
21
Pattern Wizard
The main goal of this thesis was to provide the reusable Eiffel components
corresponding to the design patterns of [Gamma 1995] found componentizable —
given the Eiffel language’s facilities and advanced mechanisms such as Design by
Contract™, genericity, multiple inheritance, and agents.

This examination of the patterns listed in Design Patterns revealed that some
patterns can be transformed more or less easily into reusable libraries whereas other
patterns resist any componentization attempt. The latter require content-dependent
information, which can only be given by the programmer. Even though it was not
possible to provide a reusable component in such cases, I still wanted to help
developers as much as possible and built a tool that would take care of the repetitive
tasks automatically. Hence the development of the Pattern Wizard.

This chapter gives a tutorial about how to use the tool and take advantage of
it. Then, it describes the design and implementation of the wizard, and discusses its
limitations. Finally, it presents some related work.

21.1 WHY AN AUTOMATIC CODE GENERATION TOOL?
A design pattern is a solution to a particular design problem but it is not code itself.
Programmers must implement it anew whenever they want to apply the pattern.
Componentization provides a solution to this problem but unfortunately not all
design patterns are componentizable. Thus, programmers still need to implement the
code for some patterns. This is the point where an automatic code generation tool
comes into play. Some developers, in particular newcomers, may have difficulties to
implement a design pattern from just a book description, even if there are some code
samples. Others simply may find it tedious to implement the patterns because it is
repetitive: it is always the same kind of code to write afresh for each new
development. Hence the interest of the Pattern Wizard.

The Pattern Wizard may also be interesting for the componentizable patterns
for at least two reasons:
• The pattern is not fully componentizable and the componentized version

cannot handle the given situation.
• The reusable component is applicable but not desirable because of

performance reasons for example (e.g. in embedded systems).
Section 9.3 showed that using the Visitor Library on the Gobo Eiffel Lint

tool results in a performance overhead (less than twice as slow) compared to a
traditional implementation of the Visitor pattern. Therefore it may be
impossible to use the Visitor Library in some application domains that require

See “Definition:
Componentization”,
page 26.

See “Gobo Eiffel Lint
with the Visitor
Library”, page 138.

PATTERN WIZARD §21324
topmost performance. Thus it would be interesting to extend the Pattern Wizard
to support the Visitor pattern to have better code performance when it is needed.

The next section gives a tutorial of the Pattern Wizard that already supports all non-
componentizable patterns for which it is possible to generate skeleton classes. The
next implementation step will be to extend the wizard to support componentizable
design patterns (and possibly other target programming languages).

21.2 TUTORIAL
Before moving to the design and implementation of the Pattern Wizard, it is
interesting to have a look at the actual product. This section explains how to use the
wizard to generate code for the Decorator pattern; then, it shows briefly the
graphical interfaces for the other supported patterns.

Example of the Decorator pattern

When launching the Pattern Wizard, the first window that shows up is the following:

The tree view enables you to select the pattern you want to generate code for. This
tree view recalls the pattern componentizability classification described in chapter 6.
Not all items are selectable; for example, clicking on “Possible skeleton classes” will
have no effect. You need to click on actual pattern names like “Singleton”,
“Decorator”, and so on, namely on the end tree items, not on tree nodes. Selecting
a pattern name will make the bottom part of the window to change and show pattern-
specific information. The “Generate” button will also be enabled.

The toggle buttons at the bottom enables you to say whether you want the
wizard to generate a whole Eiffel project, meaning the pattern classes plus a root
class and an Ace file. You can also decide to close the wizard after code generation
if you need to generate code for only one pattern.

At any time, you can consult the online help by clicking the “Help” button on
the bottom right-hand side of the window. It will open a PDF file that recalls the
information contained in this chapter.

The “About” button gives access to some general information about the
Pattern Wizard (product version, contact information, etc.).

See “Design pattern
componentizability
classification
(filled)”, page 90.

Initial win-
dow of the
Pattern Wiz-
ard

§21.2 TUTORIAL 325
Let’s suppose we select the pattern Decorator. The initial window will be extended
to display information and properties that are specific to the Decorator pattern. The
corresponding window appears below:

• The first two extra boxes display the pattern’s intent and applicability. This
information is taken from the Decorator chapter of Design Patterns. It is pure
information whose goal is to help the user know whether this pattern is of
interest to his problem. It does not intervene in the code generation process.

