
SCOOPLI: a library for concurrent object-oriented
programming on .NET

Piotr Nienaltowski

Chair of Software Engineering
ETH Zurich

 8092 Zurich, Switzerland

Piotr.Nienaltowski@inf.ethz.ch

Volkan Arslan
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland

Volkan.Arslan@inf.ethz.ch

ABSTRACT

The SCOOP model (Simple Concurrent Object-Oriented Programming) [Mey97] offers a comprehensive
approach to building high-quality concurrent and distributed systems. The model takes advantage of the inherent
concurrency implicit in object-oriented programming to provide programmers with a simple extension enabling
them to produce concurrent applications with little more effort than sequential ones.

In this article, we present SCOOPLI for .NET: a library implementation of SCOOP. We focus on the mapping
of SCOOP concepts to .NET constructs. We show how processors can be mapped to application domains, and
how separate calls are implemented. We also discuss distributed programming with SCOOPLI. Finally, we
point out the improvements that may be achieved by the use of .NET, as opposed to the previous, thread-based,
implementation.

Keywords
Concurrent object-oriented programming, SCOOP, Eiffel, Design by Contract, distributed programming, .NET
Remoting, .NET Threading.

1. INTRODUCTION
The SCOOP model has been proposed as a new
approach to building concurrent and distributed
systems [Mey93] [Mey97]. The basic idea is to take
object-oriented programming as given, in a simple
and pure form based on the concepts of Design by
Contract, which have proved highly successful in
improving the quality of sequential programs, and
extend them in a minimal way to cover concurrency
and distribution. The extension indeed consists of
just one keyword separate; the rest of the mechanism
largely derives from examining the consequences of
the notion of contract in a non-sequential setting.

The model is applicable to many different physical
setups, from multiprocessing to multithreading,
network programming, Web services, highly parallel
processors for scientific computation, and distributed
computation. For application programmers, writing
concurrent applications with SCOOP is extremely
simple, since it does not require the usual baggage of
concurrent and multithreaded programming
(semaphores, rendezvous, conditional critical regions
etc.). The model takes advantage of the inherent
concurrency implicit in object-oriented programming
to provide programmers with a simple extension
enabling them to produce concurrent applications
with little more effort than sequential ones.

Although SCOOP has attracted considerable
attention, it has only had prototype implementations
so far. Our research work is aimed at refining the
model and providing a working, production-quality
implementation. SCOOP can be implemented in
several different environments (Fig. 1) but we have
chosen Microsoft .NET to be our reference platform.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1st Int.Workshop on C# and .NET Technologies on
Algorithms, Computer Graphics, Visualization, Computer
Vision and Distributed Computing

February 6-8, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press
ISBN 80-903100-3-6

.NET offers several mechanisms that seem to be
extremely suitable for SCOOP. Most of them are
provided by System.Runtime.Remoting and
System.Threading namespaces. In this paper, we
present SCOOPLI: a library-based implementation of
SCOOP for .NET.

The rest of the article is organised as follows:

Section 2 provides a short description of the SCOOP
model. Section 3 presents the SCOOPLI library.
Section 4 focuses on mapping of SCOOP concepts to
.NET constructs and describes how distributed
execution can be achieved. Finally, Section 5
summarises the article and describes our future
research directions.

Eiffel notation is used in all code examples.

2. THE SCOOP MODEL
SCOOP stands for Simple Concurrent Object-
Oriented Programming. Indeed, the very power of
the model lies in its simplicity. More precisely, the
extension covering full-fledged concurrency and
distribution is as minimal as it can get starting from a
sequential notation: SCOOP adds a single new
keyword to the Eiffel programming language —
separate.

2.1. Processors
Processors are the principal new concept for adding
concurrency to the framework of sequential object-
oriented computation. A concurrent system may have
any number of processors, as opposed to just one for
a sequential system. One has to be very careful when
using the word “processor”: it should not be
confused with a physical CPU! In the SCOOP model,
a processor is an autonomous thread of control
capable of supporting the sequential execution of
instructions on one or more objects. It can be
implemented by a piece of hardware (a computer),
but also by a process of the underlying operating
system, or, on multithreaded operating systems, a
thread of such a process. In the .NET Framework,
processors can be mapped to application domains
(see section 4). Viewed by the software, processor is

an abstract concept; the same concurrent application
may be executed on very different architectures
(time-sharing on one computer, multiple threads
within one Unix or Windows process, etc.) without
any change to its source text.

