N
-
]
®

M
S

Thése

présentée pour obtenir le grade de docteur de ’Ecole
Nationale Supérieure des Télécommunications

Spécialité : Informatique et Réseaux

Arnaud Bailly

Du requis au garanti : contrats dans un calcul
d’objets temporisés mobiles.

Soutenue le 17 Décembre 2002 devant le jury composé de

Gérard Florin Président
Jean-Pierre Courtiat Rapporteurs
Alessandro Fantechi

Isabelle Demeure Examinateurs

Kathleen Milsted
Jean-Bernard Stefani
Elie Najm Directeur de Thése

Remerciements

Je tiens tout d’abord a remercier Elie Najm, qui a été mon directeur de thése, et qui
m’as toujours prodigué son soutien de maniére inconditionnelle dans les moments
les plus difficiles, et offert son amitié (et un verre de biére en bien des occasions).
Pour tout cela je resterai éternellement redevable et reconnaissant envers lui.

Je remercie également Jean-Bernard Stefani et Kathleen Milsted pour avoir ac-
cepté de participer au jury de ma soutenance, et pour avoir, en tant que responsables
succesifs de ’encadrement de mes travaux pour la section DTL/ASR a France Télé-
com R&D, permis le financement de la majeure partie de cette thése.

Je remercie Alessandro Fantechi pour avoir accepté de rapporter cette thése, et
pour les nombreuses discussions que nous avons pu avoir lors de ses visites en France
et de nos rencontres de part le monde.

Je remercie aussi chaleureusement Jean-Pierre Courtiat pour avoir rapporté mes
travaux, pour sont humour et sa précision dans les commentaires qu’il a pu me
prodiguer.

Je remercie bien stir les professeurs, doctorants, et personnels du département
informatique et réseaux de ’ENST, qui ont participé a créer une ambience de travail
agréable et stimulante durant ces longues années. Parmis les nombreux doctorants
que j’ai pu croiser, et sans volonté d’hexaustivité ni ordre particulier, je tiens a citer
les docteurs Wessam Ajib, Didier Verna, Nadine Richard, Abbas Ibrahim, Arnaud
Fontaine, Philippe Martins, Muhammad Kazmi, Dany Zebiane, Rani Makke, Pascal
Moyal, Alexandre Tauveron, Cyril Carrez, Jean-Pilippe Démoulin, et Robert Bestak.
A eux s’ajoutent les plus amicaux participants des «Zappy» du Vendredi et d’autres
événements, nommément Abdelkrim Nimour, Arnaud Février, Gaél Chardon, Odile
Derouet, Jean Leneutre, Sonia Heimann et Vania Conan, qui ont souvent supporté
mes désidérata neuronaux et mes jugements a l'emporte-piéce. Je les en remercie
tous bien chaleureusement.

Je remercie tout particuliérement certaines personnes que j’ai eu la chance de
croiser, avant ou pendant ma thése, et qui me maintiennent encore, et ce de maniére
complétement déraisonnée et incompréhensible, leur soutient démesuré et leur amitié
bienveillante. Comme j’ai beaucoup de chance elles sont nombreuses, et leur mérite
n’a pas d’égal; aussi elles ne sauraient étre comparés entre elles. Je remercie donc
Tatiana Aubonnet, Loutfi Nuaymi, Cyril Lacaud, Sophie Diallo, Frédéric Fourneau,
Richard Sanders et Jorunn Dugstad. Que nos chemins ne se séparent pas.

Enfin, je remercie mes parents, sans qui tout cela n’aurait pu arriver...

Résumé

Introduction

Les systémes répartis exhibant des contraintes temporelles sont aujourd’hui présents
partout: de bons exemples sont les systémes de télécommunications numérique ou
bien les systémes embarqués comme rencontrés dans 1’électronique grand public
ou l'avionique. La conception et le déploiement de tels systémes sont intrinséque-
ment complexes. De nombreuses méthodes de développement fondées sur I’analyse
formelle de ces systémes ont donc été proposées. Ces méthodes sont basées sur la
description des comportements possibles du systéme analysé.

Nous soutenons toutefois que les méthodes existantes sont souvent inadaptées
car elle ne permettent pas de distinguer les actions que le systéme peut produire
des actions qu’il doit produire. L’absence de ce pouvoir de distinction conduit a
des spécifications purement factuelles, ol raisonner & propos d’un systéme ne peut
étre accompli que si I’on connait absolument son environnement, ce dernier pouvant
produire des actions interférant avec celles du systéme étudié.

Nous proposons donc des méthodes de description et d’analyse fondées sur la
reconnaissance de cette distinction. La description d’un systéme indique alors les
exigences (ou suppositions, ou assumptions) faite pas le systéme sur son environ-
nement, ainsi que les garanties respectées par le systéme quand son environnement
se comporte de maniére adaptée. L’ensemble forme un contrat entre le systéme et
son environnement.

Nous utilisons pour langage une extension temporisée du mw-calcul pour objets
mobiles. Nous proposons une notion d’équivalence pour les termes de ce langage
fondée sur la bisimulation, ainsi qu’un systéme de preuve permettant de décider de
maniére exacte et compléte si deux termes & états finis se comportent de maniére
identique. Cependant, les descriptions utilisant le 7-calcul produisent en général un
nombre infini d’états.

Nous proposons donc une autre méthode d’analyse, fondée sur le typage com-
portemental, qui permet de prendre en compte de telles descriptions. Notre sys-
téme de type nous permet de raisonner de maniére compositionelle: chaque élément
forme alors un composant, et les composants ne peuvent étre assemblés que si chacun
d’entre eux ne fait pas de suppositions excessives sur le comportement des autres
composants. Vérifier qu'un module se comporte de maniére correcte envers son en-
vironnement se réduit a vérifier qu’il est bien typé. L’analyse de types étant statique
(a la compilation et non a ’exécution) cela permet de savoir si un module est correct
dés sa conception.

Enfin nous remarquons que les applications temps-réel dépendent trés fortement
de leur environnement d’exécution, et la vérification statique ne sert a rien si la
machine d’exécution d’un programme (systéme d’exploitation, machine virtuelle)
peut se retrouver dans l'incapacité d’allouer les ressources demandée dynamique-
ment. Pour cela, il nous parait intéressant d’utiliser les résultats obtenus par typage
pour garantir ’exécution correcte des applications. Une machine d’exécution peut
en effet utiliser les informations contenues dans les types comportementaux pour
prévoir les besoins en ressources systéme (deadlines, bande passante) et pratiquer
un controle d’admission a ’entrée. Nous remarquons qu’'une preuve de bon typage
étant une preuve de bon comportement, elle peut également servir a controler le
code lui-méme, en tant que «proof-carrying code», comme pratiqué actuellement
par la machine virtuelle Java. Une application évidente de nos travaux est alors
la prévention des «Denial of Service attacks». Nous montrons pour conclure que
les notations et méthodes définies sont utilisables dans le cadre de développements
utilisant la notation UML-RT.

Le langage 7°

Nous définissons un calcul de processus temporisés permettant de représenter les
contraintes exhibées par des composants temps-réel dont le code peut migrer dy-
namiquement sur un réseaux d’ordinateurs. Chaque processus comprend un terme
algébrique t et un contexte p donnant une valeur a des horloges dont la valeur évolue
au cours du temps; I’ensemble forme un terme de 7°, noté tout simplement ¢p.Les
termes ¢ respectent la syntaxe suivante, en prenant a, b, ¢ appartenant & un ensem-
ble infini de noms de ports, et x,y,z appartenant & un ensemble infini de noms
d’horloges:

tz=0]|Error’|[o, v]lm.t|la=0blt |vnt|t+t|t|t]|Aln).

ol n peut étre indifféeremment un nom de port ou d’horloge. Les processus de terme
0 sont appelés processus passifs; les processus de terme Error sont appelés processus
bloquants (nous dirons aussi informellement qu’ils sont indésirables, ou qu’ils pro-
duisent une erreur). Les opérateurs qui apparaissent dans la syntaxe ci-dessus sont
usuellement nommés, de gauche a droite: préfixe, comparaison, restriction, somme
(ou choiz), composition (ou paralléle), et instanciation.

La syntaxe des actions réductibles est donnée ci-dessous:

™ z=qa(n)|an et mu=1|7".
L’action silencieuse 7 peut-étre vue comme une action interne au processus qui
Ieffectue. Tous les autres préfixes ont un sujet a appartenant & P, et un objet n
appartenant & N. Informellement, @n décrit une émission sur le port sujet a d’un
message contenant ’objet n, et a(n) décrit la réception d’un message sur le port a,
dont I'objet recu est appelé n dans la continuation ¢ du processus.

Les contraintes de sélection o et les conditions d’urgence v (ou deadlines) re-
spectent la syntaxe suivante, donnée respectivement par

ocu=ocANo|lzf’qlz—ytqget vi=vAv|ztqlz—ylq

ouf € {<,<,>,>}h 17 € {<,<,>}, 1 € {<,>}, et ¢ est une valeur décrivant
un instant précis dans la marche temporelle. Le processus Error', oit v = T est la
condition toujours vraie, est Error par simplicité.

Le point essentiel est que la sémantique de ces processus décrit ce que chacun
d’entre eux offre et erige. Ainsi, un processus présentant un préfixe dont la con-
trainte o est vérifiée sans que v soit vérifiée fait une offre & sont environnement.
L’environnement est alors libre d’accepter 'offre et de se synchroniser avec le pro-
cessus offrant, ou bien de refuser. Dans ce dernier cas, le temps peut s’écouler
librement. sans qu’aucune action ne se passe. Si toutefois ’action est urgente (dont
v) est vraie, alors 'environnement ne peut refuser la synchronisation. S’il ne pro-
pose a temps une offre correspondant a 1’exigence présentée par le processus, alors
ce dernier entraine tout le systéme vers une erreur. Les régles de sémantique opéra-
tionnelle pour 7% sont données en Tables 3.2 et 3.3.

L’axiomatisation et le systéme de types

Présenter ici les détails techniques liés a I'axiomatisation ou aux systéme de types
serait déplacé, car leur complexité est trop importante. En place de cela, nous en
décrivons les principes. Ces deux contributions techniques reposent sur une séman-
tique symbolique du langage 7°.

La sémantique symbolique

Un probléme essentiel posé par 1" étude des systémes temps réels est la nature con-
tinue du temps. En effet, un temps continue implique que laisser passer le temps
peut aboutir & une infinité de processus différant par la valeur de leurs horloges.
Rajeev Alur et David Dill ont montré cependant que, lorsque les valeurs temporelles
apparaissant dans les contraintes des termes sont rationnelles, alors qu’'une infinité de
transitions laissant passer le temps pour un processus peuvent en fait étre représen-
tées par une seule transition [AD94|. Une telle transition est dite symbolique, ou
abstraite. Les processus reliés par des transitions symboliques sont appelés régions,
ou zones (une zone contient plusieurs régions). Un parle aussi de graphe des régions.

L’abstraction proposée par les régions rend de nombreux problémes décidables
pour les processus temporisés dont I’abstraction est a états finis (i.e. la seule source
«d’infinitude» provient du temps, le controle de ces automates restant a états finis).
Cependant, nos processus incluant des termes au moins aussi expressifs que le 7-
calcul, leur partie de controle peut atteindre un nombre infini d’états (le pi-calcul per-
met d’encoder le A-calcul [SWO01]). C’est la génération de noms (i.e. 'introduction
de restrictions) en nombre toujours croissant qui permet & des termes d’atteindre
I'infinité en espace. Nous utilisons donc une deuxiéme forme d’abstraction, celle ci
définie par Hennessy et Lin [HL95| permettant d’abstraire la géneration de noms et
de la réduire a un fragment finitaire. Cette abstraction permet toujours au processus
de générer un espace d’états infini, mais elle permet d’effectuer la comparaison entre
processus non sur la base des noms qu’ils générent (ce qui est infaisable pratique-
ment), mais sur la base des comparaisons quils font entre ces noms (ce qui est fait
dans le systéme de preuves).

Le systéme de preuves

Nous avons donc adapté des systémes de preuve existant [LY02, Lin98|, pour perme-
ttre de prouver de maniére cohérente, valide et compléte, que deux processus sont
liés par une relation d’équivalence appelée bisimilarité temporisée tardive, qui est
une simple extension de la notion de bisimilarité introduite par Milner pour CCS et
le m-calcul.

Notre adaptation est cependant non trivialle car une propriété temporelle usuelle-
ment respectée ne ’est pas par nos processus, de part leur nature contractuelle
représentant des offres et des exigences. En quelques mots, nous devons découper
I’espace d’états de nos processus de maniére suffisemment fine, ce qui requiert de
surcroit d’effectuer des correspondances assez élaborées entre partitions. La complé-
tude du systéme de preuves est obtenue en permettant d’interrompre la comparaison
de différentes branches d’un choix lorsque 'une des branches génére une erreur (et
donc interdit d’effectuer toute transition). Ainsi, des processus qui se comporte de
maniére équivalente avant le bloquage mais auraient pu se comporter de maniére dif-
férente aprés sont quand-méme identifiés (comme il se doit). Le systéme de preuves,
ainsi que la sémantique symbolique des processus, est décrite au Chapitre 4.

Le systéme de types

Alors que les preuves d’équivalence ne sont faisables que sur des processus a états
finis (nous n’autorisons pas l'usgae de la récursion), le systéme de types permet
d’analyser des configurations atteignant un nombre d etats infini. Ceci peut étre
accompli en effectuant une abstraction supplémentaire sur les noms de ports qui sont
créés ou transmis. La sémantique symbolique étant sur ce point plus précise que
nos types, nous pouvons l’'utiliser pour mener a bien ’analyse des types, résolvant
de ce fait les problémes liés & la nature continue du temps de la méme maniére que
précédemment. Une contrainte forte (mais réaliste) est cependant introduite sur la
duplication des noms de ports dans une configuration bien typée: si la forme (i.e.
le type) des communications sur un port donné peut évoluer au cours du temps,
alors il ne devra pas y avoir plus de deux exemplaires de ce nom dans lénsemble du
systémes: les interactions se font par paires, uniquement par des processus qui sont
de cette maniére «en vis-a-visy.

Les résultats obtenus sont 1’absence de bloquage dii & un manque de synchro-
nisation entre processus (le contrat exhibé par un processus n’est jamais rompu),
et 'absence de bloquage de la progression du temps (i.e. le systéme continue a
évoluer, évitant le paradoxe d’Achille et de la tortue décrit par Zénon d Elée), sous
une condition d’équité faible concernant le transitions silencieuses (appelées aussi
transitions internes).

Les Applications

Nous commencons le chapitre des applications par un peu de litérature comparée
autour de la notion de contrat (en logique, essentiellement) et de son utilisation en
informatique. Nous établissons un lien en particulier entre la logique déontique telle

que décrite par Von Wright [von51] et nos systémes a transitions étiquetées portant
les offres et les exigences d’un processus.

Ensuite, nous avancons une utilisation possible de 7% comme langage de modéle
pour des plateformes d’exécution temps-réel distribuées. Certaines propositions ré-
centes [MNCK99| vont en effet dans le sens de distinguer des objets “parfaits” ou
objets de modéle, qui représentent 1’exécution ideale, telle qu’elle devrait se produire,
des objects actifs, qui effectuent réellement les taches calculatoires & accomplir. Les
ojets de modéle donnent la structure, la référence de I’application a exécuter. Alors,
des ojets de modéles exprimés en ArtOC fourniraient un support sémantique précis a
la plateforme et au programmeur devant concevoir ’application. A I’exécution, une
incompatibilité entre le modéle de ’application et les activités observées de cette ap-
plication pourraient amener & prendre des mesures contre celle-ci. Cette proposition
se rapproche du model-carrying-code [SRRSO01].

Enfin, nous présentons un langage d’acteurs appelé ArtOC, que nous avons égale-
ment développé, et dont les principes sont similaires & 7°. Ce langage est toutefois
plus proche des langages de programmation classique, et les communications entre
agents se font par passage de message asynchrone, alors que les communications
sont synchrones dans 7°. Cette derniére hypothése est plus conforme & la réal-
ité, ce qui rapproche le langage de la pratique usuelle, et devrait réduire le temps
d’apprentissage moyen pour en arriver 4 la maitrise par rapport a 7°. Nous montrons
finalement comment des concepts usités (syntaxiquement) dans des programmes
ArtOC trouvent un pendant naturel dane le langage de specification UML-RT. Ceci
nous méne a proposer une intégration de programmes ArtOC dans un processus de
développement de systémes temps-réel utilisant la notation UML-RT.

Conclusion

Nous avons étudié la notion de contrat entre objets répartis et temps réel. Cette
étude nous apermis de définir formellement un cadre sémantique permettant notem-
ment de comparer notre approche avec de nombreux travaux existants, ol la notion
de contrat, si elle n’est pas toujours explicite, se trouve mise au jour par notre com-
paraison. Nous avons également tenté de donner une portée pratique a nos travaux.
Si les aspects techniques abordés ont été trés satisfaisants de part leur complexité,
il est toutefois clair que cette complexité se retrouve au niveau des modéles manip-
ulés. Un défi pour I'avenir serait donc de simplifier certains cotés de ’approche pour
en tirer le meilleur, et fournir au programmeur potentiel des outils plus facilement
manipulables que ceux qui pourraient étre obtenus avec la théorie actuelle. C’est
certainement sur ces points pratiques que les contributions de nos travaux sont les
plus faibles, et y remédier pourrait s’avérer un chemin d’étude de longueur au moins
égale a celle du chemin déja parcouru.

10

Contents

1 Introduction

2 Open Distributed Processing and Real-Time
2.1 Open Distributed Processing

2.1.1
2.1.2
2.1.3
214

Overview e e
The Computational Viewpoint
The Engineering Viewpoint
Specifications, Viewpoints and their Relations

2.2 Modeling and Verifying Real-time Systems

3 An Untyped 7’: Syntax and Semantics

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction Lo
The Syntax: Processes, Ports, and Clocks
The Time Domain and Its Properties

Clock Valuations, Constraints, And Satisfaction
Well-Formedness Criteria for Processes
The Semantics: Labeled Transition Systems for Processes

Semantics of A Small Example

Model Properties Over Time
Discussion and Related Works

4 A Proof System for 7’
4.1 Process Equivalence and Abstract Semantics

4.2

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5

Axiomatizing Dense Time
Axiomatizing Name Instantiation
Manipulating Zones, Regions, and Matching Constraints .
Abstract Labeled Transition Systems
Semantics of a Small Example (Continued)

Algebraic Laws for Processes L.

4.2.1
4.2.2
4.2.3
424

Relating Concrete and Abstract Transition Systems
Symbolic Timed Late Bisimulation
A Proof System for Terms with Finite Control
Soundness and Completeness

4.3 Conclusion s

15

19
19
19
20
22
23
23

25
25
27
29
30
31
32
37
40
41

12 CONTENTS
5 A Behavioral Type System for 7’ 77
5.1 Introduction 7
5.2 The Type Language 78
5.2.1 The Syntax for Types 79

5.2.2 Type Semanticso 80

5.2.3 Discourse on The Meaning of Types 83

5.3 Type Equivalence, Subtyping, and Polymorphism 85
5.4 Type Checking 89
5.4.1 Restraining the Expressive Power of Processes 89

5.4.2 Type Compatibility and Context Composition 91

5.4.3 The Type System 94

5.5 Properties of our Type System 97
5.6 Liveness and Composition 99
5.7 Related Works and Conclusion 101
5.7.1 Behavioral Types 0. 101

5.7.2 Assume/Guarantee Reasoning 103

573 Conclusion. 103

6 Applications 105
6.1 Introduction 105
6.2 Contracts in Logic and Computation 105
6.2.1 Contracts in Deontic Logic 105

6.2.2 Contracts in Behavioral Types 106

6.2.3 Contracts in Hoare Logic and Its Extensions 107

6.2.4 Contracts in @ 108

6.2.5 Contracts Elsewhere in Computing 109

6.3 Provable QoS Support for Middleware Platforms 110
6.3.1 QoS Specification oL 111

6.3.2 Model Components and Type Checking 112

6.4 Integration with UML-RT 113
6.4.1 ArtOC: An actor-like, asynchronous 7° 113

6.4.2 A Meta-Architecture For UML-RT 116

6.4.3 Notions of ArtOC in UML 117

6.4.4 Relationships with UML-RT and Examples 121

6.5 Conclusion 125

7 Conclusion 127
A Proofs 129

List of Figures

2.1 Communicating roles of an Operational Servicew 21
2.2 An example of communicating interfaces, step (1) 21
2.3 An example of communicating interfaces, step (2) 21
2.4 An ODP Configuration at Engineering Level 23
4.1 Operations on 2-Polyhedra 51
6.1 The Syntax of ArtOC 114
6.2 The Relationships Among UML-RT Entities 116
6.3 An UML-RT Collaboration Diagram 117
6.4 The “Stack of Models” 0oL 118
6.5 The Relationships among ArtOC Meta-Architectural Concepts 119
6.6 The Interface Type Hierarchy 120
6.7 The Contract Type Hierarchy 121
6.8 Stereotypes for ArtOC Specifications 122
6.9 Realization of UML-RT specifications by ArtOC Programs 123
6.10 A Video Transmission Example in ArtOC UML notation 124

13

14

LIST OF FIGURES

Chapter 1

Introduction

If one wishes to classify today’s omnipresent computational devices he or she may
not afford to miss, without ruining the relevance of his or her study, the class of
artefacts that exhibit a time-constrained behavior. Examples rise in very dissimi-
lar places and environments, to name a few: embedded systems such as electronic
houseware (multiparted high-fidelity systems, television set-top boxes) or avionic
sytems (telemetric devices, guiding devices), telecommunication systems (network
switches, voice and video transportation using data-oriented communication proto-
cols), control systems for nuclear plants and railroads, and finally computer games
and graphic animation.

We are interested in real-time software engineering. Clearly, from the variety
of systems that are mentioned above, one may guess that a tremendous number of
very different proposals have been made in this domain to master program specifica-
tion, design, development, testing and execution. To trace a rough outline however,
software assurance still relies mainly on empirical, ad-hoc techniques for the first
four steps, while execution correctness is ususally maintained by over-provisioning
of resources. In a general fashion, the more an application is unpredictable, the less
solutions exist to easily create it, and the more over-provisioning should be done.
Yet, flexible real-time applications, which are inherently unpredictable, are now re-
quired to be created as witnessed by the recently issued Object Management Group
(OMG) and Unified Modeling Language (UML) proposals.

To cope with these problems, we advocate the use of formal methods in each
and every life-cycle step of flexible real-time applications; this should improve the
confidence one may have in them. However, not being ambitious enough to propose
a general method, we restrict our target: we consider only applications with hard
real-time requirements, and we propose analysis methods for non-probabilitic models
that only issue true/false answers (no probabilities, like e.g. “40% correct”). Fur-
thermore, we take the “flexible applications” to be “open distributed applications” in
the sense of the Open Distributed Processing Reference Model (RM-ODP) [ODP95],
which have many implications that we now detail.

Distribution is indeed a major concern that we may not avoid, as illustrated by
many of the industrial applications mentioned above. A distributed system is said
to be open [ODP95] if it may be extended, updated or reconfigured at run-time. To
have ertendable systems stresses the need of creating inter-operable software mod-

15

16 Introduction

ules that are able to perform in inaccurately known environments while preserving
their individual properties, hence allowing easy composition. In turn, to be able
to update some components requires a notion of refinement (it is sometimes also
called implementation, and its dual notion is abstraction) defining the conditions
allowing some refined component to replace another one while preserving the sup-
posedly correct behavior of the whole system. Finally, reconfigurability implies that
the communication topology among given components may be modified, for example
existing links may fall, or new ones may be established.

Object-Oriented Concurrent Programming (OOCP) provides the structuring con-
cepts that we need. An object is a computational entity that encapsulates its own
data and behavior. Each object may interact with the outside world through one
or many interfaces. When interfaces are sufficiently well-defined, an object may
be viewed as an independant software module and compositional techniques may
be applied easily. Furthermore, interface subtyping and polymorphism allow refine-
ment to be performed, while object references can be passed around among objects,
simulating reconfiguration.

Numerous formal theories for compositionality and refinement have been devised
during the last twenty years, many of them coping with concurrent objects either
directly or through faithful encodings. A large body of work independently concerns
real-time aspects of software. Surprisingly, though informal or applicative papers
dealing with both aspects have been published, we know none but very few such
proposals using formal methods.

We therefore propose to alleviate this lack by providing a timed process algebra
derived from the m-calculus [MPW92]. We chose the m-calculus because it has a
thoroughly developped and well-studied theory of expressiveness, equivalence, object
encoding and implementability issues. We show how to deal with some of these
issues in a timed setting: we give an appropriate notion of equivalence between
objects, axiomatic proof rules to decide equivalence over finite terms, and a static
analysis (type-theoretic) method to check that objects of some potentially infinite-
state configuration are well-behaved regarding one another. This method naturally
leads to view objects as bound by contracts, their interfaces stating which role they
should play in each contract.

Direct applications are proposed for concurrent object-oriented modeling and
QoS-enforcing middleware engineering. We show that our concepts are actually
verysimilar to the ones introduced by the UML-RT [GBSS98, Sol97, RS| proposal.
This is interesting since [RS] explicitly calls for object (i.e. contract) compatibility
decision procedures. Our application to middleware is based on informal existent
proposals [Sch00, MNCK99| for QoS-enforcing, real-time execution support. We
propose to use our language for application coordination purposes [GC92|, as done
by the “model components” of [MNCK99|. Then, a program asking to be executed
may either carry a proof of its correctness obtained by anterior verification (the
proof can be checked by the platform [NL96|) or be type-checked on location as in
the Java Virtual Machine (JVM) [Mic95].

We now give a more detailed, chapter by chapter, account of this thesis.

The first chapter after this introduction recalls the essential concepts defined in
RM-ODP. This constitutes a convenient repository of concepts over which we shall

17

elaborate many of our later developements.

In Chapter 3 we introduce our calculus for timed processes with synchronous
interactions, that we call 7°. We propose an operational semantics for it that yield
labelled transition systems with which timed computations can be represented. The
operators of our language are strictly more powerful than the operators present in
all timed process algerba that we know of. This brings us to propose an original
model for processes, allowing them to distinguish mandatory from possible actions.
In case a component should fail to provide the required behavior, an explicit contract
violation occurs, stopping the system. We obtain a calculus in which we are able to
directly express contracts between components.

This should be seen as a natural introduction of deontic logic [MW93] concepts
into process algebras. Previous works in the converse direction have been accom-
plished by Fiadeiro and Maibaum in an untimed temporal logic setting [FM91|, and
by Dignum and Kuiper in a timed temporal logic setting [DK97].

In Chapter 4 we propose a proof system deciding a form of late timed bisimula-
tion equivalence for finite terms of our calculus. In order to do that, we must devise
a symbolic (also called abstract) semantics for the terms of our calculus. This se-
mantics is largely the result of a combination of two symbolic bisimulations [HL95|
proposed for the m-calculus [Lin94| and for a calculus of timed automata [LY00].
In a nutshell, it combines two abstractions: an abtraction of clock values (which
are uncountably-many), and an abstraction on port names of the m-calculus (which
are infinitely-many, but countable). Having those abstractions allows us to give a
finite interpretation over which our proof system is based. Due to the properties
of our models, we however have to depart quite largely from the axiomations using
symbolic bisimulations proposed in [Lin94] and [LY00].

In Chapter 5 we provide a behavioral type system for the language defined in
Chapter 3. This type system allows, for a subset of potentially infinite-state con-
figurations, to check that no error occurs due to a contract violation. The method
is compositionnal by essence, using some kind of assume/guarantee reasoning: for
an open system, a well-typing result states that no communication error may occur
(guarantee) under the condition that any environment provided for it is well-typed as
well (assumption). In that case, a type corresponds to a deterministic specification
of the interface between a component and its environment. A notion of subtyping
is also defined, allowing the substitution principle to be applied: any component
of type A may be replaced by another component of type B provided that A is a
subtype of B, noted A < B. We hence obtain a top-down way of building safe
configurations by successive refinements.

In Chapter 6 we first present a short overview about the notion of contract, as it
can be found in existing proof systems and specification laguages. We then propose
two applications for our development technique. The first proposal promotes the
use of 7° in real-time middleware, for monitoring, security, and evaluation purposes.
The second second proposal is directed towards the less formal but more widespread
UML-RT notation for real-time software engineering. We show the concepts defined
in the theory for 7% can be used advantageously to encode UML-RT specifications.
We then take an example of such conception using 7°.

The final chapter is devoted to our conclusions.

18

Introduction

Chapter 2

Open Distributed Processing and
Real-Time

2.1 Open Distributed Processing

2.1.1 Overview

The goal of the Open Distributed Processing standard [ODP95| has been, since its in-
troduction in 1995, to provide a reference model precisely identifying which concepts
and relations should be used during the development of distributed applications.
In particular, RM-ODP promotes multi-aspect specification, object encapsulation,
model composition/decomposition, and model abstraction/refinement. RM-ODP is
conversely not tied to any concrete notation or modeling language, and it is the
responsibility of the application designer to define or select languages for system
description where RM-ODP concepts can be represented the most easily.

ODP introduces five viewpoints from which the development of a given applica-
tion can be considered. Each viewpoint is suited for the expression of a particular
aspect of the application. However, a given property may have several aspects, con-
cerning many viewpoints: viewpoints may overlap (and they usually do). ODP hence
fosters the use of formal method to help establishing viewpoint consistency. The fol-
lowing viewpoints definitions are given in the first part of the standard [ODP95].

e The enterprise viewpoint: a viewpoint on the system and its environment that
focuses on the goals and policies retained for the system.

e The information viewpoint: a viewpoint on the system and its environment
that focuses on information significance and information processing issues.

e The computational viewpoint: a viewpoint on the system and its environment
that enables the expression of distribution-related issues by attaching func-
tionalities of the system to distributed computational entities called objects.

e The engineering viewpoint: a viewpoint on the system and its environment
that focuses on the mechanisms and functions required to support distributed
interaction between objects in the system.

19

20 Open Distributed Processing and Real-Time

e The technology viewpoint: a viewpoint on the system and its environment that
focuses on the choices of technologies for that system.

2.1.2 The Computational Viewpoint

Our interests will focus on the computational viewpoint. In that viewpoint, the
application is modeled as an evolving set of objects having interfaces that they
use to interact synchronously or asynchronously with other objects over supposedly
perfect or lossy channels.

2.1.2.1 Objects and Services

Objects are constituted of an arbitrary behavior and a finite encapsulated data set.
Concrete computational modeling languages have to respect two principles in order
to be ODP-compliant. The object abstraction principle says the programmer may
ignore irrelevant details: an object may be the result of the composition of other
objects, an object may have any granularity (e.g. from a simple integer to a complex
factory system), and the services offered by an object may be described in a way
independant of its implementation. The data encapsulation principle oppositely
restrains object behavior: the only way an object B has to produce a side effect on
the data of an object A is by calling a method of A.

An object may provide or access services through its interfaces. An interface is
a set of available methods together with conditions indicating when each method
may be invoked. An interface will be said to play a role in the provision of some
service. Two examples of roles are the server that provides a service, and the client
that accesses it. Services (and interfaces) come in two flavors: flow services and
operational services.

ODP indeed distinguishes two forms of object interactions. Flow services are
intended to abstractly represent continous interactions: the source role of a flow
service sends a stream of data to the target role of that service. Operational services
oppositely discern each interaction as an individual event: an operation call occurs
between a client and a server role, resulting in a method invocation on the object
owning the server role. An operation can be either an interrogation, where the server
returns a response, or an announcement, where no response is sent to the client. An
example configuration of objects communicating through operational interfaces is
presented on Figure 2.1.

The object on the left possesses an interface holding the client role of a service
u. Its invocations always concerns the server interface for u that is owned by the
object on the right. Signals for operation invocation are conveyed by messages, and
on our example a message carrying signal m circulates from the client to the server.
If m is an interrogation operation, then a reply signal also named m will be sent
later by the server. It can be seen that roles and interfaces may confound easily, and
we will not restrict from making this confusion, often using “role r” for “interface
playing role 7”; should the meaning not be clear from context, we shall always give
necessary precisions.

Open Distributed Processing 21

Figure 2.1: Communicating roles of an Operational Service u

2.1.2.2 Passing Roles Around

We now show how a given configuration may dynamically evolve by passing around
the roles it possesses. A message may indeed be sent with roles as effective param-
eters, as channels can be passed around in formalisms such as the mw-calculus. An
example illustrating this feature is depicted in Figures 2.2 and 2.3.

(®
€

gl

il

>

w
/@
(%
:@
Figure 2.2: An example of communicat- Figure 2.3: An example of communicat-
ing interfaces, step (1) ing interfaces, step (2)

The message m shown on Figure 2.2 has been sent by object B. It features a copy
of the client role of service u as effective parameter, and it is received by object C
on Figure 2.3. The object C now has the capability to send messages to the owner
A of the server role of service u. As so does object B (it did not loose its client role
on u but sent a copy of it), both B and C can concurrently access service u provided
by object A.

2.1.2.3 Contracts and Object Binding

When reasoning about services and object interactions, a fundamental point is the
possibility to explicitly declare, negociate, observe and enforce applicative Quality of
Service (QoS) properties. RM-ODP tackles this issue by introducing the pervasive

22 Open Distributed Processing and Real-Time

notion of contract among entities. A contract is a written document enclosing the
nun-functionnal properties sustained by a service provider or required by a service
accessor. The establishment of a service session is generally called binding. In a
binding the accessor and provider objects are bound under the rules of some contract.
A contract may itself include rules declaring how object binding must be done in
order to properly establish the corresponding service. RM-ODP then separates two
cases. If the contract imposes that any object willing to become client of a service
must (directly or indirectly) contact the provider before establishing the service, then
the binding procedure is said explicit. A binding object may then be created upon
service establishment to manage the connection: if the contract is broken by some
faulty object involved in it, the binding object may either shut the service or take
any necessary measure in conformance with the contract terms. On the other side if
any object can access a service without pledging allegiance to the server beforehand
the binding is said ¢mplicit and no binding object may be created.

It is often that the writing of contracts actually becomes unnecessary when some
contract framework is used. A contract framework contains service-kind specific
molds for contracts: when applied to a service of some kind, a mold produces the
contract ruling that service. A contract mold describes how the service must be es-
tablished (i.e. binding rules) and under which conditions the contract can be main-
tained. The latter rules imply a definition of role compatibility (i.e. peered roles are
well-behaved regarding each other), a notion that leads to contract consistency (i.e.
a contract is consistent iff its roles are compatible). Under a contract framework, the
notions of service and contract may therefore be united without further concern.

In conclusion we underline that having formally-defined contracts may clearly
allow for both modular specifications (they can be compared to the abstract data
types of sequential programming) and compositionnal verification.

2.1.3 The Engineering Viewpoint

We will refer to the engineering viewpoint in the application part of this thesis. Yet
we now provide a short overview of it.

At engineering level, objects are not distribution-aware anymore. Instead, they
are considered according to the architecture which Figure 2.1.3 is an example. A
node is the physical unit for distribution. It contains capsules, which are the unit
for processing and failure (eg UNIX processes). Within capsules, highly-interacting
objects are then grouped into clusters. Fach node has a nucleus, that provides a
service to the capsules of its node through an interface called the Node Management
Interface (NMI). Each capsule has a capsule manager object that provides a service
to the objects of its capsule through the interface similarly called the Object Man-
agement Interface (OMI). The nucleus can be seen as the operating system kernel
of the node, whereas capsule managers can be seen as virtual machines executing
clusters of objects.

Objects within a cluster are linked directly by their interfaces, whereas other
objects must use channels. Channels encompass stub objects (for marshalling, etc.),
binder objects (to administrate the link), and protocol objects (for communications).

Modeling and Verifying Real-time Systems 23

CAPSULE MANAGER 1 CAPSULE MANAGER 2

NMI

| |

Figure 2.4: An ODP Configuration at Engineering Level

2.1.4 Specifications, Viewpoints and their Relations

As suggested by [BS97|, engineering and computational viewpoint specifications
should use the same language. Following this proposition, we use ArtOC along
those different activities. Hence, the Virtual Machine (VM) specification is given at
engineering level by the system architect, while user objects are viewed at computa-
tional level by the application designer. Each objet from a given user application is
subsequently mapped to one at engineering level.

It should however remain to the mind of the reader that the semantics of ArtOC is
essentially different at those two levels: a computational view implies maximum par-
allelism, whereas engineering view implies concurrency through interleaving within
each capsule. The goal of the VM architecture and policies is to preserve the com-
putational level semantics at engineering level: they can be considered equivalent if
any required resource at computational level is granted at engineering level.

The body of this thesis consists in the presentation of a language and verification
methods staged at the computational level. As an application, a short description
of what could be a VM API at the computational level, as well a description of its
inner components at engineering level, will be given in Chapter 7.

2.2 Modeling and Verifying Real-time Systems

It is not possible for us to make an exhaustive summary of the developments ac-
complished in formal specification dealing with real-time over the last thirty years.
Let us just write that, as methodologies and languages have endured a tremen-
dous explosion in number, adding time could never have been perceived as a way of
simplifying the encountered problems.

In a nutshell, we adopt a solution relying on a dense notion of time, while con-
currency is reduced by interleaving, and we devise a compositional static analysis

24 Open Distributed Processing and Real-Time

method that considers non-probabilistic models and evaluations.

Having a dense time domain is opposed to having a discrete time domain [RT91].
We adopt a dense time domain because it is more “abstract” in nature [R. 91], and
therefore allows to refine and compose specifications more easily. Discrete time is
present in many formalisms, such as for example synchronous languages like Esterel
[BG92| and Lustre [HLR92|, and several process algebras [NS92|. Chosing a discrete
notion of time has also been advocated as a simple method that can be used to
extend time-insensitive tools with timing features [CCMMO95].

However, the dense notion of time have widely spread, since the advent of Alur
and Dill’s timed automata [AD94]. Indeed, an inherent problem of having a dense
time domain is that models have infinitely (even uncountably) many states, making
their analysis difficult if not impossible. However, Alur and Dill introduced in [AD94]
an abstraction method allowing to perform an exact verification on a discretization
of the dense state space; the result of this conservative abstraction is called the region
graph. From there, many results about decidability and undecidability of essential
problems have been proved using the region graph.

An obvious way to obtain a language with real-time features is to extend an
untimed language. The extension can be conservative or not: properties of untimed
specifications can easily be lost when time is introduced. An important point is to
aboid such discrepancies. We proceed in this way with the m-calculus. Before us,
we can cite linear-time or branching-time temporal logics (TCTL [ACD93|, TPTL
[AH89|, MITL [AFHO91|), process algebras [Yi91, Mol90, BB91, NSY93, Sch95,
Cd095, LL92, Sig99, NS92|. Even there, many variations exist in the models pro-
duced in those formalisms [RT91].

We favor an operational approach to semantics, resolving concurrency to non-
determinism (see, for example [Mil89a]). Other proposals adopt true concurrency
semantics, providing a more denotational feel: [Fu95, AM96]|. In that category can
also be classified the various extensions brough to petri nets, such as [Ram74, MF76|.
We did not explore that way of doing things, preferring to go in unison with the
large majority of m-calculi litterae.

Chapter 3

An Untyped 0 Syntax and
Semantics

3.1 Introduction

The 7-calculus [MPW92, SWO01] is today a widely accepted formalism for the specifi-
cation and the verification of open distributed systems, where the interaction topol-
ogy among the components of an application may dynamically evolve during the
execution. However, many open applications also exhibit timeliness requirements,
that the m-calculus is unable to represent. Important examples include multime-
dia systems [CBS195], active networks [WJGO98] and QoS-enforcing middleware
[Sch00].

However, all the widely recognized timed process algebras assume purely static
interaction topologies [Yi91, Mol90, BB91, NSY93, CdO95, NS92|. They are exten-
sions of CCS [Mil89a|, CSP|Hoa85]|, Lotos |[BB89] or ACP [BW90, BK84| in either
a discrete or a dense time setting. There is only one proposition of a w-calculus
with discrete timers [BH00|, which is application-directed and gives no algebraic
properties such as axiomatization or expansion laws. We propose a timed m-calculus
featuring clocks valued over a dense time domain, and discuss some of its algebraic
properties.

We consider three primary goals:

e our calculus must conservatively extend the algebraic theory of the m-calculus,

e a process should be able to perform actions according to its own will, hereby
assuming a certain autonomy towards its environment, and,

e the calculus must allow a certain form of compositional reasoning and modular
verification.

To satisfy the first condition, we give a meaning to all the (untimed) 7-calculus
processes in our timed calculus: any process that does not specify any time-related
property is deemed to be patient, meaning that it may let time pass without restric-
tion. All patient processes have therefore indistinguishable timely behaviors. This
effective solution for embedding an untimed semantics into a timed one has been

25

26 An Untyped 7°: Syntax and Semantics

suggested by many authors, from Hennessy and Regan [HR95], to Lynch and Vaan-
drager (using so-called patient transducers) [VL92|. It results that, for a large body
of calculi, the algebraic laws for untimed processes may then be applied straight-
forwardly to the timed calculus. We shall study the relevance of this assertion in a
m-calculus setting.

Unfortunately, the second and third goals fail to retain such simple solutions,
deserving a much more subtle treatment. We now address process autonomy, for
which our calculus provides an original solution; compositionality will be the object
of the next chapter.

Process autonomy has been identified since the late 80’s as a major concern for
distributed system designers. The question is: should the environment of a process
be able to block the process’ actions? The answer by Lynch and Tuttle [LT87],
who were to our knowledge the firsts to state the question clearly, was: never.
Before that, the designers of early process algebras (such as CSP or CCS) implicitly
replied: always. Since then, authors of timed process algebras have also answered:
sometimes. We cheerfully adopt the third solution. In the next two paragraphs
however, we shall briefly expose and relate those three points of views on process
interaction.

Input/Output automata were proposed by Lynch and Tuttle [LT87]. Those au-
tomata are able to synchronize on actions, each automaton having an interface that
describes which actions are under its control (oulput actions) or under the control
of its environment (input actions). Any automaton must be input enabled: it has to
always be ready to synchronize on any of its declared input actions. Furthermore,
two automata can not be composed in parallel if the intersection of their output sets
is not empty. This guarantees that an automaton is the one that is able to perform
the output actions present in its interface, and that its environment cannot refuse
to synchronize on them.

An essential argument for the development of I/O automata was the fact that a
CSP process can be impeached to perform an action by placing it in an environment
that refuses this action forever. Conversely, a process may deceptively appear to
provide a good solution to a problem in some environments (the ones that refuse
the “bad” actions) while behaving inappropriately in other ones. Process algebraists
replied by invoking the classical bounded buffer example. A n-place buffer may
perform a put action only when it is not full, and a get action only when it is not
empty. Making a buffer responsive to those signals at any time shows only meager
pertinence.

Our needs lie precisely in-between those two worlds; we intend our components
to clearly state what are their requirements, and what they either wish, accept,
or tolerate (indistinctly). We henceforth take advantage of having time-related ex-
ecutions: timed processes may apply selection and wurgency conditions on action
prefixes. Selection indicates when an action may occur (at any other point in time
the action is precluded), while urgency indicates when an action must occur (if the
environment refuses to interact then the whole system produces an error). Almost
all other timed process algebras feature urgent actions, although in rather different
settings; see Section 3.9 for a detailed comparison. We figure that the timed process
algebra that is the closest to ours is the urgent Lotos (U-Lotos) of Bolognesi and

The Syntax: Processes, Ports, and Clocks 27

Lucidi [BL92b, BL92a]. In U-Lotos, the operator asap, allows to force urgency on
the next occurrence of an action from the given set a. Yet, our introduction of name
mobility in this chapter, the subsequent formal treatment that we provide in the
next, and the compositionality issues that we address in Chapter 5 are new, at least
to our knowledge.

The remainder of this chapter is organized as follows. In the next section, we
present the syntax of our timed w-calculus. We then provide a semantic for it
based on timed labeled transition systems. After what we give a small example and
compare the time-related properties of our models to the ones of models yielded by
household real-time process algebras. Finally, we further discuss related works and
conclude in Section 3.9.

3.2 The Syntax: Processes, Ports, and Clocks

The simplest elements of the 7m-calculus are names. In the untimed 7-calculus, names
can be used as communication devices, called equivalently ports, gates, or channels.
We add a second sort of names, called clocks. We hence consider two recursively
enumerable sets, P for ports and C for clocks. Typical ports are named a,b,c.
Typical clocks are named x,y,z. We shall denote the usual definitional equation
using the £ sign; we name N 2 P U C the set of all names, which typical elements
are m,n,o0. Any name can be adjuncted the usual decorations, such as primes,
indices and exponents.
The syntax for a process prefixing action 7 is given in two steps by

7 u=a(n)|an and 7i=7|7".

The silent action 7 can be thought of as an internal action of the process. Any other
prefix has a subject a in P and an object n in N. Informally, an stands for the
output of object n over subject a, while a(n) stands for the input of name n over a.
For any name a, actions with respective subjects a and @ are said complementary.
The subject is said to be free in any prefix, whereas the object is bound in a(n)
and free in @n. Process terms, typically ranged over by ¢, u,v and their decorated
variants, can be built using the following grammar in Backus-Naur Form:

t:=0|Error’|[o, v]r.t|[a=0blt|vnt|t+1t]|t|t]ARn).

The constraint ¢ and the urgency condition v (a.k.a. the deadline) respect the
following syntactic forms, given respectively by

ocu=ocANo|z8’qlz—ytq and vi=vAv|x8q|lz—ylq

where § € {<, <, > >} 17 € {<, <, >}, 8 € {<, >}, and ¢ is a time value. The
process Error', where v = T is the ever-true condition, is noted Error for short.
Processes with term 0 are called idle processes, while processes with term Error
are deadlocked processes (we also prosaically call them error processes). Process
operators are named, we list them as they appear in ¢ from the left to the right:
prefixing, matching, restriction, sum (a.k.a. choice), composition (a.k.a. parallel),

28 An Untyped 7°: Syntax and Semantics

and process instantiation. Operator precedence is as follows: prefixing, matching
and restriction bind more tightly than sum, and sum binds more tightly than com-
position. All binary operators associate to the left. We shall use parentheses freely
to oppose or precise precedence rules.

Each occurrence of a name n in the subterm ¢ of a term (n)t or a(n).t is a bound
occurrence. We define bp(¢) and bc(t) as respectively the set of bound ports and the
set of bound clocks of a term ¢; the set of bound names of t is bn(t) = bp(t) U bc(t).
Any occurrence of a name in a term ¢ that is not bound is said free; we name fp(t),
fc(t) and fn(t) the sets of free ports, free clocks, and free names of ¢. The set of
names of a term ¢ is n(t) £ fn(¢) U bn(t). We allow the generalization of those
functions to prefixes 7, using the definition of bound and free prefix names given
above.

A typical list of names nq,ng, - - -, ng will be noted 7, its cardinal being |7| 2 k.
The corresponding (unordered) set containing each n; comprised in 72 will be noted
set(i) = {n|3i. 1 < i< kAn=mn;}. The simultanecous substitutions in a prefix
7 or in a term ¢ of the free occurrences of each name m,; from a list m by the
corresponding name n; from a list 7 (with |n| = |m|) are noted respectively =[n/m)|
and t[n/m]. The substitution may as usual involve the renaming of bound names
to avoid incidental capture of free names. We range over substitutions with «, 3,
and their decorated variants. Substitution has the highest precedent over all process
term operators. In general, terms are considered equivalent up to a-conversion of
port names.

A process conjoins a process term ¢ with a contextual clock valuation p, which
is a partial function p: C — T yielding a value in the time domain T for each clock
name appearing free in ¢. We denote this conjoining by valuation post-fixing, an
operation that has a lower priority than all process operators: t|up is equal to (t|u)p;
we will often enforce this fact by using explicit parentheses, though. Finally, fixing
a last vocabulary issue, in a non-error process tp we will often designate the term ¢
as being the control part of the process, and p to be the context part of the process.

For some process tp and some clock x € dom(p), we name ceiling for x in t and
note ceil(x,t) the highest constant appearing in the term ¢ within a selection or
urgency condition constraining .

