Automated Proving of the Behavioral Attributes *

Gheorghe Grigoras Dorel Lucanu Georgiana Caltais
grigoras@info.uaic.ro dlucanu@info.uaic.ro gcaltais@info.uaic.ro

Eugen-loan Goriac
egoriac@info.uaic.ro

Faculty of Computer Science
Alexandru loan Cuza University
lasi, Romania

Abstract coinduction, context induction, circular coinductionjreo
ductive types. Among the tools supporting (some of) these
Behavioral equivalence is indistinguishably under ex- proof techniques we mention here Coq (coinductive types)
periments: two elements are behavioral equivalent iff each [3], Isabelle/HOL [11], CIRC (circular coinduction) [14],
experiment returns the same value for the two elements. BeBOBJ (circular coinduction) [18], Concurrency Workbench

havioral equivalence can be proved by coinductiamRC (bisimilarity) [6].

is a theorem prover which implements circular coinduction, Inthis paper we refer the behavioral equational logic as a
an efficient coinductive technique. Equational attribuges specification language, the circular coinduction proohtec
fer properties like associativity, commutativity, unigtc. nigque [19], and its implementaticDIRC [13]. We present

If these attributes are behaviorally satisfied, then we re- the mechanisnCIRC uses for automated proving of the at-
fer them as behavioral attributes. Two problems regarding tributesassociativity commutativity identity and/oridem-
these properties are important: expressing the commutativ potency(ACUI) characterizing behaviorally defined opera-
ity as a rewrite rule leads to non-termination and their use tors over infinite data structures.

as attributes requires a careful handling in the provingpro

cess. In this paper we present how these attributes are autoy\jotjyating example Let us consider infinite binary trees
matically checked il€IRC and we prove that this extension \yith information in nodes from the boolean ring, =

is sound. (Z3,4,%,0,1). Since these trees carry infinite informa-

tion we prove properties over them in termshafhavioral

equivalencelnfinite binary trees are behaviorally specified
1 Introduction by means of diddensortTreefor trees, avisiblesort Z, for

the information in the nodes, the equational specificatfon o

Proving properties of systems involving infinite amount Z2 @nd the following thre@bservers
of information became a subject of high interestin computer < root : Tree — Zs, returning the information from the
science in the last years. Lazy functional programs, cencur root of the tree;
rency, transition and reactive systems, software veriinat « left,right : Tree — Tree returning the left, respec-
and analysis are only several fields where the infinite data tively the right subtrees of a tree
structures and other infinite objects are frequently usee. T
specification of such systems is given in different settings
process algebra (see, e.g., [16]), coalgebra [1, 12], behav
ioral equational logic [4, 9, 18, 17], type theory [7], terapo
ral logic [8] and so on. The most known proof techniques
used to prove properties for these systems are bisimilarity

Two trees are behaviorally equivalent if they cannot be dis-
tinguished under all possible experimernits, 77 = T if
C[T1] = C[T5] for each experiment'. Here are several ex-
amples of experimentsioot (x: Tree), root(left(x: Tree)),
root(right (x: Tree)), root(left(left(x: Tree))) and so on. In
CIRC, *:Tree is a generic notation used for representing
*This work is partially supported by the PNII grant CNCSIS IE393 variables of hidden sort (in our case, the sboee. Note

that an experiment always returns a visible (data) value in root(T1 + T2) = root(T2+T1)
Zz-Th . ductively defined b left(T1 + T2) = left(T2 + T1)

e operations over trees are coinductively defined by . .
means of the observers. For instance, the addition of trees right(T'1 + T2) = right(T2 + T1)

is defined as follows: root(T1 4 (T2 4 T3)) = root((T'1 +12) +173)
root(T + Tb) = root(T}) + root(Ts) left(T1+ (T2 +T3)) = left(T1+T2) + T3)
left(Ty + T%) = left(Ty) + left(T3) right(T1+ (T2 +T3)) = right (T1+1T2) + T3)

ight(Ty + Ty) = right(T}) + right(T2) We noticed that it is not sufficient to add the equation
Note that the operatot is overloaded: it denotes the ad- jn step 2. Sometimes, due to the new equations, our term
dition in the boolean ring and the addition of infinite trees. rewriting system is not confluent, so the equa”ties obthine
CIRC uses circular coinduction to prove behavioral equiv- py applying the Knuth-Bendix completion procedure [2]
alenceT; = T5,. Briefly, the algorithm works as follows: need to be added as well.

