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Abstract. A notion of generalized regular expressions for a large class
of systems modeled as coalgebras, and an analogue of Kleene’s theorem
and Kleene algebra, were recently proposed by a subset of the authors
of this paper. Examples of the systems covered include infinite streams,
deterministic automata and Mealy machines. In this paper, we present a
tool where the aforementioned expressions can be derived automatically
and a novel algorithm to decide whether two expressions are bisimilar
or not. The procedure is implemented in the automatic theorem prover
CIRC, by reducing coinduction to an entailment relation between an
algebraic specification and an appropriate set of equations.

1 Introduction

Regular expressions and deterministic automata (DFA’s) constitute two of the
most basic structures in computer science. Kleene’s theorem [11] gives a fun-
damental correspondence between these two structures: each regular expression
denotes a language that can be recognized by a DFA and, conversely, the lan-
guage accepted by a DFA can be specified by a regular expression. Languages
denoted by regular expressions are called regular. Two regular expressions are
(language) equivalent if they denote the same regular language. Salomaa [17]
presented a sound and complete axiomatization (later refined by Kozen in [12,
13]) for proving the equivalence of regular expressions.

Coalgebras arose in the last decade as a suitable mathematical framework
to study state-based systems, such as DFA’s. For a functor G : Set → Set, a
G-coalgebra or G-system is a pair (S, g), consisting of a set S of states and
a function g : S → G(S) defining the “transitions” of the states. We call the
functor G the type of the system. For instance, DFA’s can be readily modeled
as finite coalgebras of the functor G(S) = 2 × SA.



For coalgebras of a large class of functors, a language of regular expressions;
a corresponding generalization of Kleene’s theorem; and a sound and complete
axiomatization for the associated notion of behavioral equivalence were intro-
duced in [4, 3]. Both the language of expressions and their axiomatization were
derived, in a modular fashion, from the functor defining the type of the system.

Algebra and related tools can be successfully used for reasoning on prop-
erties of systems. In this paper, we present a novel method for checking for
the bisimilarity of generalized regular expressions using the coinductive theorem
prover CIRC [7, 15]. The main novelty of the method lies on the generality of
the systems it can handle. CIRC is a metalanguage application implemented in
Maude [6], and its target is to prove properties over infinite data structures. It
has been successfully used for checking the equivalence of programs, and trace
equivalence and strong bisimilarity of processes. The tool may be tested online
and downloaded from http://fsl.cs.uiuc.edu/index.php/Circ.

The main contributions of this paper can be summarized as follows. We
present the algebraic counterpart of the coalgebraic framework of the gener-
alized regular expressions mentioned above. This enables us to automatically
derive algebraic specifications that model the language of expressions, and to
define an appropriate equational entailment relation for checking for the be-
havioural equivalence of expressions. Furthermore, the implementation of both
the algebraic specification and the entailment relation in CIRC allows for auto-
matic reasoning on the equivalence of expressions.

Organization of the paper Section 2 recalls the basic definitions of the language
associated to a polynomial functor. Section 3 formulates the aforementioned
language as an algebraic specification, which paves the way to implement in
CIRC a procedure to decide equivalence of expressions. The decision procedure
and the soundness of its implementation in CIRC are described in Section 4. In
Section 4.1 we show, by means of examples, how one can check for bisimilarity,
using CIRC. Section 5 contains concluding remarks and pointers for future work.

2 Regular expressions for polynomial coalgebras

In this section, we briefly recall the basic definitions in [4, 1].
Let Set denote the category of sets (represented by capital letters X,Y, . . .)

and functions (represented by lower case letters f, g, . . .). The notation Y X repre-
sents the family of functions from X to Y . The product of two sets X,Y is written
as X × Y and has the projections functions π1 and π2: X

π1←− X × Y
π2−→ Y .

We define X 3+ Y = X ⊎ Y ⊎ {⊥,⊤} where ⊎ is the disjoint union of sets, with

injections X
κ1−→ X ⊎ Y

κ2←− Y . Note that the set X 3+ Y is different from the
classical coproduct of X and Y (which we shall denote by X + Y ), because of
the two extra elements ⊥ and ⊤. These extra elements will later be used to
represent, respectively, underspecification and inconsistency in the specification
of some systems.

For each of the operations defined above on sets, there are analogous ones on
functions. Let f : X → Y , f1 : X → Y and f2 : Z → W . We define the following



operations:

f1 × f2 : X × Z → Y × W f1 3+ f2 : X 3+ Z → Y 3+ W

(f1 × f2)(〈x, z〉) = 〈f1(x), f2(z)〉 (f1 3+ f2)(c) = c, c ∈ {⊥,⊤}

fA : XA → Y A (f1 3+ f2)(κi(x)) = κi(fi(x)), i ∈ {1, 2}

fA(g) = f ◦ g

Note that here we are using the same symbols that we defined above for the
operations on sets. It will always be clear from the context which operation is
being used.

In our definition of non-deterministic functors we will use constant sets
equipped with an information order. In particular, we will use join-semilattices.
A (bounded) join-semilattice is a set B equipped with a binary operation ∨B and
a constant ⊥B ∈ B, such that ∨B is commutative, associative and idempotent.
The element ⊥B is neutral with respect to ∨B. As usual, ∨B gives rise to a partial
ordering ≤B on the elements of B: b1 ≤B b2 ⇔ b1 ∨B b2 = b2. Every set S can be
mapped into a join-semilattice by taking B to be the set of all finite subsets of
S with union as join.