The semantics for our processes alternates time-passing actions and discrete ac-
tions: silent, input and output actions take no time to execute!. We now give an
informal explanation of the meaning of each process tp. A process with 0 as control
part may only let time pass, without bound. A process with term Error¥ can let
time pass until p satisfies v; from this time it can not do anything at all. Such
deadlocked processes play a distinctive role in our theory: they are to be reached for
example when a process requiring some interaction is not given satisfaction by its
environment. Process [a = b]tp executes tp whenever a is syntactically equal to b, or
behaves as the idle process otherwise. Process (vn t)p adopts the actions of tp with
n hidden if n is a port name, or it extends the valuation p to associate the value
0 to n if n is a clock name. In both cases, the continuation ¢ is executed immedi-
ately in the new context. Process (¢t + u)p represents the choice between t and u,
allowing time to progress if both ¢ and v agree, or executing the first process being

lwe can classify our semantics as point-based and weakly monotonic according to [RT91].

The Time Domain and Its Properties 29

able to synchronize with the environment, abandoning the other. Process (¢ | u)p
executes ¢ and v in parallel within context p. For process terms A(7), we assume a
set of process names (typically ranging over A, B, C'...), each associated to a list of
formal parameters and a process term which free names are included in the formal
parameter list. Then A(n)p executes the term associated to A in context p, hav-
ing orderly replaced the formal parameters in the term by the effective arguments
n = ni,---,ng. Such an equational definition for a name A is noted as we do in
other occasions, A(7) £ t, with fn(t) C set(1).

Last but not least, we give to processes of the form ([o, v]r.t)p the particular
attention they deserve. Basically, those processes refuse synchronization on 7 when
p makes o false, consent to it when p makes o A (—v) true, and require it when p
makes v true (o is then true, since we impose v = ¢). When such a process requires
synchronization on 7, time may pass as long as the environment does not offer
(or requires) synchronization on 7. If the environment refuses the synchronization
and v is true, the process may allow v to become false again under the condition
that the whole configuration reduces to Error. If the process does not require
the synchronization but only consents to it (v is false), then time may pass freely,
until either o becomes false (synchronization is by then refused), or v becomes true
(synchronization is by then forced); the synchronization may happen if it is consented
to by the environment, or required by it. If the process refuses to synchronize, then
the environment may by symmetry lead the whole configuration to reduce to Error
by requiring synchronization to happen.

3.3 The Time Domain and Its Properties

Before we can give a semantics for processes, it is necessary to fix a time domain
for clocks and to explicitly state what are its properties. We name the time domain
T, and its typical elements the diversely decorated forms of §. For time domain we
can take any commutative monoid over some partially ordered set with unit 0 and
addition as binary operation. We impose T to have the two following properties :

o [eft-cancellative: 01 + 0 = 61 + 93 = J9 = d3, and
e anti-symmetric: 0 + 02 =0 = 6 = 6 = 0.

We then define a precedence relation over T: Vo1, 02.01 < &y < Fd3.61 + 03 = 0o.
From this we can easily deduce that 0 is the least element of T. The strict precedence
relation is defined by: §; < dy & 61 < 95 A &y # 9. It has been observed by most
authors of time-enabled theories that having a dense time domain is extremely
valuable during specification activities: it provides a clean and abstract time scale
that can be refined at will. Formally, density is defined by: Vi, d3. 3ds. 07 < 9o < 3.
Adopting this modus operandi, we assume that T is dense; we even become more
specific and, also with many authors, we adopt the set of positive real numbers R,
for time domain: T = R, .

30 An Untyped 7°: Syntax and Semantics

3.4 Clock Valuations, Constraints, And Satisfaction

We first have to define several operations on clock valuations, that will be used in
the operational semantic rules. We first define valuation juztaposition, assembling
valuations p and « into valuation pk. Juxtaposition is defined if either dom(p) N
dom(k) =), or p and k agree on the values of the clocks for which they are both
defined: Vz,6,0". (p(z) = 6 AN k(x) =) = 6 = §. When defined, px has
dom(p) U dom(k) for domain, and (pk)(z) £ p(x) if x € dom(p) and (pk)(z) = k(z)
if z € dom(k).

We define the substitution operator on clock valuations p by: dom(p[Z/7])
((dom(p)\set(§)) U set(Z)) and, for any i with z; in &, (p[Z/7])(x:) £ p(y;). Mean-
while, (p[Z/7])(z) = p(z) for any z ¢ set(%).

The clock-resetting operator p** is defined only when x ¢ dom(p). It then yields
a valuation identical to p except that its domain comprises the clock z, the value
assigned to which being 0, verifying: p**(z) = 0 A (Vy,d. p(y) = § = p*(y) =).

The valuation p™ has the same domain as p but yields a value superior by § for
all the clocks in its domain: (Vx, 6. p(z) = 6 = p™(x) = p(z) + 6). The restriction
operator p\™ yields an environment identical to p but undefined for the clocks in 7

A

(dom(p\™) = dom(p) \ set(1n)) A (Vz, 6. (z & set(m) A p(z) = §) = p\™(z) = 6) ;

it trivially yields p if 7 contains only port names. The converse operator p/™ is the
restriction of p to clocks in m:

(dom(p/™) = dom(p) N set(m)) A (V6. (z € set() A p(z) = 8) = p\™(z) = 9) .

We shall assume that all those operators have the same precedence, and that
they associate from left to right, yielding for example: p**0 = (p*2)*+9.

We finally define the equality relation over two valuations p and x as true if and
only if dom(p) = dom(k) and for any = € dom(p) we have p(x) = k(z).

We now define constraint satisfaction for a family of constraints (, which are
more general than the constraints ¢ and v used in process terms; we will need this
definition later, and it is downward-compatible. So, consider

Cu=CACICV | =Clatqgla—ylqg

where § € {<,=,>} and ¢ € Q,. We shall sometimes use the abbreviation z < ¢
for (x < qVz=gq)and z > g for (x > ¢V z = q), respectively. The true constraint,
noted T, is defined by (zx —y < ¢V —y > q) for some clocks z, y and some
constant g. The false constraint, noted L, is defined by (x —y < ¢gAz —y > q)
also for some clocks z, y and some constant q. We note clocks(¢) the set of all
clock names appearing is (. By analogy with process terms, ([Z/7] denotes the
constraint obtained after the simultaneous substitution, for each clock name z;, of
all the occurrences of x; in ¢ by v;.

We denote the satisfaction of a constraint ¢ by a clock valuation p as: pF (. It

Well-Formedness Criteria for Processes 31

is defined by:

pExtq & plx)tq
pEx—ytq & plx)—py)tq
pECAC & pECApECL
pECV(C & pE(VpEC(
pE-C & = (pF Q)

Of course, for p E ¢ to be defined, we must have clocks(() C dom(p). When
satisfaction is defined but fails, we may also note p ¥ (.

The semantics of a constraint is given as [¢] = {p| p F ¢}, the set of clock
valuations satisfying (. We then have [L] = 0, [T] = (C — R;)" for any integer
n, [[Cl A CQ]] = [[Ql]] N [[Cg]], [[Cl \% CQ]] = [[Cl]] U [[CQ]], and [[_| C]] = [[C]] For general clock
constraints ¢; and (,, we define (;\(; = (1 A = (3, and (; = (, logically as = (; V (s.
We obtain trivially [¢/\Gel] = [Gi] N G = [GIN[G] and [G = G] = [GIU [G]-

For constraints appearing in process terms, since we miss negation and therefore
cannot define implication logically, we define implication semantically: F o = o if
and only if Vp. pE 0 = p E ¢’ (or equivalently Vp. p € [o] = p € [0']).

In both cases however, non-implication, equivalence, and non-equivalence follow
straightforwardly from the respective logic and semantic definitions for implication.

3.5 Well-Formedness Criteria for Processes

The first assumption we make is that time constants appearing in process terms are
natural numbers, although time ranges on positive reals. Actually, process terms
may also use rational numbers, which yield no further complications. The limitation
to rational or natural constants does not hamper the expressiveness of our formalism,
since any term featuring rational constants has an isomorphic term featuring only
natural constants: the notion of time we use is abstract enough so that a property
verified on some process is true on all processes for which all time constants have
been multiplied by a fixed number. This naturally corresponds to constricting or
expanding the time scale.

The use of rationals (or natural numbers) in constraints is required to apply
abstraction methods such as the region graph construction (see Section 4.1). We will
need them to propose in this chapter a proof system, and in the next a decidable
type system.

We shall only give a semantics to well-formed processes, imposing statically
decidable constraints on them. First, for any process tp, all the free clocks in ¢
should be given a value by p: fc(t) C dom(p). We also impose equations of the form
A(R) £ t to feature only well-guarded recursion: calls to A in ¢ should only occur
after a prefix action, hence being of the form [0, v|7. A(7).

We also impose that for any action 7 the urgency condition implies the selection
condition: F v = o, a process being able to impose urgency on a prefix action
only if this action is available to its environment. In this, and also in the limitation
to left-closed clock conditions (this is syntactic, from the definition of v and o in
Section 3.2), we follow [BST97]. We however further restrain urgency conditions to

32 An Untyped 7°: Syntax and Semantics

be right-open: we have to be able to know the exact time when an error occurs,
since time progression may not continue further past this exact time.

3.6 The Semantics: Labeled Transition Systems for
Processes

As usual in the process algebra community, We define the semantics of 7° terms as a
Timed (labeled) Transition System (TTS). Our semantics therefore associates a TTS
to each well-formed process. Semantic rules are given in the Structural Operational
Semantics (SOS) style [Plo81].

As in existing timed process algebras and most m-calculus theories, we opt for
an interleaving semantic treatment of concurrency [Yi91, Che92|. Each transition is
labeled with only one action, meaning that either one process has evolved on his own
and other processes have waited, or that many processes have agreed to collaborate
in performing this action. The complementary approach, named true concurrency,
has also fostered a large body of work; an extensional survey and comparison of both
approaches can be found in [WN95|. Truly concurrent models for the 7-calculus can
be found in [San96, DP99).

The semantics of our processes yet exhibit several differences with other inter-
leaving semantics found in the literature. Indeed, we think that whenever a process
forces the occurrence of an action by applying an urgency condition to it, its appar-
ent behavior is different than the behavior of a process proposing the same action
without urgency condition. Rephrased, this is equivalent to say that selection and
urgency conditions should be part of the observable behavior of a process. In appar-
ent contradiction, we also think that when an interaction occurs, it is not relevant to
know if this interaction was forced by one of the participants or not. What matters
is that the interaction did occur. In our view, selection and urgency hence do not
have the greatest influence on interactions, but on time progression. Even more, we
think it easily appears that selection and urgency do not merely modify but entirely
arbitrate time progression. This arbitration is two-folded: it encompasses as well
prohibiting time to pass when two processes are able to interact and one of them
imposes urgency on the interaction, as producing an error when a process imposes a
deadline on an interaction and its environment is willing to let time go passed this
deadline.

Hence, we think a process should not only state “I allow this delay to pass”,
but: “I allow this delay to pass, meanwhile I wish to interact on these ports as soon
as possible and I offer synchronization on these other ports”. Outside of the inner
interest of the model, we remark that this model seems the least reasonable one
allowing urgency conditions to be effectively enforced while the semantics is defined
by structural induction over the structure of terms (i.e. we obtain a compositional
semantics in the sense of [Plo81]). To our knowledge, in this respect, no comparable
model can be found in the literature (we elaborate a little more on this point in
Section 3.9).

The labels of our transitions therefore respect the syntax:

Au=mlalb) |08

The Semantics: Labeled Transition Systems for Processes 33

where the delay 0 chosen among the strictly positive real number § € R}, and its
adjoined interaction ready set S adopt the form (R : O), R being the prefix set
of interaction requests, and O the prefix set of interaction offers. The prefix sets
indicate, for each interaction:

e the name of the subject,
e the sort of the object (port or clock).

Typical members of a prefix set are thus written a°, a? or a°, @®. What is not
distinguished by offer and requirement sets is the number of offers having the same
subject and the same object sort, and for each prefix the precise value of the object
that is to be transmitted as well as whether this object is bound or free.

We shall use only one binary operation on ready sets, which is the disjoint union
of their request sets and offer sets; we denote this operator by a comma placed in
infix position: S,8' £ (RUR' : OUO),if S = (R : O) and &' = (R : O').
Needless to say, ready set union is commutative and associative: S,8' = &', S and
(S8,8"),8" =8, (S',S"). We also use a unary operator S\®, that suppresses all offers
made on the name a: if S = (R : O), then S* £ (R : O\{a¢,a?,a,a}). We
define another unary operator on prefix sets, that complements any action in the
set: R = {@ |3Ir € {¢,p}. a" € R}U{a" |Tr € {c,p}. @ € R}. We note the
empty ready set by () 2 () :). We finally define a partial order on ready sets,
noted &’ < 8§, that is equivalent to the proposition @' C O AR C R'. Ready sets
are hence ordered contravariantly in their sets of requests and offers: when &' < S,
S’ has less offers but more requests than S. Similar ready sets, though devised in
different purposes, can be found in various contributions in respectively untimed
[BIM95] and timed settings [JLS00, ABL9S].

We define our process semantics in two steps, in the style originated by Berry and
Boudol with their chemical abstract machine [BB92|, and later adopted by Milner
(see for example [Mil92] or [Mil93]). That is, we first give a structural congruence
relation over processes, reduction rules then being given modulo term reorganization
using the congruence (by implicit application of the rule CONV in Table 3.2). Our
congruence relation does not depart much from the existing congruences for the
m-calculus; it is defined in two steps, starting with a “ground” version =79 defined
as the smallest equivalence relation closed under the rules of Table 3.1. One of the
primary goals of this congruence is to provide a proper treatment of the idle process:
placed in any context, the idle process may never impeach the progress of the whole
system. Hence, 0 is the neutral element for choice and composition, while restriction
and matching in front of 0 can be safely eliminated. Having those rules otherwise
allows us to avoid letting 0 perform any transition (even time-passing ones), that
would complicate the theory in a rather irrelevant fashion, since all 0 processes are
indistinguishable anyway. Hence, there is no operational rule treating 0 in Tables 3.2
and 3.3.

In Table 3.1 are then given the classical rules stating that the choice and com-
position operators are commutative and associative. The matching operator may
not stop the process as in the m-calculus, but instead behaves as 0 when the test is
false. The last rule is the usual rule on a-conversion of terms. Note that this rule

34 An Untyped 7°: Syntax and Semantics

only applies to port names: a-conversion is not powerful enough to cater for clock
names. A clock name indeed becomes free when the corresponding clock is set to
0, and a-conversion may not be applied hereafter. This is embarrassing, because
two processes that differ only on the name of one clock but are identical in every
other way (including the value associated to the clock name on which they disagree)
behave in the same way.

t+0)p=tp (t[0)p=tp (vn0)p=0p (la=2b]0)p=0p
t+uwp= (utt)p ((t+u)+v)p=? (t+ (utv))p
Elwp = (w[t)p ((t]u)|v)p= (] (ulv))p
([a = alt)p =* tp
([a =b]Jt)p =9 0p if b is syntactically different from «
(va t)p =9 (vb u)p if t[c/a] = u[c/b] for some name c fresh in ¢ and u

Table 3.1: The Structural Congruence for 7°

The definition of the clock-resetting operation p** in Section 3.4 required that
x ¢ dom(p). This has for consequence that a new name is introduced in p each
time a clock z is set to zero. Over processes with recursion-free terms, this could
be a cause of incompletion for our proof system. Over recursion-enabled terms (for
example reactive processes, which execution never ends), this would be the source
of an obviously artificial ever-going expansion of the state space during execution.
Furthermore, it may be easily noticed that, unlike port names which are not mean-
ingful when bounded (acting only as placeholders) but meaningful when free (they
then stand for uniquely defined constants), clock names are never meaningful! A
free clock name can indeed be seen as a variable, standing for the value associated
to its name by the process context. Hence the incapacity of a-conversion to solve
this problem. Needing a more powerful structural congruence = over processes, we
define it by extending the ground relation =Y above with an additional syntactic
way of identifying processes. Informally, if there exists an isomorphism of free clock
names between the clock contexts of two processes, then those processes are deemed
equivalent. Formally, for two terms ¢, u and two valuations p, k with fc(t) C dom(p)
and fc(u) C dom(k), if we take fc(t) and fc(u) to be arbitrarily ordered respectively
as x1,xy, --- ,x, and yq, Yo, - - - , Yk, then

tp=9uk A
set(Z) N (set(z) U set(g)) =0 A

tp=uKk &
dz1, 29, -+, 2. AT~ /~ ()T~)~
v k{dw%m=ﬂ“%M

with for all 4,5 € {1..k}, i # j, z;, 2; pairwise different. We bluntly name this way
of converting processes free clock conversion. Requiring the clocks to be arbitrarily
ordered is harmless: it amounts to finding a one-to-one correspondence between
names without taking into account their syntactical value. This is a household way
of reasoning about and implementing formal logics; De Bruijn indices [dB72| are
here the conspicuous syntactic sieve to be used, leading to the intended result in a

The Semantics: Labeled Transition Systems for Processes 35

straightforward and very efficient fashion. Those indices are for instance applied to
w-calculus terms in the mobility workbench [VM94].

We now proceed to the examination of the operational rules themselves, shown
in Tables 3.2 and 3.3. The deduction rules are two-part schemata which informal

interpretation can be that for some process tp the reduction tp EN P’ at the bottom
part (the consequent) can be performed if the reduction(s) in the top part (the
antecedent) can be performed. The process tp is then given a TTS in which transition
A has for origin the root of the transition system, and for destination the root of
the TTS associated to the process t'p'. Axioms PRE, TNSEL, TSEL, TURG and
TMISS do not have one or many reductions as antecedent, but a statically decidable
condition on the clock values in context p. The rules are divided in two parts: the
rules very-similar to the “traditional” ones found in 7-calculus theories are grouped
in Table 3.2, while time-related rules are grouped in Table 3.3. We give the rules
yielding the so-called late semantics for name instantiation; for more insights on late
and early semantics, see for example [MPW93|.

We give the informal meaning of each rule, starting by the ones of Table 3.2. The
axiom PRE states that a process with a prefixed control part may perform the prefix
action 7 if its context p satisfies the selection condition o. The set of reachable
clock valuations reach(p,) from valuation p through transition 7 is defined by:
reach(p,7) £ {k | dom(k) = (dom(p) U {z}) A k* = p} if 7 = a(x) for some a,
and reach(p,) = {p} otherwise. Hence, the process context can be extended in an
infinite (non recursively-enumerable) number of ways should the value of a clock be
received. This is logical, since the process has no way to know in advance which
value will be provided by its environment.

Rule cowm allows the sort-respecting communication of a free name n over port
a, producing a silent transition. Free occurrences of m in ¢ are then replaced by
n, effectively simulating communication of n, that becomes free in both u and t.
This rule generalizes the one found in previous m-calculus theories by allowing the
sending of free clock names. This explains the side condition on the rule, that copes
with context management: if there was already a free clock named n in t, its value
must be replaced by the newly received one. Hence we require that the valuation
P'\"k! be defined.

Associated, the rules OPEN and CLOSE can be used to transmit the bound name
b over the port a. To denote this fact, the OPEN rule employs the bound output
prefix @(b) that has been introduced in the definition of A. Proof-theoretically, the
rules PRE and OPEN can be used to provide the antecedent to rule CLOSE. After
this latter rule has been applied, the name b is hidden in the resulting process. The
side condition requires that processes which control parts are put in parallel must
have compatible contexts.

The suM and PAR rules are the classical rules for choice and parallel composition.
They can be applied only to process interaction, the corresponding time-passing rules
TSUM and TPAR are shown in Table 3.3. The rule RES states that a name declaration
does not influence a transition that does not involve the declared name.

The last three rules are special because they allow to infer transitions with label A,
ranging over delays as well as actions. The rule RESET, read bottom-up, states that

one may deduce that (vz t)p EN P when the same control part with environment

36 An Untyped 7°: Syntax and Semantics

5P Fo p €reach(p,n) O tp atm), o ur 2 UK
([0, v]m. t)p = tp! (tlu)p = (#[n/m] | u)p'\mx’
a a(b) a(b)
tp 2 41 tp =5t/ = u'k
OPEN P =0)p b#a CLOSE —~ Tp o A
(b t)p =2 1 (t | u)pr = ((b)(#" [w))p's!
tp 5 t'p' tp > t'p'
sum — L °P PAR PP
(t+u)p—t'p (| u)p = (" u)p’
tp =ty RN
RES P — i a ¢ n(wr) RESET pl— x & dom(p)
(va t)p = (va t')p (vz t)p EN tp
b t[ﬁ/ﬁ%]pﬁt’p’ A(m) & 1 CONV uk =tp tpim’p u'k' =t
(A(R))p N uk > u'K!

A= prk and o'k’ defined. O = dom(p) D fe(t) U fe(u).
V £ pk and p'\"k' defined, (m € P) & (n € P). ¢ = O A ((bn(7) Nn(u)) = 0).

Table 3.2: Late Transitional Semantics for 7% : part 1

Vo' € (0,6) pt? E -0 tp LEN tptd uk I8, it
TNSEL 5 TSUM T A
([o; v]m-t)p = ([o, vl £) p*? (t+u)ps —= (¢ + u')(pr)**
5 €10,8) pt Eo A~ tp 25 ¢ 9 ur 25 wipte
TSEL Vo' € [0’5@).550) oA-v pan P (sp‘S S’um LN
([o; v]m. t)p == ([o, v]m. 1) p** (t[w)pr —= (&' [u')(pr)**
Vo' € 0,0] pt? tp 25 tp+
TURG ('5[(3 (W)_l))p ? TRES P — P
([0, v]m. t)p =—— ([o, v]m. 1) p** (va t)p — (va t)p*’
ToError(v) ProgErr(v)
TMISS e TERR 5
([o, v]m*. t)p —— Error p*+? Errorvp — Error? p+o

A= pk defined. s(m) = subject () sort(obiect(m))
ToError(v) £ (pH E —v) A (V8 €[0,6) pt¥ Ev).
ProgErr(v) = (Vo' € [0 §] pt E =) v (ToError(—w)).
O2AAS=(R:O)AS =(R:0V) = (RNO'=0AR NO=0ARNR =0)

Table 3.3: Late Transitional Semantics for 7% : part 2

Semantics of A Small Example 37

p*® (where z is set to 0) can also perform the action, leading to #'p’. The valuation
¢’ is obtained from p'* by letting the transition happen: it has to take account of
the clock reset as wanted. The side condition on the rule ensures that the process
has been properly free-clock-converted so that z is not already in the domain of
p. Process instantiation behaves as the term associated to the name A with the
arguments n replacing the formal parameters m, in the same context p. The rule
CONV for term reorganization through structural congruence is as usual.

All the rules in Table 3.3 aim at letting a delay ¢ elapse; as mentioned previously
we do not allow transitions to pass a null delay, hence we assume that § > 0. We
first review the axioms: TNSEL allows a prefixed process to let time pass freely as
long as the selection condition for 7 is false. The interval (0,) for ¢’ is left-open in
the axiom antecedent because o can be initially true, if 7 was enabled and becomes
forbidden. The axiom TSEL settles the case where a prefix action is selected but
not urgent; the right-open interval for ¢’ allows time to pass until either the action
becomes urgent or it is deselected.

When the action is urgent, then both axioms TURG and TMISS may apply. The
axiom TURG yields time-passing transitions that keep the urgency condition true
(the interval for ¢ is left-right closed). Oppositely, TMISS tries to lead the whole
system to an error state. To avoid this, the only solution for the environment is to
impeach time progression by either proposing a matching offer to this requirement
or another (many processes in parallel can exhibit urgency conditions at the same
time) or by having itself an urgency condition on some action which has an immediate
match. In any other case, the process Error is reached. Of course, the silent input
prefixes, of the form [0, v]7.t, are not concerned by this rule since 7 actions are not
a way of achieving synchronization among processes. Hence, the prefixes allowed
by rule TMISS range over 7*, which does not contain 7. The rule TERR allows time
progression until v becomes true, if this is not already the case. Exactly when v
becomes true, the process evolves to Error. If v never becomes true, time may
progress unboundedly.

The rules TSUM and TPAR show how offers and requirements assemble when
involved in a choice or when composed in parallel. The essential point is that the
two operators actually behave in the same way regarding time, except that the
side condition on the parallel rule forbids the conjoining of ready sets that carry
complementary actions. Finally, applying the rule TRES forbids communication with
the environment on the port a. Hence, it keeps the requirements (although those
requirements, being hidden, cannot be satisfied by the environment) and suppresses
all offers on a.

3.7 Semantics of A Small Example

To illustrate how the rules can be worked-in, we give a small example of the possible
transitions for two very simple communicating processes. We start by settling some
common notational conveniences that we shall use from now on. First, we shall
generally omit trailing 0’s in processes, writing [o, v]m instead of [0, v]m. 0. Second,
we allow the use of 7.t for [T, L|r.t. This has the nice feature announced earlier

38 An Untyped 7°: Syntax and Semantics

that untimed w-calculus terms are straightforwardly meaningful in our calculus.
Third, we sometimes gather lists of consecutive declarations into one containing
many names: (vm,n, o) t = vm vn vo t.

The term we are about to examine is the following:
t=va (vbab.vy [y <6,y <6]b() |a(c). vz [x > 5, L]e()) -

To form a process P, we consider ¢ adjoined by any context p. We divide the
term ¢ in two subterms vb @b.u and a(c).v with v = vy [y < 6,y < 6]b() and
v = vz [x > 5, 1]¢(). Those terms are put in parallel and communicate using a
private port a. As t contains no free name occurrence, and since clocks x and y are
properly set to 0 before being used, the behavior of P is independent from the initial
clock context p. The sub-process vb ab. u creates a new port b and waits indefinitely
for its environment to be ready to receive b over port a. If the synchronization
happens, the continuation u immediately sets clock y to 0 and begins waiting for
input on b. As the input on b is urgent, v is eager to synchronize, and if no output
on b has been proposed after exactly 6 time units, an error is produced.

On the other side, the process a(c).v expects an input on port a, naming the
to-be-received argument c. It then sets clock x to 0, and may let five time units pass
without doing anything, after what it agrees to output on port ¢ for an indefinite
amount of time.

Now, formally, here follow a few examples of deductions allowing some transi-
tions. Initially, P can let any amount of time pass, meaning that whatever ¢, there
exists p, and p, so that p = p,p, is defined and we can write:

' STET AL
SEL Vo' € [0,6) pf A

_ &0a?) ,_ ’
b. u)pu b.u)p,’ V&' €[0,6) pf" ET AL
TRES (@. u)p E (@. u)p, TSEL [0, gwpz;)
TPAR (vb @b. u)p, — (vb @b.u)p}? (a(c)v)py —= (alc).v)p?
TRES (vb @b.u | a(c).v)p oar @), (vb @b. u | a(c).v)pt?
tp 20, tpto

The above reasoning tells that, in the case where an interaction is not required by
any of the two parties, its occurrence depends only on the good will of what we can
call the “universe” or, more pragmatically, the execution machine. We can now show
that an interaction on @ is possible after any number of time-passing transitions.
The proof is rather identical to what it would be in the 7-calculus: we can deduce
that 4 may reduce performing a bound output of ¢ on a (which it does not actually
contain because in u the name is b) by using the CONV rule to a-convert ¢ to b. The
the counterpart on the v side is trivial; if we suppose v’ = vy [y < 6,y < 6]c(), we
can write:

Semantics of A Small Example 39

PRE pul T
(@c. u')py =5 u'p,
OPEN -
— ; a(c !
. — ET
CONV(Vcacu)pu _()UP“ PRE Pu ”
_ a\c alc
CLOSE (vb ab. u)p, —> u'py (a(c). v)py — vy

(vbab.u | a(c).v)p = (ve (u' | v))p

RES
tp 5 va (ve (u' | v))p
We now address the more interesting case where, after the initial interaction
on a, both process terms v’ and v order a clock reset and then allow time-passing
transitions that exhibit offers and requirements. One of those transitions, with § < 5,
can be deduced by:

&{c:0) &()
B UI[:#;;LJ vpy = vt
! d{c: ’ w¢y+5
—
rams (W 10)p (u' [v)p*

(va (o | 0))p = (va (u' |) pHeis*

because
Vo' € [0,6] ptd Ey <6
TURG 1 5]< p@ “; Y
< 6,y < 6]c()p =% ([y < 6,y < 6]c()pivto
(<69 <60l “ (ly < 6,y < 6)c0)nt
Ulpu 5{c:0) u'piyw
and
Vo' € (0,6) pietd Ex <5
TNSEL 5
> 5, L]e())pi™ = ([z > 5, L]e())ps**°
s (23 000V & (> 5, L1
After several time progressions dy, dg, « - - , 0 such that the sum §; +dy+- -+, = 5,

then time cannot progress anymore because of the urgency condition in u’. Indeed,
the side condition in rule TPAR, that was true in the previous proof tree, is not true
anymore since u' requires interaction on ¢ as before, and v offers interaction on ¢
starting when z equals 5. The only available transition is therefore the one where
v’ and v communicate.

The final question is: can this process lead to an error? From the previous
reasoning, one should by intuition answer “no”. But we can give a perfect proof-
theoretic answer: suppose we try to make the process trigger a transition leading to
y = 6 for example. Then, the rule TMISS can be invoked for u’'. However, though v
is ready to accept to let such a delay elapse, the transition cannot be inferred from
the rules of Table 3.3, again because of the side condition on rule TPAR.

40 An Untyped 7°: Syntax and Semantics

3.8 Model Properties Over Time

We now discuss some important properties of the transition systems generated by
our processes. This discussion includes a comparison with the properties exhibited
by other timed process algebras and the m-calculus.

First, let us remark that our processes are infinite-state in many regards. By
combining recursion with restriction and composition, one may indeed create terms
that have an infinite number of parallel processes as well as an infinite number of
names. This is true in all m-calculus theories, since the m-calculus is actually Turing-
expressive: the A-calculus can easily be encoded in it [Mil92]. Having clocks which
values range over a dense time domain yields however a semantically conspicuous
property: for any term ¢, there are an infinite (even non recursively-enumerable)
number of processes tp.

This has the also unusual consequence for a m-calculus theory that our transition
systems are infinitely branching: from a given process, an infinite number of time-
passing transitions are possible. Our processes not even retain an essential property
of other m-calculus theories, named image-finiteness: for a given term and a given
transition label, a potentially infinite number of processes are reachable. The PRE
rule can easily be judged guilty for that, a process that inputs a clock value reaching
an infinite number of processes through this transition. If we preclude clock value
transmission however, the property is restored and can be proved as usual on the
ground that, though the argument to an input transition ranges over an infinite
number of (port) names, there can be only finitely many names that can be effectively
proposed; see for example [SWO01, page 45| for details.

From the rules and axioms of Tables 3.2 and 3.3, one can deduce a several other
properties. Time determinism is common to all the timed process algebras that we
now of. It is retained by models of our theory, for which it can be written:

8(S) 8(S)

vP,P',P",6,8S. P— P ANP— P'= P =pP".
We can also easily prove that, between any two points reachable with the same ready

set, our transition systems are interval-trajectoried:

VP, Py, P., 56, 0.,S. (0 < 0. A Py, P, # Error A P2 poa p 28 py
(V6,8 € [65,0.]. (6 < &) = (3P, p". p 2& pr LVE) piryy

This means that each point of the interval [dy,d,] is reachable, and that from it
any later point in the same interval is reachable too. However, it is false that in
our transition systems all time progressions are trajectoried; a good reason for that
is that we do not have the time continuity property [NS92, Yi91|, that is usually
defined by:

vP,P P58 PSP AP L P pr 8 pr
Indeed, since we are using ready sets, time continuity should be formulated as:

&(S) (s (0+0")(8")

vP, P, P" 68,8, P2 pr A pr X80 pr o 3gm p p"

Discussion and Related Works 41

which is obviously false. Since having trajectoried time-passing transitions implies
the time continuity property for those transitions [JSV93|, we deduce that our tran-
sitions are not trajectoried either.

Further considerations could be done over some other time properties of our
models; they do not have neither the weak interval persistency of [NSY93|, nor the
stronger unlimited persistency of [Yi91], defined by:

VP,Q, P57 PSP APSQ=3P. Q5 P .

The last property usually considered in other timed process algebras is the maz-
imal progress property. It states that certain actions (often the silent action) may
occur as soon as possible. Our formal treatment and the operators we introduce in
our language allow more distinction regarding urgency properties than other pro-
cess algebras. Maximal progress is not a property of our models, but we shall give
a proper justification for this when comparing our calculus to others, in Section 3.9.

As almost all other models obtained with timed process algebras, our models can
exhibit deadlocks and livelocks, and produce zeno ezecutions |R. 91, BGS00, Tri99).
Occurrence of deadlocks in distributed programs and their specifications is one of
the earlier problems identified in computer science (see for example [Dij76, SM73|
for a later account). Its definition is that the system under study cannot accomplish
any further transitions, staying locked in its progress. In our model, the deadlocked
process is Error; it can be reached for instance when an unsatisfied requirement
is encountered. Livelocks are less pathological behaviors: time may continue to
progress, but no other action than time-passing ones will ever happen. This is
for example the case when many processes put in parallel do not have input or
output transitions that may become available in the future. Finally, after the Greek
philosopher Zeno of Elea (490-425 B.C.) that produced the well-known paradox
about Achilles and the turtle, the adjective “zeno” designates infinite executions
where time does not diverge: the sum of delays elapsed along the execution tends
towards a finite upper-bound. A possible source of zenoness is the occurrence of
an infinite number of actions in a finite time during an execution. In general, zeno
executions should be absolutely avoided because they represent behaviors impossible
in real life.

We will propose solution to avoid deadlocking and zeno executions in the Chap-
ter 5. However, livelocks are not judged really pathological in our theory, and can
not be directly prevented. Indeed, if a process proposes only non-urgent interaction
to its environment, then this environment has the right to refuse them. The process
may then let time pass up to the moment where none of the prefixes of its current
terms are selectable anymore. There are however means to avoid such situations,
one of them being to use urgent transitions labeled with the silent action.

3.9 Discussion and Related Works

We essentially have two points to discuss: the expressiveness of the operators used
in our language, and the properties of the resulting models (i.e. terms).

42 An Untyped 7°: Syntax and Semantics

A good comparison of several timed process algebras cited in this thesis can be
found in [NS92]; this comparison covers both the operators used in those algebras
and the models associated to their terms. Our language is more powerful than all
the timed process algebras that we know of because it allows:

e the transmission of port names to simulate mobility,
e the transmission of clock values,
e the use of urgency conditions on prefixes which subject name is free.

We do not elaborate more on the first two points because they reflect the ex-
istence of the well-known “gap” of expressiveness between CCS and the m-calculus;
previously existing timed process algebras being based on either CCS, ACP or CSP,
this expressiveness gap logically appears in the timed case. The third point deserves
more attention because it has strong philosophical consequences on the meaning
of programs and their comparison (the associated notion of equivalence studied in
Chapter 4), as well as their composition and their verification (both studied in
Chapter 5).

First, we need to give more technical details on process control and composition:
delving into such details would have been inappropriate in the introduction of this
chapter, but it is now necessary, if not fully relevant.

The main issue is whether one should write only input enabled and machine
realizable specifications or not. A process is input enabled if the set of messages
it is able to receive remains constant, this set forming a uniform service interface:
any of the messages it contains can be received at any moment. When processes
specify only safety properties [AS85], having uniform service interfaces is enough to
guarantee the autonomy of processes, each of them being in complete control of its
output actions. If however processes are able to specify liveness properties [AS85],
then input enabling has to be lifted-up to machine realizability to confer processes
the proper control of their actions.

A specification is (machine) realizable [ALW89] if and only if there exists an
implementation of it (i.e. a specification concrete enough so as to be called a pro-
gram) for which any finite execution can be extended to an infinite execution. In
other words, machine realizability imposes that no safety property may prevent the
realization of any liveness property. For process terms with no free variables (i.e.
that form closed systems), this property is called machine closure. For open sys-
tems, machine realizability is called receptiveness [Dil89b]: at any point in time, the
process must be able to progress whatever its environment does.

As stated in the introduction to this chapter, “traditional” untimed process al-
gebras feature processes exhibiting non-uniform service interfaces. Those processes
specify only safety properties; an extension of CCS with fairness assumptions has
been introduced in [Par85] but the autor did not address control and composition-
related issues. Allowing only input enabled and machine realizable specifications has
been mainly advocated in [ALWS89] and [LT87]. Those contributions adopt the view
that a process should never constrain its environment by refusing some input, so that
processes have complete control over their own output actions. This is justified by
the fact that a program running in some real-life system has indeed no control over

Discussion and Related Works 43

the actions performed by its environment (for example the computer executing the
program). Among several benefits, machine realizability provides a compositional
semantics for fair automata that allows for top-down modular refinement in [LT87].

In the case of timed specifications, action control and machine realizability are
even more sensitive issues. Indeed, if the most general kind of urgency condition is
allowed (as in the language presented in this chapter), then a process can force the
system to deadlock under some condition requiring that its enviromnent be ready
to interact on a given port before a given deadline; such a property is typically a
bounded liveness property. Such process can not be machine realizable. Are not
realizable also the processes that exhibit zeno executions, because by preventing
time to diverge they forbid their environment to preform later due actions.

Some timed process algebras, such as TCCS [Yi91], TPL [HR95|, Timed CSP
[Sch95], RT-Lotos [CdO95] and ET-Lotos [LL92], try to limitate the contraining
power of processes over their environment. More specifically, they allow only silent or
hidden actions to be urgent. They do not however completely address the issue, since
they consider only finite (though unbounded in length) executions, and forget about
machine realizability. Preventing urgency conditions to occur in certain situations
is indeed not sufficient to guarantee the realizablility of a specification: the actual
criterion is more demanding [TMM88, GSSAL94, AH97|.

Other timed process algebras explicitly allow processes to impose urgency con-
ditions on actions that are visible by their environment: we can cite at least TeCCS
[Mol90], ATP [NSY93|, real-time ACP [BB91| and urgent-LOTOS [BL92a, BL92b].
The corresponding specifications are therfore unrealizable, but this point is not jus-
tified, even not addressed at all, in the referred articles. In the first three of those
process algebras, urgency conditions come under the form of time-lock prefixes: some
prefixes, that we write for example a.t, do not allow time to progress. The only way
for the environment to unlock the system is then to interact with a.t on «a.

The urgent LOTOS of Bolognesi and Lucidi makes use of a more powerful and
subtle urgency operator. In urgent LOTOS, interactions on a port a are not urgent,
unless an ugency operator asap, is placed on top of the interacting processes. An
urgency condition is then only respected by processes under it: if a is free in asap, ¢
and can therefore be used as a synchronization port between this process and its
environment, the urgency condition can not “see” whether the environment proposes
a at some point or not, and it hence can not make the urgency condition respected
by the environment.

Our operator for urgency can be seen an extension of the asap operator of [BL92a|
that guarantees the respect of an urgency condition even by the environment of the
given process. Our operator is thus more powerful than all the other urgency oper-
ators we have seen in [Mol90, NSY93, BB91, BL92a]. Regarding realizability issues
this seems of little importance since all those operators are too powerful anyway!
Furthermore, having this more prowerful operator seems also not to be a bigger
problem regarding composition-related issues: it is hopeless to obtain a composi-
tional model at no cost, as done in the I/O automata model, when realizability is
relinquished.

But then, what is the interest of reasoning on non-realizable specifications? How
can we perform compositional reasoning on those specifications, since this was an-

44 An Untyped 7°: Syntax and Semantics

nounced as a primary goal in the introduction to this chapter?

We answer to the first question by another question. Why indeed should only
realizable processes be worth of insterest? The advocated approach in the literature
on compositional verification (e.g. [LT87, AL93, AL94, AL95, TMMS88, GSSAL94,
AH99, AHO97]) is to build realizable systems by composing smaller realizable com-
ponents. Hence realizability is preserved by composition. We claim that interesting
results can be devised on non-realizable open processes, processes that can be used
afterwards in realizable systems. If indeed a process is not receptive, we can still
study its properties independently; this study will of course be useful only if there
exists an enviroment for this process that makes the composition (process + envi-
ronment) machine realizable (or machine closed).

In other words, we allow the composition of non-realizable specifications, and we
aim at recovering properties obtained when composing only realizable specifications.
Of course, both methods have a certain cost. To compose realizable specifications,
one has to previously check that the to-be-composed specifications are indeed realiz-
able. In I/O automata, this check is simplified by the structure of the automata, and
it boils down to checking that the composed automata have disjoint output sets. We
will propose in Chapter 5 a type-based static analysis method that imposes compo-
nents put in parallel to have compatible behaviors. Compatibility checking assures
that one process requiring to perform an inputs or an output action on some port
will be composed only with a good-willing environment. We think that this method
is more tractable than realizability checking, since it assures that only processes
that fulfill the requirements of each other (expressed by urgency conditions) can be
composed. Realizability checking imposes a process to respect the requirements of
any possible environment, which is a much stronger constraint.

To conclude, we have presented a formalism that allows mobile processes to
present time-bounded offers and requirements to their environment. This has been
done by introducing clocks in the m-calculus, making ours the saying that “real-time
systems = discrete system + clock variables” [AH94]. The possibility of imposing
urgency conditions on certain actions (even taking place on free names) is the mecha-
nism through which a process may ensure itself to retain the control of those actions.
This is one of the factors that allows one to write non-realizable (i.e. environment-
constraining) specifications with our language; this is however not peculiar to 7,
since many process algebras with powerful-enough operators generally lead to unre-
alizable specifications. We however obtain a strictly finer-grained language, where
both the process-algebraic view that a process has no control over its actions and
the I/O automata view that a process has control over all its output actions can be
expressed.

Chapter 4

A Proof System for 70

4.1 Process Equivalence and Abstract Semantics

After proper semantics have been attributed to processes under the form of labeled
transition systems, we are left with devising analysis methods for those transition
systems. We first notice that labelled transition systems (or their epimorphic unfold-
ing called synchronization trees in [Mil83]) associated to processes have been early
accused of over-specifying the behavior of those processes. This fact being acknowl-
edged by many people (a lot of them belonging to the process-algebraic community),
an initially small number of equivalences relations rapidly seeded until a large field
of them grew, all differentiated by the testing method they apply to determine
when processes with different LTSs have actually undistinguisable behaviors. An
exhaustive thesaurus exposing their variety and testing scenarios can be found in
[vGO1]; the applied taxonomy favors the approach according to which all interesting
equivalences belong in the so-called linear time — branching time spectrum.
Proposing and studying such a relation is now a mandatory step for all process
algebras eager to reach minimal respectability. This section starts with the definition
of such an equivalence and continues with pre-requisites for its formal study that
will come in the next section. We call our equivalence the timed late bistmulation:

Definition 4.1.1 (Timed Late Bisimulation). A symmetric relation R between
processes is a timed late bisimulation if and only if (tp,uk) € R implies:

o iftp LN t'pt? then there exists v’ and S' such that 8' < S and uk LEIN u'kto,
with (t'p*, u'k0) € R;

o iftp a0, t'p with b ¢ (fp(t) U fp(u)), then there exists u', k' so that for all

names ¢, uk Oy ! and (t'[e/blp,u'[c/blK") € R;

o iftp LGN t'p" with x ¢ (fc(t) U fc(u)), then there exists u', k' so that p'(x) =

K'(z), uk o), u'k', and (t'p',u'k') € R;

e iftp = t'p for any other m with bu(w) N (fn(t) U fn(u)) = 0, then there exists
u' so that uk — u'k and (t'p,u'k) € R.

45

46 A Proof System for w°

The largest such bisimulation is called timed late bisimilarity, and noted tp ~y uk. If
the relation is not symmetric, then it defines a preorder called timed late simulation,
noted uk <y tp, and uk 1s said to simulate tp.

This definition stems from both the late bisimilarity of the m-calculus, and the
timed bisimilarity as it is defined for various forms of timed automata and processes.
Timed bismilarity is not different from the earlier ground bisimulation of CCS; it
just takes into account the existence of time-passing transitions, and demands that
their labeling values match (as it does for other transitions). Yet, our time-passing
transitions also feature ready sets: we have to introduce a new condition fixing
the relation between ready sets S and &'. We use the “smaller than” partial order
relation & < &' defined at the beginning of Section 3.6, stating that &’ must have
less offers but more requests than S for the transition of ux to match the transition
of tp.

On the other side, m-calculi bisimulations are quite different from CCS’s ground
bisimulation, because they make use of universal quantification over port names:
two equivalent processes performing an input should behave identically whatever
the name they may receive as argument can be. Hence come the late and early
incarnations of bisimilarity, depending on the position of the universal quantification:
if it goes first, stating that “for all the possibly received names there must exists a
continuation with matching behavior”, it is the early version; if it goes second like
above, stating “there must exist a continuation such that for all the possibly received
names the continuation matches”, then it is the late incarnation. Obviously, the late
equivalence is stronger (i.e. more discriminating) than the early one.

Our equivalence uses a late quantification over received port names. We however
also have to handle received clock names, a necessity inexistent in untimed models.
In a similar way to the port name case, we require that process ux exhibits a match-
ing behavior whenever it has received the same value as tp did. This is indeed a
strong requirement, but it is necessary since the observer may not predict the value
received by the process for all the contexts it may be placed in (see the precondition
of the axiom PRE of Table 3.2).

The first consequence of the above definition is that timed late bisismilarity, not
being preserved by input prefix as its untimed sibling, is not a congruence. Indeed,
although

(v < 1, Lr)p ~u (2 < 2, L]))

for any p, p’ such that = € dom(p), € dom(p') with p(z) > 2 and p'(z) > 2, we
have
(a(z).[r <1, L]1)p =y (a(z). [z < 2, L]7)p’

for any p, p’. When receiving a clock value, processes must behave the same whatever
the received value can be. Yet, when putting those terms in parallel with the term
vy [1 <y <2,1<y<2la(y) we certainly obtain different results.

We conjecture that this simple example casts a doubtful shadow on the possibil-
ity of having a simple restriction strenghtening timed late bisimilarity to a congru-
ence, as name subtstitution did for strong bisimilarity (leading to open bisimilarity
[San93]). This doubt holds at least as processes are allowed to communicate clock
values to one another when interacting.

Process Equivalence and Abstract Semantics 47

We now examine in more details some other after-effects of the above definition,
exposing issues induced by having a dense time domain, and following with issues
related to name instantiation.

4.1.1 Axiomatizing Dense Time

First of all, a proof system for timed late bisimulation has to cope with the dense
time domain, which makes the individual treatment of each couple of processes
impossible: to show that P is equivalent to (), we need to show that for every

possible ¢, if P 2 P and Q LN @' then P’ is equivalent to ()'. Since there is an
infinite (non-recursively enumerable) number of possible values for §, we can not
do without a proper abstraction for our TTSs, that would associate finitely-many
abstract transitions to an infinity of concrete time-passing transitions.

David Dill [Dil89a] has been the first to propose an abstraction in that purpose,
and later successfully applied it to timed automata in a collaborative work with Ra-
jeev Alur [AD94]. Those works came in supporting many results for timed automata,
allowing to prove the decidability of language emptiness [AD94], bisimulation [C92]
and model checking problems [ACD93]. The divisions in the state space over which
time-passing transitions are grouped are called regions; for timed automata, the un-
timed automaton obtained after abstraction is called the region graph. Since then,
the region abstraction has found ubiquitous applications in real-time system analy-
sis.

Definition 4.1.2 (Region Equivalence). Given two processes tp and tp', ceil(t)
being the highest natural constant appearing in t, then tp and tp' belong to the same
region if and only if for any clock x € fe(t):

o if p(x) > ceil(t) then p'(z) > ceil(t), and
e if p(x) < ceil(t) then we have the two properties

= lp(@)] = K (2)],
— if p(z) — [p(z)| = 0 then p'(z) — [¢'(z)] =0, and

o for all z,y € (dom(p) Ndom(p')) and p < ceil(t), (pFx—ytp) = (PFE

where | p(z)]| is the integer part of p(x).

Intuitively, in a given region two clock valuations p and p’ are identified by
forgetting the precise fractional part of the value of each clock, and by not paying
attention either to the precise value of a clock if this value exceeds ceil(¢) in both p
and p'. To allow a sound abstraction, a region however contains complete information
about the order relating the fractional parts of the clocks. It has been shown [ACD93]|
that the quotient of a timed automaton using the region equivalence still preserves
all the branching properties of that automaton regarding the real-time temporal
logic TCTL. It has also been shown by Tripakis and Yovine that the region graph
of a timed automaton is actually the quotient of this automaton by a (very) strong
time-abstracting bisimulation |[TYO01].