First try to deducel; = T, using the equations of the For instance, the terd'feft(Tl) + left(T, + T3)| can be
specification as rewrite rules. If it succeeds, then the al- reduced to both:
gorithm successfully terminates. Otherwise, a frozen form = — e .
ST, 7, 1 111 add s comuce g (1= BT L O G ascrana'
esis to the specification and three new subgoals are gener- ; AC AC .
ated: root(77) = root(T3), left(71) = left(T5), right(7y) = * = |§f'[_(T1) + Ieft(TQ_).+ Ieft(T3)‘, by applying
right(7z). By freezing the coinductive hypothesis, we for- the definition of the addition and (2)
bid its use under contexts, avoiding in this way unsound These two terms form a critical pair, therefore we need to
deductions. In order to allow the use of the coinductive add the equatiofi’] = 77 in order to obtain a confluent term
hypotheses, the goals are handled in the frozen form. Ifrewriting system.

Ty = T5 expresses the commutativity of the additiae,,

T +T" = T’ + T, then the specification becomes non- In this paper we formally present the extensiorCtRC
terminating after the frozen form of the coinductive hypoth with the capability of automatically proving behavioral at
esis is added. Therefore the above algorithm does not workiributes and we prove that the extension is sound.

for properties such as commutativity. We decided to handle The paper is organized as follows. Section 2 briefly re-
the properties like commutativity, associativity, unityda calls the behavioral algebraic specifications and the notio
idempotency as distinguished goals. When provided a goalof behavioral equivalence and introduces the infinite lyinar
such as trees as the running example. Section 3 presents proce-
dures used byIRC to automatically prove certain behav-
ioral properties. Section 4 describes the mechanism ofprov
expressing the associativity and commutativity of the ad- ing behavioral attributes.

dition operator, the expanding consist of the following ac-
tions:

1. add to the specification a new operatiop*® _ which
is declared with the same attributes as the goal (here, \io assume the reader familiar with basics of many

associativity and_ F:orr.lmutatlwty);) sorted algebraic specifications [10] and only briefly recall
2. add to the specification a set of frozen equations thatqyr notation.

express the freezing of the coinductive hypotheses in | et 37 be an algebraic signature consisting of a$etf

op _+_: Tree Tree -> Tree [assoc commi .

2 Behavioral Algebraic Specifications

terms of the new operator: sortsand anS* x S-indexed se0p(%) = (Op(X)w.s | w €
S*,s € S) of operations Let X be a fixedS-indexed set of
— AC
L+ =T +™ 1} (1) variables Tx(X) is theX-algebra of terms with variables

T+ (Th + T3)| = |T1 +ACT, LAC T3| (2) in X. A X-equationis a sent_encéVX) t=t | f ¢, where
A A t andt’ areX-terms over variableX C X’ having the same
(T + o) + T3] = [T H*° T +7° 15| (3) result sort, and is theconditionof the equation consisting

where the parentheses in the right hand side are noof a finite set of pairgu;, v;) of terms over variablesy.

longer necessary because the operafift is associa- The condition can be empty, case in which the equation is
ong yE i P unconditional and written a&/ X) t = ¢'.
tive and commutative;

)) Given a setly of X-equations, we say that’aequation
3. compute the new subgoals, in their frozen form, corre-

:) o : e is deducible(inferable) fromFE, and writeE = e, if e
tspt;)ntdlng to the equations defining the operational at- ., he ghtained by applying the following rules for a finite
ributes:

number of times:

1. AssumptionE =y e, for eache in E.
2. Reflexivity E =5, (VX)t = t.

3. Transitivity. If E |y (VX)t1 = t; and E [y
(VX) to = t3, thenE ':E (VX) t1 = ts.

. Substitution Givene € FE such thate is either
(VX)t1 = toifcor (VX)to = t;ife, and a
substitutiond : Tx(X) — T%(Y) such thatF =
(VY)0(u;) = 6(v;) for each(u;, v;) in ¢,
thenE = (VY)0(t1) = 0(t2).

