
WRLA 2008

Patterns for Maude Metalanguage

Applications

Eugen-Ioan Goriac1 ,2 Georgiana Caltais1 ,2 Dorel Lucanu1 ,2

Faculty of Computer Science
Alexandru Ioan Cuza University

Iaşi, Romania

Oana Andrei3

INRIA Nancy Grand-Est & LORIA
Nancy, France

Gheorghe Grigoraş1 ,2

Faculty of Computer Science
Alexandru Ioan Cuza University

Iaşi, Romania

Abstract

One of the most effective ways of improving the quality of software engineering, system design and devel-
opment, and communication between the people concerned with these problems, is provided by software
patterns. In this paper we present a set of basic patterns for Maude metalanguage applications. We show
the viability of the defined patterns by comparing them to the developing approaches for several well-known
Maude tools.

Keywords: Maude language, Maude metalanguage applications, software patterns.

1 Introduction

Maude [6] is a high-level language and high-performance system based on equational

and rewriting logic computation. It is a flexible and general semantic framework

suitable for giving semantics to a wide range of languages and models of concurrency.

It is also a good logical framework, i.e., a metalogic in which many other logics can

be naturally represented and implemented. The reflective property of rewriting logic

1 This work is partially supported by the PNII grant IDEI 393 and CNCSIS 1162.
2 Email: [egoriac,gcaltais,dlucanu,grigoras]@info.uaic.ro
3 Email: Oana.Andrei@loria.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Goriac, Caltais, Lucanu, Andrei, Grigoraş

permits the development of many advanced metaprogramming and metalanguage

applications.

A metalanguage application is a particular type of application in which Maude

is used to define modules for specifying an object language syntax, parser, way of

execution and manner of printing execution results. These kinds of applications

are implemented using the Maude metalevel capabilities. For a detailed description

of working at metalevel and metalanguage applications, see Chapters 14 and 17,

respectively, from [6].

There is already a significant number of metalanguage applications in Maude.

Some of them are written by people with Maude programming experience; their

applications have a high performance and a good quality design which make them

reusable for other software engineers. An application written by someone less famil-

iar with Maude has a low degree of re-usability. The success of the learning process

by a new Maude user strongly depends on the kinds of examples he/she studies.

We think that Maude has reached a certain maturity level when the best practices

should be accessible to a large class of users. This goal can be reached by the means

of a good software engineering problem-solving discipline. Such a discipline is given

by patterns. The general goal of the patterns is to support design and development.

The contribution of this paper is the definition of a set of basic patterns which

may be used in a wide range of Maude metalanguage applications. The design

of these patterns is based on the experience acquired by the authors during the

development of some applications [10,2] or by studying other applications like those

presented in [11,8,7]. The referred applications are: the Inductive Theorem Prover

(ITP), the Maude Termination Tool (MTT), the Church-Rosser Checker (CRC)

the Real Time Maude Tool (RTM) and the Strategy language for Maude (STR).

The idea of defining patterns for Maude metalanguage applications came when

we started to develop a new implementation of membrane systems [13] using strat-

egy controllers [3]. The design of the new application is based on adapting some

technologies used by other applications and on the Maude strategy language [11].

During the adaptation process we had to answer some standard questions like which

part is application dependent and which one is independent. We realized that these

questions can be avoided if we follow a problem solving discipline. That was the mo-

ment when we started thinking about patterns. The current version of the Maude

strategy language includes good design practices which inspired us in defining the

patterns presented in this paper. Actually defining the patterns did not prove to be

an easy task. We needed to answer many difficult questions: how should a pattern

be structured, which pattern should a certain development activity be associated

to, which activities are repetitive and which ones need not be performed more than

once during the development of a system, how are the patterns related to each other,

how should a system implementation process be formalized.

We have identified four software patterns that should help Maude users in build-

ing metalanguage applications: User Interface (the implementation of a communi-

cation flow between the user and the system), System Language Signature (the

validation of system inputs), System Language Parser (the implementation of a

Full Maude parser for translating system input to its Maude semantics) and Error

Handling (the detection and handling of user input errors).

2

Goriac, Caltais, Lucanu, Andrei, Grigoraş

The organization of the paper is as follows. Section 2 presents a template for pat-

terns. Section 3 introduces a general context for Maude metalanguage applications,

including definitions and conventions used throughout the paper. The patterns

presented in Section 4 work under this context. An iterative strategy of using the

patterns is described in Section 5.

2 A template for Maude patterns

Patterns were first introduced by Christopher Alexander [1] and used in urban

design and building architecture. Patterns provide a common language that people

use in order to formulate problems and to solve them. Briefly, a pattern describes

a design problem, a context in which the problem occurs and the core of a solution

to that problem. The same solution sketch can be used by different people in order

to solve their own particular problems and speed up the development process.

In software engineering, the patterns are used in various domains such as object-

oriented design [9], software architecture [5], software testing [4], and so on. The

template we use for Maude patterns includes the following six elements: the pattern

name, problem, context, solution, result and known uses.

