LINKED_LIST [PROCEDURE [ANY, EVENT_DATA]]
redefine

default_create
end

feature {NONE} -- Initialization

default_create is 
-- Initialize event type and set object comparison.

do
make
compare_objects

end

[Gamma 1995], p 
297.

[Meyer 2003b], and 
[Arslan-Web].

[Dubois 1999], and 
chapter 25 of [Meyer 
200?b].

[Meyer 2003b], and 
[Arslan-Web].

Event library

This notation is 
explained in appen-
dix A with the notion 
of constrained 
genericity, starting 
on page 387.
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feature -- Element change

subscribe (an_action: PROCEDURE [ANY, EVENT_DATA]) is
-- Add an_action to the subscription list.

require
an_action_not_void: an_action /= Void
an_action_not_yet_subscribed: not has (an_action)

do
extend (an_action)

ensure
one_more: count = old count + 1 and has (an_action)
index_at_same_position: index = old index

end

unsubscribe (an_action: PROCEDURE [ANY, EVENT_DATA]) is
-- Remove an_action from the subscription list.

require
an_action_not_void: an_action /= Void
an_action_already_subscribed: has (an_action)

local 
pos: INTEGER

do
pos := index
start
search (an_action)
remove
go_i_th (pos)

ensure
one_less: count = old count − 1 and not has (an_action)
index_at_same_position: index = old index

end

feature -- Publication

publish (arguments: EVENT_DATA) is
-- Publish all not suspended actions from the subscription list.

require
arguments_not_void: arguments /= Void

do
if not is_suspended then

do_all (agent {PROCEDURE [ANY, 
EVENT_DATA]}.call (arguments))

end
end

feature -- Status report

is_suspended: BOOLEAN
-- Is the publication of all actions from the subscription list
-- suspended?
--(Answer: no by default.)

feature -- Status settings

suspend_subscription is
-- Ignore the call of all actions from the subscription
-- list, until feature restore_subscription is called.

do
is_suspended := True

ensure
subscription_suspended: is_suspended

end

The agent notation is 
described in appen-
dix A, page 389.
The iterator do_all is 
presented in section 
19.2, page 306.



OBSERVER AND MEDIATOR §7104
In a first iteration of the library, the class EVENT_TYPE was using delegation rather
than inheritance from LINKED_LIST. But it reveals easier to implement the
subscription list by relying on inheritance (no need to write proxies for features of
class LINKED_LIST). It also facilitates the library extension (for example redefining
features of class EVENT_TYPE). Nevertheless there is a risk that clients misuse the
features inherited from LINKED_LIST. A possibility could be to export those features
to NONE: descendant classes can still use the implementation features they need but
clients cannot access them anymore.

Apart from the core features publish, subscribe, and unsubscribe, the class
EVENT_TYPE also provides suspend_subscription, restore_subscription, and the query
is_suspended. The last three routines gives the possibility to suspend the subscription
to an event type, meaning it is possible to restore the subscription afterwards —
contrary to unsubscribe, which completely removes the subscription (to restore
subscription, one has to subscribe the object again).

Book library example using the Event Library

Let’s apply the Event Library to the library example presented before.
• The publisher (the class LIBRARY) first needs to declare and create an event

type object. It corresponds to the attribute book_event in the text below.
• Then, it has to trigger the corresponding event by calling feature publish on the

resulting object book_event. It is done in routine add_book because we want an
event to be published whenever a new book is added to the library. The
argument a_book passed as argument to feature publish corresponds to the new
book that has just been added. (This information will be used by the feature
display_book of the subscriber class APPLICATION.)

The resulting class LIBRARY is presented below:

restore_subscription is
-- Consider again the call of all actions from the subscription list,
-- until feature suspend_subscription is called.

do
is_suspended := False

ensure
subscription_not_suspended: not is_suspended

end

invariant

object_comparison: object_comparison

end

class

LIBRARY
...
feature -- Access

books: LINKED_LIST [BOOK]
-- Books currently in the library

feature -- Event type

book_event: EVENT_TYPE [TUPLE [BOOK]]
-- Event associated with attribute books

Event pub-
lisher
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On the other side, subscribers (“observers”) can subscribe to events by calling
feature subscribe of class EVENT_TYPE. In our example, the library APPLICATION
subscribes to the event book_event. The agent expression means that the procedure
display_book will be called whenever book_event occurs. Here is the class text:

Here, the feature display_book can have an argument of type BOOK; no need to guess
the implementation of class LIBRARY like in the example using the Observer pattern.
The argument is filled in when the event is published (see feature add_book of class
LIBRARY).

feature -- Element change

add_book (a_book: BOOK) is
-- Add a_book to the list of books and publish book_event.

require
a_book_not_void: a_book /= Void
not_yet_in_library: not books.has (a_book)

do
books.extend (a_book)
book_event.publish ([a_book])

ensure
one_more: books.count = old books.count + 1
book_added: books.last = a_book

end

invariant

books_not_void: books /= Void
book_event_not_void: book_event /= Void

end

class

APPLICATION

inherit

ANY
redefine default_create end

feature {NONE} -- Initialization

default_create is
-- Subscribe application to book_event.

local
library: LIBRARY

do
create library
library.book_event.subscribe (agent display_book)

end
...

feature -- Event handling

display_book (a_book: BOOK) is
-- Display title of a_book just added to the library.

do
print (a_book.title)

end

end

Publication of the 
event

[Dubois 1999], and 
chapter 25 of [Meyer 
200?b].

Event sub-
scriber

agent display_book is 
an agent with all 
arguments open; it is 
equivalent to agent 
display_book (?)

See “Book library 
example using the 
Observer pattern”,  
page 99
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It would also be easy to subscribe to another event; we simply need to:
• Declare a new event type in class LIBRARY, say video_recorder_event of type

EVENT_TYPE [TUPLE [VIDEO_RECORDER]].
• Publish an event when adding a VIDEO_RECORDER to the library.
• Provide an “update” feature (for example display_video_recorder with one

argument of type VIDEO_RECORDER and subscribe APPLICATION to video_
recorder_event with the corresponding agent.

No limitation of just one type of event per subscriber like in the Observer pattern.

Componentization outcome

The componentization of the Observer pattern, which resulted in the development of
the Event Library, is a success because it meets the componentizability quality
criteria established in section 6.1:
• Completeness: The Event Library covers all cases described in the original

Observer pattern and even more (see Extended applicability below).
• Usefulness: The Event Library is definitely useful. As suggested by the

previous examples, the Event Library is easy-to-use, and extendible. It is a
powerful library for event-driven programming in general (not just the
particular case of the Observer pattern). The Event Library has already been
used in practice. First, the JMLC paper by Arslan et al. shows the example of
a graphical sensor application. Second, the ESDL multimedia library by Till
G. Bay (Silver price at the Eiffel Class Struggle 2003) uses the Event Library.
Finally, the Mediator Library, which will be described in the next section,
relies on the Event Library.

• Faithfulness: The architecture of the Event Library and architecture of
systems designed and implemented with the Event Library are completely
different from the original Observer and the systems that are based on it.
However, the Event Library fully satisfies the intent of the original Observer
pattern and keeps the same spirit. Therefore I consider the Event Library as
being a faithful componentized version of the Observer pattern.

• Type-safety: The Event Library mainly relies on constrained genericity and
agents. Both mechanisms are type-safe in Eiffel. As a consequence, the Event
Library is also type-safe.

• Performance: The main difference between the internal implementation of the
Event Library and the Observer design pattern is the use of agent calls instead
of direct calls to update features. Using agents implies a performance
overhead, but very small on the overall application. Therefore, the
performance of a system based on the Event Library will be in the same order
as when implemented with the Observer pattern directly.

• Extended applicability: The Event Library is applicable to more cases than the
original Observer pattern. It provides support for event-driven programming
in general.

The Event Library was the first successful componentization. Many others followed;
for example the Mediator.

7.2  MEDIATOR PATTERN
The Mediator pattern has some commonalities with the Observer pattern, in
particular a notify-update mechanism. Hence the idea to use the Event Library to
implement it. Let’s now describe the advantages of this solution and explain how to
turn this pattern implementation into a reusable Eiffel component.

[Arslan 2003].
[Bay 2003].
[NICE-Web].
“Mediator Library”,  
page 111.

The performance 
overhead of agents is 
explained in detail in 
appendix A, p 390.
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Pattern description

The Mediator pattern “define[s] an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping objects from referring to
each other explicitly, and it lets you vary their interaction independently”.

The Mediator pattern describes a way to control the interactions between a set
of objects called “colleagues”. Rather than having everyone know everyone else, a
central point of contract (the “mediator”) knows about its “colleagues”. In a word,
the Mediator pattern recommends the “monarchy” over the “anarchy”:

In a system designed according to the Mediator pattern, colleagues only know about
their mediator: they send requests to the mediator, which takes care of forwarding
them to the appropriate colleague; the requested colleague also sends its answer back
to the mediator, which forwards it to the originator of the request. There is no direct
interaction between colleagues. Everything goes through the mediator.

Here is the class diagram of a typical application using the Mediator pattern:

The MEDIATOR knows all its COLLEAGUEs, here colleague_1 of type COLLEAGUE_1
and colleague_2 of type COLLEAGUE_2. Whenever colleague_1 and colleague_2
change state, they call notify_mediator — which they inherit from COLLEAGUE —
which calls update_colleagues on the MEDIATOR with the current colleague as
argument. The procedure update_colleagues — declared as deferred in class
MEDIATOR and effected by its descendants, here MY_MEDIATOR — updates the
colleagues according the state change in the colleague received as argument. In this
example, MY_MEDIATOR updates colleague_2 if colleague_1 changes and colleague_1
if colleague_2 changes.

[Gamma 1995], p 
273.
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A possible implementation of class MY_MEDIATOR is given below:

The COLLEAGUE knows its MEDIATOR and provides a feature notify_mediator. Here
is a possible implementation:

class

MY_MEDIATOR

inherit

MEDIATOR

create

make

feature {NONE} -- Initialization

make is
-- Create colleague_1 and colleague_2.

do
create colleague_1.make (Current)
create colleague_2.make (Current)

end

feature -- Access

colleague_1: COLLEAGUE_1
-- First colleague of mediator

colleague_2: COLLEAGUE_2
-- Second colleague of mediator

feature -- Basic operations

update_colleagues (a_colleague: COLLEAGUE) is
-- Update colleagues because a_colleague changed.

do
if a_colleague = colleague_1 then

colleague_2.do_something_2
elseif a_colleague = colleague_2 then

colleague_1.do_something_1
end

end

invariant

colleague_1_not_void: colleague_1 /= Void
colleague_2_not_void: colleague_2 /= Void

end

deferred class

COLLEAGUE

feature {NONE} -- Initialization

make (a_mediator: like mediator) is
-- Set mediator to a_mediator.

require
a_mediator_not_void: a_mediator /= Void

do
mediator := a_mediator

ensure
mediator_set: mediator = a_mediator

end

Concrete 
Mediator

Deferred col-
league
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A concrete colleague, say colleague_1, calls notify_mediator in all features that imply
a state change.

Here is an example:

This notify-update mechanism looks like the Observer pattern. (Design Patterns
already mentions the similarity.) Hence the idea to use the Event Library to
implement the Mediator pattern. Here is the resulting class diagram:

feature -- Access

mediator: MEDIATOR
-- Mediator

feature -- Mediator pattern

notify_mediator is
-- Notify mediator that current colleague has changed.

do
mediator.update_colleagues (Current)

end

invariant

mediator_not_void: mediator /= Void

end

class
COLLEAGUE_1

inherit
COLLEAGUE

...
feature -- Element change

change_1 is
-- Change state of current colleague.

do
...
notify_mediator

end
...
end

Notification 
of the media-
tor by a col-
league

[Gamma 1995], p 
278.
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The advantage of this solution is to simplify the implementation of class
COLLEAGUE and class MEDIATOR; no feature notify_mediator in the former, no
feature update_colleagues in the latter anymore. The mechanism is taken care of by
the Event Library:
• Each concrete COLLEAGUE declares an event type of type EVENT_TYPE

[TUPLE]; here event_1 in COLLEAGUE_1 and event_2 in COLLEAGUE_2.
• Each concrete colleague publishes the event whenever its internal state

changes. Instead of calling notify_mediator like in a traditional pattern
implementation, it calls publish of the Event Library:

• On the other side, the mediator subscribes to all types of events declared by
its colleagues; this is done in the creation procedure of class MEDIATOR:

Writing the Mediator pattern with the Event Library is already a step forward
compared to a traditional pattern implementation. No need to take care of the
notification-update mechanism and pollute the classes MEDIATOR and COLLEAGUE
with extra code; the Event Library does everything for us.

However, such implementation is still not perfect. In particular, it does not
bring a reusable component. Let’s try to see whether it would be possible to write a
reusable Mediator Library.

class
COLLEAGUE_1

inherit
COLLEAGUE

...
feature -- Element change

change_1 is
-- Change state of current colleague.

do
...
event_1.publish ([])

end
...
end

class

MEDIATOR

create

make

feature -- Initialization

make is
-- Create colleague_1 and colleague_2.

do
create colleague_1.make (Current)
create colleague_2.make (Current)

colleague_1.event_1.subscribe (
agent colleague_2.do_something_2)

colleague_2.event_2.subscribe (
agent colleague_1.do_something_1)

end
...
end

Publication of 
an event by a 
colleague

Mediator 
using the 
Event Library
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Mediator Library

The Mediator pattern suggests using inheritance to have different kinds of
mediators. Most of the code of concrete mediator classes is likely to be similar.
Hence the idea to use genericity to avoid code duplication. But simple genericity is
not enough: the implementation of MEDIATOR relies on the implementation of its
COLLEAGUEs. We need constrained genericity.

Then, a Mediator library needs to be general enough to cover all possible
cases of mediators. In particular, it needs to cover the case of multiple colleagues,
not only two colleagues like in the previous example. We need a list of colleagues.

The resulting Mediator Library has two classes: a generic class MEDIATOR
constrained by COLLEAGUE, the second class of the library. The constraint means
that actual generic parameters must conform to (typically inherit from) type
COLLEAGUE. Class MEDIATOR has a list of colleagues and provides the ability to
extend or remove colleagues from this list. The difficulty of using a list rather than a
fixed set of colleagues is to make sure that the mediator subscribes to the event of
the newly added colleagues and unsubscribes from the event of removed colleagues.
The implementation provided with this thesis uses contracts extensively to ensure
consistency. (The two queries is_colleague_subscribed and is_colleague_unsubscribed
are used for contract support only.)

Here is the text of class MEDIATOR:

class

MEDIATOR [G −> COLLEAGUE]

create

make

feature {NONE} -- Initialization

make is
-- Initialize colleagues.

do
create colleagues.make

end

feature -- Access

colleagues: LINKED_LIST [G]
-- Colleagues of mediator

feature -- Element change

extend (a_colleague: G) is
-- Extend colleagues with a_colleague.
-- Update event subscription of colleagues.

require
a_colleague_not_void: a_colleague /= Void
not_a_colleague: not colleagues.has (a_colleague)

local
other_colleague, new_colleague: COLLEAGUE
a_cursor: CURSOR

do
new_colleague := a_colleague
a_cursor := colleagues.cursor

Mediator 
(part of Medi-
ator Library)
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-- Subscribe existing colleagues
-- to a_colleague.do_something.
-- Subscribe a_colleague to other colleagues' event.

from colleagues.start until colleagues.after loop
other_colleague := colleagues.item
other_colleague.event.subscribe (

agent new_colleague.do_something)
new_colleague.event.subscribe (

agent other_colleague.do_something)
colleagues.forth

end

-- Add a_colleague to the list of colleagues.
colleagues.extend (a_colleague)

colleagues.go_to (a_cursor)
ensure

one_more: colleagues.count = old colleagues.count + 1
is_last: colleagues.last = a_colleague
subscribed: colleagues.for_all (

agent is_colleague_subscribed)
end

feature -- Removal

remove (a_colleague: G) is
-- Remove a_colleague from colleagues.
-- Update event subscription of remaining colleagues.

require
a_colleague_not_void: a_colleague /= Void
has_colleague: colleagues.has (a_colleague)

local
a_cursor: CURSOR
old_colleague, other_colleague: COLLEAGUE

do
a_cursor := colleagues.cursor

-- Unsubscribe remaining colleagues
-- from a_colleague.do_something.
-- Unsubscribe events from a_colleague.
-- Remove a_colleague from colleagues.

old_colleague := a_colleague
from colleagues.start until colleagues.after loop

other_colleague := colleagues.item
if other_colleague = a_colleague then

colleagues.remove
else

other_colleague.event.unsubscribe (
agent old_colleague.do_something)

old_colleague.event.unsubscribe (
 agent other_colleague.do_something)
colleagues.forth

end
end
colleagues.go_to (a_cursor)

ensure
one_less: colleagues.count = old colleagues.count − 1
not_has_colleague: not colleagues.has (a_colleague)
unsubscribed: a_colleague.unsubscribed

end

We need to unsub-
scribe events from a_
colleague because 
nothing prevents 
from calling a_col-
league.change event if 
a_colleague is not a 
colleague of the 
mediator anymore.
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The class COLLEAGUE knows its mediator and declares an event type. It also
provides two queries subscribed and unsubscribed for contract support and a certain
feature change that modifies the colleague’s state and publishes the event.
Descendants of class COLLEAGUE will only need to effect the implementation
procedure do_change to have their own state variation.

The text of class COLLEAGUE appears below:

feature {NONE} -- Implementation
 

is_colleague_subscribed (a_colleague: G): BOOLEAN is
-- Is a_colleague subscribed to other colleagues' event?

require
a_colleague_not_void: a_colleague /= Void

do
Result := a_colleague.subscribed

ensure
definition: Result = a_colleague.subscribed

end

is_colleague_unsubscribed (a_colleague: G): BOOLEAN is
-- Is a_colleague unsubscribed from other colleagues' event?

require
a_colleague_not_void: a_colleague /= Void

do
Result := a_colleague.unsubscribed

ensure
definition: Result = a_colleague.unsubscribed

end

invariant

colleagues_not_void: colleagues /= Void
no_void_colleague: not colleagues.has (Void)

end

deferred class

COLLEAGUE

feature {NONE} -- Initialization

make (a_mediator: like mediator) is
-- Set mediator to a_mediator.

require
a_mediator_not_void: a_mediator /= Void

do
mediator := a_mediator
create event

ensure
mediator_set: mediator = a_mediator

end

feature -- Access

mediator: MEDIATOR [COLLEAGUE]
-- Mediator

event: EVENT_TYPE [TUPLE]
-- Event

Mediator col-
league (part 
of the Media-
tor library)
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The Mediator Library captures the intent of the Mediator pattern in a reusable
component. It relies on the Event Library to implement the notification-update
mechanism of the pattern and makes extensive use of agents, contracts, and
constrained genericity.

Book library example using the Mediator Library

Let’s illustrate how to use the Mediator Library on the library example.
A library has a set of users who cannot borrow books all at the same time. We

can imagine that a library USER must tell a “mediator” when he borrows a book; in
response to this event, the “mediator” (a MEDIATOR of USERs) will say to other
users (the “colleagues”) that they cannot borrow this book anymore.

Here is a simple implementation of a class USER using the Mediator Library:

feature -- Status report

subscribed: BOOLEAN is
-- Is current subscribed to other colleagues' event?

do
...

end

unsubscribed: BOOLEAN is
-- Is current unsubscribed from other colleagues' event?

do
...

end

feature -- Basic operations

change is
-- Do something that changes current colleague's state.

do
do_change
event.publish ([])

end

do_something is
-- Do something.

deferred
end

feature {NONE} -- Implementation

do_change is
-- Do something that changes current colleague's state.

deferred
end

invariant

mediator_not_void: mediator /= Void
event_not_void: event /= Void

end

class

USER

inherit

COLLEAGUE

See “Event Library”,  
page 102.

Library user 
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The event handling is managed by the Mediator Library. No need to implement it
anew for each application.

Componentization outcome

The componentization of the Mediator pattern, which resulted in the development of
the Mediator Library, is a success because it meets the componentizability quality
criteria established in section 6.1:

• Completeness: The Mediator Library covers all cases described in the original
Mediator pattern.

• Usefulness: The Mediator Library is useful for at least two reasons. First, it
provides a reusable solution to the Mediator pattern, which is as powerful as
an implementation from scratch of the pattern. Second, it benefits from the
simplicity of use of the Event Library.

• Faithfulness: The Mediator Library is similar to an implementation of the
Mediator pattern using the Event Library (with the benefits of reusability); it
just introduces genericity to have a reusable solution. On the other hand, the
Mediator Library is somewhat different from a traditional implementation of
the Mediator pattern (as the Event Library differs from the Observer pattern).
However, the Mediator Library fully satisfies the intent of the original
Mediator pattern and keeps the same spirit. Therefore I consider the Mediator
Library as being a faithful componentized version of the Mediator pattern.

create

make

feature -- Status report

may_borrow: BOOLEAN
-- May user borrow books from the library?

feature -- Element change

do_something is
-- Set may_borrow to False.

do
may_borrow := False

ensure then
may_not_borrow: not may_borrow

end

feature {NONE} -- Implementation

do_change is
-- Borrow a book from the library.

do
if may_borrow then

-- Borrow a book from the library.
end

end

end
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• Type-safety: The Mediator Library mainly relies on constrained genericity and
agents. Both mechanisms are type-safe in Eiffel. As a consequence, the
Mediator Library is also type-safe.

• Performance: Comparing the implementation of the Mediator Library with a
direct pattern implementation shows that the only difference is the use of
agents. Using agents implies a performance overhead, but very small on the
overall application. Therefore, the performance of a system based on the
Mediator Library will be in the same order as when implemented with the
Mediator pattern directly.

• Extended applicability: The Mediator Library does not cover more cases than
the original Mediator pattern.

7.3  CHAPTER SUMMARY
• The Observer pattern describes a way to facilitate the update of so-called

“observers” (for example a GUI application) whenever the underlying data
(the “subject”) changes. It helps having a software architecture that is cleaner
and easier to maintain.

• The Observer pattern also has weaknesses; in particular, it is not possible to
subscribe to more than one kind of event.

• The Event Library removes this limitation and provides a reusable solution for
event-driven development.

• The Event Library relies on constrained genericity and agents.
• The Mediator pattern describes a way to control the interaction between a set

of objects; it avoids objects from referring to each other explicitly for greater
system flexibility.

• The communication between “colleagues” and their “mediator” can be
implemented with the Observer pattern. Using the Event Library avoids
polluting the code with features to handle notification and update of
colleagues.

• The Mediator Library is a reusable component capturing the intent of the
Mediator pattern; it relies on constrained genericity and agents, and uses the
Event Library.

The performance 
overhead of agents is 
explained in detail in 
appendix A, p 390.

[Gamma 1995], 293-
303.

[Meyer 2003b], and 
[Arslan-Web].

[Gamma 1995], 273-
282.



8   
Abstract Factory and Factory 
Method
Fully componentizable
In the previous chapter, we saw two key mechanisms, constrained genericity and
agents, that conditioned the componentization success of the Observer and Mediator
design patterns.

The present chapter explains how unconstrained genericity combined with the
Eiffel agent mechanism enable building a reusable component that addresses the
same needs as the Abstract Factory pattern. 

First, it describes the pattern’s intent and structure, it shows how to build the
pattern in Eiffel, and highlights the flaws of this pattern solution. Then, it describes
the implementation of the Factory Library built from the pattern and documents the
design decisions that led to the actual component. Finally, it compares the Abstract
Factory pattern and the Factory Library from a user point of view.

8.1  ABSTRACT FACTORY PATTERN

The Abstract Factory design pattern is a widely used solution to create object
families without specifying the concrete type of each object. However, it has flaws
in terms of system evolution and extensibility, and it must be implemented afresh for
each new development. Let’s have a look at the pattern in more detail.

Pattern description

The Abstract Factory pattern “provide[s] an interface for creating families of related
or dependent objects without specifying their concrete classes”.

In other words, the goal is to be able to create families of objects — let’s say
objects of type PRODUCT_A and objects of type PRODUCT_B — without saying the
exact type of these objects: they can be direct instances of type PRODUCT_A (or
PRODUCT_B) but they can also be instances of proper descendants of PRODUCT_A
(or PRODUCT_B), for example PRODUCT_A1 and PRODUCT_A2 (or PRODUCT_B1
and PRODUCT_B2).

How can we implement the Abstract Factory pattern? The key idea is to
introduce a deferred (abstract) class FACTORY — the “Abstract Factory” — that
delays the product creation to its descendants: FACTORY_1 to create products of type
PRODUCT_A1 and PRODUCT_B1, FACTORY_2 to create products of type PRODUCT_
A2 and PRODUCT_B2.

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].

[Gamma 1995], p 87-
95.

[Gamma 1995], p 87.
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Here is the class diagram of a typical application using the Abstract Factory
pattern:

The class FACTORY exposes two functions: new_product_a and new_product_b to
create products of type PRODUCT_A and PRODUCT_B. These functions are deferred,
meaning they are not implemented: their implementation is deferred to the heir
classes FACTORY_1 and FACTORY_2.

Design Patterns uses slightly different naming conventions: it speaks about a class
AbstractFactory instead of FACTORY; about classes ConcreteFactory1 and ConcreteFactory2
instead of FACTORY_1 and FACTORY_2; about AbstractProductA and AbstractProductB instead
of classes PRODUCT_A and PRODUCT_B in our example. The terminology by Gamma et
al. reflects the conventions of C-like languages (C++, Java, etc.), which use camel case,
whereas the terminology used in this thesis reflects the Eiffel naming conventions with
upper-case class names and underscores. Likewise, the name of the factory functions,
new_product_a and new_product_b, follow the Eiffel style guidelines; in Design Patterns they
appear as CreateProductA() and CreateProductB().

Flaws of the approach

• Applying the Abstract Factory pattern to a software system means that you
have to provide a concrete factory for every product family “even if the
product family differs only slightly”. In the above example, we have two
product families (PRODUCT_A and PRODUCT_B) and two branches for each
category of product (PRODUCT_A1 and PRODUCT_A2 on the one hand;
PRODUCT_B1 and PRODUCT_B2 on the other hand); hence we need to
provide two concrete factories FACTORY_1 (for products of type PRODUCT_
A1 and PRODUCT_B1) and FACTORY_2 (for products of type PRODUCT_A2
and PRODUCT_B2). But the text of these two classes is going to be similar.
Using the Abstract Factory pattern yields code repetition, which is at the
opposite of reusability.

* 
FACTORY 

+ 
FACTORY_1 

+ 
FACTORY_2 

* 
PRODUCT_A

+ 
PRODUCT_A1

+ 
PRODUCT_A2

+ 
PRODUCT_B1

+ 
PRODUCT_B2

* 
PRODUCT_B

new_product_a* 

new_product_b* 

new_product_a+ 

new_product_b+ 
new_product_b+ 

new_product_a+ 
Class dia-
gram of a typ-
ical 
application 
using the 
Abstract Fac-
tory pattern

[Meyer 1992], p 483-
496 and [Meyer 
1997], p 875-902.

[Gamma 1995], p 90.
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• Another drawback of the approach is the lack of flexibility. Indeed, the
“abstract factory” fixes the set of factory functions (new_product_a and new_
product_b), which implies extending the class FACTORY and modify all its
descendants to support new kinds of products. This is not very flexible.

• The class FACTORY sketched in the previous figure is not reusable.
Developers need to implement it anew for each application.

The first goal of the componentization work was to build a reusable component out
of the Abstract Factory pattern. This effort proved successful and resulted in the
Factory Library. This reusable component also resolves the flaws of the original
pattern implementation. A subsequent section explains this beneficial side-effect in
more detail.

8.2  FACTORY LIBRARY
Let’s take a look at the outcome of the componentization effort: the Factory Library.
Before presenting the final product, this dissertation presents the successive versions
that led to the current design, explaining why they were not retained.

A first attempt: with unconstrained genericity and object cloning

The first try at building a “component” version of the Abstract Factory pattern
followed the hint suggested in Design Patterns to consider the Prototype pattern. In
section 5.1, we saw that using “prototypes” in Eiffel simply meant object cloning.
Following this idea, the first version of the Factory Library combined the cloning
facility of Eiffel with (unconstrained) genericity to find out a reusable
implementation of the Abstract Factory pattern.

Here was the resulting generic class FACTORY [G]:
class

FACTORY [G]

create 
make

feature -- Initialization

make (a_prototype: like prototype) is
-- Set prototype to a_prototype.

require
a_prototype_not_void: a_prototype /= Void

do
prototype := a_prototype

ensure
prototype_set: prototype = a_prototype

end

feature -- Factory function

new: G is
-- New instance of type G

do
Result := clone (prototype)

ensure
new_not_void: Result /= Void

end

See “Abstract Fac-
tory vs. Factory 
Library: Strengths 
and weaknesses”,  
page 127.

[Gamma 1995], p 90.
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The creation routine make takes an instance of type G (the formal generic parameter
of class FACTORY [G]) as argument (the prototype to be cloned) and sets the
implementation attribute prototype with it. The class FACTORY also defines a feature
new (the factory function), which returns a new instance of type G by cloning
prototype. 

This first implementation uses shallow cloning. We could also imagine
providing a feature deep_new, which would have the same signature as new, but
would use deep_clone (from class ANY) instead of clone: 

or define two “select” features, select_deep_cloning and select_shallow_cloning, which
would set a boolean attribute is_deep_cloning to True or False and achieve the same
facility.

feature {NONE} -- Implementation

prototype: G
-- Prototype from which new objects are created

invariant

prototype_not_void: prototype /= Void

end

class

FACTORY [G]
...
feature -- Access

deep_new: G is
-- New instance of type G using deep cloning

do
Result := deep_clone (prototype)

ensure
deep_new_not_void: Result /= Void

end
...
end

class

FACTORY [G]
...
feature -- Status Report

is_deep_cloning: BOOLEAN
-- Is deep cloning enabled?

feature -- Status Setting

select_shallow_cloning is
-- Set is_deep_cloning to False.

do
is_deep_cloning := False

ensure
is_shallow_cloning: not is_deep_cloning

end

Factory func-
tion using 
deep cloning

Factory class 
with the abil-
ity to choose 
between deep 
and shallow 
cloning
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Even with the possibility of choosing between deep and shallow cloning, this first
version of the “Factory library” is not fully satisfactory because of the use of object
cloning. Indeed, we saw in section 5.1 that using the Prototype pattern does not
allow taking care of initializing the newly created objects. One way to address this
issue would be to constraint the formal generic parameter G with a default
initialization procedure. Let’s examine this option now.

Another try: with constrained genericity

The first try at building a “Factory component” was not completely convincing
because it lacked flexibility. Let’s require the client to list default_create among its
creation procedures to avoid the need for object re-initialization.

The procedure default_create is defined in class ANY, hence available in any Eiffel class.
It is the default creation procedure, meaning that a class, which does not list any creation
procedure, will automatically have default_create as creation procedure. However a class
which has other creation procedures has to explicitly list default_create otherwise it would
not be a valid creation procedure for the class.

The “Factory library” became the class FACTORY [G] shown below:

select_deep_cloning is
-- Set is_deep_cloning to True.

do
is_deep_cloning := True

ensure
is_deep_cloning: is_deep_cloning

end

feature -- Factory function

new: G is
-- New instance of type G

do
if is_deep_cloning then

Result := deep_clone (prototype)
else

Result := clone (prototype)
end

ensure
new_not_void: Result /= Void

end
...
end

class

FACTORY [G −> ANY create default_create end]

feature -- Factory method

new: G is
-- Instantiate a new object of type G

do
create Result

ensure
new_not_void: Result /= Void

end

end

Factory 
Library 
requiring a 
default cre-
ation proce-
dure
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The notation FACTORY [G -> ANY create default_create end] in the above class text is a form
of constrained genericity. It means that any actual generic parameter of FACTORY must
conform to ANY and expose default_create in its list of creation procedures (introduced by
the keyword create in an Eiffel class text). For better readibility, it is common not to
explicitly mention the constraint when talking about the class; for example here the text
speaks about the FACTORY [G], not about the FACTORY [G -> ANY create default_create end].

Constraining G with default_create means that a derivation, say FACTORY [BOOK], is
valid if and only if default_create is a creation procedure of class BOOK. As a
consequence, BOOK has to be an effective class. For example, we could not have a
FACTORY [BORROWABLE] if the class BORROWABLE is declared as deferred.

Declaring an attribute or a local variable of type FACTORY [SOME_TYPE], where SOME_
TYPE is a deferred class, can be useful in practice if the exact dynamic type of the actual
parameter is not needed to perform an operation. For example, we may want to eat
vegetarian food and have a FACTORY [VEGETABLE]; we do not care whether the actual
vegetables we get (depending on the type of the object to which the factory is attached)
are pees or carrots.

This is not the only drawback. Let’s go back to the book library example for
a better understanding of the constraints that such a design puts on the users. First,
we need to define two factories: FACTORY [BOOK] and FACTORY [VIDEO_
RECORDER]. The declaration of a book factory will look like this:

Using once functions ensures the factory objects will be created only once (in the system),
hence saving memory.

But this code is only correct if class BORROWABLE lists default_create as
creation procedure. We could easily imagine that a borrowable item has an id of type
STRING, which needs to be set at creation time to ensure a class invariant id /= Void.
In that case, class BORROWABLE would not have default_create as creation procedure
but a more specialized make with an argument of type STRING: 

class

LIBRARY
...
feature -- Access

book_factory: FACTORY [BOOK] is
-- Book factory

once
create Result

ensure
book_factory_not_void: Result /= Void

end
...
end

class

BORROWABLE

create

make

feature {NONE} -- Initialization

This notation is 
explained in appen-
dix A with the notion 
of constrained 
genericity, starting 
on page 387.

Book factory

Borrowable 
item class 
with a string 
identifier
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In such a case, we cannot reuse the previous class FACTORY [G] because we cannot
provide default_create as creation procedure. Indeed, if it were just a matter of adding
default_create in the create clause it would not be a big issue, but this is not the case.
We also have to make sure that instantiating a new borrowable item with default_
create does not break any contract, namely that default_create ensures the class
invariant if any. And in fact, class BORROWABLE has an invariant that needs to be
satisfied at creation.

This means that we need to redefine procedure default_create (inherited from ANY)
not to violate the class invariant as shown by the following class text:

make (an_id: like id) is
-- Set id to an_id.

do
id := an_id

ensure
id_set: id = an_id

end

feature -- Access

id: STRING
-- Identifier of current borrowable item

...
invariant

id_not_void: id /= Void

end

id_not_void: id /= Void

class

BORROWABLE

inherit

ANY
redefine

default_create
end

create

default_create,
make

feature {NONE} -- Initialization

default_create is
-- Create id.

do 
create id.make_empty

end

-- id and invariant as before

end

Invariant of 
class BOR-
ROWABLE

Class BOR-
ROWABLE 
providing the 
creation pro-
cedure 
default_create
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But this redefinition of feature default_create is not elegant at all and the default
initialization, although not breaking the invariant, is not really satisfactory. (An
empty identifier is unlikely to be very useful for the librarian. But we could not use
arguments in the new implementation of default_create because it would not match
the signature of the original version defined in ANY.)

Thus, the second attempt at building a reusable component from the Abstract
Factory design pattern was still not the right one.

The final version: with unconstrained genericity and agents

After trying object cloning and constrained genericity, I thought of agents and it
proved the right approach. The Factory Library (final version) imposes no constraint
on the actual parameter and even provides a proper way to initialize the newly
created objects (including creation procedures with arguments).

Here is the code of this simple and easy-to-use library class FACTORY [G],
which is the componentized version of the Abstract Factory pattern:

class

FACTORY [G]

create

make

feature -- Initialization

make (a_function: like factory_function) is
-- Set factory_function to a_function.

require
a_function_not_void: a_function /= Void

do
factory_function := a_function

ensure
factory_function_set: factory_function = a_function

end

feature -- Status report

valid_args (args: TUPLE): BOOLEAN is
-- Are args valid to create a new instance of type G?

do
Result := factory_function.valid_operands (args)

end

feature -- Factory functions

new: G is
-- New instance of type G

require
valid_args: valid_args ([])

do
factory_function.call ([])
Result := factory_function.last_result

ensure
new_not_void: Result /= Void

end

Factory 
Library (final 
version)
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A subsequent section will show that the Factory Library has a few weaknesses. Yet
it has the true advantage of being a reusable solution to the problem of object
creation with factories. Software developers can simply rely on it to get the basic
“machinery” instead of having to rewrite the same code again and again in all their
applications; hence a gain in time and quality. (See chapter 2 for a more thorough
explanation of the benefits of software reuse.)

8.3  ABSTRACT FACTORY VS. FACTORY LIBRARY

Let’s see how to use the Factory Library in practice. To highlight the strengths of the
library over the Abstract Factory pattern but also its weaknesses, this section shows
two implementations of the same example: first with the Abstract Factory, second
with the Factory Library.

Let’s take the same example as in previous chapters with a class LIBRARY,
which contains a list of BORROWABLE items that can be either BOOKs or VIDEO_
RECORDERs. A class APPLICATION creates the library and adds BORROWABLE items
to it.

For this, we want to use factories.

new_with_args (args: TUPLE): G is
-- New instance of type G initialized with args

require
valid_args: valid_args (args)

do
factory_function.call (args)
Result := factory_function.last_result

ensure
new_not_void: Result /= Void

end

feature -- Access

factory_function: FUNCTION [ANY, TUPLE [], G]
-- Factory function creating new instances of type G

invariant

factory_function_not_void: factory_function /= Void

end

The use of TUPLEs 
allows handling the 
case of creation rou-
tines with multiple 
arguments

factory_function cor-
responds to the cre-
ation routine of the 
actual generic 
parameter of class 
FACTORY [G]. The 
type FUNCTION is 
part of the agent 
mechanism.

See “Abstract Fac-
tory vs. Factory 
Library: Strengths 
and weaknesses”,  
page 127.

APPLICATION LIBRARY BORROWABLE

BOOK 

library borrowables 

VIDEO_RECORDER 
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With the Abstract Factory

With the Abstract Factory design pattern, we write a class BORROWABLE_FACTORY
with a feature new_borrowable, and two descendant classes — one per BORROWABLE
type — BOOK_FACTORY and VIDEO_RECORDER_FACTORY, which implement the
feature new_borrowable.

Then, we can use these factories as follows: for example, we declare a book_factory
that returns an instance of BOOK_FACTORY (it is implemented as a once function for
efficiency):

Then, we can call new_book on it with the appropriate arguments (the book’s title and
authors):

With the Factory Library

With the Factory Library, things get simpler. There is no need for extra factory
classes and a parallel hierarchy anymore. Our book_factory is simply declared as
FACTORY [BOOK] using the generic FACTORY class of the Factory Library:

book_factory: BOOK_FACTORY is
-- Book factory

once
create Result

ensure
book_factory_not_void: Result /= Void

end

library.add_borrowable (book_factory.new_book (a_title, some_authors))

book_factory: FACTORY [BOOK] is
-- Book factory

once
create Result.make (agent new_book_imp)

ensure
book_factory_not_void: Result /= Void

end

new_borrowable     new_book 
new_book+ 

* 
BORROWABLE_

FACTORY

+ 
BOOK_FACTORY 

+ 
VIDEO_RECORDER_

FACTORY

new_borrowable* 

new_borrowable     new_video_recorder 
new_video_recorder+ 

Factory 
classes 
needed to 
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example with 
the Abstract 
Factory pat-
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Book factory

Using the 
book factory

Factory of 
books using 
the Factory 
Library
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where new_book_imp is a function returning instances of type BOOK:

Then, we can simply call new_with_args (because the creation procedure of class
BOOK has arguments) on the book_factory to get a new_book and add it to the list of
borrowable items

This simple example shows that the Factory Library is easy to use for clients. It is
also quite straightforward because the client use is not much different from applying
the Abstract Factory pattern (except that most of the code does not need to be
written anymore; clients just reuse the facilities provided by the Factory Library).

Abstract Factory vs. Factory Library: Strengths and weaknesses

The Factory Library was introduced because of the deficiencies of the Abstract
Factory pattern: lack of flexibility, code redundancy, non-reusability of code. It is
now time to assess whether the resulting component has solved our problems.

Using the Factory Library in the previous example was beneficial for several
reasons:

• We needed fewer classes to build the same application: instead of having to
duplicate the BORROWABLE hierarchy with corresponding factory classes
(BORROWABLE_FACTORY, BOOK_FACTORY, VIDEO_RECORDER_FACTORY),
we could just reuse the same generic class FACTORY [G] for all kinds of
borrowable items, sweeping away the code redundancy of the version with
abstract factories.

• We didn’t have to write the class FACTORY [G]: we just reused the class
provided by the Factory Library. Reusability is, in my opinion, the major
advantage of a solution using the Factory Library. Indeed, the one factory
class FACTORY [G], as a library class, can be reused in many applications
whereas a class like BOOK_FACTORY is specific to just one application and
cannot be reused without changes.

On the other hand, the Factory Library also has limitations:

• Relying on a generic class means losing the flexibility of inheritance. Indeed,
some code that was in the factory classes BOOK_FACTORY and VIDEO_
RECORDER_FACTORY will be moved to the client class APPLICATION,
yielding a bigger class and some code redundancy (since there is no parent
class BORROWABLE_FACTORY to capture the commonalities between the
different factories). For example, features like new_book and new_video_
recorder will have similarities that cannot be factorized because of the lack of
inheritance.

new_book_imp (a_title, some_authors: STRING): BOOK is
-- New book with a_title and some_authors

require
a_title_not_void: a_title /= Void
a_title_not_empty: not a_title.is_empty

do
create Result.make (a_title, some_authors)

ensure
book_factory_not_void: Result /= Void
title_set: Result.title = a_title
authors_set: Result.authors = some_authors

end

library.add_borrowable (book_factory.new_with_args ([a_title, some_authors])

Implementa-
tion feature 
needed to use 
the Factory 
Library

Using the 
Factory 
Library

See “Flaws of the 
approach”,  page 
118.
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• Factories using the Factory Library can create only one kind of product (with
the function new or new_with_args). One must use several factories to create
several kinds of products.

In my opinion, the benefits of reusability offset these limitations.

Componentization outcome

The componentization of the Abstract Factory pattern, which resulted in the
development of the Factory Library, is a success because it meets the
componentizability quality criteria established in section 6.1:

• Completeness: The Factory Library covers all cases described in the original
Abstract Factory pattern. One may object that handling the creation of only
one kind of product implies non-completeness of the solution. In my opinion,
the difference lays rather in the way the library is used: one need to have two
factories if we want to create two kinds of product when using the Factory
Library instead of just one in a pure pattern implementation but one can
achieve the same result. Hence the above affirmation that the Factory Library
is a complete implementation of the Abstract Factory pattern.

• Usefulness: The Factory Library is useful because it provides a reusable
solution to the Abstract Factory pattern. No need to rewrite the FACTORY
class for each new development.

• Faithfulness: The architecture of systems built with the Factory Library is
different from the architecture of applications following the traditional
implementation of the Abstract Factory pattern (because of the use of
genericity rather than inheritance). However, the Factory Library satisfies the
intent of the original Abstract Factory pattern and keeps the same spirit.
Therefore I consider the Factory Library as being a faithful componentized
version of the Abstract Factory pattern.

• Type-safety: The Factory Library mainly relies on constrained genericity and
agents. Both mechanisms are type-safe in Eiffel. As a consequence, the
Factory Library is also type-safe.

• Performance: The main difference between the internal implementation of the
Factory Library and the Abstract Factory design pattern is the use of agent
calls instead of direct calls to factory functions. Using agents implies a
performance overhead, but very small on the overall application. Therefore,
the performance of a system based on the Factory Library will be in the same
order as when implemented with the Abstract Factory pattern directly.

• Extended applicability: The Factory Library does not cover more cases than
the original Abstract Factory pattern.

8.4  FACTORY METHOD PATTERN
The Factory Method and the Abstract Factory patterns are similar, even though not
identical. This section should help understand the fundamental differences between
these however related notions.

Pattern description

The Factory Method pattern “define[s] an interface for creating an object, but let
subclasses decide which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.”

See chapter 2, page 
31.

The performance 
overhead of agents is 
explained in detail in 
appendix A, p 390.

[Gamma 1995], p 
107.
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The purpose of the Factory Method is similar to the one of the Abstract
Factory although its scope is slightly different: it concentrates on the creation of one
object, not on families of objects; it works at the level of a method, not at the level
of the class — or classes. The Factory Method is part of a class: it helps the class
perform its business (a certain “operation”) by creating an object — in a flexible
way, without specifying the exact type of the object to be created — needed to
accomplish this operation.

To make things clear, the purpose of the class containing the Factory Method
is not to create new objects (contrary to an Abstract Factory) but to perform a task,
which requires creating an object.

Using the Factory Method pattern to design an Eiffel application leads to a
class hierarchy similar to the one shown below:

The purpose of the deferred class APPLICATION is to do something defined in a
feature ingeniously named do_something that needs to create a new instance of type
PRODUCT to accomplish its task; the “factory method” new_product satisfies this
needs. 

The version of new_product provided by APPLICATION is deferred for greater
flexibility. 

The class APPLICATION could be effective and provide a default implementation of the
factory method new_product, which would then return a new instance of type MY_PRODUCT.
But this solution forces the APPLICATION class to know about the descendants of class
PRODUCT, which in our opinion lacks flexibility.

It is effected covariantly in the descendant class MY_APPLICATION: the new_product
feature from MY_APPLICATION returns an instance of type MY_PRODUCT — whose
base class MY_PRODUCT inherits from the deferred class PRODUCT.

Design Patterns uses slightly different naming conventions: it speaks about a class Creator
instead of APPLICATION; about ConcreteCreator instead of MY_APPLICATION; about
ConcreteProduct instead of MY_PRODUCT in our example.

The choice of class names starting with “Concrete…” to make clear it is a concrete (non-
deferred) class reflects the conventions of C-like languages (C++, Java, etc.); it is not
the Eiffel style. 

Our motivation to change the application class name from CREATOR to APPLICATION was
rather different: we aimed at expressing the intent of the class better and avoid confusions
in the reader’s mind — because the goal of the class is to perform a certain operation
not to create instances (it’s not a factory class).

Drawbacks

• One drawback of the Factory Method pattern — already pointed out by
Design Patterns — is that you might have to create an heir of class
APPLICATION just to be able to instantiate the appropriate product; hence an
increase of the number of classes for no good reason.

Class dia-
gram of a typ-
ical 
application 
using the 
Factory 
Method pat-
tern

* 
APPLICATION 

* 
PRODUCT 

+ 
MY_APPLICATION 

+ 
MY_PRODUCT

new_product* 

new_product+ 

[Meyer 1992], p 483-
496 and [Meyer 
1997], p 875-902.

[Gamma 1995], p 
113.
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• Besides, it does not bring a reusable solution; it is just a design “scheme” that
developers will have to rewrite anew each time they want to use it; hence a
cost on time, but above all on the software quality.

An impression of “déjà vu”

How could we handle the Factory Method more elegantly? [Gamma 1995] suggests
using templates in C++ to avoid the redefinition problem mentioned above. In Eiffel,
it means exploring genericity. 

But examining the problem closer, we see that we do not need yet another
library. At the beginning of this discussion about the Factory Method design pattern,
I pointed out its resemblance with a previously examined creation pattern: the
Abstract Factory. Indeed, if we look at the class diagram introduced then, we realize
that it is close to the diagram of classes governing the Factory Method design
pattern.

In fact, the Factory Method is a special case of an Abstract Factory involving
only one family of product. Therefore we already have a nice solution at our
disposal: we can easily use the Factory Library described earlier and handle the
Factory Method mechanism in a convenient and reusable way.

8.5  CHAPTER SUMMARY
• The Abstract Factory design pattern is a working solution to create object

families without specifying the concrete type of these objects. However, it
falls short when talking about flexibility and reuse.

• The Factory Library embodies the idea of the Abstract Factory pattern into a
reusable component, providing a nice answer to the issue raised by Pinto et al.
in 2001: “The DPs fail providing a solution because it is necessary to apply
and implement the same design pattern over and over, for each component”.

• The Factory Library relies on (unconstrained) genericity and agents.
• The Factory Library is still not completely satisfactory because it misses the

flexibility of inheritance that we find in the Abstract Factory pattern.
• The Factory Method pattern helps a class perform its task by taking care of

an object creation. The goal of the factory method’s declaring class is not to
create objects but it needs to create objects to do its job; the factory method
provides this service.

• The Factory Method pattern can be handled with the Factory Library.

See chapter 2 about 
the benefits of soft-
ware reuse on quality.

See “Class diagram 
of a typical applica-
tion using the 
Abstract Factory pat-
tern”,  page 118.

[Gamma 1995], p 87-
95.

[Pinto 2001].

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].

[Gamma 1995], p 
107-116.



9   
Visitor
Fully componentizable
Chapter 5 gave a preview of the successful componentization of the Visitor pattern.
At that time, only the interface of the resulting Visitor Library was presented. This
chapter describes the reusable component in more detail, going through all design
steps that led to the actual Visitor Library.

After describing the pattern’s intent, structure, advantages and drawbacks, the
chapter recalls briefly related approaches that try to improve the Visitor pattern and
moves on to the genesis of the Visitor Library.

9.1  VISITOR PATTERN

The Visitor pattern is a well-known and frequently used design pattern, especially in
the domain of compiler construction. Let’s take a closer look at the goals it tries to
satisfy and also its drawbacks.

Pattern description

The Visitor pattern “represent[s] an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without changing the classes
of the elements on which it operates”.

Here is the class diagram of a typical application relying on the Visitor
pattern:

See “A componentiz-
able pattern: Visi-
tor”,  5.2, page 68.

See “From Visitor to 
Walkabout and Run-
about”,  page 56.

[Gamma 1995], p 
331.
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The idea of the Visitor pattern is to be able to “plug” some functionalities to an
existing class hierarchy without modifying those classes. In fact, the Visitor pattern
is not completely transparent because all ELEMENT classes need to be augmented by
one feature accept. It will be deferred in the parent class ELEMENT and effected in
its descendants. For example, class ELEMENT_A is likely to implement it as follows:

The class VISITOR lists as many visit_* features — usually procedures — as there are
concrete descendants of class ELEMENT. Typically deferred in the class VISITOR
itself, the visit_* features are effected in the concrete visitors. Each visitor will
implement these features to provide its own functionality. In the example of a library
where users can borrow BOOKs and VIDEO_RECORDERs, we may define a
MAINTENANCE_VISITOR and a DISPLAY_VISITOR. The former will implement
maintenance functionalities in the procedures visit_book and visit_video_recorder
pictured below; the latter will effect these features to display information about the
borrowable items.

The strong point of the Visitor pattern is that it is very easy to add new
functionalities to a class hierarchy: you can simply write a new descendant of class
VISITOR to be able to traverse the ELEMENT structure in a different way and perform
some other task. No need to change the ELEMENT classes (or the BORROWABLE
classes in the book library example) to take this new VISITOR into account.

The Visitor pattern implements a “double-dispatch” mechanism:

• Calling the accept procedure will resolve the type of the current element;

class

ELEMENT_A

inherit

ELEMENT
...
feature -- Basic operation

accept (a_visitor: VISITOR) is
-- Accept a_visitor. (Select appropriate visit_* feature of a_visitor
-- depending on the type of the current element.)

do
a_visitor.visit_element_a (Current)

end
...
end

For more details 
about the role of the 
accept feature, see 
section 5.2, page 68, 
and the note on dou-
ble-dispatch at the 
bottom of this page.
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accept feature 
in a concrete 
element class

+ 
BOOK 

+ 
VIDEO_RECORDER 

* 
VISITOR 

+ 
MAINTENANCE_

VISITOR

+ 
DISPLAY_
VISITOR

accept* 

accept+ accept+ 

visit_book* 

visit_book+ visit_book+ 
visit_video_recorder+ visit_video_recorder+

visit_video_recorder* 

* 
BORROWABLE

Using the Vis-
itor pattern in 
the book 
library exam-
ple



§9.2  TOWARDS THE VISITOR LIBRARY 133
• As a result of dynamic binding, the applicable version of accept gets executed,
which will call the appropriate visit_* feature on the given VISITOR.

Drawbacks

Although adequate and essential in several cases, the Visitor pattern is not suitable
in all situations. Robert C. Martin says: “The VISITOR patterns are seductive. It is
easy to get carried away with them. Use them when they help, but maintain a healthy
skepticism about their necessity. Often, something that can be solved with a
VISITOR, can also be solved by something simpler”.

One of the reasons why the Visitor pattern should be taken with care is that
the resulting designs usually lack flexibility and extendibility. If it is easy to add new
functionalities by adding new visitor classes, it is on the contrary very difficult to
add new elements to a class hierarchy. Indeed, it implies modifying all visitor classes
to take this new kind of element into account. Palsberg et al. explain it very nicely:
“A basic assumption of the Visitor pattern is that one knows the classes of all objects
to be visited. When the class structure changes, the visitors must be rewritten”.

Another point is that writing the accept features in all element classes is likely
to become tedious if the class hierarchy is large because the implementations will be
similar.

Related approaches

As mentioned earlier, the Visitor pattern is a case of “double-dispatch”. Therefore it
is natively supported by languages that allow multiple (at least double) dispatch, for
example the Common Lisp Object System (CLOS). For object-oriented languages
like Eiffel, Smalltalk or C++, it is not the case. Applying the Visitor pattern means
arranging a software architecture to resemble the diagrams given before.

There have been some attempts at simplifying the Visitor pattern, in particular
by removing the need for accept features. It is the case of the Walkabout and
Runabout variants presented in chapter 4 about previous work. They exploit the
reflection mechanism of the Java programming language to select the appropriate
visit_* feature and avoid accept procedures. Ron K. Cytron describes another similar
solution in Java using reflection. (It is called “Reflective Visitor”.)

Starting from this idea, I decided to apply the limited reflection capabilities of
Eiffel to simplify the original Visitor pattern and — not forgetting the ultimate goal
— transform it into a reusable component.

9.2  TOWARDS THE VISITOR LIBRARY
Before describing the final Visitor Library, this section explains how the idea came
up and describes the refinement steps that led to the final design.

First attempt: Reflection

The idea of the Visitor pattern is to introduce a new VISITOR class whenever one
needs to add a new functionality to an existing hierarchy. What about having a
reusable VISITOR class? Genericity seems a good candidate. We could have a class
VISITOR [G] and apply it to any kind of element; for example a VISITOR
[BORROWABLE] or a VISITOR [BOOK] or a VISITOR [VIDEO_RECORDER].

But genericity is not enough: we want to apply different kinds of actions to
our elements. For example, we want to add maintenance or display facilities to our
BORROWABLE elements. A good way to represent these actions is to use agents. 

[Martin 2002c], p 
557. (Martin identi-
fies several flavors of 
Visitor patterns; 
hence the use of the 
plural here.)

[Palsberg 1998].

[Palsberg 1998] and 
[Grothoff 2003].

[Cytron-Web].

Agents encapsulate 
features ready to be 
called. See [Dubois 
1999] and chapter 25 
of [Meyer 200?b].
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Besides, the VISITOR class should be easy to use and remove the need for
accept features in the classes to be visited. It means that the generic class VISITOR [G]
must provide a way to associate the appropriate action (represented as an agent) with
the generating type of an object. Thus, I decided to store possible actions in a list of
pairs [action, type name] and to use the class INTERNAL from ISE EiffelBase to
discriminate between types and call the appropriate action. The class INTERNAL
provides limited reflection capabilities. The features of interest here are type_
conforms_to, which says whether two types conform to each other based on their type
identifiers, and dynamic_type_from_string, which returns the identifier corresponding
to the dynamic type of the given string.

The class INTERNAL is specific to ISE Eiffel. It is not part of the Eiffel Library Kernel
Standard. Therefore code using this class may not be portable on other Eiffel compilers.

The table below shows my resulting class VISITOR [G], which uses the class
INTERNAL to select the appropriate action to be performed depending on the
dynamic type of the given element. The actions are represented as agents — more
precisely PROCEDUREs — stored in a LINKED_LIST.
class

VISITOR [G]
create

make
feature {NONE} -- Initialization

make is
-- Initialize actions.

do
create actions.make

end
feature -- Visitor

visit (an_element: G) is
-- Visit an_element. (Select the appropriate action
-- depending on an_element.)

require
an_element_not_void: an_element /= Void

local
internal: INTERNAL
a_type_id: INTEGER
a_generating_type: STRING
an_action: PROCEDURE [ANY, TUPLE [G]]

do
create internal
a_type_id := internal.dynamic_type (an_element)
from actions.start until actions.after or an_action /= Void loop

a_generating_type ?= actions.item.item (2)
if a_generating_type /= Void and then

internal.type_conforms_to (a_type_id, 
internal.dynamic_type_from_string (a_generating_type))

then
an_action ?= actions.item.item (1)

end
actions.forth

end
if an_action /= Void then

an_action.call ([an_element])
end

end

[EiffelBase-Web].

[ELKS 1995].

First attempt 
at building a 
reusable Visi-
tor compo-
nent using 
limited reflec-
tion and 
agents

A traditional pattern 
implementation does 
not have such a loop 
to select the appro-
priate action. This is 
an overhead of the 
library version.

Relying on strings is 
not type-safe; this is 
one of the reasons 
why this solution was 
not retained. (The 
final version is pre-
sented on page 137.).
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If the dynamic type of the argument an_element given to the feature visit conforms to
several types stored in the hash table, it is the first encountered version that will be
selected and the corresponding action executed. Thus, the client needs to be careful
at inserting the actions in the right order: the most specialized first, the least
specialized afterwards.

For example, suppose we have ELEMENT_A inheriting from ELEMENT as it
was the case in an earlier diagram and an action registered for ELEMENT and another
one for ELEMENT_A. The action corresponding to ELEMENT_A should be registered
before the one for ELEMENT to make sure that it is indeed the action corresponding
to ELEMENT_A that will be executed when giving an object of type ELEMENT_A to
the visit feature.

Another possibility would be to let the users enter the actions in any order and
have the Visitor Library take care of sorting the actions by generating type from the
most specific to the least specific type. However, such a scheme would not be type-
safe with this first version of the library because of the use of strings. The next
section shows how to make the library type-safe; the subsequent one presents the
final design of the Visitor Library, which frees clients from the burden of sorting
actions.

Another try: Linear traversal of actions

As a second design iteration, I just kept the list of actions without the corresponding
type names. Indeed, the class PROCEDURE offers a feature valid_operands that
permits to discriminate between actions that are applicable or not to a given element.

feature -- Access

actions: LINKED_LIST [TUPLE [PROCEDURE [ANY, TUPLE [G]], STRING]]
-- Actions to be performed depending on the element
-- First element: Action to be performed (visit_* procedure)
-- Second element: Actual generic parameter's generating type

feature -- Element change

extend (an_action: PROCEDURE [ANY, TUPLE [G]]; a_generating_type: STRING) is
-- Extend actions with a pair [an_action, a_generating_type].

require
an_action_not_void: an_action /= Void
not_has_action: not actions.has ([an_action, a_generating_type])
a_generating_type_not_void: a_generating_type /= Void
a_generating_type_not_empty: not a_generating_type.is_empty

do
actions.extend ([an_action, a_generating_type])

ensure
one_more: actions.count = old actions.count + 1
inserted: actions.last.is_equal ([an_action, a_generating_type])

end

invariant

actions_not_void: actions /= Void
no_void_action: not actions.has (Void)

end

Filling the list of 
actions is another 
overhead of the 
library version.

The first encountered 
version should also 
be the most specific 
one because we 
require the clients to 
enter the most spe-
cialized actions first.
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Instead of relying on the class INTERNAL to select the action:

the library is now using the feature valid_operands of class PROCEDURE:

Hence no need to use the class INTERNAL anymore. The client simply needs to enter
all possible actions in the right order (it is still a linear traversal) and the
implementation of visit uses valid_operands to select the appropriate action.

This new approach has the advantages of simplicity and type safety. Indeed,
the use of feature valid_operands ensures that the executed action has the right
signature. Besides, it avoids spelling mistakes when entering the type names that can
be hard to detect but would make the system not to work. (An action associated with
a type “STING” is unlikely to be used often whereas the same action coupled with
type “STRING” will probably be executed.)