48 A Proof System for w°

We now present an adaptation of time-abstracting bisimulation to our semantic
setting. It resembles timed bisimulation, but delays over time-passing transitions
are not required to match, and port name instantiation is ignored. The relation

also abstracts from the exact clock values that may be received from the environ-

ment of the process: the second case, the one dealing with transitions ¢p ﬂ) t'p,

obliges only uk to have a transition uk M u'k', ignoring which value is actually

received. The same case similarly identifies all clock outputs, here also featuring no
requirement on the actual output value. Those two latter points seem specific to our
setting, no other model that we know of allowing to transmit clock values during
communication.

Definition 4.1.3 (Time-Abstracting ground Bisimulation). A symmetric re-
lation R between processes is a time-abstracting ground bisimulation iof and only if
(tp,uk) € R implies:

o iftp LN t'p*0 there exists u', ' so that uk TS, wkt and (t'pt,u'kt®) € R;

o if tp EN t'p' for any other X\, then there exists u' so that uk 2 w'k' and
(t'p',u'K') € R.

The largest such bisimulation s called time-abstracting ground bisimilarity, and
noted tp ~qq uk. If the relation is not symmetric, then it defines a preorder called
time-abstracting ground simulation, noted uk <44 tp.

The equivalence classes obtained through time-abstracting (ground) bisimulation
are called zones. A zone is a union of regions, hence providing a more compact way of
representing the state space of a process. The symbolic semantics that we present in
Section 4.1.4 is applied to zones, that are obtained by computing the quotient of the
state space of concrete terms through time-abtracting ground bisimulation. How-
ever, before we elaborate more on this and give further developments on practical
issues about zones in Section 4.1.3, we introduce another important problem.

4.1.2 Axiomatizing Name Instantiation

We have seen that w-calculi bisimulations require a universal quantification over
names to deal with input prefixes. Since there are (countably) infinitely-many names,
proving the equivalence of two processes here also requires proving an infinite number
of sub-goals, one for each possible name.

Fortunately, in this case as well many solutions have been proposed: starting
by Milner, Parrow and Walker [MPW92| with their name distinction sets, the ax-
iomatization of open bisimulation by Sangiorgi [San93|, the explicit substitutions of
Ferrari, Montanari and Quaglia [FMQ94|, and the applications of symbolic bisim-
ulations [HL95| to the m-calculus by Lin and Hennessy [Lin94|, Boreale and De
Nicola [BD94]. A different but related proposal concerns history-dependent automata
[MP98|, automata that are expressive enough to simulate all m-calculus terms and
that have been given an axiomatization for bisimulation [MP95].

In a nutshell, all those contributions solve the problem using symbolic transition
systems where transitions are equipped with additional information about which

Process Equivalence and Abstract Semantics 49

names are syntactically equal and which names are syntactically distinct. As an
example, the matching operator [a = b|t allows a transition for ¢ only if this transition
agrees on the equality of names a and b. Any transition assuming otherwise cannot
occur.

Another exemplary case is the input prefix a(b).¢: after the transition the place-
holder b may be equal to one of the free names of the continuation ¢, or it may be
a “new” name, different from all other free names in ¢. Hence, the cardinal of fc(t)
being |fc(t)|, there should be |fc(t)| + 1 separate discrete transitions leaving a(b). ¢ to
as many equivalence classes addressing a different case. For instance, the process ¢

reached after the symbolic transition a(b).t Lhnewint 4 is an equivalence class rep-

resenting an infinite number of concrete processes for which a new name ¢, d, e, - - -
different from any name in fc(¢) has been received through a concrete transition;
since ¢ was not free in ¢, they actually all behave in the same way, though.

We start more technical developments by giving some ancillary but indispens-
able notations for manipulating zones and regions through clock constraints, and
symbolic name sets through matching constraints.

4.1.3 Manipulating Zones, Regions, and Matching Constraints

The delimitation on clock values for zones and regions will be represented using
clock constraints, which will be typically named (or £&. Those contraints use the
same syntax as the general constraints of Section 3.4:

Cux=(CAC|ICV(|~Clztgqlz—ytq

where § € {<,=,>} and ¢ € Q.. True and false values are noted as above T
and L, respectively. Zone constraint and region constraint satisfaction is constraint
satisfaction (see again Section 3.4).

Regions contraints are represented as clock constraints possessing a particular
format. A clock constraint ¢ forms a region ¢({ with process term ¢ over clocks
fc(t) = z1,- -+, xy if it respects the minimality and the proper ordering properties:

e foreach i € {1,...,k}, either z; = p; or p; < x; < p; + 1, or = > ceil(x,t), and

e for each pair 4,5 € {1,...,k} with ¢ # j, then either z; —z; =porz; —z; <p
with p < ceil(z;, 1), or x; — z; < p with p < ceil(x;,).

For verification purposes, it has been however found rapidly that regions are too
discriminating abstractions: processes belonging to different regions often behave
in the same way. To symbolically represent the state space using zones has thus
been proposed, by Henzinger, Nicollin, Sifakis and Yovine [HNSY92|. Eventually,
zones were characterized as representatives of equivalence classes obtained through
time-abstracting bisimulation [TY01].

Like a region, a zone is a couple ¢ (where ¢ is a process term, and (is a clock
constraint over the free clocks x, --- ,z, of t. We take (to be a disjunction of
contiguous region constraints; (is also assumed to be tagged with a ceiling value
for each xq, - -+, x,. This ceiling value will be noted ceil(z, {); yet, for the sake of
simplicity, we shall omit to apply the ceiling tag when writing zone constraints, and

50 A Proof System for w°

we shall allow to freely examine the tag when convenient, on the grounds that it
has remained implicitly present in the scriptures. Unless otherwise mentioned, all
operators defined on zone constraints preserve ceiling tags, while predicates on zone
constraints ignore them.

Zones are in general not minimal, and they do not repect proper ordering ei-
ther. However, any zone is composed by a finite number of regions [TY01|. It
has furthermore been shown in [HNSY92| that zones can be maintained so that all
TCTL properties of a timed automaton are decidable on its zone-enabled abstrac-
tion, without having to explicitly compute the entire set of regions reachable by the
automaton.

We now define some elementary operations on zone constraints, that roughly
correspond to the ones defined on clock valuations in Section 3.2. An illustration of
the effect of those operations on 2-polyhedra is given in Figure 4.1, that we borrowed
from [TYO1].

For each operation, we give a definition on logic grounds (i.e. on constraints), and
its correspondence in set-theoretic terms. We overload all the introduced operators
so that we can apply them to both constraints and their semantic clock valuation
sets uniformly.

In the following definitions, { is assumed to be in region-disjunctive normal form,
that is of the form ¢ £ (u; V- - -V (i Where each (; is a region constraint. It is not a
limitation, since any constraint can be rewritten in this form. For convenience, each
operation is hence defined at first on region constraints, then extented to constraints
in region-disjunctive normal form. Operations defined on region constraints do not
yield region constraints, but plain general constraints. By taking implication to
form a preorder over constraints, we say that a constraint £ is weaker than another
constraint & if and only if £ = £.

When the restriction from a clock z, noted ¢*, is applied to a region constraint
Ca, the result Q,\\w is the weakest constraint satisfying for any clocks y # = and z # z,
and for any constant p:

e if (4 = ytp, then (\" = y#p and,
o if (A =y — ztp, then C,\\miy—zﬁp.

For a general constraint we obtain naturally: (* £ C,\\gf VERRAY, C/\\i The correspond-
ing set-theoretic characterization is that p € [¢*] if and only if 3p' € [(]. Vy €
(clocks(O)\{z}). p'(y) = p(y). We hence trivially have p € [(] = p* € [¢*]; the
converse is false, though. The restriction operator can be generalized to sets of clocks
X, with ¢\¥ defined inductively by ¢\? 2 ¢ and ¢\¥ £ (¢\¥')* for some £ € X with
X' 2 X\{z}. The converse operation (/X is defined by ¢\(clocks(O\X),

The constraint (¥ is obtained from ¢ by reseting clock x. As for clock valuations,
the clock z has to be new in constraint (: = ¢ clocks(¢). For a region (,, for any
clock y # = and constant p, C,‘kw is the weakest conjunctive constraint satisfying:

L] C/\w:><./\:
o if {, = (y =p) then ¢ = (y — z = p),

o if (, = (y > p) then ¢ = (y — z > p), and

Process Equivalence and Abstract Semantics

51

A
G
G
A
G UG
A
¢l
A
"

-
Ll

NG

y

G

—

G2

y

y

1y
2

Figure 4.1: Operations on 2-Polyhedra

52 A Proof System for w°

e ("= (z=0).

Then, as before (¥* 2 (X7 v --- v (. The set-theoretic characterization of this
operation is straightforward: [¢¥*] = {p**| p € [(]}-

The upward and downward opening operations are true of all the valuations
reachable by respectively letting time progress or regress at will from one valuation
satisfying the present constraint. Thus the upward (resp. downward) opening ¢/
(resp. (Y) of ¢ is obtained by removing the upper bounds (resp. lower bounds)
constraints on all the clocks of (, and by fixing the order respected by their fractional
parts. Indeed, if the values of the clocks may progress or regress arbitrarily, all
of them should do it at the same rate, the order existing among their respective
fractional parts remaining unchanged. Thus, for a region constraint (., for any
clocks x, y, and constants p, ¢, then C,f\ is the weakest constraint satisfying:

o (=

o if {, = (z = p), then ¢} = (z > p),
eif(\=>(z—y<p),thenl=@E—y<p Alz—y>p—1),
eif(\=>(x=pAy=gq)then L =z —y=p—q.

Then again, ¢/ £ ¢/, V ---V ¢4,. The definition of ¢/ is identical to the one of
¢/, except “>” is replaced by “<”, and “>” is replaced by “<”. The set-theoretic
characterizations are more direct: [¢/] = {p'| Fp,6. p € [(] A p' = p™} and
[¢/] = {p| 30,6. o € [C] AP = pt}. We remark that T/ = T/ = T and
1/ =1/=1.

Finally, we shall write that a set (1, -- -, (} is a partition of a zone constraint (
(or equivalently that (3, - -, (j is a (-partition) if and only if (< (Gt V -+ V ().

We now define the (simpler) operations on matching constraints. Typical name
matching constraints range over u, 7,0 and their decorated variants. For any port
names ¢ and b matching constraints respect the syntax:

pi=a=bla£b|luAp.

Our matching constraints are thus strictly conjunctive. The set of port names ap-
pearing in a matching constraint p is noted ports(u). We note the true and false
value respectively T and L as above, defining them for example as T 2 z = z and
L&z #a.

As we lack negation and disjunction in their definition, we have to define an
implication relation over matching constraints in an ad-hoc, axiomatic fashion. If
we note y < n if and only if 4 = n An = p, then it is defined as the smallest

Process Equivalence and Abstract Semantics 93

relation closed under the following rules for any matching constraints pu, n, 8:

(LAn) < (nAp) commutativity
(A NG A (nAb) associativity
(k=nANn=0)=(n=10) transitivity
(L= AN(p=0)= (p=nA0) consequent
LA = p weakening
p=T, L=>pu T and L laws

a=b=b=a, a#b=b#a
a=bhNa=c=b=c
a=bANaF#c=>b#c

We remark that reflexivity can be inferred from the previous system: using
consequent and weakening on g A T = u, we obtain (LA T)A (LA T) = (A p),
hence p A p = p, and by transitivity yu = pu.

We generalize the application of substitutions to name matching constraints:
with a £ [fi/m], pa is the matching constraint obtained after simultaneous substi-
tution of each name m; in m by the corresponding n; is n. We say that a substitution
a 15 consistent with, respects, or satisfies a matching constraint u, written o F p, if
for all a,b € ports(u):

(= a=10b) = (a(a) = a(b)) A((L=a#b) = (a(a) # a(b))) -

It is simple to show that 4 = 7 if and only if for all substitutions o, « F p = a F 7.

Each name matching constraint p allows the definition of an indexed equivalence
relation =* over transition labels. It is defined as the smallest relation closed under
the following rules:

TE“T_
ar =V bx if p=a=0>
ac =" bd if u=(@=bAc=d)

a(c)=tb(d) if p=a=0b
alm)=Fb(n) if p=a=0b

We say that a matching constraint u belongs to the mazimally consistent ez-
tension of a matching constraint 7 over a set of port names A = {ay, -+ ,ax},
written p € MCE4(n), if p = n, and for any elementary constraint a = b with
{a,b} C (clocks(n) U A), then either y = a="0bor u = a #b.

The definition of the equivalence that we will use on our symbolic TTSs makes a
crucial use of partitions and extensions: it basically requires that the transitions of
the compared terms match for all the zones of a zone constraint partition and some
maximally consistent name matching constraint. The existence of such partitions
and maximally consistent name matching constraint is decidable over finite terms,
since the number of regions (and hence partitions) and the number of maximally
consistent name constraints are finite.

54 A Proof System for w°

4.1.4 Abstract Labeled Transition Systems

Under the lights of Sections 4.1.1 and 4.1.2, our abstract labeled transition systems
are the result of two orthogonal abstractions: the one dealing with time, and the
other dealing with name instantiation.

We give a symbolic operational semantics [HL95] to zones: name-related abstrac-
tion information is bound to transitions, while time-related abstraction information
is bound to process terms. Although it would be possible to place the information
about names also on processes, we think that proceeding this way encourages a clear
separation of concerns between the two abstractions. To be complete, one may ask
the question: why do you not rather place time-related and name-related informa-
tion on transitions? This question turns out to be interesting, and we shall give it
a proper answer in Section 4.3.

As a result of the previous considerations, our symbolic transitions may carry
two sorts of labels:

As =7, u| (R :O)

where 7 is an action as defined earlier, i is a name matching constraint, and (R : O)
is a ready set for time-passing actions. Hence, discrete transitions now carry match-
ing constraints for name abstraction, while time-passing transitions logically do not
bear any delay, having undergone time-abstraction. The fundamental property that
we try to obtain with our abtract transition systems, and that we shall indeed prove
later, is that an abtract process ¢ (may perform a transition only if any concrete
process tp with p F (can perform a corresponding concrete transition. The corre-
spondence for discrete transitions t¢ =5 ¢' ¢’ is judged modulo equalities deducible

from the name matching constraint pu, authorizing tp LA p when m = 7', Time-
passing transition correspondence is judged simply by ready-set correspondence:
t¢ S,y ¢" only if tp RN t'p*? and (' E p*o.

We present the symbolic operational semantics in the same style as the concrete
one, starting by the definition of a “ground” structural congruence relation =9 over
processes. This relation is nearly identical to the structural congruence of Section 3.6.
The first noticable difference is that we remove the rules concerning the matching
operator, so that it can be dealt with explicitly, in a symbolic fashion. To simplify
the reduction rules, we add one axiom allowing us to consider only terms where the
selection condition for a prefix action cannot stay true after the urgency condition
on the same prefix became false. The rules are given on Table 4.1.

As in the concrete case, we then extend the ground structural congruence =9 by
allowing the identification of free clock names that yield the same value. Formally, for
two terms ¢, u and two constraints ¢, & with fe(t) C clocks(¢) and fe(u) C clocks(§),
if we take fc(t) and fc(u) to be arbitrarily ordered respectively as x1, s, - - - , 2 and

Y1,Y2, = s Yk, then

t(=%ué A
t{=ués set(Z) N (set(z) U set(g)) =0 A

Bt 2, 0 2 { (O[3 /5] & €40 [3/3).

with for all 4,5 € {1..k}, i # j, 2, z; pairwise different. There again De Bruijn
indices may be used to efficiently find such a mapping 2z, 29, - - - , 2-

Process Equivalence and Abstract Semantics 99

t+0)¢=r1¢ (]10)¢=1¢ (wn0)¢(=0¢ ([a=0]0)¢=Y0¢
t+u) (= (u+t)¢ ((t+u)+v) (= (t+ (u+v))C
(t]u) ¢ = %C (([u)[v) =2 (¢] (u]|v)C

t
(u]t
(vn t) ¢ =9 (vm u) ¢ if tjo/n] = ulo/m| for some fresh name o
([o,v]m.t) ¢ =9 ([0 Avd vlm.t+ [o\v?, L]m.t) ¢

Table 4.1: The Symbolic Structural Congruence

;L a(m ! bn,n ’
PRE (=0 (= riaih(g,w) Com t¢ = W\z/\g uf ——u'& N
([oyv]m.t) ¢ ==t (t [u)(CA 5) (#[n/m] | u)(C"N™ A E)
ab, .,y .y) I be)n 4 e
OPEN tC—a(b>tC v CLOSE t¢ = Tfmfme ué ——u'd >
wbt)¢(—= 1t (tlu)(CAE —— () [u))(T'AE)
LR N T A8y 4l A
RES tCﬁtC v RESET te —:tg‘ Ol
(vat)(= (va t') (' (ve t) =St
Sum t¢ M:t, ¢ PAR £e :_u> re
(t+u)¢ =5t (t]u) ¢ =5 (¢ | uw) ¢!
o t/mi¢ N C ar Lt NMaTen te =5t f;
((7)) ¢ 2 /¢! ([a=bJt) ¢ ==t ¢
Cony BESHC 162 ¢ we = ¢
ué SN u'€’
. {a=bifa¢b, AZAN(CAE @ LA™ AL) 1)
A= &) A
T otherwise. P EAA((CAE < HAN(TAE) e 1)
V£ ¢ (ports(u) U {a}) v 2a¢ (n(p)Un(r))

O = clocks(¢) D (fe(t) Ufc(u)) €= O A ((bn(r) N fn(u)) = 0)
O£ (x & clocks(C)) A (ceil(z, (**) = ceil(z,t))

Table 4.2: Symbolic Transitional Semantics for 7°: part 1

56 A Proof System for w°

The rules for abstract discrete transitions, reported in Table 4.2, are very similar
to the concrete rules of Table 3.2, but they have been adapted according to the
principles enounced in [Lin94|. The first rule PRE for input prefixes is the only axiom
for discrete transitions. It requires that all the concrete terms in the current zone
may trigger the prefix, hence (= o; it imposes no constraint on name equality. The
set of reachable clock constraints reach(¢,) from a constaint ¢ through transition 7
is defined by: reach(¢,7) = ((Az > 0) if 7 = a(z) for some a, and reach((,7) £ ¢
otherwise. By comparison to the concrete case, one may see that those abstract
transition systems are now ¢mage finite, while our concrete transitions systems were
not. An infinite number of transitions obtained through rule PRE are now abstracted
to one sole transition obtained through rule PRE.

The rules CoM and CLOSE have been modified to require the equality on the
subject of the interaction to be accomplished. They allow the conjunctive splitting
of the zone constraint into ¢ and &, at the condition that (A £ is not an antilogy.
The rule OPEN states that a name b can be hidden if a transition with the same b
not hidden can be deduced when considering b different from all the other names in
the term ¢. This is written by using the predicate unique(b, {a1, ..., a,}) defined to
be (b# ay) A--- A (b# an). Once b is hidden, this constraints logically disappears.

Restriction and reset rules are identical to the concrete case, although this time
of course, the reset rule allows transitions carrying A, labels. The rules for choice
also allow similar behaviors to the concrete case, without introducing any constraint
on port names. More interesting is the rule for name matching, that forces equality
on port names a and b, as described earlier in Section 4.1.2.

The rules for time progression in Tables 4.3 and 4.4 are quite different, and
somewhat more intricate than in the concrete case. This is because we need to
cope with two hindrances: the dense nature of time, and the failure of our models
to withstand the time continuity property, as seen in Section 3.8. The general
idea behind the rules in Table 4.3 is therefore to accommodate the variations that
may affect the ready sets placed over transitions: a prefix transition may be either
impossible, selected but not urgent (meaning its name will be in the offer set), or
urgent. This introduces three frontiers of time discontinuity that limitate the time
progression a process may accomplish in one step. A process may let time advance
up to the next reachable frontier, but it has to stop there mandatorily, the set of
time-passing transitions enabled from the frontier bearing a different ready set from
the ones before. This obligation has the virtue of ensuring the proper execution of
urgent interactions: stopping at the frontier allows them to impeach further time-
passing transitions and to execute right at the moment when they become urgent.
Errors are dealt with according the same spirit in Table 4.4. In the same table can
be found the rules for restriction, choice, and parallel composition.

The rules TSEL, TURG and TELA in Table 4.3 allow a given zone to reach the
next possible frontier, if it exists. The rules TiDL, TUNBS and TUNBU deal with un-
bounded zones: zones in which time may pass at will without the concrete processes
in the zone crossing any frontier of time discontinuity. The rule TREG “comple-
ments” the six rules above it, stating that if a zone ¢’ (that zone being either an
unbounded zone or a frontier of time discontinuity) is reachable, then all the zones
between the present one and the given ¢’ are themselves reachable (this corresponds

Process Equivalence and Abstract Semantics 57

to the interval trajectory property of Section 3.8).

The rule Twmiss in Table 4.4 deals with obligations: a process produces an error if
its environment required an interaction that will not be produced under the specified
timeliness conditions. The rule TREQ is similar to TREG, but it is specially needed
for the case where an urgent interaction is required to happen, TREG being ineffective
in this case because rule TMISS does not lead to an executable term but to Error.
The rule TERR is used to block the execution with explicit errors, allowing time to
progress until the condition v becomes true, the process then becoming deadlocked.
TNERR lets time elapse forever, an error never being reached.

Finally, the rules Tsum and TPAR allow time progression in choice or composi-
tion processes, at the condition that the same time elapses in both subterms. The
rule TRES for restriction is almost identical to the concrete TRES rule.

(Crof) & L) AT = o)

TSEL 0
([o,v]m.t) ¢ = ([0, v]m. t) (o A ()=

(€= (o\v) A (Y =)
([o,v]m.t) ¢ LN ([o, v]m.t) (v A CT)=4

TURG

(€= (\)A (" # o) A((vAl)) & L)

TELA
([0, v 1) ¢ L2 ([0, v]m. t) (0 A 7)™

(") Aol) & L

TIDL ;
([o,v]m.t) ¢ = ([0, v]m. t) (et

=)Ao/ o)A ((VAL) & 1)

TuUNBS 0
([0, v]m. 1) ¢ L2 (o, v 1) cectt
TuUNBU (€=v) /_\(D(Uf e v)
(o, vl) ¢ 22, ([0, v 1) Ceet

([o,v]m.8) ¢ S ([0, 0]m.8) ¢ (€ = ((/\CY) ACD)) A (€74 & ¢7Y)
(lo,v]m.t) ¢ S ([o,v]m.t) €

TREG

Table 4.3: Symbolic Transitional Semantics for 7°: part 2

Before we examine the rules of Tables 4.3 and 4.4 in more detail, we have to define
some complementary operations on zones that are used in them. Consider a region
constraint (». A clock z € clocks((,) belongs to the set of upward most constraining
clocks C/ if and only if (4, = = < p for some p and, for any clock y # = and constant
q, if (pn = y < q, then (, = x —y > p — q. Symmetrically, A x belongs to the set

o8

A Proof System for w°

C
A
\Y

TMISS

TREQ

TERR

TNERR

TRES

(C=v)A (v &)

([0, v]m*. 1) ¢ L), Error((v A ¢7)7)

C=v)A@ #v)AE= VAN AEY <)

(s(m):0)

([o,v]m.t) ¢ ([o,v]m.)€

(CAv) e DAC=v)NE <) NE= (AN

Errorv (Q) Errorv§

(CAv)e HAE s N (Ee)V (E=>

(CNO\C*))

Errorv(ﬁ) Errorv &
te Sy
(vat)¢ LA (va t')('

t¢h S t’g’ ughr £y g

Tsum A

(t+u) (CAE) 2L (¢ +w) (¢ AENN

Ci‘” 2 tl CI §¢x _) u/ fl

TPAR \%

(tu) (CAE) 25 (¢ [w) (¢ A g

£ (clocks(¢) N clocks(€)) U {z}

ey
ey

(
(€A &+ LA AE) % L) Ax ¢ (clocks(C) U clocks(€)) A (C'C < €7€).
AN((S=(R: NS =(R:0))=RNO=PAR NO' =P ARNR =

Table 4.4: Symbolic Transitional Semantics for 7m°

: part 3

0))

Process Equivalence and Abstract Semantics 59

of downward most constraining clocks C” if and only if (, = x > p for some p and,
for any clock y # x and constant g, if (, = y > ¢, then (, = z —y < p—gq. The
upward border Q,f_ of (, is the least conjunctive constaint satisfying, for any clocks
z and y and any constant p:

ol = (x=p ifzel A=z <p,
ol = (xtp ifrdC A= tp, and
o (T =a—ytpif(=>z—ytp

The downward border (=Y of a region constraint (, is defined in a symmetric
fashion, merely replacing C/ by C’ and “<” by “>” in the previous definition. Those
definitions are extended to some general constraint ¢ in the usual way: if (£
Car V-V (g for some &, then ¢/~ 2 ¢/ v---v ¢/ and (=Y 2 (V- Vv (.

The ceiling (¢°* of a zone ¢ defined as the latest unbounded zone that is reachable
from ¢ by letting time pass. It is obtained as the fixpoint (= F*({) of an auxilliary
function F, first defined on strictly conjunctive constraints (, as the weakest con-
straint verifying the following predicate: if there is a clock = € clocks((x) such that
for all y € clocks(Cy), (CA Az = ceil(z,¢)) = y < ceil(y,) then

o F'((\) = (x> ceil(x,()),
o F'(C\) = (z8p)if(a =z ¢p, and

o ') =z —ytipifG=2—yip

the definition is extended to a general constraint ¢ = (a V-V (e by FY(() £
F'(Can1) V -+ V F*({nr). The existence of the fixpoint can be proven by taking for
measure the number of clocks which are not forced to be either equal or strictly
superior to ceil(t) in any (a;, @ € {1..k}.

Having gathered the needed paraphernalia, we can now precisely describe the
fundamental point supporting each rule of Table 4.3. In TSEL, it is required that no
concrete process in zone ([0, v]m.t) ¢ may perform action 7 (because ((Ao’) & 1),
but that all will acquire this capability by letting time pass: all the concrete processes
in the zone (because (/Y = ¢//) will eventually be able to perform 7 if the values of
the clocks constrained by ¢ grow sufficiently (because the two preceding conditions
imply that (o A ¢/) 4 L). The region that is reached is then precisely the lower
border of (o A /), that to say the proximate frontier of time discontinuity.

The rule TURG is similar to TSEL, but it allows time progression from a zone
where the action prefix [o,v|r.t is selected (but not urgent due to the condition
¢ = (o\v/)) to a zone that is the discontinuity frontier where that prefix becomes
urgent. The rule TELA allows time to progress from a zone where an action is
selected to a zone where it is not, at the condition that the selection region is not
unbounded (07 4 o) and the action may not become urgent at any time in the
future ((v A ¢/) < L). The region that can be reached is the discontinuity frontier
between the zones where 7 is enabled, and the posterior zones where it is not.

The rule TIDL is the natural follow-up of TELA, allowing to reach a zone where
time progress is unbounded from a zone where the action 7 is not selected except

60 A Proof System for w°

(possibly) for its downward border, if 7 may not be selected at any point in the
future. Then, the ready set carried by the transition is logically empty. The rule
TUNBS treats the alternative case, that is when the selection condition ¢ is un-
bounded (0/ < o). The condition o will then never become false in the future,
and unbounded progress can be accomplished without crossing any discontinuity
frontier. Similar is TUNBU, in a zone where the urgency condition is unbounded.

The rules accurately describe how time may progress in our models, being even
fully abstract in a sense. They indeed give in any situation the mazimal progression
a process can make in one time-passing step. This would be correct if we had to
consider the actions prefixes of a term separately, without making any correlations
among them. But the action prefixes put in parallel or in the alternatives of a
choice within a given term do have an influence on each other’s time progression.
The situation can be represented as if they were playing the following fictitious game:
each prefix announces the amount of time it agrees to let go, the prefix announcing
the least amount of time winning the game, meaning that its forces all the other
prefixes to respect its pace. Hence when an abstract process t(agrees to let time
elapse up to some zone t' (', it should actually be ready to limitate its progression
to any zone between ¢ { and ¢'(’, in case another prefix would win the game we just
described. This is a usual way of defining real-time semantics in process algebras
(see for example [NS92| and [LL98|). The game-theoretic formulation was inspired
by |[GSSAL9Y4.

This is what rule TREG does. It applies only to transitions where the term of
the destination zone is not Error, the similar treatment for urgent action being

achieved through rule TREQ. So, if ¢ (S,y (', then TREG allows to infer transitions
to regions ¢ comprised in the time frame strictly between ¢ and ¢’ (with ¢’ and the
lower border of ¢ excluded), which is accurately written (& = ((¢/\¢=¥)¢')). An
additional condition imposes that £ has the same width as (, so that all the concrete
processes of ¢t (can perform the transition to t&.

The rule TwMiIss precises the conditions under which a process may produce an
error. For that, its urgency condition must have an upper bound, through which it
limitates time progression. The rule TREQ plays the same role as rule TREG, but in
the case where the action remains urgent during the transition.

The rule TERR deals with explicit error processes. It may apply in the case where
all the valuations in the current zone may validate the condition v by letting time
pass. Any zone between the current one and the lower border of v is then reachable.

Finally, the rules TSUM and TPAR require that both processes in a choice or a
composition agree on the time that may pass, as illustrated by the fictitious game
given above. The mechanism ensuring this, involves a fictitious clock that is set to
zero in the constraints of the processes that are used in the antecedents of the rules.
We require by a side condition on both rules that this clock is new to constraints ¢
and &, while the reachable constraints (' and & agree exactly on the value reached
by z: ('/* & €'/, This method has probably been inspired to us by [BJLY98].

If one would try to embrace the general structure of the abstract transition
system we just described, he or she would surely notice that certain regions have
time-passing transitions that leave from them and return to them (the so-called
self-loops). Specifically, on any region which does not constrains one or more clocks

Process Equivalence and Abstract Semantics 61

to equal some constant value. Those loops are obtained through rules TREG and
TREQ. Those self-loops are necessary in our semantics to properly deal with choice
and parallel compostition: they ensure the completeness of rules TsuM and TPAR
(see the proof of Theorem 4.2.2). They are also the sign that time-abstracting
bisimulation does not preserve non-zenoness |[TY01]. This drawback is however not
a hindrance to the decidability of timed late bisimilarity, because if one sufficiently
refines the state space, processes with zeno and without zeno executions can again
be distinguished.

In conclusion to this subsection, we also notice that each abstract transition
represents a potentially infinite number of concrete transitions. Hence, our abstract
T'T'Ss are not only image finite, but also finitely branching. This allows us to provide
the sound and complete proof system that will follow.

4.1.5 Semantics of a Small Example (Continued)

We consider again the example given in Section 3.7:
t=va (vbab.vy [y <6,y <6]b() | a(c).ve [x > 5, L]e()) -

We will show how some abstract transitions can be inferred from the rules on process
t T. As in the concrete case indeed, the initial value of any clock that could be
considered for the system is irrelevant. We also note u = vy [y < 6,y < 6]b() and
v=vx [z > 5, L]¢().

Thus, initially ¢ T may only time pass at will, the axiom that applies then is
TUNB, the true selection condition T being unbounded: (T’ < T). Hence we can
write:

(T=T)A(T/&T)

TUNB P
. (a@b.w) T 22 (@b.u) T . (T=T) A (T/aT)
RES - UNB -
N X0 O, (wb ab.u)T (a(c).)T L2 (a(e).v) T
PAR —
- (vbab.u|alc).v)T Gar) (vbab.u|alc).v)T
RES

T T

Of course, the reader is invited to compare the above proof tree with the one in
Section 3.7; they are extremely alike. An interaction on port ¢ may now happen if
it respects the constraints on name matching; we only show by this simple case that
the rules of Table 4.2 work perfectly as in the concrete case when processes have no

62 A Proof System for w°

free names. We suppose again v’ = vy [y < 6,y < 6]c(), we can write:
T=T

PRE —
(Ge.u)T L u'T
OPEN o
T —=u'T
cony e Y) - PRE T1=>1 -
(vbab.u)T WNT, T (a(c).v)T AT, T
CLOSE

, (b ab.ula(e).v)T ™% (ve (| 0))T
tT 25 va (ve (u'|v))T

After the initial interaction on a, the time progression for the process which
term encloses sub-terms u' and v put in parallel is bounded by the time progression
possible for the subterm v; assuming that (;, & (x = 5Ay =5 A2 = y) and
similarly (., © Coyl2/y], (2 © Cwy[z/ac] we can infer from TPAR:

ToAR w T 0 u' Gy vTH Oy Coz
{c:0)
TRES (W [v)T — (u'[v) Cay

(va (' [v)T & (va (' |) Goy
Then, using the rule TSEL, the needed transition on v can be inferred by using
the following equivalences: T+ < (2 = 0A z = 0), (x > 5)/ & (z > 5),
(z=0Az2=0)/ = (2>0Az>0A(x=2),(z=0A2=0)/&z=2 and
(x>5)// < T.

(TH¥ Az >5) & L) A (TH) = TYA (x> 5 A (TH9)7) & 1)

TSEL
(lz > 5, L) T % (2 > 5, L]e() (T*)/ A (z > 5))~

RESET
UTJ'Z —> U (gs

Producing the counterpart deduction on subterm u' involves the rule TREQ, while
noticing that ((TH#¥W)/\T+¥) & (z > 0Ay > 0), (THFW)// & (y = 2), and
Gf & (y=2):

(THY =y <6)A (G = (Y <B6A (2> 0Ay > 0)) A (TH) & ()

TREQ
(c:0)

(ly <6,y < 610())“““ ([y <6,y < 6]c()) Gye

ITJ,z u! Cyz

RESET

Using the rule TREG on v and other applications of the rule TREQ on u', one
may also prove that all the regions which are comprised between (z > 0 Ay > 0)
and (zy < (x <5 Ay <5Ax=y) are reachable.

To the question: “can this process lead to an error?” the answer is (as wanted)
negative consistently with the concrete case. There again, it is easy to see that, after
the discontinuity frontier (,, has been reached, no time-passing transition is fireable,
because of the side condition of rule TPAR forbidding ready sets with common names
in one another’s requirement /offer sets.

Algebraic Laws for Processes 63

4.2 Algebraic Laws for Processes

Having finally settled all the semantic issue that uprose along the path, we may now
care to actually provide some results on the axiomatization of timed late bisimulation
(of Definition 4.1.1) for processes with finite (i.e. recursion-impaired) terms. The de-
velopments are organized in the following way. We start by exploring the properties
that link our abstract and concrete transition systems. This exploration achieved,
we propose a symbolic timed late bisimulation relation on abstract processes. We
show that proving symbolic timed late bisimulation on abstract processes is equiv-
alent to proving timed late bisimulation for a potentially infinite set of concrete
processes. Finally, we propose a proof system for symbolic timed late bisimulation
on processes with finite terms, providing soundess and completeness proofs.

4.2.1 Relating Concrete and Abstract Transition Systems

There are two essential theorems that we show in this section: to an abstract tran-
sition correspond an infinite number of concrete transitions (soundness of the ab-
straction), and for a concrete transition there exists a zone in which the abstract
context can perform a corresponding transition (a form of weak completeness of the
abstraction). Those results are fundamental to prove the soundness and complete-
ness of the proof system in Section 4.2.3, and also for the behavioral type system of
the next chapter.

Theorem 4.2.1 (Soundness of the Abstraction).
For any t,t',(, (', S, 7, u, we have:

1¢S5 = (9,6 (pE CAPTE (N ACY)) = tp 255 1pT0)
and

t¢ 25 1 ¢ = (Yo, . ((bn(m) N (fn(t) Uports(a)) =D A pECAaE p)
= (3. P F ¢ A (ta)p = (Ta)p)) A
(%', . ((bn(m) 0 (f(t) Uports(a))) =0 A g E A aF p)
= (Fp. pE CA (ta)p = (t'a)p))) .

Proof of Soundness. By routine induction on the structure of the operational se-
mantics deduction trees. The proof of the timed case is similar to the first clause of
[LY02, Lemma 4]. The proof for the discrete case is an adaptation of the proof for
the second clause of [Lin94, Lemma 2.12]. O

Theorem 4.2.2 (Weak Completeness of the Abstraction).
For any t,t',p,p', S, 7,0, a, we have:

tp 258 = (3¢ pECA (P ECVEC. PP ECALCS 1Y)
and

(ta)p = t'p' A (bn(ma) N fo(ta)) = O A ports(p) C (fa(t) U fr(u)))
= (3¢ mt" (pECAPECAaE pAt =ta At =5 1"()).

64 A Proof System for w°

Proof of Weak Completeness. The proof of the first clause is similar to the proof for
the second clause of [LY02, Lemma 4|. The proof for the discrete case is similar to
the first clause of [Lin94, Lemma 2.12]. O

We shall actually need those results in the next chapter. For finite terms (which
are targeted by our proof system), we conjecture that it can be shown that the ab-
stract transition system corresponds to a safe abstract interpretation of the concrete
transition system. In such a case, processes are organized as a cpo which order is
given by reduction, and bisimulation is defined (co-)inductively as the least fixed
point of a monotonous function over processes. The time-abstracting ground bisim-
ulation provides an abstraction that, together with a concretion function associating
a concrete process to each abstract process, forms a galois connexion. This allows to
relate the abstract and concrete domains, as the previous theorems do. Yet, results
given by abstract interpretation then apply, and the existence of a fix-point for a
monotonous function at each level leads to the existence of a fix-point at the other
level and an approximation of its value. In our case, this means that for any model,
to find a symbolic timed late bisimulation (defined in the next section) implies the
existence of a (concrete) timed late bisimulation. Well-know results on the abstract
interpretation of timed systems can be found in [HPR97, DH95|.

4.2.2 Symbolic Timed Late Bisimulation

The fact that we are unable to prove stronger theorems than Theorems 4.2.1 and
4.2.2 actually suggests an unfortunate (though expected) deficiency of our abstract
semantics. Namely, for any zone ¢ (, it is false to affirm that (p F (A Kk E () =
(tp ~iag tk). This result would have allowed us to reduce finding a timed late
bisimulation on concrete processes to finding a late bisimulation on time-abstracted
processes, as shown for example in [TY01]. Yet, this does not mean such a result can
not be obtained: it only means that finding a late bisimulation on abstract processes
is not sufficient to guarantee timed late bisimulation on concrete processes; we need
a more powerful (i.e. distinctive) notion of equivalence on abstract processes.

In a nutshell, the wanted result fails because some zones may be too coarse; we
therefore need a notion of bisimulation on abstract processes that is allowed to refine
the (abstract) state space at will.

We typically want to know if for some ¢ and &, we have for all p and k the
property (p F (Ak E &) = tp ~y uk. Consider the usual view of bisimulation as
the copycat game between two players. If the protagonist ¢ ¢ may perform —% (i.e.
tp =5 ¢'p for any p E), we have to determine if the antagonist u £ is able to answer
at any moment x F £ with a “similar” or “compatible” transition. Hence, if all kK F &
are not time-abstracting bisimilar, £ needs to be cut into pieces: u & is not able to

match the discrete transition —% of ¢ ¢, but there may be a partition &, &, - - - , &
of € so that each zone u&; can perform —5. As &;,&, ---, & is a partition of &, we

have (\/ &) < (, hence proving that u £ has a matching transition for all p F &.
i€{l..k}

This is fine, but the above description ignores naming issues. They are dealt with

by applying the exact technique devised by Lin in [Lin94]. This technique allows,

when a process receives a port name from its environment, to predict its behavior

Algebraic Laws for Processes 65

by studying only a finite number of transitions, although the set of names that can
be received is infinite. The main consequence is that each transition then has a
different name matching set: if ¢ ¢ =2 ¢'¢’, then for all the maximal matching sets

0 consistent with 7, © & must have a transition w—l’g such that # = ¢ and 7 =% 7.
Since for any matching set there are only finitely-many maximally consitent sets
over a given finite set of variables V', we only have to examine a finite number of
matching sets by taking V' = fn(¢) U fn(u).

The following definition is therefore close enough to that of Lin [Lin94], but
it differs from the definitions of symbolic timed bisimulations as seen in [LYO00]
and [BD94]. The distinguishing element is the presence of abtracted time-passing
actions in our model. To accurately judge that processes let the same amount of
time elapsed, they are forced to synchronize on a fictitious new clock, as we did for
abstract parallel composition. To do so, we have to give two ancillary definitions,
starting with the slice partition of a zone.

Definition 4.2.1 (Slice Partition). A set of indexed zone constraints (y, - -+, is
a slice partition for a zone t ¢ if and only if (GA -+ ANG) < L, (GV - V&) < ¢,
for all 1 < i < k we have CiN & ¢/, and whatever ! = (; then t (! S, ¢ ¢;' implies
tG St ¢ with ¢ = (.

Definition 4.2.2 (Zone of Constant Width). A zone (is of constant width p if
and only if whenever

AN W-v=ag)rOeL

y,y’ €clocks(C)

for some clock-indexed set of values ranged over by gy, , we have for any z €

clocks(() that

AN G—v=q)A) e@@=22=4)
y,y' €clocks(¢)

implies ¢ — q = p.

Definition 4.2.3 (Symbolic Timed Late Bisimulation). A matching-set in-
dexed family of symmetric relation R* between processes t ¢ and u& with ports(pu) C
(fn(t) U fn(u)) is a symbolic timed late bisimulation if and only if for any x ¢
clocks(t) Uclocks(u), (t,u€) € R* implies that for any slice partition (y, --- ,(p of
(C¥7 A), there emists a slice partition &1, < -+ , & of (§¥%/ ANE) such that each ; and
& have the same constant width, (t Ci\z, uﬁz\z) € R*, and:

e ift(; 3, t'C’ then u &; s, w'& withS X8, t' (" and v’ &' have the same constant
width, (/" < €7, and (¢ ¢\, u' €'\%) € R

e there exists a (CZ\T“ A fz-\z)—partz'tion &, -+, & ranged over by (&, such that
whenever t (G;)/4eks(©) 20 4 ¢ with (bn(m) N (fa(t) U fa(u))) = 0, then for

66 A Proof System for w°

7TI

each 0 € MCEpyomu)(uAn) there is a transition u (¢€;)/ocks© LALINW & so
that 0 = ¢, 7 =0 ', and (t" ", u&') € R, where

N A A b#c if m =a(b) for some a
0" = c €(fn(m.t) U fa(n’.u))
0 otherwise.

If, for some matching set u, there exists a relation R* between t(and u&, then we
note t{ ~t, u&. We note t(~gy ué if and only if there exists a matching set p
for which t { ~%, w&. This relation hence forms the largest timed late bisimulation
over processes; it is called symbolic timed late bisimilarity. If the relation is not
symmetric, then it defines a preorder called symbolic timed late simulation, noted
u& =% t (. The largest such simulation is called symbolic timed late similarity and
noted u & <4y tC.

We now informally discuss two consequences of using this notion of equivalence
as implementation relation for our processes. We can reason either at the abstract
or the concrete level, since we just saw in Section 4.2.1 that they strongly corre-
spond one to the other. First, if we consider only processes with prefixes of the form
[T, L], then our timed late bisimulation corresponds to the strong bisimulation for
the m-calculus [MPW92|, and our symbolic timed late bisimulation to the symbolic
bisimulation of [Lin94]. Second, our bisimulation fails to be a congruence for pro-
cesses. This was yet expected, since early and late bisimulations for the 7-calculus
are themselves not preserved by input prefix.

We provide the follow-up theorem to Theorems 4.2.1 and 4.2.2, relating symbolic
timed late bisimulation and timed late bisimulation:

Theorem 4.2.3. For all t,u,(,& p: t¢ ~h, wé if and only if, for any o F p,
pE (Y7 AC) and k E (Y7 A €) with z ¢ (clocks(¢) U clocks(€)) and p(z) = k(z),
we have (ta)p\® ~y (ua)k\®.

Proof (of Theorem 4.2.3). The proof is a combination of the proofs of item 1 in
[Lin94, Proposition 2.13] and of [LY02, Theorem 12]. The essential difference is that
in our case we do not have the time continuity property, and that we must therefore
cut the state space into continuous pieces to achieve the proof. O

4.2.3 A Proof System for Terms with Finite Control

We now propose a sound and complete proof system, which rules are given in Ta-
bles 4.5 and 4.6. Processes proved equivalent using those rules may not have terms
featuring parallel compositon or recursion. Parallel composition can however be
dealt with through an expansion law that allows the replacement of concurrency
by non-determinism. Again, our proof system draws matter from the one provided
by Lin in [Lin94| to prove late bisimilarity on 7-calculus terms: Lin’s technique is
used to deal with naming issues, while time-related aspects are treated in an ad-hoc
fashion.
The judgments of our proof system are of the form:

pro,Y>tC=ug,

Algebraic Laws for Processes 67

where ¢ and v are simple time constraints of the form
Yui=gu=a<qlz<q|T|L,

x being a clock name, and ¢ being a natural constant.

The meaning of those judgements is based on a notion of timed bisimulation up-
to a given delay dy: two processes are timed bisimilar up-to dy if all the processes
reachable by letting a time 0 < §y elapse are bisimilar. Hence, all the processes of
two zones t ¢ and u ¢ are timed bisimilar up-to dq if

e they can perform the same discrete actions and the resulting processes are
themselves timed bisimilar, and if

e whenever one of them can let a delay § < §y pass, so can the other, and the
resulting processes are bisimilar up-to dy — 9.

Timed bisimilarity is the largest such timed bisimulation. We trivially obtain
that timed bisimilarity up-to infinity and timed bisimilarity simply coincide. Fur-
thermore, under certain circumstances, timed bisimilarity up-to a finite delay dy and
up-to infinity also coincide. This is true at least in the case where the processes
under scrutiny may not let time progress past dy. This property is essential because
it will allow us to establish the completeness of our proof system.

But let us go back to the meaning of a judgment u : ¢, >t = u . It states
that, under the name matching constraint u, t ¢ and u £ are timed bisimilar up-to the
highest delay maintaining the validity of ¢, and that this judgment can be soundly
used to prove timed bisimilarity up-to infinity by proving timed bisimilarity up-to .
If ¢ is true, proving the judgment conspicuously means proving timed bisimilarity.
Otherwise, we will say that a judgement proves bisimilarity up-to ¢. We shall write
u>t¢ = ué as ashortcut for p: T, T>t(= u&. At this point, the role of the other
constraint ¢ may still seem veiled by obscurity. We next alleviate this shortcoming
by elaborating on a few words.

A judgment with a constraint 1 indicates that both processes ¢ (and u & either
will not let time progress so that 1) becomes false, or will let i) become false but
then deadlock. Hence v is used in the Choice rule of Table 4.6: if ¢ { and u & prevent
time from progressing past the point where 1) is true, then it is useless to check that
processes t' ¢ and u' £ are bisimilar up-to infinity so that (¢ +t') ¢ and (u + u') £ be
bisimilar up-to infinity; it suffices to check that ¢’ { and v’ £ are bisimilar up-to .
Using p : T, T > t¢ = uf as an antecedent in the Choice rule therefore requires
comparing t' (and u' £ up-to infinity, whereas using p : T, L > t{ = u& requires
comparing t' (and u' £ only on the basis of their immediately triggerable discrete
transitions.

We need such reasonings, employing 1, to ensure the completeness of our proof
system. On the one hand, 1) may only be used soundly on processes that prevent
time from diverging; 1) is useless on other processes, because no axiom may then give
it a value other than T. On the other hand, lacking the capability of using 1) would
make proving the equivalence of some processes impossible: among the processes that
eventually block time, there are conspicuously many that have equivalent behaviors

68 A Proof System for w°

when their clock context satisfies 1 but inequivalent behaviors when 1) has turned
invalid.

A process may block time in two circumstances: either it has a silent transition
with an urgency condition ending up when x < ¢ for some x and ¢, or it produces
an error when x > ¢ for some = and ¢. Sound derivation trees using this property
can therefore be built by employing rules Tau or Error of Table 4.6 and, afterwards,
the Choice rule.

Just before we introduce the proof rules in a more formal and detailed fashion,
we open a parenthesis to give some axioms that can be used as rewriting rules to
reorganize terms by moving around port name restrictions and clock resets. Those
axioms will be used to establish the completeness of the proof system by helping to
shape-up process terms into some kind of normal form.