. CongruenceGiven a contexty € Tx(Y U {x}) with
x ¢ Y, e € F such thak is either(vVX)t; =ty if ¢
or (VX) to =t if c,
if &): ethenE ': (VX @] Y) to[tl] = ﬁo[fg] if c.

In the last rulef[t;] denotes the term obtained framby
replacingt; for the distinguished variable. We omit to
write the subscripE for the deduction relation whenever it
is understood from the context.

A derivativeis a termé € Tx(X U {x:h}), wherex:h
is a special variable of soft. A behavioral specification
is a pair(B,A), whereB = (S,%, E) is a many sorted
equational specification amfl is a set of derivatives. We
distinguish two disjoint subsetg, H C S, whereH is the
subset ohidden sortsh corresponding to the star variables
in the derivatives, and = S\ H is the subset ofisi-
ble sorts We assume that the equatiafidave only visible
conditions. AA-experimentor the hidden sork € H isin-
ductively defined as follows: each derivative for the hidden
sorth € H with visible result sort is @\ -experiment for;
if C'is aA-experiment forh’ andé a behavioral operation
for h with result sorth’, thenC'[d] is a A-experiment forh.

As above(”'[d] denotes the term obtained frathby replac-
ing ¢ for the distinguished variable:h’. A A-experiment
C[x:h] can be seen as a partially defineduation trans-
formere — Cle]: if e is an equation(VX)t = ¢’ if ¢ of
sorts, thenCe] is the equatioivXUY') C[t] = C[t'] if ¢,
whereY is the set of non-star variables occurringif:s].
Moreover,Ale] = {dle] | 6 € A}.

The notion obehavioral equivalencis an inherently se-
mantic one: there is a behavioral equivalence relation on
each model which can be defined as “indistinguishably un-
der experiments”. For technical simplicity, we here prefer
to avoid introducing models, so we give an alternative proof
theoretic definition. Le{3, A) be a behavioral specifica-
tion. We say that3 behaviorally satisfiegn equatiore,
written B I+ e, iff:

* B E eif eisvisible, and
* B = Cle] for each appropriata-experimentC' if e is
hidden.

The behavioral equivalencef 55, is the set of equations
{e| Bl e} [19].

Example: Infinite Binary Trees. We use theCIRC syn-

tax for presenting the behavioral specifications. Sibi¢eC
extends Maude [5] with behavioral features, the equational
part of these specifications uses only the Maude syntax.
The behavioral specification of infinite binary trees can be
specified as follows. First, the specification module of the
boolean ringZ; is given:

theory BRING is

sort Z2 .

ops 01 : -> 272 .

op _+_: Z2 Z2 -> Z2 [assoc commid: O]
op _X_ : Z2 Z2 -> Z2 [assoc conm
op ~_ : 22 -> 72 .

eq 1 +1=0

eq (0 x X:Z2) =0 .

eq (1 x Xz2) = X Z2 .

eq ~0=1.

eq ~1=0.

eq ~ ~ XZ2 = X722 .

endt heory

The module with the equations specifying the infinite binary
trees is as follows:

theory EQ TREE is
i ncludi ng BRI NG .

sort Tree .

vars T T1 T2 : Tree .

var X : Z2 .

op root : Tree -> Z2 .

ops left right : Tree -> Tree .

op zero : -> Tree . op one : -> Tree .

eq root(zero) = 0 . eq root(one) =1 .

eq left(zero) = zero . eq left(one) = one .

eq right(zero) = zero . eq right(one) = one .

op ~_ : Tree -> Tree . op thue : -> Tree .

eq root (~T) =~root(T) . eq root(thue) = 0 .

eq left(~T)=~left(T) . eq left(thue) = thue.

eq right(~T) =~right(T) . eq right(thue)=thue+
one .