A well chosen name should express in a few words the problem. The problem

is described using a concise statement in order to help the reader deciding whether

the pattern is appropriate for his particular problem or not. The context specifies

the conditions under which the pattern is applied. We may also mention here the

built-in Maude modules or the related patterns involved in the description of the

problem. Changing the context should invalidate the pattern. In particular, we have

identified a general context corresponding to the family of applications we consider

in this paper, namely Maude metalanguage applications. This general context is

inherited by each of particular contexts of the patterns. The solution describes

how the problem is solved. Here we mention the steps one should follow in order

to implement the pattern. The description is general enough to address a wide

range of situations. The result refers to the outcome of applying the pattern. Here

we may also mention the related patterns. In the end, the known uses subsection

emphasize the way some Maude tools have applied the presented pattern. The

patterns are flexible enough to be combined in different ways in order to design

various applications.

3 General Context

The patterns we define in this paper are intended to be used in the context given by

the large family of Maude metalanguage applications developed for specifying and

analyzing a specific system. Examples of specific systems are prototypes, simulators,

provers, extensions of Maude, logics, models of computations and so on.

Such systems are specified using a specification language, called system specifi-

cation language (SSL). The implementation consists of defining a Maude semantics

for SSL and a user interface for introducing specifications and analyzing and exe-

cuting these specifications using a language of commands, called system command

language (SCL).

3

Goriac, Caltais, Lucanu, Andrei, Grigoraş

We assume that SSL is given by a grammar defining its syntax and a set of

rules or equations defining its semantics. We further assume that the syntax of

SSL includes a special construct defining units. A unit is intended to describe a

component of the system; in particular, the system is described either by a simple

unit or by a compound unit. The user interface facilitates the communication

between the user and the system: the user may introduce units or commands and

the system displays the result obtained after a command is executed.

The commands and the units will be referred to as top input, whereas parts of

commands or units that match the provided grammar will be referred to as partial

input.

Maude implementation of a system consists of:

• Maude descriptions of the SSL and SCL semantics,
• the structure describing the states of the metalanguage application in Maude

terms,
• a set of rewrite rules over system states modeling the execution of the com-

mands in SCL.

Neither the Maude semantics of SSL, nor that of SCL can be described by means

of patterns at this level of generality. However, we suppose that a Maude module

describing the SSL and SCL semantics, SYSTEM-LANG-SEMANTICS, is defined.

The current system state can be changed or interrogated by using commands

from SCL. The execution of a command is guided by the system specification lan-

guage semantics and depends on the current system state and the provided param-

eters. Each command Cmd is associated an operation procCmd that denotes its

semantics.

procCmd : CurrentState Parameters → Result

We assume that all these operations are included or defined in the previously

mentioned SYSTEM-LANG-SEMANTICS module. This module can also be thought of

as an API of the system. It is used by the User Interface pattern but can as well

be used by other applications. For instance, the semantics for membranes is given

by using the API of the Maude strategy language [11].

The application of the patterns presented in the next section is illustrated by

the implementation of a simple system able to perform topological sort. The system

(referred to as TOPO 4) is provided first of all with a unit specifying the definition

of a partial order set. After that, the system is able to interpret a topological sorting

command which receives a parameter representing a linearization of the set to be

sorted. The dialog with TOPO is intended to be as follows:

Maude> (poset SIMPLE-POSET is
rel a < b .
rel e < b .
rel b < c .

end)

Maude> tsort c d a b e .

result: a d e b c .

4 The implementation of the system is found at: http://circidei.info.uaic.ro/pmma2008/topo.maude

4

http://circidei.info.uaic.ro/pmma2008/topo.maude

Goriac, Caltais, Lucanu, Andrei, Grigoraş

Regarding the implementation, an auxiliary module TOPO-DESCRIPTION is used

for describing the core behavior of the system. It defines the universe of the poset

(in our case, the letters from a to z) and the sorting algorithm (implemented as a

rule that modifies a list of objects according to the partial order relation):

ops a b c d e f g h i j k l m n o p q r s t u v w x y z : -> Obj .
crl O :Obj LO:ListOfObjects O’:Obj =>

O’:Obj LO:ListOfObjects O :Obj if O’:Obj < O:Obj .

4 Basic Patterns for MaudeMetalanguage Applications

4.1 User Interface

Problem. Define the communication flow between the user and the system under

implementation.

Context. Maude uses the loop mode (see [6], Section 17.1) to design user interfaces.

The loop mode works with triples [input:QidList, state:State, output:QidList],

also called loop objects. These triples are provided by the LOOP-MODEMaude module.

The input argument is the text introduced by the user (if any), the output argument

is the text displayed by the system (if any) and the state argument is the (current)

system state.

When handling a user request, the system converts the input stream into a list

of quoted identifiers and then places this list on the first position of the loop object.

When handling the output, the system unquotes the list of identifiers placed on the

third position of the loop object and displays the result. The LOOP-MODE module

is used not only for defining user interfaces but also for defining the system state

structure and the rewrite rules used for modifying this state and for interacting with

the loop. The system state structure can be defined in different ways for Maude

metalanguage applications, by importing LOOP-MODE in the module used for state

definition.

Solution. The solution is based on defining three modules in Maude used for

introducing the system grammar and defining the system state structure in order

to specialize the system loop:

mod META-SYSTEM -LANG-SIGN is
including META-LEVEL .
op SYSTEM -GRAMMAR : -> FModule .
define the SYSTEM -GRAMMAR module

endm

mod SYSTEM -STATE-HANDLING is
including SYSTEM -LANG-SEMANTICS .
define the state structure

endm

mod SYSTEM -INTERFACE is
including LOOP-MODE .
including META-SYSTEM -LANG-SIGN .
including SYSTEM -STATE-HANDLING .
define the initial state
define the input rule
define the output rule

endm

In what follows we describe how each of the above modules is implemented.