Pattern Wiz-
ard window
once the Dec-
orator pat-
tern has been
selected

[Gamma 1995], p
175-184.

PATTERN WIZARD §21326
• The subsequent box enables you to select the project directory, namely the
folder where the code will be generated.

You can either write the directory path in the text field on the left or select a
directory by clicking the “Browse...” button. It will open a modal dialog:

It shows the file hierarchy on your computer and enables you to select either an
existing directory or create a new one at the place you want. By default, the
Pattern Wizard creates a folder “pattern_wizard” under your C drive and use it
as project directory. You can choose to use this default directory; in that case,
just leave the “Project location” box unchanged.

• The next box corresponds to the pattern-specific properties you can select;
they are the parameters you can set for the code generation.

Selection of
the project
directory

Dialog to
select a
project direc-
tory folder

Frame to
select the
Decorator
properties
(first tab:
original com-
ponent prop-
erties)

§21.2 TUTORIAL 327
To make your job easier, the Pattern Wizard gives you the possibility to have a
look at the class diagram of a typical application using the chosen pattern, here
the Decorator. Simply click the “Class diagram” button on the top right.

You can see that there are two class hierarchies: one for the component classes
and a second one for the decorated component classes. They are represented by
two tabs in the “Pattern properties” frame.

The first tab concerns the component classes: the deferred class and the
effective descendant class (COMPONENT respectively MY_COMPONENT in the
example class diagram). You can also specify the name of the feature that will
appear in the parent class. Again, you can choose to rely on the defaults, in
which case you don’t need to change anything.

Let’s have a look at the second tab now, which concerns the decorated
classes:

First, you can choose the name and creation procedure name of the parent class
of the decorated components, called DECORATED_COMPONENT in the
previous class diagram.

Class dia-
gram of a typ-
ical
application
using the
Decorator
pattern

Frame to
select the
Decorator
properties
(second tab:
decorated
component
properties)

PATTERN WIZARD §21328
Then, you can choose what kind of effective decorated components you
want, either with an additional attribute (of which you can choose the name and
type) or with an additional procedure (of which you can choose the name) or
both. Simply select the toggle buttons “with additional attribute” and “with
additional behavior” accordingly. By default, both check boxes are selected. If
you unselect one of them, the relative text fields and labels will be disabled.

If you choose to have a decorated component with an additional attribute, the
Pattern Wizard will generate a new class corresponding to the attribute’s type
no matter whether it corresponds to an existing class or not. Therefore it may
be that the generated code does not compile (because of this extra class). You
will need to adapt the generated Ace file to use your existing class and not the
generated one.

Once you have chosen the pattern properties (you can also leave them unchanged
and rely on the default values), you can click the “Generate” button at the bottom of
the window, which will launch the code generation.

If you asked the wizard to close after code generation, clicking “Generate”
will also close the wizard’s window unless a problem occurs during the code
generation (because of invalid inputs). If you didn’t check the box “Close the pattern
after code generation”, the window will not be closed; the wizard will display a
message saying that the code generation was successful:

Other supported patterns

The Pattern Wizard supports four other patterns (and variants): the Singleton,
Adapter, Template method, and Bridge design patterns. This tutorial does not explain
in detail how to use the wizard for each pattern because the approach resembles very
much what we just did for the Decorator pattern. It just shows the “Pattern
properties” frame for each pattern and explains the particularities, if any.

• Singleton:

You can select the name of the Singleton class and the name of its point of
access. You can also choose the creation procedure of the Singleton class and
the name of the query that will return the Singleton instance in the access point
class. Please refer to chapter 18 for more information about the Singleton
pattern.

Message after
a successful
code genera-
tion

“Pattern
properties”
frame for the
Singleton pat-
tern

§21.2 TUTORIAL 329
• Adapter:

You can choose: the name of the target class (the one used by clients) and the
name of the feature it exposes; the name of the adaptee class and the name of
the feature it declares (the one we want to use in the implementation of the
adapter feature); the name of the adapter class (that reconciles the interfaces of
the target and adaptee classes). The wizard supports both class and object
versions of the Adapter. Please refer to section 16.2 for more information.