Coalgebras A coalgebra is a pair (S, g : S → G(S)), where S is a set of states
and G : Set → Set is a functor. The functor G, together with the function g,
determines the transition structure (or dynamics) of the G-coalgebra [16].

Definition 1 (Bisimulation). Let (S, f) and (T, g) be two G-coalgebras. We
call a relation R ⊆ S × T a bisimulation [10] iff

(s, t) ∈ R ⇒ 〈f(s), g(t)〉 ∈ G(R)

where G(R) is defined as G(R) = {〈G(π1)(x),G(π2)(x)〉 | x ∈ G(R)}.

We write s ∼G t whenever there exists a bisimulation relation containing
(s, t) and we call ∼G the bisimilarity relation. We shall drop the subscript G

whenever the functor G is clear from the context.

Polynomial functors They are functors G : Set → Set, built inductively from
the identity, and constants, using ×, 3+ and (−)A:

PF ∋ G ::= Id | B | G 3+ G | G × G | GA (1)

where B is a (non-empty) finite join-semilattice and A is a finite set. Typical
examples of polynomial functors include R = B × Id, M = (B × Id)A, D =
2 × IdA and Q = (1 3+ Id)A. These functors represent, respectively, the type
of Mealy, deterministic and partial deterministic automata. R-bisimulation is
stream equality, whereas D-bisimulation coincides with language equivalence.

Next, we give the definition of the ingredient relation, which relates a poly-
nomial functor G with its ingredients, i.e. the functors used in its inductive
construction. We shall use this relation later for typing our expressions.



Definition 2. Let ⊳ ⊆ PF ×PF be the least reflexive and transitive relation on
polynomial functors such that

G1 ⊳ G1 × G2, G2 ⊳ G1 × G2, G1 ⊳ G1 3+ G2, G2 ⊳ G1 3+ G2, G ⊳ GA

Here and throughout this document we use F ⊳G as a shorthand for 〈F,G〉 ∈ ⊳.
If F ⊳ G, then F is said to be an ingredient of G. For example, 2, Id, IdA and D

itself are all the ingredients of the deterministic automata functor D.

A language of regular expressions for polynomial coalgebras We now
associate a language of expressions ExpG with each polynomial functor G.

Definition 3 (Expressions). Let A be a finite set, B a finite join-semilattice
and X a set of fixed-point variables. The set Exp of all expressions is given by
the following grammar, where a ∈ A, b ∈ B and x ∈ X:

ε ::= ∅ | x | ε ⊕ ε | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) (2)

where γ is a guarded expression given by:

γ ::= ∅ | γ ⊕ γ | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) (3)

In the expression µx.γ, µ is a binder for all the free occurrences of x in γ. Vari-
ables that are not bound are free. A closed expression is an expression without
free occurrences of fixed-point variables x. We denote the set of closed expres-
sions by Expc.

The language of expressions for polynomial coalgebras is a generalization of
the classical notion of regular expressions: ∅, ε1 ⊕ ε2 and µx.γ play similar roles
to the regular expressions denoting empty language, the union of languages and
the Kleene star. The expressions l〈ε〉, r〈ε〉, l[ε], r[ε] and a(ε) refer to the left and
right hand-side of products and coproducts, and function application, respec-
tively. Next, we present a type assignment system for associating expressions
to polynomial functors. This will allow us to associate with each functor G the
expressions ε ∈ Expc that are valid specifications of G-coalgebras.

Definition 4 (Type system). We now define a typing relation ⊢⊆ Exp×PF×
PF that will associate an expression ε with two polynomial functors F and G,
which are related by the ingredient relation (F is an ingredient of G). We shall
write ⊢ ε : F ⊳ G for 〈ε,F,G〉 ∈ ⊢. The rules that define ⊢ are the following:

⊢ ∅ : F ⊳ G ⊢ b : B ⊳ G ⊢ x : G ⊳ G

⊢ ε : G ⊳ G

⊢ µx.ε : G ⊳ G

⊢ ε1 : F ⊳ G ⊢ ε2 : F ⊳ G

⊢ ε1 ⊕ ε2 : F ⊳ G

⊢ ε : G ⊳ G

⊢ ε : Id ⊳ G

⊢ ε : F2 ⊳ G

⊢ r[ε] : F1 3+ F2 ⊳ G

⊢ ε : F ⊳ G

⊢ a(ε) : FA
⊳ G

⊢ ε : F1 ⊳ G

⊢ l〈ε〉 : F1 × F2 ⊳ G

⊢ ε : F2 ⊳ G

⊢ r〈ε〉 : F1 × F2 ⊳ G

⊢ ε : F1 ⊳ G

⊢ l[ε] : F1 3+ F2 ⊳ G



We can now formally define the set of G-expressions: well-typed expressions
associated with a polynomial functor G.

Definition 5 (G-expressions). Let G be a polynomial functor and F an ingre-
dient of G. We define ExpF⊳G by:

ExpF⊳G = {ε ∈ Expc | ⊢ ε : F ⊳ G} .