Here is the text of this second version of class VISITOR [G]:

if internal.type_conforms_to (a_type_id, 
internal.dynamic_type_from_string (a_generating_type)) then

...
end

if actions.item.valid_operands (args) then
...

end

class

VISITOR [G]

create

make

feature {NONE} -- Initialization

make is
-- Initialize actions.

do
create {LINKED_LIST [PROCEDURE [ANY, TUPLE [G]]]}

actions.make
end

feature -- Visitor

visit (an_element: G) is
-- Visit an_element. (Select the action applicable to an_element.)

require
an_element_not_void: an_element /= Void

local
args: TUPLE [G]

do
args := [an_element]
from

actions.start
until

actions.after or else actions.item.valid_operands (args)
loop

actions.forth
end
if not actions.after then

actions.item.call (args)
end

end

Selection of 
the appropri-
ate action 
using reflec-
tion
Selection of 
the appropri-
ate action 
using valid_
operands

Second 
attempt at 
building a 
reusable Visi-
tor compo-
nent with a 
linear tra-
versal of 
actions.
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The above implementation of class VISITOR [G] expects the clients to insert the
actions applicable to the most specific types before the ones to be executed on less
specialized types. This is an overhead for the clients compared to a traditional
implementation of the Visitor pattern. The next section shows how to remove this
burden.

Final version: With a topological sort of actions and a cache

The final version of the Visitor Library still uses a list of possible actions, but it
makes sure that the actions are properly sorted. As a consequence, the client can be
sure that the selected action is the most appropriate one. Furthermore, the
implementation uses a cache for better performance. When visit gets called, the list
of actions is traversed linearly only if no associated action was initially found in a
cache.

Actions are sorted topologically when the client inserts the actions into the
visitor by calling extend (to insert just one action) or append (to insert several actions
at a time). The relation used for the topological sort is the conformance of the
dynamic type of the actions’ open operands (i.e. the dynamic type of the objects on
which the agents will be applied).

The conformance tests rely on a couple of queries from class INTERNAL. But
the system is still type-safe because these queries are only used to ask the
conformance between two types known by the system. Therefore it is sure that they
will return a correct result.

The interface of the final version of the Visitor Library is quasi-similar to the
interface of the previous version (without topological sort of actions). There are only
two changes: first, there is one more feature, append, which enables adding several
actions to the visitor at a time; second, the contracts of extend are slightly different
than in the previous version of the library.

feature -- Access

actions: LIST [PROCEDURE [ANY, TUPLE [G]]]
-- Actions to be performed depending on the element

feature -- Element change

extend (an_action: PROCEDURE [ANY, TUPLE [G]]) is
-- Extend actions with an_action.

require
an_action_not_void: an_action /= Void

do
actions.extend (an_action)

ensure
one_more: actions.count = old actions.count + 1
inserted: actions.last = an_action 

end

invariant

actions_not_void: actions /= Void
no_void_action: not actions.has (Void)

end
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Here is the interface of features extend and append of the final Visitor Library:

The complete source code of the Visitor Library is available for download from
[Arnout-Web] with a “Readme.txt” file describing in full detail the implementation
of the topological sort in the Visitor Library.

I applied the Visitor Library to the Gobo Eiffel Lint tool, which makes
extensive use of the Visitor pattern. It simplified parts of the code: some classes were
not needed anymore; all “accept” features could also be removed; hence a significant
gain in terms of lines of code. The next section reports about this case study.

9.3  GOBO EIFFEL LINT WITH THE VISITOR LIBRARY

The Visitor Library is simple; it consists of only one generic class, VISITOR [G], and
avoids the need for “accept” features as in the original pattern. The clients register
all possible actions to be executed; the query valid_operands of class PROCEDURE
permits to discriminate between actions that are applicable or not to a given element.

Even though the approach is appealing and works on simple examples, it is
important to make sure that it also extends to larger projects. Therefore, I decided to
apply it to a real-world software system to check the usability and usefulness of the
library. I chose the Gobo Eiffel Lint tool as workbench because it relies extensively
on the Visitor pattern.

This section gives more details about the experiment and reports the
(encouraging) results.

Case study

After giving an overview of Gobo Eiffel Lint, this section justifies the choice of
gelint for this case study and gives the objectives when starting this study. Then, it
describes the changes I had to make in order to use the Visitor Library in Gobo
Eiffel Lint.

class interface

VISITOR [G]
...
feature -- Element change

extend (an_action: PROCEDURE [ANY, TUPLE [G]])
-- Extend actions with an_action.

require
an_action_not_void: an_action /= Void

ensure
has_an_action: actions.has (an_action)

append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [G]]]) is
-- Append actions in some_actions to the end of the actions list.

require
some_actions_not_void: some_actions /= Void
no_void_action: not some_actions.has (Void)

...
end

Interface of 
features to 
enter actions 
to the visitor 
(final version 
of the Visitor 
Library)

[Bezault 2003].

See “Final version: 
With a topological 
sort of actions and a 
cache”,  page 137.

[Bezault 2003].
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What is Gobo Eiffel Lint?

Gobo Eiffel Lint (gelint) is an Eiffel code analyzer. Like a compiler, it is able to
check the validity of an Eiffel program and to report errors about it. Indeed, gelint
provides all the functionalities of the ISE Eiffel compiler from degree 6 to degree 3:
• Gelint reads an Ace file as input and looks through the system clusters to map

the Eiffel class names with the corresponding file names (equivalent to ISE
degree 6).

• Then, gelint parses the Eiffel classes (equivalent to ISE degree 5).
• For each class, gelint generates feature tables including both immediate and

inherited features (equivalent to ISE degree 4).
• Gelint analyzes the feature implementation, including contracts (equivalent to

ISE degree 3).
Gobo Eiffel Lint can also point out validity errors and useful warnings that a
compiler would not judge necessary to report (for performance reasons for example).
Thus, it can help the Eiffel programmers write better code.

Gelint also permits to experiment with possible Eiffel extensions that are not
implemented in Eiffel compiler yet to evaluate their impact on existing code. It can
also detect interoperability problems between different Eiffel compilers.

Beyond the gelint tool, it is important to point out that its code relies on a set
of high-quality Eiffel libraries, which can be used to develop many kinds of
programs taking Eiffel code as input. For example, an Eiffel pretty-printer, a flat-
short form generator, and even an interpreter or an Eiffel compiler. All these tools
start by generating an abstract syntax tree (AST) and then traverse it using the
Visitor pattern.

Why Gobo Eiffel Lint?

I decided to assess the quality and usefulness on the Visitor Library on the Gobo
Eiffel Lint tool for several reasons:
• It makes extensive use of the Visitor pattern, which is the necessary condition

to be able to apply the Visitor Library.
• It is open-source, which facilitates modifying the code to take the Visitor

Library into account.
• It is entirely written in Eiffel.
• It is of topmost quality. The Gobo Eiffel libraries and tools are well-known in

the Eiffel community for their high quality standard. (The code fully respects
the Eiffel style guidelines; it includes comments and many contracts.)

• It has a “proper” size: not too small (to have valuable benchmarks) but not to
big (to be able to master the whole code in a reasonable amount of time).

Objectives

The goal was to assess the usability and usefulness of the Visitor Library by
modifying the source code of Gobo Eiffel Lint to replace its Visitor pattern
implementation by calls to my reusable component.

Then, I wanted to test in particular, the speed overhead of using the Visitor
Library rather than a traditional pattern implementation (due to the list traversal to
discriminate between applicable features) and the gain in terms of number of classes
and number of features in the system.

[Bezault 2003].

ISE Eiffel compiler 
degrees are 
described in [Eiffel-
Studio-Web].

Flat-short form: View 
of an Eiffel class 
including both imme-
diate and inherited 
features.
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“Mise en oeuvre”

Modifying Gobo Eiffel Lint was not easy. First, I had to get familiar with the code
of gelint but also of the libraries it uses to find the different places where I should
change code. The rest of this section describes the exact changes I had to make.

Before, we need to say a few more words about the implementation of gelint.
Gobo Eiffel Lint is based on AST classes that are “passive” (they are just data) and
on “processors” that traverse the AST (using the Visitor pattern) to perform the
different steps of a compilation. The AST classes do not know how to compile
themselves. This design with “processors” enables developing reusable library
classes. Anybody can program his own processor; no need to write descendants of
the AST classes to add new routines (which would not be easy anyway given the
strong interdependencies between the AST classes).

All “processors” inherit from a class ET_AST_PROCESSOR, which declares a
set of process_* features. The class ET_AST_NULL_PROCESSOR inherits from ET_
AST_PROCESSOR and effects all process_* features with an empty body (“do...end”).
This class is an implementation trick: other processors inherit from ET_AST_NULL_
PROCESSOR rather than ET_AST_PROCESSOR to avoid having to effect all deferred
process_* features; they just redefine some of them to give a meaningful
implementation.

One of these processors is ET_INSTRUCTION_CHECKER, which checks the
validity of a feature’s instructions.

Here are the changes I had to make in order to use the Visitor Library.
• First, I added an attribute visitor in class ET_INSTRUCTION_CHECKER:

(It is a VISITOR of ET_INSTRUCTION because this processor visits instructions
only.)

• I modified the creation procedure make of ET_INSTRUCTION_CHECKER to
create the visitor and register agents corresponding to the process_* features
redefined in the class:

visitor: VISITOR [ET_INSTRUCTION]

make (a_universe: like universe) is
-- Create a new instruction validity checker.

do
...
create visitor.make
visitor.append (<<

agent process_static_call_instruction,
agent process_call_instruction,
agent process_semicolon_symbol,
agent process_assignment,
agent process_assignment_attempt,
agent process_check_instruction,
agent process_debug_instruction,
agent process_if_instruction,
agent process_inspect_instruction,
agent process_loop_instruction,
agent process_precursor_instruction,
agent process_retry_instruction,
agent process_bang_instruction,
agent process_create_instruction

>>)
end

Declaration 
of the visitor

Creation and 
initialization 
of the visitor
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The action features (process_*) can be entered in any order. The Visitor Library
takes care of sorting them to optimize the retrieval of the appropriate action
when the procedure visit (of class VISITOR [G]) gets called.

• Then, in the core procedure check_instructions_validity of the processor, I
replaced expressions like:

by:

• Then, I did the same kind of changes for all processors (all descendants of ET_
AST_PROCESSOR).

• Finally, I “cleaned up” the AST classes (descendants of ET_AST_NODE): I
removed all process routines, which were not needed anymore. Indeed, they
were used to find the appropriate process_* feature depending on the given
AST node, but this is done by the Visitor Library now (more precisely by the
procedure visit of class VISITOR).

Benchmarks

After changing the code of Gobo Eiffel Lint to make it use the Visitor Library rather
than a direct Visitor pattern implementation, I did some benchmarks with the
resulting executable.

First, I checked that the original gelint and my modified version work the
same way: they report the same errors and warnings, which is reassuring! Then, I
measured the number of lines of code, number of classes, and number of features in
both systems. I also measured the execution times to estimate the performance
overhead of using the Visitor Library. I did the same benchmarks twice:

• I run gelint — the original version and the modified one — on the code of
(the original) gelint itself (meaning about 700 classes).

• I asked Éric Bezault (the author of Gobo Eiffel Lint) to run gelint — his
original tool and my new version — on the source code of his company AXA
Rosenberg (meaning more than 9800 classes).

Being able to test my modified version of gelint on a large-scale system was a great
opportunity. It gives confidence into my benchmarks and allows drawing conclusions.

All measures were taken on a finalized (optimized) system compiled with ISE
Eiffel 5.5.0308 with assertion-monitoring off (to get the best possible performance).

Gelint on gelint itself

This first series of tests was on a Pentium IV machine, 1.8 GHz, with 512MB of
RAM.

First, I launched the original gelint on its own source code and did some
measurements (number of lines of code, number of classes, number of features,
executable size, etc.). Then, I launched my modified version using the Visitor
Library on the same source code (of the original gelint) and did the same
measurements again.

a_compound.item (i).process (Current)

visitor.visit (a_compound.item (i))

The previous section 
(starting page 137) 
explains how actions 
are sorted and 
retrieved.

Call to visitor

[AXA Rosenberg-
Web].
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The following table gives the results on the two versions of gelint:

I mentioned at the beginning of the chapter that the Visitor Library removes the need
for “accept” features as in a traditional pattern implementation. (In fact, they are
called “process” in gelint.) These figures confirm the reduced number of features; it
has two reasons:
• There are no more accept features in the AST classes.
• There are no more visit_* features with an empty body in the processor

classes; these cases are handled by associating no action with those types
when filling the visitor.

Hence a reduced number of lines of code. The supplementary cluster corresponds to
the Visitor Library cluster and the supplementary class corresponds to the class
VISITOR [G].

Then, I compared the performance of the two versions: the original gelint and
the modified version of gelint using the Visitor Library. The following table reports
the execution times by “degree” (corresponding to the compilation passes of the ISE
Eiffel compiler):

These figures show that the two versions of Gobo Eiffel Lint behave the same for
degrees 6 and 5. This is normal because visitors do not intervene during these
degrees. However, the modified version relying on the Visitor Library is about two
times slower for the degree 4 and one and a half times slower for the degree 3 where
visitors come into play.

The performance overhead corresponds to the time spent in the linear traversal
of actions registered to the visitor whenever the feature visit is called to select the
action applicable to the given element. This overhead is not as big as expected
thanks to the use of a caching mechanism.

Metrics Original Modified Difference 
(in value)

Difference 
(%)

Lines of code 198 263 195 512 - 2751 -1.4 %

Lines of code in cluster with 
AST and processor classes

112 866 109 855 - 3011 -2.7 %

Classes 717 718 + 1 +0.1 %

Classes in cluster with AST 
and processor classes

362 362 +/- 0 +/-0 %

Features 67 382 63 421 - 3961 -5.9 %

Features in cluster with 
AST and processor classes

38 248 33 884 - 4364 -11.4 %

Clusters 109 110 + 1 +0.9 %

Executable size 4 104 KB 3660 KB - 444 KB -10.8 %

Degrees Original gelint Modified gelint using the 
Visitor Library

Degree 6 1 s 1 s

Degree 5 8 s 8 s

Degree 4 1 s 2 s

Degree 3 8 s 12 s

Code statistics 
of the original 
and modified 
version of 
gelint

See “What is Gobo 
Eiffel Lint?”,  page 
139 for a description 
of each “degree”.

Execution 
time of the 
original gelint 
and of the 
modified 
gelint using 
the Visitor 
Library
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The following table compares the execution times on degrees 4 and 3 and the
executable size in both configurations (with the original gelint and with the modified
version using the Visitor Library):

If the performance difference is non-negligible, it is not one hundred times slower
like the Walkabout variant of the Visitor pattern described by Palsberg et al. A ratio
of less than two makes the Visitor Library usable in practice. (It is comparable to the
performance of Runabout described by Grothoff.) Besides, the size of the Gobo
Eiffel Lint executable is smaller when using the Visitor Library, which is an
advantage.

Gelint on a large-scale system

This second series of tests was on a Pentium IV machine, 2.4 GHz, with 1GB of
RAM.

To assess the truthfulness of the previous benchmarks, I asked Éric Bezault to
measure the execution time of the various versions of gelint on the source code of
the research center of his company (AXA Rosenberg) comprising 9889 Eiffel
classes. The results are reported below:

The following table compares the executable sizes and the execution times at
degrees 4 and 3:

The performance overhead at degrees 4 and 3 is smaller than in the previous
benchmarks (gelint executed on gelint itself). The difference in terms of number of
classes (9889 instead of 717) does not imply a dramatic increase of the execution
time. On the contrary, the differences at degrees 4 and 3 (+30% and +44%) are even
smaller than before (+100% and +50%).

Degrees Original Modified Difference     
(in value)

Difference  
(%)

Executable 
size

4 104 KB 3 660 KB - 444 KB - 11 %

Degree 4 1 s 2 s +1 s +100 %

Degree 3 8 s 12 s +4 s +50 %

Degrees Original gelint Modified gelint using the 
Visitor Library

Executable 
size

4 104 KB 3660 KB

Degree 6 6 s 6 s

Degree 5 51 s 51 s

Degree 4 23 s 30 s

Degree 3 25 s 36 s

Degrees Original 
gelint

Modified gelint using 
the Visitor Library

Difference 
(in value)

Difference 
(%)

Executable 
size

4104 KB 3660 KB - 444 KB -11 %

Degree 4 23 s 30 s +7 s +30 %

Degree 3 25 s 36 s +11 s +44 %

Comparison 
of executable 
size and exe-
cution time

[Palsberg 1998].

[Grothoff 2003] 
explains that the Run-
about is “slower by 
less than a factor of 
two compared to visi-
tors”.

[AXA Rosenberg-
Web].

Executable 
size and exe-
cution time of 
the original 
gelint and of 
the modified 
gelint using 
the Visitor 
Library

Comparison 
of executable 
size and exe-
cution time
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These results confirm the usability of the Visitor Library on a real-world
large-scale system.

9.4  COMPONENTIZATION OUTCOME
The componentization of the Visitor pattern, which resulted in the development of
the Visitor Library, is a success because it meets the componentizability quality
criteria established in section 6.1:
• Completeness: The Visitor Library covers all cases described in the original

Visitor pattern.
• Usefulness: The Visitor Library is useful for several reasons. First, it provides

a reusable solution to the Visitor pattern; no need to implement a double
dispatch mechanism each time one wants to use the pattern. Second, it is easy
to use by clients: it removes the need for “accept” features and clients can
insert the possible actions in any order. Third, it makes it easier to have no
action on certain types: no need to write an “accept” feature with an empty
body; one simply does not enter any action for that particular type.

• Faithfulness: The Visitor Library is notably different from a traditional
implementation of the Visitor pattern. It does not implement a double dispatch
mechanism. Instead, it represents actions as agents stored in a sorted list and
selects the applicable action through a linear traversal of the list (or a cache
access if an element of the same type has already been passed to the feature
visit). A drawback of using agents is that client classes may be bigger (because
they need to define the actions, which would have been in a visitor class in a
traditional Visitor pattern implementation). However, the case study on the
Gobo Eiffel Lint tool has shown that using the Visitor Library yields fewer
lines of code in total thanks to the removal of the “accept” features. Despite
its original architecture, the Visitor Library fully satisfies the intent of the
Visitor pattern and keeps the same spirit. Therefore I consider the Visitor
Library as being a faithful componentized version of the Visitor pattern.

• Type-safety: The Visitor Library relies on unconstrained genericity and agents.
Both mechanisms are type-safe in Eiffel. What may happen is that no action
is available for a given type, and calling visit simply executes an empty body
(as if visit were of the form visit is do end). It was a conscious choice when
designing the library to allow such cases. (This proved useful when applying
the Visitor Library to Gobo Eiffel Lint.) Another possibility would have been
to add an catch-all agent (associated to a feature displaying an error message
or throwing an exception for example) for any type without an associated
action.

• Performance: The case study described in 9.3 showed that using the Visitor
Library implies a performance overhead compared to a traditional
implementation of the Visitor pattern. However the cost on performance is
quite low (less than twice as slow in the worst case) compared to the benefits
of the library (reusability, less code, fewer classes, fewer features, etc.).

• Extended applicability: The Visitor Library does not cover more cases than
the original Visitor pattern.

9.5  CHAPTER SUMMARY
• The Visitor pattern provides a way to add new functionalities to an existing

class hierarchy without modifying those classes. It is widely used in the
domain of compiler construction.

[Gamma 1995], p 
331-344.
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• The Visitor pattern is appealing but it also has drawbacks:
• It becomes hard to add new elements to a class hierarchy (it involves a

lot of changes), hence a lack of flexibility and extensibility;
• It can become painful to equip a class hierarchy to support the Visitor

pattern (the required accept features all look quite similar).
• The Visitor Library addresses the same issues as the original Visitor pattern

but it is a reusable solution and makes the use of a “visitor” easier. (No need
to change the existing class hierarchy to add accept features anymore.)

• The Visitor Library strongly relies on (unconstrained) genericity and agents.
It also uses a few queries of class INTERNAL from EiffelBase and a
topological sorter provided by the Gobo Eiffel Data Structure Library.

• I applied the Visitor Library on a real-world system called Gobo Eiffel Lint.
Gobo Eiffel Lint (gelint) is an Eiffel code analyzer capable of reporting
system validity errors and warnings. It provides the same functionalities as
degrees 6 to 3 of the ISE Eiffel compiler. For this, it makes extensive use of
the Visitor pattern.

• Gelint relies on a set of high-quality Eiffel libraries.
• Gelint uses “processors” to perform computations on AST nodes. I changed

these processor classes to use the Visitor Library. It simplified parts of the
code: some features were not needed anymore; all “accept” features (called
“process” in gelint) could also be removed; hence a significant gain in terms
of lines of code.

• The only penalty was performance due to the search of the applicable action,
which is a combination of a linear traversal with a cache. But the ratio was
not like one hundred times slower as Palsberg et al. reported for the
Walkabout pattern; it was less than twice as slow as the original
implementation with the Visitor pattern.

• Running the modified version of gelint on a large-scale system of about
10,000 Eiffel classes worked fine, and performance penalty was even better
than on a much smaller system.

• These benchmarks show that the Visitor Library is usable and useful in
practice.

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].
[Bezault 2001a].

[Palsberg 1998].
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10   
Composite
Fully componentizable
The previous chapter showed that genericity and agents were the keys to the
successful componentization of the Visitor pattern. In the case of the Composite
pattern, genericity appeared to be enough to transform the pattern into a reusable
Eiffel component.

The present chapter explains how to express the Composite pattern in Eiffel
and highlights the limitations of this approach. Then, it goes one step further and
introduces the Composite Library, which addresses the same needs as the design
pattern but is reusable. After illustrating how to use the library on an example, it also
compares the strengths and weaknesses of the library compared to the original
pattern.

10.1  COMPOSITE PATTERN

The Composite pattern is one of the seven “structural” patterns identified by
[Gamma 1995]. It describes how to build composites out of individual objects by
using a tree hierarchy and accessing both nodes and leaves in the same way. Let’s
take a closer look at the pattern’s intent, strengths, and weaknesses.

Pattern description

The Composite pattern describes a way to “compose objects into tree structures to
represent part-whole hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly”.

A design following the Composite pattern can be represented as a tree: a
composition of objects (a “composite”) is a tree node and its leaves are the
individual objects of which it is composed.

[Gamma 1995] also insists on transparency: a client should not have to know
whether an object is made of multiple parts; both “leaves” and “composites” are
components and should provide the same services to their clients. (This is similar to
the Uniform Access Principle, which says that a client should not need to know,
when calling a feature, whether it is implemented as an attribute or as a routine.)

Nevertheless, combining a tree structure with the transparency dimension
raises the question of the proper location for the traversal features of a tree: in the
parent class COMPONENT or in the COMPOSITE class only?

See chapter 9.
[Gamma 1995], p 
163-173.

[Gamma 1995], p 
163.

[Meyer 1997], p 57.
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• If we favor transparency, these services should be part of the parent class
COMPONENT to enable clients to handle a COMPOSITE and a LEAF in the
same way, seeing them just as COMPONENTs; they may not even know about
these descendants.

• If we think in an object-oriented way and see classes as the representation of
an Abstract Data Type (ADT) with features defining services available on that
class and attributes representing properties of the class (what’s sometimes
referred as a “has a” relationship), it no longer makes sense to define routines
such as add, remove, or child for a LEAF. Hence the idea of moving those to the
COMPOSITE class.

Design Patterns mentions this conflict between transparency and safety. The rest
of the discussion will state which criterion it favors in each case.

Implementation

The Composite pattern involves three classes: COMPOSITE representing complex
structures made of several individual pieces, LEAF representing an individual
element, and COMPONENT describing a common interface: the services that clients
will see and eventually call.

Both transparency and safety versions of the Composite pattern have the same
hierarchical structure; the difference lies in the feature definitions, and more
precisely where the features are actually defined. The class COMPONENT always
provides a feature do_something, which is the service clients actually need and use
the component for. Then, depending on the version — transparency versus safety —
the features parts (listing the individual parts of a composite), has (to know whether
a composite contains a particular part), i_th (to access the ith part of the composite),
add (to add a part to the composite), remove (to remove a part from the composite),
and others, are either in the COMPONENT class or in the COMPOSITE class. 

Design Patterns only introduces a feature to add a new part to a composite (Add) and
another one to remove an existing part from a composite (Remove). The version shown
here includes two additional queries has and count for contract support — they are used
in the pre- and postconditions of features add and remove. Besides, the feature names
introduced by Gamma et al. are slightly different from the ones used here. In particular,
the feature do_something is called Operation; the name was changed to highlight the
Command-Query separation principle of the Eiffel method. The i_th query was originally
named Child; it was changed to use similar terminology as in the CONTAINER classes of
the Kernel Eiffel library (EiffelBase)

The following picture shows the classes and features involved in an
implementation of the Composite pattern favoring transparency:

See chapter 6 of 
[Meyer 1997] about 
Abstract Data Types.

[Gamma 1995], p 
167.

[Meyer 1997], p 751.

[EiffelBase-Web].
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Here is the variant favoring safety:

The core of class COMPONENT is its routine do_something: the service offered to
clients. Other features are basically just for implementation; they deal with the
traversal of component parts in case the component is in fact a “composite”:
• The attribute parts stores the list of component parts. The query i_th gives

access to the ith element of the composite component. A client can add or
remove some parts by using the features add and remove, which updates the
list of parts accordingly. 

• To ensure validity and safety the class COMPONENT exposes a feature is_
composite to enable clients to check whether a certain component is indeed a
composite before adding parts to it or removing existing parts; this query is
used in the precondition of add and remove. 

• The queries count — indicating the number of component parts — and has —
testing whether the component contains a certain part — were introduced for
the same validity and safety purposes; they are also used in the contracts of
add and remove.

To reinforce safety and prevent clients from calling the traversal features on a LEAF
— which does not have multiple parts — their export status is restricted to NONE
(meaning no client access) and only the features that are relevant for a LEAF
component — do_something, is_composite — are kept “public”. 

The “safety variant” of class LEAF does not need these extra adaptation
clauses; all features dealing with tree traversal are moved to the class COMPOSITE.
The class COMPONENT only keeps the routine do_something, which is the reason
why clients use it.

In the two variants shown here (favoring transparency or safety), a
COMPONENT does not know about its parent. This approach allows an object to be
part of different composites. Implementing a variant where the COMPONENT knows
its parent is straightforward, it suffices to extend the class COMPONENT with an
attribute parent and the corresponding setter set_parent, and take that parent into
account in the contracts and the implementation of features such as add and remove.

Flaws of the approach

The approach presented so far — whether the transparency or the safety variant —
is not satisfactory because it is not reusable. A client programmer who wants to turn
a class MY_COMPOSITE into a composite made of parts of type MY_LEAF must:
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• Create a descendant MY_COMPONENT of class COMPONENT;

• Make MY_COMPOSITE inherit from COMPOSITE, and MY_LEAF inherit from
LEAF (or from COMPONENT).

• Redefine the query i_th to return an instance of type MY_COMPONENT —
instead of COMPONENT;

All this causes needless code duplication.

The clue to transform this implementation into a reusable framework is
genericity. Remember the intent of the Composite pattern: it explains that a
“composite” should have a tree structure. As pointed out by Jézéquel et al., it
becomes “natural to represent it as a generic class with a parent and a set of children”.

10.2  COMPOSITE LIBRARY

Using genericity makes it possible to componentize the Composite pattern. This
section presents the resulting Composite Library. Like the Composite pattern, the
Composite Library is available in two variants: a “transparency version” and a
“safety version”.

Transparency version

The class diagram of the transparency version of the Composite Library appears
below. (Only classes COMPONENT [G] and COMPOSITE [G] are part of the library;
class LEAF just shows how to use it.)

The core of class COMPONENT [G] is the procedure do_something, which is the
service offered to clients. This routine is deferred in class COMPONENT [G] and
effected in the descendant class COMPOSITE [G].

If we compare this library with the pattern implementation described in the
previous section, we see that genericity removes the need to write descendants of
class COMPONENT and descendants of class COMPOSITE (called MY_COMPONENT
and MY_COMPOSITE in Flaws of the approach). Clients of the library simply need
to provide their own class LEAF.

[Jézéquel 1999], p 
100.
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The class COMPONENT [G] presented here does not keep a reference to the
component’s parent. The Composite Library also provides a version with parent,
which is available for download from [Arnout-Web]. I chose to present the version
without parent because it is more flexible. As mentioned in the pattern description,
it allows an object to be part of several composites. This property is used by the
Flyweight Library, which will be described in the next chapter.

Class COMPONENT [G] also exposes traversal features like start, item, i_th,
forth, and so on. (In the safety version of the library, those features will be moved to
the class COMPOSITE [G].) The Composite pattern only had the query i_th (called
GetChild in Design Patterns) and the element change routines add and remove (called
Add and Remove). I decided to augment the class COMPONENT [G] with these
additional traversal features to get a design closer to the CONTAINER classes of
EiffelBase and equip the Composite Library with all relevant functionalities. (Most
of these features are used in the Composite Library classes for contract support.)

For greater consistency, the class COMPONENT [G] also provides a query is_
composite, which is used in the preconditions of composite-specific features like add
and remove.

Here is the text of class COMPONENT [G]:

deferred class

COMPONENT [G]

feature -- Basic operation

do_something is
-- Do something.

deferred
end

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?

do
Result := False

end

feature -- Access

item: COMPONENT [G] is
-- Current part of composite

require
is_composite: is_composite

do
Result := parts.item

ensure
definition: Result = parts.item
component_not_void: Result /= Void

end

See “Flyweight”,  11, 
page 161.
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i_th, infix "@" (i: INTEGER): like item is
-- i-th part

require
is_composite: is_composite
index_valid: i > 0 and i <= count

do
Result := parts @ i

ensure
component_not_void: Result /= Void
definition: Result = parts @ i

end

first: like item is
-- First component part

require
is_composite: is_composite
not_empty: not is_empty

do
Result := parts.first

ensure
definition: Result = parts.first
component_not_void: Result /= Void

end

last: like item is
-- Last component part

require
is_composite: is_composite
not_empty: not is_empty

do
Result := parts.last

ensure
definition: Result = parts.last
component_not_void: Result /= Void

end

feature -- Status report

has (a_part: like item): BOOLEAN is
-- Does composite contain a_part?

require
is_composite: is_composite
a_part_not_void: a_part /= Void

do
Result := parts.has (a_part)

ensure
definition: Result = parts.has (a_part)

end

is_empty: BOOLEAN is
-- Does component contain no part?

require
is_composite: is_composite

do
Result := parts.is_empty

ensure
definition: Result = (count = 0)

end
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off: BOOLEAN is
-- Is there no component at current position?

require
is_composite: is_composite

do
Result := parts.off

ensure
definition: Result = (after or before)

end

after: BOOLEAN is
-- Is there no valid position to the right of current one?

require
is_composite: is_composite

do
Result := parts.after

ensure
definition: Result = parts.after

end

before: BOOLEAN is
-- Is there no valid position to the left of current one?

require
is_composite: is_composite

do
Result := parts.before

ensure
definition: Result = parts.before

end

feature -- Measurement

count: INTEGER is
-- Number of component parts

require
is_composite: is_composite

do
Result := parts.count

ensure
definition: Result = parts.count

end

feature -- Element change

add (a_part: like item) is
-- Add a_part to component parts.

require
is_composite: is_composite
a_part_not_void: a_part /= Void
not_part: not has (a_part)

do
parts.extend (a_part)

ensure
one_more: parts.count = old parts.count + 1
part_added: parts.last = a_part

end

feature -- Removal
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remove (a_part: like item) is
-- Remove a_part from component parts.

require
is_composite: is_composite
a_part_not_void: a_part /= Void
has_part: has (a_part)

do
parts.search (a_part)
parts.remove

ensure
one_less: parts.count = old parts.count − 1
not_part: not has (a_part)

end

feature -- Cursor movement

start is
-- Move cursor to first component part. Go after if no such part.

require
is_composite: is_composite

do
parts.start

end

forth is
-- Move cursor to the next component. Go after if no such part.

require
is_composite: is_composite
not_after: not after

do
parts.forth

end

finish is
-- Move cursor to last component. Go before if no such part.

require
is_composite: is_composite

do
parts.finish

end

back is
-- Move cursor to the previous component. Go before if no such part.

require
is_composite: is_composite
not_before: not before

do
parts.back

end

feature {NONE} -- Implementation

parts: LINKED_LIST [like item] is
-- Component parts (which are themselves components)

deferred
end

invariant
parts_consistent:

is_composite implies (parts /= Void and then not parts.has (Void))

end
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The class COMPOSITE [G] inherits from COMPONENT [G] and effects its routine do_
something by traversing the composite parts and calling do_something on each part.
Here is the corresponding class text:
class

COMPOSITE [G]

inherit

COMPONENT [G]
redefine

is_composite
end

create

make,
make_from_components

feature {NONE} -- Initialization

make is
-- Initialize component parts.

do
create parts.make

end

make_from_components (some_components: like parts) is
-- Set parts to some_components.

require
some_components_not_void: some_components /= Void
no_void_component: not some_components.has (Void)

do
parts := some_components

ensure
parts_set: parts = some_components

end

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?

do
Result := True

end

feature -- Basic operation

do_something is
-- Do something.

do
from parts.start until parts.after loop

parts.item.do_something
parts.forth

end
end

Composite 
class (part of 
the transpar-
ency version 
of the Com-
posite Library)
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Safety version

The safety version of the Composite Library (see class diagram below) does not
differ much from the transparency version (see diagram on page 150). Again, class
LEAF only illustrates the library usage; it is not part of the library itself.

Like the transparency version, the safety variant of the Composite Library is
made of two generic classes: COMPONENT [G] and COMPOSITE [G]. The difference
is that composite-specific features like add, remove and traversal features like i_th,
start, forth, etc. are defined in the descendant class COMPOSITE [G] only — instead
of being defined in the parent class COMPONENT [G], namely for any kind of
components. Therefore clients cannot treat components transparently anymore:
before calling features like add, they have to check that they are allowed to do so,
namely that the component is really a “composite”. 

Hence higher safety, but less transparency.

Like for the transparency variant, there also exists an implementation of Composite
Library favoring safety where the COMPONENT knows about its parent. Again, I chose
to present the implementation that keeps no reference to the parent because it is more
flexible and allows an object to be part of different composites.

Here is the safety variant of class COMPONENT [G]:

invariant

is_composite: is_composite
parts_not_void: parts /= Void
no_void_part: not parts.has (Void)

end

deferred class

COMPONENT [G]

feature -- Basic operation

do_something is
-- Do something.

deferred
end
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Here is the safety variant of class COMPOSITE [G]:

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?

do
Result := False

end

end

class

COMPOSITE [G]

inherit

COMPONENT [G]
redefine

is_composite
end

create

make,
make_from_components

feature {NONE} -- Initialization

make is
-- Initialize component parts.

do
create parts.make

end

make_from_components (some_components: like parts) is
-- Set parts to some_components.

require
some_components_not_void: some_components /= Void
no_void_component: not some_components.has (Void)

do
parts := some_components

ensure
parts_set: parts = some_components

end

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?

do
Result := True

end

feature -- Basic operation

Composite 
class (part of 
the safety ver-
sion of the 
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Library)
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The code of all composite-specific and traversal features was not reproduced here —
only the feature names are mentioned as comments — because their implementation
is the same as the one shown on page 155.

Composite pattern vs. Composite Library

The Composite pattern is not an implementation, it is an idea represented by a class
diagram and a few lines explanation in Design Patterns that leads, when correctly
applied, to better design and more flexible applications. The problem is that software
programmers have to rewrite the same pieces of code again and again, by lack of
reusable code. The Composite Library solves this issue. 

do_something is
-- Do something.

do
from parts.start until parts.after loop

parts.item.do_something
parts.forth

end
end

feature -- Access

item: COMPONENT [G] is
-- Current part of composite

do
Result := parts.item

ensure
definition: Result = parts.item
component_not_void: Result /= Void

end

feature -- Others

-- Same features as in the transparency version
-- (except that the features do not have a precondition is_composite any more):

-- Access: i_th, first, last
-- Status report: has, is_empty, off, after, before
-- Measurement: count
-- Element change: add
-- Removal: remove
-- Cursor movement: start, forth, finish, back

feature {NONE} -- Implementation

parts: LINKED_LIST [like item]
-- Component parts (which are themselves components)

invariant

is_composite: is_composite
parts_not_void: parts /= Void
no_void_part: not parts.has (Void)

end

See “Composite class 
(part of the transpar-
ency version of the 
Composite 
Library)”,  page 155.

[Gamma 1995], p 
163-173.
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Let’s consider the example used in previous chapters: a library with different
kinds of BOOKs and VIDEO_RECORDERs that users can borrow. We can say that an
ENCYCLOPEDIA is a composite of BOOKs or more generally a composite of
BORROWABLE elements.

• Applying the Composite pattern would mean writing a class COMPOSITE_
BORROWABLE and have ENCYCLOPEDIA inherit from it:

But imagine we want to compose something else, say ELECTRONIC_
COMPONENTs (for example VIDEO_RECORDERs are made of electronic
components); we would need to write a new class COMPOSITE_ELECTRONIC_
COMPONENT, which would reproduce most of the code (at least the “composite
features”) of COMPOSITE_BORROWABLE.

With the Composite Library, it becomes much simpler: we just need to
make class ENCYCLOPEDIA inherit from COMPOSITE [BORROWABLE] and
VIDEO_RECORDER inherit from COMPOSITE [ELECTRONIC_COMPONENT]. The
“composite machinery” is already written in the library; we can just reuse it.
Hence less code duplication.

• As a consequence of the previous point, a design relying on the Composite
Library is likely to require fewer classes to build the same application: instead
of having classes like COMPOSITE_BORROWABLE and COMPOSITE_
ELECTRONIC_COMPONENT, we can just reuse the same generic class
COMPOSITE [G] and derive it with actual generic parameters BORROWABLE
and ELECTRONIC_COMPONENT. 

Criticisms against the Composite Library may say that it yields using multiple
inheritance everywhere (our class ENCYCLOPEDIA  would inherit from
BORROWABLE and COMPOSITE [BORROWABLE]) and leaves clients with the burden
of solving name clashes and other nightmares of repeated inheritance. But in fact,
clients would have to handle this anyway; for example, a class ENCYCLOPEDIA
implemented with the Composite pattern would inherit from class COMPOSITE_
BORROWABLE, which looks nice in appearance, but in appearance only since
COMPOSITE_BORROWABLE multiple inherits from classes COMPOSITE and
BORROWABLE (see diagram above). Besides, the benefits of reusability overcomes
this apparent complexity of combining genericity and inheritance.

BORROWABLE

COMPOSITE_ 
BORROWABLEBOOK 

ENCYCLOPEDIA 

COMPOSITE 

Example 
using the 
Composite 
pattern

See chapter 2.



COMPOSITE §10160
10.3  COMPONENTIZATION OUTCOME
The componentization of the Composite pattern, which resulted in the development
of the Composite Library, is a success because it meets the componentizability
quality criteria established in section 6.1. (The Composite Library is available in two
variants: the first version favors transparency, the second version favors safety; the
componentizability quality criteria apply to both variants.)
• Completeness: The Composite Library covers all cases described in the

original Composite pattern.
• Usefulness: The Composite Library is useful because it provides a reusable

library from the Composite pattern description, which developers will be able
to apply to their programs directly; no need to implement the same design
scheme again and again because it is captured in the reusable component.

• Faithfulness: The Composite Library is similar to a direct implementation of
the Composite pattern, with the benefits of reusability; it just introduces
(unconstrained) genericity to have a reusable solution. The Composite Library
fully satisfies the intent of the original Composite pattern and keeps the same
spirit. Therefore I consider the Composite Library as being a faithful
componentized version of the Composite pattern.

• Type-safety: The Composite Library relies on unconstrained genericity and
makes extensive use of assertions. Both mechanisms are type-safe in Eiffel.
As a consequence, the Composite Library is also type-safe.

• Performance: The only difference between the pattern implementation and the
Composite Library is genericity. Using genericity in Eiffel does not imply any
performance penalty. Therefore, the performance of a system based on the
Composite Library is in the same order as the performance of the same system
implementing the Composite pattern directly.

• Extended applicability: The Composite Library does not cover more cases
than the original Composite pattern.

10.4  CHAPTER SUMMARY
• The Composite pattern describes a way to compose software elements into

bigger structures while keeping an application flexible and maintainable.
• However the Composite pattern is just a design idea; it does not come with

any implementation code. It is not componentizable.
• The Composite Library embodies the idea of the Composite pattern into a

reusable component. The library provides two variants: a “transparency
variant” and a “safety variant” that mirror the corresponding variants of the
pattern described by [Gamma 1995].

[Gamma 1995], p 
163-173.
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Flyweight
Fully componentizable
The previous chapter introduced the Composite Library, which addresses the same
needs as the Composite design pattern but is reusable.

This chapter focuses on another fully componentizable pattern: Flyweight.
First, it describes the pattern and its weaknesses. Then, it presents the
componentized version, the Flyweight Library, which relies on the Composite
Library introduced in chapter 10.

11.1  FLYWEIGHT PATTERN

This section shows that the scope of the Composite Library is broader than what we
could imagine at first. Indeed, it is the basis of another pattern component: the
Flyweight Library.

Pattern description

The purpose of the Flyweight pattern is to “use sharing to support large numbers of
fine-grained objects efficiently”.

Sometimes, the fact that every object is based on a class may yield creating a
huge number of objects and cause performance penalty. For example, trees can have
an unlimited number of nodes. Another typical application example is a document
editor for which it would be much too costly to have one object per character. The
idea of the Flyweight pattern is to have a pool of shared “flyweight” objects, each
corresponding to one alphabet letter, which significantly reduces the number of
created objects.

If we do not go into implementation details, we can say in brief that
flyweights are shared objects and that using them can result in substantial
performance gains.

Flyweights typically get instantiated by a factory according to some criteria.
Clients get the flyweights from the factory: the factory checks whether a flyweight
with the required criteria is available; if yes, it just passes it to the client, otherwise
it creates it first. For example, one could have a pool of LINE objects with a
procedure for drawing a line and the factory could create one LINE object per color.
Say we want to draw 5000 red lines and 2000 blue lines; using flyweights would
mean creating only 2 objects instead of 7000 in a traditional design.

See chapter 10.

[Gamma 1995], p 
195.

The rest of the discus-
sion uses “fly-
weights” and 
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Reusing the same objects is possible because properties of the flyweights are
split in two categories: intrinsic (core properties that belong to the underlying
abstract data type) and extrinsic (other properties that may be kept by another
object). The latter are externalized in a flyweight “context”. Therefore it is possible
to reuse the flyweight objects that have the same intrinsic characteristic (the color in
the line for example) while adapting the extrinsic characteristic (for example the
location of the line).

Trees in the Java Swing library use flyweights for performance. They have a
single component for all nodes in the tree. The component is created by a
TreeCellRenderer with method getTreeRendererComponent whose signature is as
follows:

All arguments correspond to the extrinsic characteristics of the flyweight.
Another example, which was sketched above, is the case of LINEs that can

draw themselves. Typical client code without the Flyweight pattern would be:

with:

public Component getTreeRendererComponent (
JTree tree,
Object value,
boolean selected,
boolean expanded,
boolean leaf,
int row,
boolean hasFocus
)

class

CLIENT
...
feature -- Basic operation

draw_lines is
-- Draw some lines in color.

local
line1, line2: LINE
red: INTEGER

do
...
create line1.make (red, 100, 200)
line1.draw
create line2.make (red, 100, 400)
line2.draw
...

end
...
end

class interface

LINE

create

make

feature -- Initialization

[Geary 2003d].
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With the Flyweight pattern, the client code evolves as follows:

with:

make (a_color, x, y: INTEGER)
-- Set color to a_color, x as x_position, and y as y_position.

ensure
color_set: color = a_color
x_set: x_position = x
y_set: y_position = y

feature -- Access

color: INTEGER
-- Line color

x_position, y_position: INTEGER
-- Line position

feature -- Basic operation

draw
-- Draw line at position (x_position, y_position) with color.

end

class

CLIENT

feature -- Basic operation

draw_lines is
-- Draw some lines in color.

local
line_factory: LINE_FACTORY
red: INTEGER

do
...
red_line := line_factory.new_line (red)
red_line.draw (100, 200)
red_line.draw (100, 400)
...

end
...
end

class interface

LINE_FACTORY

feature -- Initialization

new_line (a_color: INTEGER): LINE
-- New line with color a_color

ensure
new_line_not_void: Result /= Void

...
end

Client using a 
class LINE 
implemented 
with the Fly-
weight pat-
tern

Line factory 
creating the 
flyweight 
LINE objects

This class could be 
implemented with the 
Factory Library. It is 
just an example illus-
trating the purpose of 
the Flyweight pat-
tern.



FLYWEIGHT §11164
and:

No need to create a new object for each line if those lines have the same color.
If automatic garbage collection makes space optimizations less crucial than

before, some specialized domains of computer science like embedded systems still
require a lot of attention in terms of performance. This is where the Flyweight
pattern can be very useful.

We can now turn our attention to implementation.

Implementation

There are two kinds of flyweights: shared (objects that may be part of several
composites) and unshared (objects with a single owner). In the editor example
mentioned at the beginning of the chapter, shared flyweights are the objects
representing the characters; unshared flyweights are the objects representing the
rows and columns of characters. As explained in Design Patterns, it is common that
unshared flyweights are composed of shared ones. The implementation of the
Flyweight design pattern described in this dissertation has a slightly restricted view
and considers that it is always the case. Therefore it represents unshared flyweights
as “composite” of shared flyweights by using the safety version of the Composite
Library presented in the previous chapter.

As mentioned above, flyweight objects may be of two kinds: composites,
which may be shared or unshared, and non-composites, which are always shared
(given the restriction stated in the previous paragraph). Hence the introduction of a
deferred class FLYWEIGHT capturing the commonalities between these two kinds of
flyweights, and two effective descendants, SHARED_FLYWEIGHT (non-composite)
and COMPOSITE_FLYWEIGHT (shared or unshared). In fact, COMPOSITE_
FLYWEIGHT has two proper ancestors: the class FLYWEIGHT and the generic class
COMPOSITE [G] coming from the Composite Library.

class interface

LINE

create

make

feature -- Initialization

make (a_color: INTEGER) is
-- Set color to a_color.

ensure
color_set: color = a_color

feature -- Access

color: INTEGER
-- Line color

feature -- Basic operation

draw (x, y: INTEGER)
-- Draw line at position (x, y) with color.

end

Class LINE 
designed with 
the Flyweight 
pattern in 
mind

[Gamma 1995], p 
199.
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The two categories of flyweights have in common the service offered to
clients — a feature do_something for example — and the external property that
characterizes these flyweights. Indeed, the Flyweight pattern is meant to reduce the
storage costs and enhance the performance of an application by relying on object
sharing. It also means that only the minimum intrinsic characteristics are stored in
the class corresponding to a shared flyweight, all other properties — “extrinsic” ones
— being moved to an external FLYWEIGHT_CONTEXT class, and computed on
demand. For this to work there must be far less such external properties as there are
objects before sharing. In the editor example, an extrinsic characteristic could be the
character font, because it is very unlikely that characters all have a different font.
Therefore one can introduce CONTEXT_ZONEs where all characters have the same
font for example.

To ensure object sharing, COMPOSITE_FLYWEIGHT uses a FACTORY of
SHARED_FLYWEIGHTs; it is implemented using the Factory Library described in
chapter 8.

Here is the resulting class diagram of this possible implementation of the
Flyweight pattern in Eiffel:

external_characteristic_zones 

* 
COMPONENT 

[G] 

+ 
COMPOSITE 

[G] add 
remove 
… 

composite_library

* 
FLYWEIGHT

+ 
SHARED_ 

FLYWEIGHT 

+ 
COMPOSITE_ 
FLYWEIGHT 

do_something* 
set_external_characteristic 

item++ 

do_something+do_something+ 
add_flyweights 
insert_flyweights 
set_external_characteristic_range 
set_context 

 FLYWEIGHT_ 
CONTEXT 

 CONTEXT_ 
ZONE 

context 

size 
resize 

external_ 
 

characteristic
 EXTERNAL_ 
PROPERTY 
code 

external_characteristic 

external_characteristic 
insert 
set_external_characteristic 
set_zone_number 
new_zone 
index 
size 
start, forth, move 
... 

flyweight 

FACTORY 
[G] 

factory_library 

flyweight_ 
factory 

Class dia-
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possible 
implementa-
tion of the 
Flyweight 
pattern
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As mentioned before, the Composite Library is used to compose flyweights.
Therefore FLYWEIGHT needs to inherit from COMPONENT [FLYWEIGHT] and
COMPOSITE_FLYWEIGHT from COMPOSITE [FLYWEIGHT].

The class FLYWEIGHT groups the commonalities between the two categories
of flyweights (composites and non-composites): the procedure do_something and the
external_characteristic. It also provides the corresponding setter. The external_
characteristic is represented by a function, meaning that the result is computed on
demand from the FLYWEIGHT_CONTEXT given as argument; it is not stored as an
attribute of the class.

Above that, shared flyweights also have an intrinsic characteristic, which is
kept as an attribute of the corresponding class SHARED_FLYWEIGHT. The internal
property of a SHARED_FLYWEIGHT must be provided to the creation procedure of
the class (make). It must be in a certain range and must never be Void. Setting the
external property of a SHARED_FLYWEIGHT means setting this property to the
current zone of the FLYWEIGHT_CONTEXT given as argument. This class and the
related CONTEXT_ZONE are described in a later section.

The second category of flyweights is COMPOSITE_FLYWEIGHTs, which are
both FLYWEIGHTs and COMPOSITE of FLYWEIGHTs; hence the use of multiple
inheritance here. As composite, they have all composite-specific features like add,
remove, and so on — which we renamed as add_flyweight, remove_flyweight — for
clarity. Class COMPOSITE_FLYWEIGHT also provides a procedure to add several
flyweights at a time (add_flyweights) and another one to insert some flyweights at a
certain point of the flyweight context (insert_flyweights). As flyweight, they also
expose a feature do_something, which outputs a message depending on the external
characteristic of the current context zone; its implementation simply traverses the list
of flyweights the composite is made of and call the corresponding do_something
feature on each. In fact, the different parts a COMPOSITE_FLYWEIGHT may contain
are SHARED_FLYWEIGHTs; hence the redefinition of item.

The creation procedure make of class COMPOSITE_FLYWEIGHT does not take
any arguments contrary to most of the other routines; in particular several routines
expect an instance of FLYWEIGHT_CONTEXT. What happens is that the creation
procedure creates and initializes a default context with a default_external_
characteristic. Then, every other feature — apart from the setter procedures — uses
this context, unless a non-void context is given as argument, which would overwrite
the default one. In other words, a feature of class COMPOSITE_FLYWEIGHT that is
not a setter procedure but expects an argument of type FLYWEIGHT_CONTEXT may
be passed a Void reference, yielding the feature execution to rely on the internal
context; if the argument given is not Void, then the class context will be set to this new
context. Let’s now consider the particular case of setter procedures: 

• The first one is set_external_characteristic. Its implementation is in two steps:
first, it calls the feature set_external_characteristic on the context given as
argument specifying the number of flyweights concerned by this new external
characteristic, namely flyweights.count; second, it updates the context of the
composite flyweight by calling set_context. (That is the context overwriting
phase we mentioned above in the case of a non-void argument.)

• The class COMPOSITE_FLYWEIGHT also provides the feature set_external_
characteristic_range to set the external_characteristic of several shared
flyweights at a time. To achieve this, it uses the traversal features of class
FLYWEIGHT_CONTEXT.

The context allows to 
keep the flyweight’s 
external characteris-
tics by groups (zones) 
with the same exter-
nal characteristic.
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• As mentioned before, instantiating a new COMPOSITE_FLYWEIGHT creates a
default context, which is used by the other class features unless another context
is provided. The setter procedure set_context gives the ability to provide a new
context independently from any change to the composite flyweight.

The FLYWEIGHT_CONTEXT will be of particular use for all features modifying the
structure of the composite, namely addition and removal features. Let’s review them
now and examine their exact behavior:
• add_flyweights traverses the list of shared flyweights and call add_flyweight on

each item.
• add_flyweight is the redefined version of feature add originally defined in the

parent class COMPOSITE [G]. It extends the list of flyweights with the new
elements given as argument and updates the context accordingly. (It calls
insert on the context to update the CONTEXT_ZONEs.)

• insert_flyweights has the same behavior as add_flyweights, except that it allows
specifying the position in the composite — more accurately, the position in
the list of shared flyweights making the composite flyweight — where to add
the new shared flyweights.

• remove_flyweight was first defined in the parent library class COMPOSITE [G]
under the name remove. It is redefined here in COMPOSITE_FLYWEIGHT to
ensure that in addition to the element removal, it also updates the composite
context. (In fact, it updates the context zones by calling the feature insert with
argument -1 on the actual context.)

As a FLYWEIGHT, the class COMPOSITE_FLYWEIGHT exposes a feature do_something,
which traverses the list of flyweights and outputs a message for each item according
to the current FLYWEIGHT_CONTEXT. The class COMPOSITE_FLYWEIGHT also
counts a few implementation features, which are exported to NONE: 
• default_external_characteristic is the default value used to initialize context in

the creation procedure make.
• All other non-exported features deal with sharing. Indeed, the very first goal

of applying the Flyweight pattern is to avoid wasting computer resources by
using shared flyweights. To do this, the class COMPOSITE_FLYWEIGHT has a
flyweight_pool, which is a pool of shared flyweights with maximum count
flyweight_pool_count. This pool gets created with the composite. Then,
whenever clients ask to add new flyweights to the composite, the
corresponding routine (add_flyweight, insert_flyweights) will retrieve the
required flyweight from the pool of shared objects, unless it does not exist yet,
and in that case only create it and put it into the pool for subsequent accesses.
Same process when removing flyweights from the composite.

• The creation of shared flyweights relies on the Factory Library: the class
COMPOSITE_FLYWEIGHT has a once function flyweight_factory, which returns
an instance of type FACTORY [SHARED_FLYWEIGHT] by calling back the
feature new_flyweight thanks to the Eiffel agent mechanism.

A flyweight — shared or unshared — is characterized by an external property
(called external_characteristic in class FLYWEIGHT). This example simply assumes
that an external characteristic can be represented by a code of type INTEGER.

Going through the text of class COMPOSITE_FLYWEIGHT highlighted the use
and usefulness of the FLYWEIGHT_CONTEXT. A FLYWEIGHT_CONTEXT describes a
list of flyweights grouped by CONTEXT_ZONEs with the same external
characteristic. Let’s review the class features:
• The creation procedure make creates a new CONTEXT_ZONEs with the

EXTERNAL_PROPERTY given as argument.

[Gamma 1995], p 
195-206.

See chapter 8.

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].
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• The external_characteristic of a FLYWEIGHT_CONTEXT is defined as a function
— not as an attribute — returning the external_characteristic of the current
CONTEXT_ZONE.

• There also needs to be a way to modify the context to reflect addition or
removal of flyweights. This is the purpose of insert: it notifies the current
context that a_number of flyweights have been inserted — this number can be
positive or negative to cover both addition and removal of flyweights — and
resize the corresponding CONTEXT_ZONE to take this change into account.

• The next feature — the setter procedure set_external_characteristic — is
essential to the class FLYWEIGHT_CONTEXT: it enables changing the external_
characteristic of a_number of flyweights, starting from the current position in
the current CONTEXT_ZONE. 

Let’s have a look at the implementation features of the class — the
features exported to NONE — to better understand what the procedure set_
external_characteristic actually does:

• A FLYWEIGHT_CONTEXT stores a list of CONTEXT_ZONEs called
external_characteristic_zones.

• zone_number corresponds to the index in this list (i.e. the current cursor
position in external_characteristic_zones).

• set_zone_number moves the list cursor to the ith element, more precisely
to the a_numberth zone in external_characteristic_zones.

• new_zone — used in set_external_characteristic — creates a new
CONTEXT_ZONE with the characteristic and size given as argument.

• The class FLYWEIGHT_CONTEXT also has an index, which is not the
index of list external_characteristic_zone, but the position in the current
CONTEXT_ZONE during a zone traversal.

Let’s come back to the feature set_external_characteristic now. What does it do
exactly? The figure below illustrates the algorithm: in case index equals 1, it
replaces the external_characteristic from the beginning of the zone; otherwise, it
shortens the current zone and inserts a new one.

• The query size traverses all CONTEXT_ZONEs and sums up the size of each
zone.

Current context zone 
(external characteristic old_external_characteristic)

zone_2 zone_3 zone_1 

index 

a_number right_size 

a_number right_size index 
Create a new zone 
with external 
characteristic 
a_characteristic and 
size a_number. 

If right_size > 0 then create 
a new zone with external 
characteristic 
old_external_characteristic 

Reinitialize current zone to 
have a new size of index, 
and same external 
characteristic 
old_external_characteristic 

Algorithm 
used in set_
external_
characteristic 
of class 
FLYWEIGHT
_CONTEXT
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• Then, we have the traversal features start, forth, and move. (The names used
for features are in harmony with the conventions of CONTAINER classes in
EiffelBase.)

• start sets index to the first position in the first CONTEXT_ZONE, by
calling start on the list external_characteristic_zones — which moves the
list cursor to the first CONTEXT_ZONE — and by setting index to 1 —
to make index point to the first position in this zone.

• forth calls move with a_step equals to 1. move increases index by a_step,
taking into account the size of the current zone, meaning that it will
update the zone_number depending on the value of a_step and adjust the
index accordingly.

We have seen that the FLYWEIGHT_CONTEXT relies on a class CONTEXT_ZONE. Its
implementation is quite straightforward: it has two attributes — external_
characteristic and size — which are given as arguments to the creation procedure
make; it also exposes a feature resize, which increases the zone size by a_delta on
condition that size increased by a_delta is still positive.

Flaws of the approach

The implementation of the Flyweight pattern described in the previous pages is not
that trivial and already consumes two reusable components: the Composite Library
and the Factory Library.

However, it is still not a reusable component. The flaw lies in the external_
characteristic of a FLYWEIGHT: if we stick to the current implementation, clients
must rewrite all FLYWEIGHT classes just to adapt to another external property; hence
a lot of code repetition and low maintainability. This thesis claims it is a sign of
bad design and preaches the No Code Repetition principle that may also be called
“No Copy-Paste principle”:

There is a simple way to satisfy the No Code Repetition principle and transform the
Flyweight implementation into a reusable solution: we just need to parameterize the
class FLYWEIGHT and its descendants by the external_characteristic. This is the key
design idea of the Flyweight Library.

11.2  FLYWEIGHT LIBRARY

The Flyweight Library relies on two “pattern libraries” previously described: the
Factory Library — to provide the sharing facilities of the Flyweight pattern — and
the Composite Library — to represent “composite flyweights”. The library relies on
constrained genericity and agents.

Definition: No Code Repetition principle
If you find yourself having to copy and paste code, just stop: there is something
wrong with your design.

[EiffelBase-Web].

See chapter 10.
See chapter 8.

See chapter 8.
See chapter 10.
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Library structure

Here is the class diagram of the Flyweight Library, which also includes the classes
of the libraries it depends on (the Composite Library and the Factory Library):

Flyweight objects are represented by a class FLYWEIGHT, which is generic. The
generic parameter G denotes the flyweight’s external characteristic; it is constrained
by the class SHARABLE, meaning that any actual generic parameter needs to conform
to SHARABLE (typically inherit from class SHARABLE). 

SHARABLE means that it is possible to share an object; in other words, this object has at
least an integer code and a feature is_valid.
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The class FLYWEIGHT [G] is deferred. It has two concrete descendants:
COMPOSITE_FLYWEIGHT [G, H] and SHARED_FLYWEIGHT [G, H]. The second
generic parameter corresponds to the intrinsic characteristic of shared flyweights and
needs to conform to HASHABLE — because it is used as the key of the flyweight
pool represented as a HASH_TABLE (more details on this in a few pages). The class
COMPOSITE_FLYWEIGHT [G, H] is a descendant of COMPOSITE [G] from the Composite
Library. 

The Flyweight Library uses the “safety version” of the Composite Library, but it could
also rely on the “transparency version”. I preferred the “safety variant” because it better
complies with the principles of object technology.

It provides a feature do_something that performs an operation depending on a
FLYWEIGHT_CONTEXT,  which itself is made of CONTEXT_ZONEs. The
implementation of feature do_something relies on an agent procedure that gets passed
to the creation routine of any FLYWEIGHT.

The class COMPOSITE_FLYWEIGHT [G, H] also relies on the library class
FACTORY [G] to handle the creation of the SHARED_FLYWEIGHTs it is composed of
and ensure that these parts are actually shared.