META-SYSTEM-LANG-SIGN. A module which specifies the system grammar is de-

fined at metalevel (SYSTEM -GRAMMAR). This module imports the definition of the

system language signature (SYSTEM -LANG-SIGN - see Section 4.2) and defines some

system-specific operators, like those able to handle input tokens (identifiers) or bub-

bles (lists of identifiers) (see [6], Section 17.4).

5

Goriac, Caltais, Lucanu, Andrei, Grigoraş

If avoiding the definition of the system grammar from scratch is desired, the

existing Full Maude grammar can be used. By doing this, the created system will

be able to handle anything the Full Maude system can. This is accomplished by

appending SYSTEM-LANG-SIGN to the provided GRAMMAR module. The addImports

metalevel appending operator is defined within the UNIT module and GRAMMAR is

defined at metalevel within the META-FULL-MAUDE-SIGN module.

eq SYSTEM -GRAMMAR = addImports((including ’SYSTEM -LANG-SIGN .), GRAMMAR) .

When implementing the TOPO system, we choose to use the Full Maude pro-

vided grammar:

fmod META-TOPO-LANG-SIGN is
including META-LEVEL .
protecting META-FULL-MAUDE-SIGN .
op TOPO-GRAMMAR : -> FModule .
eq TOPO-GRAMMAR = addImports((including ’TOPO-LANG-SIGN .), GRAMMAR) .

endfm

SYSTEM-STATE-HANDLING. The best way to define the system state structure is

inspired from Full Maude (see [6], Section 18.6) and it consists of using a Maude

class:

class SystemStateClass |
input : TermList,
output : QidList,
attribute1 : Type1
...

In practice, a “compiled” form of this class is used when the system state struc-

ture is defined (see [12], Section 12.4.2). This is accomplished by declaring the

class identifier, an operator of sort SystemStateClass and the attributes (includ-

ing input and output) in an explicit way:

subsort SystemStateClass < Cid .
op SystemState : -> SystemStateClass .
op input :_ : TermList -> Attribute .
op output :_ : QidList -> Attribute .
op attribute1 :_ : Type1 -> Attribute .
...

The input and output attributes are used in order to create a user interface.

This way we can provide a mechanism for passing the user input to the value of

the system state input attribute and also for forwarding the system state output

attribute’s content to the user output.

Instead of defining TopoStateClass, the TOPO system makes use of the Full

Maude-specific DatabaseClass sort in order to characterize the current state. The

only extra attribute added to the state structure is defaultPOSet, the name of the

currently selected module defining the partial order relation:

op defaultPOSet :_ : Header -> Attribute .

SYSTEM-INTERFACE. System loop specialization consists of specifying the initial

state, the rule processing the user input and the rule displaying the output messages.

Assuming that SystemStateClass is the only class used for defining the system

states, we consider the relation Object < State in order to specify the admissible

states within the persistent state of LOOP-MODE. The initial state of the system is

defined in the same way as in Full Maude:

6

Goriac, Caltais, Lucanu, Andrei, Grigoraş

subsort Object < State .
op o : -> Oid . --- the persistent system state object
op init : -> System .
rl [init] : init => [nil, < o : SystemState | input : nilTermList, output : nil,

attribute1 : initialValue1, ...
>, (’State ’Initialization ’Succeeded)] .

The concrete initialization rule from the TOPO system is:

rl [init] : init => [nil, < o : Database | db : initialDatabase,
input : nilTermList, output : nil,
defaultPOSet : nullHeader

>, (’TOPO ’State ’Initialization ’Succeeded)] .

Here, the Full Maude-specific Database constant is used to instantiate the state

class DatabaseClass. The inherited attribute db contains detailed information re-

garding Full Maude loaded units. Our attribute defaultPOSet receives the constant

value nullHeader, denoting that in the initial state no module is selected to describe

a partial order relation.

The input rewrite rule [in] parses the text introduced by the user. It calls the

metaParse operator and sets the resulting term as the input attribute of the next

state.

crl [in] :
[Q QL,
< o : SystemState | input : nilTermList, Atts >, QL’]

=>
[nil,
< o : SystemState | input : getTerm(RP), Atts >, QL’]

if RP := metaParse(SYSTEM -GRAMMAR, Q QL, ’@Input@) ∧
RP :: ResultPair .

The output rewrite rule [out] transfers the value of the output attribute to the

system output:

rl [out] : [QL, < o : SystemState | output : (Q QL’), Atts >, QL’’] =>
[QL, < o : SystemState | output : nil, Atts >, (Q QL’ QL’’)] .

The template presented for these rules is applied directly when implementing

the TOPO system: SystemState is replaced by Database and SYSTEM-GRAMMAR is

replaced by TOPO-GRAMMAR.

Result. Three modules used for defining the system grammar and specializing the

loop: SYSTEM-GRAMMAR, SYSTEM-STATE-HANDLING and SYSTEM-INTERFACE. The

only thing that remains to be done in order to initialize the loop after having

loaded the specified modules is to call the loop init . command from the Maude

environment.