We define the set ExpG of well-typed G-expressions by ExpG⊳G.

In [4], it was proved that the set of G-expressions for a given polynomial
functor G has a coalgebraic structure:

δG : ExpG → G(ExpG)

More precisely, in [4, 1], which we refer to for the complete definition of δG, the
authors defined a function δF⊳G : ExpF⊳G → F(ExpG) and then set δG = δG⊳G.

The coalgebraic structure on the set of expressions enabled the proof of a
Kleene like theorem.

Theorem 1 (Kleene’s theorem for polynomial coalgebras). Let G be a
polynomial functor.

1. For any ε ∈ ExpG, there exists a finite G-coalgebra (S, g) and s ∈ S such that
ε ∼ s.

2. For every G-coalgebra (S, g) and s ∈ S there exists an expression εs ∈ ExpG

such that εs ∼ s.

In order to provide the reader we intuition over the notions presented above,
we illustrate them with an example.

Example 1. Let us instantiate the definition of G-expressions to the functors of
streams R = B × Id (the ingredients of this functor are B, Id and R itself).
Let X be a set of (recursion or) fixed-point variables. The set ExpR of stream
expressions is given by the set of closed and guarded expressions generated by
the following BNF grammar. For x ∈ X:

ExpR ∋ ε ::= ∅ | ε ⊕ ε | µx.ε | x | l〈ε1〉 | r〈ε〉
ε1 ::= ∅ | b | ε1 ⊕ ε1

(4)

Intuitively, the expression l〈b〉 is used to specify that the head of the stream
is b, while r〈ε〉 specifies a stream whose tail behaves as specified by ε. For the
two element join-semilattice B = {0, 1} (with ⊥B = 0), examples of well-typed
expressions include ∅, l〈1〉 ⊕ r〈l〈∅〉〉 and µx.r〈x〉 ⊕ l〈1〉. The expressions l[1],
l〈1〉 ⊕ 1 and µx.1 are examples of non well-typed expressions for R, because the
functor R does not involve 3+, the subexpressions in the sum have different type,
and recursion is not at the outermost level (1 has type B ⊳ R), respectively.

By applying the definition in [4], the coalgebra structure on expressions δR

would be given by:



δR : ExpR → B × ExpR

δR(∅) = 〈0, ∅〉
δR(ε1 ⊕ ε2) = 〈b1 ∨ b2, ε

′
1 ⊕ ε′2) where 〈bi, εi〉 = δR(εi), i = 1, 2

δR(µx.ε) = δR(ε[µx.ε/x])
δR(l〈ε1〉) = 〈δB⊳R(ε1), ∅〉
δR(r〈ε〉) = 〈⊥B, ε〉

δB⊳R(∅) = ⊥B

δB⊳R(b) = b
δB⊳R(ε1 ⊕ ε′1) = δB⊳R(ε1) ∨ δB⊳R(ε′1)

The proof of Kleene’s theorem provides algorithms to go from expressions to
streams and vice-versa. We illustrate it by means of examples.

Consider the following stream:

s1 s2 s3

1 0 1

We draw the stream with an automata-like flavor. The transitions indicate the
tail of the stream represented by a state and the output value the head. In a
more traditional notation, the above automata represents the infinite stream
(1, 0, 1, 0, 1, 0, 1, . . .).

To compute expressions ε1, ε2 and ε3 equivalent to s1, s2 and s3 we associate
with each state si a variable xi and we solve the following system of 3 equations
in 3 variables:

ε1 = µx1.l〈1〉 ⊕ r〈x2〉 ε2 = µx2.l〈0〉 ⊕ r〈x3〉 ε3 = µx3.l〈1〉 ⊕ r〈x2〉

which yields the following closed expressions:

ε1 = µx1.l〈1〉⊕ r〈ε2〉 ε2 = µx2.l〈0〉⊕ r〈ε3〉 ε3 = µx3.l〈1〉⊕ r〈µx2.l〈0〉⊕ r〈x3〉〉

satisfying, by construction, ε1 ∼ s1, ε2 ∼ s2 and ε3 ∼ s3.
For the converse construction, consider the expression ε = (µx.r〈x〉) ⊕ l〈1〉.

We construct an automaton by repeatedly applying the coalgebra structure on
expressions δR, modulo ACI (associativity, commutativity and idempotency of
⊕) in order to guarantee finiteness.

Applying the definition of δR above, we have:

δR(ε) = 〈1, (µx.r〈x〉) ⊕ ∅〉 and δR((µx.r〈x〉) ⊕ ∅) = 〈0, (µx.r〈x〉) ⊕ ∅〉

which leads to the following stream (automaton):

ε (µx.r〈x〉) ⊕ ∅

1 0



Note that, throughout the paper, we will use streams as a basic example to
illustrate the definitions. It should be remarked that the framework is general
enough to include more complex examples, such as deterministic automata, au-
tomata on guarded strings or Mealy machines. The latter will be used as example
in Section 4.1.