Library classes

Here is the text of class FLYWEIGHT [G]:

deferred class

FLYWEIGHT [G −> SHARABLE create make end]

inherit

COMPONENT [FLYWEIGHT [G]]
rename

do_something as do_something_component
end

feature -- Initialization

make (a_procedure: like procedure) is
-- Set a_procedure to a_procedure.

require
a_procedure_not_void: a_procedure /= Void

do
procedure := a_procedure

ensure
procedure_set: procedure = a_procedure

end

feature -- Access

external_characteristic (a_context: FLYWEIGHT_CONTEXT [G]): G is
-- External characteristic of flyweight in a_context

require
a_context_not_void: a_context /= Void

do
Result := a_context.external_characteristic

ensure
external_characteristic_not_void: Result /= Void

end

See “Class 
COMPOSITE_FLY-
WEIGHT (part of the 
Flyweight Library)”,  
page 179.

See section “Safety 
version”,  page 156 
and “Transparency 
version”,  page 150.

Deferred 
class FLY-
WEIGHT 
(part of the 
Flyweight 
Library)
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This library class FLYWEIGHT [G] is quite similar to the class FLYWEIGHT described
for the pattern implementation. The main difference lies in the presence of an
attribute procedure in the above version that is initialized at creation with an agent
given as argument to the creation procedure make. This agent is called by the
effected versions of procedure do_something (more details in the next pages). Also,
FLYWEIGHT [G] is a generic class constrained by class SHARABLE whose text is
presented below:

procedure: PROCEDURE [ANY,
TUPLE [FLYWEIGHT [G], FLYWEIGHT_CONTEXT [G]]]

-- Procedure called by do_something for shared flyweights

feature -- Element change

set_external_characteristic (a_characteristic: like external_characteristic;
a_context: FLYWEIGHT_CONTEXT [G]) is

-- Set external_characteristic of a_context to a_characteristic.
require

a_characteristic_not_void: a_characteristic /= Void
a_context_not_void: a_context /= Void

do
a_context.start

ensure
external_characteristic_set:

a_context.external_characteristic /= Void and then
a_context.external_characteristic = a_characteristic

end

feature -- Output

do_something (a_context: FLYWEIGHT_CONTEXT [G]) is
-- Do something with flyweight according to a_context.

require
a_context_not_void: a_context /= Void

deferred
end

end

deferred class

SHARABLE

inherit

FLYWEIGHT_CONSTANTS

feature {NONE} -- Initialization

make (a_code: like code) is
-- Set code to a_code.

require
a_code_is_valid: is_valid_code (a_code)

do
code := a_code

ensure
code_set: code = a_code

end

feature -- Access

code: INTEGER
-- Code of the item

See section 11.1.

Deferred 
class SHAR-
ABLE (part 
of the Fly-
weight 
Library)

The class 
FLYWEIGHT_CON-
STANTS provide the 
constant attributes 
minimum_code and 
maximum_code used 
in feature is_valid_
code appearing on the 
next page.
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The code of class SHARABLE corresponds to the one of class EXTERNAL_PROPERTY
in the pattern implementation.

The class FLYWEIGHT [G] relies on a class FLYWEIGHT_CONTEXT [G] whose
text is shown below.

feature -- Status report

is_valid: BOOLEAN is
-- Is current valid?

do
Result := is_valid_code (code)

ensure
definition: Result = is_valid_code (code)

end
is_valid_code (a_code: INTEGER): BOOLEAN is

-- Is a_code a valid code?
do

Result := (a_code = default_code or
 (a_code >= minimum_code and a_code <= maximum_code))

ensure
definition: Result = (a_code = default_code or
 (a_code >= minimum_code and a_code <= maximum_code))

end
invariant

is_valid: is_valid
end

class
FLYWEIGHT_CONTEXT [G]

create
make

feature {NONE} -- Initialization
make (a_characteristic: like external_characteristic) is

-- Create a first context zone from a_characteristic.
require

a_characteristic_not_void: a_characteristic /= Void
do

create external_characteristic_zones.make
external_characteristic_zones.extend (

new_zone (a_characteristic, 0))
external_characteristic_zones.start

ensure
is_first_external_characteristic_zone: zone_number = 1

end

feature -- Access

external_characteristic: G is
-- External characteristic of current zone 

do
Result :=
 external_characteristic_zones.item.external_characteristic 

ensure
definition: Result =
 external_characteristic_zones.item.external_characteristic

end

Class 
FLYWEIGHT
_CONTEXT 
(part of the 
Flyweight 
Library)
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feature -- Element change

insert (a_number: INTEGER) is
-- Insert a_number of flyweights at the current place
-- in the composite.

require
a_number_strictly_positif: a_number > 0

do
external_characteristic_zones.item.resize (a_number)

ensure
inserted: external_characteristic_zones.item.size
 = old external_characteristic_zones.item.size + a_number

end

set_external_characteristic (a_characteristic: like external_characteristic;
a_number: INTEGER) is 

-- Change the external characteristic for a_number of flyweights
-- from current position in the context to a_characteristic.

require
a_characteristic_not_void: a_characteristic /= Void
a_number_strictly_positive: a_number > 0

local
right_size: INTEGER
old_external_characteristic: G

do
-- Space left at the right of the new zone

right_size := external_characteristic_zones.item.size 
− (index + a_number)

old_external_characteristic := 
 external_characteristic_zones.item.external_characteristic

if index = 1 then
-- Replace from the beginning of the zone.

external_characteristic_zones.item.make (
a_characteristic, a_number)

else
-- Shorten the current zone, and insert the new one.

external_characteristic_zones.item.make (
old_external_characteristic, index)

external_characteristic_zones.go_i_th (zone_number)
external_characteristic_zones.put_right (

new_zone (a_characteristic, a_number))
external_characteristic_zones.forth

end
if right_size > 0 then

-- Insert a new zone at the right
-- with old_external_characteristic.

external_characteristic_zones.go_i_th (zone_number)
external_characteristic_zones.put_right (

new_zone (old_external_characteristic, right_size))
external_characteristic_zones.forth

end

-- first flyweight in the new zone
start

end
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size: INTEGER is
-- Total size of the context (in number of flyweights)

do
from

external_characteristic_zones.start
until

external_characteristic_zones.after
loop

Result := Result + 
external_characteristic_zones.item.size

external_characteristic_zones.forth
end

end

feature -- Traversal

start is
-- Start a traversal. 
--|Start external_characteristic_zones. Set index to 1.

do
external_characteristic_zones.start
index := 1

ensure
first_external_characteristic_zone: zone_number = 1
index_equals_one: index = 1 

end

forth is
-- Advance to the next flyweight.

do
move (1)

end

move (a_step: INTEGER) is
-- Move index a_step times.

require
a_step_positive: a_step >= 0

do
from

index := index + a_step
until

zone_number = external_characteristic_zones.count
or else index <= external_characteristic_zones.item.size 

loop
index := index − external_characteristic_zones.item.size 
set_zone_number (zone_number + 1)

end
end

feature {NONE} -- Implementation

external_characteristic_zones: LINKED_LIST [CONTEXT_ZONE [G]]
-- Item zones in composite

zone_number: INTEGER is
-- Index of current external_characteristic zone
-- in external_characteristic_zones

do
Result := external_characteristic_zones.index

ensure
definition: Result = external_characteristic_zones.index

end
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The implementation of class FLYWEIGHT_CONTEXT [G] relies on CONTEXT_ZONEs,
which are defined as follows:

set_zone_number (a_zone_number: like zone_number) is
-- Set zone number with a_zone_number.

require
a_zone_number_is_valid:
 external_characteristic_zones.valid_index (a_zone_number)

do
external_characteristic_zones.go_i_th (a_zone_number)

ensure
zone_number_set: zone_number = a_zone_number

end

index: INTEGER
-- Position in external_characteristic_zones during traversals

new_zone (a_characteristic: G; a_size: INTEGER): CONTEXT_ZONE [G] is
-- New external characteristic zone 
-- with a_characteristic and size a_size

require
a_characteristic_not_void: a_characteristic /= Void
a_size_positive: a_size >= 0

do
create Result.make (a_characteristic, a_size)

end

invariant

zones_not_void: external_characteristic_zones /= Void
no_void_zone: not external_characteristic_zones.has (Void)
zones_not_empty: not external_characteristic_zones.is_empty
index_positive: index >= 0

end

class

CONTEXT_ZONE [G]

create {FLYWEIGHT_CONTEXT}

make

feature {FLYWEIGHT_CONTEXT} -- Initialization

make (a_characteristic: like external_characteristic; a_size: like size) is
-- Set external_characteristic to a_characteristic.
-- Set size to a_size.

require
a_characteristic_not_void: a_characteristic /= Void
a_size_positive: a_size >= 0

do
external_characteristic := a_characteristic
size := a_size

ensure
external_characteristic_set: external_characteristic = a_characteristic
size_set: size = a_size

end

Class 
CONTEXT_
ZONE (part 
of the Fly-
weight 
Library)



§11.2  FLYWEIGHT LIBRARY 177
A context zone is defined by its size, of type INTEGER, and an external_characteristic,
of type G — the generic parameter of the class — corresponding to the extrinsic
characteristic of the flyweight objects.

As shown on the class diagram of the Flyweight Library, there are two kinds
of FLYWEIGHTs: SHARED_FLYWEIGHTs and COMPOSITE_FLYWEIGHTs. Here are
the corresponding class texts:

feature -- Access

external_characteristic: G
-- Item used in the current zone

size: INTEGER
-- Size of current external characteristic zone

feature -- Element change

resize (a_delta: like size) is
-- Add a_delta to size.

require
adjusted_size_is_positive: size + a_delta >= 0

do
size := size + a_delta

ensure
size_adjusted: size = old size + a_delta

end

invariant

external_characteristic_not_void: external_characteristic /= Void
positive_size: size >= 0

end

class

SHARED_FLYWEIGHT [G −> SHARABLE create make end, H −> HASHABLE]

inherit

FLYWEIGHT [G]
rename

make as make_flyweight
redefine

procedure,
set_external_characteristic

end

create

make,
make_from_procedure

feature -- Initialization

make (a_characteristic: like characteristic) is
-- Set characteristic to a_characteristic.

require
a_characteristic_not_void: a_characteristic /= Void

do
characteristic := a_characteristic

ensure
characteristic_set: characteristic = a_characteristic

end

See “Classes 
involved in the Fly-
weight Library”,  
page 170.

Class 
SHARED_
FLY-
WEIGHT 
(part of the 
Flyweight 
Library)
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make_from_procedure (a_characteristic: like characteristic;
a_procedure: like procedure) is

-- Set characteristic to a_characteristic.
-- Set procedure to a_procedure.

require
a_characteristic_not_void: a_characteristic /= Void
a_procedure_not_void: a_procedure /= Void

do
characteristic := a_characteristic
make_flyweight (a_procedure)

ensure
characteristic_set: characteristic = a_characteristic
procedure_set: procedure = a_procedure

end

feature -- Access

characteristic: H
-- Internal property of the flyweight

procedure: PROCEDURE [ANY,
TUPLE [like Current, FLYWEIGHT_CONTEXT [G]]]

-- Procedure called by do_something

feature -- Element change

set_external_characteristic (a_characteristic: like external_characteristic;
a_context: FLYWEIGHT_CONTEXT [G]) is

-- Set external characteristic of a_context to a_characteristic 
-- (i.e. for all flyweights of the composite).

do
Precursor {FLYWEIGHT} (a_characteristic, a_context)
a_context.set_external_characteristic (a_characteristic, 1)

end

feature -- Output

do_something (a_context: FLYWEIGHT_CONTEXT [G]) is
-- Call procedure if not Void; otherwise do nothing.

do
if procedure /= Void then

procedure.call ([Current, a_context])
end

end

feature {NONE} -- Basic operations

do_something_component is
-- Do nothing.
-- (May be redefined in descendants.)

do
-- Do nothing by default.

end

end
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A SHARED_FLYWEIGHT is parameterized, first by its external_characteristic —
corresponding to the formal parameter G of the class header — and second by its
intrinsic characteristic — corresponding to the formal parameter H of the class
header. It implements the procedure do_something by calling the agent procedure —
if it has already been set — with the FLYWEIGHT_CONTEXT given as argument.

Let’s concentrate on the class COMPOSITE_FLYWEIGHT [G, H] now (see class
text below). Like the class SHARED_FLYWEIGHT [G, H], it has two generic
parameters whose first one needs to conform to class SHARABLE and the second one
to HASHABLE (because it is used as a key of the flyweight_pool).

class

COMPOSITE_FLYWEIGHT [G −> SHARABLE create make end, H −> HASHABLE]

inherit

FLYWEIGHT [G]
undefine

is_composite
redefine

make,
procedure,
set_external_characteristic

end

COMPOSITE [FLYWEIGHT [G]]
rename

make as make_composite,
parts as flyweights,
add as add_flyweight,
remove as remove_flyweight,
do_something as do_something_component

redefine
flyweights,
add_flyweight,
remove_flyweight,
item

end

create

make

feature -- Initialization

make (a_procedure: like procedure) is
-- Set procedure to a_procedure.
-- Initialize context and pool of instantiated flyweights.

do
Precursor {FLYWEIGHT} (a_procedure)
make_composite
create context.make (default_external_characteristic)
create flyweight_pool.make (flyweight_pool_count)

ensure then
context_external_characteristic_set: 

context.external_characteristic.code = 
 feature {FLYWEIGHT_CONSTANTS}.default_code

end

Class 
COMPOSITE
_FLY-
WEIGHT 
(part of the 
Flyweight 
Library)

This notation is 
explained in appen-
dix A with the notion 
of constrained 
genericity, starting 
on page 387.
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feature -- Access
procedure: PROCEDURE [ANY, 

TUPLE [like item, FLYWEIGHT_CONTEXT [G]]]
-- Procedure to be called on each shared flyweight

item: SHARED_FLYWEIGHT [G, H] is
-- Current item

do
Result ?= Precursor {COMPOSITE}

end
feature -- Element change

set_external_characteristic (a_characteristic: like external_characteristic;
a_context: FLYWEIGHT_CONTEXT [G]) is

-- Set external characteristic of a_context to a_characteristic
-- (i.e. for all flyweights of the composite).

do
Precursor {FLYWEIGHT} (a_characteristic, a_context)
a_context.set_external_characteristic (

a_characteristic, flyweights.count)
set_context (a_context)

end

set_external_characteristic_range (
a_characteristic: like external_characteristic; lower, upper: INTEGER) is

-- Set external characteristic of current context
-- to a_characteristic for lower to upper flyweights.

require
a_characteristic_not_void: a_characteristic /= Void
valid_range: lower <= upper 

and then lower >= 1 and upper <= context.size
do

context.start; context.move (lower − 2)
context.set_external_characteristic (

a_characteristic, upper − lower + 1)
end

set_context (a_context: like context) is
-- Set context to a_context.

require
a_context_not_void: a_context /= Void

do
context := a_context

ensure
context_set: context = a_context

end

add_flyweight (a_flyweight: like item) is
-- Add a_flyweight to composite and update current context.
--|Extend flyweights.

do
context.start
if not flyweights.is_empty then

context.move (flyweights.count − 1)
end
context.insert (1)
flyweights.extend (

flyweight_factory.new_with_args (
[a_flyweight.characteristic, procedure]))

end

Assignment attempts 
?= are explained in 
appendixA, p 378.
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add_flyweights (some_flyweights: ARRAY [like item]) is
-- Extend current composite with some_flyweights.

require
some_flyweights_not_void: some_flyweights /= Void
no_void_flyweight: not some_flyweights.has (Void)
some_flyweights_not_empty: not some_flyweights.is_empty

local
i: INTEGER

do
from i := 1 until i > some_flyweights.count loop

add_flyweight (some_flyweights @ i)
i := i + 1

end
ensure

flyweight_count_increased: flyweights.count = 
old flyweights.count + some_flyweights.count

end

insert_flyweights (some_flyweights: ARRAY [like item]; an_index: INTEGER) is
-- Insert some_flyweights in current composite flyweight
-- starting from an_index.

require 
some_flyweights_not_void: some_flyweights /= Void
no_void_flyweight: not some_flyweights.has (Void)
some_flyweights_not_empty: not some_flyweights.is_empty
an_index_is_positive: an_index >= 0

local
i: INTEGER

do
if flyweights.is_empty then

add_flyweights (some_flyweights)
end

context.start
context.move (an_index − 2)
context.insert (some_flyweights.count)
from

flyweights.go_i_th (an_index − 1)
i := 1

until
i > some_flyweights.count

loop
flyweights.put_right (

flyweight_factory.new_with_args (
[(some_flyweights @ i).characteristic,
procedure]))

flyweights.forth
i := i + 1

end
ensure

flyweight_count_increased: flyweights.count = 
old flyweights.count + some_flyweights.count

end

feature -- Access

context: FLYWEIGHT_CONTEXT [G]
-- Extrinsic context of the flyweight
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feature -- Removal

remove_flyweight (a_flyweight: like item) is
-- Remove a_flyweight from composite and update current context.
-- (Extend flyweights.)

do
flyweights.search (a_flyweight)
context.start
context.move (flyweights.index − 1)
context.insert (−1)
flyweights.remove

end

feature -- Output

do_something (a_context: FLYWEIGHT_CONTEXT [G]) is
-- Do something on current composite flyweight
-- according to a_context.

require else
a_context_may_be_void: a_context = Void and then context /= Void

local
a_size: INTEGER

do
if a_context /= Void then

context := a_context
a_size := context.size
if a_size /= flyweights.count then

context.start
context.insert (flyweights.count − a_size)

end
end

from
start
context.start

until
after

loop
item.do_something (context)
forth
context.forth

end
ensure then

context_set: old context = Void implies context = a_context
end

feature {NONE} -- Constant

Flyweight_pool_count: INTEGER is 128
-- Number of flyweights that can be created

feature {NONE} -- Implementation

flyweights: LINKED_LIST [like item]
-- Parts of composite flyweight

flyweight_pool: HASH_TABLE [like item, H]
-- Pool of instantiated flyweights
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Flyweight pattern vs. Flyweight Library

This section illustrates the differences between the Flyweight pattern and its
componentized version, the Flyweight Library, on an example. Let’s consider again
the example of a physical library where users can borrow items (books, video
recorders, etc.).

A BOOK  is made of SENTENCEs, which are themselves made of
CHARACTERs. Thus, we can say that a SENTENCE is a COMPOSITE_FLYWEIGHT of
CHARACTERs.

flyweight_factory: FACTORY [like item] is
-- Factory of bolts

do
create Result.make (agent new_flyweight)

ensure
flyweight_factory_created: Result /= Void

end

new_flyweight (a_characteristic: H;
a_procedure: like procedure): like item is

-- New flyweight with characteristic a_characteristic
require

a_characteristic_not_void: a_characteristic /= Void
a_procedure_not_void: a_procedure /= Void

do
if not flyweight_pool.has (a_characteristic) then

create Result.make_from_procedure (a_characteristic, 
a_procedure)

flyweight_pool.put (Result, a_characteristic)
else

Result := flyweight_pool @ a_characteristic
end

ensure
flyweight_not_void: Result /= Void
flyweight_characteristic_set: Result.characteristic = a_characteristic

end

default_external_characteristic: G is
-- Default external characteristic
--|Should be effected as a once function.

do
create Result.make (

feature {FLYWEIGHT_CONSTANTS}.default_code)
ensure

default_external_characteristic_not_void: Result /= Void
definition: Result.code = 

feature {FLYWEIGHT_CONSTANTS}.default_code
end

invariant

procedure_not_void: procedure /= Void
context_not_void: context /= Void
flyweight_pool_not_void: flyweight_pool /= Void
consistent_flyweight_pool: flyweight_pool.count <= flyweight_pool_count

end
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Whether we use a direct pattern implementation to code the class SENTENCE
or apply the Flyweight Library is almost transparent for the users. In the case of a
direct implementation of the Flyweight pattern, we would have features like:

In the case of an implementation relying on the Flyweight Library, the code
becomes:

Only the creation of the composite flyweight SENTENCE differs because we need to
pass the agent called to draw shared flyweights (CHARACTERs) in the case of an
implementation using the Flyweight Library. 

The two code extracts shown above may seem very similar. Indeed, they look
very similar, but they are not. Here we simply reused existing classes to build our
own application, whereas we had to implement everything from scratch in the
previous example. This is one of the benefits of reuse described in chapter 2.

11.3  COMPONENTIZATION OUTCOME

The componentization of the Flyweight pattern, which resulted in the development
of the Flyweight Library, is a success because it meets the componentizability
quality criteria established in section 6.1.

• Completeness: The Flyweight Library covers all cases described in the
original Flyweight pattern.

• Usefulness: The Flyweight Library is useful because it provides a reusable
library from the Flyweight pattern description, which developers will be able
to apply to their programs directly; no need to implement the same design
scheme again and again because it is captured in the reusable component.

• Faithfulness: The Flyweight Library is similar to a direct implementation of
the Flyweight pattern, with the benefits of reusability. It just introduces
(constrained) genericity to have a reusable solution and uses the Composite
Library and the Factory Library described in previous chapters. The Flyweight
Library fully satisfies the intent of the original Flyweight pattern and keeps
the same spirit. Therefore I consider the Flyweight Library as being a faithful
componentized version of the Flyweight pattern.

new_sentence: SENTENCE is
-- New sentence

local
context: FLYWEIGHT_CONTEXT

do
create Result.make
Result.set_text (“Patterns are good; components are better”)
create context.make (‘e’)
Result.draw (context)

end

new_sentence: SENTENCE is
-- New sentence

local
context: FLYWEIGHT_CONTEXT [CHARACTER]

do
create Result.make (agent draw)
Result.set_text (“Patterns are good; components are better”)
create context.make ('e')
Result.do_something (context)

end
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• Type-safety: The Flyweight Library relies on constrained genericity, the
Composite Library, and the Factory Library. It also makes extensive use of
assertions. First, constrained genericity and Design by Contract™ are type-
safe in Eiffel. Second, chapters 8 and 10 explained that the Factory Library
and the Composite Library are type-safe. As a consequence, the Flyweight
Library is also type-safe.

• Performance: Comparing the implementation of the Flyweight Library with a
direct pattern implementation shows that the only differences are the use of
genericity and agents. Using genericity in Eiffel does not imply any
performance penalty. Using agents implies a performance overhead, but very
small on the overall application. Therefore, the performance of a system based
on the Flyweight Library will be in the same order as when implemented with
the Flyweight pattern directly.

• Extended applicability: The Flyweight Library does not cover more cases than
the original Flyweight pattern.

11.4  CHAPTER SUMMARY
• The Flyweight pattern suggests relying on object sharing when it would be too

costly to have one object per “entity”; instead it advises having a pool of
shared “flyweight” objects, each corresponding to one entity (for example a
character in a document editor).

• The “extrinsic” properties of flyweights are moved to a flyweight “context”
and computed on demand rather than stored in the corresponding class.

• The Flyweight pattern defines two kinds of flyweights: shared and unshared
flyweights, unshared flyweights being usually composed of shared ones.

• The Flyweight pattern is not a reusable solution; it is just a design idea that
developers have to implement anew whenever they want to use it.

• The Flyweight Library captures the idea of the Flyweight pattern into a
reusable component. It uses the Composite Library and on the Factory
Library; it also strongly relies on constrained genericity and on the Eiffel
agent mechanism.

• The Flyweight Library supposes unshared flyweights are always composites
of shared flyweights.

The performance 
overhead of agents is 
explained in detail in 
appendix A, p 390.

[Gamma 1995], p 
195-206.

See chapter 10.
See chapter 8.
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12   
Command and Chain of 
Responsibility
Fully componentizable
Two fully componentizable patterns have not been presented yet: Command and
Chain of Responsibility. The first one can be transformed into a reusable component
thanks to unconstrained genericity and agents, and its componentized version uses
the Composite Library introduced in the previous chapter. The second one is
componentizable thanks to unconstrained genericity only.

This chapter first describes the Command pattern and its different flavors
(history-executable and self-executable commands). Then it presents the Chain of
Responsibility pattern and its componentized version, the Chain of Responsibility
Library.

12.1  COMMAND PATTERN

The Command pattern is a widely used pattern that makes commands (requests)
first-class objects. Let’s study the pattern’s intent and possible implementations in
more detail.

Pattern description

The Command pattern was described by Meyer in Object-Oriented Software
Construction as a way to implement an undo-redo mechanism in text editors. Design
Patterns presents it as a way to “encapsulate a request as an object, thereby letting
you parameterize clients with different requests, queue or log requests, and support
undoable operations”.

Having commands as first-class objects enables combining them into
composite commands. (We will see later in this chapter how to combine the
Command pattern with the Composite Library.)

Besides, it is easy to add new commands to an existing architecture by writing
a new descendant of class COMMAND; no need to change existing classes.

See chapter 10, page 
147.

[Meyer 1988], p 285-
290.

[Gamma 1995], p 
233.

See chapter 10, page 
147.
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Here is the class diagram of a typical application using the Command pattern:

A COMMAND object is able to execute an action on a certain target. It is also possible
to undo and redo actions. The HISTORY keeps track of all executed commands.

An example APPLICATION class may look like this:
class

APPLICATION
create 

make
feature {NONE} -- Initialization

make is
-- Create a command and execute it. (Use the undo/redo mechanism.)

local
command_1: COMMAND_1
command_2: COMMAND_2

do
create command_1.make (True)
create command_2.make (False)
history.execute (command_1, [])
history.execute (command_2, [])
history.undo
history.execute (command_1, [])
history.undo; history.undo
history.redo; history.redo
history.execute (command_2, [])
history.execute (command_1, ["Command"])
history.execute (command_2, [])
history.undo
history.undo_all
history.redo_all

end
feature {NONE} -- Implementation

history: HISTORY is
-- History of executed commands

once
create Result.make

ensure
history_not_void: Result /= Void

end
end

APPLICATION HISTORY 
history * 

COMMAND 
commands

is_once_command 
execute* 
undo* 
redo* 

execute 
can_undo, can_redo 
undo, redo 
undo_all, redo_all 
commands, arguments 
extend 

+ 
COMMAND_1

execute+ 
undo+ 
redo+ 

+ 
COMMAND_2 

execute+ 
undo+ 
redo+ 

Class dia-
gram of a typ-
ical 
application 
using the 
Command 
pattern 

Example 
application 
using com-
mands

The argument of make 
specifies whether the 
command can be exe-
cuted only once.

Feature execute has 
two arguments: first 
the command to be 
executed, then some 
arguments to be given 
when executing the 
command.
The following section 
about the pattern 
implementation will 
explain why we need 
two arguments.
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In this example, the history always executes the commands. In GUI applications, it
is common to have commands executing themselves: for example, clicking on a
button calls a certain command to execute itself. In that case, it is up to the
COMMAND to register itself in the history during its execution. Here is the
corresponding class diagram:

Since both classes APPLICATION and COMMAND need to access the history, it is
moved to a common ancestor SHARED_HISTORY. The history is implemented as a
once function to ensure that the APPLICATION and the COMMAND objects access the
same history. 

Let’s now have a look at some points of implementation.

Implementation

Here are some issues that need to be taken care of when implementing the Command
pattern (in any object-oriented programming language):

• How can we manage the history of executed commands? If it were an attribute
of class COMMAND, we would end with one history per command, which is
not what we want. A proper solution is to introduce a class HISTORY with a
list of commands keeping the previously executed requests, which we can undo
or redo.

• How can we manage a history with several occurrences of a given COMMAND
object? A solution is to keep along with the list of commands, the list of their
arguments (or just use one list of [command, argument] pairs.)

 

APPLICATION 

HISTORY 
* 

COMMAND 
commands

SHARED_
HISTORY 

history 

has 
execute 
can_undo, can_redo 
undo, redo 
undo_all, redo_all 
commands, arguments 
extend 

+ 
COMMAND_1

execute+ 
undo+ 
redo+ 

+ 
COMMAND_2

execute+ 
undo+ 
redo+ 

is_once_command 
execute* 
undo* 
redo* 

Class dia-
gram of a 
command 
pattern vari-
ant

See [Meyer 1992], p 
113 about once rou-
tines.
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• Some commands keep information during execution that will be useful for the
undo afterwards. In that case, it is not possible to execute and put into the
history several times the same objects. I call these special commands “once
commands” (commands that can be executed only once). The class
COMMAND should have a boolean query is_once_command specifying whether
a command can be executed only once. If it is a once command then the
object must be cloned or a new instance must be instantiated before executing
it. Class COMMAND does not provide a setter set_once_command because being
a “once command” is a property of the command that should be set at creation
time and should not be changed afterwards.

The Command pattern’s description by [Gamma 1995] says that it allows to
“parameterize clients with different requests”. Design Patterns adds that “you can
express such parameterization in a procedural language with a callback function,
that is, a function that’s registered somewhere to be called at a later point”. Eiffel’s
agents provide a typed form of callback. 

The next section explains how the agents mechanism can help transform the
Command pattern into a reusable Eiffel component.

12.2  COMMAND LIBRARY

Representing actions to be executed as agents proved a successful idea and enabled
transforming the Command pattern into a reusable Eiffel component: the Command
Library. This section describes it in more detail.

Like the original pattern presented before, the Command Library is available
in two variants: the first variant lets the history execute commands; the second
variant provides commands that execute themselves.

Commands executed by the history

The Command Library uses agents to represent actions to be executed. A
COMMAND object is created with an agent action, which is called by feature execute,
and possibly a second agent undo_action for the undo mechanism. A COMMAND

object can only do one thing: executing action. The action may be called with
different arguments (thanks to feature execute_with_args). One can also create
different COMMAND objects with different agents to perform different tasks.

[Gamma 1995], p 
235.

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].



§12.2  COMMAND LIBRARY 191
Here is the class diagram of a typical application using the first variant of the
Command Library:

As mentioned before, one advantage of using the Command pattern is to be able to
compose different commands. The Command Library provides this ability by
relying on the Composite Library, which I presented in chapter 10. Indeed, the class
COMMAND inherits from COMPONENT [COMMAND], meaning it is possible to use
COMMAND objects in any COMPOSITE.

Here is the implementation of class COMMAND:
class

COMMAND

inherit

COMPONENT [COMMAND]
rename

do_something as execute
redefine

execute
end

create

make,
make_with_undo

 

APPLICATION HISTORY 
history 

COMMAND 
commands

command

* 
COMPONENT 

[G] 

+ 
COMPOSITE 

[G] 

parent 

item 

composite

do_something 
undo_something 

execute 
can_undo, can_redo 
undo, redo 
undo_all, redo_all 
commands, arguments 
extend 

action 
undo_action 
set_undo_action 
is_once_command 
execute 
execute_with_args 
undo, redo 

Class dia-
gram of a typ-
ical 
application 
using the first 
variant of the 
Command 
Library

Command 
supporting 
undo and 
redo
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feature {NONE} -- Initialization

make (an_action: like action; a_value: like is_once_command) is
-- Set action to an_action and is_once_command to a_value.

require
an_action_not_void: an_action /= Void

do
action := an_action
is_once_command := a_value

ensure
action_set: action = an_action
is_once_command_set: is_once_command = a_value

end

make_with_undo (an_action: like action; an_undo_action: like undo_action;
a_value: like is_once_command) is

-- Set action to an_action and undo_action to an_undo_action.
-- Set is_once_command to a_value.

require
an_action_not_void: an_action /= Void
an_undo_action_not_void: an_undo_action /= Void

do
action := an_action
undo_action := an_undo_action
is_once_command := a_value

ensure
action_set: action = an_action
undo_action_set: undo_action = an_undo_action
is_once_command_set: is_once_command = a_value

end

feature -- Access

action: PROCEDURE [ANY, TUPLE]
-- Action to be executed

undo_action: PROCEDURE [ANY, TUPLE]
-- Action to be executed to undo the effects of calling action

feature -- Status report

is_once_command: BOOLEAN
-- Can this command be executed only once?

valid_args (args: TUPLE): BOOLEAN is
-- Are args valid arguments for execute_with_args and redo?

do
Result := action.valid_operands ([args])

end

feature -- Status setting

set_undo_action (an_action: like undo_action) is
-- Set undo_action to an_action.

require
an_action_not_void: an_action /= Void

do
undo_action := an_action

ensure
undo_action_set: undo_action = an_action

end
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The routines execute, execute_with_args, undo, and redo are exported to class HISTORY
and its descendants because COMMANDs are executed by the HISTORY. (The
implementation will be different for the second variant of the Command Library
where we can ask COMMANDs to execute themselves.)

The text of class HISTORY appears below:

feature {HISTORY} -- Command pattern

execute is
-- Call action with an empty tuple as arguments.

do
if action.valid_operands ([[]]) then

action.call ([[]])
end

end

execute_with_args (args: TUPLE) is
-- Call action with args.

require
args_not_void: args /= Void
valid_args: valid_args ([args])

do
action.call ([args])

end

feature {HISTORY} -- Undo

undo (args: TUPLE) is
-- Undo last action. (Call undo_action with args.)

require
undo_action_not_void: undo_action /= Void
args_not_void: args /= Void
valid_args: undo_action.valid_operands ([args])

do
undo_action.call ([args])

end

feature {HISTORY} -- Redo

redo (args: TUPLE) is
-- Redo last undone action. (Call action with args.)

require
args_not_void: args /= Void
valid_args: valid_args ([args])

do
action.call ([args])

end

invariant

action_not_void: action /= Void

end

class

HISTORY

create

make

See “Commands exe-
cuting themselves”,  
page 197.

History of 
executed 
commands
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feature {NONE} -- Initialization

make is
-- Initialize history. (Initialize commands and arguments.)

do
create {TWO_WAY_LIST [COMMAND]} commands.make
create {TWO_WAY_LIST [TUPLE]} arguments.make

end

feature -- Status report

can_undo: BOOLEAN is
-- Can last command be undone?

do
Result := (not commands.is_empty

and not commands.off
and then commands.item.undo_action /= Void)

ensure
definition: Result = (not commands.is_empty

and not commands.off and then
commands.item.undo_action /= Void)

end

can_undo_all: BOOLEAN is
-- Can all previously executed commands be undone?

local
a_cursor: CURSOR

do
a_cursor := commands.cursor
Result := True
from
until 

commands.before or not Result 
loop

Result := Result and commands.item.undo_action /= Void
commands.back

end
commands.go_to (a_cursor)

end

can_redo: BOOLEAN is
-- Can last command be executed again?

do
Result := (commands.index /= commands.count )

ensure
definition: Result = (commands.index /= commands.count)

end

can_redo_all: BOOLEAN is
-- Can all previously executed commands be executed again?

do
Result := True

ensure
definition: Result

end

feature -- Command pattern
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execute (a_command: COMMAND; args: TUPLE) is
-- Execute a_command.

require
a_command_not_void: a_command /= Void
args_not_void: args /= Void

local
new_command: COMMAND

do
if a_command.is_once_command then

new_command := clone (a_command)
new_command.execute_with_args (args)
extend (new_command, args)

else
a_command.execute_with_args (args)
extend (a_command, args)

end
ensure

can_undo: can_undo
one_more: commands.count = old commands.index + 1
one_more_argument: arguments.count = old arguments.index + 1
is_last: commands.islast
is_last_argument: arguments.islast
command_inserted: not a_command.is_once_command

implies commands.last = a_command
arguments_inserted: arguments.last = args

end
feature -- Undo/Redo

undo is
-- Undo last command. (Move cursor of commands and
-- arguments one step backward.)

require
can_undo: can_undo

do
commands.item.undo (arguments.item)
commands.back; arguments.back

ensure
can_redo: can_redo
command_cursor_moved_backward:

commands.index = old commands.index − 1
argument_cursor_moved_backward:

arguments.index = old arguments.index − 1
end

redo is
-- Redo next command. (Move cursor of commands and
-- arguments one step forward.)

require
can_redo: can_redo

do
commands.forth; arguments.forth
commands.item.redo (arguments.item)

ensure
can_undo: can_undo
command_cursor_moved_forward:

commands.index = old commands.index + 1
argument_cursor_moved_forward:

arguments.index = old arguments.index + 1
end
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feature -- Multiple Undo/Redo

undo_all is
-- Undo all commands. 
-- (Start at current position.)

require
can_undo_all: can_undo_all

do
from until commands.before loop

undo
end

ensure
cannot_undo: not can_undo
before: commands.before
arguments_before: arguments.before

end

redo_all is
-- Redo all commands. 
-- (Start at current position.)

require
can_redo_all: can_redo_all

do
from until commands.index = commands.count loop

redo
end

ensure
cannot_redo: not can_redo
is_last: commands.islast 
is_last_argument: arguments.islast

end

feature {NONE} -- Implementation (Access)

commands: LIST [COMMAND]
-- History of commands

arguments: LIST [TUPLE]
-- History of arguments (corresponding to the history of commands)

feature {NONE} -- Implementation (Element change)

extend (a_command: COMMAND; args: TUPLE) is
-- Extend commands with a_command and arguments with args.

require
a_command_not_void: a_command /= Void
args_not_void: args /= Void

do
from commands.forth until commands.after loop

commands.remove
end
from arguments.forth until arguments.after loop

arguments.remove
end
commands.extend (a_command)
arguments.extend (args)
commands.finish
arguments.finish
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Clients will use the Command Library in a slightly different way from a traditional
pattern implementation. They will pass agents to the creation procedure of class
COMMAND to get command objects ready to be used instead of writing descendants
of a deferred class COMMAND.

Here is a typical creation instruction using the Command Library:

where a_command is of type COMMAND, do_something and undo_something are
routines declared in the class where the above code appears; the third argument
specifies whether the command can be executed only once.

Class COMMAND also has a creation procedure make with only two arguments, the first
one being an agent corresponding to the action to be executed.

Executing commands is the same in both cases:

where history is of type HISTORY and the tuple given as second argument of execute
corresponds to the arguments to be passed to the routine that will be executed (do_
something in our example).

Commands executing themselves

The second variant of the Command Library allows calling execute directly on
commands.

ensure
one_more: commands.count = old commands.index + 1
one_more_argument: arguments.count = old arguments.index + 1
is_last: commands.islast
is_last_argument: arguments.islast
command_inserted: commands.last = a_command
arguments_inserted: arguments.last = args

end

invariant

commands_not_void: commands /= Void
no_void_command: not commands.has (Void)
commands_not_after: not commands.after
arguments_not_void: arguments /= Void
consistent: commands.count = arguments.count
same_cursor_position: commands.index = arguments.index

end

create a_command.make_with_undo (
agent do_something,
agent undo_something,
True
)

history.execute (
a_command,
[some_arguments_for_feature_do_something]

)

See “Example appli-
cation using com-
mands”,  page 188.

Creation of a 
command 
with the Com-
mand Library

Execution of 
a command
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The corresponding class diagram is given below:

The SHARED_HISTORY class simply declares a once function returning the history.
Classes APPLICATION and COMMAND inherit from SHARED_HISTORY to share the
same history.

The implementation of class HISTORY is the same as in the first variant of the
Command Library. Therefore it is not reproduced here.

class

SHARED_HISTORY

feature {NONE} -- Implementation

history: HISTORY is
-- History of executed commands

once
create Result.make

ensure
history_not_void: Result /= Void

end

end
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history 
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execute 
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undo , redo 
undo_all, redo_all 
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extend 

action 
undo_action 
set_undo_action 
is_once_com m and 
execute 
execute_with_args 
undo , redo 

Class dia-
gram of an 
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SHARED_
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declaring the 
history

See “History of exe-
cuted commands”,  
page 193.
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The implementation of class COMMAND is slightly different: the two features
execute and execute_with_args need to take care of registering the command into the
history (after doing a clone if it is a once command). Here are the corresponding texts:

From the client, creating a command with either version of the Command
Library is the same:

The difference is how clients execute commands: in the first version, we called
execute on the history:

In this second version, we can call execute (or execute_with_args) directly on the
command (no need to pass it as an argument) because features execute and execute_
with_args take care of registering the command into the history:

class

COMMAND
...
feature -- Command pattern

execute is
-- Call action with an empty tuple as arguments.

do
if action.valid_operands ([[]]) then

if is_once_command and then history.has (Current) then
history.extend (clone (Current), [])

else
history.extend (Current, [])

end
action.call ([[]])

end
end

execute_with_args (args: TUPLE) is
-- Call action with args.

require
args_not_void: args /= Void
valid_args: valid_args ([args])

do
if is_once_command and then history.has (Current) then

history.extend (clone (Current), args)
else

history.extend (Current, args)
end
action.call ([args])

end
...
end

create a_command.make_with_undo (agent do_something,
agent undo_something,
True)

history.execute (a_command, [])
history.execute (a_command, ["Command"])

a_command.execute
a_command.execute_with_args ( ["Command"])

Commands 
registering 
themselves in 
the history 
during execu-
tion

Creating a 
command 
with the Com-
mand Library

Asking the 
history to exe-
cute a com-
mand

Executing a 
command 
directly
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The second variant of the library is more in line with object-orientation because it
avoids passing command objects as arguments to the feature execute and execute_
with_args. However, the first variant may be useful in some cases; hence the reason
to provide both versions in the final Command Library.

Componentization outcome

The componentization of the Command pattern, which resulted in the development
of the Command Library, is a success because it meets the componentizability
quality criteria established in section 6.1:

• Completeness: The Command Library covers all cases described in the
original Command pattern.

• Usefulness: The Command Library is useful because it provides a reusable
solution to the Command pattern, which is as powerful as an implementation
from scratch of the pattern, and it is easy to use by clients.

• Faithfulness: The architecture of the Command Library and architecture of
systems designed and implemented with the Command Library are slightly
different from the original Command pattern and the systems that are based
on it (use of agents vs. inheritance). However, the Command Library fully
satisfies the intent of the original Command and keeps the same spirit.
Therefore I consider the Command Library as being a faithful componentized
version of the Command pattern.

• Type-safety: The Command Library relies on agents and on the Composite
Library. The agent mechanism is type-safe in Eiffel and the Composite
Library is also type-safe as explained in section 10.2. As a consequence, the
Command Library is type-safe too.

• Performance: Comparing the implementation of the Command Library with a
direct pattern implementation shows that the only differences are the use of
agents and of the Composite Library. Chapter 10 explained that using the
Composite Library has no performance impact. Using agents implies a
performance overhead, but very small on the overall application. Therefore,
the performance of a system based on the Command Library will be in the
same order as when implemented with the Command pattern directly.

• Extended applicability: The Command Library does not cover more cases
than the original Command pattern.

Let’s examine another design pattern, the Chain of Responsibility, which could be
transformed into a reusable Eiffel library thanks to genericity.

12.3  CHAIN OF RESPONSIBILITY PATTERN

The Chain of Responsibility pattern addresses situations where several objects may
possibly handle a client request but one does not know in advance which object will
eventually treat the request. Let’s now take a closer look at the pattern.

Pattern description

The Chain of Responsibility pattern “avoid[s] coupling the sender of a request to its
receiver by giving more than one object a chance to handle the request. [It] chain[s] the
receiving objects and pass[es] the request along the chain until an object handles it”.

The Command 
Library is available 
in two versions: in the 
first version, com-
mands are executed 
by the history; in the 
second version, com-
mands can execute 
themselves.

See “Componentiza-
tion outcome”,  page 
160.

The performance 
overhead of agents is 
explained in detail in 
appendix A, p 390.

[Gamma 1995], p 
223.
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Here is the class diagram of a typical application using the Chain of
Responsibility pattern:

The APPLICATION sends a request to a HANDLER. A handler belongs to a chain of
handlers (the “chain of responsibility”). If the handler receiving the request does not
know how to process this request (the INTERMEDIATE_HANDLER in the previous
diagram), it simply forwards the request to its neighbor. The neighbor may be able
to handle the request; if yes, it handles it, otherwise it passes the request again to the
next link on the chain. The request follows the “chain of responsibility” until one
HANDLER is able to handle the request (the FINAL_HANDLER in the previous
picture). Only one object handles the request.

A HANDLER only needs to know the next handler on the chain; it does not
need to know which handler will process the request in the end. Hence less coupling
between objects and more flexibility. It is also easy to change responsibilities or add
or remove potential handlers from a chain because other objects do not know which
handler will eventually take care of the request.

However there is no guarantee that a request gets handled in the end. There
may be no handler with the right qualification to handle a special request. The
boolean query handled gives clients the ability to check whether their requests have
been processed.

Pattern implementation

Contracts play an important role in implementing the Chain of Responsibility pattern to

• enforce that some objects can_handle requests and some others cannot;

• provide some information to clients through the query handled.
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HANDLER 

+ 
INTERMEDIATE_
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FINAL_HANDLER 

next

can_handle+ 
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can_handle+
do_handle+ 

handle 
can_handle* 
do_handle* 
handled 
set_next 

APPLICATION
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This property differ-
entiates the Chain of 
Responsibility pat-
tern from classes like 
ACTION_SEQUENCE 
in EiffelBase (used 
for the agent mecha-
nism) where all 
actions of the 
sequence are exe-
cuted, not only one.
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The implementation of feature handle of class HANDLER appears next. Features can_
handle and handled are two boolean queries of class HANDLER; they are deferred in
the parent class HANDLER and effected in descendants. (For example, can_handle is
likely to return False for an INTERMEDIATE_HANDLER and True for a FINAL_
HANDLER.)

The handle routine could also have arguments. What this thesis presents here is just
one possible implementation of the pattern. The next section will explain how to
componentize it.

12.4  CHAIN OF RESPONSIBILITY LIBRARY

Jézéquel et al. use genericity to implement a reusable class from the Chain of
Responsibility pattern. They have a class HANDLER [REQUEST] where REQUEST is
the formal generic parameter. Genericity proved useful to componentize the pattern.

I added the notion of “being able to handle a request” (can_handle), which is
in the pattern’s book description but not taken into account by Jézéquel et al.’s
solution. I wanted to include that point into the design of the library because it
appears quite central in the pattern’s description by Gamma et al. For example, they
say: “if the [object of type] ConcreteHandler can handle the request, it does so;
otherwise it forwards the request to its successor”.

deferred class

HANDLER
...
feature -- Basic operation

handle is
-- Handle request if can_handle otherwise forward it to next.
-- If next is void, set handled to False.

do
if can_handle then

do_handle
handled := True

else
if next /= Void then

next.handle
handled := next.handled

else
handled := False

end
end

ensure
handled_if_possible: can_handle implies handled
handled_by_next_otherwise:

(not can_handle and then next /= Void) implies
handled = next.handled

not_handled_if_next_is_void: 
(not can_handle and then next = Void) implies not handled

end
...
end

Eiffel allows having 
fully implemented 
features in a deferred 
class.

Handling 
requests

[Jézéquel 1999], p 
142.

[Gamma 1995], p 
226.
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The result is a reusable Eiffel Chain of Responsibility Library. Following
Jézéquel et al.’s idea, it is made of one generic class HANDLER [G] (where G is the
request) with a feature handle. (The actual implementation of handle is done in
feature do_handle that descendants of HANDLER must effect.)

Here is the class diagram of a possible application using the Chain of
Responsibility Library. (Classes INTERMEDIATE_HANDLER, FINAL_HANDLER, and
APPLICATION are part of the example application; they do not belong to the library.):

A HANDLER knows the next element on the chain of responsibility. There is also a
procedure set_next to add a next element to an existing object. (For example, when
changing a “final handler” that does not have any neighbor into an “intermediate
handler” that has one.)

The class HANDLER also provides two boolean queries: can_handle to specify
what request a HANDLER object can process, and handled to tell clients whether their
requests have been taken care of. Both queries are deferred in class HANDLER and
must be effected in descendants.

The text of the library class HANDLER is given next:

deferred class

HANDLER [G]

feature {NONE} -- Initialization

make (a_successor: like next) is
-- Set next to a_successor.

require
a_successor_not_void: a_successor /= Void

do
next := a_successor

ensure
next_set: next = a_successor

end

Jézéquel et al. pre-
sented a reusable 
class HANDLER [G] in 
Design Patterns and 
Contracts. The solu-
tion provided here is 
extended with the 
notion of possibility 
to handle (ensured by 
assertions) and gets 
closer to the pattern 
description in Design 
Patterns.

* 
HANDLER 

[G] 

+ 
INTERMEDIATE_

HANDLER 
[G] 

+ 
FINAL_HANDLER

[G] 

next

can_handle+ 
do_handle+ 

can_handle+
do_handle+ 

handle 
can_handle* 
do_handle* 
handled 
set_next 

APPLICATION Class dia-
gram of a typ-
ical 
application 
using the 
Chain of 
Responsibil-
ity Library

The class FINAL_
HANDLER [G] is pro-
vided as part of the 
Chain of Responsibil-
ity Library as a con-
venience for the users 
who may need such a 
class, but it could be 
omitted. 

Chain of 
Responsibil-
ity Library



COMMAND AND CHAIN OF RESPONSIBILITY §12204
feature -- Access

next: HANDLER [G]
-- Successor in the chain of responsibility

feature -- Status report

can_handle (a_request: G): BOOLEAN is deferred end
-- Can current handle a_request?

handled: BOOLEAN
-- Has request been handled?

feature -- Basic operation

handle (a_request: G) is
-- Handle a_request if can_handle otherwise forward it to next.
-- If next is void, set handled to False.

do
if can_handle (a_request) then

do_handle (a_request)
handled := True

else
if next /= Void then

next.handle (a_request)
handled := next.handled

else
handled := False

end
end

ensure
handled_if_possible: can_handle (a_request) implies handled
handled_by_next_otherwise: (not can_handle (a_request)

and then next /= Void) implies handled = next.handled
not_handled_if_next_is_void: (not can_handle (a_request)

and then next = Void) implies not handled
end

feature -- Element change

set_next (a_successor: like next) is
-- Set next to a_successor.

do
next := a_successor

ensure
next_set: next = a_successor

end

feature {NONE} -- Implementation

do_handle (a_request: G) is
-- Handle a_request.

require
can_handle: can_handle (a_request)

deferred
end

end

The routine set_next 
accepts Void argu-
ments to provide the 
ability to remove 
parts of the chain of 
responsibility. Hence 
no precondition a_
successor /= Void.
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Here is an example of what a concrete descendant of class HANDLER [G] could look like:

It effects do_handle (that performs the actual request processing when possible) and
the query can_handle (which specifies what kind of requests instances of this class
will handle). In this example, objects of type FINAL_REQUEST [SOME_TYPE] will be
handled if and only if the request given as argument of feature handle is non-void.

We could go even further in terms of reusability and transform the routines can_handle
and do_handle into calls to agents. As a consequence, the class HANDLER would not be
deferred; hence no need to write descendants of HANDLER anymore.

Componentization outcome

The componentization of the Chain of Responsibility pattern, which resulted in the
development of the Chain of Responsibility Library, is a success because it meets
the componentizability quality criteria established in section 6.1:

• Completeness: The Chain of Responsibility Library covers all cases described
in the original Chain of Responsibility pattern.

• Usefulness: The Chain of Responsibility Library is useful because it provides
a reusable library from the Chain of Responsibility pattern description, which
developers will be able to apply to their programs directly; no need to
implement the same design scheme again and again because it is captured in
the reusable component.

class

FINAL_HANDLER [G]

inherit

HANDLER [G]

create

default_create,
make

feature -- Status report

can_handle (a_request: G): BOOLEAN is
-- Can current handle a_request?

do
Result := (a_request /= Void)

ensure then
a_request_not_void: Result implies a_request /= Void

end

feature {NONE} -- Implementation

do_handle (a_request: G) is
-- Handle a_request.

do
-- Do something.

end

end

Concrete 
descendant of 
class HAN-
DLER [G]
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• Faithfulness: The Chain of Responsibility Library is similar to an
implementation of the Chain of Responsibility pattern with the benefits of
reusability; it just introduces (unconstrained) genericity to have a reusable
solution. The Chain of Responsibility Library fully satisfies the intent of the
original Chain of Responsibility pattern and keeps the same spirit. Therefore I
consider the Chain of Responsibility Library as being a faithful
componentized version of the Chain of Responsibility pattern.

• Type-safety: The Chain of Responsibility Library relies on unconstrained
genericity and makes extensive use of assertions. Both mechanisms are type-
safe in Eiffel. As a consequence, the Chain of Responsibility Library is also
type-safe.

• Performance: Comparing the implementation of the Chain of Responsibility
Library with a direct pattern implementation shows that the only difference is
the use of unconstrained genericity. Using genericity in Eiffel does not imply
any performance overhead Therefore, the performance of a system based on
the Chain of Responsibility Library will be in the same order as when
implemented with the Chain of Responsibility pattern directly.

• Extended applicability: The Chain of Responsibility Library does not cover
more cases than the original Chain of Responsibility pattern.

12.5  CHAPTER SUMMARY
• The Command pattern encapsulates requests (“commands”) into objects,

making it possible to build composite commands.
• A “history” keeps all executed commands, making it possible to undo or redo

previously executed requests.
• There exist several possible implementations of the Command pattern: one

variant forces to ask the history to execute commands; another variant allows
executing commands directly.

• The Command pattern is fully componentizable thanks to agents in particular.
• The resulting Command Library is available in two variants (like the original

pattern): the first variant forces client applications to go through the history to
execute commands; the second variant enables executing commands directly
(commands register themselves directly into the history at execution time).

• The Chain of Responsibility pattern describes a way to handle client requests
by a chain of objects: if one object cannot handle the demand, it forwards it
to its neighbor until one handler can process the request (or the end of the
“chain of responsibility” is reached).

• The Chain of Responsibility pattern allows minimum coupling between
objects and makes it easy to add or remove handlers from the chain or change
the responsibilities of existing handlers.

• The Chain of Responsibility pattern is fully componentizable thanks to
genericity.

• The Chain of Responsibility Library makes extensive use of contracts.

[Gamma 1995], p 
233-242.

See “Mechanisms 
used to transform 
componentizable 
patterns into reusable 
Eiffel components”,  
page 91.

[Gamma 1995], p 
223-232.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.



13   
Builder, Proxy and State
Componentizable but not comprehensive
All six previous chapters were devoted to fully componentizable patterns
corresponding to the level 1.3.1 of the pattern componentizability classification
presented earlier.

The present chapter is going one level down in the hierarchy to focus on
patterns of category “1.3.2 Componentizable but not comprehensive”: Builder,
Proxy, and State. All three patterns can be turned into reusable components;
however, the resulting components do not cover all possible cases of the original
pattern (hence the expression “not comprehensive”).

The chapter follows the same description scheme for each pattern: first, it
presents the pattern and explains how to implement it in Eiffel; second, it focuses on
the componentization work, highlighting the difficulties of providing a
comprehensive component solution.

13.1  BUILDER PATTERN

The Builder pattern is a “creational design pattern”; therefore it has some common
points with the Abstract Factory pattern presented in chapter 8. Let’s see how we
can take advantage of these similarities to develop a reusable Builder Library.

Pattern description

The purpose of the Builder pattern is to “separate the construction of a complex
object from its representation so that the same construction process can create
different representations”.

A “complex object” means a multi-part product. The key idea of a “builder”
is to construct this product step-by-step, part-by-part. Forthcoming examples will
illustrate the point.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

See “Definition: 
Componentization”,  
page 26.

[Gamma 1995], p 97.
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The following class diagram shows the relationships between classes involved
in the Builder pattern:

Here is how everything works: the CLIENT — called Director in Design Patterns —
notifies the BUILDER whenever a new product should be built. The deferred
BUILDER does not know about the type of the product it will build. Only the
effective builder MY_BUILDER has knowledge about the product to build. This
product is composed of several parts, two in this example: part_a of type PART_A and
part_b of type PART_B. Class MY_BUILDER effects the procedure build inherited from
BUILDER to successively call features build_product (to create an instance of MY_
PRODUCT), build_part_a and build_part_b to construct the parts of the new product,
which is made available to clients through the attribute last_product.

In fact, last_product is defined as a deferred function in the parent class BUILDER returning
an instance of type ANY, and it is effected as an attribute in the heir MY_BUILDER.

From this description, the Builder and the Abstract Factory design patterns
appear to have similar goals, but they are not quite the same: the Builder insists on
constructing a multi-part product step-by-step whereas the Abstract Factory focuses
on families of objects; the Builder returns the product when the construction process
is complete whereas the Abstract Factory returns the new instance immediately. We
will see later whether this resemblance can help us turning the Builder pattern into
a reusable component.

The CLIENT is initialized with a BUILDER given as argument to the creation
routine make. This ensures that a valid instance of class CLIENT can never have a
void builder. Procedure build is the core of class CLIENT; it actually builds the multi-
part product by calling the build feature of class BUILDER.

A Builder Library?

The example implementation of the Builder design pattern given above targets a
two-part product (part_a, part_b). It can easily be extended to a n-part product —
although it may quickly become tiresome. Thanks to genericity, it was possible to
develop some library classes that handle the usual cases where programmers would
apply the Builder pattern, for example a product composed of two or three elements.

However, this “Builder Library” is not exhaustive: it provides a builder for
two-part products (which I call “two-part builder”) and another one for three-part
products (“three-part builder”). It could include four-part and five-part builders as
well, but it can hardly cover all possible cases. Indeed, products that a builder can
create have no reason to have common properties. In particular, they may be
composed of as many parts they like: it is impossible to foresee how many build_
part_* features the builder should contain. Hence the categorization as “1.3.2
Componentizable but not comprehensive”. 

 
CLIENT * 

BUILDER 

+ 
MY BUILDER MY_PRODUCT

PART_A 

my_builder 

last_product+

PART_B 

part_a

part_b

build build* 
last_product* 

build+ 
build_product 
build_part_a 
build_part_b 

set_part_a 
set_part_b 

Class dia-
gram of a typ-
ical 
application 
using the 
Builder pat-
tern

[Gamma 1995], p 97-
106.

The Abstract Factory 
pattern is described 
in section 8.1, page 
117.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
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Let’s describe a possible Eiffel implementation of such two-part and three-part
builders. They would have a common ancestor class BUILDER [G] defining the
procedure build and the query last_product:

“Two-part builder”

The following class text describes the case of builder to construct two-part products.
This class TWO_PART_BUILDER [F, G, H] is parameterized by three generic
parameters: the first one corresponds to the type of products the builder can
construct and the last two give the types of the product parts. In other words, TWO_
PART_BUILDER [F, G, H] builds products of type F, these products being composed
of two parts, the first part of type G and second part of type H. This property of the
products to be built are expressed in class BUILDABLE, to which actual products
need to conform.

The implementation of class TWO_PART_BUILDER relies on the Factory
Library presented in chapter 8. Using factories makes the creation of product parts
more flexible because one can pass any agent as long as it has a matching signature
and creates the product parts; one is not restricted to a fixed list of creation
procedures.

deferred class

BUILDER [G]

feature -- Access

last_product: G is
-- Product under construction

deferred
end

feature -- Status report

is_ready: BOOLEAN is
-- Is builder ready to build last_product?

deferred
end

feature -- Basic operations

build is
-- Build last_product.

require
is_ready: is_ready

deferred
ensure

last_product_not_void: last_product /= Void
end

end

class

TWO_PART_BUILDER [F −> BUILDABLE, G, H]

inherit

BUILDER [F]

Common 
interface to 
all builders

Two-part 
builder
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create
make

feature {NONE} -- Initialization
make (f: like factory_function_f; g: like factory_function_g;

h: like factory_function_h) is
-- Set factory_function_f to f. Set factory_function_g to g.
-- Set factory_function_h to h.

require
f_not_void: f /= Void
g_not_void: g /= Void
h_not_void: h /= Void

do
factory_function_f := f
factory_function_g := g
factory_function_h := h
create f_factory.make (factory_function_f)
create g_factory.make (factory_function_g)
create h_factory.make (factory_function_h)

ensure
factory_function_f_set: factory_function_f = f
factory_function_g_set: factory_function_g = g
factory_function_h_set: factory_function_h = h

end
feature -- Access

last_product: F
-- Product under construction

feature -- Status report

is_ready: BOOLEAN is
-- Is builder ready to build last_product?

do
Result := valid_args ([], [], [])

end

valid_args (args_f, args_g, args_h: TUPLE): BOOLEAN is
-- Are args_f, args_g and args_h valid arguments to build last_product?

do
Result := factory_function_f.valid_operands (args_f)

and then factory_function_g.valid_operands (args_g)
and then factory_function_h.valid_operands (args_h)

end

feature -- Basic operations
build is

-- Build last_product.
-- (Successively call build_g and build_h to build product parts.)

do
last_product := f_factory.new
check

last_product_not_void: last_product /= Void
end
build_g ([])
build_h ([])

ensure then
g_not_void: last_product.g /= Void
h_not_void: last_product.h /= Void

end
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build_with_args (args_f, args_g, args_h: TUPLE) is
-- Build last_product with args_f. (Successively call build_g with
-- args_g and build_h with args_h to build product parts.)

require
valid_args: valid_args (args_f, args_g, args_h)

do
last_product := f_factory.new_with_args (args_f)
check

last_product_not_void: last_product /= Void
end
build_g (args_g)
build_h (args_h)

ensure
g_not_void: last_product.g /= Void
h_not_void: last_product.h /= Void

end

feature -- Factory functions

factory_function_f: FUNCTION [ANY, TUPLE, F]
-- Factory function creating new instances of type F

factory_function_g: FUNCTION [ANY, TUPLE, G]
-- Factory function creating new instances of type G

factory_function_h: FUNCTION [ANY, TUPLE, H]
-- Factory function creating new instances of type H

feature {NONE} -- Basic operations

build_g (args_g: TUPLE) is
-- Set last_product.g with a new instance of type G 
-- created with arguments args_g.

require
last_product_not_void: new_product /= Void
valid_args_g: factory_function_g.valid_operands (args_g)

do
last_product.set_g (g_factory.new_with_args (args_g))

ensure 
g_not_void: last_product.g /= Void

end

build_h (args_h: TUPLE) is
-- Set last_product.h with a new instance of type H
-- created with arguments args_h.

require
last_product_not_void: last_product /= Void
valid_args_h: factory_function_h.valid_operands (args_h)

do
last_product.set_h (h_factory.new_with_args (args_h))

ensure
h_not_void: last_product.h /= Void

end

feature {NONE} -- Factories

f_factory: FACTORY [F]
-- Factory of objects of type F



BUILDER, PROXY AND STATE §13212
The generic class TWO_PART_BUILDER [F, G, H] relies on the Factory Library. It
needs two factories: g_factory to create the first product part, which is of type G, and
h_factory to build the second part, of type H, plus one more factory (f_factory) to
create a new instance of the product (of type F). Now, into the details:

• The creation procedure make takes three arguments: they are used to create the
factories f_factory, g_factory, and h_factory mentioned above.