The SYSTEM -STATE-HANDLING module can be refined by applying the Error

Handling pattern (Section 4.4).

Known uses. All the Maude tools referred to in Section 1 apply this pattern. The

only tool that applies the pattern by defining all required data within the same

module is ITP (it is not implemented using the exemplified modules structure).

The MTT, CRC, RTM and STR tools define the grammar module within a

META-SYSTEM-LANG-SIGN-like module. MTT, CRC, RTM and STR extend the

Full Maude grammar while ITP defines its own grammar from scratch. STR defines

a second grammar from scratch for internal use.

7

Goriac, Caltais, Lucanu, Andrei, Grigoraş

RTM and STR define new attributes for the system state in the manner de-

scribed by the pattern. The attributes are defined in a SYSTEM-STATE-HANDLING-

like module. The ITP tool defines attributes using an internal defined sort, other

than Attribute. All the tools define the [init], [in] and [out] rules in a

SYSTEM-INTERFACE-like module.

4.2 System Language Signature

Problem. Define the system language signature used in order to validate system

inputs (a system input is either a unit or a command).

Context. When referring to the system language signature both the system spec-

ification language signature and the system command language signature are con-

sidered. For these languages it is necessary to know the grammars defining their

syntax.

Solution. The general idea of this pattern is to define the modules:

fmod SYSTEM -SPEC-LANG-SORTS is
declare the metavariables

endfm

fmod SYSTEM -SPEC-LANG-SIGN is
including OPERATOR-ATTRIBUTES .
protecting SYSTEM -SPEC-LANG-SORTS .
declare constructors for metavariables

endfm

fmod SYSTEM -CMD-LANG-SIGN is
including COMMANDS .
declare command operators

endfm

mod SYSTEM -LANG-SIGN is
including SYSTEM -SPEC-LANG-SIGN .
including SYSTEM -CMD-LANG-SIGN .

endm

SYSTEM-SPEC-LANG-SORTS. This module declares the metavariables from the

SSL grammar: for each metavariable MetaVar, a sort @MetaVar@ is defined. When-

ever a list of metavariables of sort @MetaVar@ is desired, a view must be considered:

view @MetaVar@ from TRIV to SYSTEM -SPEC-LANG-SORTS is
sort Elt to @MetaVar@ .

endv

These views are used for implementing the parameterized modules defining the

generic data types for lists. Now List{@MetaVar@} is a sort representing a list of

separated metavariables, denoted in the SSL grammar by MetaVar*.

The metavariables from the TOPO sytem are POSet and DeclRelation. The

former one represents a unit defining a partial order relation, while the latter rep-

resents an element of the relation (recall the example presented at the end of Sec-

tion 3). The TOPO-SPEC-LANG-SORTS module includes declarations for the sorts

@POSet@ and @DeclRelation@. A view for the @DeclRelation@ is created in order

to specify the list of elements characterizing the partial order relation associated

nwith the set.

SYSTEM-SPEC-LANG-SIGN. This module includes an operator declaration for each

metaexpression occurring in the specification language grammar. For instance,

the operator for a metaexpression of the form resWord1 metaVar1 resWord2 metaVar2

resWord3 is defined as follows:

op resWord1_resWord2_resWord3 : @MetaVar1@ @MetaVar2@ -> @ResultMetaVar@ .

When @MetaVarX@ is used for specifying an identifier or a list of identifiers, it is

replaced by either @Token@ or @Bubble@, respectively. These sorts are declared in

8

Goriac, Caltais, Lucanu, Andrei, Grigoraş

the Full Maude-specific module OPERATOR-ATTRIBUTES, which must be imported.

The operators declared for the TOPO system are:

op poset_is_end : @Token@ List{@DeclRelation@} -> @POSet@ .
op rel_<_. : @Token@ @Token@ -> @DeclRelation@ .

In order to be handled as valid system input (see the [in] rule in Section 4.1),

each sort denoting a top metavariable (a metavariable corresponding to a top input,

see Section 3) must be declared as a subsort of the predefined @Input@ sort:

subsort @TopMetaVar@ < @Input@ .

For the TOPO system, @TopMetaVar@ is replaced by @POSet@.

SYSTEM-CMD-LANG-SIGN. This module is used for command declarations. For

each command a new operator defining its signature must be added. If, for in-

stance, the form of the command is resWord param1 param2 ., the operator defining

its signature is:

op resWord__. : @Param1@ @Param2@ -> @Command@ .

In most cases, commands receive basic identifiers or lists of basic identifiers as

parameters, meaning that @ParamX@ is either @Token@ or @Bubble@, respectively.

Commands are operators of the predefined @Command@ sort. The declaration of this

sort is found in the Full Maude-specific COMMANDS module.

The TOPO system is able to interpret two commands - one for setting the

default module defining the partial order relation and one for actually performing

the topological sort:

op set‘default‘poset_. : @Token@ -> @Command@ .
op tsort_. : @Bubble@ -> @Command@ .

SYSTEM-LANG-SIGN. This module includes both the specification language signa-

ture and commands language signature modules. It is used at metalevel for defining

the grammar module: SYSTEM-GRAMMAR (see Section 4.1).