3 An algebraic view on the coalgebra of generalized

regular expressions

We now have a (theoretical) framework which, given a functor G, allows for the
uniform derivation of 1) a language ExpG for specifying behaviors of G-systems,
and 2) a coalgebraic structure on ExpG, which provides an operational semantics
to the set of expressions. In the rest of the paper, we will extend and adapt the
framework of the previous section in order to:

– enable the implementation of a tool which allows for the automatic derivation
of 1) and 2) above

– enable automatic reasoning on equivalence of specifications; the reasoning
will be performed by the coinductive prover CIRC [15], which is also the core
of our target tool.

CIRC is based on algebraic specifications and, therefore, to reach our final goal
we need two things:

– algebraic specifications that model both the language and the coalgebraic
structure of expressions associated to polynomial functors to provide to CIRC

– a decision procedure, implemented in CIRC based on an equational entailment
relation, in order to check for the bisimilarity of expressions.

We further give the basic notions the reader needs in order to get an easier
understanding of the algebraic approach. An algebraic specification is a triple
E = (S,Σ,E), where S is a set of sorts, Σ is a many-sorted signature and E is a
set of conditional equations of the form (∀X) t = t′ if (

∧
i∈I ui = vi), where t, t′,

ui, and vi (i ∈ I – a set of indexes for the conditions) are Σ-terms with variables
in X. We say that the sort of the equation is s whenever t, t′ ∈ TΣ,s(X). Here,
TΣ,s(X) denotes the set of terms of sort s of the Σ-algebra freely generated by X.
If I = {} then the equation is unconditional and may be written as (∀X) t = t′.

Let ⊢ be the equational entailment (deduction) relation defined as in [8]. We
write E ⊢ e whenever equation e is deducible from E . We extend E by adding
the freezing operation − :s → Frozen for each sort s ∈ Σ, where Frozen is a
fresh sort. By t we represent the frozen form of a Σ-term t, and by e a frozen
equation of the shape (∀X) t = t′ if c. The entailment relation ⊢ is defined over
frozen equations as in [15]. The need for the frozen operator will become clear
in Example 2: without it the congruence rule could be applied freely leading to
the derivation of untrue equations.

Fig. 1 briefly illustrates the parallel between the coalgebraic concepts pre-
sented in [1, 4] and their algebraic correspondents. In what follows, we will



coalgebraic algebraic

⊢ ε : F ⊳ G EG ⊢ ε : F ⊳ G = true

ExpF ⊳ G {ε ∈ TΣ,Exp| EG ⊢ ε : F ⊳ G = true}

ExpG {ε ∈ TΣ,Exp| EG ⊢ ε : G ⊳ G = true}

F(ExpG) {σ ∈ TΣ,ExpStruct| EG ⊢ σ : F(Exp G) = true}

δF ⊳ G : ExpF ⊳ G → F(ExpG) δ ( ) : Ingredient Exp → ExpStruct

EG ⊢ σ : F(Exp G) = true, EG ⊢ σ′ : F(Exp G) = true

〈σ, σ′〉 ∈ F(cl(Rid)) EG ∪ R ⊢PF σ = σ′ (i)

cl(Rid) is a bisimulation EG ∪ R ⊢PF δG ⊳ G(R) (ii)

Fig. 1. Polynomial functors - coalgebraic vs. algebraic approach

provide some explanations on the algebraic side, in order to model what we
presented coalgebraically in the previous section, analyzing the components of
Fig. 1.

The algebraic specification of a polynomial functor. For the provided
functor G, the specification EG = (S,Σ,E) is incrementally built according to
the items common to all regular expressions, extended with the items specific to
G (e.g., the semilattices, the exponentiation alphabets). As an initial step in the
construction of EG, we use the general rule for translating definitions based on
Backus-Naur grammars into algebraic specifications. Each syntactical category
and vocabulary is considered as a sort, and each production is considered as
a constructor operation or a subsort relation. For instance, according to the
grammar of generalized regular expressions in Definition 3, we have: a sort Exp
representing expressions ε, FixpVar the sort for the vocabulary of the fixed-point
variables, Alph the sort for the elements of the alphabets, and Slt the sort for
the elements of the semilattices. Moreover, we consider constructor operations
for all the productions. For example, the production ε :: = ε ⊕ ε is represented
by an operation ⊕ : Exp Exp → Exp. Using a similar mechanism, we specify:

– structured expressions σ, the counterpart of F(ExpG), defined by

σ ::= ε | 〈σ, σ〉 | k1(σ) | k2(σ) | ⊥ | ⊤ | λx.(a,F ⊳ G, σ)

we denote the sort of this kind of expressions by ExpStruct (the construction
λx.(a,F ⊳ G, σ) has as coalgebraic correspondent a function f ∈ FA(ExpG))

– polynomial functors defined by grammar (1); the associated sort is Functor

– functor ingredients given in Definition 2; the corresponding sort is Ingredient

The set ExpF ⊳ G of expressions of type F ⊳ G is algebraically represented by
the set of Σ-terms ε of sort Exp, such that EG ⊢ ε : F ⊳ G = true. The type-
checking relation in Definition 4 is given by an operation : :Exp Ingredient →
Bool and an equation for each inference rule defining this relation. For example

⊢ ε1 : F ⊳ G ⊢ ε2 : F ⊳ G

⊢ ε1 ⊕ ε2 : F ⊳ G



is represented by the equation ε1 ⊕ ε2 : F ⊳ G = ε1 : F ⊳ G ∧ ε2 : F ⊳ G. For the
sake of notation, algebraically we write ε : F ⊳ G to represent expressions of type
F ⊳ G.