• The core of class TWO_PART_BUILDER [F, G, H] are the procedures build and
build_with_args, which build last_product of type F, part by part: the first two
lines create an empty product by calling the function new on the product
factory f_factory or new_with_args with args_f passed as argument; then it calls
the internal features build_g and build_h, which build the product parts one at
a time. Procedures build_g and build_h are not part of the interface of class
TWO_PART_BUILDER [F, G, H] (they are exported to NONE, meaning to no
client).

• The formal generic parameter F of class TWO_PART_BUILDER [F, G, H] is
constrained by class BUILDABLE, meaning that the actual parameter type will
have to conform to BUILDABLE, which captures the common properties that a
product must satisfy to be created through a “two-part builder”.

The text of class BUILDABLE is reported next:

g_factory: FACTORY [G]
-- Factory of objects of type G

h_factory: FACTORY [H]
-- Factory of objects of type H

invariant

factory_function_f_not_void: factory_function_f /= Void
factory_function_g_not_void: factory_function_g /= Void
factory_function_h_not_void: factory_function_h /= Void
f_factory_not_void: f_factory /= Void
g_factory_not_void: g_factory /= Void
h_factory_not_void: h_factory /= Void

end

deferred class

BUILDABLE

feature -- Access

g: ANY
-- First part of the product to be created

h: ANY
-- Second part of the product to be created

feature {TWO_PART_BUILDER} -- Status Setting

See chapter 8.

Class 
BUILD-
ABLE defin-
ing the 
properties 
that any 
“buildable” 
product must 
satisfy
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A better (more typed) version of class BUILDABLE would be to make it generic and
have two generic parameters corresponding to the product parts, namely a class
BUILDABLE [G, H], and g of type G and h of type H. However, such an
implementation would yield declaring the “two-part builder” as TWO_PART_
BUILDER [F -> BUILDABLE [G, H]; G; H], which is not permitted by the current
version of Eiffel; it should be possible with the next version of the language.

The two following classes — APPLICATION and PRODUCT — give an
example of how to use this Builder Library:

set_g (a_g: like g) is
-- Set g to a_g.

require
a_g_not_void: a_g /= Void

do
g := a_g

ensure
g_set: g = a_g

end

set_h (a_h: like h) is
-- Set h to a_h.

require
a_h_not_void: a_h /= Void

do
h := a_h

ensure
h_set: h = a_h

end

end

class

APPLICATION

create

make

feature {NONE} -- Initialization

make is
-- Build a new two-part product with a two-part builder.

local
my_builder: TWO_PART_BUILDER [TWO_PART_PRODUCT,

PART_A, PART_B]
my_product: TWO_PART_PRODUCT

do
create my_builder.make (agent new_product,

agent new_part_a,
agent new_part_b)

my_builder.build_with_args (["Two-part product"], ["Part A"], ["Part B"])
my_product := my_builder.last_product

end

feature -- Factory functions

See section 12.6 of 
[Meyer 200?b] about 
recursive generic 
constraints.

Client appli-
cation using a 
two-part 
builder
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APPLICATION is the root class of this example application. It creates a new two-part
product using a “two-part builder” (see creation routine make). The class text below
describes what a “two-part product” looks like:

new_product (a_name: STRING): TWO_PART_PRODUCT is
-- New object of type TWO_PART_PRODUCT from a_name

require
a_name_not_void: a_name /= Void
a_name_not_empty: not a_name.is_empty

do
create Result.make (a_name)

ensure
new_product_not_void: Result /= Void
name_set: Result.name = a_name

end

new_part_a (a_name: STRING): PART_A is
-- New object of type PART_A from a_name

require
a_name_not_void: a_name /= Void
a_name_not_empty: not a_name.is_empty

do
create Result.make (a_name)

ensure
new_part_a_not_void: Result /= Void
name_set: Result.name_a = a_name

end

new_part_b (a_name: STRING): PART_B is
-- New object of type PART_B from a_name

require
a_name_not_void: a_name /= Void
a_name_not_empty: not a_name.is_empty

do
create Result.make (a_name)

ensure
new_part_b_not_void: Result /= Void
name_set: Result.name_b = a_name

end
end

class
TWO_PART_PRODUCT

inherit
BUILDABLE

rename
g as part_a,
h as part_b,
set_g as set_part_a,
set_h as set_part_b

redefine
part_a,
part_b 

end
create

make

Kind of prod-
uct created by 
a two-part 
builder
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with PART_A (and similarly PART_B) written as follows:

feature {NONE} -- Initialization
make (a_name: like name) is

-- Set name to a_name.
require

a_name_not_void: a_name /= Void
a_name_not_empty: not a_name.is_empty

do
name := a_name

ensure
name_set: name = a_name

end
feature -- Access

name: STRING
-- Name of product part

part_a: PART_A
-- First part of product

part_b: PART_B
-- Second part of product 

invariant
name_not_void: name /= Void
name_not_empty: not name.is_empty

end

class

PART_A

create

make

feature {NONE} -- Initialization

make (a_name: like name_a) is
-- Set name_a to a_name.

require
a_name_not_void: a_name /= Void
a_name_not_empty: not a_name.is_empty

do
name_a := a_name

ensure
name_a_set: name_a = a_name

end

feature -- Access

name_a: STRING
-- Name of product part

invariant

name_a_not_void: name_a /= Void
name_a_not_empty: not name_a.is_empty

end

Product part



BUILDER, PROXY AND STATE §13216
“Three-part builder” and then?

We can easily imagine providing two kinds of builders, one for two-part products
and another one for three-part products. By symmetry with the previous TWO_PART_
BUILDER, the class could be called THREE_PART_BUILDER, whose header would
look like this:

But this cannot be extended much further. It would even be difficult to try to apply
it for the Maze example presented in [Gamma 1995] and [Jézéquel 1999]. As a
matter of fact, the maze game contains a maze, some rooms, doors and walls,
namely four kinds of components. The Builder Library reaches its limits.
Nevertheless it is important to stress that these two library classes (TWO_PART_
BUILDER and THREE_PART_BUILDER) are much better than no reusable component
at all and can already handle quite a few typical application cases.

Componentization outcome

The componentization of the Builder pattern, which resulted in the development of
the Builder Library, is a mixed success because it  does not meet all
componentizability quality criteria established in section 6.1:

• Completeness: The Builder Library does not cover all cases described in the
original Builder pattern. It supports builders that need to construct two-part
and three-part products but not more. As explained earlier, we cannot know
the number of parts of the product to be built in the general case. Therefore
the Builder Library provides only incomplete support for the Builder pattern.

• Usefulness: The Builder Library is useful because it provides a reusable
library for some common variants of builders. Having a library removes the
need to implement the same design scheme again and again because the
functionality is already captured in the reusable component.

• Faithfulness: The Builder Library is similar to a traditional implementation of
the Builder pattern. It simply introduces (constrained) genericity and agents to
get reusability. The Builder Library fully satisfies the intent of the original
Builder pattern and keeps the same spirit. Therefore I consider the Builder
Library as being a faithful componentized version of the Builder pattern.

• Type-safety: The Builder Library relies on constrained genericity and agents.
Both mechanisms are type-safe mechanism in Eiffel. Furthermore, all routines
involving agent calls have a precondition using valid_operands of class
ROUTINE, ensuring that all calls to agents will succeed. As a consequence, the
Builder Library is also type-safe.

• Performance: Comparing the implementation of the Builder Library with a
direct pattern implementation shows that the only differences are the use of
constrained genericity and agents. Using genericity does not have any
performance impact in Eiffel. Using agents implies a performance overhead,
but very small on the overall application. Therefore, the performance of a
system based on the Builder Library will be in the same order as when
implemented with the Builder pattern directly.

• Extended applicability: The Builder Library does not cover more cases than
the original Builder pattern. (It covers less as explained in the “Completeness”
section.)

class

THREE_PART_BUILDER [F −> BUILDABLE, G, H, J]

Class declara-
tion of a 
“three-part 
builder”

The performance 
overhead of agents is 
explained in detail in 
appendix A, p 390.
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13.2  PROXY PATTERN

We have reviewed two “structural patterns” so far: Composite and Flyweight. Both
yield a reusable component: the Composite Library and the Flyweight Library,
comforting our intuition that at least some design patterns can be componentized.
Can the pattern Proxy also be turned into a reusable component? This section shows
the cases where reuse is possible and highlights the difficulties to provide a complete
solution.

Pattern description

The Proxy pattern describes how to “provide a surrogate or placeholder for another
object to control access to it”.

Typical cases are what Design Patterns calls a “virtual proxy” and a
“protection proxy”. The former is used to create expensive objects on demand (for
example, loading a picture only if it is strictly necessary, otherwise accessing its
virtual proxy). The latter is more about control access policies, using the protection
proxy to give objects different access rights.

How to write a Proxy in Eiffel? The following class diagram corresponds to
the pattern implementation proposed by Jézéquel et al.:

The APPLICATION accesses a SUBJECT; it does not know whether it is a REAL_
SUBJECT or a PROXY to the actual subject. Internally though, depending on the
APPLICATION’s request, the work is forwarded to, either an “image” of the actual_
subject (the PROXY), or to the REAL_SUBJECT itself.

A SUBJECT exposes two services request and request_with_args, which are the
features directly useful to the APPLICATION.

The function request_with_args is described in neither [Gamma 1995] nor [Jézéquel 1999].
This example introduces it to generalize the pattern implementation and enable
APPLICATIONs to pass arguments to the request feature. The argument of request_with_args
is of type TUPLE; it is a way to handle multiple arguments: if one needs to pass two
arguments arg1 and arg2 (possibly of different types) to request_with_args, one will use a
tuple [arg1, arg2].

See chapters 10 and 
11

[Gamma 1995], p 
207-217.

[Gamma 1995], p 
208-209.

APPLICATION 
* 

SUBJECT 

+ 
REAL_SUBJECT 

+ 
PROXY 

actual_subject 

characteristic+ 
set_characteristic+ 
request+ 
request_with_args+ 

characteristic+ 
set_characteristic+ 
request+ 
request_with_args+ 
cached_characteristic 

characteristic* 
set_characteristic* 
request* 
request_with_args* 

Classes 
involved in 
the Proxy pat-
tern

[Jézéquel 1999], p 
131-137.

This implementation 
is type-safe; more in 
“Componentization 
outcome”,  page 223



BUILDER, PROXY AND STATE §13218
A SUBJECT also has a certain characteristic, which is the information the
PROXY will keep to avoid useless access to the REAL_SUBJECT. A concrete subject
may be either a REAL_SUBJECT or a PROXY. In a REAL_SUBJECT, the characteristic
is set at creation time and can never be Void. It is not the case of a PROXY where
characteristic is implemented as a function, returning the cached_characteristic. 

In Eiffel, a client cannot detect whether a feature is implemented as a function
or as an attribute. It is the Uniform Access principle. This property is central in the
implementation of the Proxy design pattern described in this thesis. Indeed,
characteristic is implemented as an attribute in REAL_SUBJECT but as a function in
PROXY. In Eiffel, attributes and functions are considered as queries with no
syntactical difference. If the syntax had been different like in other languages such
as C++ or Java (call of the form x.f () for a function, of the form x.f for an attribute),
using a PROXY would not be transparent to the APPLICATION anymore.

There is a slight difference between functions and attributes in the current version of
Eiffel: a function can have assertions whereas an attribute cannot have any (they are put
into the class invariant). The next version of the language will remedy this infringement
of the Uniform Access principle mentioned above.

As mentioned before, the PROXY keeps a cached_characteristic. It is initialized
at instantiation time with the argument given to the creation procedure make. Then,
whenever the APPLICATION asks for the subject characteristic, by calling the
corresponding feature, the PROXY returns the cached_characteristic. The CLIENT can
also set the subject characteristic: set_characteristic updates both the cached_
characteristic and the characteristic of the real subject. 

When the APPLICATION calls either of the request features, the PROXY
forwards the call to the actual_subject, updating in passing its cached_characteristic.

The pattern implementation described here is not perfect though:

• It does not provide a reusable solution. Indeed, the developer needs to write it
afresh for each SUBJECT class. (We will see next how genericity can help.)

• It only tackles one kind of proxies: “virtual proxy”; it does not cover the cases
of “remote proxy”, “protection proxy” or “smart reference” described in
Design Patterns. (The next section will explain why.)

A reusable library?

Using genericity makes it possible to componentize the Proxy pattern. Instead of
writing a new PROXY class for each kind of SUBJECT, the idea is to provide a
generic class PROXY [G] where G is constrained to SUBJECT (meaning actual generic
parameters need to conform to SUBJECT). Then, we can have a PROXY [SUBJECT_1],
PROXY [SUBJECT_2], and so on. No need to rewrite the PROXY class each time.

Again, TUPLE is used 
to model multiple 
characteristics.

[Meyer 1997], p 57.

[Meyer 200?b].

See [Gamma 1995], p 
208-209 about the 
different kinds of 
proxies.

SUBJECT_1 and 
SUBJECT_2 are 
descendants of class 
SUBJECT.



§13.2  PROXY PATTERN 219
Here is the class diagram of the Proxy Library:

and the full code of class PROXY:

class

PROXY [G −> SUBJECT create make end]

inherit

SUBJECT

create

make

feature {NONE} -- Initialization

make (a_characteristic: like characteristic) is
-- Initialize subject with a_characteristic.

do
cached_characteristic := a_characteristic

ensure then
cached_characteristic_set: cached_characteristic = a_characteristic

end

feature -- Access

characteristic: TUPLE is
-- Characteristic of a subject

do
Result := cached_characteristic

ensure then
is_cached_characteristic: Result = cached_characteristic

end

feature -- Status report

Class dia-
gram of the 
Proxy Library

APPLICATION * 
SUBJECT 

+ 
REAL_SUBJECT 

+ 
PROXY 

[G -> SUBJECT create make end] 
actual_subject 

characteristic* 
set_characteristic* 
request* 
request_with_args* 

characteristic+ 
set_characteristic+ 
request+ 
request_with_args+ 

characteristic+ 
set_characteristic+ 
request+ 
request_with_args+ 
cached_characteristic 

Virtual proxy
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valid_args (args: TUPLE): BOOLEAN is
-- Are args valid arguments for request_with_args?

do
Result := subject.valid_args (args)

ensure
definition: Result = subject.valid_args (args)

end

feature -- Basic operations

request is
-- Request something on current subject.

do
subject.request

end

request_with_args (args: TUPLE) is
-- Request something on current subject using args.

require
valid_args: valid_args (args)

do
subject.request_with_args (args)

end

feature -- Status setting

set_characteristic (a_characteristic: like characteristic) is
-- Set characteristic to a_characteristic.

do
subject.set_characteristic (a_characteristic)
cached_characteristic := a_characteristic

ensure then
cached_characteristic_set: cached_characteristic = a_characteristic

end

feature {NONE} -- Implementation

actual_subject: G
-- Actual subject (loaded only when needed)

subject: G is
-- Subject

do
if actual_subject = Void then

create actual_subject.make (cached_characteristic)
cached_characteristic := actual_subject.characteristic

end
Result := actual_subject

ensure
subject_not_void: Result /= Void
is_actual_subject: Result = actual_subject
cached_characteristic_not_void: cached_characteristic /= Void

end

cached_characteristic: like characteristic
-- Cache of characteristic of actual subject

invariant

cached_characteristic_not_void: cached_characteristic /= Void
consistent: actual_subject /= Void implies 

cached_characteristic = actual_subject.characteristic
end
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The library class PROXY is very similar to the class PROXY described earlier for the
pattern implementation. Only two features change: subject and actual_subject (namely
implementation features); they have a generic return type in the library version.
Therefore, the class can handle any kind of SUBJECT.

The deferred class SUBJECT specifies the minimal properties that any
SUBJECT must provide. It has five features: make (to become the creation procedure
of concrete descendants), characteristic of type TUPLE and the corresponding setter,
request, and request_with_args. All five features are deferred.

Here is the text of class SUBJECT:
deferred class

SUBJECT

feature {NONE} -- Initialization

make (a_characteristic: like characteristic) is
-- Initialize subject with a_characteristic.

require
a_characteristic_not_void: a_characteristic /= Void

deferred
end

feature -- Access

characteristic: TUPLE is
-- Characteristic of a subject

deferred
ensure

characteristic_not_void: Result /= Void
end

feature -- Status report

valid_args (args: TUPLE): BOOLEAN is
-- Are args valid arguments for request_with_args?

deferred
end

feature -- Status setting

set_characteristic (a_characteristic: like characteristic) is
-- Set characteristic to a_characteristic.

require
a_characteristic_not_void: a_characteristic /= Void

deferred
ensure

characteristic_set: characteristic = a_characteristic
end

feature -- Basic operations

request is
-- Request something on current subject.

require
characteristic_not_void: characteristic /= Void

deferred
end

See “Classes 
involved in the Proxy 
pattern”,  page 217.

Class SUB-
JECT
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However, the Proxy Library is not perfect. In particular, it covers only one kind of
proxy, namely “virtual proxies”, when Design Patterns describes three other cases: 
• “Smart references”: This first pattern variant requires the ability to redefine

the dot operator (for example to add reference counting), which is not possible
in Eiffel. We can simulate such behavior with the Proxy Library.

• “Protection proxies”: This second pattern variant is used to give objects
different access rights. It would be possible to extend the current
implementation of request and request_with_args in the Proxy Library to have
conditional statements of the form:

The problem is that we cannot know what access rights will be needed in
general. In other words, we cannot implement the features some_access_rights
and some_other_access_rights of the above example without context information.
Therefore the “protection proxy” variant cannot be componentized.

• “Remote proxies”: This third pattern variant means that subject and proxy may
be on different physical machines. Therefore we cannot provide a reusable
Proxy Library without knowing the inter-process communication mechanism. 

Eiffel bindings for CORBA and COM already exist. For example, in
CORBA, the developer must write an IDL file (like in COM) describing the
interface he wants and a tool generates automatically three classes according to
the given interface: a deferred parent class (corresponding to SUBJECT of the
Proxy Library) and two descendant classes (corresponding to PROXY and
REAL_SUBJECT). The proxy class is implemented (like in the Proxy Library)
with CORBA’s inter-process communication machinery; the other class is just
a skeleton with empty bodies. 

request_with_args (args: TUPLE) is
-- Request something on current subject using args.

require
characteristic_not_void: characteristic /= Void
valid_args: valid_args (args)

deferred
end

end

class

PROXY [G −> SUBJECT create make end]

inherit

SUBJECT
...
feature -- Basic operations

request is
-- Request something on current subject.

do
if some_access_rights then

subject.request
elseif some_other_access_rights then

...
end

end

end

Proxy with 
access rights

This approach with 
IDL is at the opposite 
direction of my work: 
with IDL files, clients 
impose their inter-
face; with reusable 
components, the 
library imposes its 
own interface.
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Because CORBA and COM providers already take care of generating
these proxies, it does not really make sense to write yet another tool. It may be
interesting for these providers to develop a reusable proxy component to be
used instead of generating a new proxy class for each interface.

But the Proxy Library is definitely an improvement comparing to just a pattern
description that programmers need to write afresh whenever they want to use it. I
believe that the Proxy Library provides developers with a good solution for some
usual cases they have to deal with. The following section compares the pattern with
the library solution.

Proxy pattern vs. Proxy Library

From the user point of view, there is almost no difference; just the use of a generic
class PROXY in the latter. However, there is a big change when thinking in terms of
reuse: in the second case, we don’t have to write the classes SUBJECT and PROXY,
we can just rely on them because they are part of a library. We just need to
implement the class whose instance should be used as a proxy and make it inherit
from SUBJECT. This is inevitable because this is not part of the proxy mechanism
itself. The class SUBJECT simply gives a mould that needs to be filled by the
programmer.

We may compare that to class STRING, which inherits from HASHABLE. It is likely that
class STRING will be equipped with a routine that computes a hash value for the current
string. But if we want to use that string as a key of a hash table, we are better off inheriting
from HASHABLE and call our hashing function hash_code (which is deferred in HASHABLE).

Besides, extending an application to have several kinds of proxies is easy. No
need to create a PROXY class per SUBJECT thanks to genericity: we can write PROXY
[BOOK] or PROXY [VIDEO_RECORDER] as long as classes BOOK and VIDEO_
RECORDER inherit from SUBJECT. (The formal generic parameter G of class PROXY
is constrained by SUBJECT.) No need for a class BOOK_PROXY nor VIDEO_
RECORDER_PROXY. Hence less code duplication and better software maintainability.

Nevertheless, the Proxy Library is not perfect. First, it requires some changes
to the class you want to shadow by a proxy to satisfy the generic constraint just
mentioned, which may not be much convenient. Second, it targets only one category
of proxies, “virtual proxies”, when Design Patterns also describes “remote proxies”,
“protection proxies” and “smart references”. But having one reusable facility is
already an achievement, even if it does not cover all possible cases.

Componentization outcome

The componentization of the Proxy pattern, which resulted in the development of the
Proxy Library, is a mixed success because it does not meet all componentizability
quality criteria established in section 6.1:

• Completeness: The Proxy Library does not cover all cases described in the
original Proxy pattern. Remote proxies, protection proxies, and smart
references are not supported.

• Usefulness: The Proxy Library is useful because it provides a reusable library
for the most common variant of proxies: virtual proxies. Having a library
removes the need to implement the same design scheme again and again
because the functionality is already captured in the reusable component.

The key of a hash 
table is constrained 
by HASHABLE: 
class HASH_TABLE [G, 
K -> HASHABLE].

See chapter 2 for 
more details about 
the benefits of reuse.
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• Faithfulness: The Proxy Library is similar to a traditional implementation of
the Proxy pattern. It simply introduces (constrained) genericity to get
reusability. The Proxy Library fully satisfies the intent of the original Proxy
pattern and keeps the same spirit. Therefore I consider the Proxy Library as
being a faithful componentized version of the Proxy pattern.

• Type-safety: The Proxy Library relies on constrained genericity, which is a
type-safe mechanism in Eiffel. As a consequence, the Proxy Library is also
type-safe.

• Performance: Comparing the implementation of the Proxy Library with a
direct pattern implementation shows that the only difference is the use of
constrained genericity. Using genericity does not have any performance
impact in Eiffel. Therefore, the performance of a system based on the Proxy
Library will be in the same order as when implemented with the Proxy pattern
directly.

• Extended applicability: The Proxy Library does not cover more cases than the
original Proxy pattern. (It covers less as explained in the “Completeness”
section.)

13.3  STATE PATTERN

Another design pattern belongs to the category “1.3.2 Componentizable but not
comprehensive”: the State pattern. As seen earlier, the State pattern has different
implementation variants. The reusable component described in this section covers
one typical case called “state-driven transitions” State pattern by Dyson et al.

Pattern description

The State pattern “allow[s] an object to alter its behavior when its internal state
changes. The object will appear to change its class”. 

It describes a flexible way to make an object react differently depending on
its state by encapsulating state-dependent features into a class STATE and possible
descendants (if several possible states).

Let’s come back to the example presented in “Seven State variants”,  page 47.
We had BOOKs that could be either FREE or BORROWED. A typical implementation
without the State pattern is to equip class BOOK with two boolean attributes free and
borrowed and discriminate between those states in features of class BOOK, like
borrow or return. However, such design is not flexible: adding a state would mean
adding a new attribute to class BOOK and change the implementation of existing
features to take this new state into account (typically add an elseif ... then branch in
a control structure).

The State pattern provides a solution to this problem by moving state-
dependent features to another class (typically a descendant of a deferred class
STATE). Adding a new state simply means writing a new heir of class STATE at no
change to existing code.

See “Seven State 
variants”,  page 47 
and [Dyson 1996].

[Gamma 1995], p 
305.



§13.3  STATE PATTERN 225
Here is the class diagram of a typical application using the State pattern:

The CONTEXT class provides a feature do_something, which is the service clients are
interested in. This feature should react differently depending on the CONTEXT’s state.
Therefore, the implementation of do_something in class CONTEXT will simply
delegate the call to the current state:

Each descendant of class STATE has its own implementation of do_something.

The CONTEXT class knows its possible states; they are three in the above
figure: in i t ia l_state  of type INITIAL_STATE ,  intermediary_state  of type
INTERMEDIARY_STATE, and final_state of type FINAL_STATE.

In fact, the State pattern describes how to get a finite state machine. The
machine starts in a certain initial_state. Then, when a certain condition is realized, the
machine changes state until it reaches its final_state. If the transition criteria are
fixed, the CONTEXT may be responsible for changing state. However, it is usually
more flexible to let the STATE initiate the change.

class

CONTEXT
...
feature -- Basic operation

do_something is
-- Do something depending on the state.

do
state.do_something

end

feature {NONE} -- Implementation

state: STATE
-- Current state

...
end

Class dia-
gram of a typ-
ical 
application 
using the 
State pattern

CONTEXT * 
STATE

+ 
INTERMEDIARY_

STATE

+ 
INITIAL_STATE 

+ 
FINAL_STATE 

state 
context 

initial_state 

intermediary_state 

final_state 

do_something*

do_something+ 

do_something 

do_something+ 
do_something+

Delegating 
work to the 
state object

These state attributes 
cannot be imple-
mented as singletons; 
otherwise one could 
not apply them to sev-
eral contexts.
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For example, feature do_something of class INITIAL_STATE would set the
CONTEXT’s state to intermediary_state:

However, applying the State pattern also has drawbacks. In particular, it usually
yields many STATE classes with just a few features. It is possible to use the
Flyweight pattern and share state objects when the corresponding classes do not have
attributes (in the case of “Pure States”). Still, many classes are going to remain,
which may reduce the readability of the software.

Towards a State Library

Instead of requiring the CONTEXT to know all its possible states, I decided to extend
class STATE with a notion of next state, which enabled me to write a reusable State
Library.

Here is the diagram of a typical application using the State Library. (Classes
INITIAL_STATE, INTERMEDIARY_STATE, and FINAL_STATE are not part of the library;
they just illustrate how clients can use it.)

The class NULL_STATE only serves to avoid dependency circles: at creation, the
CONTEXT is initialized with a NULL_STATE. It is the client application that will set
the initial state after creating the context. Then, the STATE object will be in charge
of setting the new CONTEXT’s state whenever do_something gets called.

class

INITIAL_STATE

inherit

STATE
...
feature -- Basic operation

do_something is
-- Do something depending on the state.

do
-- Do something.
context.set_state (context.intermediary_state)

end
...
end

State change 
initiated by 
the state itself

See “Seven State 
variants”,  page 47 
and [Dyson 1996].
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The text of class CONTEXT appears below:

One drawback of this implementation is that set_state is exported to ANY client —
not only descendants of STATE. (The client application needs to be able to set the
initial state by using set_state.) 

The class could have provided an attribute initial_state and a feature set_initial_
state and have set_state exported to class STATE and its descendants only (allowing
clients to set only the initial state).

class

CONTEXT

create

make

feature {NONE} -- Initialization

make is
-- Initialize state to a "null" state that does nothing.

do
create {NULL_STATE} state.make (Current)

ensure
null_state: state.conforms_to (

create {NULL_STATE}.make (Current))
end

feature -- Basic operations

do_something is
-- Do something depending on the state.

do
state.do_something

end

feature -- Access

state: STATE
-- Current state of the application

feature -- Element change

set_state (a_state: like state) is
-- Set state to a_state.

require
a_state_not_void: a_state /= Void

do
state := a_state

ensure
state_set: state = a_state

end

invariant

state_not_void: state /= Void

end

Class CON-
TEXT (part of 
the State 
Library)
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However, set_initial_state would need to initialize both attributes initial_state
and state as shown below

I thought it was quite complicated and overkill. Therefore I opted for the simple
solution and made set_state public.

Another core class of the State Library is STATE. Here is its implementation:

class

CONTEXT
...
feature -- Access

initial_state: INITIAL_STATE
-- Initial state of the application

state: STATE
-- Current state of the application

feature -- Status setting

set_initial_state (a_state: like initial_state) is
-- Set initial_state and state to a_state.

require
a_state_not_void: a_state /= Void

do
initial_state := a_state
state := a_state

ensure
initial_state_set: initial_state = a_state
state_set: state = a_state

end
...
end

deferred class

STATE

feature {NONE} -- Initialization

make (a_context: like context) is
-- Set context to a_context.

require
a_context_not_void: a_context /= Void

do
context := a_context

ensure
context_set: context = a_context

end

make_with_next (a_context: like context; a_state: like next) is
-- Set context to a_context and next to a_state.

require
a_context_not_void: a_context /= Void
a_state_not_void: a_state /= Void

do
context := a_context
next := a_state

ensure
context_set: context = a_context
next_set: next = a_state

end

Allowing cli-
ents to set the 
initial state 
only

Deferred 
class STATE 
(part of the 
State Library)
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Clients of the State Library will write their customized STATE classes (descendants
of STATE) and initialize each state with their next state (to build the state automaton).

Language support

Some languages support the State pattern natively. It is the case of delegation-based
languages (for example Self), which enable changing an object’s state at run time.

However, the Self approach has many drawbacks:
• Being able to modify a program “on the fly” seems nice. However, it can be

misused. Besides it does not encourage programmers to think about core
abstractions, which should be the main task of a developer. Meyer underlines
that “the key step in an object-oriented solution is the search for the right
abstraction”.

feature -- Access

context: CONTEXT
-- Application context

next: STATE
-- Next state

feature -- Status setting

set_next (a_state: like next) is
-- Set next to a_state.

do
next := a_state

ensure
next_set: next = a_state

end

feature -- Basic operations

do_something is
-- Do something depending on the state.

do
do_something_imp
if next /= Void then

context.set_state (next)
end

ensure
next_state_set: next /= Void implies context.state = next

end

feature {NONE} -- Implementation

do_something_imp is
-- Do something depending on the state.

deferred
end

invariant

context_not_void: context /= Void

end

do_something_imp 
enables to reposition 
next, which makes the 
state automaton 
dynamic.

[Group G-Web].

[Meyer 1997], p 699.



BUILDER, PROXY AND STATE §13230
• Self is dynamically typed like Smalltalk. Hence, no error detected at compile
time, which is very dangerous and not the right approach in my opinion.

Therefore it is not desirable to change the Eiffel language, which is statically typed
and emphasizes the search for the right abstractions, to support the State pattern
natively. (Maybe some other language mechanism could be added to enable writing
the State pattern more easily; I could not find any though.)

Componentization outcome

The componentization of the State pattern, which resulted in the development of the
State Library, is a mixed success because it does not meet all componentizability
quality criteria established in section 6.1:
• Completeness: The State Library does not cover all cases described in the

original State pattern. It only covers one case among the seven variants
identified by Dyson et al.: “State-driven transitions”.

• Usefulness: The State Library is useful because it provides a reusable library
for a common variation of the State pattern. Having a library removes the
need to implement the same design scheme again and again because the
functionality is already captured in the reusable component.

• Faithfulness: The State Library is similar to a traditional implementation of
the State pattern. It uses simple inheritance and extensive contracts to ensure
reusability. The State Library fully satisfies the intent of the original State
pattern and keeps the same spirit. Therefore I consider the State Library as
being a faithful componentized version of the State pattern.

• Type-safety: The State Library relies on simple inheritance and Design by
Contract™, which are two type-safe mechanisms in Eiffel. As a consequence,
the State Library is also type-safe.

• Performance: Comparing the implementation of the State Library with a
direct pattern implementation shows that the only difference is the extensive
use of contracts, which does not imply any performance overhead when
compiled in finalized (i.e. production) mode. Therefore, the performance of a
system based on the State Library will be in the same order as when
implemented with the State pattern directly.

• Extended applicability: The State Library does not cover more cases than the
original State pattern. (It covers less as explained in the “Completeness”
section.)

13.4  CHAPTER SUMMARY
• The Builder pattern describes how to build a composite product part by part.
• It is possible to provide reusable library classes to handle the most usual

cases, for example two- or three-part products.
• It is hardly possible to cover all possible cases the Builder pattern can handle

because there is no requirement on the products to be created. Hence the
categorization of the Builder pattern as “1.3.2 Componentizable but not
comprehensive”.

• The Proxy pattern enables shadowing a “subject” while being invisible to the
client (for example to enhance performance, or to give special permissions to
some subjects).

• The Uniform Access principle — advocated and put into practice in Eiffel —
is at the core of a Proxy implementation using Eiffel.

[Dyson 1996].

[Gamma 1995], p 97-
106.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
207-217.

[Meyer 1997], p 57.
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• There are different kinds of proxies: “remote proxies”, “virtual proxies”,
“protection proxies”, and “smart references”.

• It is possible to provide a reusable Proxy Library to build “virtual proxies” by
using constrained genericity. Other kinds of proxies still need to be
implemented by the programmer. Hence the classification of the Proxy pattern
as “1.3.2 Componentizable but not comprehensive”.

• The State pattern provides a flexible way to make an object react differently
depending on its state.

• The State pattern can be turned into a reusable State Library. However, Dyson
et al. pointed out that the State pattern has many implementation variants. The
State Library supports the most typical cases but does not provide an
exhaustive solution. Hence the categorization of the State pattern as “1.3.2
Componentizable but not comprehensive”.

[Gamma 1995], p 
208-209.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
[Gamma 1995], p 
305-313.

See “Seven State 
variants”,  page 47 
and [Dyson 1996].

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
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14   
Strategy
Componentizable but unfaithful
Going one level further down in the pattern componentizability classification, we
find the Strategy pattern. It is categorized as “1.3.3 Componentizable but unfaithful”.
Indeed, this chapter shows that it is feasible to turn the pattern into a reusable
component. However the approach that enables writing a reusable Strategy Library
does not fully respect the “spirit” of the original pattern.

14.1  STRATEGY PATTERN
The Strategy pattern describes a way to “define a family of algorithms, encapsulate
each one, and make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it”.

Here is the class diagram of a typical application using the Strategy pattern:

Class CONTEXT exposes a feature do_something, which is the service offered to
clients. This routine may be implemented in many different ways. Therefore, the
Strategy pattern suggests extracting the algorithmic part into a separate class: the
strategy class. Thus, a CONTEXT has a strategy, declared of type STRATEGY and the
implementation of do_something is just a simple delegation to the corresponding
feature of class STRATEGY:
class

CONTEXT

create

make

feature {NONE} -- Initialization

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
315.
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The actual strategy may be of any type conforming to STRATEGY: in the figure on the
previous page, it can be either of type STRATEGY_A or STRATEGY_B or STRATEGY_C.

The CONTEXT has different kinds of clients:
• Producers that create the context. They need to know possible concrete

strategies to pass to the context, either with make or set_strategy. Thus, the
Strategy pattern exposes implementation details (in this case the different
algorithms) to the producer clients, which can be viewed as a drawback.

• Consumers that use the context. They do not need to know about concrete
strategies. Thus, changing the strategy is completely transparent to consumer
clients. The easiness to change, add, or remove strategies is the core strength
of the Strategy pattern.

In some cases, producer clients may also be consumers.
However flexible it may be, such an implementation of the Strategy pattern is

still not a reusable solution. Let’s explore ways to transform Strategy into a reusable
component.

make (a_strategy: like strategy) is
-- Set strategy to a_strategy.

require
a_strategy_not_void: a_strategy /= Void

do
strategy := a_strategy

ensure
strategy_set: strategy = a_strategy

end

feature -- Basic operation

do_something is
-- Do something. (Call algorithm corresponding to strategy.)

do
strategy.do_something

end

feature -- Element change

set_strategy (a_strategy: like strategy) is
-- Set strategy to a_strategy.

require
a_strategy_not_void: a_strategy /= Void

do
strategy := a_strategy

ensure
strategy_set: strategy = a_strategy

end 

feature {NONE} -- Implementation

strategy: STRATEGY
-- Strategy to be used

invariant

strategy_not_void: strategy /= Void

end
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14.2  STRATEGY LIBRARY
This section presents two attempts at componentizing the Strategy pattern and
discusses the pros and cons of each approach regarding componentizability and
faithfulness to the original pattern description.

With constrained genericity

The previous chapters showed several componentization processes, all of them were
relying on genericity (constrained in some cases, unconstrained in some other cases).
Let’s see whether genericity can help componentizing the Strategy pattern.

Using genericity means having a generic class CONTEXT [G] where G is a
certain strategy. In other words, we need constrained genericity; hence the class diagram:

The attribute strategy of class CONTEXT is now declared of type G whereas it was
declared of type STRATEGY in the pattern implementation. The other features of
class CONTEXT remain unchanged. The corresponding class text appears below. The
hierarchy of STRATEGY classes is also the same as in the pattern implementation.
(Only class STRATEGY belongs to that Strategy component; descendant classes just
illustrate how to use it.)
class

CONTEXT [G −> STRATEGY]

create

make

feature {NONE} -- Initialization

make (a_strategy: like strategy) is
-- Set strategy to a_strategy.

require
a_strategy_not_void: a_strategy /= Void

do
strategy := a_strategy

ensure
strategy_set: strategy = a_strategy

end

feature -- Basic operations

do_something is
-- Do something. (Call algorithm corresponding to strategy.)

do
strategy.do_something

end

[Gamma 1995], p 
315-323.
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The implementation of the constraint class STRATEGY is quite straightforward. It is
a deferred class exposing one deferred feature do_something (which is called by the
corresponding feature of class CONTEXT).

Here is how clients would use such a generic implementation of the Strategy pattern:

feature -- Access

strategy: G
-- Strategy to be applied

feature -- Element change

set_strategy (a_strategy: like strategy) is
-- Set strategy to a_strategy.

require
a_strategy_not_void: a_strategy /= Void

do
strategy := a_strategy

ensure
strategy_set: strategy = a_strategy

end 

invariant

strategy_not_void: strategy /= Void

end

deferred class

STRATEGY

feature -- Basic operations

do_something is
-- Do something.

deferred
end

end

class

APPLICATION

feature -- Initialization

make is
-- Do something using different strategies.

local
a_context: CONTEXT [STRATEGY]

do
create a_context.make (create {STRATEGY_A})
a_context.do_something
a_context.set_strategy (create {STRATEGY_B})
a_context.do_something
a_context.set_strategy (create {STRATEGY_C})
a_context.do_something

end
...
end

The type of strategy is 
the only difference 
with a pattern imple-
mentation. Here, it is 
of type G because the 
class CONTEXT is 
generic and con-
strained by the 
STRATEGY. In a tradi-
tional pattern imple-
mentation, it is 
declared of type 
STRATEGY.

Constraint 
class 
STRATEGY

Client using a 
Strategy 
library built 
with con-
strained 
genericity
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Is this implementation of the Strategy pattern reusable? Does it bring something
more than the traditional pattern implementation?

It does allow writing code like this:

with no assignment attempt whereas in a traditional pattern implementation one
needs to write:

But that kind of code does not correspond to a real need. Indeed, it is improbable we
would need to retrieve the CONTEXT’s strategy and have the right type with no
assignment attempt. Even if we do want such code, it is likely we would also like to
know the precise type of strategy_a, which may be STRATEGY_A1 or STRATEGY_A2
for example; hence the need for assignment attempts again. Anyway, genericity does
not bring much to componentize the Strategy pattern.

Let’s try another approach that proved quite successful with other patterns: the
Eiffel agent mechanism.

With agents

What about encapsulating the strategy algorithm in an agent? The Eiffel text below
shows what such CONTEXT class would look like. Instead of having a class
STRATEGY and one descendant class per algorithm, the class CONTEXT has an
attribute strategy_procedure of type PROCEDURE (a procedure object ready to be
called), which gets initialized at creation time (with the argument passed to the
creation routine make). Then, clients have the ability to change the strategy by
calling set_strategy_procedure.

context: CONTEXT [STRATEGY_A]
strategy_a: STRATEGY_A
...
create context.make (create {STRATEGY_A})
strategy_a := context.strategy

context: CONTEXT
strategy_a: STRATEGY_A
...
create context.make (create {STRATEGY_A})
strategy_a ?= context.strategy

class

CONTEXT

create

make

feature {NONE} -- Initialization

make (a_procedure: like strategy_procedure) is
-- Set strategy_procedure to a_procedure.

require
a_procedure_not_void: a_procedure /= Void

do
strategy_procedure := a_procedure

ensure
strategy_procedure_set: strategy_procedure = a_procedure

end

With generic-
ity

Without 
genericity

Assignment attempts 
?= are explained in 
appendixA, p 378.

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].

Context using 
agents
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Here is how clients would use the class CONTEXT:

feature -- Basic operations

do_something is
-- Do something. (Call algorithm corresponding to strategy.)

do
if strategy_procedure.valid_operands ([]) then

strategy_procedure.call ([])
end

end

feature -- Access

strategy_procedure: PROCEDURE [ANY, TUPLE]
-- Strategy procedure to be called

feature -- Element change

set_strategy_procedure (a_procedure: like strategy_procedure) is
-- Set strategy_procedure to a_procedure.

require
a_procedure_not_void: a_procedure /= Void

do
strategy_procedure := a_procedure

ensure
strategy_procedure_set: strategy_procedure = a_procedure

end 

invariant

strategy_procedure_not_void: strategy_procedure /= Void

end

class

APPLICATION

feature -- Initialization

make is
-- Do something using different strategies.

local
a_context: CONTEXT

do
create a_context.make (

agent (create {STRATEGY_A}).do_something)
a_context.do_something
a_context.set_strategy_procedure (

agent (create {STRATEGY_B}).do_something)
a_context.do_something
a_context.set_strategy_procedure (

agent (create {STRATEGY_C}).do_something)
a_context.do_something

end
...
end

Instead of strat-
egy.do_something.

Instead of strategy: 
STRATEGY.

Client using a 
Strategy 
library built 
with agents
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The class CONTEXT is reusable. Client applications just create CONTEXT objects
with different kinds of strategies as shown above. In fact, strategy procedures do not
need to be in separate classes anymore. One could have an already written class
STRATEGY with several features do_something_a, do_something_b, and do_something_c
corresponding to different strategies and reuse them directly as agents. No need to
write extra classes anymore like in the traditional Strategy pattern implementation.

But is this new Strategy component faithful to the original Strategy pattern?
Let’s investigate further.

Componentizability vs. faithfulness

As seen before, agents provide a way to write a fully reusable Strategy library. Now,
the question is: does the Strategy pattern accept having strategies that are just
routines to be executed (namely agents) or does it require strategies to be objects
(which may have attributes to store some information about the strategy)? The
answer is not obvious.

Design patterns says that “hierarchies of Strategy classes define a family of
algorithms or behaviors for contexts to reuse. Inheritance can help factor out
common functionality of the algorithms”. The fact that strategies are implemented as
classes implies that the algorithm may rely on attributes that may be used by the
context later on. Agents do not allow to do that. (The algorithm can rely on attributes
of the class in which the routine is defined but the context cannot access them when
the routine is passed as an agent.)

Let’s take the example of algorithms to invert a matrix to show why the
context may need to access attributes of the strategy class. Inverting a matrix
requires the matrix to be not singular (the determinant should not be zero). Thus the
code should be written as follows:

class

MATRIX
...
feature -- Basic operation 

inverse: MATRIX is
-- Inverse of current matrix

require
not_singular: not is_singular

do
...

ensure
inverse_not_void: Result /= Void

end
...
end

See [Gamma 1995], 
1. Families of related 
algorithms, p 317.

Theoretical 
implementa-
tion of the 
inverse of a 
matrix
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On the other hand, the algorithms to calculate whether the matrix is singular
and to calculate the inverse of the matrix are very similar. Therefore it is common
practice to remove the precondition and to add an attribute inverted, which is used in
the postcondition:

Now suppose there are several possible strategies to invert a matrix and features
invert, inverted, and inverse are moved to a class STRATEGY. (The signature of invert
needs to be changed and take an argument of type MATRIX.) Then, context code will
look like this:

class
MATRIX

...
feature -- Access

inverted: BOOLEAN
-- Has the matrix been inverted? (i.e. was the matrix non-singular?)

inverse: MATRIX
-- Inverse of current matrix

feature -- Basic operation 
invert is

-- Invert current matrix. If inverted, put result into inverse.
do

...
ensure

inverse_not_void_if_inverted: inverted implies inverse /= Void
end

...
end

class
CONTEXT

...
feature -- Access

strategy: MATRIX_INVERSION_STRATEGY
-- Strategy to be used to inverse a matrix

feature -- Status report

inverted: BOOLEAN is
-- Has matrix been inverted?

do
Result := strategy.inverted

end

feature -- Basic operation 

inverse (a_matrix: MATRIX): MATRIX is
-- Inverse of a_matrix

do
strategy.invert (a_matrix)
if strategy.inverted then

Result := strategy.inverse
end

ensure
inverse_not_void_if_inverted: inverted implies Result /= Void

end
...
end

Typical imple-
mentation of 
the inverse of 
a matrix

Implementa-
tion of the 
inverse of a 
matrix using 
strategies
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Here the context needs access to the attributes inverted and inverse of the strategy.
That would not be possible in a solution using agents.

Design Patterns also mentions that “strategies increase the number of objects
in an application. Sometimes you can reduce this overhead by implementing
strategies as stateless objects that contexts can share. Any residual state is
maintained by the context, which passes it in each request to the Strategy object”.
This note may leave some space open for agents.

However, Design Patterns categorizes the Strategy pattern as an “object
behavioral pattern”; thus the notion of object seems quite important.

As a summary, we have two implementations of the Strategy pattern: 
• One without agents, which is less reusable but involves objects that may have

some attributes and full respects the “spirit” of the original pattern;
• One with agents, which is fully reusable but does not have “true” objects (we

may view agents as “false” objects); hence “betrays” somehow the original
Strategy pattern (even if it solves the same problems).

Hence the title of this chapter and the Strategy pattern’s category: “1.3.3
Componentizable but unfaithful”.

It is also possible to consider an aspect implementation of the Strategy pattern but it
proves hardly maintainable.

14.3  COMPONENTIZATION OUTCOME
The componentization of the Strategy pattern, which resulted in the development of
the Strategy Library, is a mixed success because it does not meet all
componentizability quality criteria established in section 6.1:
• Completeness: The Strategy Library covers all cases described in the original

Strategy pattern.
• Usefulness: The Strategy Library is useful because it provides a reusable

library from the Strategy pattern description, which developers will be able to
apply to their programs directly; no need to implement the same design
scheme again and again because it is captured in the reusable component.

• Faithfulness: The Strategy Library uses agents to represent the different
strategies, which is much different from a traditional implementation of the
Strategy pattern. Therefore I do not consider the Strategy Library as a faithful
componentized version of the Strategy pattern.

• Type-safety: The Strategy Library relies on agents, which is a type-safe Eiffel
mechanism. As a consequence, the Strategy Library is also type-safe.

• Performance: Comparing the implementation of the Strategy Library with a
direct pattern implementation shows that the only difference is the use of
agents. Using agents implies a performance overhead, but very small on the
overall application. Therefore, the performance of a system based on the
Strategy Library will be in the same order as when implemented with the
Strategy pattern directly.

• Extended applicability: The Strategy Library does not cover more cases than
the original Strategy pattern.

14.4  CHAPTER SUMMARY
• The Strategy pattern provides a way to encapsulate algorithms (called

“strategies”) and make them interchangeable (transparently to clients).
However it is not a reusable solution.

See [Gamma 1995], 
7. Increased number 
of objects, p 318.

[Gamma 1995], p 
315.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Hachani 2003].

See the above discus-
sion on Componen-
tizability vs. 
faithfulness.

The performance 
overhead of agents is 
explained in detail in 
appendix A, p 390.

[Gamma 1995], p 
315-323.
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• Genericity does not help componentizing the Strategy pattern.
• Agents enable writing a reusable Strategy Library. However it is not clear

whether it can still be considered as a “strategy”. A solution with agents is
quite far from the original pattern (algorithms are not encapsulated into
different classes anymore); hence the categorization of the Strategy pattern:
“1.3.3 Componentizable but unfaithful”.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
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Memento
Componentizable but useless
We are reaching the last category of componentizable patterns: “1.3.4
Componentizable but useless”. It consists of design patterns that can be transformed
into reusable Eiffel components but whose componentized version is not quite useful
in practice because implementing the pattern from scratch is simpler than using the
reusable library. The Memento is the only pattern described in Design Patterns that
belongs to this category.

The present chapter focuses on the Memento pattern: it describes the original
pattern, explains how to componentize it, and shows the limitations of the resulting
Memento Library.

15.1  MEMENTO PATTERN

The Memento pattern permits to capture a snapshot of an object’s state at a certain
point of a program execution and restore this state later on demand. Let’s see how
this pattern works and how to implement it in Eiffel.

Pattern description

The Memento pattern describes a way to “capture and externalize an object’s
internal state (without violating encapsulation) so that the object can be restored to
this state later”.

Here is the class diagram of a typical application using the Memento pattern:

The above example shows an ORIGINATOR with a set of three attributes: attribute_1 of
type TYPE_1, attribute_2 of type TYPE_2, and attribute_3 of type TYPE_3.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
283.

ORIGINATOR 

TYPE_1 TYPE_2 TYPE_3 

APPLICATION 

attribute_1 
attribute_2 

attribute_3 

memento 
MEMENTO 

new_memento

attribute_1 

attribute_2 

set_state_from_memento 
Class dia-
gram of a typ-
ical 
application 
using the 
Memento pat-
tern
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The idea of the Memento pattern is to store the internal state of the
ORIGINATOR to be able to restore it later. It may be a partial view of the
ORIGINATOR’s state (i.e. the values of some attributes, not necessarily all of them).
In the above example, the ORIGINATOR creates a new_memento that keeps the value
of attribute_1 and attribute_2; it does not save the value of attribute_3.

The ORIGINATOR gives the MEMENTO to the APPLICATION that will keep it
for a while and may give it back to the ORIGINATOR later through feature set_state_
from_memento.

Like threads are a lightweight form of processes, Memento can be viewed as
a lightweight form of persistence. It enables keeping some information for a while
and retrieve it later in the same program execution. If the execution terminates, the
data are lost (contrary to persistence).

Usefulness of non-conforming inheritance

In the above example used to introduce the Memento pattern, attributes attribute_1
and attribute_2 are present in both classes ORIGINATOR and MEMENTO. Therefore
we could imagine implementing it with non-conforming inheritance:

The keyword expanded in front of the class name MEMENTO means that
ORIGINATOR inherits from MEMENTO but does not conform to it. Therefore, an
assignment such as:

with a_memento declared of type MEMENTO and an_originator declared of type
ORIGINATOR would be invalid.

However attractive it may be, non-conforming inheritance cannot be applied
to all cases covered by the original pattern. Indeed, we may want to keep not only
attribute values in the MEMENTO but also the result of some functions of the
ORIGINATOR. For example, we may want to store the value returned by function
price of the following class:

class

ORIGINATOR

inherit

expanded MEMENTO
...
end

a_memento := an_originator

class

ORIGINATOR

feature -- Access

price: DOUBLE is
-- Price of originator

do
if price_calculated then

Result := internal_price
else

Result := ...
internal_price := Result
price_calculated := True

end
end

Non-conforming 
inheritance does not 
exist in the current 
version of Eiffel; it 
will be introduced in 
the next version; 
[Meyer 200?b].

Using non-
conforming 
inheritance

When storing 
the value of a 
function in a 
memento may 
be useful

The example assumes 
there is a boolean 
query price_calculated 
and an attribute 
internal_price 
exported to NONE.
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In that case, storing the result of the function price is interesting because it preserves
the Uniform Access principle. Indeed, set_price makes it possible to change the price
of the ORIGINATOR. If we want to restore the state of the object later on, we have
the choice between keeping the values of the internal attributes internal_price and
price_calculated and keeping the result of the function price. But storing internal_price
and price_calculated is exposing the implementation in a way. What we want when
restoring the previous state is that price returns the same value as before, whatever
its implementation is. Function or attribute should not make a difference; both are
queries and should be treated in the same way. Another advantage of this approach,
which respects the Uniform Access principle, is that it becomes possible to redefine
the function price into an attribute without breaking the memento; the memento
would still work correctly.

Regarding the use of non-conforming inheritance, it would not be possible
here because class MEMENTO would have an attribute price whereas it is a function
in class ORIGINATOR.

Implementation issues

Before applying the Memento pattern, it is important to check that the ORIGINATOR
does not modify the values stored in the MEMENTO after creating it. For example, if
class ORIGINATOR has a feature set_attribute_1 and it calls:

it also modifies the value stored in the MEMENTO because attribute_1 is the same
object in both cases. Thus, we lost the interest of having a MEMENTO in the first
place (we cannot restore the previous state anymore).

Jézéquel et al. explain this issue in Design Patterns and Contracts:
“Identification of the Memento pattern may come easily at the implementation stage.
An object A has to be reset to a previous state by an object B. Nevertheless, this may
be obscured by B's just storing some attribute values of A. The main point to check
is that B never modifies these values before returning them to A”.

A solution would be to clone the attribute objects before putting them into the
MEMENTO. But should it be a shallow clone or a deep_clone (recursive clone on each
field of an object)? If we opt for deep_clone, the implementation will become
inefficient. Besides, the ORIGINATOR may want to retrieve the same objects and not
clones of the original attributes.

feature -- Element change

set_price (a_price: like price) is
-- Set internal_price to a_price and set price_calculated to True.

do
internal_price := a_price
price_calculated := True

ensure
price_set: price = a_price

end
...
end

set_attribute_1 (new_attribute_1)

[Meyer 1997], p 57.

[Jézéquel 1999], p 
178.
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15.2  TOWARDS A REUSABLE MEMENTO LIBRARY
The Memento pattern enables to save parts or all of an object’s state and restore it
later if necessary. The traditional implementation shown before relies on a class
MEMENTO, which has some attributes corresponding to the information to be kept.
(In the previous example, we wanted to store the values of attribute_1 of TYPE_1 and
attribute_2 of TYPE_2 of ORIGINATOR objects; hence a class MEMENTO with two
attributes, one of type TYPE_1 and another one of type TYPE_2, referencing the
ORIGINATOR’s attribute_1 and attribute_2 at the time of creation of the memento.)

But do we really need the class MEMENTO? Don’t existing Eiffel library
classes already provide a way to store object state information?

First step: Simplifying the pattern implementation

One idea would be to represent a memento as a CELL [SOME_TYPE], SOME_TYPE
being the type of the internal state to be stored. However, this representation is too
restrictive. Indeed, the “internal state” is typically a set of attributes of which we
want to keep the values at a certain point during execution; it is not only one
attribute (rather different attributes of different types).

A better approach would be to use the class TUPLE. First, it exists in all Eiffel
variants, which was not the case with CELL. But more important, it gives the ability
to have a “memento” of different attributes. In the previous example, we could have
a TUPLE [TYPE_1, TYPE_2]; the first element would correspond to attribute_1 and the
second to attribute_2. One drawback with tuples though: there is no elegant way to
access the elements of a TUPLE. The current implementation of ISE Eiffel provides
a query item, which gives the element corresponding to the integer index given as
argument. The problem is that item’s return type is ANY; thus we end up writing
assignment attempts each time we access an element of the memento. For example,
if we have:

we need to write:

The next version of Eiffel will solve this issue by providing “labeled tuples”.
In the previous example we could have:

where attribute_1 and attribute_2 are labels that we can use to access the tuple
elements. For example:

removing the need for assignment attempts.

Second step: Componentizing the pattern implementation

If we represent the memento as a TUPLE, we don’t need a class MEMENTO anymore.
The class ORIGINATOR simply has a factory function new_memento that returns a
TUPLE. The ORIGINATOR also needs a feature set_state_from_memento (like in the
traditional pattern implementation) to enable restoring the previous state from the
memento (of type TUPLE).

memento: TUPLE [TYPE_1, TYPE_2]

attribute_1 ?= memento.item (1)
attribute_2 ?= memento.item (2)

memento: TUPLE [attribute_1: TYPE_1; attribute_2: TYPE_2]

attribute_1 := memento.attribute_1
attribute_2 := memento.attribute_2

The two attributes are 
called attribute_1 and 
attribute_2 in class 
MEMENTO as well 
but the names could 
be different.

The class CELL is 
specific to ISE Eiffel. 
(It is part of Eiffel-
Base.) It does not 
exist in SmartEiffel 
nor in Visual Eiffel. 
The Gobo Eiffel Data 
Structure Library 
provides a DS_CELL, 
which is similar to 
ISE Eiffel’s CELL.

[Meyer 1992], p 330-
334.

Assignment attempts 
?= are explained in 
appendixA, p 378.

See chapter 13 of 
[Meyer 200?b].

The labels do not 
need to have the same 
name as the corre-
sponding attributes; 
for example, they 
could be called 
element_1 and 
element_2.
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But why should we rewrite the class ORIGINATOR each time we want to apply
the Memento pattern? There is no reason. It is possible to write a reusable Memento
Library consisting of only one class MEMORIZABLE that declares the two features
new_memento and set_state_from_memento. It also provides a boolean query is_valid,
which is used in the precondition of set_state_from_memento . The class
MEMORIZABLE is deferred and all its features as well; descendants need to effect the
three routines.

Here is the class diagram of a typical application using the Memento Library.
(The classes APPLICATION, ORIGINATOR, TYPE_1, TYPE_2, and TYPE_3 are not part
of the library; they just explain how to use it. Class ORIGINATOR effects the library
class MEMORIZABLE.)

The text of the library class MEMORIZABLE appears next:

deferred class

MEMORIZABLE

feature -- Access

new_memento: TUPLE is
-- New memento from internal state

deferred
ensure

new_memento_not_void: Result /= Void
new_memento_is_valid: is_valid (Result)

end

feature -- Status setting

set_state_from_memento (a_memento: like new_memento) is
-- Set internal state from a_memento.

require
a_memento_not_void: a_memento /= Void
is_valid: is_valid (a_memento)

deferred
end

I decided to call the 
class MEMORIZABLE 
rather than ORIGINA-
TOR to remind the 
name of the original 
pattern.

* 
MEMORIZABLE

+ 
ORIGINATOR 

TYPE_1 TYPE_2 TYPE_3 

APPLICATION 

attribute_1 

attribute_2 
attribute_3 

memento 

memento

new_memento* 
set_state_from_memento* 
is_valid* 

new_memento+ 
set_state_from_memento+ 
is_valid+ 

Class dia-
gram of a typ-
ical 
application 
using the 
Memento 
Library

The attribute memento 
is both a client of 
TYPE_1 and TYPE_2 
because it is declared 
of type TUPLE [TYPE_
1, TYPE_2] in class 
APPLICATION (see 
class text on page 
249).

Memento 
Library

When effecting new_
memento, descen-
dants of class MEMO-
RIZABLE may provide 
a more precise type 
than just TUPLE. For 
example, the class 
ORIGINATOR (see 
below) returns a new_
memento of type 
TUPLE [TYPE_1, 
TYPE_2].