op _+_: Tree Tree -> Tree .

eq root (Tl + T2) = root(Tl) + root(T2) .

eq left(Tl + T2) = left(Tl) + left(T2) .

eq right(Tl + T2) = right(T1) + right(T2) .

endiheory

The derivatives (behavioral operations) for infinite traes
declared in a separa@®@RC theory module, which extends
the functionality of a Maude theory module.
ctheory TREE is

i ncl udi ng EQ TREE .

derivative root(*: Tree) .

derivative left(*:Tree) .

derivative right(*:Tree) .
endct heory

The sortTreeis a hidden sort while the so#; is visible
with respect toTREE specification. Recall that the result
sort of the experiments is always visible. In this situation
an experiment is defined as:

1. root(*:Tree)is an experiment;

2. if C[+:Tred is an experiment the@'[left(x:Tree)] and
C[right(x:Tree)] are experiments.

For instance, the termsoot (x: Tree), root(left(x:Tree)),
root (right (x: Tree)), root(left(left(x:Tree))) are several
examples of experiments. Two treés and7; arebehav-
iorally equivalentiff root(77) = root(1»), root(left(77)) =
root(left(7%)), root(right(71)) = root(right(73)), and so
on.

3 CIRC

CIRC is a tool for automated inductive and coinduc-

tive theorem proving, created as a behavioral extension of

Maude.
The circular coinduction engine afIRC implements

the proof system presented in [19] by the reduction rules (
given in Fig. 1. Since the equational deduction is recur-

sive enumerableIRC uses the decidable entailmehk,
VX))t =t i f Ner(u; = v;) iff nf(t) = nf(¢'), where
nf(t) is computed as follows:

—the variablesX are turned into fresh constants;

— the condition equalities; = v; are added as equations
to the specification;

denotes the sdtjfe] | 6 € A}.

[Normalize] — removes the current goal from the set of
proof obligations and adds its normal form as a new goal.
The normal formnf(e) of an equatione of the form
(VX)t =t i f Ner(u; = v;)is (VX)nf(t) = nf (') i f
Nie1(u; = v;), where the constants from the normal forms
are turned back into the corresponding variables.

[Fail] — stops the reduction process with failure whenever
the current goat is visible and the corresponding normal
forms are different.

The wrapping operatar; : s — Frozen is imple-
mented inCIRC as the operatoj* _*] . For an equation
(VX) t =t if ¢, the corresponding frozen equation is:
VX)[*t*] = [*t'*] if ¢, where[* _x] : Sort(t) —
rozen.

A proof of the following theorem can be found in [15].

Theorem 1 (soundness of CIRC) Let (5, A) be a behav-

ioral specification and letj be a set of frozen equations.
If (B,0,G) =* (B,F,0) applying the reduction rules in
Fig. 1, thenB lI- G.

—the equations in the specification are oriented and used We present a session @IRC for simultaneous proving

as rewrite rules.
The reduction rules are defined over triples, F,G),
whereB represents the (original) algebraic specificatidn,
is the set of frozen axioms argflis the current set of proof
obligations.

[Done]

(B, F,0) = -

[Reduce]

(B, F,gu{el}) = (B,F,G)if BUFk.e

[Derive]

(B, F,GU{E}) = (B,F,GU{[A(e)]})
i f BUFi£._eandeis hidden

[Normalize]
(B,F,GU{lel}) = (B,F,GU{nf(e)]})
[Fail]

(B, F,GU{el}) = faili f BUFiA._eandeis visible
Figure 1. Circular Coinduction in CIRC

A brief description of the rules is as follows:
[Done] —is applied whenever the set of proof obligations is
empty and indicates the termination of the process.
[Reduce] — is applied whenever the current goal is.a -
consequence d8 U F and operates by removing from
the set of goals.
[Derive] —is applied when the current goals hidden and

it is not al-,._-consequence. The current goal is added to

the specification and its derivatives to the set of goalg:)

thatthue + one = ~thue and ~ 4" = T'. After entering the
specification, we need to add these properties as goals:

Maude> (add goal thue + one = ~ thue .)
CGoal added: thue + one = ~ thue
Maude> (add goal ~ ~ T:Tree = T:Tree .)
Goal added: ~ ~ T:Tree = T: Tree

Then we introduce the coinduction command to automati-
cally prove the two goals.