• Template method:

A “Template method” is basically a feature whose implementation is defined in
terms of other features (the implementation features), which are deferred and
effected in descendant classes. The wizard’s graphical interface for the
Template method pattern enables you to choose the different class and feature
names.

The Pattern Wizard supports two variants of this pattern: the original
pattern version, which I just described, and a version using agents. Both variants
are described in section 17.1 of this thesis.

A particularity of the version implemented with agents is that the root
class is one of the pattern classes. Therefore it is compulsory to select the option
“Generate root class and Ace file” at the bottom of the pattern’s window. If you
don’t select it and click the “Generate” button, you will get a warning message:

and the wizard will automatically select the option for you and generate the
correct code.

“Pattern
properties”
frame for the
Adapter pat-
tern

“Pattern
properties”
frame for the
Template
method pat-
tern

Warning mes-
sage for the
Template
method with
agents pattern

PATTERN WIZARD §21330
• Bridge:

The Bridge pattern relies on two parallel hierarchies: the application classes and
the implementation classes. The Pattern Wizard enables you to select the name
of all involved classes and features. For example, you can choose the name of
the application class’s descendants and of the implementation class’s
descendants. One constraint is that you must have as many descendants of the
application class as descendants of the implementation class. If it is not the case
and you click the “Generate button”, you will get an error message:

No code will be generated.

The Pattern Wizard supports three variants of the Bridge pattern: the original
pattern, a version using effective classes only, and a third variant using non-
conforming inheritance. All three variants are described in section 17.2.

21.3 DESIGN AND IMPLEMENTATION
The Pattern Wizard automatically generates Eiffel classes — and possibly a project
root class and an Ace file — that programmers will have to fill in to build their
systems. The code generation relies on template files with placeholders that the
wizard fills in with the pattern properties entered by the user. Let’s have a closer
look at the design and implementation of the Pattern Wizard.

Objectives

The Pattern Wizard targets the non-componentizable patterns of categories 2.1 and
2.2 of the componentizability classification appearing in section 6.3 for which it is
possible to generate skeleton classes (i.e. Eiffel classes that compile and capture the
entire pattern structure but miss implementation that developers will have to
provide). The idea is both to simplify the job of programmers by preparing the code
and to ensure the design pattern gets implemented correctly. Five design patterns
belong to the categories 2.1 and 2.2, some of them having several variants:

“Pattern
properties”
frame for the
Bridge pat-
tern

Error mes-
sage in case
of invalid
input for the
Bridge pat-
tern

The notions of root
class and Ace file are
described in appen-
dix A.

See “Design pattern
componentizability
classification
(filled)”, page 90.

§21.3 DESIGN AND IMPLEMENTATION 331
• Adapter (Class adapter and Object adapter)
• Decorator
• Template Method (original pattern and variant implementation using agents)
• Bridge (original pattern using deferred classes, variant using effective classes

only, and an implementation using non-conforming inheritance)
• Singleton
The Pattern Wizard has been carefully designed to:
• Separate the underlying model (pattern information, code generation) and the

GUI parts: the corresponding classes appear in different clusters (see Overall
architecture).

• Enforce reusability: motifs appearing several times in the variant windows of
the Pattern Wizard have been captured into reusable components to avoid
code repetition.

• Ensure extensibility: the Pattern Wizard can easily be extended to support
other design patterns. (I will explain more about that after presenting the
application’s architecture.)

Overall architecture

The following class diagram shows the overall architecture of the Pattern Wizard.
For simplicity, it does not show all the classes. For example, it only shows the
classes (GUI, model, and code generation) corresponding to the Decorator pattern;
you have to imagine the counterparts for the other supported patterns.

The Pattern Wizard classes are grouped into four main clusters:
• “gui”: This cluster contains all GUI-related classes. It has a subcluster

“components” for all reusable GUI components mentioned before (frames,
horizontal and vertical boxes, etc.). The classes that do not belong to the
subcluster “components” correspond to pattern-specific GUI components and
windows of the Pattern Wizard.

• “model”: This cluster includes the class PW_PATTERN_INFORMATION and its
descendants, which contain the information needed to generate code for each
pattern.