MEMENTO §15248
The application class ORIGINATOR (whose text appears below) declares three
attributes attribute_1, attribute_2, and attribute_3 (like in the example presented with
the original Memento design pattern). It uses the Memento Library to give the ability
to save the values of two attributes (attribute_1 and attribute_2): it inherits from class
MEMORIZABLE and effects new_memento, set_state_from_memento, and the query is_
valid.

feature -- Status report

is_valid (a_memento: like new_memento): BOOLEAN is
-- Is a_memento a valid memento?

require
a_memento_not_void: a_memento /= Void

deferred
end

end

class

ORIGINATOR

inherit

MEMORIZABLE

create

make

feature {NONE} -- Initialization

make is
-- Initialize attribute_1 and attribute_3. (attribute_2 may be void.)

do
create attribute_1
create attribute_3

end

feature -- Access

attribute_1: TYPE_1
-- Part of the originator's internal state

attribute_2: TYPE_2
-- Another part of the originator's internal state (May be Void)

attribute_3: TYPE_3
-- Another attribute 
-- (not useful to characterize the originator's internal state)

feature -- Memento

new_memento: TUPLE [TYPE_1, TYPE_2] is
-- New memento from attribute_1 and attribute_2

do
Result := [attribute_1, attribute_2]

ensure then
new_memento_has_two_elements: Result.count = 2
attribute_1_set: Result.item (1) = attribute_1
attribute_2_set: Result.item (2) = attribute_2

end

Application 
class inherit-
ing from the 
Memento 
Library class 
MEMORIZ-
ABLE

This example sup-
poses TYPE_1 and 
TYPE_3 (the generat-
ing classes of 
attribute_1 and 
attribute_3) to have 
default_create as cre-
ation procedure.
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Class ORIGINATOR implements the feature new_memento inherited from
MEMORIZABLE and provides more precise information about the function’s return
type, saying it is not any kind of TUPLE but a TUPLE [TYPE_1, TYPE_2]. It means
that the returned tuple has at least two elements of which the first is of type TYPE_1

and the second of type TYPE_2. Besides, the postcondition of new_memento specifies
that the size of the returned tuple is exactly 2. (The argument of set_state_from_

memento and is_valid follows the new type specification of new_memento because of
the anchored definition like new_memento.)

The class APPLICATION (see text below) is a client of ORIGINATOR: it asks
for a memento of the ORIGINATOR’s internal state, keeps it for a while, and restores
it later.

feature -- Status setting

set_state_from_memento (a_memento: like new_memento) is
-- Set internal state (attribute_1, attribute_2) from a_memento.

do
attribute_1 ?= a_memento.item (1)
attribute_2 ?= a_memento.item (2)

ensure then
attribute_1_set: attribute_1 = a_memento.item (1)
attribute_2_set: attribute_2 = a_memento.item (2)

end

feature -- Status report

is_valid (a_memento: like new_memento): BOOLEAN is
-- Is a_memento a valid memento?

do
Result := (a_memento.count = 2

and then a_memento.item (1) /= Void)
ensure then

definition: Result implies (a_memento.count = 2
and then a_memento.item (1) /= Void)

end

invariant

attribute_1_not_void: attribute_1 /= Void
attribute_3_not_void: attribute_3 /= Void

end

class

APPLICATION

create

make

feature {NONE} -- Initialization

Assignment attempts 
?= are explained in 
appendixA, p 378.

A valid memento of 
ORIGINATOR has two 
values corresponding 
to attribute_1 and 
attribute_2 of which 
the second may be 
void (because 
attribute_2 may be 
void), but not the first 
(because of the class 
invariant attribute_1 /
= Void). Hence the 
implementation and 
postcondition of fea-
ture is_valid.

Application 
keeping a 
memento of 
the origina-
tor and 
restoring it 
later on
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Componentizability vs. usefulness

The previous sections have shown that the Memento pattern can be transformed into
a reusable component. The next question is: does the Memento Library really
simplify the task of the programmer; in other words, is it really useful and usable in
practice? The answer is not obvious.

It was mentioned that clients of the Memento Library must inherit from
MEMORIZABLE and implement the inherited features new_memento, set_state_from_
memento and is_valid.
• One advantage is to inherit the assertions defined in class MEMORIZABLE, in

particular the boolean query is_valid. However, is_valid is deferred in
MEMORIZABLE, meaning it is up to the descendants to provide the
implementation anyway. Thus, it does not bring much to rely on the library
rather than writing the code from scratch in each class using the pattern.

• Another point is to ensure that developers won’t forget an important feature
of the pattern; they are more likely to implement the pattern in a correct way
without having to look at Design Patterns or Design Patterns and Contracts.
Nevertheless, the small number of features involved in the pattern makes it
quite difficult to forget one.

• The pattern implementation is simple; thus developers are likely to use it
without even thinking about it. Therefore they won’t use the Memento
Library. (They may not even know that the “pattern” they are using has a
name and is the Memento design pattern.) The reusable component may only
be useful for beginners who have learnt during their studies about the
Memento pattern and remember its intent but do not know how to implement
it in practice. This public of novices may appreciate having a library at
disposal and rely on it.

make is
-- Request a memento from an originator 
-- and give it back after a while.

local
an_originator: ORIGINATOR

do
create an_originator.make

-- Create a snapshot of current state of an_originator.
memento := an_originator.new_memento

-- Time passes and state of originator changes.
...

-- Give the memento back to the originator.
an_originator.set_state_from_memento (memento)

end

feature -- Access

memento: TUPLE [TYPE_1, TYPE_2]
-- Access to memento

invariant

memento_not_void: memento /= Void

end

[Jézéquel 1999].
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I think it is a step forward to have a reusable component and give programmers the
possibility to use it (or not). Even if not useful to experienced developers, the
Memento Library may give a hand to novice programmers.

15.3  COMPONENTIZATION OUTCOME

The componentization of the Memento pattern, which resulted in the development of
the Memento Library, is not completely satisfactory because it does not meet all the
componentizability quality criteria established in section 6.1:

• Completeness: The Memento Library covers all cases described in the original
Memento pattern.

• Usefulness: The Memento Library is not really useful for experienced
developers because the pattern implementation is so simple that programmers
are likely to use it without even thinking about it. Therefore they won’t use
the Memento Library. The reusable component may only be useful for
beginners who know about the pattern but do not know how to implement it.

• Faithfulness: The Memento Library is slightly different from an
implementation from scratch of the Memento pattern because the
ORIGINATOR class now inherits from the class MEMORIZABLE rather than
being a client of a class MEMENTO. Nevertheless, the Memento Library
satisfies the intent of the original Memento pattern and keeps the same spirit.
Therefore I consider the Memento Library as being a faithful componentized
version of the Memento pattern.

• Type-safety: The Memento Library relies on tuples and contracts. Both
mechanisms are type-safe in Eiffel. As a consequence, the Memento Library
is also type-safe.

• Performance: Comparing the implementation of the Memento Library with a
direct pattern implementation shows that the only difference is the use of
tuples and contracts. TUPLE is based on an anonymous class whose fields can
be considered as attributes of this class. Thus the performance will be the
same as any other class. Therefore, the performance of a system based on the
Memento Library will be in the same order as when implemented with the
Memento pattern directly.

• Extended applicability: The Memento Library does not cover more cases than
the original Memento pattern.

15.4  CHAPTER SUMMARY

• The Memento pattern describes a way to capture the internal state of an object
(typically some attribute values) at a certain point of the program execution
and restore this state later on.

• Non-conforming inheritance helps implementing the pattern in cases where
only attributes are stored in the memento.

• The Memento pattern cannot be applied if the originator continues modifying
the values stored in the memento. (Changes prevent restoring an earlier state
because the previously stored attribute values have been overridden.)

• It is possible to write a reusable Memento Library using the Eiffel support for
tuples and Design by Contract™.

See the above discus-
sion on Componen-
tizability vs. 
usefulness.

[Gamma 1995], p 
283-291.

[Meyer 1986], 
[Meyer 1997], 
[Mitchell 2002], and 
[Meyer 200?c].
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• The Memento Library may be useful for novice programmers who just know
about the Memento pattern but have no idea how to implement it. It is unlikely
to help experienced developers a lot. Hence the categorization of the Memento
pattern as “1.3.4 Componentizable but useless”.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
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Part B presented a new pattern classification by level of componentizability.
Part C described the componentizable design patterns, explaining their goals
and how to componentize them. Part D will focus on the remaining patterns
and show that skeleton classes may help when full componentizability is not
possible.
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Decorator and Adapter
Non-componentizable, skeletons with method
In chapter 5, we saw with the Decorator example that componentization was not
possible for all the design patterns described by [Gamma 1995]. The Decorator is
not the only “non-componentizable pattern”.

This chapter focuses on two non-componentizable design patterns (Decorator
and Adapter) for which it is feasible to write skeleton classes — classes with holes
that developers need to complete — to help application programmers, and to provide
a method describing how to fill the skeletons. They belong to the category “2.1.1
Skeleton, with method” of the pattern componentizability classification. The two
patterns are supported by the Pattern Wizard, which will be presented in chapter 21.

16.1  DECORATOR PATTERN
The Decorator pattern describes how to “attach additional responsibilities to an
object dynamically. Decorators provide a flexible alternative to subclassing for
extending functionality”.

Chapter 5 already presented much of the Decorator pattern. Therefore this
section concentrates on the skeleton classes it is possible to write for this pattern and
on the method we can suggest to fill in these classes “with holes”.

We saw in section 5.3 that there are two kinds of decorations: additional
attributes or additional behavior; hence two different skeletons for writing the
decorated components. Let’s review each of them. (The reader may want to have a
quick look at section 5.3 again to better understand the structure of the following
skeleton classes.)

With additional attributes

Here is a possible skeleton class to decorate components with extra attributes:
indexing

description: “Skeleton of a component decorated with additional attributes”
class

DECORATED_COMPONENT -- You may want to change the class name.

inherit

COMPONENT -- You may need to change the class name
redefine

-- List all features of COMPONENT that are not deferred.
end

See 5.3, page 74.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
175.

See “A non-compo-
nentizable pattern: 
Decorator”,  5.3, 
page 74.

Skeleton of a 
component 
decorated 
with addi-
tional 
attributes
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A possible algorithm to fill the class holes is, in outline:

• Make this component a decorated component by redefining all features from
COMPONENT in class DECORATED_COMPONENT to delegate all calls to the
component object to be decorated. (Effective features from class COMPONENT
need to be listed in the corresponding redefine clause.)

• Decorate this component by:

• Declaring additional attributes in a feature clause “Access”.

• Possibly adding additional creation procedures to take these new
attributes into account.

You may also have to change the class names COMPONENT and DECORATED_
COMPONENT to adapt to your program.

create

make 
-- You may want to add creation procedures to initialize the additional attributes.

feature {NONE} -- Initialization

make (a_component: like component) is
-- Set component to a_component.

require
a_component_not_void: a_component /= Void

do
component := a_component

ensure
component_set: component = a_component

end

-- List additional creation procedures taking into account additional attributes.

feature -- Access

-- List additional attributes.

feature -- To be completed

-- List all features from COMPONENT and implement them by delegating
-- calls to component as follows:
-- do
-- component.feature_from_component
-- end

feature {NONE} -- Implementation

component: COMPONENT
-- Component that will be used for the “decoration”

invariant

component_not_void: component /= Void

end
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With additional behavior

Here is a possible skeleton class to add behavior to an existing component:

The algorithm to complete this second skeleton class is very close to the first case
with additional attribute decorations:

• Redefine the features from COMPONENT to forward calls to the to-be-
decorated component object. (Effective features from class COMPONENT need
to be listed in the corresponding redefine clause.)

indexing

description: “Skeleton of a component decorated with additional behavior”

class

DECORATED_COMPONENT -- You may want to change the class name.

inherit

COMPONENT -- You may need to change the class name
redefine

-- List all features of COMPONENT that are not deferred.
end

create

make

feature {NONE} -- Initialization

make (a_component: like component) is
-- Set component to a_component.

require
a_component_not_void: a_component /= Void

do
component := a_component

ensure
component_set: component = a_component

end

feature -- To be completed

-- List all features from COMPONENT and implement them by delegating
-- calls to component as follows:
-- do
-- component.feature_from_component
-- end

-- For some of these features, you may want to do something more:
-- do
-- component.feature_from_component
-- do_something_more
-- end

feature {NONE} -- Implementation

component: COMPONENT
-- Component that will be used for the “decoration”

invariant

component_not_void: component /= Void

end

Skeleton of a 
component 
decorated 
with addi-
tional behav-
ior
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• Decorate this component with additional behavior by redefining some of the
features from COMPONENT to do something more than just the behavior
defined in class COMPONENT. A few routines of class DECORATED_
COMPONENT will typically look like:

Again, programmers may have to change the class names COMPONENT and
DECORATED_COMPONENT to adapt to their programs. The Pattern Wizard makes
this task easy: users just need to enter the class names they want and the wizard
generates the corresponding skeletons automatically with the given names.

Componentization outcome

Chapter 6 defined the rule to assert the patterns’ componentizability: “Design
patterns are declared “non-componentizable” if none of the following mechanisms:
• Client-supplier relationship
• Simple inheritance
• Multiple inheritance
• Unconstrained genericity
• Constrained genericity
• Design by Contract™
• Automatic type conversion
• Agents
• Aspects
permits to transform the pattern into a reusable component”. The preview of
Decorator in chapter 5 examined these possibilities successively. Let’s summarize
the outcome here:
• The first considered technique was genericity. The idea was to have one

generic class DECORATED_COMPONENT [G] and several generic derivations
like DECORATED_COMPONENT [BOOK] representing a decorated book,
DECORATED_COMPONENT [VIDEO_RECORDER] representing a decorated
video recorder, etc. But the Decorator pattern description says that a
DECORATED_COMPONENT needs to be a COMPONENT to enable clients to
use one variant or the other transparently, yielding the following code:

This code cannot work in Eiffel. The language would need to be interpreted or
support techniques like C++ templates, which is not desirable. Thus, genericity
(unconstrained and constrained) and inheritance (single or multiple) do not help
componentizing the Decorator pattern.

do_something is
-- Do something on component.

do
component.do_something
-- Do something more here.

end

class

DECORATED_COMPONENT [G −> COMPONENT]

inherit

G
...
end

Routine with 
additional 
behavior

“Pattern Wizard”,  
21, page 323.

“Componentizabil-
ity criteria”,  6.1, 
page 85.

“An attractive but 
invalid scheme”,  
page 78.

Constrained 
genericity and 
simple inher-
itance do not 
help compo-
nentizing the 
Decorator

Multiple inheritance 
would not bring more 
than single inherit-
ance here.
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• Design by Contract™ does not help either: if componentization is possible
then the componentized version can benefit from the support of contracts but
contracts alone do not give a reusable component.

• Chapter 5 also considered automatic type conversion and showed that it was
useless because the decoration would be added to a clone of the original
object, not on the object itself.

• Agents were not reviewed in section 5.3 but they do not help componentizing
Decorator either: agents do not enable adding an attribute to a given COMPONENT.

Now that we have examined all mechanisms mentioned in the definition of non-
componentizable pattern, we can assert that Decorator is non-componentizable.

16.2  ADAPTER PATTERN

In chapter 5 and in the previous section, we learnt how to decorate an object with
extra functionalities while keeping an interface that is compatible with the original
object to ensure transparency for the client. We will now study how to make
incompatible interfaces work together with the Adapter pattern.

There are two kinds of “adapters”: class adapters and object adapters. This
section examines both, first writing them in Eiffel, second evaluating possibilities to
componentize them.

Pattern description

The Adapter pattern serves to “convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces”.

An object adapter may be viewed as a plug adapter one uses to plug an
electrical appliance in when traveling abroad. One does not change the device’s plug
(it is still the same object); one just passes it to the (object) adapter that takes care
of making it compatible with the plug’s shape (the object interface) of the country
you are visiting.

The class adapter is a more static scheme because it involves classes, not
objects, and relies on inheritance. It is the “marriage of convenience” described by
Meyer.

Let’s now describe each adapter variant.

Class adapter

Here is the class diagram of a typical application using the class adapter pattern:

“A valid but useless 
approach”,  page 79

See “A non-compo-
nentizable pattern: 
Decorator”,  5.3, 
page 74.

[Gamma 1995], p 
139.

[Meyer 1997], p 530-
532.

TARGET ADAPTEE 

ADAPTER

APPLICATION 

f g

g         ff- 

Class dia-
gram of a typ-
ical 
application 
using the 
class adapter 
pattern 
The BON notation is 
explained in appen-
dix A, page 394.
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The idea is the following: you have two classes TARGET and ADAPTEE that do not
have the same interface. You, as a client, need the TARGET’s interface, but you want
the implementation of ADAPTEE. Therefore, you write a new class ADAPTER that
inherits from both TARGET and ADAPTEE, allowing you to keep the interface of
TARGET while redefining its features to use the implementation of ADAPTEE,
transparently to the APPLICATION.

In the general case, the features f from TARGET and g from ADAPTEE may
have different signatures and different contracts. In that case, the class ADAPTER
needs to redefine the version f from TARGET and “reconcile” the new f with the
existing g coming from ADAPTEE. Let’s take an example to illustrate how it works.
Suppose we have the following class TARGET:

and this class ADAPTEE:

which we need to adapt. Here is what an ADAPTER could look like:

class

TARGET

feature -- Basic operation

f (i: INTEGER; s: STRING) is
-- Do something with i and s.

require
s_not_void: s /= Void

do
...

end

end

class

ADAPTEE

feature -- Basic operation

g (s: STRING; i: INTEGER) is
-- Do something with s and i.

require
s_not_void: s /= Void
s_not_empty: not s.is_empty

do
...

end

end

class

ADAPTER

inherit

TARGET
redefine

f
end

expanded ADAPTEE
export

{NONE} all
end

Class TAR-
GET

Class ADAP-
TEE

Class adapter 
example
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A particular case of the Class adapter pattern, which is supported by the Pattern
Wizard, is when the two features f and g have the same signatures and contracts. It
becomes possible to merge these two features by undefining the version from
TARGET and renaming g from ADAPTEE as f in ADAPTER. Here is the resulting code:

The rename clause means that in class ADAPTER the feature g inherited from
ADAPTEE is known under the name f. But class TARGET also has a feature f, causing
a conflict in ADAPTER (which inherits from both TARGET and ADAPTEE). The
undefine clause solves the problem: it undefines feature f from class TARGET
(meaning, makes it deferred), which results in an automatic merging. In other words,
the deferred feature f coming from TARGET is effected by the feature f (originally
named g) inherited from ADAPTEE, which is exactly what we want: the interface of
TARGET with the implementation of ADAPTEE.

Inheriting for implementation purposes is sometimes pointed out as being a sign of wrong
design. Meyer explains why it is useful in some cases.

The keyword expanded means that there is no conformance on the inheritance
path with ADAPTEE. In other words, class ADAPTER conforms to TARGET but does
not to ADAPTEE; hence, it is forbidden to assign an ADAPTER to an ADAPTEE as
shown below:

feature -- Basic operation
f (i: INTEGER; s: STRING) is

-- Do something with i and s.
require

s_not_void: s /= Void
do

if not s.is_empty then
g (s, i)

end
end

end

class
ADAPTER

inherit
TARGET

undefine
f

end
expanded ADAPTEE

rename
g as f

export
{NONE} all

end
end

target: TARGET
adaptee: ADAPTEE
adapter: ADAPTER
...
create adapter
target := adapter

-- Correct because ADAPTER conforms to TARGET
adaptee := adapter

-- Incorrect because ADAPTER inherits but does not conform to ADAPTEE

Class adapter 
example

Adapter of ADAPTEE 
to be usable as a TAR-
GET.

The routines of class 
ADAPTEE (others 
than g — renamed as 
f) do not need to 
belong to the 
ADAPTER’s interface; 
hence the export 
clause to restrict the 
exportation status of 
all inherited features. 
(Feature f is still 
available to clients 
through the second 
inheritance link — 
with class TARGET.)

See [Meyer 1992]: 
chapter 6 about 
inheritance and 
chapter 11 about 
repeated inheritance, 
adaptation clauses.
[Meyer 1997], p 530-
532.

See section 6.9 of 
[Meyer 200?b] about 
non-conforming 
inheritance.

About non-
conforming 
inheritance
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In fact, non-conforming inheritance is not supported by the Eiffel compilers yet
(meaning the class ADAPTER given before would not compile). It will be part of the
next version of Eiffel.

For the moment, Eiffel developers would restrict the export status of features
inherited from class ADAPTEE to come close to expanded inheritance, although not
quite because it is still conforming:

The following text shows typical use of a class adapter. The class APPLICATION
exposes a procedure do_something, which takes a TARGET as argument. First use is
of course to call the feature with a direct instance of TARGET. But it is also possible
to call it with an instance of a proper (conforming) descendant of TARGET, here
ADAPTER. The creation routine make shows both possibilities.

There is also an object variant of the Adapter pattern. It is covered next.

class 

ADAPTER

inherit

ADAPTEE
export

{NONE} all
end

...
end

class

APPLICATION

create

make

feature {NONE} -- Initialization

make is
-- Do something. (Show typical use of the class adapter pattern.)

do
-- Call the version of TARGET.

do_something (create {TARGET})

-- Call the version of ADAPTEE.
do_something (create {ADAPTER})

end

feature -- Basic operations

do_something (a_target: TARGET) is
-- Do something on a_target.

do
a_target.f

end

end

[Meyer 200?b].

With restric-
tion of the 
export status

Application 
using a “class 
adapter”
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Object adapter

Here is the class diagram of an Eiffel implementation of the object adapter pattern:

Classes TARGET and ADAPTEE are the same as before. Only the class ADAPTER
changes: now it is a client of ADAPTEE rather than a (non-conforming) heir.

The resulting class is shown below:

class

ADAPTER

inherit

TARGET
redefine

f
end

create

make

feature {NONE} -- Initialization

make (an_adaptee: like adaptee) is
-- Set adaptee to an_adaptee.

require
an_adaptee_not_void: an_adaptee /= Void

do
adaptee := an_adaptee

ensure
adaptee_set: adaptee = an_adaptee

end

feature -- Access

adaptee: ADAPTEE
-- Object to be adapted to TARGET

feature -- Basic operations

f is
-- Do something. (Delegate work to adaptee.)

do
adaptee.g

end

invariant

adaptee_not_void: adaptee /= Void

end

TARGET ADAPTEE 

ADAPTER

APPLICATION 

f g

f++ 

adaptee 

Class dia-
gram of a typ-
ical 
application 
using the 
object adapter 
pattern

See “Class diagram 
of a typical applica-
tion using the class 
adapter pattern”,  
page 259.

Object 
adapter

Adapter of ADAPTEE 
to be usable as a TAR-
GET.
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The inheritance clause says that the implementation of feature f (inherited from
TARGET) is redefined (it has a redefine clause). If we have a look at the
implementation of f in class ADAPTER, we see that it just forwards the call to the
adaptee, which is passed at creation.

The core difference with the previous design and implementation is that here
we are dealing with the same object; everything is done at run time. The
APPLICATION gives the instance of ADAPTEE it wants to use to the ADAPTER, which
takes care of making it compatible with the TARGET interface the APPLICATION
must satisfy.

The example below illustrates how to use an “object adapter”:

As mentioned at the beginning of this section, using an object adapter is like using
a plug adapter for an electric appliance when traveling in another country. You give
an adaptee (not a copy of adaptee) to the ADAPTER (in the case of plug adapter, you
keep the same plug at the end of the line, you don’t cut the wire to put another plug
instead) and you use this compatible adaptee as TARGET argument to do_something.

16.3  A REUSABLE ADAPTER LIBRARY?
Let’s now review techniques — already in the Eiffel language or not — that may
help componentizing the Adapter pattern.

class

APPLICATION

create

make

feature {NONE} -- Initialization

make is
-- Do something.
-- (Show a typical use of the object Adapter pattern.)

local
an_adaptee: ADAPTEE

do
-- Call the version of TARGET.

do_something (create {TARGET})

create an_adaptee
-- Possibly perform some operations on an_adaptee.

-- Do something using existing object adaptee.
-- Call the version of ADAPTEE.

do_something (create {ADAPTER}.make (an_adaptee))
end

feature -- Basic operations

do_something (a_target: TARGET) is
-- Do something on a_target.

do
a_target.f

end

end

Client appli-
cation using 
an “object 
adapter”

The current version 
of Eiffel is defined in 
[Meyer 1992], the 
next version in 
[Meyer 200?b].
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Object adapter

Using genericity?

A core drawback of the approach presented in the previous section is to require
creating a new class ADAPTEE_ADAPTER for each ADAPTEE. To adapt a TEXTBOOK
to be compatible with a BOOK, we would need to create a class TEXTBOOK_
ADAPTER. If we decide that a DICTIONARY is also a BOOK and should be added to
a library, then we need to create a DIRCTIONARY_ADAPTER. Hence the idea of using
genericity and have a class ADAPTER [G] that could have any number of derivations:
ADAPTER [TEXTBOOK], ADAPTER [DICTIONARY], ADAPTER [COMICS], etc.

But genericity alone is not enough. Indeed, the primary goal in creating an
ADAPTER is to make it compatible with (conformant to) a certain TARGET. In other
words, we want that ADAPTER [G] inherits from a class TARGET. But then we need
to make sure that call delegation will work. For example, if we have a feature f in
ADAPTER, its implementation should be adaptee.f. But what if f does not exist in
class ADAPTEE (considering a type ADAPTER [ADAPTEE])? Therefore, we need
constrained genericity, imposing actual generic parameters to conform to, say
ADAPTABLE, with ADAPTABLE defining the feature f. We would end up with
something like:

But this class is not usable in practice. Let’s see why.

How to write the classes TARGET and ADAPTABLE? They are likely to look
pretty much the same: a class declaring a feature f (or at best several features with
different names), and that’s it. We cannot do much more in the general case.

Besides, any actual generic parameter needs to conform to ADAPTABLE,
which means in most cases inherit from ADAPTABLE. In other words, the class
ADAPTEE is likely to require some changes to be used by the ADAPTER, removing
the whole purpose of having an object ADAPTER.

class

ADAPTER [G −> ADAPTABLE]

inherit

TARGET
redefine

f
end

...
feature -- Access

adaptee: G
-- Object to be adapted to TARGET

feature -- Basic operations

f is
-- Perform an operation. (Delegate work to adaptee.)

do
adaptee.f

end
...
end

Tentative 
componenti-
zation of the 
Object 
adapter using 
constrained 
genericity
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A more appealing scheme would be to have two generic parameters, namely
a class ADAPTER [G, H] where G is the ADAPTEE and H the TARGET. However, this
idea falls short when introducing inheritance. Indeed, we need ADAPTER [G, H] to
conform to the target H, meaning something like:

which is not possible in a compiled language like Eiffel as explained in detail in
section 5.3 about the Decorator pattern.

Using conversion?

If inheritance is not possible, it may seem attractive to consider type conversion.
Such automatic mechanism is not available in the current version of Eiffel. However,
it will be supported in the next version. (Chapter 5 explained the proposed syntax in
detail; therefore it is not reproduced here. The reader may go back quickly to section
“A valid but useless approach”,  page 79 if type conversion is not so fresh in his or
her mind.)

First possibility, modify the class TARGET to have a conversion routine taking
an argument of type ADAPTEE:

Such a scheme is hardly applicable in practice: first, you may not have access to the
source code of class TARGET (otherwise you would not have to create an ADAPTER
and could modify the classes directly); second, you lose the dynamic aspect of an
object adapter because conversion will create a new object instead of working on the
original object given as argument. Using the metaphor of a plug adapter again: you
want to keep the plug we have on your electric appliance and not cut the wire to put
a new plug.

The second approach is to modify the class ADAPTEE (if you have this
possibility):

Again, conversion will create a new object, which is not what we want.

class
ADAPTER [G, H]

inherit
H

...
end

class
TARGET

create
make_from_adaptee

convert
make_from_adaptee ({ADAPTEE})

...
end

class
ADAPTEE

convert
to_target: {TARGET}

...
end

Object 
adapter with 
multiple 
generic 
parameters
(WARNING: 
Wrong code)

See “An attractive 
but invalid scheme”,  
page 78.

The current version 
of Eiffel is defined in 
[Meyer 1992]; the 
next version is 
described in [Meyer 
200?b].

Modified 
class TAR-
GET with 
conversion 
from ADAP-
TEE

Modified 
class ADAP-
TEE with 
conversion 
function to 
TARGET
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Using agents?

It was mentioned several times that the implementation of an ADAPTER is like a
Proxy, delegating calls to the original ADAPTEE. Could agents help? The idea of
using agents would be to replace the call to the ADAPTEE’s routine by a call on the
agent; this agent would be passed as argument to the creation routine of class
ADAPTER. A possible implementation appears next:

Typical client code would be:

Such implementation is correct and works. However, it changes the goal of the
Object adapter pattern. Indeed, the idea of an object adapter is that we have an
adaptee and we want to find an adapter to use it. For example, we have a laptop
computer with a French plug and we want to use it during a travel in the United
States, meaning we want to find an adapter from French to US plugs.

class

ADAPTER

inherit

TARGET
redefine

f
end

create

make

feature {NONE} -- Initialization

make (an_impl: like impl) is
-- Set impl to an_impl.

require
an_impl_not_void: an_impl /= Void

do
impl := an_impl

ensure
impl_set: impl = an_impl

end

feature -- Access

impl: PROCEDURE [ANY, TUPLE]
-- Procedure ready to be called by f

feature -- Basic operations

f is
-- Do something.

do
impl.call ([])

end

invariant

impl_not_void: impl /= Void

end

create {ADAPTER}.make (agent {ADAPTEE}.f)

Object 
adapter using 
agents

Client using 
an object 
adapter 
implemented 
with agents
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Agents give the impression the pattern works the other way around: we have
an adapter and we need to find an adaptee to use this adapter. It is the reverse.
Therefore agents do not help componentizing the Object adapter pattern.

Using aspects?

What about aspects? I introduced the concept of Aspect-Oriented Programming
(AOP) in chapter 5. Although not supported by Eiffel for the moment, the notion of
aspect is gaining considerable attention in the software engineering community.
Hence, it is worth examining whether having some kind of “aspects” in Eiffel would
help implementing a reusable Adapter library.

Here is a possible implementation of an Adapter aspect using AspectJ™:

Like for the Decorator pattern, aspects break the dynamic dimension of the object
Adapter pattern. Indeed, one does not have an object-scope control on the aspect:
either it is applied to all instances created at run time or none. Therefore, having
aspects in Eiffel would not help componentizing the object Adapter pattern.

Componentization outcome

We have just seen that genericity (constrained or not), agents, conversion, and
aspects do not help componentizing the Object adapter pattern. Contracts could only
improve a componentize version but cannot make a pattern componentizable.
Finally, inheritance (single or multiple) cannot help because it is a static mechanism
whereas an object adaptation should happen at run time.

According to the definition given in chapter 6, we can assert that the Object
adapter pattern is non-componentizable.

Class adapter

We bump into the same barriers as for the object adapter when exploiting genericity
or type conversion: genericity and inheritance involving a generic parameter are
simply incompatible. The idea of combining agents with automatic type conversion
and constrained genericity seems more appealing. That’s what we will discuss now.

Combining constrained genericity, type conversion and agents?

The third approach examined to componentize the Object adapter was to use agents.
It was not retained because it was breaking the dynamic dimension of the object
adapter. But here, we are talking about class adapter, namely static interface
adaptation, usually through inheritance. Thus, it is worth investigating more closely.

aspect Adapter {

// Apply aspect whenever f of class Target is called.
pointcut adapterPointcut ():

call (Target.f)

// Adaptee providing the new implementation of f declared in Target
public Adaptee adaptee;

// New implementation of f declared in Target
around ():

adapterPointcut (){
adaptee.g()

}

}

See “What about 
aspects?”,  page 82.

Aspect 
adapter 
(approxima-
tive 
AspectJ™ 
syntax)

See “Componentiz-
ability criteria”,  6.1, 
page 85.
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Because we are looking for reusability, we also need genericity. But genericity
with inheritance (involving a generic parameter) is impossible. Therefore type
conversion seems to be the only way to go. The beginning of a class ADAPTER will
look as follows:

where G denotes the ADAPTEE and H the TARGET. As pointed out by the comment
of function to_target, we need to require from the second generic parameter to have
a creation procedure default_create. (Otherwise, we could not perform the type
conversion.) Besides, we also need actual generic parameters used as target to
conform to a certain interface, say TARGET, to be sure they expose a feature, say f
(or several features).

Here, TARGET refers to the generic constraint that appears below; in: class ADAPTER [G,
H -> TARGET create default_create end]. It could also have been called “TARGETABLE”. The
reader should not confuse with the type TARGET used so far, which is a possible actual
generic parameter for H that conforms to the generic constraint.

In other words, we need constrained genericity to apply automatic type
conversion.

The following table shows a possible implementation of a class adapter
combining constrained genericity, type conversion and agents:

class

ADAPTER [G, H]

convert

to_target: {H}

feature -- Conversion

to_target: H is
-- Target corresponding to given adaptee

do
-- Requires a default creation procedure in H.

ensure
target_not_void: Result /= Void

end
...
end

class

ADAPTER [G, H −> TARGET create default_create end]

create

make

convert

to_target: {H}

feature -- Conversion

to_target: H is
-- Target corresponding to given adaptee

do
create Result

ensure
target_not_void: Result /= Void

end

See “Using generic-
ity?”,  page 265 and 
“An attractive but 
invalid scheme”,  
page 78.

Sketch of 
class adapter 
using 
genericity and 
type conver-
sion

Adapter com-
bining con-
strained 
genericity (for 
reusability), 
automatic 
type conver-
sion to the 
target, and 
agents

This notation is 
explained in appen-
dix A with the notion 
of constrained 
genericity, starting 
on page 387.
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This implementation is correct and works; it is even reusable, thanks to genericity.
Using again the APPLICATION code example introduced on page 262 for class
adapter, we could replace the second call to do_something by:

But this is just a “toy” example. Is our reusable class adapter really applicable in
practice? Let’s try to use it in the book library example presented in earlier chapters.

We would like to write something like:

But it requires modifying class BOOK to inherit from TARGET and have default_create
as a valid creation procedure (remember the constraint on the second generic
parameter). The former would be possible although not desirable (we don’t want to
change BOOK to create an adapter for TEXTBOOKs; we may even not have access to
the source code of class BOOK). The latter may even require a complete refactoring
of the book library example because a simple default_create procedure may not
ensure the class invariant of BOOK. 

feature {NONE} -- Initialization

make (an_impl: like impl) is
-- Set impl to an_impl.

require
an_impl_not_void: an_impl /= Void

do
impl := an_impl

ensure
impl_set: impl = an_impl

end

feature -- Access

impl: PROCEDURE [ANY, TUPLE]
-- Procedure ready to be called by f

feature -- Basic operations

f is
-- Perform an operation.

do
impl.call ([])

end

invariant

impl_not_void: impl /= Void

end

an_adapter: ADAPTER [ADAPTEE, TARGET]
...
create an_adapter.make (agent {ADAPTEE}.f)
do_something (an_adapter)

-- Call the agent (given as argument to the creation procedure of
-- ADAPTER), namely the version of f from class ADAPTEE.
-- It is equivalent to: do_something (an_adapter.to_target)
-- because of automatic type conversion.

books: LINKED_LIST [BOOK]
an_adapter: ADAPTER [TEXTBOOK, BOOK]
...
create an_adapter.make (agent {TEXTBOOK}.borrow_textbook)
books.extend (an_adapter)

Application 
using the 
generic class 
adapter with 
agents and 
type conver-
sion

Example with 
generic class 
adapter
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Thus, our componentized class adapter appears not usable in practice, or
usable in only few applications (those providing a default creation procedure). A
solution would be to allow arguments in the conversion function (to_target in our
example) and pass an agent to the creation procedure of class ADAPTER to take care
of filling those arguments; such a scheme is however not possible in the automatic
type conversion described in [Meyer 200?b].

Using aspects?

Another technique that may help us in componentizing the Class adapter pattern is
aspects. Although not provided in Eiffel at the moment, it is worth looking whether
they could bring something to us. The aspect adapter presented on page 268 works
to build a class adapter. However, it is not a reusable solution. We would need to
combine it with genericity to target any kind of ADAPTEE and TARGET, but then we
lose conformance. Yet another (more complicated) implementation of the Class
adapter, aspects do not help componentizing the pattern though.

Componentization outcome

We have just seen that constrained genericity, agents, automatic type conversion, and
aspects do not help componentizing the Class adapter pattern. Because constrained
genericity is powerless, unconstrained genericity would not help either. Contracts
could not make a pattern componentizable; they could just improve the
componentized version of the pattern. Finally, multiple inheritance provides a way
to implement the Class adapter pattern, but it does not make the pattern
componentizable. The classes TARGET and ADAPTEE depend too much on the
context. We cannot know in advance what kind of ADAPTEE we will need to adapt
and to which TARGET.

Because none of these mechanisms helps componentizing the Object adapter
pattern, we can assert that it is non-componentizable (according to the definition
given in chapter 6,).

Intelligent generation of skeleton classes

For lack of componentizability, we have to consider helping programmers with
skeleton classes to be completed. The class texts shown in 16.2 provide a good basis
to develop such skeletons. 

A step forward would be an automatic tool filling parts of the classes from a
minimal input entered by the programmer. The class texts appearing below and on
the next page show how it could be done for the class and object adapter patterns:
class

ADAPTER

inherit

TARGET
undefine

-- To be completed
end

expanded ADAPTEE
rename

-- To be completed
export

{NONE} all
end

The Factory library 
described in chapter 8 
uses a similar imple-
mentation with 
agents.

For more details 
about aspects, see 
“What about 
aspects?”,  page 82.

See “An attractive 
but invalid scheme”,  
page 78 and “Using 
genericity?”,  page 
265.

See “Class adapter”,  
page 259

See “Componentiz-
ability criteria”,  6.1, 
page 85.

Class adapter 
skeleton

Adapter of ADAPTEE 
to be usable as a TAR-
GET.
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A possible algorithm to fill the class holes is, in outline:
• Detect features with same feature name in TARGET and ADAPTEE.
• In case of name clashes: choose the version from TARGET (which should

contain the information, ADAPTEE bringing only the implementation) by
adding a rename clause in ADAPTEE.

• For features of TARGET when TARGET is deferred not implemented in
ADAPTEE, list them in clause feature of ADAPTER.

Here is the object variant:

create

-- List creation procedure(s) here.

feature

-- List features here.

end

class

ADAPTER

inherit

TARGET
redefine

-- List all features from TARGET 
-- that have a direct counterpart in ADAPTEE

end

create

make

feature {NONE} -- Initialization

make (an_adaptee: like adaptee) is
-- Set adaptee to an_adaptee.

require
an_adaptee_not_void: an_adaptee /= Void

do
adaptee := an_adaptee

ensure
adaptee_set: adaptee = an_adaptee

end

feature -- Access

adaptee: ADAPTEE
-- Object to be adapted to TARGET

feature

-- List all features from TARGET and implement them 
-- by calling the version from ADAPTEE if applicable 
-- (adaptee.feature_from_adaptee) otherwise leave an empty body.

invariant

adaptee_not_void: adaptee /= Void

end

Object 
adapter skele-
ton

Adapter of ADAPTEE 
to be usable as a TAR-
GET.
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Let’s now have a look at two other patterns — Template Method and Bridge — for
which it is possible to write skeleton classes but impossible to provide a method to
fill them. Developers have to complete the class texts depending on their particular
context and specification.

16.4  CHAPTER SUMMARY
• The Decorator pattern provides a way to add new attributes or extra behavior

to an existing component.
• The Decorator pattern is non-componentizable but it is possible to write

skeleton classes and even provide programmers with a method to fill those
class texts.

• The Adapter pattern describes a way to make classes work together although
they were not designed for it and have incompatible interfaces.

• The Adapter pattern has two variants: the “class adapter” and the “object
adapter”. The former is a static scheme involving multiple inheritance. The
latter is a dynamic adaptation of an existing object to match the target’s
interface.

• Multiple inheritance and client delegation enable writing class and object
adapters in Eiffel.

• Neither current Eiffel mechanisms (constrained genericity, inheritance, agents,
etc.) nor extensions (automatic type conversion, aspects) make it possible to
build a reusable Adapter library.

• It is possible to componentize the Class adapter pattern by combining
constrained genericity, automatic type conversion and agents, but it is hardly
usable in practice.

• It is possible to provide developers with skeleton classes for both the class
adapter and the object adapter schemes. A completion wizard may be feasible
to help programmers fill parts of the skeleton classes.

• The Decorator and the Adapter design patterns belong to the category “2.1.1
Non-componentizable, skeleton, possible method”.

[Gamma 1995], p 
175-184.

See “A non-compo-
nentizable pattern: 
Decorator”,  page 
74.

[Gamma 1995], p 
139-150.

The current version 
of Eiffel is defined in 
[Meyer 1992]; the 
next version is 
described in [Meyer 
200?b]. 
About aspects, see 
“What about 
aspects?”,  page 82.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
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17   
Template Method and Bridge
Non-componentizable, skeletons but no method
The previous chapter showed two non-componentizable patterns (Decorator and
Adapter) for which it is possible to generate skeleton classes and to provide a
method to help application programmers fill in those skeletons.

This chapter focuses on two non-componentizable design patterns (Template
Method and Bridge) for which it is also feasible to produce skeletons. However, It
is not possible to devise a general method to fill in the skeletons. Developers need
to fill the classes on a case by case basis.

The Pattern Wizard, which will be presented in chapter 21, supports Template
Method and Bridge. It even provides several implementation flavors of the two
patterns.

17.1  TEMPLATE METHOD PATTERN

The Template Method design pattern plays an important role in designing object-
oriented applications. It permits to define an algorithm, specify its structure, the
operations it should perform, and the order in which they should be executed, while
leaving intermediary steps unimplemented. These “holes” are also known as “hook
operations”. This section explains how to write template methods in Eiffel and
examines whether we can find a reusable solution.

Pattern description

The Template Method pattern explains how to “define the skeleton of an algorithm
in an operation, deferring some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the algorithm’s structure.”

The Template Method is similar to the Strategy pattern described in an earlier
chapter. It solves similar problems but uses inheritance instead of delegation.

[Meyer 1997], p 504-
506.

[Gamma 1995], p 
325.

See chapter 14, page 
233.
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Here is the class diagram of a typical application using the Template Method
pattern:

The class APPLICATION defines a feature do_something (the “template method”),
which is the service of interest to the CLIENT. The algorithm encapsulated in routine
do_something has two steps corresponding to features do_something_1 and do_
something_2, which are left deferred in class APPLICATION.

Extensive contracts ensure that the algorithm described in do_something is
properly executed: do_something_1 has the same precondition ready as do_something,
it ensures that first_part_done is true, which is also the precondition of do_something_
2, which itself ensure done, the postcondition of do_something. All three boolean
queries are deferred in class APPLICATION; they are effected by descendants.

The text of class APPLICATION appears below.
deferred class

APPLICATION

feature -- Template method

frozen do_something is
-- Do something.

require
ready: ready

do
do_something_imp_1
do_something_imp_2

ensure
done: done

end

feature -- Status report

ready: BOOLEAN is
-- Are all conditions met for do_something to be called?

deferred
end

done: BOOLEAN is
-- Has do_something done its job?

deferred
end

C LIEN T * 
A PPLIC A TIO N

+  
M Y_A PPLIC A TIO N  

do_som ething 
do_som ething_1* 
do_som ething_2* 
ready* 
done* 
first_part_done* 

do_som ething_1+  
do_som ething_2+  
ready+  
done+  
first_part_done+  

Class dia-
gram of a typ-
ical 
application 
using the 
Template 
Method pat-
tern

Application 
using the 
Template 
Method pat-
tern

The frozen keyword is 
used here to enforce 
that the body of do_
something should not 
be changed in 
descendant classes; 
but this is not compul-
sory.
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Class APPLICATION shows how to use “template methods” in practice. However, it
does not provide a reusable solution. Different applications will have different
features do_something with different implementation steps, maybe more than two,
maybe defined in another class, etc.

This design scheme is essential in building extendible and reusable software
systems. Meyer explains it in detail in his book Object-Oriented Software
Construction (second edition). Here are some extracts:

“This technique is part of a general approach that we may dub “don’t
call us, we’ll call you”: rather than an application system that calls out
reusable primitives, a general-purpose scheme lets application
developers “plant” their own variants at strategic locations.”

“What the O-O method offers, thanks to behavior classes, is systematic,
safe support for this technique, through classes, inheritance, type
checking, deferred classes and features, as well as assertions that enable
the developer of the fixed part to specify what properties the variable
replacements must always satisfy.”
“With the techniques just discussed we are at the heart of the object-
oriented method’s contribution to reusability: offering not just frozen
components (such as found in subroutine libraries), but flexible solutions
that provide the basic schemes and can be adapted to suit the needs of
many diverse applications.”

A reusable Template Method Library?

Because it is such a useful technique, it would be very nice to have a reusable
component that encapsulates the Template Method pattern.

feature {NONE} -- Status report

first_part_done: BOOLEAN is
-- Has do_something_imp_1 done its job?

deferred
end

feature {NONE} -- Implementation ("Hook" features)

do_something_imp_1 is
-- Do something.

require
ready: ready

deferred
ensure

first_part_done: first_part_done
end

do_something_imp_2 is
-- Do something.

require
first_part_done: first_part_done

deferred
ensure

done: done
end

end

[Meyer 1997], p 505.



TEMPLATE METHOD AND BRIDGE §17278
One idea would be to use a list of agents for the intermediary steps of feature
do_something and loop over all steps. The resulting implementation would look like
this:

where implementation_procedures is a LINKED_LIST [PROCEDURE [ANY, TUPLE]].
However, this approach is not satisfactory for several reasons:

• It is now up to the CLIENT to provide the implementation procedures (to fill
in the implementation_procedures list), which goes against the Information
Hiding principle. (The CLIENT shouldn’t have to care about implementation
issues.)

• It is more difficult to ensure that the implementation steps are performed in
the right order. Indeed, we could make extensive use of pre- and post-
conditions when steps were encapsulated into features, but here we are
dealing with agents, which makes the use of contracts more difficult. We have
to trust clients and hope they will insert the procedures in the right order.
Hence the paradox of the Template Method pattern: it “shows one of the

classic forms of reuse in object-oriented programming” but it  is  not
componentizable. It is rather a design scheme that may be applied in a given
situation to yield better software architecture.

17.2  BRIDGE PATTERN
In chapter 16, we learnt about the Adapter pattern, whose goal is to make interfaces
work together, even though they were not designed to. The Bridge pattern goes in
the opposite direction: it should be a conscious design choice to separate the
interface from the implementation; it is not an afterwards means to stick pieces back
together. This section shows several ways to implement the Bridge pattern in Eiffel
and discusses the strong points and weaknesses of each variants.

Pattern description

The Bridge  pattern explains how to “decouple an abstraction from its
implementation so that the two can vary independently”.

In other words, one introduces a Bridge to separate the class interface — what
is visible to the clients — from the implementation, which may change later on but
clients should neither know nor care about it — clients should not rely on the
implementation. 

The purpose of the Bridge pattern is close to the Information Hiding principle
explained by Meyer: “The designer of every module must select a subset of the
module’s properties as the official information about the module, to be made
available to authors of client modules”.

frozen do_something is
-- Do something.

do
from

implementation_procedures.start
until

implementation_procedures.after
loop

implementation_procedures.item.call ([])
implementation_procedures.forth

end
end

Template 
Method using 
agents

[Martin 2002a], p 
242.

[Gamma 1995], p 
151.

[Meyer 1997], p 51-
53.
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Let’s see how to implement a Bridge in Eiffel. This section is organized as
follows. First, it shows an implementation conforming exactly to the description in
Design patterns. Second, it introduces a pattern variation that is used in several
Eiffel libraries, in particular EiffelVision2 for multi-platform graphical applications.
Third, it suggests another implementation relying on the concept of non-conforming
inheritance to be introduced in the next version of Eiffel. Finally, it compares the last
two approaches with respect to the criteria described in Design Patterns.

Original pattern

Here is the class diagram of the original Bridge pattern description:

The class APPLICATION defines the interface offered to clients. Internally, it
delegates part  of the work to APPLICATION_IMP,  which contains the
implementation. Both classes are deferred and may have several concrete
descendants. The interface class APPLICATION declares an attribute impl of type
APPLICATION_IMP. Descendant classes may use whatever concrete implementation
class they want, APPLICATION_1_IMP or APPLICATION_2_IMP in the above figure.
I present a possible Eiffel implementation of those classes in the next pages. 

First, the class APPLICATION, describing the public interface available to clients:

deferred class

APPLICATION

feature {NONE} -- Initialization

make (an_implementation: like impl) is
-- Set impl to an_implementation.

require
an_implementation_not_void: an_implementation /= Void

do
impl := an_implementation

ensure
impl_set: impl = an_implementation

end

feature -- Basic operation

do_something is
-- Do something.

do
impl.do_something

end

[EiffelVision2-Web].

See section 6.9 of 
[Meyer 200?b].

[Gamma 1995], p 
153.

* 
APPLICATION

* 
APPLICATION_IMP 

+ 
APPLICATION_1_

IMP

+ 
APPLICATION_1 

+ 
APPLICATION_2 

+ 
APPLICATION_2_

IMP

impl 

do_something do_something* 

do_something+ do_something+

Class dia-
gram of a typ-
ical 
application 
using the 
Bridge design 
pattern

Application 
using the 
Bridge design 
pattern
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The implementation is quite simple and straightforward: the class APPLICATION
exposes a feature do_something to its clients, whose implementation is taken care of
by the class APPLICATION_IMP through a private attribute impl. This attribute is
initialized at creation and can never be void. (Concrete descendants of APPLICATION
will define make as creation procedure of the class.)

Here is a possible implementation of a descendant class APPLICATION_1. It
inherits from APPLICATION and lists make as a creation procedure of the class. (The
text of class APPLICATION_2 is similar.)

Below is a simple implementation class APPLICATION_IMP. It exposes a feature do_
something, which is called by its counterpart in class APPLICATION. (The same
feature name is used here for simplicity, but it does not need to be the case.)

Here is a possible implementation of a descendant of class APPLICATION_IMP. It
simply effects the feature do_something:

feature {NONE} -- Implementation

impl: APPLICATION_IMP
-- Implementation

invariant
impl_not_void: impl /= Void

end

class
APPLICATION_1

inherit
APPLICATION

create
make

...
end

deferred class

APPLICATION_IMP

feature -- Basic operation

do_something is
-- Do something.

deferred
end

end

class
APPLICATION_1_IMP

inherit
APPLICATION_IMP

feature -- Basic operation
do_something is

-- Do something.
do

...
end

end

Concrete 
application 
class

Deferred 
implementa-
tion class

Concrete 
implementa-
tion class
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Client classes can choose any concrete implementation; they are not bound to a
particular one.

In the following example, the class CLIENT creates two concrete applications:
the first one APPLICATION_1 with an implementation class APPLICATION_1_IMP;
the second one APPLICATION_2 with an implementation class APPLICATION_2_IMP.
(It could have created an instance of APPLICATION_1 providing an implementation
of type APPLICATION_2_IMP as well.)

Common variation

The Bridge implementation shown so far follows exactly the description in Design
Patterns. A common variation is that APPLICATION is not just an interface but a
concrete class with some implementation. Descendant classes like APPLICATION_1
and APPLICATION_2 in the diagram appearing on the next page can redefine impl to
match the particular implementation they need, for example APPLICATION_1_IMP or
APPLICATION_2_IMP. This scheme is used extensively in the Eiffel graphical library
EiffelVision2.

Here is a class diagram of an application using a variant of the Bridge pattern
with concrete classes only:

class

CLIENT

create

make

feature {NONE} -- Initialization

make is
-- Illustrate how to create and use composite components.

local
application_1: APPLICATION_1
application_2: APPLICATION_2

do
create application_1.make (create {APPLICATION_1_IMP})
application_1.do_something

create application_2.make (create {APPLICATION_2_IMP})
application_2.do_something

end

end

Client of an 
application 
using the 
Bridge pat-
tern

[EiffelVision2-Web].
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APPLICATION_2_
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APPLICATION_1 
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impl 

do_something do_something 

do_something++ do_something++ 
impl++ 

impl++ 

Class dia-
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using the 
Bridge pat-
tern with con-
crete classes
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The class APPLICATION is almost the same as before, just effective rather than
deferred. Descendant classes change to redefine attribute impl. For example,
APPLICATION_1 inherits from APPLICATION and redefine impl to be of type
APPLICATION_1_IMP rather than APPLICATION_IMP:

The class APPLICATION_IMP is now effective, meaning it can already have an
implementation of feature do_something:

Particular implementation classes may redefine this default implementation, like in
the following example:

class
APPLICATION_1

inherit
APPLICATION

redefine
impl

end
create

make

feature {NONE} -- Implementation

impl: APPLICATION_1_IMP
-- Implementation

end

class

APPLICATION_IMP

feature -- Basic operation

do_something is
-- Do something.

do
...

end

end

class

APPLICATION_1_IMP

inherit

APPLICATION_IMP
redefine

do_something
end

feature -- Basic operation

do_something is
-- Do something.

do
Precursor {APPLICATION_IMP}
-- Do something more.

end

end

Specific 
application 
class (with an 
effective par-
ent)

Implementa-
tion class

Particular 
implementa-
tion class 
(with an 
effective par-
ent)
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Client use is the same as with the original scheme, except that now an instance of
APPLICATION_1 expects an implementation object of type APPLICATION_1_IMP;
attempting to create an object of type APPLICATION_1 with an instance of
APPLICATION_2_IMP would result in a compilation error, because the types do not
match.

Using non-conforming inheritance

Another way to make interface and implementation classes communicate is to use
non-conforming inheritance, also known as expanded inheritance.

Non-conforming inheritance is not defined in the current version of Eiffel, but it will be
in the next version of the language.

Rather than storing an attribute of type APPLICATION_IMP, class
APPLICATION inherits (non-conformantly) from APPLICATION_IMP, as shown in the
diagram below:

Here is the code of class APPLICATION (it is a concrete class like in the Bridge
variant presented before):

The class APPLICATION exposes a feature do_something to its clients, which
internally calls the feature do_something_imp inherited from APPLICATION_IMP. 

class

APPLICATION

inherit

expanded APPLICATION_IMP
export

{NONE} all
end

ANY

feature -- Basic operation

do_something is
-- Do something.

do
do_something_imp

end

end

See “Client of an 
application using the 
Bridge pattern”,  
page 281.

The current version 
of Eiffel is defined in 
[Meyer 1992]; the 
next version is 
described in [Meyer 
200?b]. (Non-con-
forming inheritance 
is covered in section 
6.9 of [Meyer 
200?b].)
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APPLICATION_IMP 
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APPLICATION_1 

 
APPLICATION_2 

 
APPLICATION_1_

IMP

do_something do_something 

do_something++ do_something++ 

Class dia-
gram of an 
application 
using a vari-
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Bridge pat-
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mented with 
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ing inherit-
ance

Application 
class using 
non-conform-
ing inherit-
ance to 
simulate the 
Bridge pattern

The class APPLICA-
TION inherits explic-
itly from ANY because 
a class needs to have 
at least one inherit-
ance branch that con-
forms to ANY. 
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The implementation classes APPLICATION_IMP and its descendants are almost
identical to the ones shown before; the feature do_something was renamed as do_
something_imp simply for convenience. Therefore the class texts will not be
reproduced here; but all classes are available for download from [Arnout-Web].

An heir of APPLICATION will be implemented as follows:

The class APPLICATION_1 inherits from APPLICATION_1_IMP to have access to the
particular implementation of do_something_imp. A drawback of this approach is that
APPLICATION_1 is bound permanently with APPLICATION_1_IMP. It is not possible
any more to change the implementation class as it was the case in a traditional
pattern implementation. On the other hand, using non-conforming inheritance also
has advantages as shown by the comparative table on the next page.

Because APPLICATION_1 also inherits a version of do_something_imp coming
from APPLICATION_IMP through its parent APPLICATION, we have a conflict. To
solve it, the class undefines the version coming from APPLICATION (meaning it
makes the feature deferred), causing an automatic merge with the effective version
of do_something_imp coming from APPLICATION_1_IMP.

An implementation of the Bridge pattern relying on non-conforming
inheritance is completely transparent to clients, as shown below; they do not even
have to care about passing an implementation object when creating the application
as it was the case with the traditional implementation.

class

APPLICATION_1

inherit

APPLICATION
undefine

do_something_imp
end

expanded APPLICATION_1_IMP
export

{NONE} all
end

end

class
CLIENT

create
make

feature {NONE} -- Initialization

make is
-- Perform an operation.

local
application_1: APPLICATION_1
application_2: APPLICATION_2

do
create application_1
application_1.do_something
create application_2
application_2.do_something

end

end

See “Common varia-
tion”,  page 281.

Particular 
application 
class using 
non-conform-
ing inherit-
ance to 
simulate the 
Bridge design 
pattern

See Which from client 
relationship and 
expanded inherit-
ance implement the 
Bridge pattern best?.

See “Client of an 
application using the 
Bridge pattern”,  
page 281.

Client of an 
application 
using non-
conforming 
inheritance to 
simulate the 
Bridge design 
pattern
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Let’s examine how this use of inheritance satisfies the criteria defined in Design
Patterns for the Bridge pattern and compare it with the more traditional scheme
using client relationship.

Client vs. inheritance

The following table recalls the benefits of the Bridge pattern listed in Design
Patterns and evaluates each criteria for an implementation with client relationship or
non-conforming inheritance. A minus means that such implementation is not good
at fulfilling the criterion; a plus means it is good. When both approaches are good
but one is better, I use two plus to denote the latter.

Here are some explanations regarding my classification:

• Non-conforming inheritance obviously does not decouple totally the
abstraction from its implementation; hence the minus for the first criterion.

• On the other hand, changing the implementation is not completely transparent
to clients when the Bridge uses client delegation. Indeed, the client needs to
provide an implementation object when creating the application. Therefore,
some client code would need to be changed in case the implementation class
is not the same any more. If it is just an implementation change with no class
name change, both approaches are equivalent.

• Non-conforming inheritance also fulfills better the fourth criterion, namely
implementation hiding from clients. As mentioned earlier, clients do not even
need to know that the abstraction implements a Bridge pattern. With client
delegation, clients must provide an implementation object when creating the
abstraction, which goes against this principle.

Nevertheless, a Bridge implementation using non-conforming
inheritance is not perfect; it has at least one drawback: There is a risk of name
clashes when adding a feature to the implementation class, say APPLICATION_
IMP, because a feature with the same name may already exist in class
APPLICATION. (With a client relationship, it is possible to add features in
APPLICATION_IMP without APPLICATION noticing about it.) This is the reason
why there is no minus in the “Client” column for criterion 4. (Likewise for
criterion 6.)

Nº Criterion Client Inheritance
1 No permanent binding between abstraction

and implementation
+ -

2 Abstraction and implementation extendible
by subclassing

+ +

3 Implementation changes have no impact on
clients

+ ++

4 Implementation of an abstraction completely
hidden from clients

+ ++

5 Possibility to split numerous classes into two
parts: abstraction and implementation

+ +

6 Implementation share with several objects,
hidden from clients

+ ++

[Gamma 1995], p 
153.

Which from 
client rela-
tionship and 
expanded 
inheritance 
implement the 
Bridge pat-
tern best?

The two variants are 
about implementa-
tion of the Bridge pat-
tern, not about 
componentization.

See “Client of an 
application using the 
Bridge pattern”,  
page 281.

See “Client of an 
application using 
non-conforming 
inheritance to simu-
late the Bridge design 
pattern”,  page 284 
and “Client of an 
application using the 
Bridge pattern”,  
page 281.
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What’s best between client relationship and non-conforming inheritance depends
partly on the context, but it is mostly a matter of taste. Surely the approach using
non-conforming inheritance is not such a bad use of inheritance and should be better
considered; it has advantages over a pure Bridge implementation using client
delegation when client transparency is the criterion for success.

A good way to get client transparency without the drawbacks of non-
conforming inheritance is to let the application create its implementation attribute
rather than passing it as argument to the creation routine. This is the technique used
in the ISE Eiffel portable graphical library EiffelVision2.

A reusable bridge library?

The examples seen so far are just particular implementations of the Bridge pattern.
None are reusable.

Constrained genericity seems appealing (at first) to achieve reusability, like in:

But how to specify a general reusable class APPLICATION_IMP? Besides, clients
should not know that APPLICATION uses a Bridge; it should be transparent.
Constrained genericity does not permit this: clients see the constraint and have to
make sure that any actual generic parameter conforms to APPLICATION_IMP. This is
not satisfactory.

Because a Bridge usually relies on client delegation, we could think of using
agents. This approach would work if we were talking about one feature to
encapsulate, but here it is the whole class and we don’t know the number of features
in advance. Therefore agents do not help either.

As these fruitless attempts assess, it is impossible to build a reusable Bridge
library. For lack of, one could provide developers with skeleton classes to be filled in.