SCOOP uses the fundamental scheme of the O-O
computation: feature call, x.f (a), executed on behalf
of some object O1 and calling operation f on object
O2 attached to x, with the argument a. In a
sequential setting, a single processor handles
operations on all objects, therefore feature calls are
synchronous. This means that the execution of the
next feature call will not begin before the current call
has terminated.

Concurrency is introduced by allowing the use of
multiple processors. What happens if we rely on
different processors for handling O1 and O2? The
computation on O1 can move ahead without waiting
for the call on O2 to terminate, since another
processor handles it (Fig. 2). Hence the
asynchronous semantics of such feature calls.

2.2. Separate objects
Since the effect of a call depends on whether the
caller and the callee objects are handled by the same
processor or by different ones, the software text must
indicate that fact unambiguously. A declaration of an
entity or function, which normally appears as
x: SOME_CLASS may now also be of the form
x: separate SOME_CLASS. Keyword separate
indicates that entity x is handled by a different
processor, so that calls on x should be asynchronous
and can proceed in parallel with the rest of
computation. With such a declaration, any creation
instruction create x.make (…) will spawn off a new
processor to handle calls on x. Please note that we do
not specify which processor to use for handling. The
important thing is the fact that this processor is
different from the processor handling the current
object.

SCOOP
platform-independent

.NET
 .NET

 Compact
 Framework

POSIX …

Figure 1. Two-level architecture of SCOOP

Figure 2. Asynchronous call in SCOOP

previous_instruction;

x.f (a);

next_instruction;

Object 1 Object 2

(CLASS_T) (CLASS_X)

Processor 1 Processor 2

O1 O2

Instead of declaring a single entity x as separate, the
declaration of its base class may also be of a new
form: separate class SOME_CLASS. In this case
SOME_CLASS will be called separate class1. The
following conventions follow:
• a type is separate if:

o it is based on a separate class, or
o it is of the form separate T for some

T (T itself may be non-separate or
separate),

• an entity is separate if its type is separate,
• an object is separate if it is attached to a separate

entity,
• a function is separate if its type is separate,
• an expression is separate if it is either a separate

entity or a call to a separate function,
• a call or creation instruction is separate if its

target is a separate expression,
• a precondition clause is separate if it involves a

separate call.

2.3. Consistency rules
The validity of separate calls is governed by the
Separateness Consistency Rule [Mey97]:
• If the source of an attachment (assignment

instruction or assignment passing) is separate, its
target entity must be separate too.

• If an actual argument of a separate call is of a
reference type, the corresponding formal
argument must be declared as separate.

• If the source of an attachment is the result of a
separate call to a function returning a reference
type, the target must be declared as separate.

• If an actual argument of a separate call is of an
expanded type, its base class may not include,
directly or indirectly, any non-separate attribute
of a reference type.

For a separate call to be valid, the target of the call
must be a formal argument of the enclosing routine.
If an assertion contains a function call, any actual
argument of that call must, if separate, be a formal
argument of the enclosing routine, if any.

2.4. Access control policy
As mentioned above, the target of a separate call
must be a formal argument of the enclosing routine.
Such “embedding” of separate calls in routines has

1 It follows from the syntax convention that a class may be

at most one of: separate, expanded, deferred. The
separateness of a class is not inherited: a class is separate
or not according to its own declaration, regardless of its
parents’ status.

one more purpose: it allows exclusive locking of
separate objects. In order to obtain exclusive access
to a separate object O2, it suffices to use the attached
entity (e.g. a) as an argument of the corresponding
call, as in r (a).

A routine precondition [Mey97] involving a separate
argument causes the client to wait until the
precondition holds. Therefore, such a precondition
becomes wait condition (see 3.3.3).

The access control policy in SCOOP is very
restrictive: at any given time, at most one routine can
be executed by a processor in charge of the separate
object. This restriction ensures that concurrent
execution of routines will not break the class
invariant.

Sometimes, however, there may be need to interrupt
the execution of a routine to let a new, high-priority
client take over. The concept of duel [Mey97] has
been introduced to handle such situations.