The structured expressions σ ∈ F(ExpG) are given by the set of Σ-terms of
sort ExpStruct, such that EG ⊢ σ : F(Exp G) = true (here : is the extension of
the type-checking operator to structured expressions). Algebraically, we write
σ : F(ExpG) to denote that σ is an element of F(ExpG).

The function δG, which provides the coalgebraic structure of G-expressions,
has the algebraic correspondent δ ∈ Σ, a function parameterized with the functor
ingredients.

Recall from Section 2 that a relation R ⊆ ExpG ⊳ G×ExpG ⊳ G is a bisimulation

if and only if (s, t) ∈ R ⇒ 〈δG ⊳ G(s), δG ⊳ G(t)〉 ∈ G(R). In order to enable the
algebraic framework to decide bisimilarity of G-expressions, we define a new
entailment relation for polynomial functors ⊢PF (the definitions of G and ⊢PF

are closely related).

Definition 6. The entailment relation ⊢PF is the extension of ⊢ with the fol-
lowing inference rules, which allow a restricted contextual reasoning over the
frozen equations of structured expressions:

EG ⊢PF σ1 = σ′
1 EG ⊢PF σ2 = σ′

2

EG ⊢PF 〈σ1, σ2〉 = 〈σ′
1, σ

′
2〉

(5)

EG ⊢PF σ = σ′

EG ⊢PF ki(σ) = ki(σ
′) (i = 1, 2)

(6)

EG ⊢PF f(a) = g(a) , for all a ∈ A

EG ⊢PF f = g
(7)

Let G be a polynomial functor, and R a binary relation on the set of G-
expressions. We will make use of the conventions:

– Rid = R∪ {(ε, ε) | EG ⊢ ε : G ⊳ G = true}
– cl(R) is the closure of R under transitivity, symmetry and reflexivity

– R =
⋃

e∈R{ e } (application of the freezing operator to all elements of R)

– EG ∪ R is a shorthand for (S,Σ,E ∪ { ε = ε′ | (ε, ε′) ∈ R})
– δG ⊳ G(ε = ε′) denotes the equation δG ⊳ G(ε) = δG ⊳ G(ε′)

– 〈σ, σ′〉 ∈ G(R) is a shorthand for: (σ, σ′) is an element of the set S, where
EG ⊢ G(R) = S (here, G(R) ⊆ TΣ,ExpStruct× TΣ,ExpStruct)

The following theorem and corollary correspond to the equivalences (i), and
respectively (ii), in Fig. 1. Theorem 2 formalizes the connection between the
inductive definition of G (on the coalgebraic side) and ⊢PF (on the algebraic side),
hence enabling the definition of bisimulations in algebraic terms, in Corollary 1.

Theorem 2. Consider a polynomial functor G and F an ingredient of G. If R is
a binary relation on the set of G-expressions, and σ, σ′ : F(ExpG) then 〈σ, σ′〉 ∈

F(cl(Rid)) iff EG ∪ R ⊢PF σ = σ′ .



Proof. The proof is by induction on the structure of F. Take, for example the
direct implication “ ⇒ ”. The base case F = B holds by the reflexivity of ⊢PF .
The case F = Id follows immediately according to an auxiliary result stating
that if (ε, ε′) ∈ cl(Rid) then EG ∪ R ⊢PF ε = ε′ . Inductive steps hold by
the rules (5), (6) and (7), defining ⊢PF . A similar reasoning is used for proving
“ ⇐ ”. ⊓⊔

Corollary 1. Let G be a polynomial functor. If R is a binary relation on the
set of G-expressions, then cl(Rid) is a bisimulation iff EG ∪ R ⊢PF δG ⊳ G(R) .

Proof. The result follows immediately according to the equivalences:
cl(Rid) is a bisimulation ⇔(Definition 1) (∀(ε, ε′) ∈ cl(Rid)).〈δG ⊳ G(ε), δG ⊳ G(ε′)〉 ∈

G(cl(Rid)) ⇔(Theorem 2) EG ∪ R ⊢PF δG ⊳ G(cl(Rid)) ⇔(def.cl(Rid ),⊢PF ) EG ∪

R ⊢PF δG ⊳ G(R) . ⊓⊔

4 A decision procedure for bisimilarity

In this section we describe how the coinductive theorem prover CIRC [14] can
be used to implement a decision procedure for the bisimilarity of generalized
regular expressions.

CIRC can be seen as an extension of Maude with behavioral features and its
implementation is derived from that of Full-Maude. In order to use the prover,
one needs to provide a specification (a CIRC theory) and a set of goals. A CIRC
theory B = (S, (Σ,∆), (E, I)) consists of an algebraic specification (S,Σ,E),
a set ∆ of derivatives (= Σ-contexts), and a set I of equational interpolants,
which are expressions of the form e ⇒ {ei | i ∈ I} where e and ei are equations
(for more information on equational interpolants see [9]). A derivative δ ∈ ∆ is
a Σ-term containing a special variable ∗:s, where s is the sort of the variable ∗.
If e is an equation t = t′ with t and t′ of sort s, then δ[e] is δ[t/∗:s] = δ[t′/∗:s].
Let ∆[e] denote the set {δ[e] | δ ∈ ∆ appropriate for e}.