17.3  CHAPTER SUMMARY

• The Template Method pattern explains how to write the sketch of an algorithm
in a feature and defer parts of its implementation to descendant classes.

• The Template Method pattern is a very useful technique to build extendible
object-oriented systems.

• The paradox of the Template Method pattern is that it is essential to develop
reusable software but it is not componentizable.

class

APPLICATION [G −> APPLICATION_IMP]

feature -- Basic operation

f is
-- Delegate call to impl.

do
implementation.f

end

implementation: G
-- Implementation

end

[EiffelVision2-Web].

Attempt at 
componentiz-
ing the Bridge 
pattern with 
constrained 
genericity

[Gamma 1995], p 
325-330.
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• It is possible to write skeleton classes for the Template Method pattern.
However, it is not possible to provide a general method to fill in the skeleton
classes.

• The Bridge pattern describes a transparent way to separate the class interface
from its implementation.

• The original pattern uses deferred (abstract) classes for the interface and the
implementation; it is possible to use concrete classes and redefine the
implementation attribute to match the implementation we need in
descendants.

• The Bridge pattern is used in many libraries.
• It is possible to implement a Bridge variant with non-conforming inheritance.
• Both client and non-conforming inheritance relationship are valuable.

Choosing between the two is partly a matter of needs and partly a matter of
taste.

• The Bridge pattern is not componentizable. It is possible to provide skeleton
classes.

• The Template Method and the Bridge design patterns belong to the category
“2.1.2 Non-componentizable, skeletons, no method”.

[Gamma 1995], p 
151-161.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
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18   
Singleton
Non-componentizable, possible skeletons
The Singleton is non-componentizable. The current version of Eiffel does not even
provide the functionalities to implement it correctly. Extending the language as
described in this chapter would enable writing correct skeleton classes but the
pattern would still not be componentizable. This explains why the Singleton appears
under the category “2.2 Possible skeletons” of the pattern componentizability
classification presented at the beginning of this dissertation.

This chapter, first explains how to write the best possible code to implement
the Singleton pattern with the current version of Eiffel (knowing that the code cannot
be correct anyway with cloning facilities publicly available in any Eiffel class).
Then, it examines possible extensions to the Eiffel language that would enable
writing singletons.

18.1  SINGLETON PATTERN
The Singleton pattern is well-known and used in many software programs, but it is
not always used well. Indeed, writing a correct singleton is not trivial and suggested
implementations do not always satisfy what they are supposed to do. Let’s examine
different attempts using Eiffel.

Pattern description

The Singleton pattern describes a way to “ensure a class only has one instance, and
[to] provide a global point of access to it.”

The intent of the Singleton pattern is clear, but how can we write a singleton
in practice using Eiffel? The issue is harder than it looks.

The following diagram shows the classes involved in a possible Eiffel
implementation of the Singleton pattern and the relationships between them:

There are two classes: SINGLETON, which can only have one instance, and SHARED_
SINGLETON, which provides a global point of access to the singleton.

Class SHARED_SINGLETON is called SINGLETON_ACCESSOR in the book by Jézéquel et al.
I changed the name to comply with well accepted Eiffel naming conventions.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
Much of the material 
appearing in this 
chapter was presented 
in a paper co-written 
with Éric Bezault; see 
[Arnout 2004].

[Gamma 1995], p 
127.

Class dia-
gram of a typ-
ical 
application 
using the Sin-
gleton pattern

 SINGLETON
SHARED_ 

SINGLETON 

singleton 
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How to get a Singleton in Eiffel

Design Patterns explains with C++ examples how difficult it may be to ensure that
a class has no more than one instance. C++ uses static functions for that purpose.
Since Eiffel does not have static features, we need to explore another way: once
routines.

Although the Eiffel programming language natively includes a keyword —
once — which guarantees that a function is executed only once (subsequent calls
return the same value as the once computed at first call), the implementation of the
Singleton pattern is not trivial.

Design Patterns and Contracts tries but fails to provide a solution. Let’s
examine the proposed scheme to identify what was wrong with it and attempt to
correct it.

The Design Patterns and Contracts approach

Here is the approach suggested by Jézéquel et al.: Make a class inherit from
SINGLETON (see text below) to specify that it can only have one instance thanks to
the invariant:

and provide a global access point to it through a class SHARED_SINGLETON:

class

SINGLETON

feature {NONE} -- Implementation

frozen the_singleton: SINGLETON is
-- The unique instance of this class

once
Result := Current

end

invariant

only_one_instance: Current = the_singleton

end

deferred class

SHARED_SINGLETON

feature {NONE} -- Implementation

singleton: SINGLETON is
-- Access to a unique instance.
-- Should be redefined as once function in concrete descendants.

deferred
end

is_real_singleton: BOOLEAN is
-- Do multiple calls to singleton return the same result?

do
Result := singleton = singleton

end

invariant

singleton_is_real_singleton: is_real_singleton

end

Once routines are 
executed once in the 
whole system, not 
once per class.

[Jézéquel 1999] and 
the Errata [Jézéquel-
Errata].

Singleton 
class

(WARNING: 
Wrong code)

Access point 
to singleton
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However, this implementation does not work: it allows only one singleton per
system. Indeed, if one inherits from class SINGLETON several times, feature the_
singleton, because it is a once function inherited by all descendant classes, would
keep the value of the first created instance, and then all these descendants would
share the same value. This is not what we want because it would violate the invariant
of SINGLETON in all its descendant classes except the one for which the singleton
was created first.

One would need “once per class semantics to create singletons as suggested
by the book. Since the concept does not exist in Eiffel, [one] then [has] to copy all
the code that is in SINGLETON to [one’s] actual singletons.”

The last sentence by Jean-Marc Jézéquel suggests writing a “singleton
skeleton” in Eiffel. I will now examine this approach.

Singleton skeleton

The table below shows a possible “skeleton” for the Singleton pattern. The idea is
to copy and paste this code into the class you want to turn into a singleton and
possibly rename class names if necessary.
indexing

description:

“Skeleton to use in order to transform a class into a singleton”

usage: “[
Copy/paste this code into the class you want to transform
into a singleton and change the class names 
SHARED_SINGLETON and SINGLETON if needed. 

]”
        
class

SHARED_SINGLETON

feature {NONE} -- Implementation

singleton: SINGLETON is
-- Access to a unique instance

once
create Result

ensure
singleton_not_void: Result /= Void

end

is_real_singleton: BOOLEAN is
-- Do multiple calls to singleton return the same result?

do
Result := singleton = singleton

end

invariant

is_real_singleton: is_real_singleton

end

[Jézéquel-Errata].

Singleton 
skeleton
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With:

This approach by skeletons provides a global point of access to the singleton, which
is an important part of the pattern and was not working in the proposal by Jézéquel
et al. (because once features only exist at a system level in the current version of
Eiffel). Otherwise, it does not ensure in a better way that class SINGLETON has only
one instance. Let’s see what is wrong with this implementation.

In spite of the name is_real_singleton, this code does not produce a “real”
singleton. Declaring singleton as a once function ensures that any call to this function
returns the same object, but nothing prevents the program from creating another
instance of class SINGLETON somewhere else in the code, which breaks the whole
idea of a singleton. 

Having an invariant in class SINGLETON to detect attempts to create a
singleton twice is not a proper solution either. The problem is that, in debugging
mode, even though the invariant will catch errors at run-time when the singleton
pattern is violated, clients of class SINGLETON have no means to ensure that this
invariant will never be violated (they cannot test for it as they can do for a
precondition before calling a routine for example), which reveals a bug in the class
implementation according to the principles of Design by Contract™.

Bertrand Meyer gives the following definition of class correctness:

• A violation of {Defaultc and Prep (xp)} or {Prer (xr) and INV} is the
manifestation of a bug in the client.

• A violation of {Postp (xp) and INV} or {Postr (xr) and INV} is the manifestation
of a bug in the supplier.

How is class correctness related with this singleton implementation?
The definition of the Singleton pattern given by Gamma et al. states that the

corresponding class should have at most one instance, which means that we want to
prevent creating more than one such object. In other words, as a client of class
SINGLETON, I want to know whether the instruction:

deferred class

SINGLETON

feature {NONE} -- Access

singleton: SINGLETON is
-- Effect this as a (frozen) once routine. (It should return Current.)

deferred
end

invariant

remain_single: Current = singleton

end

Definition: Class correctness
A class is correct with respect to its assertions if and only if:

• C1:  For any valid set of arguments xp to a creation procedure p:
{Defaultc and Prep (xp)} Bodyp {Postp (xp) and INV}

• C2:  For every exported routine r and any set of valid arguments xr:
{Prer (xr) and INV} Bodyr {Postr (xr) and INV}

create s.make

Singleton 
class used by 
the Singleton 
skeleton

(WARNING: 
Wrong solu-
tion)

[Meyer 1986], 
[Meyer 1997], 
[Mitchell 2002], and 
[Meyer 200?c].

[Meyer 1992], p 128 
and [Meyer 1997], p 
370.

[Gamma 1995], p 
127.
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with s declared of type SINGLETON is valid before calling it; hence I want to write
code like:

The problem is that class SINGLETON is not sound: it provides no way to ensure the
condition is_valid_to_create_a_new_instance before calling Bodyp. Since we are
dealing with creation routines, the relevant rule for assessing class correctness is C1.
We will get a violation of INV (on the right hand side of the formula) if we create a
second instance of the class. This indicates a bug in the class SINGLETON itself, not
in the client of the class. 

Restricting access of the creation procedure of SINGLETON to class SHARED_SINGLETON
would still not ensure class correctness because one can inherit from SHARED_SINGLETON
— and this is the expected way to use SHARED_SINGLETON to get access to feature singleton
— and then call a creation procedure on SINGLETON at will. 
A possible solution — although not perfect because it violates the Open-Closed principle
— would be to use frozen classes (classes from which one cannot inherit) as I describe
in 18.3, but the current version of Eiffel does not authorize them (it only allows frozen
features).

Besides, relying on the evaluation of invariants to guarantee the correctness of a
class is not a good design: a program should behave the same way regardless of the
assertion monitoring level. 

Tentative correction: Singleton with creation control

Let’s try to correct the previous implementation and define a boolean feature may_
create_singleton in the accessor class MY_SHARED_SINGLETON:

if is_valid_to_create_a_new_instance then
create s.make

else
-- Either report an error or 
-- try to return a reference to the already created object.

end

class

MY_SHARED_SINGLETON

feature -- Status report

may_create_singleton: BOOLEAN is
-- May a new singleton be created? 
-- (i.e. is there no already created singleton?)

do
Result := not singleton_created.item

end

feature -- Access

singleton: MY_SINGLETON is
-- Access to unique instance

once
create Result.make (Current)
singleton_created.set_item (True)

ensure
singleton_not_void: Result /= Void
may_not_create_singleton: not may_create_singleton

end

Validity test 
before creat-
ing a single-
ton instance

[Meyer 1997], p 57-
61.

Accessor to 
singleton with 
creation con-
trol

(WARNING: 
Wrong solu-
tion)
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Here is the corresponding class MY_SINGLETON:

However, the feature may_create_singleton does not solve the correctness problem
detailed before: it does not prevent from calling two creation instructions as in the
following example and breaking our “singleton”.

feature {NONE} -- Implementation

singleton_created: BOOLEAN_REF is
-- Has singleton already been created?

once
create Result

ensure
result_not_void: Result /= Void

end

end

class

MY_SINGLETON

inherit

SINGLETON

create

make

feature {NONE} -- Initialization

make (an_accessor: MY_SHARED_SINGLETON) is
-- Create a singleton from an_accessor.

require
an_accessor_not_void: an_accessor /= Void
may_create: an_accessor.may_create_singleton

do
end

feature {NONE} -- Implementation

singleton: SINGLETON is
-- Access to unique instance

once
Result := Current

end

end

class

MY_TEST

inherit

MY_SHARED_SINGLETON

create

make

feature {NONE} -- Initialization

Singleton 
with creation 
control

(WARNING: 
Wrong solu-
tion)

See “Singleton skele-
ton”,  page 291.

Class break-
ing the single-
ton with 
creation con-
trol
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Running this test would result in the creation of two singletons. Indeed, MY_TEST
does not call the once function singleton of class MY_SHARED_SINGLETON, which
means that may_create_singleton is never set to False and both s1 and s2 get
instantiated.

The important point here is that we have broken the “singleton skeleton” by
just looking at the interface form of classes MY_SINGLETON and MY_SHARED_
SINGLETON and writing code that does not violate the Design by Contract principles
(although it would violate an invariant when executed).

The interface form of an Eiffel class retains only specification-related information of the
publicly available features: the signature of features (of both immediate and inherited
features, the comments, and contracts (involving exported features only), namely what
a client of the class needs to know about.

The Gobo Eiffel singleton example

The class texts presented below and on the next page show a better approach to the
“Singleton pattern problem” in Eiffel. (It is a Gobo Eiffel example.)

make is
-- Create two instances of type MY_SINGLETON.

local
s1, s2: MY_SINGLETON

do
if may_create_singleton then

create s1.make (Current)
end
if may_create_singleton then

create s2.make (Current)
end

end

end

class

MY_SINGLETON

inherit

MY_SHARED_SINGLETON 

create

make

feature {NONE} -- Initialization

make is
-- Create a singleton object.

require
singleton_not_created: not singleton_created

do
singleton_cell.put (Current)

end

invariant

singleton_created: singleton_created
singleton_pattern: Current = singleton

end

[Gobo Eiffel Exam-
ple-Web].

The Gobo 
Eiffel single-
ton example
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Here is the corresponding accessor class MY_SHARED_SINGLETON:

This implementation is still not perfect; one can still violate the invariant of class
MY_SINGLETON by:
• cloning a singleton — using feature clone or deep_clone that any Eiffel class

inherits from ANY;
• using persistence — retrieving a “singleton” object that had been stored

before (using the STORABLE mechanism of Eiffel or a database library);
• inheriting from class MY_SHARED_SINGLETON and “cheating” by putting

back Void to the cell after the singleton has already been created. Note though
that here we need to access and modify non-exported features — in this case
singleton_cell — to “break” the singleton implementation given before,
whereas we could “break” the code defined previously easily by looking only
at the interface of the classes.

Besides, the use of the invariant

is not fully satisfactory because it means that descendants of this class may not have
their own direct instances without violating this invariant.

class

MY_SHARED_SINGLETON

feature -- Access

singleton: MY_SINGLETON is
-- Singleton object

do
Result := singleton_cell.item
if Result = Void then

create Result.make
end

ensure
singleton_created: singleton_created
singleton_not_void: Result /= Void

end

feature -- Status report

singleton_created: BOOLEAN is
-- Has singleton already been created?

do
Result := singleton_cell.item /= Void

end

feature {NONE} -- Implementation

singleton_cell: CELL [MY_SINGLETON] is
-- Cell containing the singleton if already created

once
create Result.put (Void)

ensure
cell_not_void: Result /= Void

end

end

Current = singleton

Accessor to 
the Gobo 
Eiffel single-
ton example

[Hiebert 2002].

See “Class breaking 
the singleton with 
creation control”,  
page 294.
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Eiffel distinguishes between direct instances and instances of a type T, the latter including
the direct instances of type T and those of any type conforming to T (basically its
descendants). I think it should be the duty of the users of the Singleton library to decide
when implementing a singleton whether there should be only one instance or only one
direct instance of that type; it shouldn’t be up to the authors of the library to decide.

Finally, this code is not a library component: it is just an example
implementing (or trying to implement) the singleton pattern.

Other tentative implementations

In a discussion in the comp.lang.eiffel newsgroup, Paul Cohen gives an interesting
but somewhat overweight solution. The idea is that the singletons in system can
register their instance by name in a registry. The Design Patterns book calls it the
“registry of singletons” approach. Here is the corresponding Eiffel implementation:

The function generating_type is defined in class ANY; it returns a string corresponding to
the name of current object’s generating type (namely the type of which it is a direct
instance). It is a feature of the Eiffel Library Kernel Standard (ELKS). However, class
HASH_TABLE is not a standard Eiffel class; for example SmartEiffel does not define it. 

Let’s write a descendant of class SINGLETON to understand how this “registry of
singletons” works. A particular singleton implementation should look like this:

class

SINGLETON

feature {NONE} -- Initialization

frozen register_in_system is
-- Register an instance of this singleton.
--| Must be called by every creation procedure of every
--| descendants of SINGLETON to fulfill the class invariant
--| is_singleton.

require
no_singleton_in_system: 

not singletons_in_system.has (generating_type) 
do

singletons_in_system.put (Current, generating_type)
ensure

count_increased: singletons_in_system.count = 
old singletons_in_system.count + 1

singleton_registered:
singletons_in_system.has (generating_type)

end

feature {NONE} -- Implementation

frozen singletons_in_system: HASH_TABLE [SINGLETON, STRING] is
-- All singletons in system stored by name of generating type

once
create Result.make (1)

ensure
singletons_in_system_not_void: Result /= Void

end

end 

class

MY_SINGLETON
inherit

SINGLETON

See [Meyer 1992] 
about instances and 
direct instances of a 
type.

[Cohen 2001].

See [Gamma 1995], 
2. Subclassing the 
Singleton, p 130.

A “registry of 
singletons”

[ELKS 1995] and 
appendix A of [Meyer 
200?b].
[SmartEiffel-Web].

A particular 
singleton in 
the “registry”
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Each time a singleton gets created, it adds itself to the registry of singletons. The
problem with this approach is that a client of MY_SINGLETON cannot test for the
precondition of make before calling the routine: first, it does not have access to
singletons_in_system; second, it does not know about the value of generating_type
because the corresponding object has not been created yet.

A Singleton in Eiffel: impossible?

The unfruitful attempts reviewed so far illustrate how difficult it is to implement the
Singleton pattern in Eiffel, especially as a reusable library. In fact, it is not possible
at all without violating the Design by Contract™ principles, namely a non-checkable
invariant, even when controlling the creation of the singleton object because it can
get involved in duplication or persistence mechanisms.

Solutions exist, but they are not currently available in Eiffel:
• Introducing a new kernel library class CLONABLE with features clone and

deep_clone (moving them outside of ANY) would ensure that a singleton object
cannot be duplicated. Such a change would mean that Eiffel objects are not
clonable by default anymore. The developer would need to make each class
whose instances should be clonable inherit from class CLONABLE explicitly.
However, this approach does not solve the problem of persistence.

• Another related approach would be to export to NONE the cloning features
from class ANY. This change would ensure that a singleton object cannot be
duplicated. Classes whose instances should be clonable would need to
broaden the export status of the cloning features of ANY. The next version of
Eiffel is likely to follow this approach. (The issue has been pre-approved by
the ECMA standardization committee. It needs to be implemented in at least
one Eiffel compiler to be approved definitively.) From now on, the discussion
assumes this proposal will be adopted and integrated into the language. Still,
there remains the problem of persistence.

• Having once creation procedures (with a special semantics ensuring class
correctness) would enable writing single instance classes in Eiffel, but it
would neither provide the global access point to it nor solve the problem of
STORABLE.

create

make

feature {NONE} -- Initialization

make is
-- Initialize singleton and add it to the registry of singletons.

require
singleton_not_created:

not singletons_in_system.has (generating_type)
do

-- Something here
register_in_system

ensure
singleton_created: 

singletons_in_system.has (generating_type)
end

...
end

[Meyer 1986], 
[Meyer 1997], 
[Mitchell 2002], and 
[Meyer 200?c].

The current version 
of Eiffel is described 
in [Meyer 1992].

The next version of 
Eiffel is described in 
[Meyer 200?b].



§18.2  ONCE CREATION PROCEDURES 299
• Having frozen classes (“sealed” classes from which one cannot inherit) would
provide a straightforward solution to the Singleton pattern; however, it
challenges the core principles of object technology — it would violate the
Open-Closed principle defined by Bertrand Meyer — and it would also not
solve the problem of STORABLE.

The next sections discuss the last two possible extensions to the Eiffel language.

18.2  ONCE CREATION PROCEDURES

A first approach would be to allow declaring a creation procedure as a once
procedure — which is currently forbidden by the Eiffel language. (This idea first
appeared in the newsgroup comp.lang.eiffel in 2001.)

Rationale

The semantics of the Creation instruction for a reference creation type TC is as
follows:

1 • Allocate memory.
2 • Initialize the fields with their default values.
3 • Call the creation procedure make (to ensure the invariant).
4 • Attach the resulting object to the creation target entity x.
This semantics forbids the use of once-procedures as creation procedures. Indeed,
with a once procedure, the first object created would satisfy the class invariant
(assuming the creation procedure is correct), but subsequent creation instructions
would not execute the call, and hence would limit themselves to the default
initialization, which might not ensure the invariant.

But we could think of another semantics for the Creation_instruction when
the creation procedure is a once-procedure (namely a procedure declared as once):

• If the once creation procedure has not been called yet to create an object of
the given type TC then create an object as indicated above (steps 1 to 4).

• Otherwise attach to the creation target entity x the object which has been
created by the first call to the once creation procedure for this type.

This new semantics would make it possible to write a Singleton pattern in Eiffel (see
class texts below and on the next page) and would also simplify the implementation
of shared objects.

Open issues and limitations

The main problem of once creation procedures is that the same procedure would
have different “onceness” statuses (i.e. is it the first call or a subsequent one?)
according to whether it is called as a creation procedure or as a regular procedure.

On the other hand, once creation procedures would neither prevent
multiplication of the singleton object through storage nor give a global access point
to the singleton.

The paper co-written with Éric Bezault gives more detail about the rationale
and open issues of allowing once creation procedures in Eiffel. 

Another approach would be to extend the notion of frozen features to frozen
classes as it already exists in Eiffel for .NET. Let’s review the pros and cons of this
solution.

[Meyer 1992], p 57-
61.

[Silva 2001].

[Meyer 1992], p 289.

[Arnout 2004].

[Meyer 1992], p 63.
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18.3  FROZEN CLASSES
Eiffel: The Language defines the notion of frozen features, namely features that
cannot be redefined in descendants (their declaration is final). By broadening the
scope of final declarations from features to classes — as already done in the current
implementation of Eiffel for .NET — it would become possible to implement a
“real” singleton in Eiffel with a proper access point as a reusable component.

Rationale

Eiffel features whose declaration starts with the frozen keyword are final: they are
not subject to redefinition in descendants. They are called “frozen features”. 

The idea is to extend this notion to classes. The semantics of “frozen classes”
is that one may not inherit from these classes, which as a consequence cannot be
deferred (because they cannot have any descendants and could never be effected).

The only syntactical change to the Eiffel language would be the introduction
of the keyword frozen on classes. The Header_mark defined in section 4.8 of the
book Eiffel: The Language should be extended to:

with the consequence that a class cannot be both frozen and deferred.
The keywords reference and separate do not appear in the first two versions of Eiffel; they
are novelties of the third edition.

Singleton implementation using frozen classes

Having frozen classes would enable implementing the Singleton pattern relying on
two classes:
• A frozen class SHARED_SINGLETON exposing a feature singleton, which is a

once function returning an instance of type SINGLETON.

• A class SINGLETON whose creation procedure make is exported to class
SHARED_SINGLETON and its descendants only.

∆
Header_mark = deferred | expanded | reference | separate | frozen

frozen class

SHARED_SINGLETON

feature -- Access

singleton: SINGLETON is
-- Global access point to singleton

once
create Result

ensure
singleton_not_void: Result /= Void

end

end

class

SINGLETON

create {SHARED_SINGLETON} 

default_create

end

[Meyer 1992], p 63.

[Gamma 1995], p 
127.

[Meyer 1992], p 50.

See section 4.9 of 
[Meyer 200?b], p 65.

Frozen class 
SHARED_
SINGLE-
TON (global 
access point 
to singleton)

Singleton 
class
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Typical use of the “Singleton library” would be to create a SHARED_SINGLETON to
get one's own unique instance, as in class MY_SHARED_SINGLETON written below:

Pros and cons of introducing frozen classes

Weak point:

• The disadvantage of frozen classes is that it goes against the core principles
of object-oriented development. Indeed, the Open-Closed principle states that
a module should always be both closed (meaning usable by clients) and open
(meaning it can be extended). Having frozen classes, which by definition
cannot be redefined, violates this principle.

Strong points:

• The main advantage of the last solution using frozen classes is that it provides
a straightforward way (introduction of just one keyword, frozen, with the
appropriate semantics) to get a real singleton in Eiffel, including a global
access point to it — which one could not have with the solution using once
creation procedures.

• Besides, there is no such problem as different once statuses depending on
whether the same feature is called as a creation procedure or as a regular
procedure.

• On a lower level, having frozen classes would enable the compiler to perform
code optimization, which it could not do for non-frozen classes.

This analysis has shown that implementing the Singleton pattern as a reusable library
in Eiffel is not feasible with the current definition of the language; an
implementation like the Gobo Eiffel example is acceptable, but it is neither secure
nor robust. 

Among the two suggested Eiffel language extensions (once creation
procedures and frozen classes), the introduction of frozen classes is the most elegant
and would lead to a straightforward way of writing “real” singletons in Eiffel
(including a global access point). The main argument against authorizing frozen
classes is that users may start using them excessively, which would violate the Open-
Closed principle; I believe it will not be the case. Indeed, Eiffel developers already
have the possibility to declare features as “frozen” (meaning these features may not
be redefined), but they use it only sparsely, in well-identified and justified cases.
Besides, the utility of frozen classes is wider than just the implementation of the
Singleton pattern; for example, it is already used in the .NET extension of the Eiffel
language. 

class

MY_SHARED_SINGLETON

feature -- Access

singleton: SINGLETON is
-- Unique instance

once
Result := (create {SHARED_SINGLETON}).singleton

end

end

Typical use of 
the “Single-
ton library”

[Meyer 1997], p 57-
61.

[Gamma 1995], p 
127-134.

[Gobo Eiffel Exam-
ple-Web].

[Meyer 1997], p 57-
61.
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I think that extending Eiffel with frozen classes would provide an elegant way
of writing real singletons in Eiffel. Nevertheless, it would not enable having a
reusable library component corresponding to the Singleton pattern as we will see
next.

18.4  COMPONENTIZATION OUTCOME

The only way we found to implement the Singleton pattern is to introduce the notion
of frozen classes in Eiffel. Let’s now try to componentize this implementation:

• Inheritance: We saw in The Design Patterns and Contracts approach that the
Singleton pattern is not implementable with inheritance because the once
function singleton would be inherited by all descendant classes and would keep
the value of the first created instance; then, all these descendants would share
the same value, which does not give a singleton. Therefore inheritance cannot
help componentizing the Singleton pattern.

• Genericity: Suppose we want to use genericity and have a class SINGLETON [G],
whose actual generic parameters are types that we want to turn into singletons.
Therefore we also need the access point class to be generic, SHARED_
SINGLETON [G]. We would end up with a once function singleton that depends
on a generic parameter, which is forbidden by the definition of the Eiffel
language. A necessary condition for a once feature declaration to be valid is
that “the result type [does not] involve a formal generic name”. Thus,
genericity cannot help componentize the Singleton pattern.

• Conversion: What we are looking for is a way to restrict the creation of
instances of a particular type and to provide access to that single instance, we
do not need type conversion for that. Because conversion is internally a kind
of creation, using conversion shifts the problem but does not solve it.

• Aspects: Suppose that Eiffel supports aspects, just to see whether it would
help componentizing the Singleton pattern. Aspects are a way to add behavior
at a certain point of a routine execution. They do not provide a way to restrict
the creation of instances of a certain type or give access to the created
instance. Thus, having aspects would not help componentizing the Singleton
pattern.

• Agents: If we want to have a reusable Singleton implementation, meaning
have possibly different singleton objects in a system, we would need to
duplicate the once function singleton because once routines are executed once
per system. Whether singleton is a direct feature implementation like in the
class SHARED_SINGLETON presented in Singleton implementation using
frozen classes or is an agent, we would always need to duplicate these once
functions. The Pattern Wizard supports the generation of skeleton classes for
the Singleton pattern, which removes the need to copy and paste those features
by hand.

According to the definition given in chapter 6, we can say that the Singleton pattern
is non-componentizable. However, it is possible to generate skeleton classes given
the extension of the Eiffel language with frozen classes. The Pattern Wizard already
supports the generation of those skeletons. (Because frozen classes are not supported
by Eiffel compilers yet, the generated code cannot compile. In the meantime, a
compilable but less faithful version is provided.)

This validity rule 
(VFFD) is described 
in [Meyer 1992], p 69 
and [Meyer 200?b], p 
91.

The Pattern Wizard is 
described in chapter 
21, page 323.
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18.5  CHAPTER SUMMARY
• The intent of the Singleton pattern is to ensure a class has at most one instance

and to provide a global point of access to it.
• It is possible to implement examples of the Singleton pattern in case one needs

neither cloning nor persistence facilities, but it is neither secure nor robust.
• It is impossible to write a correct implementation of the Singleton pattern with

the current version of the Eiffel language.
• Exporting to NONE the features clone and deep_clone of ANY and forcing a

class whose instances should be clonable to broaden the export status of these
features would solve parts of the issues encountered when implementing a
Singleton in Eiffel today. However it does not solve the problem of multiple
“singletons” retrieved via persistence mechanisms.

• Extensions to Eiffel (once creation procedures or frozen classes) associated
with a change of export status of the cloning facilities available in ANY would
make the Singleton implementable in Eiffel but even so the pattern would not
be componentizable.

[Gamma 1995], p 
127-134.
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Iterator
Non-componentizable, some library support
Chapter 6 presented the classification established as part of this thesis after
analyzing the design patterns described by [Gamma 1995] for componentizability.
Some appeared non-componentizable. Among them, the pattern Iterator; however
there already exists some support in today’s Eiffel libraries.

This chapter describes the Iterator pattern in detail, explaining what the
current libraries provide and what needs to be added.

19.1  ITERATOR PATTERN
The Iterator pattern describes “a way to access the elements of an aggregate object
sequentially without exposing its underlying implementation”.

Design Patterns suggests introducing a class ITERATOR with four features:
• first to move the iterator to the first element of the structure to be traversed;
• next to move the iterator by one element;
• is_done to test whether the iterator has reached the end of the data structure;
• current_item to return the element at the current iterator’s position.
(In Eiffel, those features would typically be called start, forth, after, and item.)

A class AGGREGATE (corresponding to the structure to traverse) provides a
function to get a new_iterator on aggregate objects. A possible Eiffel implementation
of this feature would be:

Design Patterns describes several kinds of iterator:

class

AGGREGATE
...
feature -- Access

new_iterator: ITERATOR is
-- New iterator on current aggregate

do
create Result.make (Current)

ensure
new_iterator_not_void: Result /= Void

end
...
end

[Gamma 1995], p 
257.

Access to an 
iterator on an 
aggregate 
structure
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• It distinguishes between internal and external iterators: in the case of internal
iterators, it is the container class that provides — as part of its interface — the
iteration routines listed above whereas for external iterators, those routines are
provided by a class external to the container.

• For example, the traversable containers of EiffelBase use internal iterators;
Gobo Eiffel Structure Library provides both internal and external iterators.
One interest of using external iterators is to be able to traverse the same
container in different ways at the same time.

• External iterators raise the problem of the consistency between the iterator and
the structure it iterates over: what happens if an element is removed or added
to the container? A robust iterator is always up-to-date, even when its
associated container changes. It is the case of the class DS_CURSOR (and its
descendants) of the Gobo Eiffel Structure Library.

• Design Patterns also mentions some “light” iterators that do not contain the
traversal algorithm (it is moved to the class AGGREGATE sketched on the
previous page) but only keep a reference to the current position in the data
structure during traversal. These lightweight iterators are called cursors. For
example, the EiffelBase library provides a class CURSOR (and descendant
classes for the different kinds of traversable containers).

19.2  ITERATORS IN EIFFEL STRUCTURE LIBRARIES

Let’s review what current Eiffel data structure libraries offer in terms of iterators.

• ISE EiffelBase supports

• Internal iterators: All TRAVERSABLE containers have a feature start to
move to the first element, give access to the current item, and provide a
query off to test whether the traversal is over. LINEAR structures (for
example, a LINKED_LIST) also have a command forth to advance the
iterator to the next position. 

• Cursors: There is a class CURSOR, which declares no feature, and
several descendants targeting different traversable containers. For
example, the class LINKED_LIST_CURSOR has a feature active returning
the current element’s cell, and two queries (before and after) to test
whether the cursor is outside the data structure (either before the first
element or after the last element).

• Iterators based on agents: There are no built-in external iterators in
EiffelBase. On the other hand, EiffelBase provides iterator routines
based on agents. Class LINEAR provides do_all, do_if, there_exists, and
for_all; here are the routine declarations:

class

LINEAR
...
feature -- Iteration

do_all (action: PROCEDURE [ANY, TUPLE [G]]) is
-- Apply action to every item.
-- Semantics not guaranteed if action changes the
-- structure; in such a case, apply iterator to clone
-- of structure instead. 

[EiffelBase-Web] 
and [Bezault 2001a].

[Bezault 2001a].

[EiffelBase-Web].

[EiffelBase-Web].

Iterators 
based on 
agents in 
class LIN-
EAR of 
EiffelBase
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The header comments of procedures do_all and do_if shows that these
iterators are not robust: the behavior is not guaranteed when the structure
of the underlying container changes.

• SmartEiffel’s libraries support external non-robust iterators: The class
ITERATOR provides four features — start, is_off, item, and next —
corresponding exactly to the description of Design Patterns (see previous page).

SmartEiffel does not support external robust iterators, nor internal
iterators, nor cursors. The paper by Zendra and Colnet gives a good overview
of SmartEiffel’s iterator mechanism and explains the interest of having external
iterators. It also mentions that the absence of robust iterators in SmartEiffel is
deliberate to avoid efficiency penalties.

• Gobo Eiffel Data Structure Library (traversable containers) supports 
• Internal iterators: All traversable containers have an internal iterator.

The class DS_TRAVERSABLE has a feature item_for_iteration that gives
access to the element at internal iterator position and a query off to test
whether there is an item at current position. Linear structures (inheriting
from DS_LINEAR) also have start, forth, after, etc. Gobo’s internal
iterators resemble their counterparts in EiffelBase.

• External robust iterators: The class DS_CURSOR and its descendants
point to an element of the container (or are off, meaning before or after).
The iterator is robust (always valid): if someone removes the element
where the cursor was pointing to, the iterator will be moved to another
valid position (or off). Therefore, the container must keep a reference to
its iterators to be able to update them when its structure changes. For
traversing a container linearly, there is DS_LINEAR_CURSOR and its
descendants, which, on top of the features from DS_CURSOR, also have
start, forth, after, etc. To get an external iterator on a DS_TRAVERSABLE
container, one should call the feature new_cursor on this container.

Gobo does not support cursors; external non-robust iterators (DS_ITERATOR
and its descendants) are under development.

• Visual Eiffel’s Universal Simple Container Library supports external non-
robust iterators through a class CURSOR_ and its descendants. It would be
more accurate to call Visual Eiffel’s iterators “partially robust” because the
compiler forbids any modification to a container that has active external
iterators; thus iterators and containers will always be consistent. Visual Eiffel
does not support “true” external robust iterators (supporting modifications of
the container under traversal), or internal iterators, or cursors.

do_if (action: PROCEDURE [ANY, TUPLE [G]];
test: FUNCTION [ANY, TUPLE [G], BOOLEAN]) is

-- Apply action to every item that satisfies test.
-- Semantics not guaranteed if action or test changes the
-- structure; in such a case, apply iterator to clone
-- of structure instead. 

there_exists (test: FUNCTION [ANY, TUPLE [G],
BOOLEAN]): BOOLEAN is

-- Is test true for at least one item?

for_all (test: FUNCTION [ANY, TUPLE [G],
BOOLEAN]): BOOLEAN is

-- Is test true for all items?
...
end

[SmartEiffel-librar-
ies].

[Zendra 1999].

[Bezault 2001a].

Despite its name, DS_
CURSOR is an “itera-
tor” and not a “cur-
sor” if we follow the 
terminology of the 
Design Patterns book 
by Gamma et al.

[Object-Tools-Web].

Despite its name, 
CURSOR_ is an “iter-
ator” and not a “cur-
sor” if we follow the 
terminology of 
Design Patterns.



ITERATOR §19308
19.3  BOOK LIBRARY EXAMPLE
Let’s illustrate how to use internal and external iterators on our library example.

Chapter 5 introduced a class LIBRARY with a feature borrowables of type
LINKED_LIST [BORROWABLE]. Suppose it also keeps the list of books available in the
library, and we want to display the title of each BOOK. We will use an iterator to do this.

Here is a typical implementation using EiffelBase’s internal iterators:

Here is the same functionality implemented with the agent procedure do_all of class
LINEAR of EiffelBase:

class

LIBRARY
...
feature -- Access

books: LINKED_LIST [BOOK]
-- Books available in the library

feature -- Basic operation

display_books is
-- Display books’ title.

do
from books.start until books.after loop

print (books.item.title)
books.forth

end
end

...
end

class

LIBRARY
...
feature -- Access

books: LINKED_LIST [BOOK]
-- Books available in the library

feature -- Basic operation

display_books is
-- Display books’ title.

do
books.do_all (agent print_book_title)

end

feature {NONE} -- Implementation

print_book_title (a_book: BOOK) is
-- Print title of a_book.

require
a_book_not_void: a_book /= Void

do
print (a_book.title)

end
...
end

[EiffelBase-Web].

Display 
books’ title 
using an 
internal itera-
tor

Display 
books’ title 
using the 
agent feature 
do_all of class 
LINEAR of 
EiffelBase
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Here is another implementation using Gobo’s external iterators (it supposes that the
list of books is now declared as DS_LINKED_LIST [BOOK]):

These three examples prove that it is possible to use iterators offered in existing
Eiffel libraries, even though not all libraries provide all kinds of iterators.

19.4  LANGUAGE SUPPORT?

The C# approach

Languages such as Java or C# also provide library support for (external) iterators. In
C#, the class is called Enumerator; it is part of the core .NET library (mscorlib).

Here is a typical implementation of a list traversal using the class Enumerator:

MoveNext is a query with side effects: it moves the cursor to the next element and
returns a boolean saying whether there are still elements to iterate over. Current gives
access to the element at current cursor’s position; it is like item in the Eiffel
implementation.

class

LIBRARY
...
feature -- Access

books: DS_LINKED_LIST [BOOK]
-- Books available in the library

feature -- Basic operation

display_books is
-- Display books’ title.

local
a_cursor: DS_LINKED_LIST_CURSOR [BOOK]

do
a_cursor := books.new_cursor
from a_cursor.start until a_cursor.after loop

print (a_cursor.item.title)
a_cursor.forth

end
end

...
end

using System.Collections;

public class MyClass{
...

public void TraverseList(ArrayList list){
Enumerator e = list.GetEnumerator();
while(e.MoveNext())
{

Object obj = e.Current;
DoSomething(obj);

}
}

public void DoSomething(Object obj){...}
...
}

Display 
books’ title 
using an 
external itera-
tor

[MSDN-Web].

List traversal 
with iterators 
in C#
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C# provides another way to traverse containers: it has a special keyword
foreach that simplifies writing iterations. Using this language construct, the above
example would be written as follows:

The interest of the foreach keyword is to make writing container traversals a bit
easier because less code needs to be typed.

One may also find the mechanism more high level than an implementation
relying on the class Enumerator. However, the programmer needs to know that there
is an iterator hidden behind the foreach construct to understand how it works and use
it properly.

In my opinion, this extra language feature corresponds to what Bertrand
Meyer would qualify as “featurism”. In Eiffel, the tradition has always been to keep
a high “signal to noise ratio”, meaning that a mechanism will not be integrated into
the language unless it increases significantly the expressive power of the language
(signal) at minimum cost on the language complexity (noise). Therefore a “foreach”
mechanism is unlikely to be added to the Eiffel language.

The Sather approach

The Sather programming language has yet another approach. In Sather, iterators are
routines with extra properties:

• The iterator’s name must end with an exclamation mark; for example, do_all!.

• The state of the iterator routine remains persistent over multiple calls.

• Calls to iterators must appear in a loop body.

Sather has built-in iterators like until!, while!, and break!. The class INT also defines
some iterators like upto! and container classes have an iterator called elt! giving
access to the element at current iteration. For example, the code to print the string
value of the elements of an array of integers would look as follows:

The programmer can also define his own iterators (as he would define a normal
routine). The language provides two keywords: yield (to yield a result and exit the
current loop iteration) and quit (to exit the loop definitively), which allow
implementing new iterators. Still, the programmer needs to write the body of the
new iterators he defines; there is not language support for the implementation of
iterators.

using System.Collections;

public class MyClass{
...

public void TraverseList(ArrayList list){
foreach(Object obj in list){

DoSomething(obj);
}

}

public void DoSomething(Object obj){...}
...
}

a: ARRAY (INT) := | 1, 2, 3|;
loop #OUT + a.elt!.str + ‘\n’ end

List traversal 
using the C# 
“foreach” 
construct

[Meyer 2002].

.[Sather-Web].

Array tra-
versal in 
Sather
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19.5  COMPONENTIZATION OUTCOME
Chapter 6 defined the rule to assert the patterns’ componentizability: “Design
patterns are declared “non-componentizable” if none of these mechanisms
[genericity, agents, multiple inheritance, etc.] permits to transform the pattern into a
reusable component.”

This rule cannot be applied here because the Iterator pattern depends too
much on the context: we cannot write an iterator without knowing which kind of
container it will traverse. Thus, we cannot even try to apply the object-oriented
mechanisms listed in chapter 6 in a general way. As a consequence, I put the Iterator
into the category “non-componentizable patterns”.

The fact that all current Eiffel data structure libraries support some flavors of
iterators gives reasons for creating a special subcategory of non-componentizable
patterns called “Some library-support” (category 2.3) rather than classifying it as just
“Design idea” (category 2.4).

19.6  CHAPTER SUMMARY
• There is some existing support for Iterators in all Eiffel data structure libraries

but it is not complete.
• The EiffelBase library provides iteration routines using agents.
• Gobo Eiffel Structure Library has the most complete offer; it still misses the

notion of “cursor” as defined by Gamma et al. and the external non-robust
iterators (a class DS_ITERATOR and its descendants) are still under
development.

• The C# programming language provides a language keyword foreach to
simplify the use of external iterators in C#. This construct avoids writing some
code but does not bring a significant difference comparing to the library
support we find in Eiffel.

• The Sather programming language supports iterators natively. Sather’s
iterators are routines with some additional properties. Sather provides a few
built-in iterators and enables defining new iterators. However the programmer
needs to implement the body of the iterator by himself.

• The Iterator pattern is non-componentizable because it depends too much on
the context. (An iterator cannot be written without knowing the container on
which it will be applied.)

“Componentizabil-
ity criteria”,  6.1, 
page 85.

“Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
257-271.

[EiffelBase-Web].

[Bezault 2001a].

[MSDN-Web].

[Sather-Web].
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Facade and Interpreter
Design ideas
The previous chapters presented non-componentizable patterns: first, patterns for
which it is possible to write skeleton classes to help application programmers
implement the pattern correctly; then, patterns for which existing Eiffel libraries
already provide some support.

This chapter reviews two design patterns (Facade and Interpreter) that failed
the componentization process and resisted my attempts at developing skeleton
classes. These patterns enter in the category “2.4 Design idea” of the pattern
componentizability classification.

This chapter concludes the review of the patterns described in Design
Patterns.

20.1  FACADE PATTERN
Like the Bridge pattern covered in the previous chapter, the Facade is also a way to
lower clients’ dependency on implementation classes, even if its primary goal is
slightly different. (The Facade’s purpose is rather to make the clients’ life easier by
providing a unified interface.) This section describes the Facade pattern and
explains why it cannot be turned into a reusable component.

Pattern description

The Facade pattern describes a way to “provide a unified interface to a set of
interfaces in a subsystem. Facade defines a higher-level interface that makes the
subsystem easier to use”.

The idea of a Facade pattern is to provide a usually unique interface to clients.
Any client call must go through this Facade, which takes care of dispatching the
calls to the relevant system components. Thus, clients need not know about
implementation details nor all system classes: they simply use the services exported
by the Facade. Therefore it is much easier to use a possibly complex system.

Having a complex system — with many classes — may even result from
applying design patterns to a software architecture as we saw in the previous
chapters. Clients that do not know about the underlying patterns may have
difficulties to customize the resulting system. Hence the usefulness of having a
“facade” hiding the complexity and providing clients with just what they need.

A typical example where the Facade pattern fits well is a compiler: it is likely
that your clients only want a FACADE with a feature compile and do not care about
your internal “lexer”, “parser” or “ast” subclusters.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

See section 17.2, 
page 278.

[Gamma 1995], p 
185.

It is the case of the 
State pattern (see sec-
tion 13.3, page 224) 
and the Command 
pattern (see section 
12.1, page 187) in 
particular.
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Implementation

Here is how we could picture a system implementing the Facade pattern:

The APPLICATION class calls some routine r exposed by the FACADE. (Class
FACADE is the only one known by the APPLICATION.) The actual implementation of
r requires several calls, first a call to ra on an object of type A; second a call to rb
on an object of type B; third a call to rc on an object of type C. (This is just an
example; it could be any implementation.) But the APPLICATION does not need nor
want to know about it. The Facade pattern suggests such decoupling.

In practice, classes A, B, and C may be in a different cluster called for example
“internal” as in the figure above. A good way to implement a Facade in Eiffel is to
export features only in class FACADE; all other features in other classes would be
exported to FACADE or NONE (“private” features), including creation procedures.

Here is a possible implementation of the system pictured above:

class

APPLICATION

create

make

feature -- Basic operation

make is
-- Do something.

do
(create {FACADE}).r

end

end

 

APPLICATION FACADE 

r 

A 

ra 

B 

rb 

C 

rc 

internal

Representa-
tion of a typi-
cal 
application 
using the 
Facade pat-
tern

The notion of cluster 
is defined in the 
appendix A.

Client appli-
cation of a 
system built 
with the 
Facade pat-
tern
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The APPLICATION calls r on an instance of FACADE, whose text appears below:

The class FACADE relies on “internal” (implementation) classes, like A:

No client can access A directly: class A can only be instantiated by a FACADE; the
routine ra of class A is only exported to class FACADE (and its descendants).

Because an application usually needs only one instance of FACADE, it is
commonly implemented using the Singleton pattern. (It is not the case in the
example shown here; see chapter 18 about how to write a Singleton in Eiffel.)

Componentization outcome

The code shown so far is just a particular example, not a reusable component. The
problem is that it depends very much on the context: How can we know the ri in the
figure on page 314? The class INTERNAL of the EiffelBase library does not bring
enough information. Even a full reflection mechanism does not help, because we do
not know the call ordering, and so on.

We are powerless to customize all these criteria and define a reusable and
general enough class FACADE. Even class skeletons are not possible: only the
application developer knows which services he wants to expose to the APPLICATION.

class

FACADE

feature -- Basic operation

r is
-- Do something.

do
(create {A}).ra;
(create {B}).rb;
(create {C}).rc

end

end

class

A

create {FACADE}

default_create

feature {FACADE} -- Basic operation

ra is
-- Do something.

do
...

end

end

Facade class 
(interface 
available to 
clients)

Internal class

[EiffelBase-Web].
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Chapter 6 presented some criteria permitting to establish that a pattern is
componentizable or not. Here the Facade pattern depends so much on context
information that it is not even possible to try out the object-oriented mechanisms
mentioned in 6.1. Therefore, I classify it as non-componentizable and I put it in the
category “2.4 Design idea” of the pattern componentizability classification because
there is no way to write skeleton classes and there exists no library support.

20.2  INTERPRETER PATTERN

The goal of the Interpreter design pattern is to interpret sentences of a simple
language by representing each expression (terminal or non-terminal) as a class. Let’s
have a closer look at this pattern.

Pattern description

The Interpreter pattern, “given a language, define[s] a representation for its
grammar along with an interpreter that uses the representation to interpret
sentences in the language”.

Language sentences are made of expressions. Each expression is either non-
terminal (is made of other expressions) or terminal (is just one expression). Using
the Interpreter pattern consists in representing each kind of expression as a class.
For example, a typical application could have a deferred class EXPRESSION,
describing any kind of expression (terminal or non-terminal) and two descendants,
TERMINAL_EXPRESSION and NON_TERMINAL_EXPRESSION. Any expression
provides a way to be “interpreted” (evaluated); the feature interpret is deferred in
class EXPRESSION and effected in descendants. Interpreting a NON_TERMINAL_
EXPRESSION means looping over the expressions it is composed of and call interpret
on each of them.

Here is the corresponding class diagram:

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
243.

The interpret feature 
does not need to be in 
class EXPRESSION. It 
may also be in an 
independent VISITOR 
class.

APPLICATION 

CONTEXT 

* 
EXPRESSION

+ 
TERMINAL_
EXPRESSION 

+ 
NON_TERMINAL_

EXPRESSION 

interpret* 

interpret+ 
extend 

expressions 

interpret+ 
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pattern
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In the above example, the implementation of class EXPRESSION is very simple. It
simply declares a feature interpret, which evaluates the symbols of the grammar
using some shared information stored in a CONTEXT (given as argument):

Here I use a demanding style of programming and require the CONTEXT given as argument
to feature interpret to be non-void. It is however not clear from the design pattern
description. Indeed, Jézéquel et al. show a UML diagram with a relation * between
APPLICATION and CONTEXT, meaning that an APPLICATION may have zero or more
CONTEXTs. But on the other hand, they take an example with a precondition ctx /= Void.
Therefore, I decided to have a precondition as well.

The class TERMINAL_EXPRESSION effects procedure interpret. This implementation
depends on the software specification, what the “interpreter” is supposed to do.
There is no such example in the dissertation.

This section rather shows a possible implementation of class NON_
TERMINAL_EXPRESSION, which is likely to be similar in all Interpreter
implementations. A NON_TERMINAL_EXPRESSION contains a list of expressions.
The class provides a feature extend to populate this list. The core feature is interpret;
as mentioned before, its implementation consists in traversing the list of expressions
and call interpret on each of them. The corresponding class appears below:

deferred class

EXPRESSION

feature -- Basic operation

interpret (a_context: CONTEXT) is
-- Interpret the symbols of the grammar
-- using shared information of a_context.

require
a_context_not_void: a_context /= Void

deferred
end

end

class

NON_TERMINAL_EXPRESSION

inherit

EXPRESSION

create

make

feature {NONE} -- Initialization

make is
-- Initialize expressions.

do
create expressions.make

end

feature -- Access

expressions: LINKED_LIST [EXPRESSION]
-- Expressions current non-terminal expression is made of

Expression 
class

[Jézéquel 1999], p 
153-154.

Terminal expressions 
may be implemented 
as flyweights if there 
are many occur-
rences of the same 
symbols in the gram-
mar.

Non-terminal 
expression 
class
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Here is an example of a client using the Interpreter pattern to evaluate a non-
terminal expression made of two terminal expressions:

feature -- Element change

extend (an_expression: EXPRESSION) is
-- Extend expressions with an_expression.

require
an_expression_not_void: an_expression /= Void

do
expressions.extend (an_expression)

ensure
one_more: expressions.count = old expressions.count + 1
inserted: expressions.last = an_expression

end

feature -- Basic operation

interpret (a_context: CONTEXT) is
-- Interpret non-terminal symbols of the grammar
-- using shared information of a_context.

do
from expressions.start until expressions.after loop

expressions.item.interpret (a_context)
expressions.forth

end
end

invariant

expressions_not_void: expressions /= Void
no_void_expression: not expressions.has (Void)

end

class

APPLICATION

create

make

feature {NONE} -- Initialization

make is
-- Interpret a non-terminal expression 
-- made of two terminal expressions. 

local
a_context: CONTEXT
non_terminal: NON_TERMINAL_EXPRESSION

do
create a_context
create non_terminal.make
non_terminal.extend (create {TERMINAL_EXPRESSION})
non_terminal.extend (create {TERMINAL_EXPRESSION})
non_terminal.interpret (a_context)

end

end

Application 
using the 
Interpreter 
pattern
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Componentization outcome

The example application presented before shows that the Interpreter pattern can be
implemented using the Composite pattern: TERMINAL_EXPRESSIONs are leaves and
NON_TERMINAL_EXPRESSIONs are COMPOSITE of EXPRESSIONs. Thus, it would be
possible to apply the Composite Library presented in chapter 10.

However, this does not bring a reusable component. Indeed, it is difficult to
abstract and build a useful reusable Interpreter library without knowing the grammar
to be interpreted. This pattern is too much context-dependent. Thus, it is not even
possible to provide skeleton classes.

Applications relying on the Interpreter pattern can be written with the
Composite Library to model expressions (terminal and non-terminal). Then,
programmers need to implement interpreter-specific features themselves. (They may
sometimes use the Visitor Library for the interpret feature — to avoid putting it in
the EXPRESSION classes.)

In other words, developers can take advantage of some reusable libraries —
resulting from the successful componentization of other design patterns — to
implement applications using the Interpreter pattern; but the Interpreter pattern per
se is non-componentizable. Even language extensions or skeleton classes could not
help.

Chapter 6 presented some criteria permitting to establish that a pattern is
componentizable or not. Here the Interpreter pattern depends so much on context
information that it is not even possible to try out the object-oriented mechanisms
mentioned in 6.1. Therefore, I classify it as non-componentizable and I put it in the
category “2.4 Design idea” of the pattern componentizability classification because
there is no way to write skeleton classes and there exists no library support.

20.3  CHAPTER SUMMARY
• Applying the Facade pattern to a system means providing a unified interface

to clients, hiding the internal implementation, hence making client use easier.
• There is usually need for only one Facade in a system; therefore it is often

implemented using the Singleton pattern.
• The Facade pattern is non-componentizable; it is too much context-

dependent.
• The Interpreter pattern describes a way to evaluate sentences of a simple

language by representing each terminal or non-terminal expression by a class.
• It is possible to use the Composite Library (and the Visitor Library) to

implement an “interpreter”. However, the Interpreter pattern per se is non-
componentizable. It depends too much on the context. (A useful
implementation needs to know the grammar of the language to be interpreted.)
Thus it is hardly possible to write skeleton classes.

• The Facade and the Interpreter patterns belong to the category “2.4 Design
idea” of the pattern componentizability classification.

[Gamma 1995], p 
163-173.

See “Definition: 
Componentization”,  
page 26.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Gamma 1995], p 
185-193.

See chapter 18.

[Gamma 1995], p 
243-255.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.



FACADE AND INTERPRETER §20320



PART E: Applications



322
Part C and Part D reviewed all design patterns described by Gamma et al.
and explained the keys that let to their successful componentization or the
reasons why they could not be turned into reusable components. Part E will
present an application — the Pattern Wizard — built to help programmers
implement non-reusable design patterns by generating skeleton classes
automatically for them.



21   
Pattern Wizard
The main goal of this thesis was to provide the reusable Eiffel components
corresponding to the design patterns of [Gamma 1995] found componentizable —
given the Eiffel language’s facilities and advanced mechanisms such as Design by
Contract™, genericity, multiple inheritance, and agents.

This examination of the patterns listed in Design Patterns revealed that some
patterns can be transformed more or less easily into reusable libraries whereas other
patterns resist any componentization attempt. The latter require content-dependent
information, which can only be given by the programmer. Even though it was not
possible to provide a reusable component in such cases, I still wanted to help
developers as much as possible and built a tool that would take care of the repetitive
tasks automatically. Hence the development of the Pattern Wizard.

This chapter gives a tutorial about how to use the tool and take advantage of
it. Then, it describes the design and implementation of the wizard, and discusses its
limitations. Finally, it presents some related work.

21.1  WHY AN AUTOMATIC CODE GENERATION TOOL?
A design pattern is a solution to a particular design problem but it is not code itself.
Programmers must implement it anew whenever they want to apply the pattern.
Componentization provides a solution to this problem but unfortunately not all
design patterns are componentizable. Thus, programmers still need to implement the
code for some patterns. This is the point where an automatic code generation tool
comes into play. Some developers, in particular newcomers, may have difficulties to
implement a design pattern from just a book description, even if there are some code
samples. Others simply may find it tedious to implement the patterns because it is
repetitive: it is always the same kind of code to write afresh for each new
development. Hence the interest of the Pattern Wizard.

The Pattern Wizard may also be interesting for the componentizable patterns
for at least two reasons:
• The pattern is not fully componentizable and the componentized version

cannot handle the given situation.
• The reusable component is applicable but not desirable because of

performance reasons for example (e.g. in embedded systems).
Section 9.3 showed that using the Visitor Library on the Gobo Eiffel Lint

tool results in a performance overhead (less than twice as slow) compared to a
traditional implementation of the Visitor pattern. Therefore it may be
impossible to use the Visitor Library in some application domains that require

See “Definition: 
Componentization”,  
page 26.

See “Gobo Eiffel Lint 
with the Visitor 
Library”,  page 138.
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topmost performance. Thus it would be interesting to extend the Pattern Wizard
to support the Visitor pattern to have better code performance when it is needed.

The next section gives a tutorial of the Pattern Wizard that already supports all non-
componentizable patterns for which it is possible to generate skeleton classes. The
next implementation step will be to extend the wizard to support componentizable
design patterns (and possibly other target programming languages).

21.2  TUTORIAL
Before moving to the design and implementation of the Pattern Wizard, it is
interesting to have a look at the actual product. This section explains how to use the
wizard to generate code for the Decorator pattern; then, it shows briefly the
graphical interfaces for the other supported patterns.

Example of the Decorator pattern

When launching the Pattern Wizard, the first window that shows up is the following:

The tree view enables you to select the pattern you want to generate code for. This
tree view recalls the pattern componentizability classification described in chapter 6.
Not all items are selectable; for example, clicking on “Possible skeleton classes” will
have no effect. You need to click on actual pattern names like “Singleton”,
“Decorator”, and so on, namely on the end tree items, not on tree nodes. Selecting
a pattern name will make the bottom part of the window to change and show pattern-
specific information. The “Generate” button will also be enabled.

The toggle buttons at the bottom enables you to say whether you want the
wizard to generate a whole Eiffel project, meaning the pattern classes plus a root
class and an Ace file. You can also decide to close the wizard after code generation
if you need to generate code for only one pattern.

At any time, you can consult the online help by clicking the “Help” button on
the bottom right-hand side of the window. It will open a PDF file that recalls the
information contained in this chapter.

The “About” button gives access to some general information about the
Pattern Wizard (product version, contact information, etc.).

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
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Let’s suppose we select the pattern Decorator. The initial window will be extended
to display information and properties that are specific to the Decorator pattern. The
corresponding window appears below:

• The first two extra boxes display the pattern’s intent and applicability. This
information is taken from the Decorator chapter of Design Patterns. It is pure
information whose goal is to help the user know whether this pattern is of
interest to his problem. It does not intervene in the code generation process.

Pattern Wiz-
ard window 
once the Dec-
orator pat-
tern has been 
selected

[Gamma 1995], p 
175-184.
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• The subsequent box enables you to select the project directory, namely the
folder where the code will be generated.

You can either write the directory path in the text field on the left or select a
directory by clicking the “Browse...” button. It will open a modal dialog:

It shows the file hierarchy on your computer and enables you to select either an
existing directory or create a new one at the place you want. By default, the
Pattern Wizard creates a folder “pattern_wizard” under your C drive and use it
as project directory. You can choose to use this default directory; in that case,
just leave the “Project location” box unchanged.

• The next box corresponds to the pattern-specific properties you can select;
they are the parameters you can set for the code generation.

Selection of 
the project 
directory

Dialog to 
select a 
project direc-
tory folder

Frame to 
select the 
Decorator 
properties 
(first tab: 
original com-
ponent prop-
erties)
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To make your job easier, the Pattern Wizard gives you the possibility to have a
look at the class diagram of a typical application using the chosen pattern, here
the Decorator. Simply click the “Class diagram” button on the top right.

You can see that there are two class hierarchies: one for the component classes
and a second one for the decorated component classes. They are represented by
two tabs in the “Pattern properties” frame.

The first tab concerns the component classes: the deferred class and the
effective descendant class (COMPONENT respectively MY_COMPONENT in the
example class diagram). You can also specify the name of the feature that will
appear in the parent class. Again, you can choose to rely on the defaults, in
which case you don’t need to change anything.

Let’s have a look at the second tab now, which concerns the decorated
classes:

First, you can choose the name and creation procedure name of the parent class
of the decorated components, called DECORATED_COMPONENT in the
previous class diagram.

Class dia-
gram of a typ-
ical 
application 
using the 
Decorator 
pattern 
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Then, you can choose what kind of effective decorated components you
want, either with an additional attribute (of which you can choose the name and
type) or with an additional procedure (of which you can choose the name) or
both. Simply select the toggle buttons “with additional attribute” and “with
additional behavior” accordingly. By default, both check boxes are selected. If
you unselect one of them, the relative text fields and labels will be disabled.