Maude> (coi nduction .)
Proof succeeded.
Nunmber of derived goals: 9
Nunmber of proving steps perforned: 45
Maxi mum nunber of proving steps is set to:
Proved properties:

256

~ thue + one = thue
thue + one = ~ thue
~ ~T:Tree = T: Tree

It is worth noting thatCIRC discovered and automatically
proved a new lemma: thue + one = thue. The circular
coinduction cannot terminate in some cases, therefore ther
is a parameter which sets the maximum number of reduction
steps (here 256). The rest of the output is self-explanatory
We may see the complete proof of the above properties:

Maude> (show proof .)
[*right(~thue+one) *] =[+right (thue) *]

------------------------------------- [Reduce]
[*right(~thue+one) *] =[+right (thue) *]
[*left(~thue+one) *] = [+x]left(thue) *]
------------------------------------- [Reduce]
[l eft(~thue+one)] = [«]eft(thue) «]
[* root (~thue+one) *] = [*root(thue) *]
————————————————————————————————————— [Reduce]

[* root (~thue+one) *] = [+*root(thue) *]

[* root (~t hue+one) *]
[*1eft(~thue+one) *]

[* root (thue) *]
[*1eft(thue) *]

[*right (~thue+one) *] =[*right(thue) *]

[* ~thue+one*] = [*thuex]

[Derive]

[* ~thue+one*] = [*thuex]

[*right(thue+one) *] =[*right(~thue) *]
[l eft(~thue)]

[Nor mal i ze]

[*1eft(thue+one)*x] =

————————————————————————————————————— [Reduce]
[*left(thue+one) *x] = [xleft(~thue) *]

[* root (thue+one) *] = [+root(~thue) #]
------------------------------------- [Reduce]
[*root (thue+one) *] = [*root(~thue) *]
[xright(~~T)*] = [xright(T)+]
------------------------------------- [Reduce]
[xright(~~T)*] = [xright(T)+]

[*left(~~T)+*] = [*left(T)
------------------------------------- [Reduce]
[xleft(~~T)+*] = [*xleft(T)*

[*root (~~T)*] = [*root(T) *]
————————————————————————————————————— [Reduce]
[*root (~~T)+] = [*root(T)

[*root (thue+one) *] = [*root(~thue) *]
[*left(thue+one) *x] = [xleft(~thue) *]
[*right(thue+one) *] =[*right(~thue) %]
------------------------------------- [Derive]
[*thue+onex*] = [*~thuex]

[*root(~~T) *] = [*root(T) *]

[*left(~~T)*] = [+1eft(T)*

[xright(~~T)*] = [xright(T)+]
------------------------------------- [Derive]

= [* T*]
We further provide an example on ha®iRC handles

tion defined in3 andWW is any combination of the following
attributes A - associativity, C - commutativity, | - idempo-
tency, U -unity. In fact the goal is to prove the properties in
W for the operatiorwp. For example AC+) is the tasko
prove that the operation + is associative and commutative
ACU(+) is the goato prove that the operation + is associa-
tive, commutative and has uniand so on. We denote by
Eqn(W) the set of equations correspondingiié and by
Fr(W) the set of equations corresponding to freezliig
According to the attributes, the equationsign (W) for a
general operatoop are:

A:(VX,Y,Z)(XopY)opZ=Xop(YopZ)
C:(VX,Y)XopY =YopX
U: (VX)X op0=X

(VX)oopX =X
I:(VX)XopX =X

and the equations ifir(W) are:

A:[X op(Y opZ)]=|X op"Y op"Z]
[(X opY) opZ] =|X op"Y op"Z]
C,UI:|XopY|=|Xop"Y

If £ is a set of equations, then |&B(F) denote the com-
pletion of £ obtained by applying Knuth-Bendix comple-
tion procedure[2]. Now we exter@RC with a new deduc-

proving properties that do not hold. Let us try to prove that 4 (e

~Zero = zero.