PATTERN_
WIZARD

+
PW_INITIAL_

WINDOW

*
PW_INITIAL_

WINDOW IMP

*
PW_PATTERN_
VERTICAL BOX

+
PW_DECORATOR_

VERTICAL BOX

+
PW_DECORATOR_

INFORMATION

*
PW_PATTERN_
INFORMATION

*
PW_PATTERN_

CODE GENERATOR

+
PW_DECORATOR_

CODE GENERATOR

PW_SKELETON_
NAMES

gui model

generation

PW_
SUPPORT

support

Simplified
class dia-
gram of the
Pattern Wiz-
ard applica-
tion

PATTERN WIZARD §21332
• “generation”: This cluster contains the class PW_PATTERN_CODE_
GENERATOR and its descendants, which take care of the actual code
generation based on the PW_PATTERN_INFORMATION classes and the
placeholder names defined in the class PW_SKELETON_NAMES.

• “support”: This cluster contains the helper class PW_SUPPORT that contains
useful features like pattern_delivery_directory, directory_exists, and file_exists.

Graphical User Interface

The class PW_INITIAL_WINDOW corresponds to the first window that appears when
launching the PATTERN_WIZARD application (reproduced below).

It consists of a tree view of the supported patterns plus a few controls. When the user
selects a pattern in the tree view, the bottom part of the window changes and shows
pattern-specific information and properties the user has to enter (unless he wants to
rely on the default values).

Here is the widget layout of this initial window of the Pattern Wizard that
permits such dynamic transformation:

Initial win-
dow of the
Pattern Wiz-
ard

This window already
appeared on page
324.

PW_PATTERN_SELECTOR

EV_HORIZONTAL_BOX

PW_CONTROL_BOX

EV_TITLED_WINDOW

EV_VERTICAL_BOX

Widget layout
of the Pattern
Wizard’s ini-
tial window

§21.3 DESIGN AND IMPLEMENTATION 333
Each tree item is associated with an action select_pattern, which creates an instance
of a pattern-specific descendant of PW_PATTERN_VERTICAL_BOX and extend the
vertical box in red in the above figure with it.

The PW_PATTERN_VERTICAL_BOX displays some information — the patterns’
intent and applicability — directed at the user to help him know whether the selected
design pattern is useful for problem. Besides, it shows the pattern properties that can
be changed before the code generation; for example, the name of classes and
features of those classes.

Model

The cluster “model” is composed of the class PW_PATTERN_INFORMATION and its
descendants. They contain the information the user can enter in the different text
fields and other controls of the Pattern Wizard’s GUI, which will be used by the PW_
PATTERN_CODE_GENERATOR.

Let’s take the example of the Decorator pattern. The pattern properties frame
looks like this:

The second tab with the properties of the decorated component appears next:

The model was designed as a “repository” of information given by the user via the
wizard’s GUI. There is a direct mapping between the two. For example, the field
“Class name” of the “Original component properties” tab is represented by an
attribute component_class_name in the class PW_DECORATOR_INFORMATION; the
field “Creation procedure name” in the “Decorated component properties” tab is
modeled by an attribute decorated_component_creation_procedure_name.

Each attribute has a corresponding setter procedure to make it possible for the
GUI classes to construct the PW_PATTERN_INFORMATION from the information
entered by the user. This is done in the class PW_INITIAL_WINDOW_IMP.

Frame to
select the
Decorator
properties
(first tab:
original com-
ponent prop-
erties)

Frame to
select the
Decorator
properties
(second tab:
decorated
component
properties)

PATTERN WIZARD §21334
The function decorator_info is sketched below:

The class PW_PATTERN_INFORMATION also exposes a query is_complete, which
permits to know whether all information has been filled by the user; is_complete must
be true before any code generation.

Generation

The cluster “generation” contains the class PW_PATTERN_CODE_GENERATOR and
its descendants (one descendant per pattern). Here is the interface of the class PW_
PATTERN_CODE_GENERATOR:

deferred class

PW_INITIAL_WINDOW_IMP
...
feature {NONE} -- Implementation (Pattern information)

decorator_info: PW_DECORATOR_INFORMATION is
-- Selected information about the chosen pattern

require
decorator_pattern_vbox_not_void: decorator_pattern_vbox /= Void

local
frame: PW_DECORATOR_PROPERTY_SELECTOR

do
create Result
frame := decorator_pattern_vbox.pattern_properties_frame
Result.set_component_class_name (frame.component_class_name)
Result.set_feature_name (...)
Result.set_effective_component_class_name (...)
Result.set_decorated_component_class_name (...)
Result.set_decorated_component_creation_procedure_name (...)
if frame.is_component_with_additional_attribute_generation then