2.5. Synchronisation
No special mechanism is required for a client to
resynchronize with its supplier after a separate call
x.f (a) has gone off in parallel. The client will wait if
and only if it needs to, i.e. when it requests
information on the object through a query call, as in
value := x.some_query. This automatic mechanism
is known as wait by necessity [Car91]. SCOOP
ensures that the separate calls made from one client
to one supplier are executed in the right (FIFO)
order.

3. SCOOPLI
The two-level architecture of SCOOP (Fig. 1)
suggests that the general concurrency mechanism
(top layer) should be implemented in a platform-
independent style. Such concepts as processor,
separate object, and separate call are expressed at
this level. Only their mapping to platform-dependent
constructs will differ from one platform to another.
In this section, we describe the top layer, i.e. the
implementation of the general concurrency
mechanism. The mapping of SCOOP concepts to
.NET constructs will be considered in Section 4.

3.1. Library approach
We decided to begin the implementation of SCOOP
with an Eiffel library rather than by extending the
compiler. There are two main reasons for this choice:
first of all, a library-based solution allows for more
flexibility in “playing” with the model, i.e. refining
and extending it; secondly, it allows us to implement
SCOOP on several platforms (e.g. .NET, POSIX
threads, etc.) without taking care of very complex
compilation-related issues. Nevertheless, the final

production-quality implementation will be provided
as the extension to the Eiffel compiler.

Let’s have a look at the functionality provided by the
SCOOPLI library, and see how it can be used by
programmers.

3.2. Basic concepts
The library relies on the concepts of separate client
and separate supplier. The underlying basic notions
“client” and “supplier” are taken in the following
sense:

Let S be a class. A class C which contains a
declaration of the form x: S is said to be a client of
S. S is then said to be a supplier of C. [Mey97]

Following this definition, a separate client is a class
which contains a declaration of the form
x: separate S2. S is then said to be a separate
supplier.

A separate client is handled by a different processor
than each of its separate suppliers3. Therefore, any
call of a feature on the separate supplier by the
separate client (we are going to call it a separate
call) is executed asynchronously, i.e. the separate
client can move to the next instruction without
waiting for the current call to terminate.

3.3. Interface
Working with SCOOPLI, one cannot use the exact
SCOOP syntax, since SCOOPLI rests on a library-
only approach. The criteria that guided the design of
the interface were to make it as simple and easy to
use as possible, and to maintain a clear
correspondence with the SCOOP syntax.

4.2.1 Declaration of a separate supplier
In SCOOP, a declaration of a separate supplier can
be expressed as:

a) x: separate S

b) separate class S … end
x: S

SCOOPLI uses multiple inheritance to provide the
same facility (Fig. 3). All separate suppliers must
inherit from SEPARATE_SUPPLIER class:

class SEPARATE_S
 inherit

2 This is expressed in the SCOOP syntax. The actual

syntax of SCOOPLI is slightly different (see 3.1.1).
3 In fact, SCOOP allows attaching a non-separate object to

a separate entity, so that both client and supplier objects
are handled by the same processor. Our library does not
allow such attachments.

SEPARATE_SUPPLIER
S

…
end

x: SEPARATE_S

4.2.1 Declaration of a separate client
In SCOOP, there is no need to declare a class to be a
separate client; any class can potentially become a
separate client by using one or more separate entities
(separate suppliers):

class MY_CLASS
feature
 x: separate S
 …
end

SCOOPLI requires an explicit separate client
declaration. Once again, multiple inheritance is used:
in the same way as separate supplier classes inherited
from SEPARATE_SUPPLIER, every separate client
class must inherit from SEPARATE_CLIENT.

class MY_CLASS -- separate client
 inherit

SEPARATE_CLIENT
 feature
 x: SEPARATE_S --separate supplier
 …
end

4.2.1 Separate procedure calls
Direct application of features on separate supplier
objects is prohibited in SCOOP (see 2.3). This means
that we cannot write just x.f(a), if x is separate. We
should “embed” the call to x.f(a) in a routine:
-- in class MY_CLASS
r (a_x: separate S; a: SOME_CLASS) is
 -- execute a_x.f (a)
 do
 a_x.f (a) -- here, a separate call is allowed
 end