Result. The SYSTEM -SPEC-LANG-SORTS module used for defining the specification

language sorts and three other modules: SYSTEM-SPEC-LANG-SIGN for the speci-

fication language signature, SYSTEM-CMD-LANG-SIGN for the commands language

signature and a module combining them both, SYSTEM-LANG-SIGN.

Two other patterns are related to this one: System Language Parser (see Sec-

tion 4.3) and Error Handling (see Section 4.4). They use the language signature in

order to handle and validate the system input.

Known uses. All the Maude tools referred to in Section 1 define their signatures in

the manner resembling the one described by this pattern. ITP defines the signature

within the SYSTEM-INTERFACE-like module, using an internal defined ’Input sort,

instead of deriving from the @Input@ provided module.

In one or more dedicated *-SIGN-like modules, MTT, CRC, RTM and STR

define commands. They all use the provided @Command@ sort in order to declare

commands. RTM and STR define unit input-like signature, the former using the

provided @Module@ sort and the latter using an internal defined sort. STR does not

define a SYSTEM-SORTS-like module because it defines the external unit correspond-

ing sorts within the SYSTEM-LANG-SIGN-like module.

9

Goriac, Caltais, Lucanu, Andrei, Grigoraş

4.3 System Language Parser

Problem. Develop a parser in Full Maude for transforming the input matching the

system language grammar into a semantics in terms of the Maude language.

Context. We assume that the system specific loop is implemented (see Section 4.1)

and the system signature is defined (see Section 4.2). The parsing of the input

requires the use of the metaParse operator, already mentioned in Section 4.1.

The presentation on how to write a parser for the SSL is made for the following

simple generic grammar (recall from Section 4.2 that MetaVar* represents a list of

separated metavariables):

MetaVar ::= MetaExpr
MetaExpr ::= resWord1 MetaVar1 resWord2 MetaVar2 ... resWordEnd |

MetaVar* | ...

The grammar for the TOPO system specification language is:

POSet ::= poset Name is Relation* end
Name ::= Identifier
Relation ::= rel LHS < RHS .
LHS ::= Obj
RHS ::= Obj
Obj ::= a | b | ... | z

Solution. Each top or partial input must be handled by its own parsing operator.

Besides these operators, a set of rules which transfer the input to the correspond-

ing top unit parsing operator must be implemented. This is achieved by defin-

ing a parsing-dedicated module and writing extra code for the previously defined

SYSTEM-STATE-HANDLING module (see Section 4.1):

mod SYSTEM -LANG-PARSER is
including SYSTEM -LANG-SIGN .
define parsing operators for metavariables

endm

mod SYSTEM -STATE-HANDLING is
including SYSTEM -LANG-PARSER .
...
define parsing rules for each top input
...

endm

SYSTEM-LANG-PARSER. Let TopMetaVar and PartialMetaVar denote a top and

a partial input, respectively, related to a unit. The parsing operators that must be

added are:

parseTopMetaVar : Term Term ... Term -> MaudeCodeSort .
parsePartialMetaVar : Term MaudeCodeSort -> MaudeCodeSort .

Here, MaudeCodeSort is the result of the parsing operation and represents the

mapping of the input unit to Maude specific code. For instance, a unit from SSL

can be mapped to a Maude module.

A top input parsing operator must make calls to partial input parsing operators

in this manner:

parseTopMetaVar(T1, T2, ..., Tn) =
parsePartialMetaVar1(T1,
parsePartialMetaVar2(T2,

...
parsePartialMetaVarN(Tn, initialMaudeCode)...)) .

An input parsing operator parseMetaVar can handle the input in a few different

ways:

10

Goriac, Caltais, Lucanu, Andrei, Grigoraş

a) it can use the provided term “as is” (e.g., as a QID, without any restrictions) and

generate the related Maude code (see Fig. 1.a)

b) it can use metaParse in order to check if it corresponds to a previously defined

signature and to generate the Maude code (see Fig. 1.b)

c) it may call other parsing operators if the term is the metarepresentation of a list

of terms (see Fig. 1.c)

a) ceq parseMetaVar(T, ...) =
useQidDirectly(QID)

if T’ := ’token[T] ∧
QID := downTerm(T’, ’nil) ∧
... .

c) eq parseMetaVar(’__[T], ...) =
parseTermList(T) .

b) ceq parseMetaVar(T, ...) =
useParsedTerm(S)

if T’ := ’bubble[T] ∧
QL := downTerm(T’, ’nil) ∧
RP := metaParse(MetaModule,

QL, ’DesiredSort) ∧
RP :: ResultPair ∧
S := getTerm(RP) ∧
... .

Fig. 1. Partial input handling

For the TOPO system, the parsing operators decompose the input unit in order

to obtain the elements of the partial order relation. The elements are transformed

into Full Maude-specific equations and the unit itself is transformed into a Full

Maude module. This module imports the TOPO-DESCRIPTION module introduced

in Section 3 in order to be able to recognize the objects the relation is defined on.