If you choose to have a decorated component with an additional attribute, the
Pattern Wizard will generate a new class corresponding to the attribute’s type
no matter whether it corresponds to an existing class or not. Therefore it may
be that the generated code does not compile (because of this extra class). You
will need to adapt the generated Ace file to use your existing class and not the
generated one.

Once you have chosen the pattern properties (you can also leave them unchanged
and rely on the default values), you can click the “Generate” button at the bottom of
the window, which will launch the code generation.

If you asked the wizard to close after code generation, clicking “Generate”
will also close the wizard’s window unless a problem occurs during the code
generation (because of invalid inputs). If you didn’t check the box “Close the pattern
after code generation”, the window will not be closed; the wizard will display a
message saying that the code generation was successful:

Other supported patterns

The Pattern Wizard supports four other patterns (and variants): the Singleton,
Adapter, Template method, and Bridge design patterns. This tutorial does not explain
in detail how to use the wizard for each pattern because the approach resembles very
much what we just did for the Decorator pattern. It just shows the “Pattern
properties” frame for each pattern and explains the particularities, if any.

• Singleton:

You can select the name of the Singleton class and the name of its point of
access. You can also choose the creation procedure of the Singleton class and
the name of the query that will return the Singleton instance in the access point
class. Please refer to chapter 18 for more information about the Singleton
pattern.

Message after 
a successful 
code genera-
tion

“Pattern 
properties” 
frame for the 
Singleton pat-
tern
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• Adapter:

You can choose: the name of the target class (the one used by clients) and the
name of the feature it exposes; the name of the adaptee class and the name of
the feature it declares (the one we want to use in the implementation of the
adapter feature); the name of the adapter class (that reconciles the interfaces of
the target and adaptee classes). The wizard supports both class and object
versions of the Adapter. Please refer to section 16.2 for more information.

• Template method:

A “Template method” is basically a feature whose implementation is defined in
terms of other features (the implementation features), which are deferred and
effected in descendant classes. The wizard’s graphical interface for the
Template method pattern enables you to choose the different class and feature
names.

The Pattern Wizard supports two variants of this pattern: the original
pattern version, which I just described, and a version using agents. Both variants
are described in section 17.1 of this thesis.

A particularity of the version implemented with agents is that the root
class is one of the pattern classes. Therefore it is compulsory to select the option
“Generate root class and Ace file” at the bottom of the pattern’s window. If you
don’t select it and click the “Generate” button, you will get a warning message:

and the wizard will automatically select the option for you and generate the
correct code.

“Pattern 
properties” 
frame for the 
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tern

“Pattern 
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• Bridge:

The Bridge pattern relies on two parallel hierarchies: the application classes and
the implementation classes. The Pattern Wizard enables you to select the name
of all involved classes and features. For example, you can choose the name of
the application class’s descendants and of the implementation class’s
descendants. One constraint is that you must have as many descendants of the
application class as descendants of the implementation class. If it is not the case
and you click the “Generate button”, you will get an error message:

No code will be generated.

The Pattern Wizard supports three variants of the Bridge pattern: the original
pattern, a version using effective classes only, and a third variant using non-
conforming inheritance. All three variants are described in section 17.2.

21.3  DESIGN AND IMPLEMENTATION
The Pattern Wizard automatically generates Eiffel classes — and possibly a project
root class and an Ace file — that programmers will have to fill in to build their
systems. The code generation relies on template files with placeholders that the
wizard fills in with the pattern properties entered by the user. Let’s have a closer
look at the design and implementation of the Pattern Wizard.

Objectives

The Pattern Wizard targets the non-componentizable patterns of categories 2.1 and
2.2 of the componentizability classification appearing in section 6.3 for which it is
possible to generate skeleton classes (i.e. Eiffel classes that compile and capture the
entire pattern structure but miss implementation that developers will have to
provide). The idea is both to simplify the job of programmers by preparing the code
and to ensure the design pattern gets implemented correctly. Five design patterns
belong to the categories 2.1 and 2.2, some of them having several variants:

“Pattern 
properties” 
frame for the 
Bridge pat-
tern

Error mes-
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Bridge pat-
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described in appen-
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• Adapter (Class adapter and Object adapter)
• Decorator
• Template Method (original pattern and variant implementation using agents)
• Bridge (original pattern using deferred classes, variant using effective classes

only, and an implementation using non-conforming inheritance)
• Singleton
The Pattern Wizard has been carefully designed to:
• Separate the underlying model (pattern information, code generation) and the

GUI parts: the corresponding classes appear in different clusters (see Overall
architecture).

• Enforce reusability: motifs appearing several times in the variant windows of
the Pattern Wizard have been captured into reusable components to avoid
code repetition.

• Ensure extensibility: the Pattern Wizard can easily be extended to support
other design patterns. (I will explain more about that after presenting the
application’s architecture.)

Overall architecture

The following class diagram shows the overall architecture of the Pattern Wizard.
For simplicity, it does not show all the classes. For example, it only shows the
classes (GUI, model, and code generation) corresponding to the Decorator pattern;
you have to imagine the counterparts for the other supported patterns.

The Pattern Wizard classes are grouped into four main clusters:
• “gui”: This cluster contains all GUI-related classes. It has a subcluster

“components” for all reusable GUI components mentioned before (frames,
horizontal and vertical boxes, etc.). The classes that do not belong to the
subcluster “components” correspond to pattern-specific GUI components and
windows of the Pattern Wizard.

• “model”: This cluster includes the class PW_PATTERN_INFORMATION and its
descendants, which contain the information needed to generate code for each
pattern.
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• “generation”: This cluster contains the class PW_PATTERN_CODE_
GENERATOR and its descendants, which take care of the actual code
generation based on the PW_PATTERN_INFORMATION classes and the
placeholder names defined in the class PW_SKELETON_NAMES.

• “support”: This cluster contains the helper class PW_SUPPORT that contains
useful features like pattern_delivery_directory, directory_exists, and file_exists.

Graphical User Interface

The class PW_INITIAL_WINDOW corresponds to the first window that appears when
launching the PATTERN_WIZARD application (reproduced below).

It consists of a tree view of the supported patterns plus a few controls. When the user
selects a pattern in the tree view, the bottom part of the window changes and shows
pattern-specific information and properties the user has to enter (unless he wants to
rely on the default values).

Here is the widget layout of this initial window of the Pattern Wizard that
permits such dynamic transformation:

Initial win-
dow of the 
Pattern Wiz-
ard

This window already 
appeared on page 
324.

PW_PATTERN_SELECTOR 

EV_HORIZONTAL_BOX 

PW_CONTROL_BOX 
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Wizard’s ini-
tial window
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Each tree item is associated with an action select_pattern, which creates an instance
of a pattern-specific descendant of PW_PATTERN_VERTICAL_BOX and extend the
vertical box in red in the above figure with it.

The PW_PATTERN_VERTICAL_BOX displays some information — the patterns’
intent and applicability — directed at the user to help him know whether the selected
design pattern is useful for problem. Besides, it shows the pattern properties that can
be changed before the code generation; for example, the name of classes and
features of those classes.

Model

The cluster “model” is composed of the class PW_PATTERN_INFORMATION and its
descendants. They contain the information the user can enter in the different text
fields and other controls of the Pattern Wizard’s GUI, which will be used by the PW_
PATTERN_CODE_GENERATOR.

Let’s take the example of the Decorator pattern. The pattern properties frame
looks like this:

The second tab with the properties of the decorated component appears next:

The model was designed as a “repository” of information given by the user via the
wizard’s GUI. There is a direct mapping between the two. For example, the field
“Class name” of the “Original component properties” tab is represented by an
attribute component_class_name in the class PW_DECORATOR_INFORMATION; the
field “Creation procedure name” in the “Decorated component properties” tab is
modeled by an attribute decorated_component_creation_procedure_name. 

Each attribute has a corresponding setter procedure to make it possible for the
GUI classes to construct the PW_PATTERN_INFORMATION from the information
entered by the user. This is done in the class PW_INITIAL_WINDOW_IMP.
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The function decorator_info is sketched below:

The class PW_PATTERN_INFORMATION also exposes a query is_complete, which
permits to know whether all information has been filled by the user; is_complete must
be true before any code generation.

Generation

The cluster “generation” contains the class PW_PATTERN_CODE_GENERATOR and
its descendants (one descendant per pattern). Here is the interface of the class PW_
PATTERN_CODE_GENERATOR:

deferred class

PW_INITIAL_WINDOW_IMP
...
feature {NONE} -- Implementation (Pattern information)

decorator_info: PW_DECORATOR_INFORMATION is
-- Selected information about the chosen pattern

require
decorator_pattern_vbox_not_void: decorator_pattern_vbox /= Void

local
frame: PW_DECORATOR_PROPERTY_SELECTOR

do
create Result
frame := decorator_pattern_vbox.pattern_properties_frame
Result.set_component_class_name (frame.component_class_name)
Result.set_feature_name (...)
Result.set_effective_component_class_name (...)
Result.set_decorated_component_class_name (...)
Result.set_decorated_component_creation_procedure_name (...)
if frame.is_component_with_additional_attribute_generation then

Result.set_component_with_
additional_attribute_generation (True)

Result.set_additional_attribute_name (...)
Result.set_additional_attribute_type_name (...)

end
if frame.is_component_with_additional_behavior_generation then

Result.set_component_with_
additional_behavior_generation (True)

Result.set_additional_feature_name (...)
end

ensure
decorator_info_not_void: Result /= Void

end
...
end

deferred class interface

PW_PATTERN_CODE_GENERATOR

feature -- Access

pattern_info: PW_PATTERN_INFORMATION
-- Pattern information needed for the code generation
-- (name of classes, name of features, etc.)

project_directory: STRING
-- Path of the project directory (where the code will be generated)

Construction 
of a PW_
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Interface of 
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ERATOR
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The code generation relies on skeleton files delivered with the wizard. They are
Eiffel or Ace files with placeholders of the form <SOMETHING_TO_ADD_HERE>.
Here is the example of the skeleton Eiffel file that serves to generate the deferred
component class of the Decorator pattern:

feature -- Status report

root_class_and_ace_file_generation: BOOLEAN
-- Should a root class and an Ace file be generated?

feature -- Element change

set_pattern_info (a_pattern_info: like pattern_info)
-- Set pattern_info to a_pattern_info.

require
a_pattern_info_not_void: a_pattern_info /= Void

ensure
pattern_info_set: pattern_info = a_pattern_info

set_project_directory (a_project_directory: like project_directory)
-- Set project_directory to a_project_directory.
-- Add '\' at the end if none.

require
a_project_directory_not_void: a_project_directory /= Void
a_project_directory_not_empty: not a_project_directory.is_empty
directory_exists: directory_exists (a_project_directory)

ensure
project_directory_set: project_directory /= Void and then

not project_directory.is_empty

set_root_class_and_ace_file_generation (
a_value: like root_class_and_ace_file_generation)

-- Set root_class_and_ace_file_generation to a_value.
ensure

root_class_and_ace_file_generation_set:
root_class_and_ace_file_generation = a_value

feature -- Generation

generate
-- Generate code for this pattern.

require
pattern_info_not_void: pattern_info /= Void
pattern_info_complete: pattern_info.is_complete

invariant

project_directory_not_empty_and_exists_if_not_void:
project_directory /= Void implies (not project_directory.is_empty and 

directory_exists (project_directory))

end

deferred class
<DECORATOR_COMPONENT_CLASS_NAME>

feature -- Basic Operation

<DECORATOR_FEATURE_NAME> is
-- Do something.

deferred
end

end

Skeleton file 
to generate 
the compo-
nent class of 
the Decora-
tor pattern
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The correspondence between placeholders and actual names (class names, feature
names, etc.) to be generated depending on the pattern is kept in the class PW_
SKELETON_NAMES.

To come back to the class PW_PATTERN_CODE_GENERATOR, its feature
generate_code is implemented as follows:

The procedures generate_ace_file, generate_root_class, and generate_pattern_code are
deferred in class PW_PATTERN_CODE_GENERATOR and effected in the descendant
classes. The actual implementation of these features relies on one routine generate_
code defined in the parent class PW_PATTERN_CODE_GENERATOR. The signature of
this feature is the following:

• a_new_file_name corresponds to the “.e” or “.ace” file to be generated. To use
this example of the Decorator pattern again, if the user wants to call the
deferred component class MY_COMPONENT, the value of a_new_file_name will
be “chosen_project_directory_path\my_component.e” (where “chosen_
project_directory_path” corresponds to the path to the project directory
chosen by the user).

• a_skeleton_file_name corresponds to the “.e” or “.ace” skeleton file delivered
with the Pattern Wizard that is used to generate the text of the new file to
create (corresponding to file name a_new_file_name). For example, to generate
the deferred component class of the Decorator pattern, we would use the file
name of the skeleton Eiffel file given on the previous page.

• some_changes corresponds to the mapping between placeholders (found in the
skeleton file) and the actual text to be generated. To use the example of a class
MY_COMPONENT, the list some_changes would contain the tuple
[“<DECORATOR_COMPONENT_CLASS_NAME>”, “MY_COMPONENT”].

deferred class

PW_PATTERN_CODE_GENERATOR
...
feature -- Generation

generate is
-- Generate code for this pattern.

require
pattern_info_not_void: pattern_info /= Void
pattern_info_complete: pattern_info.is_complete

do
if root_class_and_ace_file_generation then

generate_ace_file
generate_root_class

end
generate_pattern_code

end
...
end

generate_code (a_new_file_name, a_skeleton_file_name: STRING;
 some_changes: LINKED_LIST [TUPLE [STRING, STRING]])

Implementa-
tion of feature 
‘generate’ of 
class PW_
PATTERN_
CODE_GEN-
ERATOR

Signature of 
‘generate_
code’

See Skeleton file to 
generate the compo-
nent class of the Dec-
orator pattern.
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The actual implementation of feature generate_code is given below:

deferred class

PW_PATTERN_CODE_GENERATOR

...

feature {NONE} -- Implementation (Code generation)

generate_code (a_new_file_name, a_skeleton_file_name: STRING;
some_changes: LINKED_LIST [TUPLE [STRING, STRING]]) is

-- Generate new file with file name a_new_file_name from the
-- skeleton corresponding to a_skeleton_file_name by
-- reproducing the skeleton code into the new file after 
-- some_changes (replacing a value by another).
--| some_changes should be of the form:
--| LINKED_LIST [[old_string, new_string], ...]

require
a_new_file_name_not_void: a_new_file_name /= Void
a_new_file_name_not_empty: not a_new_file_name.is_empty
a_skeleton_file_name_not_void: a_skeleton_file_name /= Void
a_skeleton_file_name_not_empty: not a_skeleton_file_name.is_empty
a_skeleton_file_exists: file_exists (a_skeleton_file_name)
some_changes_not_void: some_changes /= Void
no_void_change: not some_changes.has (Void)
-- no_void_old_string: forall c in some_changes, c.item (1) /= Void
-- no_void_new_string: forall c in some_changes, c.item (2) /= Void

local
file: PLAIN_TEXT_FILE
skeleton_file: PLAIN_TEXT_FILE
text: STRING
a_change: TUPLE [STRING, STRING]
old_string: STRING
new_string: STRING

do
create skeleton_file.make_open_read (a_skeleton_file_name)
skeleton_file.read_stream (skeleton_file.count)
text := skeleton_file.last_string
from some_changes.start until some_changes.after loop

a_change := some_changes.item
old_string ?= a_change.item (1)
if old_string /= Void then

new_string ?= a_change.item (2)
if new_string /= Void then

text.replace_substring_all (old_string, new_string)
end

end
some_changes.forth

end
create file.make_create_read_write (a_new_file_name)
file.put_string (text)
file.close
skeleton_file.close

end

...

end

Full text of 
feature 
‘generate_
code’
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Limitations

The limitations of the Pattern Wizard are of two kinds: first, limitations of the
current implementation of the tool, which should disappear in the future; second,
limitations of the approach itself, which are basically the same as the limitations of
this Ph.D. thesis work.

Future works on the tool include:
• Give the user the possibility to choose the root class name and creation

procedure name like for the other classes.
• Give the user the possibility to use existing files (rather than always

generating new files) and add to them the wished functionalities (typically
adding a set of features to an existing class rather than generating a new class
file with these features). 

The implied GUI changes are minor; it would suffice to add an horizontal
box with a text field and a “Browse...” button to let the user choose the file to
modify (in the same spirit as the project location selection).

The major changes would be in the code generation part. It would require
parsing the existing class to get an abstract syntax tree (AST) and insert into this
AST the nodes corresponding to the extra code to be added, and write the
augmented AST into a file.

Other limitations of the Pattern Wizard include:
• The language specificity: The wizard is entirely written in Eiffel and generates

Eiffel files only. However, it would be quite easy to make it generate files in
Java or C# for example; we would need skeleton files in those languages and
maybe one or two adaptations in the wizard’s code.

• The limited number of supported patterns: The wizard only targets five
patterns (plus a few variants); these are the five non-componentizable design
patterns of [Gamma 1995] for which it is possible to generate skeleton classes.
However, it would be easy to extend the wizard to support more patterns; here
are the required steps:
• On the model side: we would need to write the corresponding

descendant of PW_PATTERN_INFORMATION.
• On the code generation side: we would need to write a descendant of

PW_PATTERN_CODE_GENERATOR.
• On the GUI side: we would need to write the corresponding descendant

of PW_PATTERN_VERTICAL_BOX and PW_PATTERN_PROPERTY_
SELECTOR.

• Finally, we would need to make the connection between the existing
implementation and the new classes by extending the features select_
pattern and generate_code of class PW_INITIAL_WINDOW, and build the
new_pattern_info in class PW_INITIAL_WINDOW_IMP.

The Pattern Wizard has been designed with extensibility in mind and could be easily
adapted to a broader componentization approach that would target more design
patterns and more programming languages.

21.4  RELATED WORK
One of the authors of Design Patterns, John Vlissides, collaborated with Frank
Budinsky, Marilyn Finnie, and Patsy Yu from the Toronto Software Laboratory to
build a tool that also generates code from design patterns.

See chapter 22, page 
343.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

[Budinsky 1996].
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However, this tool is different from the Pattern Wizard in many respects: first,
it uses an HTML browser and Perl scripts instead of a pure object-oriented design
and implementation in Eiffel; second, it generates C++ code instead of Eiffel code.
The goals of the authors were to build a tool allowing a fast turn-around: they
discarded other approaches using traditional programming languages as too slow (in
terms of development) and not flexible enough. The tool has a three-parts
architecture: the users interact with a browser (called “Presenter”) written in HTML;
it transmits the user input as Perl scripts to a Perl interpreter (called “Mapper”); the
Perl scripts invoke a COGENT (COde GENeration Template) interpreter, which
serves as code generator. They developed the COGENT interpreter for this tool.

The “Presenter” part has some commonalities with the Pattern Wizard:
• It has an intent and a motivation page providing information to the user. These

elements of information are available as HTML pages with hyperlinks. (These
pages give access to the chapters of Design Patterns in HTML format.)

• It gives users the possibility to select different generation options:
• Users must select the names of the classes involved in a design pattern

like in the Pattern Wizard. (One thing that is possible with this tool but
not yet possible with the Pattern Wizard is to use existing client
classes.)

• Users may choose different options to generate different
implementation versions of the same pattern; for example, a version of
the Composite pattern favoring transparency and another one favoring
safety.

• Users may choose different code generation options; for example, they
can decide to generate a main method and debug information.

The Pattern Wizard could benefit from some ideas of the “Presenter” part of the
code generation tool by Budinsky et al. (for example, more fine-grained code
generation options, a Questions & Answers page, etc.) to become even more user-
friendly. As for the other facets (like design and architecture), the Pattern Wizard
brings a new and simpler solution based on fully object-oriented design and
implementation using Eiffel. As far as I know, no such tool was available for Eiffel.

21.5  CHAPTER SUMMARY
• The Pattern Wizard is a graphical application that enables generating skeleton

classes automatically for some non-componentizable patterns.
• The code generation relies on template files delivered with the Pattern Wizard,

which are filled according to the input given by the user. The user can also
rely on default values, in which case he just has to click a button “Generate”
to launch the code generation.

• The Pattern Wizard has been designed with extensibility in mind and could
easily be extended to support other patterns and even other programming
languages.

• Componentization and tool support complement each other very well.

See “Composite pat-
tern”,  10.1, page 147 
for a detailed 
description of the 
Composite pattern 
and its different fla-
vors.

[Arnout-Web].
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The previous parts built the core of this thesis: they showed that most design
patterns described by Gamma et al. can be componentized, meaning they can
be transformed into reusable components thanks to advanced facilities of the
Eiffel language such as genericity, multiple inheritance, or agents. This thesis
would not be complete without a description of the limitations of this work. It
will be the topic of Part F. It will also give a glimpse of the future research
steps I have in mind to extend and improve this work.



22   
Limitations of the approach
The previous chapters have shown that making design patterns reusable components
is not a pure utopia. It is possible for a majority of the patterns described by [Gamma
1995]. One of the outcomes of this thesis is the componentized version of these
componentizable design patterns, meaning that Eiffel programmers will now be able to
rely on this Pattern Library instead of having to implement the same code again and again.

However, this componentization approach is not perfect. First, it only targets
the Eiffel programming language for the moment (although this chapter will show
that the approach is not bound to Eiffel). A more important concern is that design
patterns are multiform. Indeed, there are usually many ways to implement a design
pattern, and the componentized variant typically does not cover all of them.

This chapter describes the limitations of my componentization work in detail.

22.1  ONE PATTERN, SEVERAL IMPLEMENTATIONS
A design pattern is mainly a book description of a solution to a design issue. This
solution is often multiform: the “implementation” section of Design Patterns
typically discusses questions that programmers must ask themselves when
implementing the pattern. Depending on the answer to these questions (which relies
on the context and application needs), the pattern may take several forms when
actually implemented.

To copy the sign found in France before a grade crossing saying that “a train
may hide another train”, we can say that a pattern may hide another pattern.

However, reproducing this multiform characteristic of patterns in a
componentized version is not easy. It was possible for some “fully componentizable”
patterns like the Composite or the Command patterns; but I did not succeed for other
patterns (which I qualify as “componentizable but not comprehensive”) like the
State, the Builder, and the Proxy patterns. Let’s have a look at each pattern to see
what made it feasible or not to turn it into a fully reusable library.

“Multiform libraries”

• Transparency vs. safety composite: The Composite pattern can be represented
as a tree of objects with nodes and leaves. Design Patterns insists on
transparency: leaves and composite objects should provide the same services
to their clients. On the other hand, having tree traversal features in a leaf does
not make sense because it has no children. Therefore the Composite pattern
has two variants:

See “Pattern 
Library”,  page 26.

See “Definition: 
Componentization”,  
page 26.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

See “Composite”,  
10, page 147.
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• One favors transparency where all kinds of components (leaves and
composites) expose the same features to their clients (contracts ensure
consistency and correctness and prohibit calling routines that have no
sense in a particular component);

• The other favors safety where features applicable only to composites
are moved to the class corresponding to composites (instead of
components).

The Composite Library provides a componentized version for each pattern
variant. (It was basically a matter of feature location and appropriate assertions;
hence quite easy to provide both implementations.)

• History-executable vs. auto-executable commands: The Command pattern
describes a notion of history that keeps track of all executed commands to be
able to undo or redo them later. One possible pattern implementation is to
have the history responsible for executing the commands. Another possibility
is to let the command execute itself (and take care of registering itself into the
history during execution).

Like in the previous case, the two variants basically differ by the location
of some features (and here also from their export status). Therefore it was easy
to provide two versions of the Command Library: the first one with “history-
executable” commands, and the second one with “auto-executable” commands.

The Composite Library and the Command Library (maybe they should be called
“libraries”) offer two pattern variants. Other componentized versions of design
patterns just cover one possible case. They belong to the category “1.3.2
Componentizable but not comprehensive”.

Non-comprehensive libraries

• Seven State variants: The most obvious “multiform” pattern is certainly the
State pattern. Indeed, we saw in chapter 4 that Dyson et al. identified seven
variants (refinements and extensions) of this pattern: State with attributes or
not, State that knows about its next state or not, State that is responsible for
initiating the state changes or not, etc.

However, the State Library covers only the common case of “state-driven
transitions”. It would be very difficult to cover all possible cases because some
information is only known by the programmer and depends on the particular
application context and needs.

• Multi-part builder: The Builder pattern describes a way to create multi-part
products. The problem is that the product to be built is not know in advance.
For example, it is impossible to foresee how many parts a product will have.
Therefore the Builder Library only provides support for some typical cases
(two- and three-part products).

• Different kinds of Proxy: The Proxy pattern is also multiform. Indeed, it can
be applied in many different situations, which will yield different
implementations in each case. Design Patterns describes four cases: “virtual
proxies”, “remote proxies”, “protection proxies” and “smart references”.
However, the Pattern Library targets only the first case.

All these patterns require context-dependent information that only the programmer
can provide. As a consequence, a library can only cover some cases and not all
possible configurations. But having one reusable facility is already an achievement
in my opinion, even if it does not cover all possible needs.

See “Command pat-
tern”,  12.1, page 187 
and “Command 
Library”,  12.2, page 
190.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

See “Seven State 
variants”,  page 47.

See “State pattern”,  
page 224.

See “Builder pat-
tern”,  page 207.

See “Proxy pattern”,  
page 217.

See [Gamma 1995], p 
208-209 about the 
different kinds of 
proxies.
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22.2  LANGUAGE DEPENDENCY
Another limitation of this componentization work is the language dependency: for
the moment, this work only targets the Eiffel programming language. To be more
accurate, the componentized versions of design patterns developed during this thesis
rely on some mechanisms (contracts, genericity, inheritance, agents, and tuples),
which are specific to Eiffel for the moment. The components are not tied to Eiffel
directly; they are tied to these mechanisms, which is quite different. In particular, it
means that the approach is portable to any other programming language that provide
the same features.

For example, the next version of .NET will support genericity. Therefore, all
the patterns categorized as componentizable and relying on genericity only (for
example, Composite and Chain of Responsibility) will be convertible into reusable
.NET components.

Here is what the class COMPOSITE [G] of the Composite Library would look
like in C# (using the future syntax for generics):

using System;
using System.Collections;

class Composite<T> extends Component<T>{

// Initialization

// Initialize component parts.
public Composite(){

Parts = new ArrayList();
}

/**
 * Set Parts to someComponents.
 * require
 * someComponents != null;
 * !someComponents.Contains(null);
 * ensure
 * Parts == someComponents;
 */
public Composite(ArrayList <Component<T>> someComponents){

Parts = someComponents;
}

// Status report

// Is component a composite?
public bool IsComposite(){

return true;
}

/**
 * Does composite contain aPart?
 * require
 * aPart != null;
 * ensure
 * Result == Parts.Contains(aPart);
 */
public bool Has(Component<T> aPart){

return Parts.Contains(aPart);
}

The current version 
of Eiffel is described 
in [Meyer 1992]; the 
next version of the 
language is covered 
by [Meyer 200?b].

See “Mechanisms 
used to transform 
componentizable 
patterns into reusable 
Eiffel components”,  
page 91.

See chapter 10.
[Kennedy 2001].

Composite 
Library class 
in C#

“Result” does not 
exist in C#. This is 
just pseudo-code to 
enable writing asser-
tions (even though 
they cannot be moni-
tored at run-time like 
in Eiffel).
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/**
 * Does component contain no part?
 * ensure
 * Result == (Parts.Count == 0);
 */
public bool IsEmpty(){

return (Parts.Count == 0);
}

// Access

/**
 * i-th part of composite
 * require
 * (i >= 0) && (i < Parts.Count);
 * ensure
 * Result == Parts[i];
 * Result != null;
 */
public Component<T> Ith(int i){

return Parts[i]; 
}

// Basic operation

// Do something.
public void DoSomething(){

IEnumerator<Component<T>> cursor = Parts.GetEnumerator();
while (cursor.MoveNext()){

cursor.Current.DoSomething();
}

}

// Measurement

/**
 * Number of component parts
 * ensure
 * Result == Parts.Count;
 */
public int Count(){

return Parts.Count;
}

// Element change

/**
 * Add aPart to component Parts.
 * require
 * aPart != null;
 * !Has(aPart);
 * ensure
 * Parts.Count == old Parts.Count + 1
 * Has(aPart);
 */
public void Add(Component<T> aPart){

int index = Parts.Add(aPart);
}

“old” does not exist 
in C#. This is just 
pseudo-code to 
enable writing asser-
tions (even though 
they cannot be moni-
tored at run-time like 
in Eiffel).
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This adaptation of the Composite Library to C# shows that it is easy to port the
current Eiffel implementation of a pattern’s componentized version to another
language (here C#) as soon as this programming language provides the functionality
currently specific to Eiffel (here genericity).

Some other patterns are componentizable because of the Eiffel agent
mechanism. This technique is specific to Eiffel for the moment, but it can be
emulated in other languages, like Java or C#, using reflection. The difference is that
the reflection approach is not type-safe. 

The following example gives the Java equivalent of the library class
COMMAND, which is part of the Command Library:

// Removal

/**
 * Remove aPart from component Parts.
 *
 * require
 * aPart != null;
 * Contains(aPart);
 * ensure
 * Parts.Count == old Parts.Count - 1;
 */
public void Remove(Component<T> aPart){

Parts.Remove(aPart);
}

// Implementation

// Component parts (which are themselves components)
protected ArrayList<Component<T>> Parts;

/**
 * invariant
 * IsComposite();
 * Parts != null;
 * !Parts.Contains(null);
 */
}

import java.lang.∗;
import java.lang.reflect.∗;

class Command{

// Initialization

/**
 * Set action to anAction and isOnceCommand to aValue.
 * require
 * anAction != null;
 * ensure
 * action == anAction;
 * isOnceCommand == aValue;
 */
public Command(Method anAction, boolean aValue){

action = anAction;
isOnceCommand = aValue;

}

See “Mechanisms 
used to transform 
componentizable 
patterns into reusable 
Eiffel components”,  
page 91.

See “Command 
Library”,  12.2, page 
190.

Command 
Library class 
in Java

The Eiffel version 
uses anchored types 
here (i.e. anAction of 
type like action and 
aValue of type like 
isOnceCommand). 
Java does not have 
such a mechanism.
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/**
 * Set action to anAction, undoAction to anUndoAction,
 * and isOnceCommand to aValue.
 * require
 * anAction != null;
 * anUndoAction != null;
 * ensure
 * action == anAction;
 * undoAction == anUndoAction;
 * isOnceCommand == aValue;
 */
public Command(Method anAction, Method anUndoAction, boolean aValue){

action = anAction;
undoAction = anUndoAction;
isOnceCommand = aValue;

}

// Access

// Action to be executed
public Method action;

// Action to be executed to undo the effects of calling action
public Method undoAction;

// Status report

// Can this command be executed only once?
public boolean isOnceCommand;

// Status setting

/**
 * Set undoAction to anAction.
 * require
 * anAction != null;
 * ensure
 * undoAction == anAction;
 */
public void setUndoAction (Method anAction){

undoAction = anAction;
}

// Command pattern

// Call action on anObject with args.
public void execute(Object anObject, Object [] args) throws

IllegalAccessException,
IllegalArgumentException,
InvocationTargetException

{
action.invoke (anObject, args);

}

// Undo

/**
 * Undo last action. (Call undoAction with args.)
 * require
 * undoAction != null;
 */

The Eiffel version 
uses anchored types 
here (i.e. anAction of 
type like action, anUn-
doAction of type like 
undoAction, and 
aValue of type like 
isOnceCommand). 
Java does not have 
such a mechanism.

The Eiffel version 
uses anchored types 
here (i.e. anAction of 
type like undoAction). 
Java does not have 
such a mechanism.

The reflection 
approach used in 
Java is not type-safe 
(the method execu-
tion may throw 
exceptions), contrary 
to the Eiffel variant 
with agents.

The methods execute, 
undo and redo should 
not be public but 
restrictively avail-
able to the class His-
tory only, but Java 
does not offer this 
possibility. The Eiffel 
counterpart features 
are in a feature clause 
feature {HISTORY}.
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Most of the patterns classified as componentizable can be transformed into Eiffel
reusable libraries by combining genericity and agents.

For example, the componentized version of the Visitor pattern is a generic
class VISITOR [G], which contains the list of possible actions (represented as agents)
to be executed depending on the type of the visited element.

The following class text is a C# version of the Visitor Library using the .NET
reflection mechanism to emulate agents (like in the previous Java example) and the
new syntax for generics to be available in the next version of C#:

public void undo(Object anObject, Object [] args) throws
IllegalAccessException, 
IllegalArgumentException,
InvocationTargetException

{
undo.invoke (anObject, args);

}

// Redo

// Redo last undone action. (Call action with args.)
public void redo(Object anObject, Object [] args) throws

IllegalAccessException, 
IllegalArgumentException,
InvocationTargetException

{
action.invoke (anObject, args);

}

/**
* invariant
* action != null;
*/

}

using System;
using System.Collections;
using System.Reflection;

class Visitor<T>{

// Initialization

// Initialize actions.
public Visitor(){

Actions = new ArrayList();
...

}

// Visitor

/**
 * Visit anElement. (Select the appropriate action depending on anElement.)
 * require
 * anElement!= null;
 */

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.
See chapter 9, page 
131.

[Kennedy 2001].

Visitor 
Library in C#

Some parts of the 
code are not shown 
because they only 
deal with implemen-
tation details (not 
belonging to the 
interface of the Visi-
tor Library), which 
would not bring any-
thing to the discus-
sion.
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public void Visit (T anElement){
MethodBase anAction = null;

IEnumerator<MethodBase> cursor = Actions.GetEnumerator();
while(cursor.MoveNext()){

anAction = cursor.Current;
if (IsValidOperands (anAction, anElement)){

anAction.Invoke (anAction.ReflectedType, 
new Object [1] {anElement});

break;
}

}
}

// Access

// Actions to be performed depending on the element
public ArrayList<MethodBase> Actions;

// Element change

/**
 * Extend Actions with anAction.
 * require
 * anAction != null;
 * ensure
 * Actions.Contains (anAction);
 */
public void Extend (MethodBase anAction){...}

/**
 * Append actions in someActions to the end of the Actions list.
 * require
 * someActions != null;
 * !(someActions.Contains (null));
 */
public void Append (ArrayList<MethodBase> someActions){...}

// Implementation

/**
 * Is anAction a valid method on anElement?
 * require
 * anAction != null;
 * anElement != null;
 */
protected bool IsValidOperands(MethodBase anAction, T anElement){

ParameterInfo[] parameters = anAction.GetParameters();
if(parameters.Length == 2){

return(
(parameters [0].GetType().

IsAssignableFrom(anAction.ReflectedType))&&
(parameters [1].GetType().

IsAssignableFrom(anElement.GetType()))
);

}
else

return false;
}

...
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These three examples show that although the Pattern Library written as part of this
thesis is only available in Eiffel for the moment, it can be ported quite easily to other
languages, such as Java or C#.

22.3  COMPONENTIZABILITY VS. USEFULNESS

Using a reusable library may also be viewed as a burden by some programmers who
would prefer to write their own customized design pattern implementation. It is the
debate between componentizability and usefulness. Limitations of the Pattern
Library include:

• Usage complexity: In some cases, using the reusable component may be less
user-friendly than a customized pattern implementation. It may also be
somewhat overkill when the pattern implementation is very simple. It was the
case of the Memento Library for example.

• Performance overhead: Some componentized versions of design patterns
imply a performance overhead compared to a “traditional” pattern
implementation. It was the case of the Visitor Library for example. Therefore,
it may be impossible to use the library in some application areas that require
the best possible performance.

Besides, this Pattern Library is not complete: there exist other patterns than the ones
described in Design Patterns. This limitation should be addressed in the future. The
next chapter will give more details about future works.

22.4  CHAPTER SUMMARY

• There are usually many ways to implement a design pattern, which is difficult
to capture in a reusable component. It is sometimes feasible to provide several
library variants, but it is hardly possible to foresee all possible variations.
Therefore programmers may have to write their own pattern implementation
in certain cases even though the pattern is labeled as “componentizable” in the
pattern componentizability classification.

• The reusable Pattern Library is only available in Eiffel at the moment.
However, the approach does not depend on Eiffel itself; it depends on
mechanisms that are specific to Eiffel for the moment. The reusable Eiffel
components are easily portable to other languages providing these facilities.

• The componentized versions of design patterns may not be useful in practice.
For example, some reusable components are quite complex; others imply a
performance overhead, which may not be compatible with the specification of
a given application. There is a tension between componentizability and
usability.

/**
 * invariant
 * Actions != null;
 * !Actions.Contains (null);
*/
}

See chapter 15, page 
243.

See chapter “Gobo 
Eiffel Lint with the 
Visitor Library”,  9.3, 
page 138.

See chapter 23.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

See “Pattern 
Library”,  page 26.
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23   
More steps towards quality 
components
The work presented in this thesis aims at being one more step towards high-quality
reusable components. It establishes a new pattern classification by degree of
componentizability and provides a Pattern Library comprising a set of reusable
Eiffel  components (the componentized version of the patterns found
componentizable).

However, the previous chapter explained that this approach is not perfect. In
particular, this work should be extended to other patterns than the ones described in
Design Patterns.

Another limit was language dependency. As explained in the previous chapter,
this approach relies on specific mechanisms rather than on a specific language. One
of them is the support for Design by Contract™ in Eiffel. Therefore, I started some
research about adding contracts to non-Eiffel components, especially .NET
components. This chapter reports about the current status of this work and explains
how I would like to extend it.

The abstract of this document mentions that I would like this thesis to be “a
little bit” towards trusted components. One way to ensure trust in software
components is to test them. I would like to develop new techniques to generate test-
cases automatically for contract-equipped libraries, in particular Eiffel libraries.

This chapter explains how to expand this componentization effort and
describes the future research directions I have in mind.

23.1  MORE PATTERNS, MORE COMPONENTS

This componentization effort focuses on the 23 design patterns described in [Gamma
1995]. But there exists more design patterns.

If we concentrate on the object-oriented world, we find other widely used
patterns like the Model-View-Controller (MVC) pattern, which this thesis does not
cover. The volumes of Pattern-Oriented Software Architecture describe this well-
known pattern made popular by Smalltalk, and many other design patterns. There we
find flavors of patterns appearing in Design Patterns like the Publisher-Subscriber,
which resembles the Observer pattern. It would be interesting to examine whether
the Event Library covers this pattern as well.

The book by Bushmann et al. also contributes new patterns like Master-Slave
for parallel computation, Forwarder-Receiver and Client-Dispatcher-Server for
communication, Broker in distributed systems or Layers for architecture.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90.

See chapter 22.

[Meyer 1999].

[Bushmann 1996].
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Quite a few domain-specific patterns have appeared since the publication of
Design Patterns. They capture solutions to design problems arising only in certain
specialized branches of computer science like distributed systems, networking or
more recently Web services. Extending my work to cover these other design patterns
would be valuable. (The SCOOP model may be interesting to componentize patterns
for concurrent programming.)

23.2  CONTRACTS FOR NON-EIFFEL COMPONENTS

Every componentized version of a design pattern developed during this thesis makes
extensive use of contracts. If contracts were not a necessary condition to
componentize the pattern, they helped a lot reproduce in a programming language
conditions that were only expressed in plain English in Design Patterns. However,
today’s main-stream programming languages do not support contracts, which limits
the possibilities of extending the pattern componentization to these languages.
Therefore I decided to search for possible ways to add Design by Contract™ support
to languages other than Eiffel, in particular to .NET languages.

Closet Contract Conjecture

Eiffel libraries usually express contracts, contrary to many commonly used libraries,
which do not have any assertion. I examined the .NET Collections library (with
classes such as ArrayList, Stack, Queue, etc.) to see whether it expresses contracts in
other forms (like comments in the documentation or other techniques). This study
started as a “sanity check” to know whether the use of contracts in Eiffel code was
just a consequence of the support for contracts in Eiffel or whether contracts were a
real need in any good library design.

This is what Bertrand Meyer and I call the “Closet Contract Conjecture”.
There have been some publications about it: [Arnout 2002b], [Arnout 2002c],
[Arnout 2002d], [Arnout 2003a], [Arnout 2003c] and [Arnout 2003d].

This analysis of the .NET Collections library asserted the presence of
contracts in non-Eiffel components and highlighted typical forms and locations
where contracts are hidden:

• Routine preconditions are expressed through exception cases. 

• Routine postconditions and class invariants are scattered across the reference
documentation.

The result about preconditions opens the way to automatic contract extraction (by
reconstructing preconditions from the conditions under which a routine may throw
an exception).

Automatic contract extraction

Examining the Closet Contract Conjecture in the context of .NET libraries has
shown that preconditions tend to be buried under exception cases, which suggests
extracting preconditions automatically from exception conditions.

Because method exceptions are not kept into the assembly metadata, the only
information we can exploit is the CIL code. The idea is to parse the CIL of a given
.NET assembly to find the exception conditions and infer from them the
corresponding routine preconditions.

See chapter 30 of 
[Meyer 1997].

[Meyer 1986], 
[Meyer 1997], 
[Mitchell 2002], and 
[Meyer 200?c].

[MSDN-Collec-
tions].

CIL: Common Inter-
mediate Language.
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Contract extraction algorithm

A first outcome of this work is a prototype that infers routine preconditions from the
disassembled CIL code of a .NET assembly. Here is the tool’s architecture:

The first step consists in parsing the CIL source code to get an abstract syntax tree
(AST) of the given assembly. The AST contains in particular the list of routines
(called methods in .NET) in each class of the assembly. Then, the tool applies the
contract extraction algorithm on each routine:

• Basic block analysis: The algorithm partitions the routine body’s instruction
sequence into “basic blocks”. A basic block is a sequence of instructions
whose flow of execution is sequential. The result of the algorithm is a directed
graph where vertices are basic blocks and edges are possible transitions during
execution.

• Basic block classification: The algorithm classifies each basic block
depending on the instructions it contains. The classification is a total order:
“unknown” < “normal” < “difficult” < “intractable” < “exception”. (The rest
of the contract extraction process ignores code paths containing “difficult” or
“intractable” basic blocks.

• Code path extraction: The algorithm creates a subgraph of the basic block
graph containing only code paths with basic blocks classified as “unknown”,
“normal”, or “exception”.

[Marti 2003].
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• Symbolic execution: The algorithm is applied to each basic block finishing
with a conditional branch or a switch instruction. It extracts an expression for
the branch condition or an integer value in the case of switch instructions and
assigns the extracted expression to the basic block under consideration.

• Precondition extraction: The algorithm starts by associating the precondition
false to basic blocks finishing with an exception. Then, it incrementally builds
the preconditions for the preceding basic blocks from the extracted branch
conditions. (The inference relies on the hypothesis that the condition under
which a basic block is reached during execution has to imply this block’s
precondition.)

First results

The first results on the classes ArrayList, Stack, and Queue of the .NET Collections
library are encouraging.

The code path extraction algorithm detected 246 code paths in methods of
class ArrayList (or one of its nested classes) that finish at an exception basic block.
Here are the exact figures:

The current implementation of the precondition extraction algorithm addresses the
“normal” and “exception” (code paths of only one basic block) code paths, that is to
say 150 out of the 246 code paths.

Then, the symbolic execution algorithm extracts 98 of the 99 branch
conditions in ArrayList; it extracts all branch conditions of classes Stack and Queue.

The following table shows the resulting precondition clauses extracted from
class ArrayList and the number of times they occurred in the class:

Classification ArrayList Stack Queue
Normal 114 8 8

Difficult 4 0 0

Intractable 92 6 8

Exception 36 0 0

TOTAL 246 14 16

Precondition clauses Occurrences
this /= Void 7

c /= Void 4

type /= Void 2

array /= Void 1

not (index < 0) 22

count >= 0 14

(this._size − index) >= count 7

index < this._size 3

index <= this._size 2

value >= 0 1

arrayIndex >= 0 1

[MSDN-Collec-
tions].
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There are fewer extracted precondition clauses than code paths finishing with an
exception block because of optimizations in the precondition extraction algorithm.

Being able to extract preconditions automatically is appealing. However, there is still
a lot of work to be done:

• The first limitation is that expressions have no type information for the
moment and the symbolic execution algorithm represents boolean values as
integers.

• Important instructions (like calls) are “intractable”.

• Extracted preconditions are not compilable Eiffel code for the moment. For
example, Eiffel identifiers must not start with an underscore; “this” is called
“Current”.

It would be interesting to translate the extracted preconditions into compilable Eiffel
code to enable adding the contracts with the Contract Wizard, which is described next.

Relevance of extracted contracts

Extracting some implicit contracts from existing components automatically seems
appealing, but one must be careful not to underestimate the importance of checking
the relevance of the extracted contracts — as well as their correctness of course.
Indeed, reporting meaningless contracts to the users risks taking them away from
contracts, which would be even worse than not having contracts at all.

One technique used in the Daikon tool developed by Michael Ernst is to
compute a “relevance probability” based on predefined contracts.

Daikon is a tool inferring assertions dynamically from captured variable traces by
executing a program — whose source code is available — with various inputs. (It relies
on a set of possible assertions to deduce contracts from the execution output.).

Daikon enables discovering class and loop invariants and routine pre- and postconditions.
It succeeds in finding the assertions of a formally-specified program. (It can also detect
deficiencies in the formal specification of a program). Daikon can also infer hidden
contracts from a C program, which helps developers performing changes to the C
program without introducing errors.

(startIndex + count) <= this._size 1

not (startIndex < 0) 1

startIndex < this._size 1

startIndex <= this._size 1

this._remaining >= 0 1

False 36

this.version = this.list._version 4

this._baseVersion = this._baseList._version 1

this._firstCall = 0 1

this._size /= 0 implies count <= (startIndex + 1) 1

this._size /= 0 implies count >= 0 1

this._size /= 0 implies not (startIndex < 0) 1

this._size /= 0 implies not (startIndex >= this._size) 1

TOTAL 115

[Ernst 2000a], [Ernst 
2000b], [Ernst 2001], 
[Kataoka 2001], 
[Nimmer 2002a], and 
[Nimmer 2002b].
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The second step of the contract inference algorithm implemented in Daikon determines
whether the detected assertions are meaningful and useful to the users by computing a
confidence probability. Ernst et al. explain that the large majority of reported invariants
are correct.

The current prototype for contract extraction would benefit from using a
similar technique.

Adding contracts a posteriori

After extracting preconditions from .NET assemblies, it would be interesting to be
able to add these contracts a posteriori to the .NET component. The Contract Wizard
provides this ability. Although the development of the Contract Wizard started
independently from the experiment on contract extraction, both works complement
each other very well. (I implemented the first beta version of the Contract Wizard
when I was working at Eiffel Software between July 2000 and September 2001.)

Contract Wizard

The Contract Wizard enables a user to interactively add contracts (routine pre- and
postconditions, class invariants) to the classes and routines of a .NET assembly
(typically coming from a .NET contract-less language such as C#, VB.NET, C++,
Cobol, etc.). The output is a proxy assembly that is contracted as if it had been
written in Eiffel, but calls the original.

The Contract Wizard relies on the reflection capabilities provided in .NET by
the metadata that every assembly includes, providing interface information such as
the signature of each routine, retained from the source code in the compiling
process.

Here is the Contract Wizard’s architecture:

• The first step consists in generating an abstract syntax tree (AST) from the
.NET assembly given as input. If the assembly has not been contracted yet
(there is no metadata indicating the path of the generated XML contract files),
the wizard uses the .NET reflection capabilities to build the AST. If the
assembly has already been contracted (using the Contract Wizard), the tool
parses the XML contract files generated during the previous execution of the
wizard to construct the AST.

[Arnout 2001] and 
[Wotruba 2003].
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• The GUI displays the list of classes and the list of features in each class of the
assembly and gives the users the ability to add contracts (preconditions,
postconditions, and class invariants) using Eiffel syntax.

• The tool gathers the contracts entered by the user and adds them to the AST.
The wizard generates — from this AST with contracts — proxy Eiffel classes
that contain the contracts and delegates calls to the original assembly, and an
Ace file, which will be used to compile the generated system. The tool also
generates XML files to store the contracts. These files are used for
incrementality (i.e. allowing users to add new contracts to an already
contracted assembly.

• The last step is the Eiffel compilation, which generates a new .NET assembly
that has contracts. (If the compilation produces errors, it means that the
contracts entered by the user are incorrect. Therefore, the tool prompts an
error message to the user and gives him the opportunity to change the
incorrect contracts.)

For the moment, the tool only exists in command-line version. The next step will be
to build a GUI on top of it. (To be accurate, I already developed a GUI for a first
version of the Contract Wizard, which was built with a beta version of .NET. The
GUI needs to be updated to the latest versions of .NET and Eiffel for .NET.) It
would also be useful to transform the Contract Wizard into a Web service to allow
any programmers to contribute contracts to .NET components.

Performance

The Contract Wizard was tested on the core library of .NET, mscorlib, and it worked
well. It took less than a minute to add 5000 contracts (preconditions, postconditions,
and class invariants) to the AST representation of the assembly (at once). Adding
contracts on randomly selected classes and features of mscorlib also performed well.
In the worst case, there are O (n * m) computations to add a precondition, and O (n)
computations to add a class invariant to the AST, where n is the number of classes
and m is the number of features.

The last measure was the performance gain resulting from incrementality (i.e.
retrieving the AST from XML files vs. building the AST through reflection). It
resulted that parsing XML files was 2.4 times faster than using reflection; memory
consumption was also 35% lower (on a Pentium III machine, 1.1 GHz, with 256MB
of RAM). The following table shows the exact figures:

Limitation of the assertion language

One limitation though: not all properties can be expressed through assertions. In
particular, it is not easy to specify which properties a routine does not change. This
is known as the “frame problem”.

The next version of Eiffel may add a notion of “pure function”, which would
facilitate expressing such frame properties. Because the Contract Wizard directly
calls the Eiffel compiler, it will automatically benefit from the advances of the Eiffel
programming language.

Metrics .NET 
reflection

XML parsing 
(incrementality)

Difference 
(value)

Difference 
(%)

Execution time 270s 112s - 158s - 59%

Memory 
consumption

78MB 51MB - 27MB - 35%

[Arnout 2001].
[Simon 2002] and 
[Arnout 2002a].

[MSDN-mscorlib].

Execution 
time and 
memory con-
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build the AST

[Meyer 200?b].
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23.3  QUALITY THROUGH CONTRACT-BASED TESTING
Testing reusable components is essential because reuse increases both good and bad
aspects of the software. Robert Binder explains that “components offered for reuse
should be highly reliable; extensive testing is warranted when reuse is intended”.

However, software testing is still not carried out extensively in the industry
nowadays. It is reduced to the bare minimum and often regarded as an expensive and
not rewarding activity. Companies are content with software that is “good enough”
to ship, even if it still contains bugs. 

Automating even parts of the testing process would facilitate spreading out the
practice of testing, especially in the industry. It would lower the costs and avoid
overlooking some test cases. Contracts — as defined in the Design by Contract™
method — contain a solid information basis to generate black-box test cases
automatically.

A first outcome of this work is a prototype of a “Test Wizard”, which relies
on the presence of contracts (especially feature preconditions and postconditions) in
Eiffel libraries to generate test-cases automatically. This section explains how the
Test Wizard works. (Some parts are still just paper specification and are not
implemented yet.)

Objectives

The purpose of developing a Test Wizard is to have a workbench to try out different
testing strategies. The tool should be highly parameterizable and integrate the notion
of testing strategy — which is likely to become an important abstraction during
design.

The target of the Test Wizard is contract-equipped libraries — typically Eiffel
libraries — because the test-cases are generated automatically from the contracts
expressed in the library.

The testbed will be the Eiffel library for fundamental structures and
algorithms: EiffelBase. The idea is to use software fault injection, infecting
EiffelBase with errors on purpose, to test the Test Wizard and assess its efficiency
at detecting bugs with different input parameters (number of requested tests, selected
testing strategy, etc.). Then, I would like to apply it to the pattern library presented
in this dissertation to assess its quality and trustability.

Architecture of the tool

The Test Wizard takes an Eiffel library as input and automatically generates black-
box test cases from the library specification, which in Eiffel is expressed with
assertions (preconditions, postconditions, and class invariants). The test results are
provided to the users under various forms: graphical representation with diagrams,
XML files, and Gobo Eiffel Test files. (For the moment, the prototype generates
only XML files.)

From the Eiffel library to the test results, the Test Wizard follows a five-step
process:
• Parsing the contract-equipped Eiffel library provided in input to get the

system information (list of classes, features, etc.) to be displayed to the user.
• Gathering user information (list of features to be tested, with what arguments,

etc.) to define the test scenario.
• Generating the corresponding test executable.
• Running the test executable and storing the test results into a database.

[Binder 1999], p 68.

[Yourdon 1995].

[Meyer 1986], 
[Meyer 1997], 
[Mitchell 2002], and 
[Meyer 200?c].

[Greber 2004].

[EiffelBase-Web] 
and [Meyer 1994].

[Bezault 2001b].
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• Displaying the results to the user.

Here is the internal architecture of the tool:

1 • Gather system information.

2 • Display system information to the user and gather user information.

3 • Build the test scenario from the criteria selected by the user.

4 • Store the test scenario into a database (for regression testing).

5 • Generate a test executable corresponding to the test scenario.

6 • Run the executable: it creates a pool of objects (the “Context”) possibly
helped by the user.

7 • Store the order of class instantiations (for regression testing).

8 • The executable performs feature calls on the pool of instantiated objects.

9 • Store the test results into a database.

10 • Output the results to the users.

11 • Display the results graphically with diagrams.

12 • Generate XML files corresponding to the test results.

13 • Generate files using the Gobo Eiffel Test format.

14 • Query the database and retrieve test results to be passed to the test result
handler.

As mentioned before, the current Test Wizard exists only as a prototype. Therefore
the architecture is likely to evolve as soon as the final wizard will take shape.
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Gathering system information

The first step is to gather information about the Eiffel library given as input, namely
collecting the list of classes of the system under test, the list of features, and so on.
It would have been possible to develop an Eiffel parser to do this. But I decided to
use a standard parsing tool, which will be maintained and will follow the evolutions
of the Eiffel language: Gobo Eiffel Lint. As we saw in section 9.3, gelint is able to
analyze Eiffel source code and report validity errors and warnings. The Eiffel code
analysis is the part we are interested in. The feature tables built by gelint provide us
with the information we need to generate test cases: the list of clusters, the list of
classes, the inheritance hierarchy, the export clauses, the list of features, and the
feature signatures.

Defining the test scenario

The second step is to define the test scenario. It requires interaction with the user,
and involves two parts numbered (2) and (3) on the previous figure:

• (2) The Information handler receives the system information built from the
analysis of the Eiffel library (see below); it interacts with a GUI where the
user can feed test parameters and generates a first shot of the test scenario.

• (3) The resulting test scenario is given to the Test scenario handler, which
interacts with a GUI, where the user can adapt the automatically generated
scenario (for example, reorder tasks, add or delete one task, change the
randomly generated arguments, etc.).

At the end of the phases (2) and (3), the Test Wizard has a final test scenario, which
will be used to create a test executable (see “Generating a test executable”,  page
364). Before looking at the test executable, it is worth giving a few more details
about the Information handler and the Test scenario handler. 

Information handler

The Information handler enables choosing the following test criteria:

• Scope of the test: which clusters, classes and features should we test? The GUI
part associated with the Information handler lists all clusters and proposes to
test sub-clusters recursively. Testing a cluster means testing all classes of the
cluster. The user can also make a more fine-grained selection and choose
some classes only, or even just a few features. The scope selection yields a list
of features to be tested.

• Exhaustiveness: 

• How many times should we call each feature under test? The tool
enables changing the number of calls to be performed at several levels:
globally (for all features to be tested), per class (for all features of a
class), and per feature.

• Should we test a feature in descendants? The tool gives control to the
user.

• Context: The test executable, generated from the test scenario, will create a
pool of objects on which to perform the selected feature calls. I call this pool:
“the Context”. The Test Wizard lets the user decide how classes will be
instantiated:

[Bezault 2003].
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• Bounds used for arguments: The wizard has predefined default bounds
for common types, such as basic types (integers, characters, etc.) and
strings, and lets the user define bounds for other types. For example, it
is possible to specify that a feature returns a given type in a given state.

• Objects on which features are called: The wizard enables the user to
choose the objects on which to perform the feature calls.

• Creation procedure used for instantiation: The user can also select
which creation procedure to use to instantiate classes, overriding the
default procedure the wizard would choose.

• Level of randomness of targets and arguments: From the scope defined
by the user, the Test Wizard knows which classes must be instantiated.
Depending on the criteria just cited (argument bounds, target objects,
creation procedures), the tool will call some modifiers on the created
objects to get several instances of each class. The resulting pool of
objects makes up the test “Context”. The level of randomness fixes the
number of variants to be created.

• Tolerance: when should we consider that a test has passed?
• Rescued exception: If an exception occurred during a test execution and

was rescued, do we say the test has passed or not? This is a user-defined
criterion.

• Assertion checking: By default, all assertions are checked on the tested
features. Preconditions are checked on the supplier features.
Nevertheless, the users may want to disable checking of some
assertions to adjust their need. For example, it may be convenient to
turn postcondition and class invariant checking off to focus on the bugs
that make the library crash, before working on bugs that lead to
erroneous results.

• Testing order: The user can choose between:
• Performing tests on one feature at a time (i.e. performing all requested

calls on a feature before testing the next one).
• Performing tests one class at a time (i.e. calling all features of a class

once before performing subsequent calls — if necessary).
• Testing as many features as possible (i.e. calling all requested features

once before performing further calls — if necessary), which is the
default policy.

The Information handler generates a first test scenario from these user-defined
parameters and passes it to the Test handler. The GUI part of the Information
handler is likely to be a “wizard” with a succession of screens where the user can
select the input parameters. This part is not implemented for the moment.

Test handler

The Test handler outputs the automatically generated scenario and gives the user an
opportunity to modify this scenario before the test executable gets created.
Flexibility concerns:
• Call ordering: The user can modify the order in which the calls are performed.
• List of calls: The user can add or remove calls from the list of calls to be

performed.
• Actual calls: The user can modify the arguments that will be used to perform

the calls.
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The most common use of the Test Wizard though is to leave the automatically
generated scenario unchanged and rely on the defaults. The level of control and
parameterization just sketched addresses more advanced users. This part is not
implemented yet.

Generating a test executable

The next step is to generate the test executable. It corresponds to number (5) on the
figure describing the Test Wizard's architecture. The Code generator generates Eiffel
code corresponding to the requested feature calls (defined in the test scenario), and
calls the Eiffel compiler, which builds the actual test executable.

The test executable, which is launched automatically, contains the necessary
code to create the test “Context” (the pool of randomly generated objects) and to
perform the requested feature calls on these objects. It corresponds to steps (6) and
(8) shown on the architecture figure.

Instantiating classes

The Context generator takes care of instantiating the needed classes, once the
Context handler has solved possible problems: 
• A class A may have a creation procedure that takes an instance of type B as

argument, and the class B may also require an instance of type A to be created.
To solve most of the problems, the Context handler sorts the classes to be
instantiated in topological order, defining equivalence classes when there is a
cycle. For the remaining cycles (inside the equivalence classes), the wizard
tries to instantiate classes with void arguments (for example, try to instantiate
A with a void argument of type B); if it fails, it will prompt the user for a
means to create this object.

• Another subtlety deals with the exportation status of creation procedures. If
the creation features are exported, there is no problem: the wizard uses any
creation feature available, passing various arguments to them. If the creation
features are not exported, the wizard asks the user for a means to instantiate
the class; if the user does not help, the tool tries to force a call to the creation
procedure anyway; in case of failure, it gives up instantiating that class.

Once the Context handler has established the order and means to instantiate the
needed classes, the Context generator actually generates the objects, and calls
modifiers randomly on those objects to build the pool of test objects (the “Context”).

Calling features

The Call simulator performs the required calls. It chooses feature arguments and
target objects among the pool of generated objects whose type matches the one
needed. All feature calls are wrapped in a rescue block to handle possible exceptions
occurring during the test execution. The exception analysis carried out in the rescue
block distinguishes between five cases:
• No exception caught
• Exception raised and caught internally
• Precondition violation (in the tested feature or at a higher level)
• Other assertion violation
• Other exception
The next section explains the policy of the Test Wizard regarding exceptions.

See “Architecture of 
the Test Wizard”,  
page 361.
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Outputting test results

The Test Wizard reports to the user after each feature execution. This “real-time”
feedback becomes very important when the user wants to run tests for hours. Two
questions arise:
• When do we consider that a test has passed?
• What information should be reported to the user?