…
r (x, a) -- here, a direct call to x.f (a) is prohibited

SEPARATE_SUPPLIER

 S

 SEPARATE_S

Figure 3. Multiple inheritance allows declaration
of separate entities in SCOOPLI

 -- we use r (x, a) instead

There may be several separate calls to one or more
separate suppliers within one routine. All these
separate suppliers must be formal arguments of the
routine. The locking mechanism of SCOOP is based
upon this convention: before executing the routine,
the separate client object obtains exclusive locks on
all separate supplier objects passed as actual
arguments to the routine (see 2.4).
SCOOPLI follows the SCOOP style, with a different
syntax:
-- in class MY_CLASS
r (a_x: SEPARATE_S; a: SOME_CLASS) is
 -- execute a_x.f (a)
 do
 separate_routine (a_x, agent a_x.f (a))
 -- corresponds to a_x.f (a)
 end
…
separate_execute ([x], agent r (x, a), Void)
 -- corresponds to r (x, a)

The calls x.f (a) and r (x, a) are wrapped in calls to
separate_routine and separate_execute,
respectively. Both routines are declared in the
SEPARATE_CLIENT class. Let’s have a closer look
at them.

separate_routine (supplier: SEPARATE_
 SUPPLIER; procedure: PROCEDURE [])
Formal arguments:
• supplier

Denotes the separate supplier object on which the
separate call to procedure is made.

• procedure
Denotes the routine to be called on the separate
supplier object.

In the example above, separate_routine is called
with arguments a_x (for supplier) and
agent a_x.f (a)4 (for procedure). Such call
corresponds to x.f (a) in SCOOP.

separate_execute(requested_objects:
TUPLE[]; action: PROCEDURE
[]; wait_condition: FUNCTION
[])
Formal arguments:

4 agent x.f (a) is an object representing the operation

x.f (a). Such objects, called agents, are used in Eiffel to
“wrap” routine calls [ETL3]. One can think of agents as
a more sophisticated form of .NET delegates.

• requested_objects
Denotes the (tuple of) objects on which exclusive
locks should be acquired before calling action.

• action
Denotes the routine to be called on the separate
client object. action corresponds to the routine
that “wraps” separate calls.

• wait_condition
Denotes the Boolean function representing the
wait condition5 for the call.

In the example, separate_execute is called with
arguments [x] (for requested_objects),
agent r (x, a) (for action), and Void (for
wait_condition). Such call corresponds to r (x, a) in
SCOOP.

1.3..1 Wait conditions
In the example above there is no wait condition for
routine r, since we assume that r has no precondition
involving the separate object x. Should r have such a
precondition, the part involving x would be extracted
from the precondition and passed as
a_wait_condition to separate_execute, e.g.
r (a_x: SEPARATE_S; a: SOME_CLASS) is
 require
 x_not_empty: not x.is_empty
 a_positive: a > 0
 do
 separate_routine (a_x, agent a_x.f (a))
 -- corresponds to a_x.f (a)
 end
…
r_wait_condition: BOOLEAN is
 do
 Result := not x.is_empty
 end

separate_execute ([x], agent r (x, a),
 agent r_wait_condition)
 -- corresponds to r (x, a)

4.2.1 Separate function calls
Direct application of features on separate supplier
objects is prohibited (see 2.3, 3.3.3). This rule
applies not only to procedures, but also to functions.
If some_value is a function (of type T) defined in
the class SEPARATE_S, and x is a separate supplier
object of type SEPARATE_S, then every evaluation

5 Wait condition is the part of a routine precondition that

involves separate objects.

of x.some_value must be embedded in a routine
that takes x as argument.

-- in class MY_CLASS
y: T
…
r (a_x: separate S) is
 -- assign a_x.some_value to y
 do
 y := a_x.some_value
 end
…
r (x)

In SCOOPLI, calls to a_x.some_value and r (x) are
wrapped in calls to separate_value and
separate_execute, respectively:
-- in class MY_CLASS
y: T
…
r (a_x: SEPARATE_S) is
 -- assign a_x.some_value to y
 do
 y ?= separate_value (a_x,
 agent a_x.some_value)
 end
…
separate_execute ([x], agent r (x), Void)
 -- corresponds to r (x)

Let’s have a closer look at the syntax:
separate_value (supplier: SEPARATE_
 SUPPLIER; function: FUNCTION[]): ANY
Formal arguments:
• supplier

Denotes the separate supplier object on which the
separate call to function is made.