Result.set_component_with_
additional_attribute_generation (True)

Result.set_additional_attribute_name (...)
Result.set_additional_attribute_type_name (...)

end
if frame.is_component_with_additional_behavior_generation then

Result.set_component_with_
additional_behavior_generation (True)

Result.set_additional_feature_name (...)
end

ensure
decorator_info_not_void: Result /= Void

end
...
end

deferred class interface

PW_PATTERN_CODE_GENERATOR

feature -- Access

pattern_info: PW_PATTERN_INFORMATION
-- Pattern information needed for the code generation
-- (name of classes, name of features, etc.)

project_directory: STRING
-- Path of the project directory (where the code will be generated)

Construction
of a PW_
DECORATO
R_INFOR-
MATION

Interface of
the class PW_
PATTERN_
CODE_GEN-
ERATOR

§21.3 DESIGN AND IMPLEMENTATION 335
The code generation relies on skeleton files delivered with the wizard. They are
Eiffel or Ace files with placeholders of the form <SOMETHING_TO_ADD_HERE>.
Here is the example of the skeleton Eiffel file that serves to generate the deferred
component class of the Decorator pattern:

feature -- Status report

root_class_and_ace_file_generation: BOOLEAN
-- Should a root class and an Ace file be generated?

feature -- Element change

set_pattern_info (a_pattern_info: like pattern_info)
-- Set pattern_info to a_pattern_info.

require
a_pattern_info_not_void: a_pattern_info /= Void

ensure
pattern_info_set: pattern_info = a_pattern_info

set_project_directory (a_project_directory: like project_directory)
-- Set project_directory to a_project_directory.
-- Add '\' at the end if none.

require
a_project_directory_not_void: a_project_directory /= Void
a_project_directory_not_empty: not a_project_directory.is_empty
directory_exists: directory_exists (a_project_directory)

ensure
project_directory_set: project_directory /= Void and then

not project_directory.is_empty

set_root_class_and_ace_file_generation (
a_value: like root_class_and_ace_file_generation)

-- Set root_class_and_ace_file_generation to a_value.
ensure

root_class_and_ace_file_generation_set:
root_class_and_ace_file_generation = a_value

feature -- Generation

generate
-- Generate code for this pattern.

require
pattern_info_not_void: pattern_info /= Void
pattern_info_complete: pattern_info.is_complete

invariant

project_directory_not_empty_and_exists_if_not_void:
project_directory /= Void implies (not project_directory.is_empty and

directory_exists (project_directory))

end

deferred class
<DECORATOR_COMPONENT_CLASS_NAME>

feature -- Basic Operation

<DECORATOR_FEATURE_NAME> is
-- Do something.

deferred
end

end

Skeleton file
to generate
the compo-
nent class of
the Decora-
tor pattern

PATTERN WIZARD §21336
The correspondence between placeholders and actual names (class names, feature
names, etc.) to be generated depending on the pattern is kept in the class PW_
SKELETON_NAMES.

To come back to the class PW_PATTERN_CODE_GENERATOR, its feature
generate_code is implemented as follows:

The procedures generate_ace_file, generate_root_class, and generate_pattern_code are
deferred in class PW_PATTERN_CODE_GENERATOR and effected in the descendant
classes. The actual implementation of these features relies on one routine generate_
code defined in the parent class PW_PATTERN_CODE_GENERATOR. The signature of
this feature is the following:

• a_new_file_name corresponds to the “.e” or “.ace” file to be generated. To use
this example of the Decorator pattern again, if the user wants to call the
deferred component class MY_COMPONENT, the value of a_new_file_name will
be “chosen_project_directory_path\my_component.e” (where “chosen_
project_directory_path” corresponds to the path to the project directory
chosen by the user).

• a_skeleton_file_name corresponds to the “.e” or “.ace” skeleton file delivered
with the Pattern Wizard that is used to generate the text of the new file to
create (corresponding to file name a_new_file_name). For example, to generate
the deferred component class of the Decorator pattern, we would use the file
name of the skeleton Eiffel file given on the previous page.