The parsing operators are:

op parsePOSet : Term Term ~> Module .
op parseDeclRelation : Term Module ~> Module .

eq parsePOSet(T, T’) = parseDeclRelation(T’,
addImports((including ’BOOL .

including ’TOPO-DESCRIPTION .),
setName(emptySModule, parseHeader(T)))) .

eq parseDeclRelation(’__[T], M) = parseDeclRelation(T, M) .
eq parseDeclRelation(’__[T, TL], M) =

parseDeclRelation(’__[TL], parseDeclRelation(T, M)) .

ceq parseDeclRelation(’rel_<_.[’token[Q], ’token[Q’]], M) =
addEqs(eq ’_<_[T, T’] = ’true.Bool [none] ., M)
if RP := metaParse(upModule(’TOPO-DESCRIPTION, false),

downTerm(Q, ’nil), ’Obj) ∧
RP :: ResultPair ∧
T := getTerm(RP) ∧
... --- same for RP’, Q’ and T’

SYSTEM-STATE-HANDLING. For a top input constructor of the form resWord1

MetaVar1 resWord2 MetaVar2 ... resWordN MetaVarN resWordEnd, defined in one of the

system language signature modules, the following parsing rule is added:

crl [parseTopMetaVar] :
< ... input : (’resWord1_resWord2_...resWordN_resWordEnd[T1, T2, ..., Tn]) ... > =>
< ... input : nilTermList ... >
if ... M:MaudeCodeSort := parseTopMetaVar(T1, T2, ..., Tn)

Sometimes the parsing rule can handle the input by its own, with or without

making use of the metaParse operator. This usually happens when parsing com-

mands. Obviously, no extra parsing operators must be added in this case.

The rules added to the state handling module from the TOPO system are:

11

Goriac, Caltais, Lucanu, Andrei, Grigoraş

--- Transforms the input order specification unit into a Full Maude module
--- and adds it to the database.
crl [parsePOSet] :

< O : X@Database | db : DB, input : (’poset_is_end[T, T’]),
output : nil, Atts > =>

< O : X@Database | db : insTermModule(getName(M), M, DB),
input : nilTermList, output : (’Introduced ’order ’spec. getName(M)), Atts >

if M := parsePOSet(T, T’) .

--- Uses the procRew metalevel operator in order to apply the rewriting rule
--- that performs the topological sort on the objects provided on input.
crl [parseCommand--topo] :

< O : X@Database | db : DB, input : (Q[T]),
defaultPOSet : H, output : nil, Atts > =>

< O : X@Database | db : DB, input : nilTermList,
output : (QL’), defaultPOSet : H, Atts >

if (Q == ’tsort_.) ∧ QL := downTerm(unBubble(T), ’nil) ∧
RP := metaParse(upModule(’TOPO-DESCRIPTION, false), QL, ’ListOfObj) ∧
RP :: ResultPair ∧ M := getFlatModule(H, DB) ∧
QL’ := procRew(H, M, T, none, DB) .

--- Sets the default module that specifies the partial order set.
crl [parseCommand--set-default-poset] :

< O : X@Database | db : DB, input : (Q[T]),
output : nil, defaultPOSet : H, Atts > =>

< O : X@Database | db : DB’, input : nilTermList,
output : (’Default ’order ’set ’to: H’),
defaultPOSet : H’, Atts >

if (Q == ’set‘default‘poset_.) ∧
< DB’ ; H’ > := evalModExp(downTerm(unToken(T), ’nil), DB) .

Result. The SYSTEM-LANG-PARSER module defining parsing operators and the

enrichment of the state handling module with rules dedicated to transforming top

input into Maude code.

This pattern is related to Error Handling pattern (Section 4.4) because each

parsing operation must be enhanced in order to detect and handle syntactically

incorrect user input.

Known uses. The Maude tool which follows most of the steps described by this

pattern is STR. It creates parsing rules for the unit-like input within the system

state handling module. The operators dedicated to unit parsing are also declared in

this module (no SYSTEM-LANG-PARSER is created). The other tool defining internal

units (RTM) uses some parsing operators provided by Full Maude.

MTT, RTM and STR implement parsing rules for commands processing in the

system state handling module. ITP and CRC implement parsing equations instead

of rules. The parsing equations/rules from all tools make calls to internal defined

processing operators or to operators provided by Full Maude.

4.4 Error Handling

Problem. Detecting and handling errors resulting from syntactically incorrect user

input.

Context. User input should always be checked for errors. Otherwise, the result

would be a bad system behavior or even a deadlock. Let us try to understand what

happens when syntactically incorrect user input is provided.

12

Goriac, Caltais, Lucanu, Andrei, Grigoraş

As stated in Section 4.1, one of the predefined attributes of the system state

structure is the input attribute. Its value is the metarepresentation of the current

user input. At initialization, this attribute receives the nilTermList value. The

system can only receive input when the input attribute has this value (check the

[in] rule from Section 4.1 for details).

Let us assume, for example, that the user enters a command along with some

parameters. The value of the input attribute becomes the metarepresentation of

that command. If the system is not able to parse one of the provided parameters,

the associated rule fails and the input attribute remains unchanged (meaning that

the attribute does not receive the nilTermList value). We say that the state of the

system is unstable because it is not able to accept any user input.

Therefore an error handling mechanism able to avoid such situations is needed.

Solution. For a unit parsing rule [parseTopMetaVar], a dual rule able to handle

the error is created: [parseTopMetaVar-error]. The new rule fires only when

[parseTopMetaVar] cannot be applied because of an input error. The error han-

dling rule must stabilize the system and print an error message to the output.

Let us consider the parsing rule needed to call the parseTopMetaVar operation.