Al (t+1)¢=1tC
A2 (va [o,v|n.t) ¢ = ([o,v]m.va t) (if a & n(m)
A3 (vzvyt)(= (ve tlz/y]) ¢

A5 (vmwvnt)(=(vnvmt)(
A6 (va [o,v]m.t) ¢ = 0C if (subj(m) = a) A (v &)
AT (va [o,v]m.t) ¢ = (Error® V) ¢ if (subj(m) = a) A (v/ 4 v)

(
2

A4 E m (t+u))(=wvmt+vmu)(
(

The parenthesis closed, we now define the equality relation on processes as the
least equivalence relation closed under the axioms and rules of Tables 4.5 and 4.6.

te =ué Axiom ——— using Al — A7

Equiv ———>
TN stc=ue p t(=ué

u/\(A a#b) L p >t =uk
)
Res

b €(fe(t) Ufc(u

w:d, > (vat)l = (vau)é a & ports(p)

L HA(=b): 6 tC=uE pA(a£b):6v>0(=ug
h:d > (la= b ¢ =uf

M/\(a:b)NﬁﬂﬁDtC:Uf /L/\(G?éb)lqﬁﬂ/}btg:uf
p:g, b >tC=ug

p:g,p>1t¢=uf
P, >tC=uf

Matc

Part-u

Conseq- 1 w = Absurd-p

L:g,Y>t¢=ug

Table 4.5: Symbolic Proof System for 7 : Part 1

The rules of Table 4.5 handle operations where updating name matching sets is

Algebraic Laws for Processes 69

necessary. As a natural consequence, they appear to be independent of ¢ and 1,
their values being identical in the antecedent and the consequent of the rules. The
only exceptions to that are of course the two axioms Equiv and Axiom, that identify
congruent processes and processes that can be rewritten to the same form using the
axioms Al to A7 above. The identified processes are then bisimilar up-to infinity
and we have to suppose that they do not prevent time from diverging, leading to
¢o=Tandyp=T.

Each rule Res, Match, Part-u, Conseq-u and Absurd-u correspond to a rule in
[Lin94]. The restriction rule Res requires the supposition that the introduced port
name is free in processes on both sides of the equality. A matching operation can
be solved either by identifying the compared names or by supposing them different.
In the latter case, the failing comparison makes the left-most process behave as the
idle one. The rule Part-u is a sort of excluded middle allowing the partition of the
name matching set in two sets, according to the agreement or disagreement on the
equality of two names. Conseq-u allows the strengthening of i in the consequent.
Absurd-y implies that all processes are equivalent in antilogic environments.

The rules P-Input, C-Input, Output and Tau of Table 4.6 make use of predicate
FEqug on a set of rules R. FEqug, employed a rule of our proof system such as
Output, is true if and only if the zones from both parts of the inferred equality allow
only compatible discrete transitions, and compatible time-passing transitions. The
definition of Fqu uses a predicate const width(() imposing ¢ to have a constant
width and yielding its value, as given by Definition 4.2.2. For a rule T € R, we
also define ante(T) and dest(T) to be respectively the antecedent of T and the
destination zone of the transition inferred in the consequent of T.

We consider antecedents and destinations, as respectively written in each rule of
R, to be functions of the constraints (¢, o, v) appearing in them. We consider Equg
to be itself a function of many parameters, for which we define a syntactical shortcut

L& 0,v,§ 0 0. Hence, for some not in clocks(¢) U clocks(€), we define Equg
by:

Eun(,u: ta u, La ¢Ca ¢£) £
((=0)e(E=0) AN (((=v)e (=) A(=d) A (E=d) A
(" Agc) () A (&7 Ade) &) = (

(T\E/R(ante(T))(C, o, U)) A (const_width(C) = const_width(§)) A

(VT € R. ((ante(T))(¢,0,v) < (ante(T))(&, o', 0")) A
((ante(T))(¢, 0,v) = (
((((dest(T))(¢H, 0,) AT A 6)* & (((dest(T))(E7, 0", ") AET A pe)/*) A
prg, T t(((dest(T)) (¢, 0,0)) ACT A ¢)
= u(((dest(T))(u, &, 0",0")! A" A ¢¢)))))

We use two sets of rules as value for R in Fqug. The first ensemble is used
in the prefix-related rules: Tpref = {TSEL, TURG, TELA, TIDL, TUNBS, TUNBU,
TMISS, TREQuaz }- There TREQ,,; is defined as the application of TREQ that yields
the maximal time progression: if &,,,; is the destination zone reached by applying
TREQuqs, then for any other ¢ reached by applying TREQ, ((£/,.. A &) & L).

70 A Proof System for w°

The second set simply contains rules for producing transition of Error pro-
cesses: Terr = {TERRuqy, TNERR}, where TERR,,q; is defined in the same way as
TREQmaq-

We also need to deal with possible zeno and deadlocking executions induced by
urgency conditions on prefixes. We hence define for some rule 7T

by é{ ((dest(T7))(¢*, 0, v))* i (ante(T))(&, o', v,

T otherwise.

that is used in prefix and error rules to indicate that the inferred judgment dis-
charges any peer antecedent used in an application of the Choice rule from checking
bisimilarity up-to infinity. Bisimilarity up-to 7 is then sufficient.

We start the examination of Table 4.6 by rules P-Input, C-Input, Output and
Tau, that deal with prefixes. Each of them uses two preconditions. The first (reading
from the left-to-right) is an inductive condition requiring that bisimilarity of pro-
cesses t ¢ and u & be provable up-to infinity; this anticipates the future of processes
after each of them has accomplished a discrete transition. The other precondition
consists in requiring an instantiation of condition Fqug; this properly deals with
timeliness equivalence. This condition first ensures that both processes can perform
the same discrete and time-passing transitions for all clock valuations satisfying the
current zone constraint. It also ensures thet both processes may let the same amount
of time elapse: if they have outgoing time-passing transitions, then those transitions
should let the same time elapse, and they should reach only bisimilar zones.

The Choice rule deserves some additional comments. It follows the general
scheme described above to reach completeness when two processes prevent time
progression. A new element is however present in that this is done symmetrically
for the two antecedent clauses to the rule: we need only to have t(= u & up-to
', and t' ¢ = u'& up-to ¢. The rule needs furthermore to take into account the
original delays up-to which the equalities t { = u & and ' { = v’ £ were proved. The
rule Conseq-¢ tells that diminishing the time up-to which an equality is proved by
strenghtening ¢ and, contravariantly, enlarging the amount of time one has to ex-
plore to prove the equality of a choice by weakening 1), is safe. The last two rules can
be used to partition the state space should it be too coarse-grained, and to reason
about zones which constraints can be satisfied by no clock valuation.

The rules of Tables 4.5 and 4.6 are however unable to treat processes with terms
that feature parallel composition. As in other mw-calculus theories, we provide an
expansion theorem that preserves timed late bisimilarity. This theorem allows to
suppress the composition operator from any given process with finite term. Its
definition is given on Table 4.7.

In this definition, we have used the term

Y ([p Ay A a; = billof Aag,up v olT vg)

wt opp ¥
as a shortcut for

by ([uf/\,u}‘/\ai = bj][af/\a;‘,vt]r vij)+ ? by ([p,f/\,u;-‘/\ai = b;][oinc, VT vij)

{ Jr Y
t
; opp 7F}‘ w; Opp 7rJV

Algebraic Laws for Processes 71

A

A

ta(c) £ ([o,v]a(c). t) ta(z) £ ([o,v]a(z).t) tam = (Jo,v]am.t) t, = ([o,v]7.1)

upe) = ([07,0']b(c). u) up(a) 2 ([0, v]a(z). u) Us,, 2 ([0, v]bn.u) u, = ([0o',v]7.u)
t - E re 7ta c)s C 7L7)
Potnput L2 1C= 48 Bqurpres (i tate, Untey, L b, 6)
M ¢7 1/)TMISS > ta(c) C = Up(c) 5
t A > 0 == A > 0 E re ata x)» T ,L, 3
C-Input p>t(CAz>0)=u(lAx>0) Equrpres(it, taw), Us(), L, G¢; P¢) A
BT, s D> ta(z) ¢= Ub(x) 3
= E re y ban, Wp, aLa)
Output petC=ug Equrprer(u tan, s, L d¢, &)
Mo ¢, /l/JTMISS > tﬁn C = uEng
Tau [I,Dtc = US Eqquref(,U'a tTaU"raLa ¢Ca¢§)

Error

Reset

Choice

Conseq-¢

Part-(

Absurd-C

IR0 wTREQmam >t C=us§

Equyer (i, Error?, Error” | L, ¢¢,)
W Dy UTerppm., > Error? = Error?

pio Yt = ugn
w60 > (v 1) = (vr we

pi(oAY),p>tC=ug p: (¢ AP, >t'¢=u¢
pi(oNng), (AP)> (E+1)C= (u+u)é

p:oYp>t¢=ué
prd P>t =ug

p:g,h>1¢=ug M!¢,¢>tC=U§'A
prgp>t¢=uEVvye)

z ¢ (clocks(C) U clocks(€))

("= @) A (v =)

proyp>tl=ul

O£ (u= (a=0b)) A(c¢ ports(p)). ¢; = ¢/clocksQ) @ & g/clocks(&)
A= (u= (a=10b)) A (c¢ (clocks(¢) U clocks(€))) -
VEmePe&neP)AmeP= (u=>m=n)A(p= (a=0)).
A £ (£ and E'contiguous) A (3d. const_width(§V ') = d)

Table 4.6: Symbolic Proof System for 7°: Part 2

72 A Proof System for w°

vi|md. uy with ({z} N (fe(t) U

17 Y1

fc(u))) =0 we have.

Foranyt—VxE[,u][o Vit tandu_va[uj[J, i

(tu)Crvan (v (- Sluilloy, vilmi. (¢ | w)
+ E[ME‘][N GRT)
+ [,uz/\uj/\az—b][a Aol vp V ulT v

7rt opp 71'

+ ZError(R4 —}-ZEWOT(o V))C

with 7} opp 7} is true when:

A
o m; = a;(m;) for some m; and 7} = b;n; for some n;; then vy = t5[n;/mi] | uy,

o 7} = a;(b;) for some b; and 7} = ¢;(d;) for some d;; then

vij £ ve (tile/b] | ujle/d;))
for some e ¢ (fn(¢;) U n(u,)),

e the two above cases may be applied by inverting ¢ with u, and ¢ with j.

Table 4.7: An Expansion Theorem for Finite 7° Symbolic Terms

Conclusion 73

We remark that this expansion theorem indeed safely strengthens the one used
in m-calculus theories [SWO01|. That is, if we take all o and all v to be respectively T
and L, in the communication alternative (the one yielding a 7 action) the constraints
T AT and LV L are then respectively equivalent to T and 1.

4.2.4 Soundness and Completeness

If there exists a derivation built through our proof systems that concludes pu>t(=
u& for some pu,t,u,(,&, then we write - pu>t(= ué. We prove a restricted
form of soundness and completeness, interesting ourselves only to symbolic timed
late bisimilarity (up-to infinity). Our proof system is then sound because, for any
judgment > t(= u& that can be proved using this system, the processes ¢ and
u & are symbolic timed late bisimilar. It is complete because conversely, for any two
symbolic timed late bisimilar processes ¢ and u &, the judgment p > t(= v & can
be derived using the axioms and rules of our proof system.

Theorem 4.2.4 (Soundness of the Proof System).
if Fu>t¢=uf, thent(~t, ué.

Theorem 4.2.5 (Completeness of the Proof System).
ift¢~b ug, then Fu>t¢=ué.

Both proofs of those theorems use standard induction techniques on the length
of the terms and proofs. The proof of soundness is mainly based on Theorem 4.2.1,
and it is not very difficult to establish. The proof of completeness is trickier, the core
problem being that time-locks may occur in the system. To solve a similar issue,
Lin and Yi actually use a bisimulation up-to some given deadline, and show that
this deadline can grow unboundedly. As we introduced up-to notion directly within
our bisimulation we only have to rely on transition induction to settle this part of
the work.

4.3 Conclusion

We have in this chapter presented an abstract semantics for terms of the calculus
defined in Chapter 3. This abstract semantics is two-folded: it deals with naming
aspects vernacular to the m-calculus and with timing aspects present in dense real-
time process algebras othogonally. Naming aspects are tackled in a nearly identical
way as it had been in the (untimed) 7-calculus. This is a conspicuous sign that we
have achieved our goal of conservatively extending m-calculus theories. Timing as-
pects are handled by quotienting the concrete state space through a time-abstracting
ground bisimulation. Although the abstract behavior of a process is not a completely
safe abstraction of the concrete one, we have been able to devise an abstract notion
of bisimilarity that exactly corresponds to the concrete one, and to provide a proof
system over finite terms for it.

Our way of performing time abstraction is different from other proposals aiming
at axiomatization of timed bisimulation [BD94, LY00]. Those axiomatization indeed
rely on the adaptation of the symbolic bisimulation technique to a timed setting,

74 A Proof System for w°

and they place time-related abstraction information on transitions, not on states.
We depart from this because our model does not have the time continuity property
(see Section 3.8). This has the consequence that processes reachable from a given
process by letting time pass may belong to different time-abstracting equivalence
classes, though they have the same term. As symbolic methods assume that all
processes with the same term belong to the same equivalence class, we can not
apply this approach here.

Our abstract semantics is based on zones instead of regions because zones provide
a more abstract way to describe states, hence yielding more succinct and elegant
operational rules. However, as zones fail to be concrete enough in the general case,
we have introduced two ways of refining the abstract state space. First, the rules
as TREG, TREQ, TERR and TNERR state that whenever a region ¢ (is reachable,
then all the regions between the current one and ¢ { are reachable too. Second, the
definition for symbolic times late bisimulation allows to partition the state space in
order to make the reasoning as accurate as needed.

On the related work side, there are many papers on the axiomatization and de-
cidability of bisimulations and timed for regular processes that we should cite. Since
the provision by Milner of a proof system for bisimulation and an axiomatization
for observational congruence in the regular subset of CCS [Mil84, Mil89b, Mil89a],
many works aimed at devising similar results for the m-calculus. We already men-
tioned many of them in Section 4.1.2. An essential problem was at first that CCS’s
ground bisimulation is not a congruence: in the m-calculus, it is not preserved by
parallel composition [San93]. Milner, Parrow and Walker hence distinguished the
late and early bisimulations [MPW92, MPW93|, that are preserved by the parallel
operator, but unfortunately fail to be a congruence because they are not preserved
by input prefix. This way noticed by Sangiorgi, who proposed open bisimilarity as
a (stronger) core equivalence preserved by all 7-calculus operators. The axiomati-
zations and proof systems given in the references above were however complete only
at the expense of adding a mismatch operator in the calculus. This introduction
was controversial, because it leads to “bad” semantical properties [SWO01|, though at
some scarce occasions it also encountered well-founded support [BN95|. The proof
systems given in [San93, Qua99, BD94| for this extension of the m-calculus were all
based on variants of the distinction-indexed bisimulation proposed in [MPW92]. A
proper solution for the mismatch-free calculus was provided in [Lin94].

For timed process algebras, an early complete axiomatization of timed bisim-
ulation for a regular subset of processes written in TCCS [Yi91] for which it is a
congruence can be found in [AJ95]. Larsen and Yi introduced time-abstracted bisim-
ulation [HYL92] and proved that it is a congruence regarding parallel composition
for the same TCCS. Independently, the track of symbolic bisimulations for timed
systems had been pioneered by Boreale [Bor96| until Lin and Yi achieved a complete
proof-theoretic characterization of timed bisimulation for timed automata using the
same symbolic technique [LY00]. Meanwhile, many authors provided sound but
incomplete axioms and proof systems for various notions of equivalence (mainly
timed bisimulation) on their timed process algebras [Mol90, HR95, Yi91, Che92,
ST92, Mol90, NSY93, DB96, BB91, FK95, BS00]. Karlis Cerans [C92], proved the
decidability of timed bisimulation for a variant of timed automata called parallel

Conclusion 75

timer processes (timers see their values decrease with time progression down to 0,
oppositely from clocks, wich value may only increase).

Our work is related to the works mentioned above, but it gives a proof system
for models that lack time time continuity property, which is present in all other
contributions. This has turned to be somewhat technically challenging. We propose
an expansion theorem for terms with name mobility and time, which has not been
done before either. Discussions on the existence of such expansion theorems for
timed processes can be found in [GL92].

We think that we should finally cite several other works that adopted alterna-
tive approaches to the one we chose, but that are also certainly related. First, an
other preorder has commonly been used for time systems, based on the relative
speed of processes; it is called the faster-than preorder. Selected references include
[MT91], [GRS95] and [BLS00]. We think that this way of relating processes does
not correspond to what is wished for the time-bound reative systems that we aim
at representing: a household saying of real-time system engineering tells that those
systems have to be on time, but they do not necessarily have to be fast. Other
proof systems have also been proposed, relying on timed temporal logics as specifi-
cation language. Ostroff [Ost89] on the one side, and Henzinger, Manna and Pnueli
[HMPOI1] on the other have devised proof systems for timed extensions of linear-time
temporal logics. Hooman and Widom [HW89, Hoo98| have proposed compositional
proof systems for timed specification logics; so did Abadi and Lamport [AL94] in
the framework of TLA.

As of possible future works, we can name at least to issues that may be worth
to tackle. The first is to adapt our bisimulation relations and our proof system to
cater with early instanciation of port names. The second point is to show how a
mismatching operator could be introduced. Although we conjecture that the second
point can be handled easily following [Lin94|, we think that the first point could be
trickier. Indeed, our operation semantics handles the transmission of clock values
in a late fashion: a process considers that the received value can be any positive
real number. Our notion of equivalence, following the same trend, hence advises
that bisimilar processes should behave in the same way whatever the value of the
received clock is. This definitely stands for a late instantiation of received clock
values. We do not know how easy or hard adapting the current developments to
early instantiation for clock value transmission could be.

76

A Proof System for m°

Chapter 5

A Behavioral Type System for 0

5.1 Introduction

Having a proof system for timed bisimilarity on finite-state processes is nice, but it
is not sufficient. Indeed, modeling the simplest problems generally require processes
that use recursion, hence outreaching the equivalence-based verification method we
proposed earlier. Furthermore, as recursion-featuring processes can have an infinite
state-space, they can not accommodate for exhaustive state-space search methods
either.

We propose to use a static analysis method based on behavioral typing. Orig-
inating from the simply typed A-calculus of Church and Curry [Bar92|, program
annotations called types have lead their way into everyday computer science. Types
form a convenient way to indicate the intended use of program constructs, allow-
ing to avoid a large part of the most common programming mistakes during early
software development. In our type system, each port is annotated with a higher-
order deterministic timed automaton that indicates the rights and obligations of the
process that owns this port. A process failing to fulfill the obligations imposed by
the types of the ports it owns or overpassing the rights given on the same ports is
declared ill-typed. A process composition P; | P, is well typed only if P; and P, are
well-typed and if they agree at some level on the types of their free names. This
level of agreement for types is usually called type compatibility.

This way, we are able to guarantee the absence of communication errors in well-
typed configurations. Our types are approximations of the behavior of processes,
and a subset of the processes that do not exhibit communication errors are however
ill-typed. This deficiency can not be avoided, because detecting communication
errors in m-calculus terms is in general undecidable [VR99].

We give a type system allowing to infer, for a typing environment I' and a process
P, whether the use made by P of the names present in I' is correct, that is noted as
usual I' = P. Our type system enjoys the well-known subject reduction property,
and also accommodates for a notion of subtyping. That subtyping notion is based
on an asymmetric kind of simulation between types (or equivalently asymmetric
language inclusion, since types are deterministic), while type equivalence is naturally
decided by bisimulation (or language equivalence).

We use the subject reduction result to prove a safety property and a liveness

7

78 A Behavioral Type System for 70

property |[AS85]. The safety property is the absence of the Error process in the
reachability set of a well-typed configuration. The liveness property is that every
execution is non-zeno: any infinite execution always let time progress up-to infin-
ity. Both results are obtained through a compositional, circular reasoning, called
assume/quarantee reasoning [MC81, Jon83, BKP84, Sta85, AL95|. It involves prov-
ing the soundness of the typing rule for parallel composition P; | P, by performing
a mutual induction on the length of the executions of P, and P,. Performing as-
sume/guarantee reasoning to prove safety properties is a household method. Solu-
tions dealing with some liveness properties have been proposed [PJ91, AL93|, but
the problem has only been tackled in a general way quite recently for linear-time
specifications, by Kenneth McMillan [McM99|. Our proof of liveness is conditioned
by the strong non-zenoness of processes [SY96, BGS00, BS00, BST97|, and by a
weak fairness assumption on the occurrence of silent transitions with urgency.

The remaining of this chapter is organized as follows. First, we introduce the
formal syntax and semantics of types in Section 5.2. We also give an informal
description on the relation between types and processes in Subsection 5.2.3. In
Section 5.3 we define type equivalence and our notion of subtyping. An axiomatic
definition of type compatibility is given in Section 5.4, along with the type system.
We henceforth give a few theorems about our type system and well typed processes
in Section 5.5, extending the range of studied properties of well-typed processes to
liveness properties in Section 5.6. We give a rather short comparison to other proof
and type systems with our conclusion in Section 5.7.

5.2 The Type Language

In existing m-calculi theories, types can be borne by ports, by processes, or by both
of them. In the case of typed processes, a type can be seen as a safe abstraction of
the behavior of all processes that have this type [Bou97a, CRR02, Cou97|]. In the
case of typed ports, a type can be rather seen as an abstract specification describing
how the port can or should be used: for example, in the simply typed polyadic
w-calculus [Mil93|], port types contain the list of typed formal parameters that can
be sent through a channel having this type. It has however been found rapidly that
the type system proposed in |[Mil93| is unsatisfactory: it is unable to detect most
inappropriate uses of ports, even in the simplest cases.

A classical problematic example is the one-place buffer, that can be written in
the following way:

Full(elt) 2 [T, L]get(reply). ve [z < 1,z < 1]reply(elt). Empty()
Empty() = [T, L]put(elt). Full(elt)

The buffer starts logically in the state E'mpty. Along its execution, we can see
that the buffer shows a non-uniform interface to its environment. It means that
all environments are not suitable to the buffer processes, and that an inappropriate
environment can lead the whole system to produce an error. Precisely, the environ-
ment should not impose synchronization on port get when the buffer is empty, while
it should not impose synchronization on put when the buffer is full. Furthermore,

The Type Language 79

any client should in our case be ready to synchronize on the port reply within one
time unit after asking the content of the buffer.

The type system of [Mil93] has a very limited power, and can not check the
correctness of the above usage. Hence, type systems that denote more complex,
behavioral, aspects of port usage have been devised |[RV97, NN97, Pun97, Yos96|,
mostly originating in the works of Oscar Nierstrasz |[Nie95|. Many other works have
followed since, applying to derivatives of the m-calculus (essentially its asynchronous
variant, as well as actor-based languages). More details about other behavioral type
systems can be found in the related works section of this chapter.

But let us now expose our contributions in that field. Our types are attributes
of (port or clock) names. Processes have no type per se. However, as we wrote in
the introduction, the rules of our type system will employ typing environments (also
know as typing contezts), and we may write sometimes that P has type I' whenever
process P is well typed in context I' (i.e. ' F P).

5.2.1 The Syntax for Types

In our system, a type describes the usage that ought-to be respected for a given port;
this description gives the order in which successive interactions can be performed,
the nature of those interactions according to the input/output distinction, the type
of the object port that will be transmitted when interacting, and the timeliness
constraints that relate consecutive interactions.

Types therefore denote timed behaviors and, as processes, use clocks and con-
straints on the values of those clocks to impose timeliness. As process actions,
type actions can become urgent, forcing the action to occur before some deadline
deducible from the urgency condition.

As processes, well-formed port types thus have two parts: a term, formed over
an algebra that yields only regular processes, and a context part that comprises
a value for each free clock name appearing in the corresponding term. There are
hence uncountably-many types. To perform type-checking of process configurations,
we therefore need an abstraction for types as we needed one for processes; our
abstraction operation for types is the quotient of the concrete transition system by
a variant of the time-abstracting bisimulation seen earlier. Yet, we will not even
bother about giving a concrete semantics for types. We define instead our type
semantics directly at the abstract level.

We furthermore need to distinguish between clock types and port types. It must
be easy for the reader to accept the following: a clock type is simply a constraint that
gives bounds to the clock’s value. Syntactically, we range over types with 7,U, V...
and their decorated variants. We define:

T = (| T¢
where 7' is a behavior type term. For those terms we shall adopt the syntax:
T:=0]|[o,v]m.T |ve T | M(Z) where mp 2= 1T | [T .

In type actions, 1 corresponds to output prefix, while | corresponds to input prefix.
Each type action prefix also encloses the type of the passed name. As in the case

80 A Behavioral Type System for 70

of processes, we assume the existence of a finite set of (potentially recursive) type
name definitions, over which we range by M, N, O ... Only clocks can be passed as
arguments when calling a pre-defined named type, and such a definition is written
M (%) £ T where the set of free clocks fc(T'), defined as it was for process terms, is
such that: fc(T') C {Z}.

A type environment I' is written in the following way:

Fu=a:TC|a:*x|A(T)|I,T

where a is a port name.

An environment ' essentially comprises a set of couples ay : T1(y, - -+, ax : Tp(
associating each port name a; to a type T;(;; the domain of I is defined by dom(T') =
{ai,...,ax}. Wenote I'(a;) £ T;¢; T'(a;) is undefined for any a ¢ dom(I"). All names
in I must be pairwise different: Vi,j € {1..k}.(i # j) = (a; # a;). The purpose of a
typing environment [is to provide a type for each free name appearing in the typed
process P: we allow to write ' = P only if fn(P) C dom(I'). The special type
means that a is non-composable: a is a free name appearing in the typed process P,
but no well-typed environment for P is allowed to use a. This is necessary to define
the composition rules in Subsection 5.4.3. Typing environments are also used to deal
with named (potentially recursive) processes. Named processes are therefore typed
separately, their initial environment being defined by the set of received arguments.
When typing a given process, the environment must contain an indication that any
named process that is called is well-typed, and that the types of the arguments
match the types of the formal parameters of the named process.

5.2.2 Type Semantics

We give a semantics to both port types and typing contexts. We chose to impeach
actions performed by types of names belonging to the same typing context to inter-
fere with each other. The sought result is that the semantics of a typing context is
straightforwardly deduced from the semantics of the types of names in its domain:
it is the interleaving of all the type actions that can be performed by each type. But
first, we must define the semantics of a type.

The semantics of a type is given by a higher-order timed transition system (we
shall often leave implicit the “higher-order” qualifier). The labels of the transitions
appearing in the system can be written:

A =y | () [()

where the mode is defined by mode ::= o | r that stand respectively for offer and
requirement. The higher-order aspect is induced by the possibility of making types
appear within labels of transitions. Another noticeable difference with the process
semantics is that types ignore naming issues: a type does not make use of any port
name. This means that our symbolic semantics for types do not have to bear name
matching sets.

The semantics of types is given in Tables 5.1 and 5.2. Due to the simplicity of
the type terms, many rules that were needed to define the semantics of processes

The Type Language 81

A
(=0 RESET NS =T ¢

([0, vlmy. T) ¢ 2 T ¢! (v T) ¢ 21t
~)~ ’\i !~ — Ai ! 1 ¢l — ! -1
o T[y/x]cA—mc M@ 2T cony LE=TS Tc—;Tc U'e' =T'C
(M(5))¢ 5 T ¢! Ue = U

PRE

O£ (z & clocks(C)) A (ceil(z, (¥ = ceil(z, T))

Table 5.1: Type Semantics: Part 1

have been pruned in the type semantics. We use a-conversion and conversion of
free clock names as congruence relation = (see the previous Section 4.1.4 for formal
definitions).

We shall not give any detailed explanation for the rules shown in Tables 5.1
and 5.2; they are simple adaptations of the corresponding rules for symbolic process
semantics. There is however one major difference in the treatment of non-urgent
prefixes. The rule TSKIP indeed introduces the ability of skipping one or more
prefix actions, in case time may pass so that the selection condition of a prefix
[0, v]my. T becomes false. This allows a type to change an offer whenever the time
period during which it was available has ended up. This corresponds to the fact that
an offer made by a process has not been chosen by the environment of that process.
The process may then logically change its offer.

The rule TSKIP is certainly useful, but it has a major drawback. It allows types
to produce non-deterministic computations. Suppose indeed that an offer ends-up
when the condition z < 4 on some clock x becomes false. If the continuation of
the corresponding prefix starts by another prefix of the form [4 < z, J_]7r’$. T', then
two (potentially different) offers are available at the instant when z = 4. Since
our type system may accommodate for deterministic types only, we have to prevent
such situations. The problem of telling whether a type yields a non-deterministic
transition system is statically decidable, since the state-space of our processes is
finite. One could however devise some (stronger) syntactic constraints ensuring the
very same fact. Since there can be many such syntactic constraints, we will not
elaborate and let the reader pick up one he or she thinks appropriate. We shall
simply assume from now on that types yield deterministic transition systems.

Using the semantics of types, we can give a semantics to type environments I'.
We use a very simple congruence relation, that establishes commutativity for the
comma operator (I',[" =T",T') and extends the type congruence:

(T¢=THAT =)= T,a:TC=T",a:T'() .

Typing context semantics is quite simple. First, atoms consisting of named
processes or uncomposable ports are taken away from the context; they perform no
action, staying unchanged under any context transition. For the other atoms in the

A Behavioral Type System for 70

(CAoT) & L) A (M = oY)

TSsEL 5
([0, 0]y T) ¢ = ([0, v]my. T) (o A CT)=/

TURG (€ = (e\V))) A (C7Y = v7Y)

([o, U]ﬂ'i- T)¢ @) ([o, U]7T¢. T)(v A=/

TeLa & (\W) A (o7 # o) A((vA) & L)

(n2) -
([o, V)73 T) ¢ = ([0, 0]mp. T) (o A CT)I™
T¢ X, ¢ (o/ o)A ((=0'7)

([oyv]my.T) € X, T

TSKIP

TUNBS (=0)A(e/ eo)A((wal) & 1)

([o,v]my.T) ¢ @) ([o, v]m. T)eeil

TUNBU (=v)A W &)

(o, o). T) ¢ 25 (o, vlmy. T) et
(fo, 011 1) ¢ 25 (fo vl T) ¢ (€ (NN A (€7 5 ¢T)

(mode

([0, vl T) ¢ T2 ([0, vy T) €

TREG

C=v)A #v)AE= @A) AEY =)

TREQ ==
([0, vlmy. T) ¢ — ([0, v]my. T)E

Table 5.2: Type Semantics: Part 2

The Type Language 83

context, discrete actions of separate types are interleaved (there is no possibility to
synchronize discrete actions), while time must pass in a uniform fashion for all types
in the context. The labels of typing context transitions range over

)\I‘ o= CL(T) |E('T) | <Rr, Op)

where Rr and Or are the requirement and offer sets, containing elements of the
form a(7) or a(T).

There are only two semantic rules for typing contexts:

T¢ 2 T

DISC o
T,a:T¢ —5T,a:T'C

< mode]

T)
Tl C1w —¢—> Tll C{

<ﬂ_modek
Tk gkx L—> Tlé Cllc
Vi,j € {1.k}. (/T & ¢f=
'=a Ty G, ..oyap T G

modey mode
L+J(a,17r1$ e QR Ty k)

TIMED

. ! ! . ! !
>a/1.T1C1’ ...,ak.Tka

Both rules use the name prefixing operator on type action prefixes that, for any
port name a and prefix my, we define as: amy £ a(7) if 7y =t T and a |= o(T) if
my =} T. The rule for time progress furthermore uses a “union sum” operator defined
inductively on lists of type actions by: W(@) = (@, 0), and with head(S) = aw&”"‘k,
W(S) = (amy : 0) U (J(tail(S))) if mode = r, and &(S) = (0 : amy) U (U(tail(S)))
if mode = o. The union of offer/requirement sets is defined as in Section 3.6:
(Rr,Or) U (R, OF) = (Rr URE,Or U Of). Furthermore, in the TIMED rule, we

left implicit that some transition labels (wg"de@ may actually be (). This rule of

course also apply to those empty action sets, leading to empty offer/requirement
sets (0 : 0).

We extend the usual operations on clock constraints to typing contexts. When-

ever '=a; : 1 (q,...,a; : Ty (i, we define
@2 TG, a,: TG
F/wéal ZTlcl/w,...,a,k:TkC]éw
A

TV 2a TG e TG
72 T ¢, a,: Ty (]
VY-S / . /
P _al.Tlcl,...,ak.Tka

5.2.3 Discourse on The Meaning of Types

Now that we have defined a proper semantics for types an typing contexts, we may
address the issues pertaining to the nature of relations between types and processes.
First of all, it is clear that those relations are built on semantic grounds. This

84 A Behavioral Type System for 70

is common to all type systems based on the “behaviors-as-types” paradigm. It is
however mostly problematic to devise a decidable type system in this context.

Processes in 7° have the ability to express their needs in terms of synchronization
by ensuring themselves of the control of certain prefix actions through the use of
urgency conditions. This yields an additional power of scrutiny over process actions:
a non-urgent action is an offer, while an urgent action is a requirement. Processes
themsleves enjoy this power, by being able to tell whether their environment is
responsive to all their requirements or not. A natural approach to behavioral typing
in this context is therefore to let a type reflect the relations a process may have with
its environment in terms of offers and requirements.

More precisely, we shall interpret offers and requirements in terms of assumptions
and guarantees that can be respectively made or given by a process to its environ-
ment. For a process and its environment to be well-behaved regarding one another,
it is important that their assumptions and guarantees match. A process exhibiting
an urgent action makes an assumption on its environment, that the environment
will provide a matching offer in time. Conversely, a process exhibiting a non-urgent
action makes an offer to its environment, so that one process in this environment
may force the interaction to occur by imposing an urgency condition on its prefix
action.

If a typing context I',a : T'(may let time pass while offering to synchronize on
a (the label of the action is (an?) for some 7y), then we consider the context to
specify a guarantee given by all processes P satisfying I';a : T(- P. Hence, any
such P must offer to synchronize on a at all the instants when I', a : T'(specifies to
do so; the guarantees of P must exceed the guarantees of I',a : T'C in order to have
INa:TCH P.

Now consider a requirement specified by I',a : T'¢, that is a transition <(1,7T£>
for some 4. To be well-typed in that context, a process P should exhibit only a
lower requirement to interact on a: it may not require synchronization on a at all,
or if requires it, it should let more opportunities to its environment to satisfy that
requirement. Hence, it should require to synchronize on a through an urgent action
at all times when the typing context specifies to. This corresponds to making lower
assumptions about the behavior of the environment.

This can be summarized through the following “rule of the thumb”:

The offers of a process must be higher than the offers of its type. The
requirements of a process must be lower than the requirements of its type.

This relation between types and processes shall be formalized in Section 5.4,
where a set of typing rules is given. This system unambiguously defines when it is
possible to prove that I' = P for some I'" and P.

Following the above definitions, we remark that, although type semantics are
defined using timed transition systems, which are branching time representations
of behaviors, those types are only able to represent linear time properties. Indeed,
types produce only deterministic transition systems, and on deterministic transition
systems, bisimulation equivalences collapses to language equivalence [vG01|. This
categorizes the properties addressed in our results: no properties belonging to the
branching time world are considered. Therefore, the proved properties are close

Type Equivalence, Subtyping, and Polymorphism 85

to the ones that could be obtained by assume/guarantee reasoning in the timed
versions of some linear time temporal logic (such as MITL [AFH91|), but certainly
not branching time temporal logic (such as TCTL [ACD93]|).

5.3 Type Equivalence, Subtyping, and Polymorphism

In this section we define a notion of type equivalence, as a natural byproduct of
a subtyping relation. The subtyping relation is useful to perform hierarchical de-
velopment: the implementation can be obtained through a succession of step-wise
refinements individually applied to sub-parts of the developed application. Ideally,
the final result should still be in conformance with its specification.

A certain form of subtyping can be used in that context. The subtyping relation
is very similar to the relatioin between types and processes. We define that a type U&
is a subtype of a type T'C if and only if U& has more offers but less requirements than
TC. A process) that satisfies) - a : U for some a can the replace a process P that
satisfies P - a : T'¢ without the environment of P noticing a change in the offers and
requirements exhibited by the object. This is often called the substitution principle
[LW94, WZ88|. This is an application of inclusion polymorphism, a form of universal
polymorphism (for these two notions, see [CW85]). In universal polymorphism, a
given value (in our case a port name or a process) can have many types. If those types
may include one another, then we obtain inclusion polymorphism. Our subtyping
relation provides such an inclusion relation among types.

As the subtyping relation is asymmetric in regards to offers and requirements,
we found that a co-inductive definition of subtyping through some sort of simulation
would be uneasy, and we prefer to give an axiomatic definition for it. We suppose
that types have been put under one-step normal form, each named type consisting of
a clock reset, a single action, and either a call to another named type, or 0. In the for-
mer case, a named type M (%) is written: vy [0, v]my. N(Z) where Z C ({y} U set(1)).
Transforming type terms in one-step normal form can be done trivially by suppress-
ing redundant clock reset with the rule (vx vy T)(= (vx (T[z/y]))(, by adding a
clock reset wherever one is missing with the rule ([o,v]n;.T)¢ = (va [0, v]my. T)C
that can be applied if z ¢ clocks((), and by taking any prefixed continuation T of a
term and assigning to it a name along with a set of parameters and then replacing
all its occurrences by a call to the newly defined name.

We then obtain the rather simple rules gathered in Table 5.3. The subtyping
relation is the least reflexive and transitive relation closed under those rules. To deal
with recursion, we complete each subtyping judgment 7'¢ < U¢ with an environment,
that saves the subtyping judgments that are to be proved by the currently ongoing
derivation. This environment therefore consists of pairs ((M;(Z;))¢;, (V:(Z))&;:), each
member of a pair containing a named process type term and a constraint on the
values of its clocks. We note such set of pairs E, and write it at the left of a
turnstile, as in: £ = T¢ <X U, If E is empty, we simply forget the environment,
and write the above judgment 7'¢ < UE.

As in the case of our proof system of Section 4, we use a predicate on the possible
transitions in order to judge subtyping in a given configuration. The predicate Equg

86 A Behavioral Type System for 70

Idle —
*Eroc=o¢

Absurd-¢

ErT1L UL

Doty B @) (N@)E) F (TL/5)C7 < (U /7)€
EF (M@)C = (N@)E

M(@) £Tand N(§') £ U
E, (M(2))¢, (N(2"))¢) = (M(2))¢ = (N(2))€

(¢ =Ug)
EF (va T)C < ((vx U)E)

Rec

Reset

SUthype (Ca g,v, ga 0-17 UI)

Pref N@.’Et(E,T,C,U,é-) N ! ~1
re FFTC <U¢ T £ [o,v]my. M(3) and U £ [0, vl N(Z')

T¢XUE T¢ X UE part.c TEXUE_TC < U
TCXUEVE) T(CV () X Ue

Part-C-r

Table 5.3: Axiomatic Definition of Subtyping

that we used then has now to be modified in order to take account of the asymmetry
of the subtyping relation. We hence define Subryype, defining T'type as the set {TSEL,
TURG, TELA, TskiP, TUNBS, TUNBU, TREQmaz }-

We again take source and destination zones as written in each rule R of Ttype,
to be the functions ante(R) and dest(R) of constraints (, 0, v) appearing in them.
For some z not in clocks(¢) U clocks(€), we define Subryype by:

SUthype(Ca 0,v, Ty, é-a OJ: Ula Wi) =

(\V (ante(R)) ,0,1})) /\(V (ante(R))({f,a',U’)) A

(
(€7 No" @ L) = ((mp 2 mh) = (((" Ao) 5 L) A(((E) Aa')* = (

((my 2 %) = (") A") A () No)) & 1)) A
mp Xm) = (€7 M) L) A((E) Ao = ((¢F

(((
((my 2 7T¢) = ((¢=) Ao) A () Ao')) & 1))

where the subtyping relation for prefixes m3 < 7r’i is so that the prefixes have the

(¢) A o)) A

¢ Av))) A

Type Equivalence, Subtyping, and Polymorphism 87

same role (sender or receiver) and the type of the argument evolves contravariantly
to the subtyping relation itself.

Definition 5.3.1. We write that my < 7r£ if and only if:
o if my =1 T then 7ri =1 T for some T' such that T' < T, and
o ifmy =1 T thenmi =L T" for some T" such that T' 2 T.

The subtyping predicate ensures several points. First, it checks that both types
are in an equivalence zone, meaning that one of the antecedent of the rules Ttype
is true. This is a mandatory condition, since without it the system is conspicuously
unsound. Then, two cases may appear. If the supertype will offer an action 7% at
some time in the future, then the subtype must offer it also: either the prefix 7y is
not a subtype of 7Ti and its availability interval will end before 7 availability interval
will start, meaning that another subsequent prefix obtained by application of rule
TSKIP may be able to propose the demanded offer, or 74 is a subtype of 7Ti, and in
that case the subtype must offer this action for a wider interval than the supertype.
The converse reasoning is applied to requirement prefixes.

This predicate seems to indeed ensure type safety, but it also seems too permis-
sive on certain aspects, and it obviously leads to paradozical types. Those are types
where proving T¢ < U, one needs to prove T¢ A U¢, and vice-versa. Of course,
paradoxical types should be banned from correct computations. Detecting them is
not very difficult, one having merely to maintain two sets along the subtype-checking
procedure, one for subtyping constraints, and the other for negative subtyping con-
straints. If a couple of types is found to belong to both sets, the procedure is stopped
and yields an undecidability result.

If we take a look at the rules of Table 5.3, we encounter the usual rules for
idle behavior and anti-logic clock constraints. The rules Defn and Rec are used to
perform name invocation and to solve recursive invocations, respectively. The Reset
rule allows to introduce clock resets, while the two Part rules at the bottom of the
table allow to refine the state space whenever necessary. The rule Pref deals with
time-passing and discrete behaviors of prefixed processes. The antecedent occurrence
of predicate S ub’Ttype imposes that at any step, the future offers of the supertype be
included in the ones of the subtype, and the converse for requirements. Thus, the
other predicate Next simply imposes that the types still be in the subtyping relation
whatever their evolution can be. This is similar to what is found in simulation
relations. if we use the subtyping relation Sub, then Next can be defined by:

Next(E,T,(,U, &) =
(T¢ T2 T ATgs T g p (¢ 5 €1) =
(EF (M(Z))¢" < (N(@))E")) A
(T¢ HT'¢ = EFT'C U A (UE S U'e = BEFTC 2 U'E)
Next imposes that types be synchronized during their time-progressing phases, while

they evolve independently when they perform discrete transitions. Like we said, this
notion of subtyping is too loose, although it is already very restrictive. There is no

88 A Behavioral Type System for 70

doubt in our mind that expressiveness of our processes and type languages is at
the source of those restriction. One could probably devise more tolerant, tractable
subtyping relations when considering only subset of our language; for example, one
may consider that only urgent actions may be refined, leaving identical the offer set
of types, or that only output actions may be urgent, etc.

Notice also that in our situation, the substitution principle is unable to guarantee
that a correct implementation is obtained after some refinement has been performed.
Indeed, our types are too blind observers, and they can not (even remotely) tackle
problems related to name equality, for example. This means that, among the pro-
cesses that possess a certain type (and there are many of them), some will give proper
results when put in a given environment, while others will not. Unfortunately, such
processes may be indistinguishable in our type system. Subtyping hence only pro-
vides a somewhat weak notion of interface refinement. To have a general notion of
subtyping, we still need to extend it to typing context, that we do now.

Definition 5.3.2 (Context Subtyping). We write I" X T for two typing contexts
F'=a : T'G,...ha, @ Tpp and T = ay @ T (Y, ... ar = T, (. if and only if
TG <TGy T G 2T G We left aside in ' and I the sets of named process
types and uncomposable types. The set of named process types of the supertype must
be included in the corresponding set of the subtype, while the set of uncomposable
types of the supertype and the subtype must be equal.

We remark on the definition above that object (i.e. parameter in action prefix)
types evolve contravariantly to subject types. Parameter type contravariance is used
in all object-oriented formalisms, since “contravariance is safe”. It is unfortunately
counter-intuitive very often. We remark also that the domain of typing contexts
may not vary when they are related by subtyping. This is because, using additional
names in the subtype, a process could constrain its environment more than in the
supertype. The only possibility would be to add names with types that do not allow
a well-typed process to constrain its environment at all.

We finally define type equivalence:

Definition 5.3.3 (Type Equivalence). Two types T and U are equivalent, noted
T ~U, if and only if T KU and U <X T. In the same way, two typing conterts I'
and I'" are equivalent, noted I' ~ I, if and only if ' XTI and I'" < T.

We will not elaborate much on the decidability of neither the subtyping rela-
tion nor the type equivalence. We already saw that our notion of subtyping may
lead to inconsistent proofs due to the recursive testing of the subtyping relation in
predicate Subryy,.. We did not explore the syntactic restrictions one could adopt to
make subtyping decidable in general. The difficulty of defining such criterion is to
keep as much expressiveness as possible, since subtyping is already very restrictive,
while allowing an easier subtyping check. Finally, let us just mention that defining
subtyping relation is in general difficult, and that the most closest work to ours does
not provide a proof of decidability for subtyping or type equivalence [Kob00, Kob02].

Type Checking 89

5.4 Type Checking

5.4.1 Restraining the Expressive Power of Processes

The type checking problem is in general insolvable for 7%, since the no-communication-
error problem (also called no-missed-synchronization) is insolvable [VR99|. Hence
we have to introduce (strong) restrictions on the sets of processes that may be typed.

The main limitations concern the number of processes that may know a given
port at the same time, and the communication of port names among processes. We
distinguish between two modes for port manipulation: public and private [Nie95,
NNO97|.

If a port is public, its use is restricted to either input actions or output actions,
and the occurrences of such actions may not depend on time constraints (the service
offered on the port is said uniform). A similar restriction has been proposed before
by Pierce and Sangiorgi [PS93]. When it may only perform inputs, a public port is
said to play the server role in the interactions that may occur, while in the other
case it is said to play the client role. In a process configuration, there many be any
number of server roles for a given port, but only one server role. This is the unique
receptor property, that have been adopted in programming languages such as Pict
[PT00] and JoCaml, issued from the Join calculus [FGL*96]. If a client port is sent
as object during an interaction, both the sender and the receiver have a copy of the
client port after having interacted. If a server role is sent away, then the process
that sent it loses the capability to use the port; it may recover this capability by
receiving the server role through a posterior communication (this may of course not
happen at all).

If a port is private, then the description of the service offered on it may use
the full expressive power of our types. However, there may be at one moment only
two copies of the name of each port in the system, and the types of those copies
must be compatible. This notion of compatibility shall be defined formally in the
next subsection. To ensure that only two copies of the same private type name are
present in the system and compatible, we need to restrain the creation of private
names to bound output prefixes. This means that a private name can not be created
using the general restriction operator, because it could then be shared by many
sub-processes put in parallel. Instead, using bound output imposes both names to
be created simultaneously, while the compatibility of their types can be checked.
In practice, this means that private names can not be shared by many processes in
some initial configuration, only public names can. However, private names may be
received by open processes during the computation by the way of some free public
name they know.

There are also syntactic modifications that must be brought to processes, since
we rely on an ezplicit typing paradigm (& la Church), and not on implicit typing
(@ la Curry). Therefore, certain occurrences of port and clock names in processes
must bear typing annotations in order to be checkable by our type system. Hence,
we give the following syntax for process terms:

t:=0|Error’ |[o, vm.t|[a = bt |va® t|vz t|t+t]|t|t] AR)

where we again assume the existence of a finite set of named behaviors ranged over

90 A Behavioral Type System for 70

A, B, C, - - - which syntax for definition is for example A(71 : T) £ ¢ with fn(¢) C {@}.
We take 7 : T to be standing for ny : 71, ..., ny : Tr.

The name instantiation operator and the prefix operator are modified to enclose
typing annotations. Name instantiation only specifies a type for port names, since
a clock always evaluates to 0 when it is created. In port name instantiation, we also
impose by type checking that the port must be public, its role being either client
or server. Prefixes are augmented with the bound output prefix, that is used to
establish communication relying on non-uniform services:

7 u=a(n”)|an|a®d™Y) .