• some_changes corresponds to the mapping between placeholders (found in the
skeleton file) and the actual text to be generated. To use the example of a class
MY_COMPONENT, the list some_changes would contain the tuple
[“<DECORATOR_COMPONENT_CLASS_NAME>”, “MY_COMPONENT”].

deferred class

PW_PATTERN_CODE_GENERATOR
...
feature -- Generation

generate is
-- Generate code for this pattern.

require
pattern_info_not_void: pattern_info /= Void
pattern_info_complete: pattern_info.is_complete

do
if root_class_and_ace_file_generation then

generate_ace_file
generate_root_class

end
generate_pattern_code

end
...
end

generate_code (a_new_file_name, a_skeleton_file_name: STRING;
 some_changes: LINKED_LIST [TUPLE [STRING, STRING]])

Implementa-
tion of feature
‘generate’ of
class PW_
PATTERN_
CODE_GEN-
ERATOR

Signature of
‘generate_
code’

See Skeleton file to
generate the compo-
nent class of the Dec-
orator pattern.

§21.3 DESIGN AND IMPLEMENTATION 337
The actual implementation of feature generate_code is given below:

deferred class

PW_PATTERN_CODE_GENERATOR

...

feature {NONE} -- Implementation (Code generation)

generate_code (a_new_file_name, a_skeleton_file_name: STRING;
some_changes: LINKED_LIST [TUPLE [STRING, STRING]]) is

-- Generate new file with file name a_new_file_name from the
-- skeleton corresponding to a_skeleton_file_name by
-- reproducing the skeleton code into the new file after
-- some_changes (replacing a value by another).
--| some_changes should be of the form:
--| LINKED_LIST [[old_string, new_string], ...]

require
a_new_file_name_not_void: a_new_file_name /= Void
a_new_file_name_not_empty: not a_new_file_name.is_empty
a_skeleton_file_name_not_void: a_skeleton_file_name /= Void
a_skeleton_file_name_not_empty: not a_skeleton_file_name.is_empty
a_skeleton_file_exists: file_exists (a_skeleton_file_name)
some_changes_not_void: some_changes /= Void
no_void_change: not some_changes.has (Void)
-- no_void_old_string: forall c in some_changes, c.item (1) /= Void
-- no_void_new_string: forall c in some_changes, c.item (2) /= Void

local
file: PLAIN_TEXT_FILE
skeleton_file: PLAIN_TEXT_FILE
text: STRING
a_change: TUPLE [STRING, STRING]
old_string: STRING
new_string: STRING

do
create skeleton_file.make_open_read (a_skeleton_file_name)
skeleton_file.read_stream (skeleton_file.count)
text := skeleton_file.last_string
from some_changes.start until some_changes.after loop

a_change := some_changes.item
old_string ?= a_change.item (1)
if old_string /= Void then

new_string ?= a_change.item (2)
if new_string /= Void then

text.replace_substring_all (old_string, new_string)
end

end
some_changes.forth

end
create file.make_create_read_write (a_new_file_name)
file.put_string (text)
file.close
skeleton_file.close

end

...

end

Full text of
feature
‘generate_
code’

PATTERN WIZARD §21338
Limitations

The limitations of the Pattern Wizard are of two kinds: first, limitations of the
current implementation of the tool, which should disappear in the future; second,
limitations of the approach itself, which are basically the same as the limitations of
this Ph.D. thesis work.

Future works on the tool include:
• Give the user the possibility to choose the root class name and creation

procedure name like for the other classes.
• Give the user the possibility to use existing files (rather than always

generating new files) and add to them the wished functionalities (typically
adding a set of features to an existing class rather than generating a new class
file with these features).

The implied GUI changes are minor; it would suffice to add an horizontal
box with a text field and a “Browse...” button to let the user choose the file to
modify (in the same spirit as the project location selection).

The major changes would be in the code generation part. It would require
parsing the existing class to get an abstract syntax tree (AST) and insert into this
AST the nodes corresponding to the extra code to be added, and write the
augmented AST into a file.

Other limitations of the Pattern Wizard include:
• The language specificity: The wizard is entirely written in Eiffel and generates

Eiffel files only. However, it would be quite easy to make it generate files in
Java or C# for example; we would need skeleton files in those languages and
maybe one or two adaptations in the wizard’s code.