Maude> (add goal ~ zero = zero .)
Coal added: ~ zero = zero

We use the following two commands in order to see all the

proof details and, respectively, start the coinductioroalg
rithm:

Maude> (set show details on .)

Maude> (coi nduction .)

Hypo ~ zero = zero added and coexpanded to

1. root(~ zero) = root(zero)

2. left(~ zero) =

3. right(~ zero)

Goal root(~ zero)
1=0

left(zero)
right (zero)
root (zero) reduced to

Visible goal 1 = 0 failed during coinduction.

Note that after the expansion, one of the derived goals is

root (~zero) = root(zero), which is reduced ac-
cording to the specification tb = 0. This means that the
initial goal failed to be proved.

All the examples from this paper can
tested with the on-line version of theCIRC tool
(http://fsl.cs.uiuc.edu/index.php/Special:CircOBlin

be

4 Proving Behavioral Attributes

Let B be the behavioral specification and let us consider B, U { Eqn(W

a new type of goals noted By (op) whereop is an opera-

[Derive-atts]
(B, F,GU{W(op)}) =

(BU {op"}, FUKB(Fr(W)),G U|A(Eqn(W))])

Theorem 2 Let (B, A) be a behavioral specification and
W(op)agoal. IB,0, {W(op)}) =* (BU{op"'}, F.,0) us-
ing all the deduction rules introduced, théhl- Eqn(W).

Proof. We have:

[Derive-atts]

(87 0, {W(Op)}) =
(BU{op"}, KB(Fr(W)),[A(Egn(W))]) ="
(BU{op"'}, F,0)

Let B; denote the specificatioBu {op"V } U K B(Fr(W)).

By Theorem 1,58; IIF A(Egqn(W)). We show that
B U {Eq(W)} I < B; |- [e for each frozen3
equationfe]. The direct implication follow from the fact
Bi IIF Egn(W)). For the inverse implication, we assume
that B; I [el. It follows that B U {op"'} U Fr(W) U
Eqn(W) IIF [e] by the monotonicity and cut rule df. If

m is a proof (in the equational deduction systemepfrom

)}, then we can construct a proof by re-
placing in each term the occurrencespf” with opand in

each step using an equation frémf\W) with a correspond- [3] Y. Bertot and E. Komendantskaya. Inductive and coinduc-

ing equation fronEqn(W) For instancez +y = 2+°Cy tive components of corecursive functions in cdglectron.
is replaced with the use of x +y =y +xand (x +y) + z = Notes Theor. Comput. Sc203(5):25-47, 2008. _
X + (y + Z). It is easy to see now that is in fact a proof of [4] M. Bidoit, R. Hennicker, and A. Kurz. Observational lagi
from BU {Eqn(W)}. We have now3 U { Eqn(W)} I constructor-based logic, and their dualiftheoretical Com-
A(Egn(WW)), which impliesB I+ Eqn(W) by Theorem 7 puter Science3(298):471-510, 2003.

[5] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Ofje

in [15]. U J. Meseguer, and C. L. Talcott, editoré&ll About Maude

As an example, we present tl@RC dialog resulted - A High-Performance Logical Framework, How to Spec-
while proving that+ is both associative and commutative ify, Program and Verify Systems in Rewriting Lagiolume
and has the ety () lemersr o 5 hLecure Ntesin Compute Scionprioger 2007
Maude> (add goal Eggsag—cgn;': °4: T;Z‘foi g ;” f*f workbench: a semantics-based tool for the verification of
Maude> (coi nduction .) concurrent systems. ACM Transactions on Programming
Proof succeeded. Languages and Systems (TOPLAIS)1):36—72, 1993.