The reception of a name includes a type annotation that describes the intended use
of the to-be-received name. If the name is a clock, then its type is a constraint on
its value. If it is a port, its type is a type term together with a zone constraint.
The free output is unchanged, the type of the transmitted name being declared
in the instantiation instruction binding that name. The added bound output is
somewhat special: it contains two type annotations. This is because the intended
meaning of this construct is to establish a session ruling a non-uniform service access
(binding the sender and the receiver in the sense of ODP, see Subsection 2.1.2.3).
The intended meaning of bound output is the following:

a(b™Y) = vb" vV ac.t

where ¢ ¢ fc(t). This corresponds to creating both ends of the binding, and to
send one of them. When the synchronization occurs, the clocks of the types start
evolving. Hence, as in the name instantiation for public ports, we do not need to
adjoin a clock constraint to the given type term to form a full-fledged type: any
constraint can actually be adjoined to the type term, since types terms are clock-
closed. We suppose that implicitly the empty clock constraint, that we shall note
with a pair of empty parentheses () from now on, is adjoined. The moment when
the interaction occurs can be used as a synchronization point, that shall be referred
to as the time of establishment of the non-uniform service. Although the congruence
rule above clearly defines the bound output operation, we retrain from applying it
in practice. This is because having different syntactical constructs for uniform and
non-uniform service creation allows us to provide a much more simple type system.

In spite of the above modifications, the semantics of our processes is not modified.
The semantics of an annotated process is the semantics of the same process after
deletion of all type annotations. This means in particular that no error is produced
by a process in case of simple ill-typing sources such as transmitting an argument of
some private type when a public type is expected. We avoid those kind of errors by
type-checking. We conjecture that the expressive power of the language is globally
not stifled by the restriction we impose. In particular, techniques for encoding \-
calculus into the 7m-calculus may still apply. The typed processes hence are still able
to generate infinitely-wide state spaces. It is oppositely clear that the synchroniza-
tion power of processes is greatly reduced, but we do not know how much. Elements
on the classification of power of synchronization among concurrent processes have
been proposed by Wegner and Goldin [WG02].

Type Checking 91

Finally, we need a way of representing public (uniform) port types. We will
not give any particular syntax to form these public types. Instead, we use the
general syntax for non-uniform types, and we assume the existence of predicates
on types client(T¢) and server(T() that return as result whether the type is a
client or a server type. In practice, defining such predicates is easy, since public
types are of the form: M ()¢ for any (, with named type M recursively defined as
M() £ ([T, Llmp. M()). We also define public(T¢) = client(T¢) V server(T¢), and
private(T¢) £ —public(T¢).

5.4.2 Type Compatibility and Context Composition

Devising a sound typing rule for parallel composition implies two independent tasks.
The first and simpler one is to check than in the system each name is present only in
an authorized multiplicity: one server and potentially many server for public ports,
and at most two occurrences for a private port. The second task is to check that
private ports have only occurrences with compatible types.

We start by defining type compatibility, which is the most difficult part of the
system. This relation is hardly definable in its semantic form, and we prefer to
characterize it axiomatically. For the sake of simplicity, in the given rules we leave
implicit the syntactic mechanism necessary to deal with recursion; such mechanism
is assumed to be provided by a context identical to the context F used in Section 5.3
to axiomatize subtyping. The essential rules in our system are the ones for dealing
with prefixes. What is checked is very simple: whenever a type can let time pass
while exhibiting a requirement on its environment, a compatible type should offer a
matching offer before the requirement reaches its deadline (if any).

The judgments of our axiom system adopt the form: Compjy;, #(T¢,UE) where

M A M, ...,M, and N & Ny, ... N, are lists of named types. Each list is a
context representing the stack of calls that have been done in the past since the
last discrete action took place. The left-most list M is the list for T¢, and N
is the list for U£. The motivation of maintaining such lists is to check that each
constraint with an unbounded urgency condition, although it does not impose a firm
deadline on the occurrence of the action, gets satisfied eventually. The prefixes with
unbounded urgency condition can be seen as fairness constraints that are imposed
to the execution. Our compatibility axiom system hence checks that a recursive
call can not be done if an unboundedly urgent action has not found a matching

offer from the peer type. If empty, we allow to simply forget the context, writing
Comp(T¢,UE).

Definition 5.4.1. The possibility of inferring Comp(T(,UE) by using the rules of
Table 5.4 is what defines type compatibility.

Please notice again that in the rules of Table 5.4, we leave implicit the treatment
of fix-point computations: a list of recursive calls to Comp is actually maintained,
that allows to discharge an antecedent to a rule whenever a deduction tree pro-
duced it as a consequent lower in the proof tree. As an example, when proving
Comp(T(,UE), we make this judgment appear at the bottom of the proof tree, con-
sequent of the lower proof rule. If, up in the tree, we need to show it as an antecedent

92 A Behavioral Type System for 70

TimeComp((, 0,v,73,§, 0,0 7r$)
Neat(([o,v]my. T), ¢, ([o", V]my. U), &, M, N)
Compur ([0, v]my. T)C, ([o!, v]7%. U)¢)

Comp i (T ¢ =U¢w)
Compyy i ((ve T)C, (vx U)E))

(v VAW ©v)=>NEN
CompM#cons(N,N)(([a’ U]ﬂ'i' T)C’ (U[.’Z’/g])f/i)

Prefix

Reset

§ N £2U

Rec-R C’ompM#N(([Ua U]Wi- T)¢, (N(%)E)) @)
CompM#N(TC, U¢) CompM#ﬁ(TC, U¢')

Part-(-R Compyry (T, UEV €)

Absurd-¢ — Relax CompM#N(TC’ uEve))

Compy,x(TL,UL) Comp(TC,U(EV E))

g2 { £ 8 Loe0) Lol o
(C=v)VE=v) = (& QnE" »)

Table 5.4: Axiomatic Definition of Type Compatibility

to a rule, it means that we reached a fix-point, and we can discharge that antecedent
immediately. This comes from standard results on the existence of unique fix-point
solution for well-guarded processes [Mil89a).

We now give an informal explanation of each rule. The first rule deals with
prefix actions, in a similar way to the prefix rule for subtyping. The goal here is
however to decide whether the requirements of the first parameter to C'omp receives
matching offers in time from the second parameter. The rule makes use of predicates
TimeComp and Next, that we define below:

TimeComp(¢, 0,v,m,§,0',v', m}) =
(\V (ante(R))(C,a,v)) /\(V (ante(R))(& 0", 0") | A
Re Ttype Re Ttyp
YA a)EA(C) A0)F) @

(7 Av e L) = (Comp(my,) = ((((€ 1)
((C=) Av) A ((5m "No')) & 1))

(ﬂComp(Wi,%) (((()
(&7 A" L) = (Comp(my,m}) = ((((§) AV)T A((CH) Aa)/*) & L))

)
(ﬁComp(mﬂi) = ((((€7) A) A((CR) A o)) & 1))

where the predicate Comp(my, 7r'$) is defined by

; o [=T T) = (=L T AT ~T7) A
mPTLT) = (=L T) = (w, =t T AT ~ T)

Type Checking 93

This effectively allows to check that any requirement from one process with find an
overlapping offer from its peer type. The next predicate ensures that both types
are still compatible under any type evolution. The discrete actions are performed
indepentently, while time-passing actions must go at the same pace.

Next(T,(, U, &, M,N) £
(¢ 2 e nvgls T2 grg n (01 @ €17)) = (Compy(T'C:, UEN)) A
(T¢ 2 T'¢' = Comp(T'C, U€)) A (UE =5 U’ = Comp(TC,U'E'))

The rule Reset allows types to set a clock to the null value at the same time. The
rule is clearly sound, but it is also complete because a type may always reset a clock
at each step: it can simply ignore it later on if it does not need it. The rule Rec deals
with named type invocation and recursion. An invocation is correct if the result of
this invocation has already been proved, i.e. , we have reached a fix-point. The
condition on the rule ensures that a prefix with an unbounded urgency condition
may not persist along a recursive behavior that will never satisfy it. We have not
represented rule Rec-L in Table 5.4, which is the rule similar to Rec-R that allows
to perform recursion on the left-most parameter to Comp.

The rule Part-(-R is an ancillary rule allowing to refine the state-space if neces-
sary. As for the recusrion rule, we did not represent its sibling Part-(-L.. The rule
Absurd-¢ makes any two types compatible if there are no possible clock values that
satisfy their clock contexts. Finally, the rule Relax allows to get rid of the stack of
named type calls, if necessary. From the above rules, one can easily see that type
compatibility is preserved under type reduction.

We now define type composition I'y & ['s as the point-wise union of I'; and
['5. This union is defined under the conditions of good multiplicity exposed earlier.
Hence, depending on the fact that for some name a, I'y(a) = 71 (; and I'sy(a) = T» (o,
I'y & I'y is defined when:

o if server(T1(;) then client(T5(s), and vice-versa;
e if private(T1(;) when and only when private(T5(s);
e if two ports are private, then their types are compatible, Comp(T1(y, T5(s).

In the case of public ports, only the server role is put in the resulting typing envi-
ronment:

(T, a:T6) @ (Dya:ThG) 2 (T @1y, a: ThG) if public(l'y¢1) and client(T5(s)

In the case of compatible private ports, the result is a : *, under the condition that
the types are compatible:

(T1,a:T1G) @ (Te, a: Trlo) £ (T1®Ty,a: x) if Comp(T'1(1, 1)

The latter condition ensures that interacting well-typed processes shall be well-
behaved. Having an uncomposable type as a result ensures that one may will never
be able to introduce another copy of name a in the system. Consequently, private
types yield only pairwise associations.

94 A Behavioral Type System for 70

5.4.3 The Type System

The main purpose of our type system is to detect and to forbid behaviors where
a requirement is failed to be satisfy in time because processes do not synchronize
enough. The result of such a misconduct is the intervention of an Error process,
deadlocking the specification. In order to guarantee the total absence of such dead-
locks, we forbid the Error process to occur on its own in a term, following an action
prefix; no process containing Error is well-typed. Detecting all errors without that
condition would be unfeasible, since our processes yield infinite state space and are
hence out-of-scope for reachability analysis methods.

Essentially, the offers of a type must be included in the offers of a corresponding
well-typed process, while the requirements of a process must be included in the re-
quirements of the corresponding type. The employed mechanism is therefore similar
to the one used in the axiomatization of subtyping.

However, in order enforce the inclusion rule for offers upon processes that em-
ploy the choice operator, we need to devise a purely syntactical way of annotating
processes to indicate at any step which offers have been satisfied. We choose to un-
derline private port types which offer is not satisfied by one sub-process in a choice.
We write [if and only if all private ports in [' make offers that are not satisfied. The
set of possible actions of a typing context and the result they yield are not modified
by underlining: if T, a : T¢ 25 T, a: T'C’, then T,a : T¢C 25 T a : T'C",

This gives us the only axiom of the type system:

Ax TFoc

This axiom says that the idle process 0 never constrains its environment, and
is therefore compliant with any type on this point; but the idle process also never
satisfies any requirement, by never offering the actions that it should as specified
by I'. Hence, all private port types in I' must be underlined. We shall write that a
process t (is well-typed under context I' if and only if I' = 7' and no port type in I’
is underlined. Hence, 0 can be well-typed only if it can be proved that all the port
types in I' can make no offer but only force interaction.

We now present the rules dealing with inputs and outputs. The idea behind
them is similar to the Comm rule of Table 5.3. However, here we have to range
over two symbolic semantics: the symbolic semantics for types (Table 5.2), and the
symbolic semantics for processes (essentially, Table 4.3). Hence, the predicate we
use to check timeliness constraints refers to rules of the set Tpref = {TSEL, TURG,
TELA, TiDL, TUNBS, TUNBU, TMISS, TREQq; } represented in Tables 4.3 and 4.4,
as well as rules of the set Ttype = {TSEL, TURG, TELA, Tskip, TUNBS, TUNBU,
TREQuuaz} given in Table 5.2. Tough we have (intentionally) given the same name
to different rules, it should always be clear from context which is meant.

Before we give the rules, we need some ancillary definitions. Again we take
source and destination zones as written in each rule R of Ttype or Tpref to be the
functions ante(R) and dest(R) of the constraints ((,o,v) appearing in them. For
some z not in clocks(¢) Uclocks(&), we define the predicate Conform, that check the

Type Checking 95

timeliness of offers and requirements during time progress, by:

Conform((, o, v, 74, €, 0',7)';7%) =

(V (ante(R)))) (\ (ante(R))(&O’,v’)) A

(¢
ReTpref Re Ttype
(

(&Ao" L) = ((mp 2) = (((¢/ No) @ L) A((€7) Ao')® = ((¢F) Aa)/®)) A
((my 2 7T¢ = ((((€") Ao) A((C*) No)) & 1)) A
((TAve L) = ((7T¢ =) = (& AV) @ L) A ((E9) A)T = ((C) Av)/) A

(
(

—~~

(C) Ao) A((E2) Ao')) & 1))

The following predicate Next imposes that, whatever the discrete action of a
type or a process can be, the resulting type and process continuations must still be
bound by the “well-typed” relation. The predicate following V¢, € IV... in Next
is taken to be true for all £ such that there exists a] and 7] with I'(a}) = T;(.
Therefore, Next is defined by:

7T¢ﬁ71’$ (

Next(F t, ¢, Mnew, Trew, U, €) 2
(0% 25T & (3¢ 1CH S A(E el (€7 & 7)) A
(D% 251 = (I F ¢ ¢V)) A
((t¢ ML (") = (new(l',), Npew Tnew F ' ¢")) A((T 5 I') = (" - £Q))

where we have to define new(T", 7). The goal of this function is to modify I" so that
the constraints on port multiplicity in a well-typed configuration be respected. That
is, sent private ports or server ports are lost by the sending process, while client ports
are duplicated. There is a condition of well-definedness of new(I",) that the type of
a passed argument must be a subtype of the corresponding formal parameter: if we
take subj(m) = a, obj(w) = b, I'(a) = T¢, with T £ [0, v]m;. M (Z), then if I'(b) = U
we must have T U§ < my or | U§ < 73, and similarly for obj(m) = n. Under those
conditions:

C\{b:U&} if (m=ab AT (b) = UE A (private(UE) V server(UE)))
new(T,m) £ Tif (m=anAT(n) =T A (client(T) V clock(T))) V (m = @(b)))
[0:UE if (m = a(b) Ab ¢ dom(T))

We need two different rules for output, one for free output dealing with arguments
annotated with public types, and the other for bound output dealing with arguments
annotated with private types. The bound output sends a private port of type Ui (),
and creates another private port with the same name b but with type U, that is
kept locally.

U= [0, V']l M (Z)
Conform(¢, o,v,1 Ui(),§, o', v', mp)
Next((T,a : UE), (Jo,v]a (bUhU2) t),¢,0,Us(), U, §)

Loa:UEE ([ov]a(d”™").1)¢

Boutput

The free output may only apply to clocks or public ports, either clients or servers.
If a client is transmitted, its type is kept locally, and the name can still be used (a

96 A Behavioral Type System for 70

copy is done). If a server is sent away, then the capacity to use it is lost, since for a
given port name there must be at most one server in any well-typed configuration.
We use the empty-set symbol in place of a newly created name and its type in the
invocation of Next; this is because no new name is created.

U= [0, v']my. M (2)
Conform(¢, o, v,1 F(b),{f,(f',v',ﬂi)
Next((T,a : UE), ([o,v]an.t),,0,0,U,)

Foutput
L,a:U¢F ([o,v]an. t)C

The input rule takes into account the indicated type for the received name. It is
otherwise written on the same model as the two output rules.

U4 [0, v']m}. M (2)
Conform(¢,o,v,] T,§,0',0', Wi)
Nezt((T,a : UE), ([o,v]a(n”).t),(,0,0,U,)

Input
L a: U ([o,v]a(n”).t)¢

The name introduction rules action either upon clock names or upon public port
names. For a port name, the left-most rule simply extends the typing context with
the new name, which must be public. The other rule resets the clock in the current
clock context (of the process.

public(T())
NewPort Lya:T()Ft¢ NewClock INE e
Tt T (va®)¢ WMo T r (vz)¢

Recursive calls are typed using the unique fix-point property, which is valid since
our processes exhibit only well-guarded recursion (see Section 3.2). First, the rule
on the left states that a named process is well-typed under some environment I if its
term is well-typed under I' augmented with the names and types of the parameters
received by the process upon invocation. The right-most rule states that if a named
process is well-typed under the current environment and if the names that are passed
to it upon invocation are subtypes of the formal parameters specified by the process,
then the invocation is well-typed.

'k AT

CLA(T),m:ThHt . o~ THn:T
Named L gme Ty 2t 1d—
T R A (m:7) TF A(R)C

The choice can perform non-deterministic computations, but the continuation of
each branch t;,%, must respect the same protocol, the one that is given by a sort
of union sum of their typing contexts: I'; & I's. This union is defined whenever the
two contexts I'y and ['y have the same domain. For any a included in the domain
of 'yand I'y, if a: 7 € I'y and a:T € I'y, then a: T € I'y &'y, and otherwise
a:T € 'y WI'y. The rule therefore allows different offers to be satisfied by different

Properties of our Type System 97

branches in the choice. Intuitively this is sufficient, since it is only needed that one
branch make an offer on a to actually satisfy a type requiring an offer on a.

Ty kb ¢
o1&
(CAE &L
Iwly k- (t1+t2)(CA§)

Parallel composition ensures that port names appear in the system with multi-
plicities in compliance with the rules given by their types. This parallel composition
rule is similar to a logical “cut” rule: when successfully applied, a cut is made on pri-
vate names that have found a compatible peer role in the other parallel component.
Their type then becomes %, making them henceforth uncomposable.

Sum

i Ft¢

FQ }_/Ulé-
(CAE) @ L
I' & T’y defined

T e, F (| u)(CAE)

As we will see in the next section, this rule for parallel composition is very important
since it allows to perform compositional reasoning over processes. Having such a
way of reasoning allows to divide a given specification into independent modules and
prove them independently one from the other, but also to study partial specifications
and have a way of deciding whether they can be composed safely or not. In our case,
the cornerstone of composition and decomposition theorems is the obligation of
compatibility between private ports that bear the same name and occur in different
components.

Finally, we add ancillary rules that allow to perform subtyping and to refine the
state space if it is too coarse.

P

I't¢ Tt
Subt I"<r Re fi N
ubtype “piye Belme e)

5.5 Properties of our Type System
We start by the well-known subject reduction property first stated by Curry.

Theorem 5.5.1 (Subject Reduction). if T' - ¢ (, then t 2 t'¢" implies that there
exists I'' such that T' =t {'.

The proof of the subject reduction theorem goes as usual by induction on the
derivation of ¢ ENy (', with a case analysis on the last rule used. The most difficult
cases are the choice operator and the parallel composition operator. For the choice
operator it involves showing that, after composition, the only unsatisfied port types
are the underlined one. For the parallel rule, we have to show that subject reduction
preserves the well-formedness of the typing context: the addition of contexts and the

98 A Behavioral Type System for 70

input/output rules must ensure only safe duplication and access to names. This is
the case since the input/output rules extend the environment with the proper type
whenever a port is created, and forbids later access to sent private or server port.
This appears in the function new(I', 7) used by predicate Nezt. Then the & context
addition imposes the uniqueness of server and private names in parallel components.

The subject reduction property therefore only takes into account (and reflects)
a small part of the relations between types and processes. We can also prove the
less usual “type reduction” property: since our types can evolves separately from our
processes, we must be able to prove that well-typing is preserved by type reduction.
Theorem 5.5.2 (Type reduction). if I' - ¢, then T RN for some a and
implies I'" ¢ .

The subject and type reduction property allows to prove the typical safety prop-
erty stating that a closed configuration may not produce errors. This property is a
safety property because it says that, whenever the process is willing to take a tran-
sition, then its type may evolve (or stay unchanged) so that the resulting process is
well-typed.

Theorem 5.5.3 (Run-Time Safety). a; : *, ... ,ax : x, A1(Th), ... , A(T)) - P
implies P—/=* Error.

The proof goes by induction, showing that if at the current step P is well typed,
then it can not produce an error, and it will be well-typed after any action it can
produce. The last part is provided by the subject reduction theorem. Proving that
a well-typed process can not perform an action leading to an error in the next state
can be done by induction on the structure of terms, reasoning about the transitions
allowed by their symbolic semantics.

The essential rule in that context is the parallel rule for typing. It allows to
decompose the proof by traditional assume/guarantee reasoning for safety properties
[MC81]. Assume that two processes P; and P, have in common a private port a
and that P £ P, | P, is well-typed under an environment ', a : *. Type of a in T is
mandatorily *, since a has a private type, and it appears in both P; and P,. From
the parallel typing rule, we must find 77¢; and 75(> so that I'y,a : T7¢(; = P, and
['s,a : T5(s F P, and the round sum of the contexts be equal to I'. To simplify, we
will assume the existence of I'y and I's.

The compatibility of types 71(; and 75(s then gives us a sufficient condition
for performing assume/guarantee reasoning on P; and P,. Assume that P; and P,
are well typed. In the current state, type compatibility ensures that neither P;
nor P, can perform an error, since the requirements of 7(; are always overlapping
with matching offers from 7,(,, and vice-versa. By subject reduction and type
reduction, we can show that any configuration I',a : 77(] to which the context
can evolve in one step and any P/ to which P; can evolve in one step are so that

‘ya : T{(1 + Py and I'y,a : T1¢; = P/. Hence in the next step, P; will always be
well-typed. By performing similar reasoning on P, and by preservation of the type
compatibility under type reduction, we obtain the sought result through an ad-hoc
mutual induction.

Liveness and Composition 99

If this way of reasoning is sound, it is certainly not complete. This conjecture
comes from recent results [NT00| that show the very general rule devised by McMil-
lan [McM99] as being incomplete.

Finally, we shortly address type-checking decidability. To prove that type-
checking terminates, we have to prove that typing contexts do not grow unboundedly
with recursive calls. We obtain this result by observing two facts. The first is that
the state-space of any type is finite: there are, given any set of clocks, only finitely-
many possible zones, depending on the ceiling value for each clock appearing in
the type. At any moment, the set of clocks referred to by a type is finite, and it
has a maximum because the size of a type term can not grow unboundedly. It is
sufficient to reference the constraints on the current clock names of the type in its
clock constraint environment. This is also true for named process invocation: when
a recursive process name invocation is done, only a finite number of existing names
are passed to the resulting continuation, and all the others can be forgotten.

5.6 Liveness and Composition

In Chapter 3 we introduced operational semantic rules that yield timed transition
systems. A transition system only predicts the possible actions of the corresponding
process, stating only safety properties for it. This fact is common to all the process
algebras that we know, where liveness properties are purely ignored (except [Par85|).
However, liveness properties are of prime importance, especially when dense time
is involved. To study liveness properties on our models, we need to perform two
technical adjustments:

e in addition to unbounded, finite executions, we have to explicitly consider
infinite executions,

e we retain a weak fairness assumption [LPS81] on silent actions when they are
urgent.

The weak fairness assumption states that no infinite sequence of transitions can be
performed with an urgent action enabled without this action being performed. This
forces the system to progress whenever an urgent action should be performed; it has
for result either the occurrence of the urgent action, or the occurrence of an error.
Without this assumption, zeno executions are produced because time can get closer
and closer to the upper-bound of the urgency condition without actually reaching
it.

Using this assumption, we can prove the absence of deadlocks in our specifica-
tions. Indeed, type-checking ensures that a process can always progress to satisfy the
requirements of its environment if all its own requirements are satisfied. Processes
have two immediate ways to prevent time from diverging: they can produce an error,
or they can perform a silent action with an urgency condition. We tackle the first
through type-checking, while the second is prevented by the fairness assumption.

To ensure that time always diverges, we have to make one more assumption. If
we impose processes to be strongly non-zeno [HNSY92, SY96|, then we can extend
our assume/guarantee reasoning to the proof that a composition is non-zeno from

100 A Behavioral Type System for 70

the non-zenoness of its components. Strong non-zenoness is a convenient syntactic
criterion to establish the non-zenoness of a regular process t: it consists in checking
that any recursive call in ¢ intervenes after at least one time unit has elapsed. This
can be obtained by resetting a clock z in ¢ and then allowing to leave some contin-
uation of y only if = is superior to 1. The reason for non-zenoness obligation is the
possibility for processes to immoderately interact on public ports, which can also
prevent time from diverging.

Theorem 5.6.1 (Non-zenoness of configurations). Take the rules of the type
systam as given, but restrict the composition @& of processes to strongly non-zeno
types. We obtain that when ai @ *, ... ,ar @ *, A(T1), ..., A(T) + t{ and all

Ti,- -+, T are strongly non-zeno, t{ is non-zeno.

(Sketch of the proof). The proof of the theorem is similar to the proof of the run-
time saftey theorem of the previous section. The difficult part still is the rule for
parallel composition. We again employ assume/guarantee reasoning. Strong non-
zenoness is a syntactic property of our type terms, that is preserved by parallel
composition and assembly. We then have to prove that any evolution from one pro-
cess t; ¢ may not indefinitely block time progression of some process t, ¢ in (t1 | t2)C,
and the converse proposition. The proof thus proceeds by reasoning on the transi-
tions that can be inferred for their parallel composition (¢; | t3) from the respective
transitions of ¢; and ¢,. Relying on the good-typing assumption, subject reduction,
and the fairness assumption on silent transitions with urgency, we can show that
either £; may let time pass so that the value of one clock progresses of one time unit,
or it may not let time pass because of an urgency condition on some free name, and
then the other process in parallel has a matching offer. This can be repeated only
a finite number of times, since the type of all the port names appearing in ¢; are
strongly non-zeno: ¢; must “follow” a type whenever this type makes an offer, and
thus it must let time pass forever (an offer prefix may not block time progression),
and it has meanwhile to exhibit less prefixes with an enabled urgency condition, that
may block time. Thus ¢; has to provide fewer time-blocking instructions than its
type, meaning that if one provides it a closed environment, it is also non-zeno. Con-
sequently, ¢; may forbid ¢, to let time pass only finitely-many times. By applying
the same reasoning to t5, and by mutual induction, we obtain the sought result. U

From the rules of the type system, it can be seen easily that the predicate Con-
form indeed ensures the correct behavior of the typed process in the future whenever
this process may let time pass. Such assume/guarantee reasoning can be seen as an
application of McMillan’s rule [McM99|, where the assumed properties at state n
are the strong-zenoness and the good typing, that allow to prove time progression
at state n + 1. The only change is therefore that we apply this rule in a timed set-
ting, proving that some process will always agree to let one unit of time pass after
finitely-many discrete transitions if it is well-typed. The possibility of performing a
discreticized time-passing transition hence intervenes only in the guarantee part of
the reasoning at each step.

Related Works and Conclusion 101

5.7 Related Works and Conclusion

To provide a complete reference over the works in the field we be nearly impossible.
We just mention a few results about compositional and assume/guarantee reasoning,
and on (behavioral) type systems for mobile processes.

The formal definition of behavioral typing originates from Nierstrasz [Nie95]. The
general principle is to consider types as specifications, or abstractions of the typed
behaviors. Hence processes can not only denote behaviors where certain actions
are always enabled or always prohibited, but they can take into account the current
context to determine if performing an operation is legal or not. This is what is called
a non-uniform service provision [Nie95|.

The community mainly stems from people studying the principles of program-
ming languages, especially object-oriented programming. Indeed, when encoding
objects of A-calculus terms into the w-calculus, many people were faced with the
impossibility of processes to control the actions they make available to their envi-
ronment. In this respect, behavioral types can then be viewed as a deflection from
type-and-effect systems [TJ94|. The goal of the abstraction is then to ensure that
the environment of a process will not block an action ad-infinitum. Modal types can
also be found as support for compositional bisimulation proof systems of processes
with infinite state-spaces: we can cite Micculan and Gadducci [MG95], as well as
Mads Dam |[Dam95|, and Dam and Amadio [AD96]. However, type-checking is then
undecidable, since deciding bisimilarity is unfeasible.

A related source of research in the programming languages community was the
actor model [Hew77, Agh86, AMST97|. Actors are autonomous entities that each
possess a FIFO message channel identified by a unique address. When executing,
an actor may examine its channel, take a message from it, and continue by sending
messages to other actors and then behaving as ordered by its continuation. The
sending of a message to an actor can then be perceived as an obligation put by the
sender on the receiver to eventually accept the sent message.

Many solutions have been proposed in the last few years, for both object-oriented
and actor-oriented formalisms. They converge in the fact that they use essentially the
m-calculus or one of its variants. Original type systems for the 7-calculusonly focus
on restraining the capacity of channels to send, or receive, or both [PS93]. Some
works then try to check that processes are input-enabled, that is they are always
able to receive the messages they can be addressed; their types do not denote modal
properties of processes. We can cite among them Sangiorgi [San99|, and Boudol et
al. [BAL99|. Extensions of similar types to access control of resources with security-
based types have been also proposed [YH00, HR02, TZH02, BCO1]. A recent survey
on non-behavioral types for the 7-calculus can be found in [Gay99].

5.7.1 Behavioral Types

In the behavioral typing community, works can be divided between the ones that
type processes and the ones that type ports. Port types are used essentially in
actor-based formalisms, that allow only asynchronous communication. The regular
types of Nierstrasz [Nie95| belong to this kind. Since then, Ravara and Vasconcelos

102 A Behavioral Type System for 70

have proposed solution for non-uniform service interactions in the language TyCO
[VB98, RRV99, RV97, RV00], and more recently with Simon Gay on “session types”
|[GVR02, VVRO02|. The works of Ravara and Vasconcelos use a quite loose notion
of error: a process is ill-typed if and only if it itself produces a message that it will
always be later unable to treat. If a process does not work in a “bad”, unyielding
environment, the process is still well-typed. Other works by Colago, Dagnat, Pantel
and Sallé use abstract interpretation methods based on static set analysis [CPS97,
DPCS00, CPDS99]. They apply it to an actor language and are able to detect
“safety orphans”, 7.e. messages that can be detected as undeliverable in a finite time.
Finally, Najm and Nimour [NNS99a, NNS99b, NN97| propose an actor calculus with
private and public types with one-way (i.e. client/server) types featuring regular
or infinite-state behaviors. Their type system detects all “message-not-understood”
errors. Infinite-state types are obtained by adding an integer counter to each type.
They propose a notion of type equivalence and subtyping based on (higher-order)
language equivalence, which is efficiently solved by building bisimulations. Our type
system essentially stems from the results of Najm and Nimour, but it adds a notion
of time and obligation, that were absent from those previous results.

Other type system put types on processes, and not only on ports. Among early
works, Boudol [Bou97a] proposes an analysis method based on linear logic for the
blue calculus [Bou97b|. Due to the vew low restrictions imposed on the language,
his type system is able to detect a small subset of “message-not-understood” errors.
Works by Puntigam [PP99, Pun99, Pun97| are based on types that exhibit sets of
named tokens that can be taken or put by processes when they perform a sequence
of interaction. If not enough tokens can be taken, the demanding process is blocked.
It is statically decided that all possible sequences will succeed. Various versions of
the type system have been proposed, one of them with non-regular types [Pun99].
In [PP99], a solution is proposed to ensure the success of request /response exchange
sequences. Such sequences could not be expressed in Najm and Nimour’s works,
but they are expressible in ours. Kobayashi et al [Kob02, Kob00, KPT99| propose
types that denote sequences of interactions where non only the absence of deadlock,
but also the absence of livelock can be detected. This is obtained by annotating
action prefixes that must eventually succeed. Then, according to a strong fairness
assumption, it is checked that all processes that wait ad-infinitum for a resource
will enter infinitely-many times into a race condition. The strong fairness then
guarantees infinitely-many accesses for each racing competitor. This work is close
enough to ours, but it subsumes a rather abstract notion of time which is not liable
to describe timed computations. Finally, we also have to mention the works of
Yoshida [Yos02, Yos96| on process graphs that aim at giving guarantees about the
termination of processes when encoding typed A-calculi computations.

Other related and recent works adopting the behavioral types on processes often
aim at encompassing previously-defined methods or to check more general properties.
among them we can cite Kobayashi and Igarashi [IK01, Kén00], and Rehof and Ra-
jamani [RR01, CRR02|. Some results with applications to behavioral type systems
have been devised in other contexts, mainly in verification: Henzinger and Alfaro
with different version of regular interface languages [dAHO1b, dAHO1a, dAHS02].
Applications by authors related to the previous ones can also be found in embedded

Related Works and Conclusion 103

software [LX01, LNW02].

5.7.2 Assume/Guarantee Reasoning

Assume/guarantee reasoning was first used by Chandy and Misra [MC81]. It have
been since then adapted in many different settings, the main distinction being be-
tween message-based communication and communication through shared variables.
On the shared variable side, one may cite Jones [Jon83|, Stark [Sta85|, Stirling
[Sti88|, Stglen [St@91]|, He and Xu [HX91|; a more recent survey can be found in
[XdRH97]. On the communication-based side, besides the original proposal of Misra
and Chandy, a formalization of the same proofs system can be found in |[ZdRvEBS85|,
while later assaults were given by Pandya and Joseph [PJ91] and Zwiers [Zwi89).

There have also been attemps that are independent of the synchronization method,
essentially based on linear-time logics. The firsts were Barriger, Kuiper and Pnueli
[BKP84], as well as Pnueli on its own [Pnu84]. Later came Abadi and Lamport with
TLA [AL95, AL94, AL93], Jonsson and Tsay [JT95], and McMillan [McM99]. All
those works, except the last one, allow only safety properties as assumptions. The
more recognized theorem from Abadi and Lamport allows the introduction of live-
ness properties in the guarantee part, at the condition that the specified modules are
receptive. This is related to other works for hierachichal developments of receptive
processes, such as [LT87, GSSAL94, AH99|. The works mentioned above in this para-
graph use only linear-time temporal logic. Some recent works allow to reason also
about branching-time properties, checking simulation relations [HQRT98, KKLS00).

Assume/guarantee reasoning has also been accommodated to real-time specifi-
cations, by Hooman and Widom [HW89|, Hooman |Hoo098|, Abadi and Lamport
|AL94| and de Roever et al. [DTDV96|.

5.7.3 Conclusion

We have provided a compositional way of reasoning about safety and liveness prop-
erties of our processes. Those properties of well-typed processes can be used in
bottom-up development, to produce a complete system by assembling many sepa-
rate parts. In this regard, our type system forms a module system for m-calculus
processes. After interface types have been written, each component can be produced
separately. Type compatibility provides a powerful, decidable way of composing pro-
cesses afterwards. Using enumerative methods, the check for type compatibility can
furthermore be automated, since our types are finite-state. Type compatibility also
offers a way of recovering the realizability property for processes composed from
non-realizable part. It is indeed sufficient to enclose an environment-constraining
configuration into a non-environment-constraining set of processes, to obtain a real-
izable process.

The notion of subtyping that we defined also allows top-down development meth-
ods. Omne may indeed replace parts of a specification with more refined processes,
as long as those processes are of a subtype of the type of the processes originally in
place. We however do not have experience on how practical our subtyping relation
is. It seems a priror: very restrictive, and quite untractable in general, though.

104 A Behavioral Type System for 70

We can also compare our behavioral type system to the previously mentioned
works. First of all, the introduction of a behavioral type system for time-bound
computations is unseen, to our knowledge. Only [Kob00| provides a very loose
notion of discrete time for interleaving computations, and an accurate such notion
in a truly-concurrent reduction system, where a clock tick is given at each parallel
reduction step. The notion of offers and requirements expressed in processes and
types also gives us a more flexible way of treating actions. In the type systems
that we know, obligation is reserved to output actions. This is an implicit reason
for which behavioral type systems have been applied to actor-like languages, since
in asynchronous message-passing the emitter of the message has indeed the control
of those actions, the implicit meaning of asynchronous emission being to force the
environment to be ready to synchronize eventually.

Chapter 6

Applications

6.1 Introduction

A clear motivation for our work since the beginning was to provide a way of reason-
ing about distributed real-time computations in a formal and compositional manner.
We first review the issues surrounding the notion of contract in computation, and
we situate our proposal in the so-provided context. By the way we examine some
of the applications that contracts have found in software engineering. We after-
wards present an asynchronous variant of 7% based on a more programming-oriented
actor-like language. We show how this language provides a formal basis for the ex-
pression of model objects in real-time execution platforms (such as virtual machines
or operating systems). Employing model objects is a part of the recent trends in
middleware platform engineering. We also propose to use the proposed actor-like
language as formal support in UML-RT specifications to write timed components.

6.2 Contracts in Logic and Computation

6.2.1 Contracts in Deontic Logic

The definition of contract can be better understood in deontic logic, the logic of
law and normative systems [von51, MW93]|. The salient feature of deontic logic is
the ability to distinguish the factual world from the ideal world. In an ideal world,
there are rules that ought-to-be respected; these rules can be tautologic, satisfiable,
or antilogic. In the factual world, the rules of the ideal world can be contradictory to
facts: everybody should respect the law, but there are people who do not. Deontic
logic hence distinguishes not two but three levels of truth for a given proposition p:

e p should happen in the ideal world, noted O(p),
e p may happen in the factual world, noted simply p,

e p should not happen in the ideal world, noted O(—p).

Deontic logic is therefore the logic of obligation, permission, and prohibition. Both
the ideal and factual world can be observed, and the occurrence of facts may induce
the change of the rules in the ideal world as well as the occurrence of other facts.

105

106 Applications

Deontic logic has been used by Lee [Lee88| to automate the treatment of elec-
tronic contracting. A contract is a written document binding several participants
that have obligations regarding one another. If one participant fails to respect its
obligations then it can be deemed guilty of the fall of the contract. Other partici-
pants bound by the fallen contract are then freed from their obligations. Modalities
available in contracts are therefore:

e oblige, making some non-obligated action obligated;
e waive, making some obligated action non-obligated;
e permit, making some forbidden action permitted;
e forbid, making some permitted action forbidden.

An essential aspect is then to be able to compose contracts. That is, it should be
checkable if there exist a factual execution that satisfies all the (mutual) obligations
present in the composed contracts.

We shall use deontic logic as a unifying formal basis to relate our approach to
other ones in behavioral typing, assume/guarantee reasoning, and contract specifi-
cation for distributed objects. We present all these methods as ways of introducing
more or less powerful notions of contracts in computation.

6.2.2 Contracts in Behavioral Types

Behavioral types (also called behavioral interfaces) usually take the form of an au-
tomata or terms built using a pre-defined process algebra [RRV99, dAHO1a|. The
notions of obligation, permission and prohibition therefore remain implicit in behav-
ioral types, since they may specify only factual properties. Types can however be
considered as fully-fledged contracts by interpreting them in an adapted manner. In
all the behavioral type systems that we know of (except ours), obligations are yielded
by message sending: the environment of a process should never be able to block the
delivery of a message for an infinite time. The notion of obligation is therefore tied
to the generally accepted fact that processes should keep control over their output
actions. This is an explanation for the many applications of behavioral typing to
actor languages, where asynchronous interactions indeed ensure any process to send
messages whenever it decides to, independently from its environment.

Behavioral types, as the processes they type, are neither input-enabled nor recep-
tive [Dil89b]. When composing types, the consistency of the corresponding contracts
(what we called type compatibility in the previous chapter) is therefore not true for
all type combinations, and it must be checked as a pre-requisite to (process) compo-
sition. It consists in proving that no “bad state” is reached where the environment
and the process do interfere [OGT76] in an incompatible fashion; what is guaran-
teed is usually the “no-missed-synchronization” property. The compatibility test is
based on a game between the types that are candidate to composition. The test
yields a positive result if none of the two types is forced to breach the contract by
disrespecting an obligation imposed by the other type. Types therefore have incom-
patible behaviors if the game ends into a deadlock. There are several theories of

Contracts in Logic and Computation 107

transition systems that allow to distinguish “levels” of deadlocks, according to their
cause |[vG01]. The adopted semantics for types have therefore ranged over those
theories, from reachability sets in trace semantics [Pun97|, to variations on failure
sets (defined in |[Hoa85|, used in e.g. |Nie95]), to testing-based semantics (defined
in [NH83, BN95|, used in e.g. |Kob02|), and to higher up in the branching-time
spectrum.

The composition of given behavioral types (and of processes respecting those
types) is then authorized only if the types are compatible. As type compatibility is
a precondition to type composition, this approach is name optimistic in [dAHO1a].
The pessimistic approach would require that types do not lead to an error when
composed with any other type, as it can be done when processes are receptive
|[LT87]. The existence of a factual execution that satisfies all the type obligations
can be seen as the proof of existence of some friendly environment that will prevent
the compatible types from producing an error [RV00, Pun97|.

6.2.3 Contracts in Hoare Logic and Its Extensions

Another approach to proving properties of program consists in explicitly formulat-
ing the obligations of each participant in a computation. This has led to many
compositional and non-compositional proof methods dealing with interference in
concurrent processes. Stemming from the works of Floyd [Flo67] and Hoare [Hoa69|
on axiomatic systems introducing pre/post conditions and invariants for (sequen-
tial) control-flow languages, Owicki and Gries provided a non-compositional proofs
system for invariant properties of interfering concurrent programs with shared vari-
ables [OGT76]. A post-condition is an obligation (of total or partial correctness) that
must be ensured by a process when it is executed from a global state that satisfy its
pre-condition. If the pre-condition is not true when the process is called, the process
is waived from terminating and ensuring the truth of its post-condition.

Pre and post conditions hence form a contract between a process and its en-
vironment: the clause in deontic logic describing the above situation resembles
Pre = O(Termination A Post). However those contracts are very weak, in the
sense that they do not specify enough about the guarantees and assumptions pro-
vided by both the process and its environment. This weakness comes from the fact
that pre/post conditions and invariants use predicate logic only, which does allow
neither full temporal reasoning over executions nor direct expression of obligations.
The verification method hence relies on checking that O(Pre) is true at any step
for any pre-condition and any process in the specification. The full specification of
processes must then be parsed to check this obligation, yielding non-compositional
proofs. A formulation of Owicki and Gries’ method for message-passing processes can
be found in [AFD80], while a bridge between formalisms using shared-variable-based
interaction and formalisms using message-based interaction has been established in
[LS84].

Assume/guarantee specifications [AL93, AL95]| are enhancement of Hoare triples
dealing with temporal reasoning. They can be effectively formulated as Hoare triples
[Hoo94, XCC94]. They allow for circular, compositional reasoning by providing
contracts of the form: Pre = X O(Post), where X is the usual nezt operator from

108 Applications

temporal logic [MP91|. This means that, if the pre-condition is respected in the
current step, then a process has to make the post-condition true in the next step to be
a model of the specification. The used language is therefore much more powerful than
Hoare logics and behavioral types, since it can describe accurately the interferences
that may occur between a given process and all the possible environments that can
be composed with it.

Here again, the composition of two processes is conditioned by their compliance
with one another’s assumptions and guarantees. As in the case of behavioral types,
assumptions and guarantees are separated by placing each action under the control
of exactly one process [BKP84, AL95, XCC94|. All the actions not under the control
of the process are under the control of its environment. Checking the compatibility
of assume/guarantee specifications can be done by building a graph relating pre-
conditions at step k and obligations of post-condition satisfaction at step k + 1.
If all pre-conditions at step k£ + 1 are implied by the post-conditions at the same
step, then performing mutual induction on models of those specifications is sound
[MC81, AL95, McM99|. If oppositely there exists a cycle at level k or k+ 1 between
two propositions, then mutual induction can not be performed safely.

To conclude, the distinction between assumptions and guarantees hence provides
a fully expressive way of specifying contracts: assumptions are obligations on the
environment, while guarantees are obligations on the considered process. this has
been, at least to our knowledge, first noticed by Shankar and Lam in [LS91|. A later
proposal aware of this fact can be found in [FNS97].

6.2.4 Contracts in 7
In all the technical presentation of the previous chapters, we have followed the
usual way of presenting behavioral type systems. We have produced non-realizable
processes, as well as non-realizable types that constitute finite-state abstractions
of our processes. We have shown that the absence of deadlocks in configurations
containing two types put in parallel is sufficient to prove the absence of missed
synchronizations in parallel processes (in our case Error deadlocked processes).

Yet, we have given a deontic flavor to our specifications. By placing offer and
requirement sets on time-passing transitions, we allow processes to observe and take
into account not only the factual aspects of their behaviors, but also the ideal ones.
Processes therefore have a way of exhibiting obligations to their environment and
to know whether the expected behavior has been obtained or not. To maintain a
conformance with other behavioral type systems and in regards to proposals we shall
make in the next section, we let processes adopt a fail-stop behavior in the case where
an obligation has not been respected. We have made this choice mainly because of
semantical issues, and also because it suits well to a language intended to represent
abstract computations in a quality-of-service-enforcing distributed platform. We
have found yet a suitable solution to do otherwise. In such a case, a continuation
would always be well-typed in our system whenever an urgency condition would
fail to be satisfied; this corresponds to waiving a component from respecting any
obligation after the behavioral contract on the incriminated port has fallen.

As stated when presenting the language, our processes have a greater expressive

Contracts in Logic and Computation 109

power when it comes to specify the control over actions. We can now see that this
is due to the possibility of placing obligation modalities on any action (silent, input
or output) using urgency conditions. We finally note that we have been able to
produce assume/guarantee reasoning when type-checking parallel processes. This is
because urgency conditions have strict upper-bounds, and that letting time pass to
the next region defines a clear cut between two steps, allowing to break circularity
in the reasoning whenever possible.

6.2.5 Contracts Elsewhere in Computing

There have been many study of contracts in the recent years, both in informal and
formal settings. As stated above, all behavioral type systems and assume/guarantee
specifications can be seen as employing contractual forms. We shall merely give some
references in the domain of software engineering and theoretical computer science.

First, the advent of object-oriented and component-oriented computing as well as
the outcome of multimedia systems has led to a search for more informative notions
of interfaces. A well-known pioneer in the domain is Bertrand Meyer, who proposed
a contract-oriented design method [Mey89, Mey92, Mey91|. Each method is then
adjoined a Hoare-triple-like invariant, pre and post-conditions, that are checked for
validity at run-time. A formal study by Liskov and Wing [LW94]| allows for subtyping
in object-oriented specifications with similar pre/post conditions.

A behavioral notion of contract has been given in [HHG90|, where components
bear type constraints and ordering constraints on events, taking the form of an
instantiation (for the initial conditions) and an invariant directives. Coordina-
tion languages [GCI2| and architectural description languages [AG94] have also been
a wide-open field of investigation for the notion of contract and interface. Among
those works, we should cite [AF99|, that proposes a notion of contract based on
superimposition, as are architectural connectors. Several other informal proposals
have been made for component-based software development, among which we may
cite [Hol92, BJPW99, Gie00]. In the next section, we will add to this picture other
(more specialized) contract-oriented languages, that are used for quality-of-service
(QoS) specification.

A formal study of contracts has been provided by Back and Von Wright in the
refinement calculus [BvW98, BvWO00|. Back and Von Wright split the variables of
a system under process variables and environment variables, while they introduce
released and never-satisfied processes in their calculus, that respectively represent
the breaching of a contract by the environment of a process (the process is then
freed from respecting any of its engagements) and the breaching of a contract by the
process itself. Some algebraic laws are given, as well as a rule for sub-contracting.

The component-based interface theory of Alfaro et al. [dAHO01b] allows the de-
signer or programmer to tag each method with a set of prohibited methods. The
transitive closure of the set of method calls is also built, and both sets are compared
to determine the consistency of the so-defined contracts.

Finally, the translation of input/output automata in an algebraic setting [Vaa9l,
Seg92, Seg97| have yielded different notions of contract violation. Indeed, as pro-
cesses may not be input-enabled although the underlying I/O automata are, the

110 Applications

unpredicted incoming messages must be treated in some way. Vaandrager [Vaa9l|
chose the angelic approach, while Segala [Seg92| chose the demonic approach; in
the angelic approach the process does not change, while in the demonic case, the
process may adopt any possible behavior, becoming the divergent process). The
first way can be seen as forbidding a process to escape from its obligations whatever
the behavior of its environment is, while the other way allows a process to be freed
from its obligations whenever its environment behaves badly.

6.3 Provable QoS Support for Middleware Platforms

Preserving properties of a timed specification when stepping to implementation is
currently an open issue. It has recently been the goal of two separate efforts, respec-
tively in formal methods and operating systems/middleware communities.