As stated in Section 4.1, metaParse can be regarded as the basic metalevel parsing

operation. Therefore parseTopMetaVar either calls this operation itself or some of

its suboperators must do so. The metaParse operator fails when the returned value

is not of sort ResultPair, but of sort ResultPair?. This is why a parsing operator

that makes a direct call to metaParse must check its returned value and if a basic

parsing failure occurs, an error must be generated.

In order to be able to receive error-prone parameters and return error values, a

generic (top or partial) input operator parseMetaVar must be transformed into a

Maude partial operator (see [6], Section 3.5):

op parseMetaVar : Term Term ... -> MaudeCodeSort .

is replaced by

op parseMetaVar : Term Term ... ~> MaudeCodeSort .

which is equivalent to

op parseMetaVar : [Term] [Term] ... -> [MaudeCodeSort] .

An operator for error transmission must also be added:

op errorMetaVar : QidList -> [MaudeCodeSort] .

The propagation of an error is achieved by enforcing parseMetaVar to return the

errorMetaVar(error message) value when one of the internal parsing steps fails.

An internal parsing step can be either a metaParse call or a call to some other

parsing operator parseSubMetaVar. For the latter case, the presented procedure

must be applied recursively until all parsing operators are able to intercept and

forward the error message:

--- direct call to metaParse
ceq parseMetaVar(...) = errorMetaVar(printSyntaxError(RP, QL))

if ... RP := metaParse(MetaModule, QL, ’DesiredSort) ∧ not(RP :: ResultPair)

--- call to a parsing suboperator
eq parseMetaVar(..., errorSubMetaVariable(QL)) = errorMetaVar(QL) .
ceq parseMetaVar(...) = errorMetaVar(QL)

if ... errorSubMetaVariable(QL) := parseSubMetaVariable(...)

13

Goriac, Caltais, Lucanu, Andrei, Grigoraş

The error handling rule [parseTopMetaVar-error] modifies the system state

by operating only on the input and output attributes. The rule checks if the value

returned by parseTopMetaVar is errorTopMetaVar(error message). If that is the

case, then the input attribute receives the nilTermList value (in order to stabilize

the system) and the QL error message is transferred to the output attribute of the

current state (for feedback).

Sometimes the parsing rule calls metaParse directly. In this case the dual rule

must check for the operator’s failure directly. This is what happens for the partic-

ular case in which the user input does not correspond with the system grammar

(see Section 4.1). The dual of the input parsing rule [in] able to handle errors is:

crl [in-error] :
[Q QL,
< o : SystemState | output : nil, Atts >,
QL’] =>

[nil,
< o : SystemState |

output : (’Parsing ’error: printSyntaxError(RP, Q QL)), Atts >,
QL’]

if RP := metaParse(SYSTEM -GRAMMAR, Q QL, ’@Input@)) ∧
not(RP :: ResultPair) .

The TOPO system checks for errors when parsing the left hand side and right

hand side terms of a relation element:

op errorDeclRelation : QidList -> [Module] .
eq parseDeclRelation(’__[TL], errorDeclRelation(QL)) = errorDeclRelation(QL).
ceq parseDeclRelation(’rel_<_.[’token[Q], ’token[Q’]], M) =

errorDeclRelation(’Wrong ’LHS: printSyntaxError(RP, downTerm(Q, ’nil)))
if RP := metaParse(upModule(’TOPO-DESCRIPTION, false),

downTerm(Q, ’nil), ’Obj) ∧ not RP :: ResultPair .
... --- same for the right hand side parsing error handling

The rule handling the error is:

crl [parsePOSet-error] :
< O : X@Database | input : (’poset_is_end[T,T’]), output : nil, Atts > =>
< O : X@Database | input : nilTermList, output : (QL), Atts >
if errorDeclRelation(QL) := parsePOSet(T, T’) .

Result. A more stable system, able to detect and handle bad user input, making use

of a freshly added error handling rule and some related error propagation operators.

Known uses. Most of the Maude tools referred to in Section 1 apply this pattern.

ITP implements its own way of handling errors, but the idea of using kinds and

implementing partial operations is the same.

CRC and RTM use the error handling operators provided by Full Maude. The

operators are used internally in the same manner described in this pattern. SRT

fully applies this pattern. The tool implements parsing rules able to detect errors.

They make use of error handling operators for each top and partial input.

All the tools check if the user input corresponds with the system grammar. For

CRC the check is made directly by the initial [in] rule. MTT and STR make this

check in the same way described in the pattern. ITP and RTM add two new error

checking rules - one for syntax errors and the other for ambiguous input (when the

input can be parsed in more ways).

14

Goriac, Caltais, Lucanu, Andrei, Grigoraş

5 Pattern-based Iterations Used in the Development of

Maude Metalanguage Applications

Maude metalanguage applications can be developed by using an iterative strategy.

The idea is to build the base version of the system to be implemented and then, at

each iteration to add new capabilities to that system. Every time an iteration is

performed, the enriched system has to be tested for errors.

The base version of the system is a version the user can interact with. This goal

is achieved by applying the User Interface pattern (see Section 4.1). At this point

a minimal system state structure and the [in] and [out] rules are defined. These

are basic rules that help creating the user interface. This version of the system can

be tested by using the “loop init .” command. The actions performed during

this step are illustrated in Fig. 2a).