Nunb f derived Is: 12 7 . . '

Namber of pfg{/?’ﬁg g?gp: performed: 52 [7] T. Coquand. Infinite objects in type theory. In H. Baren-

Maxi mum number of proving steps is set to: 256 dregt and T. Nipkow, editor§;YPESvolume 806 ot ecture
Maude> (show proof .) Notes in Computer Scienggages 62—78. Springer, 1993.
[*root (X + Y)+ 2)«] = [xroot(X + Y + Z) «] [8] E. A. Emerson. Model checking and the mu-calculus. In
sleft((X+ Y)+ Z)] = [*left(X + Y + Z) DIMACS Series in Discrete Mathematigsages 185-214.
*right (X + V)+ 2)+] = [xright(X + Y + Z)+] American Mathematical Society, 1997
root (X + Y)] = [*root(Y + X)] . ’ .
cleft(X + Y)«] = [*left(Y + X «] [9] J. Goguen and G. Malcolm. A hidden agendeéheoretical
sright(X + Y)*] = [*right(Y + X) %] Computer Scieng@45(1):55-101, August 2000.
xroot(zero + X)« = [»root(X) «] [10] J Ggguen and J I\/(Ie)seguer Cc?mpleteness of Many-
|l eft(zero + X)*] = [«]eft(X)#] ; . s : .
«right(zero + X) %] = [*right(X) +] Sorted Equational LogicHouston Journal of Mathematics
xroot (X + zero) *x] = [+ root(X) * 11(3):307—-334, 1985.
- L:ggm E<X++z§(re(r)2))*]*] ::[*[l (relftg%%)*(]) . [11] D. Hausmann, T. Mossakowski, and L. Schroder. Iteeati
................................... [Derive-atts] circular coinduction for cocasl in isabelle/hol. In M. Gafj

op _+_: Tree Tree -> Tree editor, FASE volume 3442 ofLecture Notes in Computer

[assoc commid: zero] Sciencepages 341-356. Springer, 2005.

The output of the proof is not complete, only the first ap- [12] B. Jacobs and J. Rutten. A tutorial on (co)algebras and
plied deduction rule[Derive-atts], is presented here. We (co)!nductlon.BuIIetln.ofthe European Association for The-
can see that all twelve derived goals are generated by this oretical Computer Sciengé2:222-259, 1997.

le. Obvi v all th | din thi [13] D. Lucanu, E.-I. Goriac, G. Caltais, and G. Rosu. CIRC :
rute. viously, all these new goals are proved in this case A behavioral verification tool based on circular coinduetio

using only[Reduce]. The rule[Derive-atts] may inter- In CALCO'09 LNCS, 2009. To appear.

fere with the the other rules of circular coinduction during [14] D. Lucanu and G. Rosu. Circ : A circular coinductive ypzo
the automated proving process, increasing in this way the In T. Mossakowski, U. Montanari, and M. Haveraaen, edi-
power of the prover. tors, CALCQ volume 4624 of_ecture Notes in Computer

Sciencepages 372-378. Springer, 2007.

[15] D. Lucanu and G. Rosu. Circular Coinduction with Spéci
Contexts. Technical Report UIUCDCS-R-2009-3039, Uni-
versity of lllinois at Urbana-Champaign, 2009. Submitted.

In this paper we presented some examples of using[16] R. Milner. Communicating and Mobile Systems: the

5 Conclusion

CIRG a theorem prover implementing the circular coinduc- calculus Cambridge University Press, 1999.

tion principle, in order to prove a set of properties over in- [17] T. Mossakowski, H. Reichel, M. Roggenbach, and
finite data structures. The main contribution is providing L. Schroder. Algebraic-coalgebraic specification in Co-
a new technique for proving behavioral attributes based on ~ CASL. InProceedings of WADT'QZolume 2755 o£NCS
rewriting modulo commutativity, associativity, unity aod pages 376-392. Springer, 2002. © L
idempotency. [18] G.RosuHidden Logic PhD thesis, University of California

at San Diego, 2000.
[19] G. Rosu and D. Lucanu. Circular Coinduction —A Proof
References Theoretical Foundation. IICALCO’09 LNCS. Springer,
2009. To appear.
[1] J. Adamek. Introduction to coalgebr&heory and Applica-
tions of Categories14(8):157-199, 2005.
[2] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion
without failure. InResolution of Equations in Algebraic
Structuresvolume 2, pages 1-30. Academic Press, 1989.