In the formal methods community, the concern was to provide implementable
languages; languages for which there may be a compilator and, if not an efficient,
at least an acceptable run-time execution support [SHG89, FHW99]. We do not
know whether 7° programs could retain such an efficient transformation towards an
actual binary format. Due to the simplicity but also of the expressiveness of the
language, we conjecture that the answer would be negative. An adaptation of the
original model would be necessary, but the presence of time-related actions would
prevent us from providing a simple solution as it has been done in Pict [PT00]. We
think that, oppositely, our language may actually be of noticeable help to rule and
coordinate computations performed under the control of some middleware platform
or virtual machine.

Several separate efforts have indeed been led regarding platform support engi-
neering for the execution of both hard and soft real-time constrained tasks: Neme-
sis [LMB196, MLM94], Polka [DHS98|, DJINN [MNCK99|, Tao [Sch00], dimma
[DFH*98] and Jonathan [DHDTS98|, to name a few. They all require the user
to specify what can be interpreted as QoS contracts [CBST95] between entities in
the system. Those contracts are used at run-time to produce executions that ten-
tatively share available resources in an “optimal” fashion, and respect the terms of
the contracts given by all the currently executing tasks. Each implementation has
however its own definition for optimality: this yields policies that range from strict
admission control to fair degradation between tasks. The cited platforms achieve
reasonable results for regular load conditions, the average level of those results de-
pending on the crucial parameter in real-time systems that is predictability. As an
example, in Tao [Sch00|, scheduling must in general be feasible off-line, before the
execution of the program start. This is a very strong constraint, indeed. Authorizing
more freedom and potentially evolving conditions such as in Polka [DHS98| implies
much lower predictability, that may lead to the non-respect of timeliness conditions
such as deadlines.

Our goal is not to present policies or new methods to perform resource alloca-
tion in distributed real-time platforms. We merely suggest that, in very open and
changing environments, using a formal language such as 7° for coordination and
anticipation in resource allocation appears to be a reasonable solution.

Provable QoS Support for Middleware Platforms 111

6.3.1 QoS Specification

Many language have been proposed for quality-of-service representation. The goal
in most cases is either to introduce QoS annotations during software development
or to negotiate QoS parameters at run-time. Some QQoS-languages therefore retain
a formal-enough semantics to undergo static analysis for consistency or correction.

In the software engineering world, the QML proposal [FK98| aims at completing
UML class diagrams with QoS annotations so that these constraints can be taken into
account as early as possible in the development process. QML specifications intro-
duce contracts and contract types as a way of placing those annotations. Contracts
include values that range over ordered domains. Contracts also specify constraints
on those values, and it is checked that a contract does not contain any inconsisten-
cies. A similar proposal has been made in the intelligent network community [AS01],
as (meta)-class stereotypes for a UML service creation profile. Also related is the
QuO framework for quality-of-service in objects [LBST98, LSZB98| that defined a
contract description language (CDL). They illustrate the use of contracts over ob-
jects at run-time to regulate the execution and enforce timeliness. Finally, several
proposals by Eliassen et al. introduce a language that allows to write interface types
in terms of high-level QoS parameters [EM98, RE00]. Consistency checking can be
done on those interfaces through an ad-hoc type-checking procedure.

All the works above rely on a static notion of QoS specification: a QoS environ-
ment is represented by a vector of variables that each retain some value. We now
present contributions adopting the other approach, where the desired or enforced
QoS is given by the behavior of some computational entities. We start by Frglund
and Agha [FA95|, who proposed to coordinate actors through external synchronizers.
A synchronizer is a special actor that “completes” static actor interface by observing
interactions occurring at those interfaces, and by forcing those interactions to re-
spect a certain order. A later timed extension allows to specify real-time constraints
[RA95, NA99|. The advantage is that synchronizers can be assembled easily. The
mentioned contributions however do not provide any way of statically detecting in-
consistencies among synchronizers. A related approach is the one adopted by Février
and Najm [FNS97, FNLL96|, where observers are used to specify contracts put onto
binding objects [ODP95]: an observer may not constrain the behavior of objects in
the system, but it may signal that an obligation has not been respected at a given
interface. The repercussions of such an error signal depend on the behavior of the
system itself, that is if there exists in the system a controller object that is able to
treats error messages in an adequate fashion.

In general, any real-time behavioral formalism can be used to represent QoS con-
straints; this includes timed process algebras (as in the two previous examples), and
timed logic. Among process-algebraic languages, RT-Lotos [Cd095, SSASC98, SC00|
has been particularly devised and used to model hAypermedia documents. Those are
documents composed of several parts where text, sound, and video are organized so
that they are displayed or reproduced to the spectator in a seamless fashion. The
tool RTL! allows to simulate and formally verify RT-Lotos specifications through
model-checking. On the logic side, we may cite the use of first-order logic with quan-

lavailable at http://www.laas.fr/RT-LOT0S/index.html

112 Applications

tification over time, as used in the QL [BS97| logic. Similar uses of first-order logic
have been provided by Hooman in his proof systems [Hoo94|. Timed temporal logics
in general are able to express hard real-time QoS constraints, and we therefore can
not give an exhaustive list of such uses. An example of use of temporal logic with
the precise idea of representing QoS constraints in mind has been given by Stefan
Leue [Leu95|.

6.3.2 Model Components and Type Checking

We follow recent trends in platform engineering that advocate the use of many levels
of objects into distributed computations. In particular, Mitchell et al. [MNCK99]
separate objects between active objects, that carry over the computation performing
the real job, and model objects that only coordinate and control the computation.
Only model objects contain information about the wanted or enforced QoS con-
straints. It is their duty to ensure the maintain of timeliness in a time-constrained
environment. This architecture is used to provide an adaptive middleware that al-
lows seamless adaptation in resources allocation when execution conditions change.

The goal in the above work is to reach separation of concern and efficiency. As
model components assemble all the time-related and reconfiguration-related infor-
mation, active objects are freed from this intricate task, and they shall behave in the
same way whether there are actual timing constraints or not. In [MNCK99]|, model
components are written in Java. We also think that model object should have be-
haviors, because using contract languages such as CDL [LSZB98| or the language
proposed in [EM98| does not indicate exactly which actions are performed neither
the time when they are performed. We propose to use a more formal language
such as 7°; the RT-Synchronizers of Nielsen, Ren and Agha [NA99, RA95] have also
been devised to fulfill such ancillary tasks. Being more application oriented, RT-
synchronizers have however not been equipped with static analysis methods that
would allow behavior predictability in an accurate fashion.

A related approach concerns Model Carrying Code [SRRS01]. There, the goal
is more to prevent illegitimate resource access by specifying those accesses formally,
and by controlling that the effective accesses are a subset of the authorized accesses.
The model components are interpreted as a token of the existence of a contract
between programs and the underlying execution platform. If a program does not
comply with its model, it breaches the contract, and the platform, although it has
accepted to execute the incriminated task an to provide it a certain QoS, may take
all necessary reprimanding actions.

If any program (that is, code) that demands execution to a middleware platform
comes with an 7% model of its behavior, the execution platform is by the way provided
with an additional mean of observation and control over the executed programs. This
is a way of avoiding Denial of Service (DoS) attacks, that occur when some process
floods another process with requests so that the latter process may not properly
function. By doing type-checking over the given 7° specification, the platform could
assure itself that all the launched processes exhibit only compatible interactions,
and that, according to a chosen access control policy, there are sufficient resources
on the computer in terms of CPU time, memory, network bandwidth, etc. The

Integration with UML-RT 113

type-checking phase corresponds to a replay of a proof of non-blocking behavior;
it may be completed by checking that all types are strongly non-zeno, so that a
process may not require the access to an unlimited number of resources in a finite
time. This could be done also by directly adjoining the proofs of well-typing and
non-zenoness to the specification. This approach has been called proof-carrying code
INL96|. After all necessary checks have been done, the platform may then freely
discard a process that does not fulfill its obligations, or that overpasses its rights
(for example in the goal of performing a DoS attack). A similar proposal has been
done recently by Teller et al, using the ambient calculus [TZH02].

6.4 Integration with UML-RT

We now provide a way of integrating our work with the UML-RT method |RS, Sol97].
Advances in the use of formal methods are usually obtained by either providing
formal semantics to informal design languages such as Flowgraphs [GBSS98|, or by
integrating formal aspects in the software development process using both formal
and informal languages. Therefore, proposals pushing formal methods into UML
are many, and some of them have been cited here before [AF99, FK98, AdSSL*01].
Our contribution in the remaining of this chapter is very informal, and it has not
been pushed very far. We only present the basic ideas that motivate and permit
a natural integration of our method in a development process using UML-RT as a
notation.

In this section we employ an asynchronous version of our calculus, that we think
is best suited in general for programming or specification. That is, the primitives of
the language have the same expressiveness, but their formal writing is more simple
and more agreeable to the eyes. The reason for this choice is that actor-like lan-
guages seem best suited for programming than the rather elementary and rapidly
inadequate notations induced by m-calculus-like languages. We hence now present
this asynchronous, simple actor-like version of 7%, that we shall name here ArtOC.

6.4.1 ArtOC: An actor-like, asynchronous 7’

We shall expose the semantics of the calculus only informally. The results that
we obtained on the synchronous calculus carry over to the asynchronous calculus
rather straightforwardly. As in the synchronous case, our actors are augmented
with the capacity to test and reset clocks that we call here timers. Specifying timing
constraints is done by placing guards on the values of timers. As mentioned in the
section on behavioral typing in this chapter, the asynchrony hypothesis ensures the
control of all input actions to the processes that perform them. Urgency conditions
become much less useful in that context; we therefore relinquish them for the sake
of simplicity.

Hence, all contractual obligations are borne by message sendings. The other
main difference is in the type language. Due to the time taken by messages to go
through the network, we have to limit the way in which the sense of circulation on
a given port may vary in time. For this reason, we introduce two-part types, where

114 Applications

each type has one control and one stream part. The semantics and the type theory
behind the language are exposed in [BNSLOO].

Actors [AMST97| are self-evolving objects that communicate by sending signals
(usually called messages) through asynchronous channels. An actor may send a
message (following in a non-blocking policy), wait for a message, adopt the behavior
of (ie. become) another actor, or spawn another actor. A timer allows to spec-
ify timeouts corresponding to infinite or finite, deterministic or non-deterministic,
delays. This yields the power to express also non-blocking and finitely-blocking mes-
sage receptions. Our actor communicate through ports, that are names which can
be passed around among actors exactly as in the m-calculus. The communication
topology may therefore be modified during the execution.

n= <z <
C == B|C|C ¢ imdswsy
Dec |: g(p);B | newa:7Tin B
— oy .ec Tec | become A(a)
o 1t | spawn A(a) > B
5 o o|o| (|5 7 | lw.s(a) > B
4] - Integer |§+0|6—9 | timer s =4 in B
R oo [Sg(N V> B | if G then B, else B,
- e fl(~ : - '] | timeout(G) ", R; > B
- nPn " | timeout(G) > B

Figure 6.1: The Syntax of ArtOC

Table 6.1 details the ArtOC syntax. In that figure, C' stands for a configuration,
Dec for a set of declarations, B for a behavior, A for a named actor, p for a formal
parameter, p for a role, x for a timer, G for a guard on one timer z, a for a port
name, 7" for a type name, and R for the reception on a given port. In that context,
@ represents the list of names u; ... u,. Finally, we will also use y ::=!| 7 to name
the action prefix of sending or receiving a signal.

A set of declarations Dec forms a name context for any configuration C. C
is a set of behaviors put in parallel. An actor declaration is written A(p) = B,
which associates name A to behavior B with formal parameters p. The syntax
u : pT associates role p and type 7T to port name u. Each port is said to play a
particular role regarding a given service. Roles can be client (noted !!) or server
(noted ?77), source (noted !) or target (noted ?). The source and target roles are
private endpoints bound by a QoS contracts. Their features are similar to our
behavioral types for synchronous interactions: they describe when messages can be
sent, and when a process owning such an interface should be listening on the port.
As in the synchronous case, source and target roles exhibit non-uniform services.
We therefore maintain the rule that a source role can only be paired with one
target role, and conversely. Each source-target couple forms an exclusive binding
interaction group; both bound processes can emit and receive signals over reliable
FIFO channels with fizred minimum and maximum transmission delays. Ports with

Integration with UML-RT 115

client or server roles correspond to uniform, untimed services. They are “traditional”
IDL-like interfaces, defined as a set of signals with arity and type for each of their
formal parameters. A server can then concurrently receive messages from many
clients. In the remaining developments we will often identify roles and ports, writing
“role p” instead of “port of role p”. The distinction should usually be clear from
context. In any case, the type of a port will be described as a timed automaton.

We now present one by one the possible actions of an actor. new v : T in B
creates two new ports named u of type T and then behaves like B. According to the
specification associated to type name T, either a client and server roles or a source
and a target roles are created. An actor can behave as another actor: become A(%)
behaves like A with ports 4. spawn A(u) > B creates a new actor that behaves as
A, passing the effective parameters @ as arguments; A is then executed in parallel
with B. lv.s(4) > B emits a signal s through port v with arguments @ and then
behaves like B. A timer is simply introduced with the instruction timer x = § in B.
if G then P, else P; assesses guard G, then executes P, if it is true, or Py if it is
false. A guard simply checks if the value of a timer is included in some interval.

A reception may feature a choice between many ports: timeout(G) > | R; > B
waits until G becomes true before executing B, but it can be interrupted before that
whenever a signal delivery in one R; occurs. Each R; indeed comprises the name of
a port u to listen to, and the set of expected signals along with triggered behavior
when the reception occurs. Finally, timeout(G) > B waits until G becomes true,
and then behaves like B.

The binding rules describe how references are forged and how they can be sent
away to set a service up. Roughly, the rules follow the ones given in the synchronous
case. For private ports, the binding is said explicit: both roles are created by the
same actor, and this actor establishes the binding by sending the target role. Once
it has done so, neither role can be given to another actor. This scenario is usually
referred to as first-party binding. The binding rules for uniform services are slightly
different: both client and server roles are created by the same actor, but it is then
free to send both roles away. That is, an actor does not lose the capacity to use a
client role when this latter is sent away; client roles are always duplicated, and any
number of them can concurrently send signals to one server role. However, only one
server role may exist for a uniform service, and when an actor sends away a server
role, it loses the ability to receive signals through it.

ArtOC configurations can be analyzed much in the same way that 7° configu-
rations did. A crucial point here is the non-zenoness of processes. Indeed, the type
compatibility is analyzed by performing reachability analysis on a system compris-
ing the two types and a sufficiently large, finite channel. If one of the processes (or
types) is zeno, then we can not perform reachability analysis, since the content of
the channels can grow unboundedly. A system with at least one unbounded channel
is Turing-expressive [BZ83]. The main ideas for type compatibility verification and
type checking are given in [BNSLOO].

116 Applications

«protocol»
ProtocolA

¢

«capsule»
CapsuleClassA

5 «POrt» «protocc/Role»
- PortClassX ~—————" A master
1

Figure 6.2: The Relationships Among UML-RT Entities

6.4.2 A Meta-Architecture For UML-RT

We first introduce the UML-RT notation |RS|, an offspring specification language
stemming from the ROOM method [Sel96]. The UML-RT notation fosters the clean
separation of computing entities into components linked to one another by typed
channels. After this short introduction, we provide some background information
on UML models and meta-models. Then we show that there is a direct correspon-
dence from the UML-RT modeling concepts to the elements in our theory of typed
asynchronous timed processes. We close those developments by a short, illustrative
example.

6.4.2.1 Unified Modeling Language for Real-Time (UML-RT)

There are mainly three elements in UML-RT specifications:
e capsules,
e ports and protocols,
e connectors.

The relations between those notions are described by the UML class diagram pre-
sented in Figure 6.2, taken from [GBSS98|. A protocol is a description containing
all the legal uses that can be performed at some interaction point. Each use is
called a role, and is itself an ensemble of legal behaviors allowed by the role. On
figure Figure 6.2, one may say that protocol ProtocolA owns or aggregates the role
master. A port class is a pattern over which ports may be instantiated. A port class
realizes or implements a protocol role. A capsule contains computational entities
that communicate through ports and must respect their protocols. A capsule class,
over which capsules can be instantiated, may own several instances of one or many
port classes.

In Figure 6.3, an example UML-RT collaboration diagram is given that use the
entities we just defined. It also introduces connectors, that are the solid lines traces
between ports. ports are the squares filled in black or white that are situated at

Integration with UML-RT 117

x4:ProtA x1:FrotA
CapsClassQ .
) x2:ProtB
«capsule»
H y:CapsP = =
x3:FratC vi:FatC v2:ProtB

Figure 6.3: An UML-RT Collaboration Diagram

the frontier of capsules. In a collaboration diagram, only instances of classes are
described. Therefore, ports are given names, and the type they are tagged with is
the name of their protocol class. As one may imagine from the figure, connectors are
purely passive links between ports. However, they can receive a behavior through
association classes, upon which they can be seen as interceptors.

We now give a quotation from [GBSS98|, that situates the contribution we may
have regarding UML-RT specifications:

. ..] connectors [...] interconnect ports that play complemen-
tary roles in the protocol associated with the connector. [...] the
protocol roles [...] have to be compatible with the protocol of the
connector!. [..]

L' We will not discuss the rules of protocol compatibility here
except that it is based on behavioral sufficiency.

As we have seen in the chapters 3 to 5, we have provided a way of expressing protocols
and to check their compatibility. In that sense, our proposal exactly fulfills the needs
expressed in the above sentence. We are now left to show how we may articulate
the integration of our proposal to software engineering using UML-RT.

6.4.3 Notions of ArtOC in UML

To make a pertinent contribution, we first have to decide the “right” level in UML-RT
notation at which we should introduce the elements of our theory of timed actors.
The “stack of models” is represented in Figure 6.4. The UML meta-achitecture
(or meta-model) describes the relations existing between elements of UML notation
in the UML notation itself. From the meta-model elements, concrete modeling
concepts are produced by instantiation: at the application model level, manipulated
entities such as classes, relations, et cetera, are instances of their description at meta-
model level. At the application level, those notions are employed to produce actual
applicative models. Modeling with UML-RT hence takes place at the same level,

118 Applications

Met a- Architecture
A

I
«i nst a"nceof »

Appl i cation Mdel

a

«r eal:i zes»

UML- RT Model

A
«i nst a:nceof »

| npl enent ati on &
Depl oynent

Figure 6.4: The “Stack of Models”

but the application level notation is enriched to make notions specific to UML-RT
representable. This is done through an activity called stereotyping, which goal is to
provide a mapping from specific elements in UML-RT specifications to corresponding
elements at the meta-model level. If a proper mapping is provided, then an UML-RT
model is said to realize a simple UML model that would not use any specific notation.
The last instantiation relation intervenes between a model and its implementation.

Our contribution therefore consists in the introduction of ArtOC concepts at the
meta-level, and their stereotyping that yield corresponding notions at application
level.

The general links relating ArtOC notions are described in Figure 6.5. We intro-
duce the notion of location, though it was not present in the syntax of the language.
Having locations is in our case just a syntactical convenience for grouping processes,
that dispenses the programmer from providing channel characteristics (delay and
jitter) for every possible pair of objects: the channel characteristics are specified
between locations, and those characteristics apply to all objects of each location.

So, all the classes of the diagram in Figure 6.5 are tagged to be metaclasses.
The metaclasses ActorType, LocationType, ChannelType, and ContractType can

Integration with UML-RT 119

«met acl ass»
LocationType
+bnf: String
-e{+code: ArtOCLocation
<<const ruct or >> new(code: Stri ng)

*
«met acl ass» I__
ActorType
+bnf: String * «met acl ass»
+code: Art OCAct or ChannelType
+<<construct or >> n%w((iode: String) TDelays. Sring
0 - *| uses <<construct or>> new(del ays: Stri ng)
0..1
«met acl ass»
. ContractType
<netacl ass» <<contructor>> new() 0.1

InterfaceClass ')
K
1
v*

«met acl ass»
InterfaceTypeClass

Figure 6.5: The Relationships among ArtOC Meta-Architectural Concepts

be seen purely as containers that enclose textual descriptions of the corresponding
textual elements in ArtOC programs. Those meta-classes will be used for stereotyp-
ing purposes, allowing one to give them precise graphical descriptions (using special
symbols, graphs, boxes, etc.). Neither locations, actors, contracts, nor channels are
first-class entities in ArtOC: they do not exist at execution time, since they consist
only in syntactical descriptions that disappear at compile-time. This explains the
difference between the treatment applied to those entities (for which we shall only
manipulate their types) and the one given to interfaces, which do exist at execution
time.

The type of a location has two attributes: a description of the grammar of the
ArtOC language that tells how locations should be written, and a code for the
location type, that is set by the constructor new(code:String) when a location
type is created. Using the grammar, the constructor may check the syntactical
correctness of the given code for a location type. The aggregation link between the
LocationType and ActorType classes means that each location of a given type may
instantiate actors of some given types. Each actor type in turn may execute the
code of another actor type by executing a become instruction. This is shown by the
looping uses relation from actor types to actor types. Let us now look on the other
side to the attributed association from location types to location types. Each such
association comes with a channel type, indicating the QoS characteristics (delay,
jitter) of the channels linking objects in the two locations.

A contract type may reference zero or one channel type. This is necessary for
private contracts, where the characteristics of the transmission must be known at
compile-time in order to ensure type compatibility and perform type-cheking. Now,
a contract type may enclose any number of interface classes (i.e. protocols) to build

120 Applications

«met acl ass»
InterfaceTypeClass

+bnf: Bnf G amar = TypeBNF
+code: Art OC

I

UniformTypeClass BehavioralTypeClass
<<const ruct or >> new code: Art OCType) <<const ruct or >> new(code: Art OCType)
JAN
[SourceTypeClass | [TargetTypeClass

Figure 6.6: The Interface Type Hierarchy

its contract. In practice however, ArtOC contracts are limited to two interface
types maximum, since only bipartite contracts are allowed. An actor type may
also reference any number of interface classes, and use them in the actor’s ArtOC
code. Finally, the diagram states that an interface class is a realization, or an
implementation of the more general class of interface types, that contains all the
interface classes that can be written using ArtOC.

We now review the interface type hierarchy, shown in Figure 6.6. Then again, in-
stances of those classes contain the code of the protocol they should implement. The
code can be syntax-checked during the instantiation process using the BnfGrammar
attribute of the class InterfaceTypeClass. This class can be specialized into the
classes of uniform types and behavioral types, respectively. The class of behavioral
types can again be specialized into the class of source types and the class of target
types.

Please notice that we did not represent the specialization of the uniform type
class in client and server types, since this is of little interest here.

The contract type hierarchy is given in Figure 6.7. A contract type has no
behavior on its own, it is used only as a way of grouping (hopefully) compatible
interfaces. Contract types can be either implicit or explicit (see Section 2.1.2.3),
according to the nature of the interfaces they bound. If the binding procedure is
implicit, then the types of the bound interfaces must be uniform. There is an implicit
contraint that can not be expressed directly on the diagram, but that can be written
in the Object Constraint Language (OCL): in a contract rule under implicit binding,
there can be only one server for as many clients as wanted. In the case where the
binding is explicit, then there must be one and exactly one source interface and one
target interface, respecting the exact 1 — 1 cardinality.

To be easily usable in UML class diagrams, we must provide a way of graphically
distinguish locations, actors, interfaces, etc. This is done by stereotyping the meta-
classes. We apply the usual convention that, when someone writes a class diagram,
he or she writes for example Human as name of the class, and not humanClass.

Integration with UML-RT 121

«met acl ass»
ContractType

<<contructor>> new()

ImpIicitBindingTypeI | ExplicitBindingType
) {

3

L L
UniformType [SourceType| [TargetType |

Figure 6.7: The Contract Type Hierarchy

Similarly, one shall write Interface at the application model level to write interface
classes. Therefore we name Interface the stereotype of interface classes.

We do not give precise notations for our elements, which would be of little rel-
evance here. Each element has however a set of tags, that are there to precise its
properties. For example, an actor has a code tag, that precise the code for the
actor. The other details regarding the stereotyping activity are quite straightfor-
ward; we shall now skip all remaining details and start to study the links between
UML-RT and ArtOC.

6.4.4 Relationships with UML-RT and Examples

We claim that there is an obvious correspondence between ArtOC and UML-RT
concepts. This claim is (we think) strongly supported by the diagram on Figure 6.9.
This diagram shows on the right elements taken from the UML-RT specification lan-
guage, and on the left elements that intervene in ArtOC specifications. The arrows
going from the right to the left are realizes arrows. It means that any element on the
right can be implemented using an element on the left. The only difference is related
to connectors, at the bottom of the diagram. The difference between connectors and
channels is that our channels are purely passive entities, only containing delay and
jitter information. Connectors may oppositely have behaviors when an association
class is used. We have no possibility of straightforward correspondence in this case.
Hence, the correspondence is not perfect, but it still seems convincing enough to us.

We are now going to treat as an example the specification of a video-on-demand
transmission between a source and a target locations on a network. The diagram
on Figure 6.10 shows that an emission center may have a relation with many clients
through associated cable network channels. The paced emission of data is assured
by a video server, that establishes explicit bindings with clients through interfaces
with type AV; (standing for Audio/Video source).

We shall not provide the formal semantics for types nor actors, but here we
present the type of the receiving interface AVy. Its behavior can be described as:

e it receives audio and video at constant pace, one video frame each 40ms, and

122 Applications

InterfaceClass

<<st er ept ype>>

TargetTypeClass UniformTypeClass

SourceTypeClass

<<stereptype>> <<st er gpt ype>> <<stereptype>>

<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
sourceType tagetType uniformType Interface_
Tags Tags Tags

code: Art CCType

Constraints

code nust respect
BNF for uniformtypes

ChannelType

<<st er ept ype>>

code: Art OCType

Constraints

code nust respect
BNF for target types

ActorType

<<st er got ype>>

code: Art OCType

Constraints

code nust respect
BNF for source types

LocationType

<<st er ept ype>>

code: Art OCLocat i

on

code: Art OCAct or

<<stereo_type>> <<stereotype>> <<stereotype>>
location actor channel
Tags Tags Tags

badge: Stri ng

Constraints

code must respect
BNF for |ocations

Constraints

code nust respect
BNF for actors

Constraints
badge nust be |inear
i nequations on del ay
and jitter

[ExplicitBindingType |

[ImplicitBindingType |

<<st er ept ype>>

<<stereptyp

e>>

<<st.er_eotype>_> .<<ste.re.0type>.>
explicitBinding implicitBinding
Tags _ Tags
constraints: String constraints: String
Constraints Constraints

Figure 6.8: Stereotypes for ArtOC Specifications

Integration with UML-RT

123

«l ocati on»

EmissionCenter [

«capsul e»

EmissionCenter

]

«act or»
VideoServer

I

«I nterface_»
AVsinterface

v

I

«capsul e»
1 VideoServer

!

«port»

-7 AVs

«sour ceType»
AVs

«Pr ot ocol Rol e»
AVs

I

«contract »

VideoTransmission [

«channel »

Figure 6.9: Realization of UML-RT specifications by ArtOC Programs

CableNetwork

«pr ot ocol »

ProtocolAV_s

«connect or »

CableNetwork

124 Applications

- <<location>>
<<location>> .
EmissionCenter |, 1 ClientHome
Code Code
Y) I S: I Request s,
St ?Requests i n R ?Replies in
Vi deoSer v}er [9] [Vi deoCl i ent[S, R
|]

1 . 1
<<actor>> <<channel>> <<actor>>
VideoServer CableNetwork VideoClient
Code Badge Code
?2(*,,) Sl 0 <jitter <10 IS.req(R> ? Rrep

req(R Reply)] = ... 40 < delay < 50

] 1]

* <<explicitBinding>> 1
«interface_» VideoTransmission «interface_»
AVsinterface Constraints 7| AVtinterface

1 1
1 1
[} [}
<<sourcetype>> <<targetInterface>>
AVs AVt
Code Code
Type source AVs : = Type target AVt : =
strean{cl,c2] ... streanfcl, c2] ...

Figure 6.10: A Video Transmission Example in ArtOC' UML notation

one audio frame each 100ms.

e The minimum delay for the transmission of a frame is named 7y, and the
maximum delay 75 + 7.

e Once the target interface has been received by the client, this one has 5 seconds
to ask the start of the video, and then it must wait at least 5 seconds before it
can ask to stop. The transmission effectively stops at most one second later.

Type target AVy(1o, T) :=
stream|[cy, ¢o] :x1 = 0
Ty = ¢p in [40 — 27, 40] video() until 40 ; stream.zo(c; = 0)
+ ¢ in [100 — 27,100] audio() until 100 ; stream.z5(co = 0)
control[cs] : x5 = c3 in [0, 5000] !start(); control.z4(cz = 0)
x4 = ¢ in [0,5000] ?start_ack(); (stream.xy, control.zs)(cs = 0)
x5 = ¢ in [5000, oo] !stop(); control.zg(cs = 0)
xg = c3 in [0, 1000] ?stop_ack(); (stream.xq, control.z7)(cs = 0)
T7 = @

We also present a code for the video-on-demand location that contains the video
server. There are three named behaviors in the location: Period AV, Stop, and
Video Server. The server initially lauches the Video Server behavior, passing it a
public port S as argument. The server then waits indefinitely on that same port,
waiting for new clients. In case such a client arrives, the server creates a new port

Conclusion

125

named Chan, and sends it to the client. Once this is done, the recursive behavior is

started after some timing adjustments by calling behavior Period AV.

Loc Video On_Demand =
S: Incoming Req,
Period_AV | Chan: AV, | =
?(40,) Chan [stop = Stop|Chan|| > !Chan.video() >
?7(20,,) Chan [stop = Stop[Chan|| > !Chan.audio() >
?7(20,,) Chan [stop = Stop[Chan]| > !Chan.video() >
?7(40,,) Chan [stop = Stop[Chan]| > !Chan.video() >
?7(40,,) Chan [stop = Stop[Chan]| > !Chan.audio() >
?(40,,) Chan [stop = Stop[Chan|| > !Chan.video() >
Period AV [Chan] ,
Stop [Chan: AV, | =
Chan.stop ack() > 0,
Video_ Server [S: Incoming Req | =
?(00,,) S [req (R: Reply) =
create Video_Server [S| > new Chan: AV, >
new Chan: AV, > !R.rep(Chan) > delay (27) >
?(50004-27,,) Chan [start() = !Chan.start_ack() >
?(40-7,) Chan [stop = Stop[Chan]| > !Chan.video() >
Period_ AV[Chan]|

~— {_ ~— ~/(P —

|
. |>0

Video_ Server [S]

> IChan.video() >

6.5 Conclusion

In this chapter we have reviewed several aspects related to pratical applications
of our work. We first tried to root our results deeply into the model-theoretical
aspects of reactive system verification. We hope that resulted from this comparison
a thoroughly jaggeed image of our motivations and achievements. We then provided
a definition for a more tractable, programming-oriented language, that may help
introducing our work to persons that have only limited knowledge of the 7-calculus
and related formalisms. Finally, we showed the direct correspondance between the
concepts introduced in ArtOC programs and UML-RT specifications. This should

furthermore get our calculi some attention from the lively UML community.

126 Applications

Chapter 7

Conclusion

We have presented a way of reasoning compositionally about real-time, object ori-
ented specifications. To do so, we have extended the m-calculus by introducing
clocks that take values over the real numbers. We used transition systems to pro-
vide a semantics to processes. The obtained language is extremely expressive, since
the transition systems they yield are infinitely branching, and may reach an un-
countable number of processes.

We have therefore adapted standard techniques for reasoning about the involved
source of infinity in the models. The region graph technique has been used to
alleviate the problems caused to the density of the time domain. The symbolic
name equality sets and the notion of symbolic bisimulation have been employed to
cope with the name-related issues.

We have then been able to analyze processes, in two different aspects. We first
provided an axiomatization for timed late bisimilarity over finite terms. Afterwards
we allowed to statically ensure the absence of deadlocks and of zeno executions for
a subset of infinite-state processes. The static analysis method we provided is based
on the fact that the user provides finite-state abstractions of the behavior processes
may adopt when using the typed names. Having a strong-enough restriction of
name-passing is also a condition of applicability of our method.

Along those developments, the notion of contract has appeared to be essential.
We established a parallel with the founding principles of deontic logic, a modal logic
where the gap between the factual world and the ideal world is taken into account.
This leads to the central notion of directed obligation from a bearer to a coun-
terpart. By allowing processes to explicitly put obligations on their environment,
we have reached a strictly higher degree of flexibility and expressiveness than all
the other (timed) process algebras that we know. We have shown afterwards that
compositional, circular reasoning can be achieved by checking that obligations ex-
hibited in distinct parts of the system are not in contradiction. In this respect, our
specifications are assume/guarantee specifications.

We finally showed that real-world applications are available at hand for the pro-
posed notation and verification method. In the world of real-time operating systems
and middleware, terms of our algebra can be used as model components to predict,
control and regulate application behavior. Contracts passed among components can
be used to perform access control and predict resource usage and schedulability.

127

128 Conclusion

Well-typed but ill-behaved processes can be freely eliminated by the execution plat-
form by considering that such processes do not respect the contract passed with the
platform, to respect the behavior described by their model. We also showed how our
notation can be integrated into UML-RT-based developments, yielding the benefits
of formal analysis in a place where much is needed.

As future works we may essentially consider further studies of the properties un-
dergone by our models with explicit obligations. This way could indeed reveal itself
very fruitful because it provides a very convenient way of specifying configurations
of autonomous components. That study would certainly lead to consider finite-state
model, where many properties become decidable while they where not in our setting.

The converse angle of attack will be to improve the static analysis method, and
to further study the properties of bisimilarity as we defined it for real-time mobile
objects. Right now, we indeed have only very low insights on the consequences
produced by our definition. A particular point of interest is the subtyping relation
defined in Chapter 5. It is quite unsatisfactory in the present state, and one should
look for improvements. Finding some kind of elegant formulation for it in terms
of games or simulation appears as essential, while we only provided an axiomatic,
ad-hoc definition.

Finally, we could also consider many alternative methods that rely for example
on true concurrency semantics, categorical semantics, rewriting logic, co-algebraic
specifications, etc. Many works dealing with time-related computations have been
devised in those contexts, and we can only expect to obtain truck-loads of new
solution-generating ideas, and as many new question-raising problems.

Appendix A

Proofs

Proof of Theorem 4.2.1 (Soundness of the abstract semantics).
In each case, by routine induction on the structure of the proof. We start by
treating time-passing transitions:

(= (Vp, 6. (pF CAPT R (NG ACY) = tp 25 1™

We reason about the last rule applied when inferring the symbolic transition,
and we show that we can build a concrete proof tree matching the symbolic one.
We have to consider the rules CONv, ID, and RESET, as well as all the rules from
Tables 4.3 and 4.4.

Axioms TSEL and TIDL are easily matched by TNSEL. Suppose indeed

(o, vl 8) ¢ & ([, vl 1) (0 A ¢T)=

by TSEL, with ¢! = (o A ¢/)=/. Suppose also that we have p, § are such that: pE
and p™ E (¢/\¢=Y) A ((o A {7)=Y)!. We have to prove that for any &' € (0,6),
pt? E =0, hence allowing us to apply TNSEL. From the antecedent of TSEL,
((CA0’) & L) implies that p F —o, since p E (. On the other side, we have trivially
(CI\C=Y) A (o A ¢)=4) = (oY), and therefore pt% E =0, because ¢’ < § and
((0=Y)! A o) & o=/. Hence we obtain the sought concrete transition.

For TIDL the reasoning is similar: suppose that

([0, v]m. 1) ¢ & ([0, o).)¢eet

and take p,d so that p F ¢ and p™ E (¢/\(=Y) A (¢!, The antecedent of TIDL
gives us (((¢/\¢=Y) A o’) & L), which implies that the only values of p that may
satisfy both ¢ and o are on the border (=/ (either ¢/ = —o, or (= = o and
(¢’\¢=Y) = —0). Since this border is excluded from (¢/\(=Y) A %"/ to which p*?
belongs, we deduce indeed that pt® E —¢ for any ¢’ € (0,9). We hence may apply
TNSEL to match TIDL transitions.

A deduction using axiom TURG can be proved to correspond to a concrete deduc-
tion using axiom TSEL by using a slight variation of the proof given above for axiom
TSEL. We have ¢’ £ (vAC’)=/ and we take § such that p*? £ (¢/\¢(=/)A((vAC7)=4)!.
From this and the antecedent of TURG, we easily get p*® E (/ Av=/. Therefore p*? is

129

130 Proofs

on the lower border verifying urgency condition v. Since p F o from the antecedent
of TURG and since o = v, we obtain that p*® E o A —w for any &’ € [0,6). Hence
TSEL applies and produces a corresponding concrete transition.

A deduction using symbolic axiom TELA can also be matched by a concrete
deduction using axiom TSEL. This time, we have (' = (o A ¢/)/” and thus p™ F
(¢’\¢=Y) A ((0 A ¢7)/7){. By the antecedent in TELA, we have (v A (/) & 1,
implying that pt® - —wv whatever §. From the antecedent we also have o/ < o,
implying that o is not umbounded, and that consequently o/~ exists. Since trivially
pHPECT Ao A(o77), for all ¢ € [0,6), p” Eo\o/". Thus p™® E 0 A —v, and TSEL
can be applied.

For TUNBS, the destination zone is (¢?, and we have p™ F ((/\(=Y) A (e,
From the antecedent of the rule, we get as in the previous case that the intersection
between ¢/ and v is empty, hence provinding p*° E —v for any 6. From the two other
clauses ((= o and o/ < o), we get that o is unbounded, and therefore p*° o for
any 6. Thus we infer that p*¥ E o A—w for any ¢ € [0,§), and TSEL can be applied.

The case of TUNBU is very-similar to TUNBS, but the concrete matching rule is
TURG. From the antecedent of the rule we have p F v (since ¢ = v) and p*® F v for
any ¢ (since v/ < v). Thus pt? £ v for any &' € [0, 6], and TURG may apply.

For TwMiss, we can invoke TMISS: if we have the following symbolic transition

(s(7*):0)

([o,v]m*.t) ¢ Error((v A Cf)f:)

then we can show that all the instants belonging to the destination zone are the
ealiest possible when an error is reached. Indeed take p,d so that p F ¢ and
pt E (C/\¢=Y) A ((v A ¢7)7)L. From the antecedent of TMISS, we get the v is
not unbounded (by v/ 4 v), which has for consequence that v/~ defined, and by
the form of urgency criteria, (v/~ Av) < L (v must have an upper constaint of
the form z < p, which is replaced by a constraint = p in v/~). Therefore, as
ptE (C\C=Y) A ((v A7) 7). implies pt? E v/~ we have p™0 F —v. We are left to
show V&' € [0,6) pt® E v. It is easy, since by the antecedent of Tmiss, ¢ = v, and
that all instants before § must satisfy (v A ¢/)/~. So TMISS can apply.

The concrete axiom TERR is powerful enough to cope with symbolic axioms TERR
and TNERR. The proofs are similar to the TMIss and TIDL cases, respectively. We
are left with only one axiom, TREQ, which is matched by TURG, and for which the
treatment is similar to the one we are now going to engage for rule TREG. The
main difference between the two is that we must involve an induction hypothesis to
properly negociate TREG.

Let us therefore suppose that the following transition has been proved:

([o,v]m. 1) ¢ S ([o,v]m.8) ¢

The proof of such a transition is mandatorily an axiom among TSEL, TURG, TELA,
TipL, TuNBS, TUNBU or TREQ, followed by zero or more (but finitely many)
applications of TREG. The transition is in any case matched by one of the concrete
axioms TNSEL, TSEL, or TURG, according to the symbolic axiom used at the root of
the deduction tree. When only a symbolic axiom is used, the existence of a concrete
deduction matching TREG is proved by using the interval-trajectory property of

131

our models, as defined in Section 3.8. Having effectively found a matching concrete

transition p 38, 4 pt? by using one of the proof cases for symbolic axioms detailed
above, we have proved that for any &' € (0,4), p*?' satisfies a certain condition. This
remains obviously true for any 6" € [0,6’]. The same concrete axiom may hence be
applied to infer any ¢’-transition. The rule TREG states that any point in time
between the current zone and the destination zone is reachable by a time-passing
transition. That is, the destination zone ¢ is included in (¢/\¢=Y) A ('Y, and for any
clock valuation such that sk £, there is a 6" such that 6" € (0,0) and &k = p**".
This reasoning can be repeated for any number of successive applications of rule
TREG.

Deductions employing TSUM and TPAR can be matched respectively by using
TSUM and TPAR. Both proofs are nearly identical, we give only the one for TPAR.

Suppose, as we said, that:

b T ¢ T T = ! 0 Sty 1 o
LG S5 2 (Yo B (o G A g ((CHINCH=0) A 1Y) = 1, 235 1535

and
w2 ' € = (Ypu,bu (pu B 6 AP0 B ((§5/\E2) N EL)) = up, =2 u'pf)

and suppose that the rule TPAR applies. From TPAR we infer
St,Su z
(t[u) (CAE) == (¢ [u) (C'AE).
We have to prove that

(t1u) (CAE) 2 (¢ [u) (¢ A g
= (Vp, 8. (pE (CAE) AP E (CAENCAE) AL AEYNTY)

= (t|u)p 2222 (¢ | o) pt0))

This means that we must find a way to make rule TPAR apply; to do this we
must show that the antecedent of TPAR is verified, yielding one concrete transition
for each process ¢t and u. Suppose that p E ((A&). We call p; and p, the clock
valuations such that for some = ¢ dom(() U dom(§), dom(p;) = clocks(¢) U {z},
dom(py) = clocks(&)U{x}, Yy € clocks(().p(y) = pi(y), Vz € clocks(€).p(z) = pu(2),
and p;(z) = py(x) = 0. This yields p = (p;pu)\%, pr E ¢(**, and p, F &*. We then
show that for all § such that p*0 E (((C A &)/\(CAE=Y) A ((¢'AE)*)Y), we have
P 0 E((C¥I\C* =) A C'Y) and pf? E ((£#7\& =) A €Y). this will provide us the
wanted result, by application of the induction hypothesis.

All the instants reachable by letting a time § pass from some instant verifying
constaint, ¢ define the zone (/. Hence, p, E (¥ yields trivially p;° £ ¢¥*/. From
the obligation that p™ E (¢ A £)7\(¢ A €)=Y, we further infer that § > 0, the lower
border of (¢ A £) being excluded. This allows us to exclude also the lower border of
¢**7 and to infer p;° E (¥*/\(¥*=/. We now show that p*% E (¢’ A &)* implies
p; % E (¢'. Indeed, the constraints ¢’ and & have been obtained by taking the upward
opening of (** and &**, respectively. Considering only ¢ (the reasoning is similar
for &) this implies, for any clock z € clocks((), that (' = z — z § r for some 7. As
furthermore the clock x must not appear in the term ¢ (by the side-condition on
rule TPAR), then any constraint on z in ¢’ such that = p induces the existence of

132 Proofs

a clock y and a constant ¢ such that (' = (y t ¢ Ay — 2 § ¢ — p). Reasoning by
absurdity, suppose now that pt% k= (¢’ A €)* for some &;, while p;° ¥ ¢’. The non-
satisfaction of ¢’ by p; is either due to (p;*)/¥ ¥ ('Y for some y € clocks(() or to
(o ‘5‘)/ @ g ('/%_ In the first case, we trivially obtain a contradiction, since necessarily
pto ¥ (', which implies p™ ¥ (¢’ A €')\®. In the second case, we are given by the
form of ¢’ the existence of y € clocks(¢) such that (' = y # g and (p*%)/¥ ¥ (/.
This closes the absurdity reasoning, proving that p% E (¢’ A €')* implies p;% £ ¢,
By property of the downward closing operator, we get p*% & ((¢' A €')*) implies
p*% & ¢, and by simple conjunction p™% & (((¢ A €)7\(C A=) A ((¢'AE))Y)
implies p £ ((¢**7\¢¥*=4) A ¢'Y). The same reasoning can be repeated for p,, &,

and J,. Hence we can use the induction hypothesis and apply rule TPAR to match

rule TPAR: we have (¢ | u)p RIS " [u')p*e.

Now for untimed transitions we have to prove:

t¢ 2B ¢ = (Y, o (bn(m) N (fn(t) Uports(a)) = DA pECAaE p)
= (3. ' E A (ta)p = (Fa)p)) A
(Vp', a. ((bn(m) N (fn(t) Uports(a))) =0 A p' EC AaE p)
= (3p. pFE CA (ta)p = (H'a)p'))) .

This property is very similar to the second clause of [Lin94, Lemma 2.12], the only
difference being in the need for us to prove the existence of two oppositely-directed
functions between the clock valuations of ¢ and the ones of ('.

We have, as in the timed case, to prove the correspondance for every rule and
axiom of Table 4.2 a suitable correspondence in Table 3.2, using the usual induction
on the struture of terms.

We start by the only symbolic axiom PRE, that shall be matched by axiom PRE.
The capacity of inferring the concrete transition is maintained when renaming free
ports of 7, ¢, and ¢'. Thus the application of o can be done freely in the consequent
of the theorem. We now deal with timing aspects. In the case of a port input or
clock/port output, matching the symbolic transition is trivial: (' = reach(¢,7) = (,
reach(p, ™) = p, and from the precondition of PRE, (= o, implying that for any
p we have p F (= p F o; this allows the application of PRE. In the case of clock
input, the received value z is undetermined. We have ' = reach((,7) = ((Az > 0),
and p'* = p; trivially for any p such that p = ¢, p' E ¢’ because ¢’ does not constrain
the value of z. The existence of a function from each p satisfying (to p’ satisfying (’
and conversely is trivial in the first case; in the second case, the function is injective
from p to p/, and surjective in the converse direction (there are infinitely many values
for x in p' such that p/* = p).

The proofs for all the remaining rules follow roughly the pattern we just used for
PRE. The naming issue for those rules is treated in [Lin03, lemma 2.6, second clause|
(the interesting cases being RES, OPEN, and MATCH). We have to deal with timing
issues in the cases OPEN, RES, SuMm, ID, PAR, MATCH and CONV. In each of
those cases, the same origin and destination zones (and (' appear in the antecedent
and the consequent of the rule. The existence of two oppositely-directed functions
between their satisfying clock valuations is therefore immediate from the induction
hypothesis. The only remaining cases are CoM, CLOSE, and RESET, which are
trivial. In RESET, the clock reset of z is the only change from { to ¢’. The case

133

for CLOSE is trivial using the induction hypothesis: we have functions between (
and (', and £ and ¢'. Finding corresponding functions between (A £ and (' A £
amounts to taking the same values on common clocks, and the union of values of
reset, clocks. Finally, the case for CoOM solves easily from the previous one, since the
only difference is that the value of clock m (if it is a clock) is suppressed in (.

O

Proof of Theorem 4.2.1 (Weak Completeness of the abstract semantics).

We have to prove that, to any concrete transition, there corresponds at least one
abstract transition. As in the soundness proof, we start by dealing with the timed
case. Formally, the clause is written:

tp 254 = (3¢ pECA (P ECV B PP ECALC S Y)

We have to perform a case analysis on rules RESET, ID, and CONV of Table 3.2, and
all rules in Table 3.3.

More precisely, we show that the region enclosing p, that we shall note (,, is
always a possible choice respecting the wanted property. Such a region can be
obtained easily by, for any clock z, having {, = (z > |p(z)] Az < |p(x)]| + 1) when
p(z) # |p(x)] and z = p(z) otherwise, and for any other clock y, (, = (z —y >
Lo(z) — p(y)] Az —y < |p(z) — p(y)] + 1) when p(y) < p(z), and ¢, = x =y when
p(z) = p(y). The region ¢, enclosing a given clock valuation is always an equivalence
class for the valuations it contains [AD94], meaning that all those valuations satisfy
exactly the same constraints.

The axiom TNSEL can be matched by TREG and either TSEL or TIDL, depending
on whether p*® = o or not. In the first case, we have both ¢, = —o and Cots = O
from the antecedent of the axiom TNSEL. The antecedent of rule TSEL is then easily
verified:

e because a valuation satisfying o is reachable from p we have (((, Ao/) & 1),
e because (,+s = o and (,+s is an equivalence class we have (/¥ = o//.

Finally, from the fact that V¢’ € (0,8) pt? £ =0, we are assured that the destination
region (,+s is the lower border of the intersection of ¢/ and o: (,+s < (0 A ())=/.