CIRC implements the coinductive proof system given in [15] using a set of
reduction rules of the form (B,F ,G) ⇒ (B,F ′,G′), where B represents a specifi-
cation, F is the coinductive hypothesis (a set of frozen equations) and G is the
current set of goals. The freezing operator is defined as described in Section 3.
Here is a brief description of these rules:

[Done]: (B,F , {}) ⇒ ·
Whenever the set of goals is empty, the system terminates with success.

[Reduce]: (B,F ,G ∪ { e }) ⇒ (B,F ,G) if B ∪ F ⊢ e
If the current goal is a ⊢-consequence of B ∪ F then e is removed from the
set of goals.

[Derive]: (B,F ,G ∪ { e }) ⇒ (B,F ∪ { e },G ∪ ∆[e] ) if B ∪ F 6⊢ e
When the current goal e has the same sort with the special variable ∗, and it is
not a ⊢-consequence, it is added to the specification and its derivatives to the
set of goals. In order to simplify the notation, we write δ(e) for δ(ε) = δ(ε′),
whenever e is of shape ε = ε′.



[Simplify]: (B,F ,G ∪ { θ(e) }) ⇒ (B,F ,G ∪ { θ(ei) | i ∈ I})
if e ⇒ {ei | i ∈ I} is a simplification rule from the specification
and θ : X → TΣ(Y ) is a substitution.

[Fail]: (B,F ,G ∪ { e }) ⇒ failure if B ∪ F6⊢ e ∧ e:Bool
This rule stops the reduction process with failure whenever the current goal
e is of type Bool and the corresponding normal forms are different.

It is worth noting that there is a strong connection between a CIRC proof
and the construction of a bisimulation relation. We emphasize this fact and the
importance of the freezing operator with a simple example.

Example 2. Consider the case of infinite streams. The set Bω of infinite streams
over a set B is the final coalgebra of the functor R = B × Id, with a coalgebra
structure given by hd and tl, the functions that return the head and the tail of
the stream, respectively. Our purpose is to prove that 0∞ = (00)∞. Let z and zz
represent the stream on the left hand side and, respectively, on the right hand
side. These streams are defined by the equations: hd(z) = 0, tl(z) = z, hd(zz) =
0, tl(zz) = 0:zz. In Fig. 2 we present the correlation between the CIRC proof
and the construction of the bisimulation relation. Note how CIRC collects the
elements of the bisimulation as frozen hypothesis.

CIRC proof Bisimulation construction

(add goal z = zz .)
z zz (zz)′

0 0 0

(B, {}, { z = zz }) F = {}; z ∼ zz ?

[Derive]
−→

 

B, { z = zz },

(

hd(z) = hd(zz)

tl(z) = tl(zz)

)!

F = {(z, zz)};
z

0
−→z

zz
0

−→(zz)′

[Reduce]
−→ (B, { z = zz }, { z = 0:zz }) F = {(z, zz)}; z ∼ (zz)′ ?

[Derive]
−→

 

B,



z = zz

z = 0:zz

ff

,

(

hd(z) = hd(0:zz)

tl(z) = tl(0:zz)

)!

F = {(z, zz), (z, (zz)′)};
z

0
−→z

(zz)′
0

−→zz

[Reduce]
−→

„

B,



z = zz

z = 0:zz

ff

, {}

«

F = {(z, zz), (z, (zz)′)} X

Fig. 2. Parallel between a CIRC proof and the bisimulation construction

Let us analyze what happens if the freezing operator − would not be used.
Suppose the circular coinduction algorithm would add the equation z = zz in
its unfrozen form to the hypothesis. After applying the derivatives we obtain
the goals hd(z) = hd(zz), tl(z) = tl(zz). At this point, the prover could use the
freshly added equation, and according to the congruence rule, both goals would
be proven directly, though we would still be in the process of showing that the



hypothesis holds. By following a similar reasoning, we could then also prove
that 0∞ = 1∞! In order to avoid these situations, the hypotheses are frozen
(i.e., their sort is changed from Stream to Frozen) and this stops the application
of the congruence rule, forcing the application of the derivatives according to
their definition in the specification. Therefore, the use of the freezing operator
is vital for the soundness of circular coinduction.

Next, we focus on using CIRC for automatically reasoning on the equivalence
of G-expressions. As we will show, the implementation of both the algebraic
specifications associated to polynomial functors and the equational entailment
relation described in Section 3, is immediate. Given a polynomial functor G, we
define a CIRC theory BG = (S, (Σ,∆), (E, I)) as follows:

– (S,Σ,E) is EG

– ∆ = {δG ⊳ G(∗:Exp)}
– I consists of the following equational interpolants:

{〈σ1, σ2〉 = 〈σ′
1, σ

′
2〉} ⇒ {σ1 = σ′

1, σ2 = σ′
2} (8)

{ki(σ) = ki(σ
′)} ⇒ {σ = σ′} (9)

{f = g} ⇒ {f(a) = g(a) | a ∈ A} (10)

The interpolants (8), (9) and (10) in I extend the entailment relation ⊢ from
the system above to ⊢PF (see Definition 6) as follows:

E ⊢ e

E ⊢PF e

E ⊢PF {ei | i ∈ I}

E ⊢PF e
if e ⇒ {ei | i ∈ I} in I

Theorem 3 (Soundness). Let G be a polynomial functor, and G a binary rela-

tion on the set of G-expressions. If (BG,F0 = {},G0 = G )
∗
⇒ (BG,Fn,Gn = {})

using [Reduce], [Derive] and [Simplify], then G ⊆∼G.