• function
Denotes the function to be evaluated.

Return value is of type ANY.

In the example above, separate_value is called
with arguments a_x (for supplier) and
agent a_x.separate_value (for function).
The reason for using the reverse assignment6 (?=)
instead of the standard one (:=) is that
separate_value always returns an object of type
ANY, which must be converted to an object of type T

6 Reverse assignment is similar to a cast, with one major

difference: if a reverse assignment cannot be made, no
exception is raised; the left-hand side of the assignment
receives then value Void.

(corresponding to the left-hand side of the
assignment).
NB: If the evaluated function returns an object of an
expanded type7, a dedicated routine is used instead of
separate_value, e.g. separate_boolean_value for
BOOLEAN, separate_integer_value for
INTEGER, etc. No reverse assignment is needed in
such cases.
separate_execute is used in the same way as for
separate procedure calls (see 3.3.3).

4. SCOOP ON .NET
In this section we describe how logical processors of
the SCOOP model (see 2.1) can be mapped to
application domains. We also show how the
multithreading model of the Microsoft .NET
Framework is used in our implementation.

4.1. Mapping of processors to application
domains
In most operating systems, processes provide
isolation between several applications running on the
same computer. In the .NET Framework a process
consists of one or more application domains.
Application domains can be considered as managed
logical sub-processes. They provide isolation,
unloading and security boundaries for managed
.NET code. By using several application domains
within a process, server scalability can be greatly
increased [NET02].
Threads are operating system constructs which
execute managed code within an application domain.
Therefore, threads can be defined as paths of
execution. There is no one to one correlation
between threads and application domains, i.e. an
application domain can have one or more threads,
and any thread can be executed on different
application domains at different times, since threads
can cross application domain boundaries. But at any
given time every thread is executed in one
application domain. Cross-domain calls are allowed
between application domains in one process as well
as between application domains on different
computers [Den03], thanks to the remoting
capabilities of the .NET Framework.
In the implementation of the SCOOPLI library for
the .NET platform processors are mapped to
application domains. As you can see in Fig. 4, the
processor which handles the objects o1, o2, and o3,
is mapped to the application domain 1. The processor

7 BOOLEAN, INTEGER, REAL, DOUBLE, CHAR, and

any other type based on an expanded class [Mey97]

which handles the objects o4, o5, and o6, is mapped
to the application domain 2, and so on.

4.2. Distributed execution
In the SCOOPLI library, distributed execution is
made possible by using the concept of application
domains of the .NET Framework.

Let’s have a closer look at the example in Fig. 5. The
separate client object o2, located in AppDomain 1 on
Computer 1, calls x.f, where x is attached to the
separate supplier object o3, which itself resides in
AppDomain 2 on Computer 2. As soon as the call x.f
is initiated, o2 can proceed without waiting for the
termination of the call. Object o3, which now plays
itself the role of a separate client object, calls y.g,
where y is attached to the separate supplier object o7.
Since o7 resides in a different AppDomain located
on a different computer than o3, call y.g has also
separate (asynchronous) semantics. This mechanism
makes possible distributed execution with several
computers. Since processors are mapped to

application domains, they can be located on different
machines.

4.3. Mapping of processors to application
domains
The mapping of processors to application domains is
not specified in the software text. Instead, the
Concurrency Control File (CCF) is used. CCF
specifies the mapping of processors to actual
physical resources: application domains, threads,
web services, etc. In SCOOPLI for .NET, only
application domains are considered.
Here is a typical example for such a CCF (the exact
format is not very important):
creation
 local_nodes:
 system
 "pushkin" (2): "c:\prog\appl1\appll.exe"
 "akhmatova" (4): "c:\prog\appl2\appl2.dll "
 Current: "c:\prog\appl1\appl1.exe"
 end
 remote_nodes:
 system
 "lermontov": "c:\prog\appl3\appl3.exe"
 "tiuchev" (2): "c:\prog\appl4\appl4.exe"
 end
end
external
 Matisse_handler: "mandelstam" port 9000
 ATM_handler: "pasternak" port 8001
end
default
 port: 8001; instance: 10
end