The case where p*? = — o, has to be divided again in two subcases. The first
one treats cases where time may elapse to make o eventually ¢rue, but has not
elapsed enough yet. Then, an application of TREG after TSEL provides the wanted
symbolic transition. The applicability of TREG is guaranteed by the fact that 6 > 0
and &' > 0. In the other case, where o will never become true whatever amount of
time elapses, TIDL must be employed first, potentially followed by TREG. Because
in this case —o is verified at all points between (, and (,+s, the intersection of this
zone with o/ is mandatorily empty, allowing the application of TIDL. The reached
zone is then (¢ the region (,+s is then logically contained in ((/\(57) A (5,
allowing the application of TREG.

The axiom TSEL shall undergo a similar treatment, using a combination of TREG
with either TURG, TELA, or TUNBS. The cases to be covered are:

134 Proofs

e the ones where either the currently allowed prefix becomes urgent or will even-
tually become urgent but for now remains selected (covered by using TURG
and TREG),

e the case where the selection constraint will eventually become false again
(covered by TELA and TREG),

e the case where the selection constraint is unbounded (covered by TUNBS and
TREG).

We do not treat those cases in detail, as they are very similar to the treatments
applied to TNSEL.

The treatment for axiom TURG is more simple: since time may not elapse to
that an urgency condition v becomes false again, time may only pass withing the
limits of a bounded constraint (by using TREQ), or it may reach the upper limit
of an unbounded constraint (by using TUNBU and TREG). The axiom TMISS is
matched trivially by Tmiss, the only reachable region being the lower border of the
zone where v become false. The axiom TERR is matched by TERR and TNERR,
that correspond respectively to the two clauses of the antecedent of TERR. While
TRES is matched by TRES, we are only left with the two cases for parallel and choice
connectors, that demand the use of the traditional structural induction method. We
treat only the parallel case.

Suppose that a time progression is decided by using rule TPAR; then, TPAR can
be used to find a matching abstract transition. By the induction hypothesis, we

have indeed two transitions (. LEN t'Cra+s and uéie LN W&z v5. Applying
TPAR can be done easily, because the side-condition of TPAR implies that the one
for TPAR is respected: while the constraints on the ready-sets are directly carried
on from rule to rule, the fact that p**x** is defined implies that (Cpe A &eue) <6 L,
(Cpro+s N &giots) ¥ L, and (,la+s and 1246 agree on the possible values of all the
clocks they have in common.

We now address the discrete case. The proofs relies on Hennessy and Lin’s
work [Lin94], but it has a slight difference that clocks may be updated (i.e. reset)
during discrete transitions. In spite of this difference, the proof is very-similar to the
above-mentioned work, and it goes as usual by induction on the structure of terms,
reasoning on the rule that is applied last. We hence consider the rules and axioms
of Tables 4.2 and 3.2.

The only axiom is PRE, that is easily matched by PRE. Take indeed the region
(i.e. the smallest zone) ¢ such that p E (. Since p F o and (is an equivalence class
for all tp belonging to it, we have (= o. By the definition of reach(p, 7)) and
reach(¢,), we have mandatorily p' € reach(p,7a) = p' F reach((,n). Therefore
the precondition of PRE is satisfied, and we obtain the sought symbolic transition.

The other cases use the induction hypothesis on structure of terms, sometimes
in a straightforward way. This is the case for SUM matched by SUM, PAR matched
by PAR, RESET matched by RESET, and ID matched by ID. In all those cases, the
side conditions of the concrete and symbolic rules are the same, and the distinction
set p on the antecedent and consequent abstract transitions remains unchanged; the

135

proof is hence trivial. We have now only the cases OPEN, CLOSE, COM, RES and
CONV that remain to be treated.
The case of OPEN is resolved by employing OPEN. By using the induction hy-

pothesis on tp LI , we have the existence of a name constraint p such that

t¢ RN ¢'. To apply OPEN, we then have to prove that b ¢ (ports(u) U {a}).
When inferring the wanted abstract transition of process ¢ (, the only way to intro-
duce a constraint on name b is to use rule MATCH; the term ¢ has then the form
[a = bJab.t’. Reasoning ad absurdum, we conclude the impossibility of inferring the
supposed concrete transition for (vb t)p using OPEN, and therefore b ¢ ports(u).
As furthermore from the application of OPEN we get «(b) # «(a), and because «
is a function (each name has a unique substitution), we can only have a # b. The
side-condition of OPEN is hence shown fulfilled. The timing aspects of the proof
are dealt with in a very simple way, by taking the smallest zone containing p, and
taking for ¢’ the same zone with a set value of 0 for all the clocks reset during the
transition.

The case for CLOSE is solved by using CLOSE. The induction hypothesis gives
us the existence of constraints p and 7, which, by conjucting # with them, ensures
the existence of a proper name constraint on the transition. The side conditions of
the rules only bear on timing aspects; the one for CLOSE is easily satisfied by taking
for ¢ and ¢ the smallest regions respectively satisfying p and . Because px and
p'k’ are defined, it means that in both couples the constraints agree on the clocks
they have in common, and therefore the intersection of ¢ with & (resp. of ¢’ with
¢') are non-empty. The case for COM is very-similar to the previous one (with a
match by CoMm), except that the value of a clock m must be suppressed in one of
the environments to simulate its transmission.

The last case, for RES, is dealt with using RES. From «(a) ¢ n(r«a), we get that
a ¢ n(m). Then a ¢ n(u) is obtained ad absurdum as in the OPEN case, because if u
contains a constraint ¢ = b, it means that the rule MATCH has been employed with
a and b syntactically different, while a concrete transition can not be obtained with
the same term (by congruence, [a = b]t = 0 whatever t).

O

Proof of Theorem 4.2.8 (Relating Concrete and Symbolic Bisimulations).

To prove the implication part of the theorem, we exhibit as usual a concrete
bisimulation from the symbolic one, for any o & u, p E ((¥*/ A¢) and &k E (£ A €)
with & (clocks(C) U clocks(€)) and p(z) = k(z).Assume there is a symbolic timed
late bisimulation R* between processes t (and u&. We shall show that

S = {((ta)p\®, (ua)x\®) | 3¢, € so that (¢, ué) € R* x ¢ (clocks(¢) U clocks(€)),
aF p,pF (CH A,k E (E97 NE), p(z) = K(z)}

is a (concrete) bisimulation. This goes, for each possible concrete transition of a
left-most term in a couple of S, by using the weak completeness theorem to infer a
matching symbolic transition, and then, because R* is a bisimulation, proving the
existence of a right-most concrete term matching the transition with the soundness
theorem. We purposedly ignore naming issues, and thus the renaming «, since this

136 Proofs

renaming can not interfere with free (or bound) clock names, since those names are

always convertible.

Suppose that, for (¢p*,uk*) € S, we have tp* %, t'p'; then the weak com-

pleteness theorem gives us, for each p*, the existence of a constraint ¢’ such that
P ECA (P EC V(T (P E AL S (). We have furthermore
p E (¢¥* A C), which implies p\® E (¢¥*7 A)\, while trivially ((¥*/ A)\ < (. We
obtain, by p* E ¢ and p* E (', that p = (C A (') and ((A (') 4 L. There are now
two cases to consider: either there exists (; member of a slice partition (, -« -, (x of
(¢*7 A ¢) having the properties given by Definition 4.2.3 and such that ¢/ = (;, or
there is no such ¢;. In the first case, we can take (' to be equivalent to any suitable
Ci\w since, by the definition of a slice partition (Definition 4.2.1), this Ci\w also has
the property required above by the weak completeness theorem. In the latter case,
we have a ¢’ that spans over many members of (;, --- , (. We can then choose a Ci\w
so that p F (;, that has again the same time-passing properties as (' regarding the
weak completeness theorem. Now, by the downward closure property of timed late
bisimulation (and thus of R*) over the (i, - -, (x, we deduce that the term t(i\w is
bisimilar to another symbolic term u§i\z by R*.

We are now interested only in the subset of clock valuations that share the
same property as the initially chosen p: the set of valuations (that we all call p for
convenience) verifying p F (;. Whenever t{i\m produces a transition leading to some
t¢" in order to match the transition of ¢p* (this is the case when (p\®)+9 ¥ Ci\$),
then the symbolic process u 51-\"'”, bisimilar to tCi\w by R*, produces the same symbolic
transition, leading to u&’. We can then ap{le the soundness theorem to that symbolic
transition, obtaining that for any x* &, there is a concrete transition from ux*
to u(k*) ™ for any ¢ such that (x*)*9 & let us call A the set of such §’. The
fact that 6 € A is given by the first clause of the bisimulation definition: ¢§ is such
that p* E Ci\w implies (p\?)* E ¢"; besides, (t Qi\w,ufi\w) € R* implies that ¢” and
&" are obtained from two other zones (""" and £’ by suppression of the constraints on
some new clock y. Finally, the first clause of Definition 4.2.3 also enforces that '’
and £ have the same constant width, and that ¢("'/¥ < ¢""/¥. This closes the case
where a symbolic transition is produced by ¢ {; to match the concrete -transition.

If no symbolic transition is produced, it means that (p*)™ Ci\w. The existence
of a matching concrete transition is given by the constraint over the clock x in the
definition of symbolic timed late bisimulation. Precisely, to show that (¢ (i\w, u §l\$) €
R*, we have used the fact that (t(,uf) € R* and that (; belongs to some slice
partition of (. Since the definition imposes also that (; and &; have the same constant
width and Ci/ o 52-/ “ any time progression § such that (p*)*0 Ci\w can be trivially
matched by 52-\5”. This closes the timed case.

The discrete transition case goes along the same line as the timed case. Suppose

that, for ((ta)p\®, (ua)x\®) € S, we have (ta)p\® =% t'p/. We have then to show that
(ua)k is able to produce a matching transition whenever bn(ma)N(fn(ta)Ufn(uw)) =
() (by the definition of timed late bisimulation, we have otherwise nothing to do).
We are able to apply the clause on discrete transitions of the weak completeness
theorem: bn(m) N (fu(ta) U fm(ua)) = @ implies bn(m) N fu(te) = O and therefore
there exists y' such that o F ' and we have an abstract transition for some t ("

137

wearing 7, ' as a label. Since a F y' and o F p, we infer that (u A p') & L,
because there can be no a and b such that g = (¢ = b) while ¢/ = (a # b
(or vice-versa), as otherwise we would have both a(a) = «(b) and a(a) # a(b).
Hence the set MC Egy)um(u) (1 A 1) is not empty, and by (¢(,u§) € R* we obtain a
matching transition with label 7/, 8 for a process u&” respecting the second clause of
Definition 4.2.3 regarding t ((A¢"") whatever (" and ¢’ (with § = 6') can be. Proving
that ¢ and ¢” have a non-empty intersection is done as before, resulting again in the
existence of a matching transition, this time by the downward partitioning property
of zones that are member of a slice partition.

We finally apply the soundness theorem to the transition of u &”. This yields for
any x F (£") the existence of a clock valuation «' such that there is a concrete transi-

tion (ua)k LN (v'a)k’. This in turn yields the existence of a matching transition for
any tp with p £ ((AC")\2. The converse case is also handled by the soundness theo-
rem, ensuring the existence of a transition for any p’ such that (ta)p'\® =% #'p. The
equality of the originating clock valuation with x is given by the fact that no time
passes during the transition, and therefore both valuations are equal except on a set
of newly-reset clocks, which value is always 0 and does not modify zone-satisfiability.

We now prove the reciprocal (or completeness) part of the theorem. It consists
in showing that, starting from concrete bisimilarity, we obtain a family of abstract
bisimulations indexed on name constraints. This abstract bisimulation is defined in

two steps:

Sne 2 {(t¢,ué)*| ¢ € Reg(fn(t)), € € Reg(fn(u)), p € MCEgyum)(T)
Vo, ,0. (pE (CT N AKE (E¥T ANE) A p(z) = K(x) A E pA
(C7 A QT & (677 NET) = (ta)p* ~u (uar)w*)}

Is an elementary set that contains only regions (and not zones); it is nearly a bisim-
ulation, but it lacks the capacity of associating zones that are reached through
time-progression. For that reason, we shall show that the time closure extension of
She, noted S and defined next, #s a bisimulation.

S2 S UL, ul) " | 3t,u,C, 8. (ECUEH € Sue A St ¢ Augss S0/ ¢ A
(C//z PR fl/.z‘) A (C” o C/\z) A (f“ o f\z)}

We shall note S* £ {(t(,ué) | (t¢,ué)* € S}. We shall also take the liberty to
employ either S or S,y = (J{{S#}*} when the distinction between them is unim-
I

portant.

We now show that S (or Ss) is a symbolic timed late bisimulation. The proof
is, as before, by induction over the structure of terms, employing (this time in that
order) the soundess and the weak completeness theorems.

Let us therefore suppose that given a name constraint p € MC Eg)umw)(T)
and two regions ¢ and ¢ such that ((¥*7 A ()/® & (6% A €)/®, we have for all p, K, a
satisfying p E (Y A Ak E (€97 ANE) A p(z) = k(z) A E p, that ((ta)p\® ~y
(ua)k*). Obviously, (t¢,u&) € S*. We hence prove that all actions of ¢(are
matched by u & and lead to bisimilar pairs in S. We start by considering abstract
time-passing transitions, forgetting about renamings for the sake of tractability.

138 Proofs

Take t ¢ EN ¢'. We first employ the soundness theorem: for any p, F (and d > 0

with p#¢ B ((¢7\(=4) A ('), we obtain a concrete transition tp, 25 tpF. We have
therefore a concrete transition for all p\® such that p E (¢**/ A (), because (¢**/ A
)\ & (. Since tp* ~y uk\® and (Y7 A ()/® & (6427 A €)/®, uk\® has a matching
term uk\® 25 w'k’ for all k E &. We can now use the weak completeness theorem to
show that v £ has a matching symbolic transition for any concrete transition. From
this results the existence of a zone &, such that x* E &, and there is a symbolic
transition for all the concrete transitions that lead outside of the zone &, itself.
Furthermore, we can take ¢ < &, since k\ E €, and therefore £, contains ¢ and
we can then show that the weak completeness theorem can be applied again on
&. The completeness theorem however allows certain concrete transitions not to be
matched by any abstract transition, in the case where the concrete transition takes
place between instants that belong to the same abstract zone. There are precisely
three cases:

e if £ and ¢ are regions and ¢/* & (x = q) for some g, then there is no § > 0
so that ux'® may remain in v &, and both v & and ¢(have a time-passing
transition for any bound-respecting ¢;

e if £ and (are regions and £/* < (¢ < x < g+ 1) for some ¢, then u ¢ and ¢ ¢
have both a self-loop symbolic transition representing all the concrete transi-
tions that take place inside a unique region, while another abstract transition
represents the concrete transitions that go outside of their region of origin (the
ones such that p* ¥).

e if £ and (are zones, then they have no self-loops to themselves, but only
transitions to other zones, which are matched by definition of S; the concrete
transitions inside a zone are easily matched because ((¥*/ A()/* & (&7 NE)/?,
ensuring that for any & there is a corresponding p with p(z) = k(z) (and vice-
versa) with the same potential time progression.

By the definition of timed late bisimilarity, after the time-passing transition we have
still ¢/ p' ~y ' k' for any p' and k', with p' F (" and &' E £'. The interval trajectory
property (cf. Section 3.8) yields that all the k satisfying £ are reachable through a
time-passing transition of ux for some value §, and similarly for p. Furthermore, by
definition of S,,. and S, the originating as well as the destination zones (¢ and &, ¢’
and ¢') have the same constant width because ¢ and & are regions, and ¢/ & ¢'/*
in the definition of S. Hence (" and &' satisfy the condition required for (#'¢’,u'¢")
to be in Sy, and therefore (#'(’,u'¢’) belongs to S, closing the time-addressing case.

We now address the case of discrete transitions. Take (; ranging over a slice
partition (y,-- -, (g of ((**/ A (), and suppose we have a slice partition of (¥ A €)
with each ¢; fulfilling the first clause of the definition of symbolic timed bisimulation.
We have to prove the existence of a (Cz\m A £>m)—partition ¢, -+, &, ranged over by
¢, where any discrete transition of ¢ (§; is matched by u ¢(§;. In the case where t(;
may not perform any discrete transition, finding such a partition is trivial; just take
(; itself, then there is no obligation on u &; to perform any transition either. We now
can, without losing generality, suppose that all ¢§; are regions. Indeed, proving the

139

existence of a partition composed only of regions implies proving the existence of
a partition composed of (otherwise region-grouping) zones. We henceforth suppose
that each ¢ ¢¢; =% ¢/ ¢; with (bn(m) N (fn(t) Ufn(u))) = @ (those transitions exist by
consequence of the fact that ¢ (; can perform a transition with the same label). Then
for each 0 € MC Egyumw) (1t A 1) we have to prove that u ((;)/<locks(®) KIEUN u'€;
with # = ¢, and 7' =’ m. The soundness theorem is applicable to the transition
of ¢ (&&;)/4°*s(Q) because ports(a) C (fn(t) U fn(u)), that yields (bn(r) N (fn(t) U
fn(u)) = 0) = (bn(x) N (fn(t) U ports(a)) = 0). By this application we obtain
an outgoing transition (ta)p* ™% t'p’ for each p F (fj/doc’”(o, P E (G, and a F 7.
Since ¢; = (¢ and & = &, (t(,u&) € S implies by the induction hypothesis
that for all xk F Qf;doc,cs(g) such that k(z) = p(z) we have (ta)p\® ~y (ua)k\®.
The definition of timed late bisimulation then yields the existence of a transition
(ue)k* % u'k!, because (bn(m) N (fa(t)Ufn(u))) = @ implies that for any renaming
a, bn(r) = bn(ma), and thus (bn(ra) N (fn(¢) U fn(u))) = 0.

We apply the weak completeness theorem on that transition. As consequence
of the applicability of the soundness theorem we have (bn(mwa) N fn(ta)) = 0; we
therefore are guaranteed by completeness of the existence of an abstract transition

ué, KLY ¢ for any 0’4 a, and &, and & satisfied by x'* and &', respectively. We
can assume that &, is a region; indeed, if it is not, it suffices to take the region &
containing x*, that satisfies £ = &.. The proof of the existence of &' is then
obtained in the same was that the one of £. Furthermore, because (; is a region,
then mandatorily {-“;. is a region too (the only potential difference between (¢¢; and

&} is that some clocks may have been reset in &;). Hence, we obtain & C&;Clac}cs(g)
and &, < &, all of them being regions, each having one instant in common with its
peer.
We are now left with proving that for any 6 € MCEg@yum) (e A 1) we have
0 = ¢ (yielding by the way m = 7). Actually, as for any o F 7 we can take
any value for @ such that o F #' to obtain an symbolic transition, there is one
conspicuous value that we can take for all those &', that is . We have then found a
matching transition of u ¢¢;, because any 0 € MC Eg,()us(u) (1t A 1) trivially implies
n. Now, by the definition of timed late bisimilarity, we have t'p' ~y 'k’ for all such
reachable processes; and because no clock value is modified other that the ones that
have been potentially set to 0, we have indeed p'(x) = £/(z). As furthermore 6" (as
given in Definition 4.2.3) implies 7, then any v F 6" also fulfills v F 7, and any ¢/
(resp. u') is such that there exists t" (resp. u”) with ¢’ = t" (resp. u' = u"7).
Hence (¢ ¢!, u&!) € S?; this concludes the proof.
0

Proof of Theorem 4.2.4 (Soundness of the Proof System,).

We actually prove that the proof system decides bisimulation up-to a constraint
¢, noted p: ¢, T >1t(= u&. The proof for bisimulation up-to infinity is obtained
by taking ¢ < T. The proof goes as usual at three levels: at a most general level by
induction on the derivation trees and reasoning on the proof rule that is used last,
at a secondary level by co-induction on the transitions triggerable by processes (to
prove bisimilarity of processes associated by the proof system), and at a third level

140 Proofs

by performing structural induction on terms and reasoning on the semantic rule that
is used last to infer the existence of a transition.

Let us first consider the rule P-Input. Its antecedent implies that u>t{ = ué&,
yielding ¢ ¢ ~%, u & by the induction hypothesis. The rule allows to infer that

12 @ Y B ([0, v]a(e).)¢ = ([0, v']b(c). w)€ -

By the antecedent Equryres(it, ta(c), Us(c), L), both processes are equivalence classes,
each allowing either none or a unique discrete transition, this transition being the

reduction of the prefixes given by the rule PRE of Table 4.2. In such a case we
have therefore ([0, v]a(c).t)C LGN t ¢ and ([o', v']b(c). u)€ §T, ué. By the defi-

nition of symbolic timed late bisimulation, those two terms are discrete-bisimilar in
environment u, because p = (a = b) by the side condition of rule P-Input.

Now, to deal with time-passing transitions, we take a deeper look into the pred-
icate Equrprer- Indeed, besides allowing the same discrete transitions for the two
terms, it also enforces their time-wise up-to-¢ bisimilarity. In case a time progression
may be allowed by ¢ (that is ((¢/ A ¢¢) 4 ¢) A ((€7 A de) 4 €)), it forces ¢ and &
to have the same constant width and to allow exactly the same time-passing tran-
sitions by allowing ¢ and u to invoke only the same axiom. All of this implies that
t(; and u&; are equivalence classes and satisfy the first clause of Definition 4.2.3:
for any slice partition (,---,(; of (there must be a slice partition &, ---,&; of £
such that each (; corresponds to &; in that they have the same constant width, their
time-passing transitions are identical modulo bisimilarity, and the resulting zones
are bisimilar. Hence, all (; and & have the same discrete transitions; all the (; and
& that are reachable from another (] and & (using the TREG or TREQ rule) are
therefore bisimilar. For time-passing transitions that reach a zone not part of or
&, there are two possibilities:

e the reached zone can be the higher border of a time continuity zone, as given
by the semantic rules of Tables 4.3 and 4.4, or

e this zone can be the zone comprised between the lower border of the current
zone and the upper bound given by ¢.

The last clause in E'qury,.s ensures that, in any case, those zones must be equivalent
according to the value of a fictitious new clock x, and that the resulting processes
must be bisimilar up-to-¢. This completes the proof of the P-Input case. We make
two remarks. The first one is that another reasonable solution avoiding this com-
plexity could have been adopted, that would be to allow only regions for ¢ and &, and
to force the use of rule Part-(for zones. This latter reasoning however introduces
another complexity, due to that use of Part-(; we preferred to use the first solution,
at the cost of one additional definition. The second remark is that the constraint
¥ takes the value ¢ryss in the proved judgment. It is when 1,55 becomes false,
and only at that moment, that the time is prevented from progressing by deadlock
of either ([0, v]a(c).t)¢ or ([0, V]b(c). u)é.

The cases for the following rules: C-Input, Output, Tau and Error, are very
similar to the P-Input case, and we shall not treat them in detail. We instead treat
the rule Reset. This case is very simple, since it forces to check the bisimilarity of

141

t (¥ and u & to infer the bisimilarity of (vx ¢)¢ and (vz u)é. The only applicable
rule, for both discrete and time-passing transitions, is the rule RESET, that precisely
states that the transitions of a process (vx t)¢ are precisely the ones of ¢ (¥®. The
condition of applicability of Reset, that x ¢ (clocks(() U clocks(€)), ensures that
RESET is usable for both ¢ and wu.

Proving the soundness of the Choice rule is the most interesting case (and the
most complex, relatively). We have by the induction and coinduction hypotheses the
existence of two bisimulations, t { ~yy u &, and t' (~4y v’ £. Now suppose the Choice
rule applies; we have to prove that (t+t')(~gy (u+u')€. The hypothesis t (~gy u &
implies that, for any member (; of a slice partition (,---, ¢ of (¢¥*/ A (), there
is a & member of a slice partition &;,--- & of (&7 A &) with const_width(¢;) =
const_width(&;), such that there exists a (GAE;)-partition (&, - - - , (& ranged over by
&, where the transitions of ¢ ¢¢; are matched by the ones of u ;. From t' { ~gy u'&,
there is a similar statement for the same (; that yields a slice partition &1, --- , &
and an associated (¢; A &)-partition &1, -- -, ranged over by &, such that the
transitions of ¢'(¢}, are matched by the ones of u/(f}.

We first solve the case of symbolic time-passing transitions. We do so in two
steps, first disregarding the conditions ¢ and 1 of the proof rules and focusing on
the transitions themsleves, and only after this examinig the up-to aspects. The
semantic rule that can be used to infer a time-passing transition for (¢ + t')¢; is
TsuM. It imposes that both ¢ and ¢’ be able to perform transitions to zones at a
similar distance (in time) for a transition of the sum to happen. Suppose therefore

that ¢ ¢} SN ¢" and ¢ (Y Sy g ¢" with the side-condition of T'SUM respected.

TsuM then applies, yielding a transition (t+t')(; 59, (t"+1")(¢"AC"). Because y ¢
{clocks(¢)Uclocks(€)}, we have by congruence that ¢ (¥ and u &/ perform the same
transitions as ¢ (; and u &;. We have then, by ¢ (~4y u & and t' (~4y v’ &, that for any
1<i<k, u{fiw s, u" & and u' £V 57, u" " with § < 8" and §' < 8. We have
also for the same reason const_width((;) = const_width(&;) = const_width(£}),
tgz\x ~ il Ufz\w, 4 Cz\w ~ap U glg\m, C//z = gl/cc, Cu/x PN f'l/w, ! CI ~og U 6/’ and
tlll CII ~gil ulll gll'

From the slice partitions &, - - - , & and &f, - - - , &, we have to find a slice partition
of £ that is able to match the time-passing transitions of (t+t')(;. This is easy, since
by definition of timed late bisimulation, & and & are equivalent: they have the same
constant width and, being members of a slice partition of £, they are such that
¢/ o €7/ and €7/ & ¢7/; this fact ensures notably that the fractional parts of the
clocks of &; and ! are sorted in the same way. The applicability of TSUM to (u+u')¢;
(we ommit & for the sake of simplicity) is obtained by showing that &'/¢ < £"/¥. The
bisimilarities t" (' ~gy v & and t""" (" ~zy v € given above guarantee the existence
of a clock z ¢ {clocks((") U clocks(€')} such that (¢"V*/ A ()% & (€47 A €)% and
(¢ ACMY 7 & (637 AEM)/%. Similarly, from ('/* < €'/* we obtain ((V*/ A()/® &
(€47 A€")/®. Then, by ¢ = (¢¥*/ A¢) and ¢' = (¢¥)/ (meaning that ¢ is obtained
from (; after some time progression), we get the existence of some p and ¢, such
that © —y > p and y — z > ¢ (the fractional part of y is comprised between the
one of x and the one of z). This leads to (("*/ A (')/Y & (&4 AE)/Y. A similar
reasoning yields also to ({7 A (")/Y & (€47 A €)Y, The side-condition of the

142 Proofs

TsuM rule applied on ¢ (; and ¢’ ¢! implies that (/¥ < ("/¥ ; we get trivially after the
reset of a clock z that (C"V*/ A (')/¥ < (¢"V*7 A (")/¥. We thus have by implication
(EV7 N ENY & (€M7 A EM)/¥. Now by taking z out, we get the original zones:
(V7 NENV & ¢ and (€% A€MV & €. We hence finally have £//Y < £"/Y and we

may apply TsuM on u &Y and o' €Y. We obtain (u -+ u/)&; LN (u" +u"")(E'NE).
The first clause of Definition 4.2.3 is then respected because the union of ready-sets
is monotonous regarding <, yielding (S,8’) <X (8", S8").

We now have to show that (u” +u"") (&' AE") ~eu (" + ") (' AC"); this is done
coinductively, by showing that we can derive ut> (u”+u"")(&'AE") = (¢"+")('ACY).
We shall not give all the details, but the inference tree for equaring those terms is
nearly the same as in the case we just proved. Basically, only a clock reset may
have been supressed from ¢ and #' to obtain ¢ and ¢’ (and similarly for «" and u'").
Thus, any application of the Reset rule may be suppressed, while all the other rules
apply in the same way, this being provable by induction on the structure of terms.
A funtamental role is hold again by the last clause of antecedent Fugqpg in the Input
axiom, guaranteeing the bisimilarity of terms after any time-passing transition.

Now, at the light of this latter assertion, we take the up-to conditions into ac-
count. We have to show

pi (@A), WAY) > (t+1)¢ = (u+u)E

from p: (pAY), v >t =uéand p: (¢ ANY), ' >t =u' & We have first to
justify the fact that proving the equality of the component processes above up-to
(pAY') and (¢’ A1), respectively, is sufficient to prove the equality of the composed
processes up-to (¢ A ¢') with deadlocking limit (1 A ¢'). This deadlocking limit is
logically obtained by conjunction of the individual deadlocking limits of ¢ and #' (:
as soon as t(has no time-passing transition, then (¢ 4+ ¢'){ may not perform any
time-passing transition either, and similarly for ¢ (. Now, we can use the fact that
one branch of a choice will deadlock to avoid performing a complete examination of
the other. Indeed, to prove the equality of the composed processes up-to (¢ A ¢'),
it is only necessary to check pu: (¢ AY'), ¥ > t(= ué (and similarly for ¢/, u'). By
the antecedent Fqupg of the rule producing this latter judgement, ¢ and u & have
the same time-progression capabilities (including deadlock), up-to the time where ¢
becomes false or ¢, u' block time progression. More precisely, either ¢' = (¢ A 1))
and both ' and u' will block time progression in (¢ + ¢')¢ and (u + u')€, making
irrelevant the need to examine further time progression for ¢ and u, or ' = (¢ A1)
and time progression must be considered for ¢ and u either until the specified limit
¢ or until time blocks, invalidating .
In any case, to complete the induction step, we have now to prove that

(tll +t’”)(<’ /\ CII) Nstl (ull +’U/III)(£I /\é-ll)
up-to (¢ A ¢') with deadlock at (1 A¢'). This is done by proving that we can derive
ILl, . (¢ /\ gbl)’ (w /\ 1/]/) D (t” _"_ tlll)(cl /\ CII) — (ull _"_ ull/)(é—l /\ 6//)

in the proof system. We can indeed conditionally derive p: (pAY"), p>t" ' =u" €
and p @ (¢'AY), ' >t (" = u"" " by using nearly the same derivation tree as before.

143

The situation depends on the previously accomplished time-passing transitions of
(t + t')(; there are four cases to consider:

1. the upper border of (¢ A ¢') has been reached,
2. the upper border of (¢) A ¢') has been reached,

3. the time-passing transition of (¢ +1t') ¢ has crossed a time-continuity boundary
by reaching the upper limit of the current equivalence class (without invali-

dating (¢ A ¢) or (¥ A¢)),
4. the transition has let the processes remain in the same equivalence class.

In the first case, to prove time-bisimilarity up-to ¢ is equivalent to proving discrete-
bisimilarity for the current zone, since time-passing transitions of (¢ +¢')¢ that may
invalidate (¢ A ¢') are not required to be matched by (u + u')¢. In the second
case, whenever one component process reaches its time-progression limit, then the
composed process is time-blocked too. There is therefore no more time-passing
transition for neither (¢ + ¢')¢ nor (u + u')&, which are hence time-wise bisimilar.
The third and fourth cases are dealt with in a similar fashion. In those cases, we can
infer the equality of component processes using the same derivation tree as before,
except that the last step may be taken out: processes ¢’ and ¢ may differ from ¢
and t’ because a clock-reset may have been exercised during the accomplished time-
passing transition (and similarly for «” and u"’). In the fourth case, the inferred
transitions have the same ready-sets as before, which differ in the third case. In
the third case, the last clause of condition Fqug used in the antecedent of the
axioms guarantees that the reached limit of time continuity only allows bisimilar
time-passing transitions. This closes the time-bisimilarity analysis.

The second clause of the bisimilarity definition, that imposes discrete transitions
to match each other, is solved by adapting the classical uni-directional reasoning
used on CCS and the 7-calculus (the reasoning in the opposite direction can be
inferred straightforwardly from the presented one). We show that, the partitioning
(1,---,(of ¢ being fixed, there is at least one partitioning of £ such that both
clauses of Definition 4.2.3 are fulfilled. As shown in the timing-based analysis, the
two potential matching partitions of £ that can be used are actually identical, each
& being equivalent to &. We can therefore use either ¢¢y,---,¢ or ¢&1, -+, &)
indifferently, we shall choose the first one. We shall also assume (without loss of
generality) that all ¢¢; and Cf;-, are regions: proving the existence of a “good” partition
made of zones implies indeed proving the existence of a similar partition made only
of regions. A region-wise partition is the finest possible way of partitioning the state
space, allowing each region to have a different set of transitions. Suppose now that
(t+1t)¢&; Zh, ¢ ¢ for some &, belonging to ¢, -+, . Whenever such a discrete
transition happens, it may only be inferred through rule SUM in Table 4.2. It means
that either ¢ (; Do ¢! or t! &, RN t ¢&; performs the transition, then by

t{ ~ey u € we trivially have a bisimilarity-compliant transition u ¢; 2 u" ¢ with
1" ("~ u" €. Now if ' (¢, performs the transition, we obtain that u'(€; is able

to perform a bisimilarity-compliant transition, because (§; is a region and thus also
belongs to &1, - -, &), and t'¢ ~yy u' € yields the wanted transition. In both cases,

144 Proofs

the resulting term contains only one of the components (the other one is eliminated
by choice); the bisimilarity of either component thus gives the bisimilarity of the
whole. This closes the discrete case.

The rule Conseq-¢ allows strenghtening the up-to condition, while relaxing the
dealocking limit. Its soundness can be easily seen: if we have shown that t{ = u &
up-to ¢, then those processes are equivalent for all the clock valuations satisfying
¢' when ¢ = ¢. Conversely, if we have inferred that ¢ and u ¢ will deadlock for
all valuations such that 1 is false, then those processes will deadlock also for all
valuations such that v’ is false, if ¥ = /.

Finally, we treat the Part-(case. The proof still goes by induction. Basically, we
have to show that from two slice partitions &y, --- ,&; and &, - - - , &}, of respectively
¢ and &', we can build a slice partition of (£ v ¢') fulfilling the requirements of
Definition 4.2.3. This is easy because of the side condition on the rule: the two
zones must have an empty intersection, and be contiguous. The latter condition
ensures that (£ V ¢') is indeed a zone constraints (all zone constraints have to be a
conjunction of contiguous zones). The first condition implies then that (£ V £') has
a constant width: if neither £ nor & intersects with the time-progression area of the
other, then whenever a diagonal line of the form

C AN w—v=a)rQ

y,y' €clocks(¢)

intersects (£ V &'), then the intersection of this diagonal with (£ Vv £') is either fully
included in & or fully included &'. From Definition 4.2.2 and the last clause of
side condition of rule Part-(imposing that const_width(§) = const_width(£'),
the width of £ v & is thus constant. For any slice partition of ¢ ranged over by
(i, we consider the slice partition of £ V £ defined for each i by & Vv &, with &
and & associated to (; in the respective partitions of £ and &' corresponding to that
partition of (. The members of this partition then respect the requirements imposed
on both time-passing and discrete transitions by Definition 4.2.3. The first clause of
the definition is trivially respected, the time-passing transitionsbeing by assumption
identical for ¢ (;, t&;, and ¢ . For the discrete transitions, the existence of partitions
&y of (GAE) and &, - - - &) of (GAEL) imply the existence of such a partition
for (¢ A (& V &})). We can as before suppose that all ¢¢; and (£} belonging to those
partitions are regions, since the existence of a zone-comprising partition implies the
existence of a partition made only of regions, obtained by further dividing existing
zones until none remain. The intersection between & and £ being empty, we can
take the union of those partitions (¢, - - - (&, &1, - - - & to form a region partition of
(G N (& VE)). This closes the case for discrete partitions.

We shall not treat the Absurd-(axiom, which is trivial. We shall not either
address in details the rules of Table 4.2, that deal with naming issues. The naming
issues have almost completely been overlooked in the previous reaonings, the rules
of Table 4.6 making no use of the naming context p (except for Input, which has
received the adapted treatment). The proofs of rules Res, Match, and Part-u can
be found in the already-cited papers by Lin [Lin94]. O

Proof of Theorem 4.2.5 (Completeness of the Proof System). Suppose (t(,u€) € R*
for some symbolic bisimulation R*. The proof goes as usual by putting the processes

145

in standard form using the bound output derived action prefix. Our processes how-
ever do not fully comply with this method, since the clock reset operators may not
be moved at will (as it is the case for port name restriction), and error terms can
occur. The standard form for (error-free) 7 processes terms ¢ and u is thus a bit
more complex:

Jmit; and u = va S[pf][o}, v}y u;
j

t t
i» Vi 50U

= ve S[u]lo
where z is a clock names such that ({z} N (fc(¢) U fc(u))) = 0. We shall treat
processes with error terms separately, for tractability purpose; the treatment that
shall be applied to them is however very similar (at least in essence) to the one
provided to error-free terms. Roughly, to obtain the format above for erro-free
terms, we can use the following lemma, easy to prove by using the proof system,
performing an induction on the structure of terms:

Fou> ((vet)+u)= e (t+u)) ifz ¢ clocks(u)
Fpu>ul=(veu) if x ¢ clocks(u)

Then we can perform an induction, with the height of terms as (ever-decreasing)
measure, the height of a term being the greatest number of prefixes this term may
sequentially reduce before terminating (all processes terminate, since we forbid the
use of recursion). The base case is trivial. For the induction case, we shall use the
adapted induction hypothesis when needed. We have to derive in our proof system
the equality of t and u written as above, which amounts to showing

H' o (Slllot, vilmi-)¢ = (Slgllof, vflg. uy)e

after application of rule Reset, for all ;' € MCE(sc()ute(u))(#)- The matching con-
straint p’ belongs to the set of maximally consistent extensions of y, that are such
that 4 = p and whatever y,z € (fc(t) U fc(u)) then either ' = (y = %) or
p=(y # 2).

We have to show that the proof system is always able to accommodate for all
bisimilar processes. The issues related to port names are solved in [Lin94]. We
largely forget them and focus on the timing-related issues. In the following case
analysis, we shall assume that the partitions (i,---,(; (ranged over by (;) and
&1, -+, & (ranged over by &), resulting of t{ ~g u&, respect the requirements
of Definition 4.2.3 and are such that each partition ¢¢,---,(of (; A & fulfilling
the second clause of Definition 4.2.3 is of constant width. The existence of such
partitions is guaranteed by taking each (; to be of width inferior to 1, that is to
have no ¢/ = ¢ with ¢/// < ¢/Y, and const_width({]) < const_width(¢;). Then,
by const width(§) = const _width((;), we get that the partitions of ({; A &) can
only be of constant with, inferior to 1. The proofs of equivalence then depends on

the transitions that may be accomplished next, by the (&1, - -, & for the discrete
transitions, and by the (;,---,(x and &, - -- , & for time-passing transitions.
We examine the case of £(; and u & for a given [; (&, ---, (& then partitions

G A&, and it is ranged over by (&,. the possible transitions to consider are % (3,
¢ ¢' (meanwhile u& <5 w'¢’), and t&, —=% ¢’ (meanwhile u(Zp ==L W/¢');

146 Proofs

indeed in each case both processes have to perform the transition when one does,
by Definition 4.2.3. For each such ¢t (&, and u (&, we can build a proof tree by
structural induction on terms, separating branches of the choice with the Choice
rule, and then invoking the axioms P-Input, C-Input, Output, and Tau (also Error
if Error terms are allowed). For any branch t; of the choice, there is therefore a
corresponding branch that matches its discrete transition, and that we will also call
u,; for simplicity. The axiom that can be used in such a case depends on the label of
the transition.

If we take the case of port input, then the label is 7, = a(c). We show that
w > ;¢ = u;€, by application of P-Input, because the antecedent of the rule is
verified. First, we have by definition of symbolic timed late bisimulation combined
with the induction hypothesis that p'>t' (' = u' £ (the height of ¢ and u' is inferior
to the height of the unprimed terms). We then have to show that the predicate
Equrprer is verified for the given processes. This is true because:

e both #;¢¢, and u;(¢, perform a transition with the same ready-set S, meaning
that €, = o is equivalent to (¢, = o', and similarly with v and v';

e & Tand ¥ & 1
e since (; and & are of constant width inferior to 1, so is (&p;

e there is at least one antecedent of a semantic rule in Table 4.3 that is true,
since there is an enabled transition;

e whenever such antecedent predicate is satisfied, then by the definition of sym-
bolic timed late bisimulation its destination zones are at the same distance in
time, and again we can deduce the equivalence of the reached zones by the
induction hypothesis.

The cases for the other prefix actions are very similar to this one. A proof
strategy has now to be applied in order to identify all bisimilar processes that feature
a choice between several branches (this strategy is however decidable). The issue is
to identify braches that are not bisimilar up-to infinity, but up-to a certain limit ¢;
this is possible if and only if some other branch of the choice allows the equality to
be proved with ¢ = £ (this branch blocks the time before the branch which equality
remains to be proved has a different behavior in ¢ and u). One therefore needs to
group first the branches that block time progression the most early. This being done,
the solution appears easily.

Once determined the provable equality of £ (£, and u (&, for all h, the rule Part-
¢ can be applied incrementally to prove the eqality of ¢(; and u ¢ (notice that,
although the definition of timed late bisimilarity already implies the bisimilarity of
those terms, it does not imply that they are provably equal, because the induction
hypothesis can only be applied when the height of the terms strictly decreases).
Then, the regions should be grouped on a contiguity basis by using Part-(, and
showing that this strategy can always be respected and builds the wanted proof tree
is trivial. Once the ¢ (; and u §; are identified, one should use again the rule part-¢
to group all the slices; the same strategy as before applies, which has now a simple

147

translation, that implies grouping the zone numbered from 1 to k in increasing order.
This yields the completeness of the proof system.
O

Proof of Theorem 5.5.1 (Subject reduction). The statement of the subject reduction
property differs in our case (as in all behavioral type systems) from Chruch’s original
statement in that we only have to prove the existence of a typing environment I in
which the continuation of the reduced process is well-typed, not the conservation of
the type I' under reduction. We actually prove that I' is a derivative of I" by the
type transition relation.

The proof of the subject reduction property however goes as usual, by structural
induction on terms, with an inference on the last typing rule and the last semantic
rule used to deduce the symbolic transition of the process. There is a one-to-one
relation between the rules of both proof systems, since the rule to be applied last is
uniquely determined in each system by the structure of the term. We address the
typing rules in their order of appearance.

Suppose that the term to be typed is a bound output ([o, v]a(b¥Y2).t)¢. A dis-
crete transition of such process may be obtained only by the axiom PRE of Table 4.2.
The rule Boutput has then to be applied to infer well-typedness. This rule imposes
a structure to the typing environment, that is to contain a type for the free name
a. The process must conform to its type, which implies that the action prefix of the
type of @ matches the output on a. The rule also enforces the truthfullness of the
Next predicate, which in this case imposes that whenever the process triggers a dis-
crete transition, then the continuation of this process is typable in an environment
that takes into account the creation of the new port name. This closes the case for
discrete transitions. A time-passing transition may be obtained through one of the
rules of Tables 4.3 and 4.4. The predicate Nexzt then imposes the type to be capable
of a comparable transition, and the resulting environment to type the continuation
of the process.

The cases for free output and input go along the same line as the previous one;
together, they give the base case for the structural induction. We can now use an
induction hypothesis in the other cases. Showing the property for the NewPort
rule is simple because the transitions of a process with a restriction on a port a are
the same as without this restriction, but the cases of input and output transitions
on subject a; the corresponding discrete transitions are no more possible when a is
restricted, and the name « is taken out of the ready-sets of time-passing transitions.
In both cases the proof obtained by the induction hypothesis still applies, since in
the first case we have less process transitions, while the second case only concerns
naming issues which are ingnored by the type system. For the NewC'lock rule the
reasoning is trivial, since the transitions of ¢ (** and (vz t)(are the same (by rule
RESET.

Similarly, the rules Named and Id are structural rules straightforwardly solved
by induction, for which the transitions of the to-be-typed process are the same as
the typed process appearing in the antecedent of the rule. The rules Sum and Par
associate two typing environments. In both cases the proof is immediate because:

e the time-passing transitions of the composed processes are synchronized on a

148 Proofs

fictitious clock, ensuring similar progress capabilities for both the terms and
the types,

e the discrete transitions are the ones of either ¢ or u (in the Sum case),

e the discrete transitions are the ones of ¢ and the ones of u (in the parallel case),
plus silent transitions which are not taken into account by the typing system.

The rule for parallel composition actually hides an assume/quarantee reasoning,
in the form of, e.g. , [MC81| and [AL95]. That is, whenever I'; @ I'y is defined,
the private ports appearing in both typing environments have been checked for
compatibility. It has thus been checked that the assumptions (obligations) made
at any step by the type 77 of a name a in ['; will be satisfied in the future by the
type 15 of @ in I'y. This is done in the proof system defining C'omp by letting 15
let time pass until the deadline of 7} is reached. If there is such a possibility and
Ty’s offers do not match, then the types are declared incompatible. The symmetric
verification for T5’s obligations and 77’s offers is done at the same time. We remark
again that, since our types are finite-state, the definitional axiomatization for Comp
is not essential to check the property, since this could be done using the usual model-
checking techniques.

Now, the proof for subtyping is trivial, because the same process appears in
the antecedent and in the consequent of the rule. The proof of the last rule for
partitioning requires exhibiting a typing context I typing the continuation of #(¢ V
¢"). In this case clearly, any of the two contexts typing the continuations of ¢ ¢ and
t " will fulfill this need. O

Proof of Theorem 5.5.2 (Type reduction). The proof of this theorem is almost sym-
metric to the previous one. The main motivation for the presence of this theroem
is the fact that the transition of types are not in exact match with the time-passing
transitions of the processes they type. In that sense, they are not “ideal” abstraction
of those processes. The type reduction property however shows that the correspon-
dence between them is tight, since both types and processes may perform reductions
while preserving well-typedness. We do not repeat the argument developped when
proving subject reduction. The most interesting cases are the ones of the axioms,
where predicate Next and Con form enforce the respect of the symmetry between
process reduction and type reduction, and the case for parallel composition. In the
parallel case, the correctness comes from the fact that the set of transitions of well-
assembled typing environments is included in the union of the transitions sets of the
environments taken separately: the names of ports that have found a matching peer
are typed as “non-composable” in the resulting typing environment. The validity of
the rule comes therein. O

Proof of Theorem 5.5.8 (Run-time safety). The run-time safety proof consists in show-
ing that any well-typed process may not immediately perform a (sole) time-passing
transition leading to Error, with a precondition that the process does not contain
Error itself. Indeed, using the subject and type reduction proofs yields immediately
the preservation of the property under discrete transitions. We have then to consider
only time-passing transitions; the subject reduction yields trivially that the current
process may not lead to error, since Error processes are never well-typed. O

Bibliography

[ABLOS]|

[ACDY3|

[AD94]

[AD96]

[AdSSL*01]

[AF99]

[AFDS80]

[AFHO1]

Luca Aceto, Augusto Burgueno, and Kim G. Larsen. Model checking
via reachability testing for timed automata. In Bernhard Steffen, editor,
TACAS’98, volume 1384 of Lecture Notes in Computer Science, pages
263-280. Springer-Verlag, 1998.

Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in
dense real-time. Information and Computation, 104(1):2-34, May 1993.

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-236, April 1994.

Roberto M. Amadio and Mads Dam. Toward a modal theory of types
for the m-calculus. In Bengt Jonsson, editor, FTRTFT 96, Proceedings
of 4th international symposium on Formal Techniques in Real Time and
Fault Tolerant Systems, Uppsala, volume 1135 of LNCS, pages 347-365.
Springer, 1996.

L. Apvrille, P. de Saqui-Sannes, C. Lohr, P. Sénac, and J.-P. Courtiat.
A new UML profile for real-time system formal design and validation.
In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The Unified
Modeling Language. Modeling Languages, Concepts, and Tools. 4th In-
ternational Conference, Toronto, Canada, October 2001, Proceedings,
volume 2185 of LNCS, pages 287-301. Springer, 2001.

Luis Filipe Andrade and José Luiz Fiadeiro. Interconnecting Ob-
jects via Contracts. In Bernhard Rumpe, editor, Proceedings UML’99
(The Second International Conference on The U nified Modeling Lan-
guage), volume 1723 of LNCS, Kaiserslautern, Germany, October 1999.
Springer-Verlag.

Krzysztof R. Apt, Nissim Francez, and Willem P. De Roever. A proof
system for communicating sequential processes. ACM Transactions on
Programming Languages and Systems (TOPLAS), 2(3):359-385, July
1980.

Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits

of relaxing punctuality. In Symposium on Principles of Distributed
Computing, pages 139-152, 1991.