Proof. The idea of the proof is to identify a bisimulation relation F̃ s.t. G ⊆ F̃ .
On a closer look, based on the reduction rules implemented in CIRC, it is quite
easy to see that the initial set of goals G is a ⊢PF -consequence of BG ∪ F ,
where F is the set of hypothesis (or derived goals) collected during a proof
session. In other words, G ⊆ cl(Fid). So, if we anticipate a bit, we should show

that F̃ = cl(Fid) is a bisimulation, i.e., according to Corollary 1, BG ∪ F ⊢PF

δG ⊳ G(F) . This is achieved by proving that BG ∪ F ⊢PF Gi(i = 0..n) (note

that δG ⊳ G(F) ⊆
⋃

i=0..n Gi, according to [Derive]). The demonstration is by
induction on j, where n − j is the current proof step, and by case analysis on
the CIRC reduction rules applied at each step. ⊓⊔

Remark 1. The soundness of the proof system we describe in this paper does not
follow directly from Theorem 3 in [15]. This is due to the fact that we do not have
an experiment-based definition of bisimilarity. So, even though the mechanism
we use for proving BG ∪ F ⊢PF δG ⊳ G(F) is similar to the one described in
[15], the current soundness proof is conceived in terms of bisimulations (and not
experiments).



Remark 2. The entailment relation ⊢PF CIRC uses for checking for the equiv-
alence of generalized regular expressions is an instantiation of the parametric
entailment relation ⊢ from the proof system in [15]. This approach extends CIRC
to automatically reason on a large class of systems that can be modeled as
coalgebras of polynomial functors.

As already stated, our final purpose is to use CIRC as a decision procedure for
the bisimilarity of generalized regular expressions. That is, whenever provided
a set of expressions, the prover stops with an yes/no answer w.r.t. their equiva-
lence. In this context, an important aspect is that the sub-coalgebra generated by
an expression ε ∈ ExpG by repeatedly applying δG ⊳ G is, in general, infinite. Take
for example the polynomial functor G = B × Id associated to infinite streams,
and consider the property µx.∅ ⊕ r〈x〉 = µx.r〈x〉. In order to prove this, CIRC
builds an infinite proof sequence by repeatedly applying δG ⊳ G as follows:

δG ⊳ G(µx.∅ ⊕ r〈x〉) = δG ⊳ G(µx.r〈x〉)
↓

〈0, ∅ ⊕ (µx.∅ ⊕ r〈x〉)〉 = 〈0, µx.r〈x〉〉

δG ⊳ G(∅ ⊕ (µx.∅ ⊕ r〈x〉)) = δG ⊳ G(µx.r〈x〉)
↓

〈0, ∅ ⊕ ∅ ⊕ (µx.∅ ⊕ r〈x〉)〉 = 〈0, µx.r〈x〉〉 [. . .]

In this case, the prover would never stop. It is shown in [4, 1] that the axioms
for associativity, commutativity and idempotency (ACI) guarantee finiteness of
the generated sub-coalgebra (note that these axioms have also been proven sound
w.r.t. bisimulation). ACI properties can easily be specified in CIRC as the prover
is an extension of Maude, which has a powerful matching modulo ACUI capabil-
ity. The idempotency is given by the equation ε⊕ ε = ε, and the commutativity
and associativity are specified as attributes of ⊕.

Theorem 4. Let G be a set of proof obligations over generalized regular expres-
sions. CIRC can be used as a decision procedure for the equivalences in G, that
is, it can assert whenever a goal (ε1, ε2) ∈ G is a true or false equality.

Proof. The result is a consequence of the fact that by implementing the ACI ax-
ioms in CIRC, the set of new goals obtained by repeatedly applying the derivative
δ is finite. In these circumstances, whenever CIRC stops according to the reduc-
tion rule [Done], the initial proof obligations are bisimilar. On the other hand,
whenever it terminates with [Fail], the goals are not bisimilar. ⊓⊔

4.1 A CIRC-based tool

We have implemented a tool that, when provided with a functor G, automat-
ically generates a specification for CIRC which can then be used in order to
automatically check whether two G-expressions are bisimilar. The tool is imple-
mented as a metalanguage application in Maude. It can be downloaded from
http://circidei.info.uaic.ro/functorizer/functorizer.maude.



Let us now show another example: Mealy machines, which are coalgebras
for the functor (B × Id)A. In what follows we show how CIRC can be used in
conjunction with our tool in order to act as a decision procedure when checking
for the equivalence of two expressions.