The creation part specifies which physical resources
should be used for separate creations of the form
create x.f, where x is separate. The next two parts,
called local_nodes and remote_nodes, deal with the
mapping of processors to AppDomains. In the
example above, the local_nodes entry specifies that:
• two separate objects will be created in the

application domain represented by the
application appl1.exe on the computer pushkin,

• the next four separate objects will be created in
the application domain appl2.dll on the
computer akhmatova,

Process
AppDomain 1

AppDomain 2

AppDomain 3

o1

o2
o3

o4

o6

o5

o8
o7

Computer 1

AppDomain 1

o1

o2

Computer 2

AppDomain 2

o3

o4

Computer 3

AppDomain 3
o5

o7

o6

x.f

y.g

Figure 4. Application domains and separate
objects

Figure 5. Distributed execution in SCOOPLI
for .NET

• the following ten will be created on the
computer, where the creation instruction is
executed. The value 10 comes from the instance
entry in the default part of the CCF.

For further separate object creations the allocation
scheme is repeated, starting again with two separate
objects on the computer pushkin, four on akhmatova,
and so on.
We can also use AppDomains specified in
remote_nodes and benefit from computers lermontov
and tiuchev to create separate objects. In the software
text, we can choose between both groups by using a
feature of the facility class CONCURRENCY
[Mey97].
The external part specifies which physical resources
are used for existing separate objects. In the example
above, we can get a reference to a separate database
object from the computer mandelstam on port 9000
by using an appropriate function server
 server (name: STRING; ...): separate DATABASE
with the argument “Matisse_handler”.
The CCF file is separate from the software text.
What’s more, it is not a compulsory part of a
SCOOP-based application. If CCF exists, the
mapping of the processors would be done according
to the information in the file. Should CCF be not
available, the standard mapping scheme is used:
every processor is mapped to an application domain
on the current computer. The compilation of a
concurrent application using SCOOP or the
SCOOPLI library is completely independent from the
existence or non-existence of a CCF.

5. CURRENT LIMITATIONS AND
FUTURE WORK

We have presented SCOOPLI for .NET: a library for
concurrent object-oriented programming. We have
provided a concise summary of the SCOOP
mechanism. The interface of the library has been
discussed and compared with the original SCOOP
syntax. We have also shown how processors can be
mapped to application domains, and how separate
calls are implemented. Distributed programming
with SCOOPLI has been described. Thanks to the
use of .NET Remoting, the implementation of the
distributed execution has been greatly simplified,
compared to the previous, thread-based version of
SCOOPLI.

The following features of SCOOP have been
implemented so far:
• declaration and instantiation of separate objects,

• call of procedures on separate objects,
• argument passing (expanded types),
• evaluation of functions implemented as routines,
• assignment to non-separate targets,
• wait conditions,
• exclusive locking of single separate objects,
• wait by necessity.

Future developments will include:
• evaluation of functions implemented as

attributes,
• argument passing (reference types),
• exclusive locking of several separate objects at a

time, with all its implications for wait by
necessity, wait conditions, etc.

6. ACKNOWLEDGMENTS
The research work presented in this paper is part of
the project “SCOOP: Environment for dependable
distributed and reliable object-oriented computing,
based on the principles of Design by Contract”. This
project has been financially supported by the Hasler
Foundation (Berne Switzerland).

We would like to thank Bertrand Meyer for his
comments and suggestions.

7. REFERENCES

[Car93] Caromel, D. Towards a Method of Object-

Oriented Concurrent Programming, in CACM,
Communications of the ACM, Volume 36,
Number 9, September 1993, pp. 90-102.

[Den03] Dennis, A. .NET multithreading, 1st edition,
Manning, 2003

[ETL3] Meyer, B. Eiffel: The language, 3rd edition,
to be published, Prentice Hall

[Mey93] Meyer, B. Systematic Concurrent Object-
Oriented Programming, in Communications of
the ACM, Volume 36, Number 9, September
1993, pp. 56-80.

[Mey97] Meyer, B. Object-Oriented Software
Construction, 2nd edition, Prentice Hall, 1997

[NET02] .NET Framework SDK Documentation,
 Microsoft, 2002

[Ram02] Rammer I. Advanced .NET Remoting,
1st edition, Apress, 2002