149

150

BIBLIOGRAPHY

[AG94]

[Agh86]

[AHS9)

[AHO]

[AH97]

|AH99)

[AJ95]

[AL93]

[AL94|

[AL95]

[ALWS9]

[AMO96]

R. Allen and D. Garlan. Formalizing architectural connection. In Pro-
ceedings of the 16th International Conference on Software Engineering,
pages 71-80. IEEE Computer Society Press, May 1994.

G. Agha. Actors—A Model of Concurrent Computation for Distributed
Systems. MIT Press, 1986.

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In
IEEFE Symposium on Foundations of Computer Science, pages 164169,
1989.

R. Alur and T. A. Henzinger. Real-time system = discrete system
+ clock variables. In T. Rus and C. Rattray, editors, Theories and
Ezxperiences for Real-Time System Development — Papers presented
at First AMAST Workshop on Real-Time System Development, lowa
City, Iowa, November 1993, pages 1-29. World Scientific, 1994.

Rajeev Alur and Thomas A. Henzinger. Modularity for timed and hy-
brid systems. In Antoni Mazurkiewicz and Joézef Winkowski, editors,
CONCUR ’97: Concurrency Theory, 8th International Conference, vol-
ume 1243 of Lecture Notes in Computer Science, pages 74-88, Warsaw,
Poland, 1-4 July 1997. Springer-Verlag.

Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal
Methods in System Design: An International Journal, 15(1):7-48, July
1999.

Luca Aceto and Alan Jeffrey. A complete axiomatization of timed
bisimulation for a class of timed regular behaviours. Theoretical Com-
puter Science, 152(2):251-268, December 1995.

Martin Abadi and Leslie Lamport. Composing specifications. ACM
Transactions on Programming Languages and Systems, 15(1):73-132,
January 1993.

M. Abadi and L. Lamport. An old-fashioned recipe for real-time. ACM
Transactions on Programming Languages and Systems, 16(5):1543—
1571, September 1994.

M. Abadi and L. Lamport. Conjoining specifications. ACM Trans-
actions on Programming Languages and Systems, 17(3):507-534, May
1995.

Martin Abadi, Leslie Lamport, and Pierre Wolper. Realizable and
unrealizable specifications of reactive systems. In /CALP, number 372
in Lecture Notes in Computer Science, Stresa, Italy, July 1989. Spring-
er-Verlag.

Luca Aceto and David Murphy. Timing and causality in process alge-
bra. Acta Informatica, 33(4):317-350, 1996.

BIBLIOGRAPHY 151

[AMSTY7]

[AS85]

[ASO1]

[BAL9Y]

[Bar92]

[BB89)

[BBO1]

[BB92

[BCO1]

[BD94]

[BG92)

[BGS00]

[BHOO]

[BIMY5]

G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor
computation. volume 7, pages 1-72, 1997.

Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181-185, October 1985.

Tatiana Aubonnet and Noemie Simoni. Pilote: A service creation en-
vironment in ngns. In Intelligent Networks’2001, Boston, USA, May
2001.

G. Boudol, R. Amadio, and C. Lhoussaine. The receptive distributed
pi-calculus. In FST-TCS’99, volume 1282 of Lecture Notes in Computer
Science, pages 304-315. Springer-Verlag, 1999.

H. P. Barendregt. Lambda calculi with types. In D. M. Gabbai Sam-
son Abramski and T. S. E. Maiboum, editors, Handbook of Logic in
Computer Science. Oxford University Press, Oxford, 1992.

T. Bolognesi and E. Brinksma. Introduction to the ISO specification
language LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz, edi-
tors, The Formal Description Technique LOTOS, pages 23-73. Elsevier
Science Publishers North-Holland, 1989.

J. Baeten and J. Bergstra. Real time process algebra. Formal Aspects
of Computing, 3(2):142-188, 1991.

G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217-248, Apr 1992.

Gérard Boudol and Ilaria Castellani. Noninterference for concurrent
programs. In ICALP: Annual International Colloguium on Automata,
Languages and Programming, 2001.

M. Boreale and R. De Nicola. A symbolic semantics for the m-calculus.
Lecture Notes in Computer Science, 836:299-311, 1994.

Gerard Berry and Georges Gonthier. The ESTEREL synchronous pro-
gramming language: Design, semantics, implementation. Science of
Computer Programming, 19(2):87-152, 1992.

Sebastien Bornot, Gregor Gler, and Joseph Sifakis. On the construction
of live timed systems. In Tools and Algorithms for Construction and
Analysis of Systems, pages 109-126, 2000.

M. Berger and K. Honda. The two-phase commitment protocol in an
extended w-calculus. In Ezpress’00, volume 39 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2000.

Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be
traced. Journal of the ACM, 42(1):232-268, January 1995.

152

BIBLIOGRAPHY

[BJLY98

[BJPW99)

|BK84]

|BKP84]

[BL92a|

[BL92b)

[BLS00]

[BNO5]

[BNSL00]

[Bor96]

[Bou97a]

J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions
for timed systems. Lecture Notes in Computer Science, 1466:485—497,
1998.

Antoine Beugnard, Jean-Marc Jézéquel, Néel Plouzeau, and Damien
Watkins. Making components contract aware. IEEE Computer,
32(7):38-44, July 1999.

Jan A. Bergstra and Jan Willem Klop. The algebra of recursively de-
fined processes and the algebra of regular processes. In Jan Paredaens,
editor, Automata, Languages and Programming, 11th Colloguium, vol-
ume 172 of Lecture Notes in Computer Science, pages 82—-94, Antwerp,
Belgium, 16-20 July 1984. Springer-Verlag.

H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose tempo-
ral logic specifications. In ACM Symposium on Theory of Computing
(STOC ’84), pages 51-63, Baltimore, USA, April 1984. ACM Press.

T. Bolognesi and F. Lucidi. LOTOS-like process algebras with urgent
or timed interactions. In K. Parker and G. Rose, editors, Proceedings

of the 4 International Conference on Formal Description Techniques,
FORTE’91. North-Holland, 1992.

T. Bolognesi and F. Lucidi. Timed process algebras with urgent inter-
actions and a unique powerful binary operator. In J. W. de Bakker,
C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Proceedings
REX Workshop on Real-Time: Theory in Practice, Mook, The Nether-
lands, June 1991, volume 600 of Lecture Notes in Computer Science,
pages 124-148. Springer-Verlag, 1992.

Beatrice Bérard, Anne Labroue, and Philippe Schnoebelen. Verifying
performance equivalence for timed basic parallel processes. Lecture
Notes in Computer Science, 1784:35-47, 2000.

Michele Boreale and Rocco De Nicola. Testing equivalence for mobile
processes. Information and Computation, 120(2):279-303, 1 August
1995.

A. Bailly, E. Najm, J-B. Stefani, and L. Leboucher. Modélisation et
vérification de protocoles temps-réel par typage comportemental. In
Proc. of CFIP’2000, pages 183—-198. Hermes, October 2000.

M. Boreale. Symbolic bisimulation for timed processes. Lecture Notes
in Computer Science, 1101:321-333, 1996.

G. Boudol. Typing the use of resources in a concurrent calculus. Lecture
Notes in Computer Science, 1345:239-251, 1997.

BIBLIOGRAPHY 153

[Bou97b|

[BS97]

[BSO0]

[BST97]

[BvW98|

[BvWO0]

[BW90)

[BZ83]

[CBS*95]

[CCMMOY5]

|CdOYs)

[Che92]

Gérard Boudol. The w-calculus in direct style. In ACM, editor, Confer-
ence record of POPL °97, the 24th ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages: papers presented at the
symposium, Paris, France, 15-17 January 1997, pages 228-242, New
York, NY, USA, 1997. ACM Press.

G. Blair and J. B. Stefani. Open Distributed Processing and Multimedia.
In Press. Addison-Wesley, 1997.

Sebastien Bornot and Joseph Sifakis. An algebraic framework for ur-
gency. Information and Computation, 163(1):172-202, 2000.

Sebastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling ur-
gency in timed systems. In COMPOS, volume 1536 of LNCS, pages
103-129. Springer-Verlag, 1997.

Ralph-Johan Back and Joakim von Wright. Refinement Calculus:
A Systematic Introduction. Graduate Texts in Computer Science.
Springer-Verlag, 1998.

Back and von Wright. Contracts, games, and refinement. Information
and Computation (formerly Information and Control), 156, 2000.

J. C. M. Baeten and W. P. Weijand. Process Algebra, volume 18 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, Cambridge, England, 1990.

Daniel Brand and Pitro Zafiropulo. On communicating finite-state ma-
chines. Journal of the ACM, 30(2):323-342, April 1983.

G. Coulson, G. S. Blair, J. B. Stefani, F. Horn, and L. Hazard. Support-
ing the real-time requirements of continuous media in open distributed
processing. Computer Networks and ISDN Systems, 27(8):1231-1246,
1995.

Sergio Vale Aguiar Campos, Edmund M. Clarke, Wilfredo R. Marrero,
and Marius Minea. Verus: A tool for quantitative analysis of finite-state
real-time systems. In Workshop on Languages, Compilers, & Tools for
Real-Time Systems, pages 70-78, 1995.

Jean-Pierre Courtiat and Roberto C. de Oliveira. RT-LOTOS and
its application to multimedia protocol specification and validation. In
IEEE International Conference on Multimedia Networking (MmNet95),
pages 31-45, 1995.

L. Chen. An interleaving model for real-time systems. In Anil Nerode
and Mikhail Taitslin, editors, Proceedings of Logical Foundations of
Computer Science (Tver ’92), volume 620 of LNCS, pages 81-92,
Berlin, Germany, July 1992. Springer.

154

BIBLIOGRAPHY

[Cou97|

[CPDS99]

[CPS97]

[CRRO2]

[CW85]

[dAHO1a]

[dAHO1D)

[dAHSO02]

[Dam95]

[dBT72|

Patrick Cousot. Types as abstract interpretations. In ACM, editor,
Conference record of POPL ’97, the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: papers presented
at the symposium, Paris, France, 15-17 January 1997, pages 316-331,
New York, NY, USA, 1997. ACM Press.

J-L. Colago, M. Pantel, F. Dagnat, and P. Sallé. Safety analysis for
non-uniform service availability in actors. In Formal Methods for Open
Object-based Distributed Systems, February 1999.

J.-L. Colaco, M. Pantel, and P. Sallé. A set-constraint-based anal-
ysis of actors. In Proceeding of the IFIP TC6 WG6.1 international

workshop on Formal methods for open object-based distributed systems
(FMOODS’97), pages 107-122. Chapman & Hall, Ltd., 1997.

Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models:
Model checking message-passing programs. In Conference Record of
POPL’02: The 29th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 45-57, Portland, Oregon, Jan-
uary 16-18, 2002.

L. Cardelli and P. Wegner. On understanding types, data abstraction
and polymorphism. ACM Computing Surveys, 17(4):480-521, Decem-
ber 1985.

Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
Volker Gruhn, editor, Proceedings of the Joint 8th European Software
Engeneering Conference and 9th ACM SIGSOFT Symposium on the
Foundation of Software Engeneering (ESEC/FSE-01), volume 26, 5
of SOFTWARE ENGINEERING NOTES, pages 109-120, New York,
September 10-14 2001. ACM Press.

Luca de Alfaro and Thomas A. Henzinger. Interface theories
for component-based design. Lecture Notes in Computer Science,
2211:148-160, 2001.

Luca de Alfaro, Thomas A. Henzinger, and Marielle Stoelinga. Timed
interfaces. In Proceedings of the Second International Workshop on Em-
bedded Software (EMSOFT), number 2491 in Lecture Notes in Com-
puter Science, pages 108-122. Springer-Verlag, 2002.

Mads Dam. Compositional proof systems for model checking infinite
state processes. In Insup Lee and Scott A. Smolka, editors, CON-
CUR ’95: Concurrency Theory, 6th International Conference, volume
962 of Lecture Notes in Computer Science, pages 12-26, Philadelphia,
Pennsylvania, 21-24 August 1995. Springer-Verlag.

Nicolas G. de Bruijn. Lambda-calculus notation with nameless dum-
mies: a tool for automatic formula manipulation with application to

the Church-Rosser theorem. Indag. Math., 34(5):381-392, 1972.

BIBLIOGRAPHY 155

[DBY6]

[DFHT98]

[DHO95)

[DHDTS98|

[DHS98]

[Dij76]
[Dil89a]

[Di189b]

[DK97]

[DP99)

[DPCS00]

[DTDV96]

[EMOS]

Pedro R. D’Argenio and Ed Brinksma. A calculus for timed automata.
In FTRTFT, volume 1135 of LNCS, pages 110-129. Springer-Verlag,
1996.

D. Donaldson, M. Faupel, R. Hayton, A. Herbert, N. Howarth, Kramer
A., I. MacMillan, D. Otway, and S. Waterhouse. Dimma - a multi-
media orb. In Proc. Middleware ‘98, The Low Wood Hotel, Ambleside,
England, September 1998.

D. Dill and H. Wong-Toi. Verification of real-time systems by successive
over and under approximation. In P. Wolper, editor, Proceedings of the
7th International Conference On Computer Aided Verification, volume
939, pages 409-422, Liege, Belgium, 1995. Springer Verlag.

B. Dumant, F. Horn, F. Dang-Tran, and J.-B. Stefani. Jonathan: an
open distributed processing environment in java. In Proc. Middleware
’98, The Lake District, England, November 1998.

I. Demeure, F. Horn, and F. Singhoff. Automatic scheduling of a dy-
namic multimedia applications with polka: a case study. In Fourth
IEEFE Real-Time Technology and Applications Symposium (RTAS’98),
pages 15-19, June 1998.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

D. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Workshop on Automatic Verification Methods for Finite-
State Systems, June 1989.

David Dill. Trace Theory For Automatic Hierarchical Verification Of
Speed-independent Circuits. ACN Distinguished Dissertations. MIT
Press, Cambridge MA, 1989.

F. Dignum and R. Kuiper. Combining dynamic deontic logic and tem-
poral logic for the specification of deadlines. In Jr. R. Sprague, editor,
Proceedings of thirtieth HICSS, Wailea, Hawaii, 1997.

Pierpaolo Degano and Corrado Priami. Non-interleaving semantics
for mobile processes. Theoretical Computer Science, 216(1-2):237-270,
1999.

F. Dagnat, M. Pantel, M. Colin, and P. Sallé. Typing concurrent objects
and actors. In L’Objet — Méthodes formelles pour les objets, volume 6,
pages 83-106, 2000.

F. S. De Boer, H. Tej, W.-P. De Roever, and M. Van Hulst. Compo-
sitionality in real-time shared variable concurrency. Lecture Notes in
Computer Science, 1135:420-433, 1996.

F. Eliassen and S. Mehus. Type checking stream flow endpoints. In
Middleware’98, The Lake District, England, pages 305 — 322, 1998.

156

BIBLIOGRAPHY

[FA95]

[FGL*96]

[FHW99)

[FK95]

[FK98]

[Flo67]

[FMO1]

[FMQO4]

[FNLLO6|

[FNS97]

[Fu95]

|Gay99|
[GBSS98|

S. Frglund and G. Agha. Abstracting Interactions Based on Message
Sets. In P. Ciancarini, O. Nierstrasz, and A. Yonezawa, editors, Object-
Based Models and Languages for Concurrent Systems, volume 924 of
Lecture Notes in Computer Science, pages 107-124. Springer-Verlag,
Berlin, 1995.

Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget,
and Didier Rémy. A calculus of mobile agents. In Proceedings of the
Tth International Conference on Concurrency Theory (CONCUR’96),
pages 406-421. Springer-Verlag, 1996.

C. J. Fidge, 1. J. Hayes, and G. Watson. The deadline command. In
IEE Proceedings - Software, volume 2, pages 104-111, April 1999.

Wan Fokkink and Steven Klusener. An effective axiomatization for real
time ACP. Information and Computation, 122(2):286-299, 1 November
1995.

S. Frglund and J. Koistinen. QML: A language for quality of service
specication. February 1998.

R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, edi-
tor, Mathematical aspects of computer science: Proc. American Math-
ematics Soc. symposia, volume 19, pages 19-31, Providence RI, 1967.
American Mathematical Society.

J. Fiadeiro and T. Maibaum. Temporal reasoning over deontic specifi-
cations. Journal of Logic and Computation, 1(3):357-395, May 1991.

G. Ferrari, U. Montanari, and P. Quaglia. A pi-calculus with explicit
substitution: the late semantics. In MFCS. Springer-Verlag, 1994.

A. Février, E. Najm, G. Leduc, and L. Léonard. Compositional
specification of odp binding objects. In In Proceedings of the 6th
IFIP/ICCC Conference on Information Network and Data Commu-
nication, INDC’96, Trondheim, Norway, June 1996.

Arnaud Février, Elie Najm, and Jean-Bernard Stefani. Contracts for
odp. In Transformation-Based Reactive Systems Development, 4th In-
ternational AMAST Workshop on Real-Time Systems and Concurrent
and Distributed Software, ARTS’97, volume 1231 of Lecture Notes in
Computer Science, pages 216-232. Springer, 1997.

C. Fidge and J. Zic. A. simple, expressive real-time CCS. In Proc. 2nd
Australasian Conf. on Parallel & Real-Time Systems, pages 365-372,
1995.

Simon Gay. Some type systems for the pi calculus, 1999. Manuscript.

R. Grosu, M. Broy, B. Selic, and G. Stefanescu. Towards a calculus for
UML-RT specifications, 1998.

BIBLIOGRAPHY 157

[GC92

[Gie00]

[GL92

|GRS95]

[GSSALY4|

[GVRO02]

[Hew77]

[HHG0]

[HL95|

[HLR92]

[HMPO1]

David Gelernter and Nicholas Carriero. Coordination languages and
their significance. Communications of the ACM, 35(2):97-107, Febru-
ary 1992.

H. Giese. Contract-based component system design. In J. Ralph and
H. Sprague, editors, 33 Annual Hawair Intern. Conf. on System Sci-
ences (HICSS-33), Maui, USA, 2000.

J. C. Godskesen and K. G. Larsen. Real-time calculi and expansion
theorems. In Rudrapatna Shyamasundar, editor, Proceedings of Foun-
dations of Software Technology and Theoretical Computer Science, vol-
ume 652 of LNCS, pages 302-315, Berlin, Germany, December 1992.
Springer.

Roberto Gorrieri, Marco Roccetti, and Enrico Stancampiano. A theory
of processes with durational actions. Theoretical Computer Science,
140(1):73-94, 20 March 1995.

R. Gawlick, R. Segala, J. Soegaard-Andersen, and N. Lynch. Liveness
in timed and untimed systems. Lecture Notes in Computer Science,
820:166-184, 1994.

Simon Gay, Vasco T. Vasconcelos, and Antonio Ravara. Session types
for inter-process communication. October 2002.

Carl E. Hewitt. Viewing control structures as pattern of passing mes-
sages. Artificial Intelligence: An International Journal, 8(3):323-364,
June 1977.

Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
Specifying behavioural compositions in object-oriented systems. In Pro-
ceedings OOPSLA/ECOOP’90, ACM SIGPLAN Notices, pages 169—
180, October 1990. Published as Proceedings OOPSLA/ECOOP’90,
ACM SIGPLAN Notices, volume 25, number 10.

M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer
Science, 138(2):353-389, 20 February 1995.

Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Program-
ming and verifying real-time systems by means of the synchronous data-
flow language LUSTRE. IEEE Transactions on Software Engineering,
18(9):785-793, September 1992.

Tom Henzinger, Zohar Manna, and Amir Pnueli. Temporal proof
methodologies for real-time systems. In ACM, editor, POPL ’91. Pro-
ceedings of the eighteenth annual ACM symposium on Principles of pro-
gramming languages, January 21-23, 1991, Orlando, FL, pages 353—
366, New York, NY, USA, 1991. ACM Press.

158

BIBLIOGRAPHY

[HNSY92]

[Hoa69]

[Hoa85]

[Hoa87]

[Hol92]

[Hoo94|

|Hoo98|

[HPRY7|

[HQRT93]

[HR95|

[HRO2]

[HW89]

[HX91]

T.A. Henzinger, Z. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. In Logic in Computer Science, 1992.

C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576-580, October 1969.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Englewood Cliffs (NJ), USA, 1985. Traduction francaise : [Hoa87].

C. A. R. Hoare. Processus séquentiels communiquants. Masson, Paris,
1987. Traduction frangaise de [Hoa85].

Tan M. Holland. Specifying Reusable Components Using Contracts. In
O. Lehrmann Madsen, editor, Proceedings of the ECOOP ’92 European
Conference on Object-oriented Programming, LNCS 615, pages 287—
308, Utrecht, The Netherlands, July 1992. Springer-Verlag.

Jozef Hooman. Extending hoare logic to real-time. Formal Aspects of
Computing, 6(6A):801-826, 1994.

J. Hooman. Compositional verification of real-time applications. In
W-P. de Roever, H. Langmaack, and A. Pnueli, editors, Proceedings of
COMPQOS’97, number 1536 in LNCS, pages 276-300. Springer-Verlag,
1998.

N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification of real-
time systems using linear relation analysis. Formal Methods in System
Design, 11(2):157-185, August 1997.

T. A. Henzinger, S. Qadeer, S. K. Rajamani, and S. Tasiran. An
assume-guarantee rule for checking simulation. Lecture Notes in Com-
puter Science, 1522:421-433, 1998.

Matthew Hennessy and Tim Regan. A process algebra for timed sys-
tems. Information and Computation, 117(2):221-239, March 1995.

Hennessy and Riely. Resource access control in systems of mobile
agents. INFCTRL: Information and Computation (formerly Informa-
tion and Control), 173, 2002.

Jozef Hooman and Jennifer Widom. A temporal-logic based composi-
tional proof system for real-time message passing. Parallel Architectures
and Languages in FEurope, PARLE 89, Eindhoven, Netherlands, pages
424-441, June 19809.

He Jifeng and Xu Qiwen. A theory of state-based parallel programming
by refinement. In Proc. 1991 Refinement Workshop, Cambridge, 1991.

BIBLIOGRAPHY 159

[HYL92]

[1KO1]

[TLSO00]

[Jon83]

[JSV93]

|7T95]

[KKLS00]

[K6n00]

[Kob0O]

[Kob02]

[KPT99)

U. Holmer, W. Yi, and K. Larsen. Deciding properties of regular real
timed processes. In Kim G. Larsen and Arne Skou, editors, Proceedings
of Computer Aided Verification (CAV ’91), volume 575 of LNCS, pages
443-453, Berlin, Germany, July 1992. Springer.

Atsushi Igarashi and Naoki Kobayashi. A generic type system for the
Pi-calculus. ACM SIGPLAN Notices, 36(3):128-141, March 2001.

Henrik Ejersbo Jensen, Kim Guldstrand Larsen, and Arne Skou. Scal-
ing up uppaal automatic verification of real-time systems using com-
positionality and abstraction. In FTRTFT, pages 19-30, 2000.

C. B. Jones. Tentative steps toward a development method for inter-
fering programs. ACM Transactions on Programming Languages and
Systems, 5(4):596-619, October 1983.

Alan S. A. Jeffrey, Steve A. Schneider, and Frits W. Vaandrager. A
comparison of additivity axioms in timed transition systems. In 87,
page 19. Centrum voor Wiskunde en Informatica (CWI), ISSN 0169-
118X, December 31 1993.

B. Jonsson and Y.-K. Tsay. Assumption/guarantee specifications
in linear-time temporal logic. Lecture Notes in Computer Science,
915:262-264, 1995.

Idit Keidar, Roger Khazan, Nancy A. Lynch, and Alexander A. Shvarts-
man. An inheritance-based technique for building simulation proofs
incrementally. In International Conference on Software Engineering,
pages 478-487, 2000.

Barbara Ko6nig. Analysing input/output-capabilities of mobile pro-
cesses with a generic type system (extended version). Technical Report
Technical Report TUM-I0009, Technische Universitat Munchen, 2000.

Naoki Kobayashi. Type systems for concurrent processes: From
deadlock-freedom to livelock-freedom, time-boundedness. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors,
Theoretical Computer Science: Ezploring New Frontiers of Theoreti-
cal Informatics, Proceedings of the International IFIP Conference TCS
2000 (Sendai, Japan), volume 1872 of LNCS, pages 365-389. IFIP,
Springer, August 2000.

Naoki Kobayashi. A type system for lock-free processes. Information
and Computation, 177(2):122-159, September 2002.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the Pi-Calculus. ACM Transactions on Programming Languages
and Systems, 21(5):914-947, 1999.

160

BIBLIOGRAPHY

[LBS*98]

|Lee88]

[Leu95]

[Lin94|

[Lin98|

[Lin03]

[LL92|

[LL98]

[LMB*96]

[LNW02]

[LPS81]

Joseph P. Loyall, David D. Bakken, Richard E. Schantz, John A. Zinky,
David A. Karr, Rodrigo Vanegas, and Kenneth R. Anderson. QoS as-
pect languages and their runtime integration. In Proceedings of the 4th
Workshop on Languages, Compilers, and Run-time Systems for Scal-
able Computers (LCR), volume 1511, Berlin, Heidelberg, New York,
Tokyo, 1998. Springer-Verlag.

Ronald M. Lee. A logic model for electronic contracting. Decision
Support Systems, 4(1):27-44, 1988.

S. Leue. Specifying real-time requirements for sdl specifications - a
temporal logic-based approach. In Proceedings of the Fifteenth Inter-
national Symposium on Protocol Specification, Testing, and Verification
PSTV’95. Chapmann & Hall, 1995.

Huimin Lin. Symbolic Bisimulations and Proof Systems for the Pi-
Calculus. Technical Report 94:07, 1994.

Huimin Lin. Complete proof systems for observation congruences in
finite-control pi-calculus. In Kim G. Larsen, Sven Skyum, and Glynn
Winskel, editors, 25th Colloquium on Automata, Languages and Pro-
gramming (ICALP) (Aalborg, Denmark), volume 1443 of LNCS, pages
443-454. Springer, July 1998.

Huimin Lin. Complete inference systems for weak bisimulation equiv-
alences in the pi-calculus. Information and Computation, 180(1):1-29,
2003.

Guy Leduc and Luc Leonard. A timed LOTOS supporting a dense time
domain and including new timed operators. In FORTE, pages 87102,
1992.

L. Léonard and G. Leduc. A formal definition of time in LOTOS. In
Formal Aspects of Computing, volume 10, pages 248-266, 1998.

Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul T.
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The design
and implementation of an operating system to support distributed mul-
timedia applications. IEEE Journal of Selected Areas in Communica-
tions, 14(7):1280-1297, 1996.

Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-
oriented design of embedded hardware and software systems. Invited

paper, Journal of Circuits, Systems, and Computers, November 20,
2002.

Daniel J. Lehmann, Amir Pnueli, and Jonathan Stavi. Impartiality, jus-
tice and fairness: The ethics of concurrent termination. In Shimon Even
and Oded Kariv, editors, Automata, Languages and Programming, 8th

BIBLIOGRAPHY 161

[LS84]

[LS91]

[LSZBYS]

[LT87]

[LW94]

[LXO01]

[LY00]

[LY02]

[MC81]

[McM99)

[Mey89)]

[Mey91]

[Mey92]

Collogquium, volume 115 of Lecture Notes in Computer Science, pages
264-277, Acre (Akko), Israel, 13-17 July 1981. Springer-Verlag.

Leslie Lamport and Fred B. Schneider. The Hoare Logic of CSP, and
all that. ACM Transactions on Programming Languages and Systems,
6(2):281-296, April 1984.

Simon S. Lam and A. Udaya Shankar. Understanding interfaces. In Pro-
ceedings Fourth International Conference on Formal Description Tech-
niques (FORTE’91), Sydney, Australia, November 1991.

J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specify-
ing and measuring quality of service in distributed object systems. In
Proceedings of ISORC’98, Kyoto, Japan, April 1998.

Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of the sizth annual ACM Sym-
posium on Principles of distributed computing, pages 137-151. ACM
Press, 1987.

B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811—
1841, November 1994.

Edward A. Lee and Yuhong Xiong. System-level types for component-
based design. In First Workshop on Embedded Software, EMSOFT2001,
October 2001.

Lin and Yi. A complete axiomatisation for timed automata. FSTTCS:
Foundations of Software Technology and Theoretical Computer Science,
20, 2000.

H. Lin and Wang Yi. Axiomatixing timed automata. Acta Informatica,
38:277-305, 2002.

Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.
IEEFE Transactions on Software Engineering, 7(4):417-426, July 1981.

Kenneth L. McMillan. Circular compositional reasoning about liveness.
In Correct Hardware Design and Verification Methods, 10th IFIP WG
10.5 Advanced Research Working Conference (CHARME’99), volume
1703 of LNCS, pages 342-345. Springer, 1999.

B. Meyer. Object-oriented software construction. Prentice Hall, New
York, 1989.

B. Meyer. FEiffel: The Language. Prentice Hall, 1991.

Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40—
51, October 1992.

162

BIBLIOGRAPHY

[MF76]

[MG95]

[Mic95]

[Mil83]

[Mil84]

[Mil89a]

[Mil89b)|

[Mi192]

[Mi193]

[MLM94]

[MNCK99]

[Mol90]

[MP91]

P. Merlin and D. J. Faber. Recoverability of communication protocols.
IEEE Transactions on Communication, 24(9):1036-1043, 1976.

Marino Miculan and Fabio Gadducci. Modal p-types for processes.
In Proceedings, Tenth Annual IEEE Symposium on Logic in Computer
Science, pages 221-231, San Diego, California, 26-29 June 1995. IEEE

Computer Society Press.

Sun Microsystems. The java virtual machine specification. Technical
report, Sun Microsystems, Mountain View, California, august 1995.

Robin Milner. A calculus of communicating systems, volume 158 of
Lecture Notes in Computer Science. Springer-Verlag, New York-Berlin-
Heidelberg, 1983.

Robin Milner. A complete inference system for a class of regular be-
haviours. Journal of Computer and System Sciences, 28:439-466, 1984.

Robin Milner. Communication and Concurrency. Prentice Hall, New
York, 19809.

Robin Milner. A complete axiomatisation for observational congruence
of finite-state behaviours. Information and Computation (formerly In-
formation and Control), 81, 1989.

Robin Milner. Functions as processes. Journal of Mathematical Struc-
tures in Computer Science, 2(2):119-141, 1992. Previous version as
Rapport de Recherche 1154, INRIA Sophia-Antipolis, 1990, and in Pro-
ceedings of ICALP 91, LNCS 443.

Robin Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer,
W. Brauer, and H. Schwichtenberg, editors, Logic and Algebra of Spec-
ification, pages 203-246. Springer-Verlag, 1993.

Sape J. Mullender, Ian M. Leslie, and Derek McAuley. Operating sys-
tem support for distributed multimedia. In USENIX Summer, pages
209-219, 1994.

S. Mitchell, H. Naguib, G. Coulouris, and T. Kindberg. A qos support
framework for dynamically reconfigurable multimedia applications. In
DAIS’99, June 1999.

C. Tofts F. Moller. A temporal calculus of communicating systems. In
Concur’90, LNCS, pages 401-415. Springer-Verlag, 1990.

Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems: Specification. Springer-Verlag, 1991.

BIBLIOGRAPHY 163

[MP95]

[MP9g]

[MPW92)

[MPW93]

[MT91]

[MW93]

[NA9Y]

[NH83]

[Nie95]

[NL96]

[NN97]

[INNS99a]

[NNS99b)

Ugo Montanari and Marco Pistore. Checking bisimilarity for finitary
m-calculus. In Insup Lee and Scott A. Smolka, editors, CONCUR ’95:
Concurrency Theory, 6th International Conference, volume 962 of Lec-
ture Notes in Computer Science, pages 42-56, Philadelphia, Pennsyl-
vania, 21-24 August 1995. Springer-Verlag.

Ugo Montanari and Marco Pistore. History-dependent automata. Tech-
nical Report TR-98-11, Dipartimento di Informatica, October 5 1998.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, II. Information and Computation, 100(1):41-77, 1992.

Robin Milner, Joachim Parrow, and David Walker. Modal logics for
mobile processes. Theoretical Computer Science, 114(1):149-171, 1993.

Faron Moller and Chris Tofts. Relating processes with respect to speed.
In J. C. M. Baeten and J. F. Groote, editors, CONCUR °91: 2nd In-
ternational Conference on Concurrency Theory, volume 527 of Lecture
Notes in Computer Science, pages 424-438, Amsterdam, The Nether-
lands, 26-29 August 1991. Springer-Verlag.

J.-J.Ch. Meyer and R.J. Wieringa, editors. Deontic Logic in Computer
Science: Normative System Specification, New York, 1993. J. Wiley.

Brian Nielsen and Gul Agha. Towards reusable real-time objects. In
Annals of Software Engineering, volume 7, pages 257-282, 1999.

Rocco De Nicola and Matthew C. B. Hennessy. Testing equivalence
for processes. In Josep Diaz, editor, Automata, Languages and Pro-
gramming, 10th Colloquium, volume 154 of Lecture Notes in Computer
Science, pages 548-560, Barcelona, Spain, 18-22 July 1983. Springer-
Verlag.

O. Nierstrasz. Regular types for active objects. In Object-Oriented
Software Composition. Prentice Hall, 1995.

G. Necula and P. Lee. Proof-carrying code. Technical report cmu-
¢s-96165, School of Computer Science, Carnegie Mellon University,
September 1996.

Elie Najm and Abdelkrim Nimour. A calculus of object bind-
ings. In Howard Bowman and John Derrick, editors, Proceedings of
FMOODS’97. Chapman & Hall, 1997.

Elie Najm, Abdekrim Nimour, and J-B Stefani. Infinite types for
distributed objects interfaces. In Proc. of IFIP conf. FMOODS’99.
Kluwer, Feb 1999.

Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Guaran-
teeing liveness in an object calculus through behavioral typing. In
FORTE/PSTV’99. Kluwer Academic Publishers, 1999.

164

BIBLIOGRAPHY

[NS92]

[NSY93]

[NT00]

[ODP95]

[0G76]

|Ost89]

[Par85]

[PJ91]

[Plo81]

[Pnug4]

[PP99]

[PS93]

[PTO0]

X. Nicollin and J. Sifakis. An overview and synthesis on timed process
algebras. In Real-Time: Theory in Practice, volume 600 of LNCS, pages
526-548. Springer-Verlag, 1992.

Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. From ATP to timed
graphs and hybrid systems. Acta Informatica, 30(2):181-202, 1993.

Kedar S. Namjoshi and Richard J. Trefler. On the completeness of
compositional reasoning. In Proceedings of the 12th Int. Conference on
Computer Aided Verification (CAV2000), number 1855, pages 139-153.
Springer-Verlag, 2000.

Open distributed processing reference model, parts 1,2,3,4. ISO/IEC
IS 10746-1..4 or ITU-T X901..4, 1995.

Susan S. Owicki and David Gries. Verifying properties of parallel
programs: An axiomatic approach. Communications of the ACM,
19(5):279-285, May 1976. Papers from the Fifth ACM Symposium
on Operating Systems Principles (Univ. Texas, Austin, Tex., 1975).

J. Ostroff. Temporal Logic for Real-Time Systems. Advanced Software
Development Series. Research Studies Press Ltd., 1989.

Joachim Parrow. Fairness Properties in Process Algebra. PhD thesis,
Uppsala, 1985.

P. K. Pandya and M. Joseph. P-A logic - A compositional proof system
for distributed programs. Distributed Computing, 5(1):37-54, 1991.

G. D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Computer Science Department, Aarhus
University, Aarhus, Denmark, September 1981.

A. Pnueli. In transition from global to modular temporal reasoning
about programs. In Krzystof R. Apt, editor, Logics and Model of Con-
current Systems, volume 13 of NATO ASI, pages 123-144. Springer-
Verlag, October 1984.

Franz Puntigam and Christof Peter. Changeable interfaces and
promised messages for concurrent components. In Proceedings of
the ACM Symposium on Applied Computing (SAC’99), San Antonio,
Texas, USA, 1999.

Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for
mobile processes. In Proceedings 8th IEEE Logics in Computer Science,
pages 376-385, Montreal, Canada, 1993.

Benjamin C. Pierce and David N. Turner. Pict: A programming lan-
guage based on the pi-calculus. In G. Plotkin, C. Stirling, and M. Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

BIBLIOGRAPHY 165

[Pun97]

[Pun99]

[Qua99]

[R. 91]

[RA93]

[Ram74]

[RE0O]

[RRO1]

[RRV99)

[RS]

[RTO1]

[RVO7]

[RVO0]

Franz Puntigam. Coordination requirements expressed in types for
active objects. In Furopean Conference on Object-Oriented Program-
ming (ECOOP’97), volume 1241 of Lecture Notes in Computer Science,
pages 367-387. Springer-Verlag, June 1997.

Franz Puntigam. Non-regular process types. In P. Amestoy et al., edi-
tors, Proceedings of the 5th European Conference on Parallel Processing
(Euro-Par’99), number 1685, Toulouse, France, 1999. Springer-Verlag.

P. Quaglia. The pi-calculus: Notes on labelled semantics. Bulletin of
the European Association for Theoretical Computer Science, 68:104—,
1999.

R. Alur. Techniques for Automatic Verification of Real-Time Systems.
PhD thesis, Stanford University, Stanford, 1991.

Shangping Ren and Gul A. Agha. RTsynchronizer: language support
for real-time specifications in distributed systems. ACM SIGPLAN
Notices, 30(11):50-59, November 1995.

C. Ramchandani. ANALYSIS OF ASYNCHRONOUS CONCUR-
RENT SYSTEMS BY TIMED PETRI NETS. Technical Report
MIT/LCS,/TR-120, 1974.

H.O. Rafaelsen and F. Eliassen. Trading and negotiating stream bind-
ings. In in Proceedings of IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing (Middle-
ware’2000), New-York, 2000.

Sriram K. Rajamani and Jakob Rehof. A behavioral module system
for the pi-calculus. Lecture Notes in Computer Science, 2126:375-377,
2001.

Antonio Ravara, Pedro Resende, and Vasco T. Vasconcelos. An algebra
of behavioural types. Preprint 26-99, ISTDM, September 1999.

Jim Rumbaugh and Bran Selic. Using UML for modeling complex
real-time systems. Rational Software Corp. and ObjectTime Limited.

R. Alur and T.A. Henzinger. Logics and Models of Real-Time: A
Survey. In Real Time: Theory in Practice, volume 600 of LNCS, pages
74-106. Springer-Verlag, 1991.

A. Ravavra and V.T. Vasconcelos. Behavioral types for a calculus of
concurrent objects. In Euro-Par’97. Springer-Verlag, 1997.

A. Ravara and V. Vasconcelos. Typing non-uniform concurrent objects.
In C. Palamidessi, editor, CONCUR’00, volume 1877 of Lecture Notes
in Computer Science, pages 474-488. Springer-Verlag, 2000.

166

BIBLIOGRAPHY

[San93]

[San96]

[San99|

[SCO0]

[Sch95]

[Sch00]

[Seg92]

[Seg97]

[Sel96]

ISHGS9)

[Sig99]

[SM73]

[So197]

Davide Sangiorgi. A theory of bisimulation for the m-calculus. In Eike
Best, editor, CONCUR ’93: Jth International Conference on Concur-
rency Theory, volume 715 of Lecture Notes in Computer Science, pages
127-142, Hildesheim, Germany, 23-26 August 1993. Springer-Verlag.

Davide Sangiorgi. Locality and non-interleaving semantics in calculi
for mobile processes. Theoretical Computer Science, 155:39-83, 1996.

Davide Sangiorgi. The name discipline of uniform receptiveness. The-
oretical Computer Science, 221(1-2):457-493, 1999.

P. N. M. Sampaio and J. P. Courtiat. A formal approach for the presen-
tation of interactive multimedia documents. In Proceedings of the 8th
International ACM Conference on Multimedia (Multimedia-00), pages
432-434, N. Y., October 30—November 04 2000. ACM Press.

Steve Schneider. An operational semantics for timed CSP. Information
and Computation, 116(2):193-213, 1 February 1995.

D. C. Schmidt. Real time CORBA with TAO (the ACE
ORB). Technical report, Washington University in Saint Louis,
http://www.cs.wustl.edu/schmidt/TAO.html, 2000.

R. Segala. A Process Algebraic View of I/O Automata. Technical
Report MIT/LCS/TR-557, 1992.

Roberto Segala. Quiescence, fairness, testing, and the notion of imple-
mentation. Information and Computation, 138(2):194-210, 1 November
1997.

Bran Selic. Real-time object-oriented modeling (ROOM). In IEEE
Real-Time Technology and Applications Symposium (RTAS °96), pages
214-219, Washington - Brussels - Tokyo, June 1996. IEEE Computer
Society Press.

R. K. Shyamasundar, J. Hooman, and R. Gerth. Reasoning of real-
time distributed programming languages. In Proceedings: Fifth Inter-
national Workshop on Software Specification and Design, pages 91-99,
1989.

M. Sighireanu. Contribution at the definition and implementation of
e-lotos, 1999.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring expo-
nential time. In Proceedings of the Fifth Annual ACM Symposium on
Theory of Computing. ACM, 1973.

F. Solms. Unified modeling language for real-time systems design, 1997.

BIBLIOGRAPHY 167

[SRRS01]

[SSASC98]

[ST92|

[Stad5]

[Stiss]

[Ste91|

[SWOL1]

[SY96]

[TJ94]

[TMMSS]

[Trio9]

[TYO01]

Sekar, Ramakrishnan, Ramakrishnan, and Smolka. Model-carrying
code (MCC): A new paradigm for mobile-code security. In WNSP:
New Security Paradigms Workshop. ACM Press, 2001.

C. A. S. Santos, L. F. G. Soares, G. L. de Souza, and J. P. Courtiat.
Design methodology and formal validation of hypermedia documents.
In Proceedings of the 6th ACM International Conference on Multimedia
(Multimedia-98), pages 39-48, N.Y., September 12-16 1998. ACM
Press.

Ichiro Satoh and Mario Tokoro. A formalism for real-time concurrent
object-oriented computing. ACM SIGPLAN Notices, 27(10):315-326,
October 1992.

E. W. Stark. A proof technique for rely /guarantee properties. In S. N.
Maheshwari, editor, Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS), volume 206 of LNCS, pages 369-391,
New Delhi, 1985. Springer-Verlag.

Colin Stirling. A generalization of Owicki-Gries’s Hoare logic for a
concurrent while language. Theoretical Computer Science, 58(1-3):347—
359, June 1988.

Ketil Stglen. A method for the development of totally correct shared-
state parallel programs. In J. C. M. Baeten and J. F. Groote, editors,
CONCUR ’91: 2nd International Conference on Concurrency Theory,
volume 527 of Lecture Notes in Computer Science, pages 510-525, Am-
sterdam, The Netherlands, 26-29 August 1991. Springer-Verlag.

Davide Sangiorgi and David Walker. The m-calculus: a Theory of Mo-
bile Processes. Cambridge University Press, 2001.

Joseph Sifakis and Sergio Yovine. Compositional specification of timed
systems (extended abstract). In 13th Annual Symposium on Theoreti-
cal Aspects of Computer Science, volume 1046 of Incs, pages 347-359,
Grenoble, France, 22-24 February 1996. Springer.

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Information and Computation, 111(2):245-296, June 1994.

Mark Tuttle, Michael Meritt, and Francesmary Modugno. Time con-
strained automata. MIT/LCS, November 1988.

Stavros Tripakis. Verifying progress in timed systems. Lecture Notes
in Computer Science, 1601:299-314, 1999.

Stavros Tripakis and Sergio Yovine. Analysis of timed systems us-
ing time-abstracting bisimulations. Formal Methods in System Design,
18(1):25-68, 2001.

168

BIBLIOGRAPHY

[TZH02]

[C92]

[Vaa9l]

[VBOS]

[vGO1]

[VL92]

[VM94]

[von51]

[VR99]

[VVR02|

[WG02]

[WIGO9S]

David Teller, Pascal Zimmer, and Daniel Hirschkoff. Using ambients to
control resources. In CONCUR 2002, 19th International Conference on
Concurrency Theory, number 2421 in LNCS, pages 288-303. Springer,
2002.

Karlis Cerans. Decidability of bisimulation equivalences for parallel
timer processes. In CAV’92, volume 663 of Lecture Notes in Computer
Science, Berlin, 1992. Springer Verlag.

Frits W. Vaandrager. On the relationship between process algebra and
input/output automata. In Proceedings, Sizth Annual IEEE Sympo-
stum on Logic in Computer Science, pages 387-398, Amsterdam, The
Netherlands, 15-18 July 1991. IEEE Computer Society Press.

Vasco T. Vasconcelos and Rui Bastos. Core-TyCO, the language defi-
nition, version 0.1. DI/FCUL TR 98-3, DIFCUL, March 1998.

R. van Glabbeek. Handbook of Process Algebra, chapter The Linear
Time — Branching Time Spectrum I: The Semantics of Concrete, Se-
quential Processes. Elsevier Science, Amsterdam, The Netherlands,
2001.

F. Vaandrager and N. Lynch. Action transducers and timed automata.
Lecture Notes in Computer Science, 630:436-454, 1992.

Bojrn Victor and Faron Moller. The mobility workbench. A tool for
the pi-calculus. LFCS report ECS-LFCS-94-285, Department of Com-
puter Science, University of Edinburgh, JCMB, The Kings Buildings,
Mayfield Road, Edinburgh, 1994.

G. H. von Wright. Deontic logic. Mind, 60(237):1-15, 1951.

Vasco T. Vasconcelos and Antéonio Ravara. Communication errors in
the m-calculus are undecidable. Information Processing Letters, 71(5—
6):229-233, September 1999.

Antonio Vallecillo, Vasco T. Vasconcelos, and Antonio Ravara. Typing
the behavior of objects and components using session types. In 1st
International Workshop on Foundations of Coordination Languages and
Software Architectures (Foclasa 2002), Electronic Notes in Theoretical
Computer Science. Elsevier, August 2002.

Peter Wegner and Dina Goldin. Computation beyond turing machines.
Communications of the ACM, 2002. To be published.

I. Wakeman, A. Jeffrey, R. Graves, and T. Owen. Designing a pro-
gramming language for active networks. Technical report, University
of Sussex, 1998.

BIBLIOGRAPHY 169

[WNO5]

[WZ88]

[XCC94]

[XdRHY7]

[YHO00|

[Yi91]

[Yos96]

[Yos02]

G. Winskel and M. Nielsen. Models for concurrency. In S. Abram-
sky, D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science. Oxford University Press, 1995.

Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental
modification mechanism or what like is and isn’t like. In S. Gjessing
and K. Nygaard, editors, ECOOP ’88, European Conference on Object-
Oriented Programming, Oslo, Norway, volume 322 of Lecture Notes in
Computer Science, pages 5577, New York, NY, August 1988. Springer-
Verlag.

Qiwen Xu, Antonio Cau, and Pierre Collette. On unifying assumption-
commitment style proof rules for concurrency. In International Con-
ference on Concurrency Theory, pages 267-282, 1994.

Qiwen Xu, Willem P. de Roever, and Jifeng He. The rely-guarantee
method for verifying shared variable concurrent programs. Formal As-
pects of Computing, 9(2):149-174, 1997.

Nobuko Yoshida and Matthew Hennessy. Assigning types to processes.
In Logic in Computer Science, pages 334-345, 2000.

Wang Yi. Ccs + time = an interleaving model for real time systems.
In Automata, Languages and Programming (ICALP’91), volume 510 of
LNCS, pages 217-228. Springer-Verlag, 1991.

Nobuko Yoshida. Graph types for monadic mobile processes. In
Foundations of Software Technology and Theoretical Computer Science,
pages 371-386, 1996.

Nobuko Yoshida. Type-based liveness guarantee in the presence of
nontermination and nondeterminism. MCS 2002-20, University of Le-
icester, April 2002.

|ZdRvEBS85| Job Zwiers, Willem P. de Roever, and Peter van Emde Boas. Com-

[Zwi89]

positionality and concurrent networks: Soundness and completeness
of a proofsystem. In Wilfried Brauer, editor, Automata, Languages
and Programming, 12th Colloquium, volume 194 of Lecture Notes in
Computer Science, pages 509-519, Nafplion, Greece, 15-19 July 1985.
Springer-Verlag.

J. Zwiers. Compositionality, concurrency and partial correctness.
Springer-Verlag, New York, 1989.