Formally, a Mealy machine is a pair (S, α) consisting of a set S of states
and a transition function α : S → (B × S)A, which for each state s ∈ S and
input a ∈ A associates an output value b and a next state s′. Typically, we write

α(s)(a) = 〈b, s′〉 ⇔ s
a|b

s′ . As an example, consider the Mealy machine
depicted in Fig. 3, where all the states are bisimilar.

s1 a|0

b|0

a|0

b|0

b|0a|0 s2 b|0a|0

Fig. 3. Mealy machine: s1 ∼ s2

We first show how to check for the
equivalence of two expressions characteriz-
ing the states s1 and s2 from the Mealy
machine in Fig. 3. These expressions, which
could be computed, using the algorithm in
Kleene’s theorem, are ε1 = a(r〈µx.a(r〈x〉) ⊕
b(∅)〉) ⊕ b(r〈µy.a(r〈y〉) ⊕ b(r〈y〉)〉) and ε2 =
µx.a(r〈x〉) ⊕ b(r〈x〉), respectively.

In order to check for the bisimilarity of ε1 and ε2 we load the tool and define
the semilattice B = {0} and the alphabet A = {a, b}:

(jslt B is 0 bottom 0 . 0 v 0 = 0 . endjslt)

(alph A is a b endalph)

We provide the functor G using the command (functor (B x Id)^A .). The
command (set goal ... .) specifies the goal we want to prove:

(set goal a(r< µ X:FixpVar . a(r< X:FixpVar >) (+) b(∅)>) (+)
b(r< µ Y:FixpVar . a(r< Y:FixpVar >) (+) b(r< Y:FixpVar >) >) =
µ X:FixpVar . a(r< X:FixpVar >) (+) b(r< X:FixpVar >) .)

In order to generate the CIRC specification we use the command (generate

coalgebra .). Next we need to load CIRC along with the resulting specification
and start the proving engine using the command (coinduction .).

As already shown, behind the scenes, CIRC builds a bisimulation relation
that includes the initial goal. The proof succeeds and the output consists of (a
subset of) this bisimulation:

Proof succeeded.
Number of derived goals: 3
Number of proving steps performed: 82
[...]
Proved properties:
[...]
a(r< µ X . a(r< X >) (+) b(∅) >) (+)
b(r< µ Y . a(r< Y >) (+) b(r< Y >) >)) =
µ X . a(r< X >) (+) b(r< X >)

As previously mentioned, CIRC is also able to detect when two expressions
are not equivalent. Take, for instance, the expressions µx.a(r〈a(l〈1〉) ⊕ x〉) and
a(r〈a(l〈1〉)〉) ⊕ µx.a(r〈x〉), characterizing the states s1 and s3 from the Mealy



machines in Fig. 4. After following some steps similar to the ones previously enu-
merated, the proof fails and the output message is Visible goal [...] failed

during coinduction.

s1

a|0

s2
a|1

s3

a|0

s4

a|1

s5 a|0

Fig. 4. Mealy machines: s1 6∼ s3

5 Conclusions and future work

One of the major contributions of this paper is that we exploited an encoding
of coalgebra into algebra, and provided a decision procedure for the bisimilar-
ity of generalized regular expressions. In order to enable the implementation of
the decision procedure, we formalized the equivalence between the coalgebraic
concepts associated to polynomial coalgebras [4, 3] and their algebraic correspon-
dents. This led to the definition of algebraic specifications (EG) that model both
the language and the coalgebraic structure of expressions. Moreover, we defined
an equational deduction relation (⊢PF ), used on the algebraic side for reasoning
on the bisimilarity of expressions.

The most important result of the parallel between the coalgebraic and al-
gebraic approaches is given in Corollary 1, which formalizes the definition of
the bisimulation relations, in algebraic terms. Actually, this result is the key for
proving the soundness of the decision procedure implemented in the automated
prover CIRC [14]. As a coinductive prover, CIRC builds a relation F closed un-
der the application of δG with respect to ⊢PF (EG ∪ F ⊢PF δG(F) ), hence
automatically computing a bisimulation the initial proof obligations belong to.

The approach we present in this paper enables CIRC to perform a reasoning
based on bisimulations (instead of experiments [15]). This way, the prover is
extended to checking for the bisimilarity in a large class of systems that can be
modeled as G-coalgebras. Note that the constructions above are all automated
– the (non-trivial) CIRC algebraic specification describing EG, together with the
interpolants implementing ⊢PF are generated with the Maude tool presented in
Section 4.1.

As future work, we intend to extend our proof system to Kripke polynomial
coalgebras and to exploit more of the axioms in [3] with the purpose of improving
the prover’s time performance (our experience so far shows that by adding the
axiom for the distribution of the ∅ expression through the constructors, the
prover works significantly faster).
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puter Science, 2010. URL:http://www.infoiasi.ro/ tr/tr.pl.cgi.

10. B. Jacobs. Introduction to coalgebra. towards mathematics of states and observa-
tions, 2005.

11. S. Kleene. Representation of events in nerve nets and finite automata. Automata

Studies, pages 3–42, 1956.
12. D. Kozen. A completeness theorem for kleene algebras and the algebra of regular

events. In LICS, pages 214–225. IEEE Computer Society, 1991.
13. D. Kozen. Myhill-nerode relations on automatic systems and the completeness of

kleene algebra. In A. Ferreira and H. Reichel, editors, STACS, volume 2010 of
Lecture Notes in Computer Science, pages 27–38. Springer, 2001.

14. D. Lucanu, E.-I. Goriac, G. Caltais, and G. Roşu. CIRC : A behavioral verification
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