• The limited number of supported patterns: The wizard only targets five
patterns (plus a few variants); these are the five non-componentizable design
patterns of [Gamma 1995] for which it is possible to generate skeleton classes.
However, it would be easy to extend the wizard to support more patterns; here
are the required steps:
• On the model side: we would need to write the corresponding

descendant of PW_PATTERN_INFORMATION.
• On the code generation side: we would need to write a descendant of

PW_PATTERN_CODE_GENERATOR.
• On the GUI side: we would need to write the corresponding descendant

of PW_PATTERN_VERTICAL_BOX and PW_PATTERN_PROPERTY_
SELECTOR.

• Finally, we would need to make the connection between the existing
implementation and the new classes by extending the features select_
pattern and generate_code of class PW_INITIAL_WINDOW, and build the
new_pattern_info in class PW_INITIAL_WINDOW_IMP.

The Pattern Wizard has been designed with extensibility in mind and could be easily
adapted to a broader componentization approach that would target more design
patterns and more programming languages.

21.4 RELATED WORK
One of the authors of Design Patterns, John Vlissides, collaborated with Frank
Budinsky, Marilyn Finnie, and Patsy Yu from the Toronto Software Laboratory to
build a tool that also generates code from design patterns.

See chapter 22, page
343.

See “Design pattern
componentizability
classification
(filled)”, page 90.

[Budinsky 1996].

§21.5 CHAPTER SUMMARY 339
However, this tool is different from the Pattern Wizard in many respects: first,
it uses an HTML browser and Perl scripts instead of a pure object-oriented design
and implementation in Eiffel; second, it generates C++ code instead of Eiffel code.
The goals of the authors were to build a tool allowing a fast turn-around: they
discarded other approaches using traditional programming languages as too slow (in
terms of development) and not flexible enough. The tool has a three-parts
architecture: the users interact with a browser (called “Presenter”) written in HTML;
it transmits the user input as Perl scripts to a Perl interpreter (called “Mapper”); the
Perl scripts invoke a COGENT (COde GENeration Template) interpreter, which
serves as code generator. They developed the COGENT interpreter for this tool.

The “Presenter” part has some commonalities with the Pattern Wizard:
• It has an intent and a motivation page providing information to the user. These

elements of information are available as HTML pages with hyperlinks. (These
pages give access to the chapters of Design Patterns in HTML format.)

• It gives users the possibility to select different generation options:
• Users must select the names of the classes involved in a design pattern

like in the Pattern Wizard. (One thing that is possible with this tool but
not yet possible with the Pattern Wizard is to use existing client
classes.)

• Users may choose different options to generate different
implementation versions of the same pattern; for example, a version of
the Composite pattern favoring transparency and another one favoring
safety.

• Users may choose different code generation options; for example, they
can decide to generate a main method and debug information.

The Pattern Wizard could benefit from some ideas of the “Presenter” part of the
code generation tool by Budinsky et al. (for example, more fine-grained code
generation options, a Questions & Answers page, etc.) to become even more user-
friendly. As for the other facets (like design and architecture), the Pattern Wizard
brings a new and simpler solution based on fully object-oriented design and
implementation using Eiffel. As far as I know, no such tool was available for Eiffel.

21.5 CHAPTER SUMMARY
• The Pattern Wizard is a graphical application that enables generating skeleton

classes automatically for some non-componentizable patterns.
• The code generation relies on template files delivered with the Pattern Wizard,

which are filled according to the input given by the user. The user can also
rely on default values, in which case he just has to click a button “Generate”
to launch the code generation.

• The Pattern Wizard has been designed with extensibility in mind and could
easily be extended to support other patterns and even other programming
languages.

• Componentization and tool support complement each other very well.

See “Composite pat-
tern”, 10.1, page 147
for a detailed
description of the
Composite pattern
and its different fla-
vors.

[Arnout-Web].

PATTERN WIZARD §21340

	21 Pattern Wizard
	21.1 Why an automatic code generation tool?
	21.2 Tutorial
	Example of the Decorator pattern
	Other supported patterns

	21.3 Design and implementation
	Objectives
	Overall architecture
	Graphical User Interface
	Model
	Generation
	Limitations

	21.4 Related work
	21.5 Chapter summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