Test result: passed or not?

Results are obtained at feature level. They are classified in four categories:
• Passed: At least one call was allowed (not breaking the feature precondition)

and all the effective calls raised no exception or fit the user definition of
“pass”. (The Test Wizard enables the user to say whether to take rescued
exceptions into account.) Typically, a feature has passed if all effective calls
ended in a state satisfying the feature postcondition and the class invariants.

• Could not be tested: It may happen that no call to this feature can be issued,
because the target object or the object passed as argument cannot be
instantiated.

• No call was valid: All calls resulted in a precondition violation. Thus, the
function never failed, but never passed either. (Because we issue calls
randomly on the objects of the pool, it is perfectly normal to get precondition
violations; such calls are simply ignored.)

• Failed: At least one call to the feature failed. A call fails if it raises an
uncaught exception or if it fits the user definition of “fail”. Indeed, the Test
Wizard lets the user choose whether to accept rescued exceptions as correct
behavior.

Result display

A test result includes the following information (depending on the result category
shown before):
• Passed: The test result gives the total number of successful calls to this

feature.
• Could not be tested: The test result explains why this feature could not be

tested:
• It was impossible to instantiate the target class (because there was no

exported creation procedure, or the creation feature used keeps failing,
or the class is deferred).

• It was impossible to instantiate a class used in the feature arguments
(same possible reasons as above).

• No call was valid: The test result gives the tag of the violated preconditions.
• Failed: The test result includes some debugging information, in particular the

call stack (object state) of the failed test.
The Test result handler — numbered (10) in the figure describing the Test Wizard's
architecture — provides the user with result information under different formats —
numbers (11), (12), (13) on the same picture:
• (11) graphical representation displayed in the GUI Test result displayer, with

result diagrams, etc.
• (12) XML files: to have a standard exchange format.

See the tolerance 
parameter of the 
“Information han-
dler”,  page 362.
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• (13) Files using the Gobo Eiffel Test format: to enable the user to reuse the
test results in a standard unit-test tool. Gobo Eiffel Test (getest) is the “JUnit
of Eiffel”.

Storing results into a database

To handle regression testing, the Test Wizard stores some test information into a
database. These storage parts of the wizard are numbered (4), (7), (9), and (14) on
the architecture picture:

• (4) The Test Wizard makes the test scenario persistent to avoid asking the user
to reenter the test parameters when running the tool for the second time (or
more). If new classes have been added to the system, they will not be taken
into account for the regression tests. (Information about the system — classes,
features, etc. — is stored into the database together with the scenario.)

• (7) The Test Wizard also keeps track of the order according to which classes
should be instantiated (to avoid the business of topological sort and possible
interaction with the users to disambiguate remaining cases).

• (9) The test results are also made persistent, and the database updated after
each feature call. (The user may change the update frequency, but the default
policy is one, meaning after each test.)

• (10) The Test result handler takes a “test result” as input and generates
different representations of it. It is an independent wizard, meaning that the
test result may be coming directly from the Call simulator or retrieved from
the database through the Database query handler (14). Other possible
database queries include: finding out all successful tests (remember it means
making the system fail), finding out the feature calls that kept causing
precondition violations, etc.

Limitations

The Test Wizard also has limitations. Here are the three major weaknesses:

• Assertion limitations: Not all conditions can be expressed through assertions,
although agents increase the expressiveness of Eiffel contracts. Missing
preconditions will yield “unnecessary” failures. Missing postconditions will
yield “hidden” behavioral bugs. (Further research directions would be to
elevate routine preconditions to the rank of first-class citizens and give them
a more important role for test-case generation.)

• Class instantiation: It may be impossible to instantiate some classes
automatically. Besides, generic classes can never be fully tested. Therefore the
Test Wizard will need some help (Eiffel code) from the users to instantiate
some classes and set up a correct environment.

• Execution errors:

• Features under test may enter infinite loops: Multithreading can help to
a certain extent (using a timer).

• Features may provoke unhandled exceptions, such as stack overflows.

In both cases, the Test Wizard reports to the user which feature caused the
execution to fail, but it cannot do much more.

For more informa-
tion about JUnit, see 
[Beck-Web], [Clark 
2000], [JUnit-Web].

See “Architecture of 
the Test Wizard”,  
page 361.

[Dubois 1999] and 
chapter 25 of [Meyer 
200?b].

[EiffelThread-Web].
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• Harmful features: Even if the Eiffel method advocates the Command-Query
separation principle, Eiffel programmers can use features with side-effects in
assertions. Effects may include: hard disk accesses, excessive use of memory,
lock ups of system resources, screen resolution switching, etc. Besides, such
“harmful effects” may be the primary goal of the feature under test (for
example a command setting a new screen width, or a feature to open a certain
file).

• Execution time: Under certain conditions (for example, if the number of
features to be tested is large), executing the generated test program may be
extremely long. Nevertheless, the level of parameterization offered by the Test
Wizard and the real-time feedback (after each test) should not hamper the use
too much.

The Test Wizard is essentially a specification for the moment. A prototype version
exists but it implements only parts of it. However, I think the resulting product will
bring Eiffel developers with a powerful and easy-to-use tool to exercise their
software, in particular libraries. Indeed, typical Eiffel libraries already express the
contracts. Therefore, using the Test Wizard implies just a small overhead on the
user's part (simply provide the minimal test setup parameters). Besides, the Test
Wizard is designed in a way that many features can be tested with no user
intervention.

I would like to use the Test Wizard on the componentized versions of patterns
developed during this thesis to assess their quality and trustability. Even if they
would not be proved trustable, having gone through the Test Wizard would bring a
higher degree of confidence in the Pattern Library and — I hope — encourage
people to use it and maybe extend it, or port it to other programming languages.

23.4  CHAPTER SUMMARY
• This componentization work should be extended to other patterns than the

design patterns described by [Gamma 1995].
• Effort should be devoted to make componentization possible in languages

other than Eiffel, in particular .NET languages.
• Examining the .NET libraries reveals the presence of hidden contracts. In

particular, preconditions are expressed through exception conditions, which
opens the way to automatic contract extraction.

• A first prototype was developed; it can already infer routine preconditions
from the CIL code of a .NET assembly. The first results are encouraging but
there is still a lot of work to be done.

• I developed a first version of a Contract Wizard, which allows adding
contracts (preconditions, postconditions, class invariants) to a .NET assembly
by using the reflection capabilities of .NET. It would be interesting to turn this
tool into a Web service to enable programmers contribute contracts to .NET
components.

• The Pattern Library described in this dissertation should be tested extensively
to ensure quality and trustability of its components, and encourage
programmers to use it, and possible extend it.

• I would like to develop techniques to test contract-equipped libraries
automatically. A first prototype of a Test Wizard exists. But there is still much
(exciting) work to be done.

[Meyer 1997], p 751.

See “Definition: 
Componentization”,  
page 26.
[Arnout 2003c] and 
[Arnout 2003d].

[Marti 2003].

[Arnout 2001] and 
[Wotruba 2003].

See “Pattern 
Library”,  page 26.

[Greber 2004].



MORE STEPS TOWARDS QUALITY COMPONENTS §23368



Conclusion
This thesis presented the results of an academic work, which had three goals: first,
establishing a new classification of the patterns described in Design Patterns by
level of componentizability; second, transforming componentizable patterns into
reusable Eiffel components; third, developing a tool that generates skeleton classes
automatically for the non-componentizable patterns. Let’s now take a different
perspective and examine the concrete outcomes of this work for the industry.

First, this thesis comes with a set of high-quality reusable libraries that can be
used in new application developments. For example, programmers are likely to
appreciate the Event Library, which gives them the full power of event-programming
without the burden of implementing the Observer pattern anew each time they need
to use it. Another such example is the Visitor Library. The case study with Gobo
Eiffel Lint presented in section 9.3 showed that using the Visitor Library in real
world examples is feasible and useful: it yields significant reduction of a program
size at a low cost on performance (less than twice as slow as a direct pattern
implementation). The Factory Library is another case of successful pattern
componentization: it is a reusable version of the Abstract Factory pattern, which
removes the need for parallel hierarchies of factories by combining genericity and
agents. Other reusable components have been developed, including a Composite
Library (available in several variants to cover a wider range of possible needs), a
Flyweight Library (which relies on the Factory Library and on the Composite
Library), a Command Library (also available in different variants), a Chain of
Responsibility Library, a Proxy Library, and a few others. All reusable components
are of very high-quality. In particular, they make extensive use of contracts and are
completely type-safe. The quality criteria used to assess the success of a
componentization are the followings: completeness of the solution compared to the
pattern description, usefulness of the resulting component in practice, faithfulness to
the original pattern’s intent and spirit, type-safety, performance, and extended
applicability of the library compared to a direct pattern implementation. The high-
quality standard of these components (correctness, robustness, type-safety) makes
them usable in practice by the industry.

Another concrete outcome of the thesis is a tool called Pattern Wizard, which
generates skeleton classes for the non-componentizable patterns of Design Patterns,
namely Decorator, (Class and Object) Adapter, Template Method, Bridge, and
Singleton. Programmers can choose the names of classes and features involved in
the pattern in a Graphical User Interface and the wizard automatically generates the
suitable skeletons with the given names. The next version of the Pattern Wizard will

See “Pattern 
Library”,  page 26 of 
chapter 1 describing 
the main contribu-
tions of the thesis.

The quality criteria 
are described in 
“Componentizabil-
ity criteria”,  6.1, 
page 85.

The Pattern Wizard is 
presented in chapter 
21, page 323.
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support more patterns, including patterns for which a reusable component is already
available to help programmers as much as possible. Indeed, it may happen that the
reusable library corresponding to the pattern to be applied is not suitable for a
specific application domain. For example, the Visitor Library would probably not be
acceptable in embedded systems for performance reasons. The careful design of the
wizard will make it easy to adapt and extend the tool to fit the programmers’ needs.

The third outcome of the thesis is a pattern componentizability classification.
It gives programmers a grid to know where to look for help: if the pattern is in
category “componentizable”, then a component is directly available for reuse; if the
pattern is in category “non-componentizable”, then using the Pattern Wizard is the
right approach.

Thus, all three products of this thesis, which could have been considered at
first sight as pure academic work, are also useful and directly applicable to the
industry. The next steps will be to apply the same componentization approach to
other patterns than the ones described in Design Patterns, and to extend the Pattern
Wizard accordingly.

In Object-Oriented Software Construction, second edition, Bertrand Meyer
says that “A successful pattern cannot just be a book description: it must be a
software component, or a set of components”. The thesis shows that this idea is not
an utopia and that pattern componentization is a promising area of research with
practical results directly applicable today in the industry.

See “Design pattern 
componentizability 
classification 
(filled)”,  page 90

[Meyer 1997], p 72
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Part G contains the appendices: a description of the Eiffel-specific concepts
needed to understand the core of this thesis, a glossary, the bibliography, and
the index.



A   

Eiffel: The Essentials
This appendix addresses people who are familiar with the object-oriented approach
but do not know Eiffel very well. It introduces all the concepts needed to understand
the core of this thesis.

However, it is not an exhaustive presentation of the Eiffel language. The
reference manual of the current version of Eiffel is the book by Meyer Eiffel: The
Language. The next version of the language is defined in the third edition of this
book, which is currently available as a draft.

A.1  SETTING UP THE VOCABULARY

First, Eiffel uses vocabulary that sometimes differs from the one used in other
object-oriented languages like Java or C#. This section sets up the vocabulary with
references to the terminology used in these other languages you may be familiar with.

Structure of an Eiffel program

The basic unit of an Eiffel program is the class. There is no notion of module or
assembly like in .NET, no notion of package like in Java (no import-like keyword).

Classes are grouped into clusters, which are often associated with a file
directory. Indeed, an Eiffel class is stored in a file (with the extension .e); therefore
it is natural to associate a cluster with a directory. But this is not compulsory. It is a
logical separation, not necessary a physical one. Clusters may contain subclusters,
like a file directory may contain subdirectories.

An Eiffel system is a set of classes (typically a set of clusters that contain
classes) that can be assembled to produce an executable. It is close to what is usually
called a “program”.

Eiffel also introduces a notion of universe. It is a superset of the system. It
corresponds to all the classes present in the clusters defined in an Eiffel system, even
if these classes are not needed for the program execution.

Eiffel uses a notion of root class, which is the class that is instantiated first
using its creation procedure (the constructor) known as the root creation
procedure. An Eiffel system corresponds to the classes needed by the root class
directly or indirectly (the classes that are reachable from the root creation
procedure). The universe contains all classes in all the clusters specified in the system.

The definition of what an Eiffel system contains is done in an Ace file, which
is a configuration file written in a language called LACE (Language for Assembly
Classes in Eiffel).

[Meyer 1992].
[Meyer 200?b].
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Classes

A class is a representation of an Abstract Data Type (ADT). Every object is an
instance of a class. The object creation uses a so-called creation procedure, which
is similar to the notion of “constructor” in languages such as Java or C#.

A class is characterized by a set of features (operations), which may be either
attributes or routines. (In Java/C# terminology, features tend to be called
“members”, attributes are called “fields” and routines are called “methods”.) Eiffel
further distinguishes between routines that return a result (functions) and routines
that do not return a result (procedures). This is a classification by implementation:
routines vs. attributes, namely computation vs. memory.

There is another classification: by role. Features can be either commands (if
they do not return a result) or queries (if they do return a result). Then, queries can
be either functions if they involve some computation or attributes if the value is
stored in memory.

The following picture shows the different feature categories:

Design principles

Eiffel is not only a programming language but also an object-oriented method to
build high-quality software. As a method, it brings some design principles:
• As mentioned above, Eiffel distinguishes between “commands” and “queries”.

Even if not enforced by any compiler, the Eiffel method strongly encourages
following the Command/Query Separation principle: A feature should not
both change the object’s state and return a result about this object. In other
words, a function should be side-effect-free. As Meyer likes to present it:
“Asking a question should not change the answer.”

• Another important principle, which is Information Hiding: The supplier of a
module (typically a class) must select the subset of the module’s properties
that will be available officially to its client (the “public part”); the remaining
properties build the “secret part”. The Eiffel language provides the ability to
enforce this principle by allowing to define fine-grained levels of availability
of a class to its clients.

• Another principle enforced by the Eiffel method and language is the principle
of Uniform Access, which says that all features offered by a class should be
available through a uniform notation, which does not betray whether features
are implemented through storage (attributes) or through computation
(routines). Indeed, in Eiffel, one cannot know when writing x.f whether f is a
routine or an attribute; the syntax is the same.

 
Command 

Query 

Feature 

Procedure 

Attribute 

Function 

No result 

Returns 
result 

Computation 

Memory 

Routine 

Returns 
result 

No result

Memory

Computation 

Feature 

Feature cate-
gories (by role 
and by imple-
mentation)

[Meyer 1997], p 751.

[Meyer 1997], p 51-
53.

[Meyer 1997], p 57.
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Types

As mentioned earlier, in Eiffel, every object is an instance of a class. There is no
exception; even basic types like INTEGERs or REALs are represented as a class.

Besides, Eiffel is strongly typed; every program entity is declared of a certain
type. A type is based on a class. In case of non-generic classes, type and class are
the same. In the case of generic classes, a class is the basis for many different types.

The majority of types are reference types, which means that values of a
certain type are references to an object, not the object itself. There is a second
category of types, called expanded types, where values are actual objects. It is the
case of basic types in particular. For example, the value 5 of type INTEGER is really
an object of type INTEGER with value 5, not a pointer to an object of type INTEGER
with a field containing the value 5.

A.2  THE BASICS OF EIFFEL BY EXAMPLE

This section shows you what an Eiffel class looks like with an example.

Structure of a class

The basic structure of an Eiffel class is the following:

It starts with the keyword class and finishes with the keyword end, and in-between
a set of features grouped by “feature clauses” introduced by the keyword feature and
a comment. The comment is introduced by two consecutive dashes and is not
compulsory (although recommended to improved readability and understandability).

Book example

An Eiffel class may contain other clauses than the basic ones just shown. For
example, it may start with an “indexing clause” (introduced by the keyword
indexing), which should gives general information about the class.

The following class BOOK is a typical example of what an Eiffel class looks
like. (If you do not understand everything, don’t panic; each new notion will be
described after the class text.)

class

CLASS_NAME

feature -- Comment

...

feature -- Comment

...

end

indexing

description: "Representation of a book"

class

BOOK

create

make

See “Genericity”,  
page 387.

Basic struc-
ture of an 
Eiffel class

Class repre-
sentation of a 
book in a 
library
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feature {NONE} -- Initialization

make (a_title: like title; some_authors: like authors) is
-- Set title to a_title and authors to some_authors.

require
a_title_not_void: a_title /= Void
a_title_not_empty: not a_title.is_empty

do
title := a_title
authors := some_authors

ensure
title_set: title = a_title
authors_set: authors = some_authors

end

feature -- Access

title: STRING
-- Title of the book

authors: STRING
-- Authors of the book
-- (if several authors, of the form:
-- "first_author, second_author, ...")

feature -- Status report

is_borrowed: BOOLEAN
-- Is book currently borrowed (i.e. not in the library)?

feature -- Basic operation

borrow is
-- Borrow book.

require
not_borrowed: not is_borrowed

do
is_borrowed := True

ensure
is_borrowed: is_borrowed

end

return is
-- Return book.

require
is_borrowed: is_borrowed

do
is_borrowed := False

ensure
not_borrowed: not is_borrowed

end

invariant

title_not_void: title /= Void
title_not_empty: not title.is_empty

end
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Let’s have a closer look at this class BOOK:
• The optional indexing clause was mentioned before. Each entry (there may

be several) has two parts: a tag “description” and the text “Representation of
a book”. The tag name “definition” is not a keyword; you can use any name,
although it is quite traditional to use “definition” to describe the general
purpose of the class. Other commonly used tags include “author”, “date”,
“note”, etc. The indexing clause is interesting both for the programmers, the
people who will use the class, and for tools which may use this indexed
information to do different kinds of things with the class.

• After the class keyword and class name, BOOK, we find a clause introduced
by the keyword create. It introduces the name of each creation procedure
(constructor) of the class. Indeed, in Eiffel (contrary to Java or C#), creation
procedures do not have a predefined name; they can have any name, although
“make” is commonly used. Here, the class declares only one creation
procedure called make. There may be several, in which case the names would
be separated by commas. There may also be no create clause at all, which
means that the class has the default creation procedure called default_create.
(The feature default_create is defined in class ANY from which any Eiffel class
inherits. This appendix will come back to this point later when mentioning
inheritance.)

• The class name, NONE, in curly brackets between the keyword feature and the
comment “-- Initialization” is an application of information hiding. It means
that the features listed in this feature clause are exported to NONE. NONE is a
virtual class that inherits from all classes (it is at the bottom of the class
hierarchy). A feature exported to NONE means that no client class can access
it. It can only be used within the class or one of its descendants. (It is close to
“protected” in languages such as Java or C#.) It is possible to have any class
name between these curly brackets, providing a fine-grained exportation
mechanism.

You may wonder why a creation procedure is exported to NONE. It does
not mean that the class cannot be instantiated because clients cannot access the
creation procedure. Not at all. In fact, in Eiffel, creation procedures are not
special features. They are normal features that can be called as creation
procedure in expressions of the form create my_book.make but also as “normal”
features in instructions of the form my_book.make (where my_book must already
be instantiated) to reinitialize the object for example. Exporting a creation
routine to NONE means that it can only be used as a creation procedure; it cannot
be called by clients later on as a normal procedure.

• The basic structure of an Eiffel routine is the following:

It may also have a require clause after the comment to introduce preconditions
and an ensure clause before the end keyword to express postconditions. It is the
case of the procedure make. This section will not say more about preconditions
and postconditions for the moment. They will be covered in detail in the next
section about Design by Contract™.

A routine may also have a local clause, listing the local variables used in
this routine; it is located before the do keyword (after the require clause if any).

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

do
... Implementation here (set of instructions)

end

Basic struc-
ture of an 
Eiffel routine

See “Design by Con-
tract™”,  page 378.
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If you compare the basic scheme of a routine shown above and the text
of make on the previous page, you can deduce that the type of the first argument
a_title is like title and the type of the argument some_authors is like authors. What
does this mean? It is called anchored types in Eiffel. In like title, title is the
anchor. It means that the argument a_title has the same type as the attribute title
defined below in the class text. It avoids having to redefine several routines
when the type of an attribute changes for example. It will become clearer when
we talk about inheritance. But just as a glimpse: imagine BOOK has a
descendant class called DICTIONARY and DICTIONARY redefines title to be of
type TITLE instead of STRING, then make also needs to be redefined to take an
argument of type TITLE. Anchored types avoid this “redefinition avalanche” by
“anchoring” the type of a certain entity to the type of another query (function or
attribute). The anchor can also be Current (a reference to the current object, like
“this” in C# or Java).

The text of feature make also shows the syntax for assignment := (not =
like in Java and C#; in Eiffel = is the reference equality, like == in Java and C#).
You may also encounter syntax of the form ?= which corresponds to an
assignment attempt. The semantics of an assignment attempt a ?= b is to check
that the type B of b conforms to the type A of a; then, if B conforms to A, b is
assigned to a like a normal assignment; if not, a is set to Void. Therefore, the
typical scheme of assignment attempts is as follows:

The typical use of assignment attempts is in conjunction with persistence
mechanisms because one cannot be sure of the exact type of the persistent data
being retrieved.

• The next two feature clauses “Access” and “Status report” introduce three
attributes: title and authors of type STRING, and is_borrowed of type BOOLEAN.
The general scheme for an attribute is the following:

In the current version of Eiffel, attributes cannot have preconditions or
postconditions. It will be possible in the next version of the language.

• The routines borrow and return follow the same scheme as the feature make
described before. It is worth mentioning though the two possible values for
BOOLEANs, namely True and False, which are both keywords.

• The last part of the class is the invariant, which has two clauses in this
particular example. Contracts (preconditions, postconditions, class invariants)
are explained in the next section about Design by Contract™.

• One last comment about the class BOOK: the use of Void. Void is a feature of
type NONE defined in class ANY. It is the equivalent of “null” in other
languages like C# or Java. It corresponds to a reference attached to no object.

Design by Contract™

Design by Contract™ is a method of software construction, which suggests building
software systems that will cooperate on the basis of precisely defined contracts.

a: A
b: B

a ?= b
if a /= Void then

...
end

attribute_name: ATTRIBUTE_TYPE
-- Comment

Typical use of 
assignment 
attempts

Structure of 
an Eiffel 
attribute
See “Assertions on 
attributes”,  page 
391.
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The method

Design by Contract™ is a method to reason about software that accompanies the
programmer at any step of the software development. Even if it is called “design”
by contract, it does not only target the design stage of an application. It is useful as
a method of analysis and design, but it also helps during implementation because the
software specification will have been clearly stated using “assertions” (boolean
expressions). Design by Contract™ is also useful to debug and test the software
against this specification.

The idea of Design by Contract™ is to make the goal of a particular piece of
software explicit. Indeed, when developers start a new project and build a new
application, it is to satisfy the need of a client, match a certain specification. The
Design by Contract™ method suggests writing this specification down to serve as a
“contract” between the clients (the users) and the suppliers (the programmers).

This idea of contract defined by some obligations and benefits is an analogy
with the notion of contract in business: the supplier has some obligations to his
clients and the clients also have some obligations to their supplier. What is an
obligation for the supplier is a benefit for the client, and conversely.

Different kinds of contracts

There are three main categories of contracts: preconditions, postconditions, and class
invariants:

• Preconditions are conditions under which a routine will execute properly;
they have to be satisfied by the client when calling the routine. They are an
obligation for the clients and a benefit for the supplier (which can rely on
them). A precondition violation is the manifestation of a bug in the client
(which fails to satisfy the precondition).

Precondition clauses are introduced by the keyword require in an Eiffel routine:

Each precondition clause is of the form “tag: expression” where the tag can be
any identifier and the expression is a boolean expression (the actual assertion).
The tag is optional; but it is very useful for documentation and debugging
purposes.

• Postconditions are properties that are satisfied at the end of the routine
execution. They are benefits for the clients and obligations for the supplier. A
postcondition violation is the manifestation of a bug in the supplier (which
fails to satisfy what it guarantees to its clients).

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

require
tag_1: boolean_expression_1
tag_2: boolean_expression_2

do
... Implementation here (set of instructions)

end

Structure of 
an Eiffel rou-
tine with pre-
condition
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Postcondition clauses are introduced by the keyword ensure in an Eiffel routine:

Of course, a routine may have both preconditions and postconditions; hence
both a require and an ensure clause (like in the previous BOOK class).

• Class invariants capture global properties of the class. They are consistency
constraints applicable to all instances of a class. They must be satisfied after
the creation of a new instance and preserved by all the routines of the class.
More precisely, it must be satisfied after the execution of any feature by any
client. (This rule applies to qualified calls of the form x.f only, namely client
calls. Implementation calls — unqualified calls — and calls to non-exported
features do not have to preserve the class invariant.)
Class invariants are introduced by the keyword invariant in an Eiffel class

There are three other kinds of assertions:
• Check instructions: Expressions ensuring that a certain property is satisfied

at a specific point of a method’s execution. They help document a piece of
software and make it more readable for future implementers.
In Eiffel, check instructions are introduced by the keyword check as follows:

• Loop invariants: Conditions, which have to be satisfied at each loop iteration
and when exiting the loop. They help guarantee that a loop is correct.

• Loop variants: Integer expressions ensuring that a loop is finite. It decreases
by one at each loop iteration and has to remain positive.

This appendix will show the syntax of loop variants and invariants later when
introducing the syntax of loops.

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

do
... Implementation here (set of instructions)

ensure
tag_1: boolean_expression_1
tag_2: boolean_expression_2

end

class

CLASS_NAME

feature -- Comment

...

invariant

tag_1: boolean_expression_1
tag_2: boolean_expression_2

end

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

do
... Implementation here (set of instructions)
check

tag_1: boolean_expression_1
tag_2: boolean_expression_2

end
... Implementation here (set of instructions)

end

Structure of 
an Eiffel rou-
tine with post-
condition

Structure of 
an Eiffel class 
with class 
invariant

Structure of 
an Eiffel rou-
tine with 
check instruc-
tion

See “Syntax of 
loops”,  page 383.
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Benefits

The benefits of Design by Contract™ are both technical and managerial. Among
other benefits we find:
• Software correctness: Contracts help build software right in the first place (as

opposed to the more common approach of trying to debug software into
correctness). This first use of contracts is purely methodological: the Design
by Contract™ method advises you to think about each routine’s requirements
and write them as part of your software text. This is only a method, some
guidelines for software developers, but it is also perhaps the main benefit of
contracts, because it helps you design and implement correct software right
away.

• Documentation: Contracts serve as a basis for documentation: the
documentation is automatically generated from the contracts, which means
that it will always be up-to-date, correct and precise, exactly what the clients
need to know about.

• Debugging and testing: Contracts make it much easier to detect “bugs” in a
piece of software, since the program execution just stops at the mistaken
points (faults will occur closer to the source of error). It becomes even more
obvious with assertions tags (i.e. identifiers before the assertion text itself).
Contracts are also of interest for testing because they can serve as a basis for
black-box test case generation.

• Management: Contracts help understand the global purpose of a program
without having to go into the code in depth, which is especially appreciable
when you need to explain your work to less-technical persons. It provides a
common vocabulary and facilitates communication. Besides, it provides a
solid specification that facilitates reuse and component-based development,
which is of interest for both managers and developers.

A.3  MORE ADVANCED EIFFEL MECHANISMS

Let’s describe more advanced Eiffel mechanisms, typically the facilities on which
the pattern library relies on.

Book library example

This section uses an example to introduce these mechanisms. Because we talked
about books in the previous section, here is the example of a library where users can
borrow and return books.

Here is a possible implementation of an Eiffel class LIBRARY:

indexing

description: "Library where users can borrow books"

class

LIBRARY

inherit
ANY

redefine
default_create

end

See “Pattern 
Library”,  page 26.

Class repre-
sentation of a 
book library
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feature {NONE} -- Initialization

default_create is
-- Create books.

do
create books.make

end

feature -- Access

books: LINKED_LIST [BOOK]
-- Books available in the library

feature -- Element change

extend (a_book: BOOK) is
-- Extend books with a_book.

require
a_book_not_void: a_book /= Void
a_book_not_in_library: not books.has (a_book)

do
books.extend (a_book)

ensure
one_more: books.count = old book.count + 1
book_added: books.last = a_book

end

remove (a_book: BOOK) is
-- Remove a_book from books.

require
a_book_not_void: a_book /= Void
book_in_library: books.has (a_book)

do
books.start
books.search (a_book)
books.remove

ensure
one_less: books.count = old books.count − 1
book_not_in_library: not books.has (a_book)

end

feature -- Output

display_books is
-- Display title of all books available in the library.

do
if books.is_empty then

io.put_string ("No book available at the moment")
else

from books.start until books.after loop
io.put_string (books.item.title)
books.forth

end
end

end

feature -- Basic operation
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This example introduces two controls we had not encountered before: conditional
structures (in feature display_books) and loops (in display_books and borrow_all).

• Here is the syntax scheme for conditional structures:

The elseif and else branches are optional.

• Here is the syntax scheme for loops (there is only one kind of loops in Eiffel):

The variant and invariant clauses are optional. The from clause is compulsory
but it may be empty.

Let’s now discover the other Eiffel techniques used in this example:

Inheritance

The class LIBRARY contains a clause we have not seen yet: an inherit clause. It
introduces the classes from which class LIBRARY inherits. Here LIBRARY inherits
from ANY.

borrow_all is
-- Borrow all books available in the library.

do
from books.start until books.after loop

books.item.borrow
books.forth

end
ensure

all_borrowed: books.for_all (agent {BOOK}.is_borrowed)
end

invariant

books_not_void: books /= Void
no_void_book: not books.has (Void)

end

if some_condition_1 then
do_something_1

elseif some_condition_2 then
do_something_2

else
do_something_else

end

from
initialization_instructions

invariant
loop_invariant

variant
loop_variant

until
exit_condition

loop
loop_instructions

end

Syntax of 
conditional 
structures

Syntax of 
loops
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ANY is the class from which any Eiffel class inherits. If you remember, we saw
before that NONE is the class that inherits from any Eiffel class, which means we
have a “closed” hierarchy here:

In fact, one does not need to write that a class inherits from ANY; it is the default.
Here, the class LIBRARY expresses the inheritance link explicitly to be able to
“redefine” the feature default_create inherited from ANY. Redefinition allows
changing the body of a routine (the do clause) and changing the routine signature if
the new signature “conforms” to the parent one (which basically means that the base
class of the new argument types inherits from the base class of the argument types
in the parent, and same thing for the result type if it is a function).

The routine body can be changed, but it still has to follow the routine’s
contract. The Design by Contract™ method specifies precise rules regarding
contracts and inheritance: preconditions are “or-ed” and can only be weakened,
postconditions are “and-ed” and can only be strengthened (not to give clients any
bad surprise). Class invariants are also “and-ed” in descendant classes (subclasses).

As suggested by the inheritance figure on the previous page, a class may
inherit from one or several other classes, in which case we talk about multiple
inheritance. Contrary to languages like C# or Java, Eiffel supports multiple
inheritance of classes. (It is restricted to “interfaces” in the Java/C# worlds.)

Allowing multiple inheritance means that a class may get features from two
different parents (superclasses) with the same name. Eiffel provides a renaming
mechanisms to handle name clashes. For example, if we have a class C that inherits
from A and B, and A and B both define a feature f, it is possible to rename the feature
f from A as g to solve the name clash. Here is the Eiffel syntax:
class

C
inherit

A
rename

f as g
end

B
feature -- Comment

...
end

See “Business Object 
Notation (BON)”,  
page 394.ANY 

NONE 

… 

…All Eiffel classes… 

Global inher-
itance struc-
ture

Redefinition of return 
type and argument 
types follows the 
rules of covariance.
See “Non-conform-
ing inheritance”,  
page 391.

See “Design by Con-
tract™”,  page 378.

Renaming 
mechanism
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As mentioned above, Eiffel also provides the ability to redefine features inherited
from a parent using a redefine clause. In the redefined version, it is possible to call
the version from the parent by using the Precursor. Here is an example:

Eiffel also enables to “undefine” a routine, that is to say making it deferred
(abstract). A deferred feature is a feature that is not implemented yet. It has no do
clause but a deferred clause. Yet it can have routine preconditions and
postconditions. Here is the general structure of a deferred routine:

A class that has at least one deferred feature must be declared as deferred. In the
current version of Eiffel, it is also true that a deferred class must have at least one
deferred feature. In the next version of the language, it will be possible to declare a
class deferred even if all its features are effective (implemented). Besides, contrary
to other languages like Java or C#, a deferred class can declare attributes. It can also
express a class invariant.

To come back to inheritance and undefinition, here is the syntax that allows
to make a routine deferred when inheriting it from a parent class:

class
C

inherit
A

redefine
f

end
feature -- Comment

f (args: SOME_TYPE) is
-- Comment

do
Precursor {A} (args)
...

end
...

end

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

require
... Some precondition clauses

deferred
ensure

... Some postcondition clauses
end

deferred class

C
inherit

A
undefine

f
end

feature -- Comment
...

end

Redefinition 
with call to 
Precursor

Structure of a 
deferred rou-
tine

Undefinition 
mechanism
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This example supposes that class A declares a feature f, which is effective in A. The
class C inherits f from A and makes it deferred by listing it in the clause undefine.
Therefore, class C must be declared as deferred (it has at least one deferred feature).

Another problem that arises with multiple inheritance is the case of repeated
inheritance (also known as the “diamond structure”). For example, we have a class
D that inherits from B and C, which themselves inherit from A. Class A has a feature
f. B renames it as g and redefines it. C leaves f unchanged. Here is the corresponding
class diagram:

The class D inherits two different features from the same feature f in A. The problem
occurs when talking about dynamic binding: which feature should be applied?

There is another inheritance adaptation clause called select, which provides the
ability to say: “in case there is a conflict, use the version coming from this parent”.
For example, if we want to retain the feature g coming from B, we would write:

The last inheritance adaptation clause is the export clause. It gives the possibility to
restrict or enlarge the exportation status of an inherited routine. Here is the general
scheme:

class
D

inherit
B

select
g

end
C

feature -- Comment
...

end

class
B

inherit
A

export
{NONE} f -- Makes f secret in B (it may have been exported in A)
{ANY} g -- Makes g exported in B (it may have been secret in A)
{D, E} x, z -- Makes x and z exported to only classes D and E

end
feature -- Comment

...
end

See “Business Object 
Notation (BON)”,  
page 394.

 
A 

D 

B C 
f        g 
g++ 

f 

Repeated 
inheritance 
(“diamond 
structure”)

Selection 
mechanism

Export mech-
anism
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Eiffel offers a keyword all to designate all the features of a class (defined in the class
itself and inherited). It is often used to make all features inherited from a parent class
secret (in case of implementation inheritance for example):

The last point we need to see about inheritance is the order of adaptation clauses.
Here it is:

Genericity

Let’s come back to our class LIBRARY. The next mechanism we had not encountered
before is genericity. Indeed, the class LIBRARY declares a list of books:

The attribute books is of type LINKED_LIST [BOOK], which is derived from the
generic class LINKED_LIST [G], where G is the formal generic parameter. A
generic class describes a type “template”. One must provide a type, called actual
generic parameter (for example here BOOK), to derive a directly usable type like
LINKED_LIST [BOOK]. Genericity is crucial for software reusability and
extendibility. Besides, most componentized versions of design patterns rely on
genericity.

The example of LINKED_LIST [G] is a case of unconstrained genericity.
There are cases where it is needed to impose a constraint on the actual generic
parameters. Let’s take an example. Say we want to represent vectors as a generic
class VECTOR [G], which has a feature plus to be able to add two vectors, and we
also want to be able to have vectors of vectors like VECTOR [VECTOR [INTEGER]].

class
B

inherit
A

export
{NONE} all

end
feature -- Comment

...
end

class
D

inherit
B

rename
e as k

export
{NONE} all
{D} r

undefine
m

redefine
b

select
g

end
C

feature -- Comment
...

end

books: LINKED_LIST [BOOK]
-- Books available in the library

Making all 
inherited fea-
tures secret

Order of the 
inheritance 
adaptation 
clauses

See “Class represen-
tation of a book 
library”,  page 381.

Attribute of a 
generic type



EIFFEL: THE ESSENTIALS §A.3388
Let’s try to write the feature plus of class VECTOR [G]. In fact, it is unlikely to
be called plus; it would rather be an infix feature “+”, which is a special notation to
allow writing vector_a + vector_b instead of vector_a.plus (vector_b). There also exists
a prefix notation to be able to write - my_integer for example.

To come back to class VECTOR [G], a first sketch may look as follows:
class

VECTOR [G]

create

make

feature {NONE} -- Initialization

make (max_index: INTEGER) is
-- Initialize vector as an array with indexes from 1 to max_index.

require
...

do
...

end

feature -- Access

count: INTEGER
-- Number of elements in vector

item (i: INTEGER): G is
-- Vector element at index i

require
...

do
...

end

infix “+” (other: like Current): like Current is
-- Sum with other

require
other_not_void: other /= Void
consistent: other.count = count

local
i: INTEGER

do
create Result.make (1, count)
from i := 1 until i > count loop

Result.put (item (i) + other.item (i), i)
-- Requires an operation “+” on elements of type G.

i := i + 1
end

ensure
sum_not_void: Result /= Void

end
...
invariant

...
end

Addable vec-
tors
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Our implementation of the “+” operation requires a “+” operation on elements of
type G, which means that we cannot accept any kind of actual generic parameters.
We need them to have such a feature “+”. Here is when constrained genericity comes
into play: it allows to say that actual generic parameters must conform to a certain
type, for example here NUMERIC. (It basically means that the base class of the actual
generic parameter must inherit from class NUMERIC.)

Here is the corresponding syntax:

It is not allowed to have multiple constraints, say class C [G −> {A, B}]. It may be
allowed in the next version of the language.

Another kind of constraint is to impose that actual generic parameters must
have certain creation procedures. For example, the notation:

means that any actual generic parameter of MY_CLASS must conform to ANY and
expose default_create in its list of creation procedures (introduced by the keyword
create in an Eiffel class text).

Agents

There is still one mysterious point in the class LIBRARY, the postcondition of borrow_
all:

What the postcondition of borrow_all does is to test for all items of type BOOK in the
list books whether it is_borrowed. The postcondition will evaluate to True if all books
are borrowed. 

But what does this “agent” mean? An agent is an encapsulation of a routine
ready to be called. (To make things simple, you may consider an agent as a typed
function pointer.) It is used to handle event-driven development. For example, if you
want to associate an action with the event “button is selected”, you will write:

where my_routine is a routine of the class where this line appears. 

A typical agent expression is of the form:

where a and b are closed arguments (they are set at the time of the agent’s definition)
whereas ? is an open argument (it will be set at the time of any call to the agent).

It is also possible to construct an agent with a routine that is not declared in
the class itself. The syntax becomes:

where some_object is the target of the call. It is a closed target. The agent
expression used in the postcondition of borrow_all had an open target of type BOOK:

class

VECTOR [G −> NUMERIC]

class

MY_CLASS [G −> ANY create default_create end]

ensure
all_borrowed: books.for_all (agent {BOOK}.is_borrowed)

my_button.select_actions.extend (agent my_routine)

agent my_function (?, a, b)

agent some_object.some_routine (?, a, b)

agent {BOOK}.is_borrowed

See “Non-conform-
ing inheritance”,  
page 391.

[Meyer 200?b].

See “Class represen-
tation of a book 
library”,  page 381.

Use of agents 
in contracts

Events with 
agents

Open and 
closed argu-
ments

Open and 
closed argu-
ments

Open target
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To call an agent, you simply have to write:

where call is a feature of class ROUTINE.
Here is the class diagram of the three agent types:

An important property of the Eiffel agent mechanism: it is completely type-safe.
Agents are a recent addition to the Eiffel language. They were introduced in

1999. Therefore, they are not described in the reference manual Eiffel: The
Language. However, there is an entire chapter of the next revision of the book
devoted to agents.

Performance

Using agents has a performance overhead. To measure that overhead, I performed
one million direct calls to a routine that does nothing and one million agent calls to
the same routine. Without agents, the duration was two seconds (2µs per call); with
agents, it was fourteen seconds (14µs per call), thus seven times as slow.

But in practice, one calls routines that do something. Therefore I added an
implementation to the routine (a loop that executes do_nothing, twenty times) and did
the same tests. The results were the following: 33s (33µs per call) without agents;
46s (46µs per call) with agents; thus 1.4 times as slow.

In a real application, the number of agent calls in the whole code will be less
significant. Typically, no more than 5% of the feature calls will be calls to agents.
Therefore the execution of an application using agents will be about 0.07 times as
slow, which is a acceptable performance overhead in most cases.

A.4  TOWARDS AN EIFFEL STANDARD

Eiffel is currently being standardized through the ECMA international organization.
The working group in charge of the Eiffel standardization examines some issues of
the Eiffel language and discusses possible extensions. I am an active member of the
group; I am responsible for preparing the meetings’ agenda and for writing the
meeting minutes.

ECMA standardization

The process started in March 2002 when ECMA accepted the proposal to
standardize Eiffel. It resulted in the creation of a new working group TG4, part of
the Technical Committee 39 (originally “scripting languages”, although this is just
for historical reasons). The first group meeting took place at ETH Zurich in
Switzerland in June 2002. Jan van den Beld, secretary general of ECMA, took part
in the meeting and explained how the standardization work should proceed.

my_agent.call ([maybe_some_arguments]) Calling an 
agent

See “Business Object 
Notation (BON)”,  
page 394.ROUTINE 

[BASE, ARGS -> TUPLE] 

PROCEDURE 
[BASE, ARGS -> TUPLE] 

FUNCTION 
[BASE, ARGS -> TUPLE, RES] 

call 
Agent types

[Dubois 1999].
See chapter 25 of 
[Meyer 200?b].

do_nothing is a proce-
dure defined in ANY 
which does nothing.

[ECMA-Web].
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The goal is to have a first draft of the standard ready in 2004. To achieve this
goal, the group meets at least four times a year and keeps interacting by email in
between.

The group members are all Eiffel experts with several years experience and
coming from both academia and industry. For the moment, members include ETH
Zurich with Bertrand Meyer and me, LORIA in France with Dominique Colnet,
Monash University, in Australia, represented by Christine Mingins. This is for the
academia. Industry members are AXA Rosenberg with Mark Howard and Éric
Bezault, Eiffel Software with Emmanuel Stapf and Bertrand Meyer, and Enea Data
with Kim Waldén and Paul Cohen.

New mechanisms

This section presents some extensions to the Eiffel language that have been pre-
approved by the committee. (To be finally approved, a mechanism needs to be
implemented in at least one Eiffel compiler. For the four extensions presented here,
there is no doubt about the final acceptation. Besides, three of these extensions are
already implemented at least in part.)

Assertions on attributes

As mentioned before, attributes cannot have contracts in the current version of
Eiffel. Only routines can have contracts. This discrimination between routines and
attributes goes against the Uniform Access principle presented at the beginning of
this appendix. Indeed, clients should not have to know whether a feature is
implemented by computation or by storage; they just need to know that the class
offers this service, no matter what its implementation is.

Therefore the team agreed to introduce a new syntax for attributes, with a new
keyword attribute, that allows putting preconditions and postcondition:

The current notation:

becomes a shortcut for:

Non-conforming inheritance

In the current version of Eiffel, inheritance always brings conformance. For
example, if a class B inherits from a class A, then type B conforms to type A. As a
consequence, an assignment like a1 := b1 where b1 is of type B and a1 is declared of
type A is allowed. It is also possible to pass an instance of type B as argument of a
feature expecting an A (for example, f (b1) with f declared as f (arg: A)).

attribute_name: ATTRIBUTE_TYPE is
-- Comment

require
... Some precondition clauses

attribute
ensure

... Some postcondition clauses
end

attribute_name: ATTRIBUTE_TYPE
-- Comment

attribute_name: ATTRIBUTE_TYPE is
-- Comment

attribute
end

See “Structure of an 
Eiffel attribute”,  
page 378.
See “Design princi-
ples”,  page 374.

Assertions on 
attributes
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However, sometimes, it may be useful to have inheritance without
conformance, namely having subclassing without polymorphism. Non-conforming
gives descendant classes access to the parent’s features but forbids such assignments
and arguments passing as those described above (between entities of the descendant
type and entities of the parent type).

This facility is useful only in specific cases like “implementation inheritance”.
For example, we could have a class TEXTBOOK that inherits from BOOK. This
inheritance relation should be conformant; we want both subclassing and
polymorphism. But this class TEXTBOOK may need access to some helper features
defined in a class TEXTBOOK_SUPPORT. One way to get access to these features is
to declare an attribute of type TEXTBOOK_SUPPORT and have a client relationship.
Another way to do it is to use what is usually called “implementation inheritance”,
that is to say inheriting from TEXTBOOK_SUPPORT just to be able to use these
features. In that case, we just need subclassing (to get the features), not conformance
(we don’t want to assign an entity of type TEXTBOOK to an entity of type
TEXTBOOK_SUPPORT). Hence the use of non-conforming inheritance.

Another example taken from EiffelBase is the class ARRAYED_LIST, which
inherits from LIST and ARRAY. For the moment, both inheritance links are
conformant (there is no other choice!). But what we really want is a class ARRAYED_
LIST that inherits from LIST in a conformant way and a non-conformant link between
ARRAYED_LIST and ARRAY (just to get the features of ARRAY, which are useful for
the implementation of ARRAYED_LIST).

The syntax is not completely fixed yet. For the moment, the idea is to use the
keyword expanded in front of the parent class name in the inherit clause to specify
that the inheritance link is non-conformant (hence the name “expanded inheritance”,
which is sometimes used):

What is the relation between non-conforming inheritance and expanded types? If a class
B inherits from a class A, which is declared as expanded, then there is no conformance
between B and A. Hence the use of the keyword expanded.

Non-conforming inheritance is currently being implemented into the SmartEiffel
compiler.

Automatic type conversion

The third mechanism is automatic type conversion. The goal is to be able to add, for
example a complex number and an integer, or a real and an integer. To do this, the
group decided to include a two-side conversion mechanism into the Eiffel language.
It is possible to convert from and to convert to a particular type thanks to a new
clause convert.

class

B

inherit

C

expanded A

feature -- Comment
...
end

[EiffelBase-Web].

Possible syn-
tax of non-
conforming 
inheritance
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Here is the syntax:

If you have an instance of type TYPE_1 and you want to add it to an instance of MY_
CLASS, the instance of TYPE_1 will be automatically converted to an instance of MY_
CLASS by calling the conversion procedure from_type_1, which needs to be declared
as a creation procedure.

On the other hand, if you have an instance of type MY_CLASS and you want
to add it to an instance of type TYPE_2, your instance of MY_CLASS will be
automatically converted to TYPE_2 by calling the function to_type_2.

Here are typical cases that this new mechanism permits to write:

Thus, it becomes possible to add complex numbers and integers cleanly and
completely transparently to the clients. Part of the automatic type conversion
mechanism is already implemented in the ISE Eiffel compiler.

Frozen classes

Another mechanism pre-approved at ECMA is to allow frozen classes in Eiffel,
meaning classes from which one cannot inherit. The syntax is simple: the header of
a frozen class is extended with the keyword frozen as shown next:

Section 18.3 describes the syntax and semantics of frozen classes in detail.

class

MY_CLASS

create

from_type_1

convert
from_type_1 ({TYPE_1}),
to_type_2: {TYPE_2}

feature -- Conversion
from_type_1 (arg: TYPE_1) is

-- Convert from arg.
do

...
end

to_type_2: TYPE_2 is
-- New object of type TYPE_2

do
...

end
end

my_attribute: MY_TYPE
attribute_1: TYPE_1
attribute_2: TYPE_2

my_attribute + attribute_1
-- Equivalent to:
-- my_attribute + create {MY_TYPE}.from_type_1 (attribute_1)

attribute_2 + my_attribute
-- Equivalent to:
-- attribute_2 + my_attribute.to_type_2

frozen class
MY_CLASS

Type conver-
sion mecha-
nism

Examples of 
automatic 
type conver-
sions

Header of a 
frozen class
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This extension is directly useful to the work presented in this thesis: it enables
writing correct singletons in Eiffel, which is not possible with the current version of
the language.

Frozen classes are not supported by classic Eiffel compilers yet but they are
already accepted by the ISE Eiffel for .NET compiler.

A.5  BUSINESS OBJECT NOTATION (BON)

This last section describes the BON method, with a focus on notation. It only
introduces a small subset of BON — what you need to know to understand the class
diagrams appearing in this thesis.

The method

The Business Object Notation (BON) is a method for analysis and design of object-
oriented systems, which emphasizes seamlessness, reversibility and Design by
Contract™. It was developed between 1989 and 1993 by Jean-Marc Nerson and Kim
Waldén to provide the Eiffel programming language and method with a notation for
analysis and design.

BON stresses simplicity and well-defined semantics. In that respect, it is
almost at the opposite of widely-used design notations such as the Unified Modeling
Language (UML) or the Rationale Uniform Process (RUP).

As mentioned above, one priority of BON is to bring seamlessness into
software development, to narrow the gap between analysis, design, and
implementation by using the same concepts and the same semantics for the notation
on the tree stages. Therefore BON does not have state-charts or entity-relationship
diagrams like in UML because they are not compatible with what is available at the
implementation level and would prevent reversibility. Instead, BON relies on pure
object-oriented concepts like classes, client and inheritance relationships.

Notation

Here is a catalog of the notations used throughout this thesis:
In BON, classes are represented as ellipses, sometimes referred to as

“bubbles”:

The ellipse may contain information about the class properties, for example:
• Deferred class: Class that is declared as deferred.

• Effective class: Class that is not declared as deferred but has at least one
deferred parent, or redefines at least one feature.

“Singleton pattern”,  
18.1, page 289.

[Waldén-Web].

NAME_OF_ 
NON_GENERIC_CLASS 

NAME_OF_ 
GENERIC_CLASS 

[G] 
Notation for a 
class

* 
CLASS_NAME 

Notation for a 
deferred class

+ 
CLASS_NAME 

Notation for 
an effective 
class
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• Persistent class: Class that inherits from STORABLE or has an indexing tag
“persistent”.

• Interfaced class: Class that interfaces with other programming languages (for
example C) through “external features”.

• Reused class: Class that comes from a precompiled library. (ISE Eiffel
compiler provides the ability to compile a library once and for all and then
reuse it in so-called “precompiled” form.)

• Root class: Class that is the program’s entry point.

It is also possible to specify the features of a class by writing the feature names next
to the ellipse representing the class:

BON also permits to express the different categories of features: 
• Deferred feature: Non-implemented feature.

• Effective feature: Feature that was deferred in the parent and is implemented
in the current class.

• Undefined feature: Feature that was effective in the parent and is made
deferred in the current class through the undefinition mechanism.

CLASS_NAME 
Notation for a 
persistent 
class

CLASS_NAME 
Notation for 
an interfaced 
class

 
CLASS_NAME 

Notation for a 
reused class

  
CLASS_NAME 

Notation for a 
root class

 
CLASS_NAME 

name_of_feature_1
name_of_feature_2

Notation for 
features

* 
CLASS_NAME 

feature_name*

Notation for a 
deferred fea-
ture

+ 
CLASS_NAME 

feature_name+

Notation for 
an effective 
feature

 
CLASS_NAME 

feature_name-

Notation for 
an undefined 
feature
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• Redefined feature: Feature that was effective in the parent and whose
signature and/or implementation is changed in the current class through the
redefinition mechanism.

BON also provides a notation for feature renaming:

Classes may be grouped into clusters, which are represented as red stippled-rounded
rectangles:

Client relationship between two classes is represented as a blue double-arrow:

Inheritance relationship is represented as a red single-arrow:

Here is the notation for non-conforming inheritance:

 
CLASS_NAME 

feature_name++

Notation for a 
redefined fea-
ture

 
CLASS_NAME 

f            g

Notation for 
feature 
renaming

 

 
CLASS_NAME 

cluster name

Notation for a 
cluster

 
CLIENT_CLASS_NAME 

 
SUPPLIER_CLASS_NAME 

feature_name
Notation for 
client/sup-
plier relation-
ship

 
PARENT_CLASS_NAME

 
HEIR_CLASS_NAME 

Notation for 
(conforming) 
inheritance

 
PARENT_CLASS_NAME

 
HEIR_CLASS_NAME 

Notation for 
(non-con-
forming) 
inheritance
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Ace file

Assembly of classes in Eiffel (written in LACE): configuration file for Eiffel systems.

Agent

Object encapsulating a feature ready to be called.

Ancestor (of a class)

The class itself or one of the classes from which it inherits (directly or indirectly).

Anchored type

Type “anchored” to the type of another entity of the same class or to the type of the Current
object. Written as “like anchor” in Eiffel, it means that the type is always the same as the type of
anchor and will remain the same even if the type of anchor is redefined in descendant classes.
(The anchored types are automatically redefined as well.)

Aspect-Oriented Programming (AOP)

Recent programming technique that allows to modularize crosscutting concerns (facilities for
which the code is spread over several classes). It introduces the notion of aspects, which encap-
sulate behaviors affecting several classes into reusable modules.

Assertion

Condition describing the semantic properties of software elements used in expressing contracts.
Assertions include routine preconditions, postconditions, class invariants, and loop invariants.

Attribute

Feature whose result is stored in memory (contrary to a function whose result is computed each
time it is called). One of the two forms of features together with routines.

Business Object Notation (BON)

Method and graphical notation for high-level object-oriented analysis and design. It is based on
concepts similar to those of Eiffel but it can be used with any other object-oriented language.

Class

Partially or totally implemented abstract data type. It serves both as a module and as a type (or
“type skeleton” if the class is generic).

Client

Class that uses the features of another class (called its supplier), on the basis of the supplier’s
interface specification (contract).
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Cluster

Group of related classes (or group of clusters — subclusters — containing classes).

Command

Feature that does not return a result but may change the state of the object on which it is called.
(See also the Command/Query separation principle.)

Command/Query Separation principle

A feature should not both change the object’s state and return a result about this object. In other
words, a function should be side-effect-free. “Asking a question should not change the answer.”

Component

Program module with the following supplementary properties:
• It can be used by other program modules (its “clients”).
• The supplier of a component does not need to know who its clients are.
• Clients can use a component on the sole basis of its official information.

Componentizable design pattern

Design pattern that can be transformed into a reusable software component.

Componentization

Process of designing and implementing a reusable software component (library classes) from a
design pattern (the book description of an intent, a motivation, some use cases, and typical soft-
ware architecture examples).

Componentize

Transform a componentizable design pattern into a reusable software component.

Componentized version (of a design pattern)

Reusable software component resulting from the componentization of a componentizable design
pattern.

Conformance

Relation between types: a type conforms to another if its base class inherits (in a conformant
way) from the base class of the other type. (See also non-conforming inheritance.)

Constrained genericity

Form of genericity where the actual generic parameter is required to conform to a certain type (its
constraint). (See also unconstrained genericity.)

Contract

Set of conditions that govern the relations between a supplier class and its clients. The contract
for a class includes individual contracts for the exported routines of the class, represented by pre-
conditions and postconditions, and the global class properties, represented by the class invariant.
(See also Design by Contract™.)

Conversion

Process of transforming an object of type T1 into a new object of type T2 on condition that con-
vertibility holds between T1 and T2.

Convertibility

Relation between types that complements conformance. Convertibility lets programmers perform
assignments and argument passing in some cases where conformance does not hold but we still
want the operation to succeed after performing a conversion operation from the source type to the
target type (for example to add integers and real numbers).
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Covariance

Policy allowing a feature redeclaration to change the signature so that the new types of both argu-
ments and result conform to the originals.

Deferred class

Class that cannot be instantiated. It describes the interface of its descendant classes. It must have
at least one deferred feature in the current version of Eiffel; this will not be compulsory anymore
in the next version of the language. Antonym: effective class.

Deferred feature

Feature which is not implemented yet. Only its specification (signature, header comments, con-
tracts) exists. The body still needs to be written. Antonym: effective feature.

Descendant (of a class)

The class itself, or one of the classes that inherit (directly or indirectly) from it.

Design by Contract™

Method of software construction that suggests building software systems that will cooperate on
the basis of precisely defined contracts. The idea of contracts between software elements is
inspired by the notion of contracts in business-life where suppliers define a contract that their cli-
ents must accept and respect.

Design pattern

Set of domain-independent architectural ideas — typically a design scheme describing some
classes involved and the collaboration between their instances — captured from real-world
systems that programmers can learn and apply to their software in response to a specific problem.

Direct instance (of a class)

Run-time object built from the given class.

Dynamic binding

Guarantee that every execution of a feature will select the correct version of this feature, based
on the type of the feature’s target.

Effect

A class effects a feature if it inherits this feature in deferred form and provides an implementa-
tion for it.

Effective class

Class that only has effective (non-deferred) features. Antonym: deferred class.

Eiffel Library Kernel Standard (ELKS)

Standard for the Kernel library in Eiffel. It complements the language definition to favor the
interoperability between implementations of Eiffel; it describes the minimal set of classes and
features covering needs that are likely to arise in most Eiffel applications.

Feature

Operations (set of routines and attributes) of a class.

Frozen class

Class that cannot have any descendants.

Function

Routine that returns a result. (See also procedure.)
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Generic class

Class having formal parameters representing types. Such a class serves as a basic for a set of pos-
sible types. (One needs to provide an actual type for each formal generic parameter to get a type.)

Genericity

Support for type-parameterized modules. In object-oriented programming, support for generic
classes. There are two kinds of genericity: unconstrained and constrained.

Heir (of a class)

Class that inherits from the given class. Antonym: parent.

Information Hiding principle

The supplier of a module must select the subset of the module’s properties that will be available
officially to its client (the “public part”); the remaining properties build the “secret part”.

Inheritance

Object-oriented mechanism that allows a class to be defined as a “special kind of” another. In
particular, it can benefit from all the features of the class from which it inherits. (The correspond-
ing objects follow an “is-a” relationship.) By default, inheritance brings conformance of the heir
to the parent class. (See also non-conforming inheritance.)

Instance (of a class)

Run-time object built from the class or one of its proper descendants. (See also direct instance,
proper descendant.)

LACE

Language for Assembling Classes in Eiffel: language used to write Ace files.

Library-supported design pattern

Reusable design pattern for which there already exists a reusable Eiffel library capturing the pat-
tern’s intent.

Non-componentizable design pattern

Design pattern that cannot be transformed into a reusable software component.

Object

Run-time data structure that serves as the computer representation of an abstract object. Every
object is an instance of a class.

Object-Oriented Programming (OOP)

Process of building software systems using object-oriented concepts (classes, assertions,
genericity, inheritance, polymorphism, and dynamic binding).

Parent (of a class)

Class from which the given class inherits. Antonym: heir.

Polymorphism

Ability for a software element to denote, at run time, objects of two or more possible types.

Procedure

Routine that does not return a result. (See also function.)

Query

Feature that returns a result but should not change the state of the object (according to the Com-
mand/Query separation principle).
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Reusability

Ability of software elements to serve for the construction of many different applications.

Reusable software component

Software element that can be used by many different applications.

Routine

Feature that does some computation. (See also attribute.)

Seamless development

Software development process which uses a uniform method and notation throughout all activi-
ties of the development lifecycle including analysis, design, implementation, and maintenance.

Skeleton class

Class with placeholders which programmers have to fill (i.e. provide an implementation).

Supplier

Class that provides another, its client, with features to be used though an interface specification
(contract).

System

Set of classes that can be assembled to produce an executable result. Configured in an Ace file.

Trusted component

Software component that can be trusted. Techniques that can be applied to ensure trust include:
Design by Contract, formal validation, application of object-oriented techniques and the strict
principles of reusable library design, extensive testing taking advantage of Design by Contract.

Type

Description of a set of objects equipped with certain features. In the object-oriented approach
every type is based on a class. (For non-generic classes, class and type are the same.)

Type-safe

Property of a system for which any call of the form x.f (a) that is valid at compilation time, there
exists exactly one version of f applicable to the dynamic type of x at run time and this version of f
has the right number of arguments and the appropriate types.

Unconstrained genericity

Form of genericity where a formal generic parameter represents an arbitrary type (no conform-
ance constraint to a given type). (See also constrained genericity.)

Uniform Access principle

All features offered by a class should be available through a uniform notation, which does not
betray whether features are implemented through storage (attributes) or through computation
(routines).

Universe

Superset of the system; all classes of the clusters defined in the system, even if not reachable
from the root creation procedure (creation procedure of the class that gets instantiated first).
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