The next step is to create the modules that will contain the system language

signature. The structure of these modules is presented in the System Language

Signature pattern (see Section 4.2). Also the module that will contain parser defini-

tions is created according to the System Language Parser pattern (see Section 4.3).

Fig. 2b) illustrates the activity diagram corresponding to this iteration.

The system development continues with the signature specification, according

to a predefined grammar. Every time the system needs to be enhanced so that it

can accept a new command or unit, the System Language Signature pattern must

be applied. Handling the new input is achieved by enriching the system using the

System Language Parser and Error Handling (see Section 4.4) patterns. The system

is tested by providing many instances of the freshly defined input and observing

whether the response is the expected one or not. The actions performed during this

iteration are illustrated in Fig. 2c).

6 Conclusions

This paper introduces four software patterns useful for developing Maude metalan-

guage applications for specifying and analyzing systems. The principles that guided

us through defining a Maude pattern are:

• it solves a problem (captures solutions),
• it is a proved concept, not theories or speculation,
• the solution is not obvious (it generates a solution to a problem indirectly),
• it describes a relationship (deep system structure and mechanisms),
• the pattern has a significant human component (minimize human intervention).

Each pattern tackles a different problem that occurs during the implementation

of a system. The User Interface pattern is applied when defining a specialized loop,

the System Language Signature pattern is used for creating a new input language,

the System Language Parser pattern is used for parsing units and commands written

in the created language, and the Error Handling pattern is applied when checking

for errors. An overview of the interaction between the modules created during the

development of a metalanguage application using these patterns is illustrated in

Fig. 3.

15

Goriac, Caltais, Lucanu, Andrei, Grigoraş

a) User interface b) System language signature

c) System input handling

Fig. 2. Activity diagrams for Metalanguage Applications development

The patterns have been tested by a group of three undergraduate students with

basic knowledge regarding the Maude system. In a matter of few hours they man-

aged to implement a new system able to receive, parse and interpret user input

corresponding to a minimal grammar.

These patterns compose a minimal set that can be extended if more complex

systems need to be developed.

Acknowledgements The authors would like to thank Professor Roberto Bruni

and the anonymous reviewers for their valuable suggestions and comments. Many

thanks addressed to Elena Naum, Ramona Dunca and Alexandru Ştefan for their

assistance and suggestions.

16

Goriac, Caltais, Lucanu, Andrei, Grigoraş

Fig. 3. Overview

References

[1] Alexander, C., S. Ishikawa and M. Silverstein, “A Pattern Language,” Center for Environmental
Structure Series 2, Oxford University Press, New York, NY, 1977.

[2] Andrei, O., G. Ciobanu and D. Lucanu, A rewriting logic framework for operational semantics of
membrane systems., Theoretical Computer Science 373 (2007), pp. 163 – 181.

[3] Andrei, O. and D. Lucanu, Strategy-based proof calculus for membrane systems, in: 7th International
Workshop on Rewriting Logic and its Applications (ETAPS 2008), 2007, p. this volume.

[4] Binder, R. V., “Testing Object-Oriented Systems: Models, Patterns, and Tools,” Object Technology
Series, Addison Wesley, 2000.

[5] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad and M. Stal, “Pattern-Oriented Software
Architecture - A System of Patterns,” Wiley and Sons Ltd., 1996.

[6] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and C. L. Talcott, “All About
Maude - A High-Performance Logical Framework: How to Specify, Program, and Verify Systems in
Rewriting Logic,” Lecture Notes in Computer Science 4350, Springer, 2007.

[7] Clavel, M., F. Durán, J. Hendrix, S. Lucas, J. Meseguer and P. Ölveczky, The Maude Formal Tool
Environment, in: T. Mossakowski, U. Montanari and M. Haveraaen, editors, CALCO, Lecture Notes
in Computer Science 4624 (2007), pp. 173–178.

[8] Eker, S., N. Mart́ı-Oliet, J. Meseguer and A. Verdejo, Deduction, Strategies, and Rewriting, Electronic
Notes in Theoretical Computer Science 174 (2007), pp. 3–25.

[9] Gamma, E., R. Helm, R. Johnson and J. M. Vlissides, “Design Patterns: Elements of Reusable Object-
Oriented Software,” Professional Computing Series, Addison-Wesley, 1994.

[10] Lucanu, D. and G. Roşu, CIRC : A Circular Coinductive Prover, in: T. Mossakowski, U. Montanari
and M. Haveraaen, editors, CALCO, Lecture Notes in Computer Science 4624 (2007), pp. 372–378.

[11] Mart́ı-Oliet, N., J. Meseguer and A. Verdejo, Towards a Strategy Language for Maude., Electronic
Notes in Theoretical Computer Science 117 (2005), pp. 417–441.

[12] Meseguer, J., A logical theory of concurrent objects and its realization in the maude language, in:
G. Agha, P. Wegner and A. Yonezawa, editors, Reserch Directions in Concurrent Object-Oriented
Programming, The MIT Press, 1992 pp. 314–389.

[13] Paun, G., “Membrane Computing. An Introduction,” Springer, 2002.

17

	Introduction
	A template for Maude patterns
	General Context
	Basic Patterns for Maude Metalanguage Applications
	User Interface
	System Language Signature
	System Language Parser
	Error Handling

	Pattern-based Iterations Used in the Development of Maude Metalanguage Applications
	Conclusions
	References

