
TYPE-BASED PUBLISH/SUBSCRIBE

THÈSE N◦ 2503 (2001)

présentée au département de systèmes de communication

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

pour l’obtention du grade de docteur ès sciences

par

Patrick Thomas EUGSTER

Ingénieur informaticien diplômé EPF

originaire de Oberegg (AI)

acceptée sur proposition du jury:

Prof. Rachid Guerraoui, directeur de thèse
Prof. Klaus R. Dittrich, rapporteur

Prof. Ole Lehrmann Madsen, rapporteur
Prof. Martin Odersky, rapporteur

Dr Robbert van Renesse, rapporteur
Dr Joseph Sventek, rapporteur

Lausanne, EPFL
2001

Abstract

As the scale of communication networks becomes increasingly imposing, more and
more applications aim at exploiting this high potential in connectivity. As a conse-
quence, more sophisticated tools are required to make the development and deploy-
ment of such large scale applications more effective.

A fair amount of research has already been accomplished in the field of distributed
programming, however, with the continuously increasing number of network nodes
hiding behind the vague notion of “large scale”, there is still a high demand for
(1) new programming abstractions, and obviously also (2) algorithms implementing
these abstractions in a way that does not diminish their scalability properties.

In the case of abstractions, the ever prominent remote procedure call (RPC) ab-
straction for distributed programming has celebrated a tremendous success for its
hiding of distribution to a large extent, yet has turned out to be inadequate for large
scale applications: initially conceived for pairwise interaction between client/server
application components, the RPC becomes increasingly inefficient in one-to-n inter-
actions underlying most large scale applications as the very n grows.

The publish/subscribe paradigm has been proposed as a candidate distributed pro-
gramming abstraction to meet the scalability requirements of todays applications.
Unfortunately, existing implementations promote low-level programming models.
The conveyed data is viewed as primitive structures, requiring explicit transforma-
tion of higher-level data abstractions. These transformations are error-prone, due
to a lack of type safety, and provide no encapsulation of the exchanged data.

Deterministic dissemination algorithms for asynchronous distributed systems, such
as the Internet, have similarly been shown to inherently scale poorly. As an al-
ternative, probabilistic, gossip-based, algorithms have been devoted much attention
recently. Existing algorithms however do not deal with the filtering of data aimed
at satisfying every component’s precise interests in a strongly dynamic setting.

This thesis presents the type-based publish/subscribe (TPS) paradigm, and an algo-
rithm to implement it. TPS is to publish/subscribe what RPC is to synchronous
message passing: a higher-level paradigm variant, which hides “ugly” aspects of
distribution and fits naturally into an object-based programming model. We illus-
trate TPS through Java, first by implementing it as a library, and second, through
specifically added language primitives. We propose an original gossip-based multi-
cast algorithm, which allows the exploitation of the scalability offered by TPS at
the abstraction level.

Résumé

L’échelle des réseaux de communications devient de plus en plus importante. De
ce fait, un nombre croissant d’applications tente d’exploiter ce grand potentiel en
connectivité. Par conséquent, des outils plus sophistiqués sont nécessaires afin de
rendre plus efficace le développement et déploiement d’applications à large échelle.

Un effort de recherche considérable à déjà été accompli dans le domaine de la pro-
grammation répartie. Avec le nombre croissant de noeux de réseaux se cachant
derrière la notion vague de ”large echelle”, une grande demande existe néanmoins
encore pour des (1) abstractions de programmation adéquates, et évidemment aussi
pour des (2) algorithmes implémententant ces abstractions d’une manière qui ne
diminue par leur extensibilité.

Dans le cas des abstractions, le fameux appel de procédure à distance utilisé dans
la programmation répartie a été un succès faramineux grâce à sa capacité de cacher
la distribution dans une certaine mesure, mais s’est avéré insuffisant pour des ap-
plications à large échelle: initialement con cu pour une interaction bilaterale en-
tre des composants clients/serveurs, l’appel de procédure à distance devient de
moins en moins efficace dans des interactions un-à-n sousjacentes pour la plupart
d’applications dites large échelle, lors que n croit.

Le paradigme de publication/souscription a été proposé comme abstraction possible
pour la programmation répartie, afin de satisfaire les besoins en termes d’extensibilité
des applications actuelles. Malheureusement, les implémentations existantes pro-
mouvoient des modèles de programmation de bas niveau. Les données échangées
sont vues comme des structures primitives demandant des transformations explicites
d’abstractions de données de plus haut niveau. Ces transformations sont soumises
à des erreurs reflètant un manque de sûreté du typage, et n’offrent aucune encapsu-
lation des données transférées.

Similairement, il a été démontré que des algorithmes de dissemination déterministes
pour des systèmes reparties asynchrones, tel qu’Internet, sont faiblement exten-
sibles. Comme alternative, beaucoup d’attention a été récemment consacrée aux
algorithmes probabilistes. Cependant, les algorithmes existants ne gèrent pas le fil-
trage des données nécessaire pour satisfaire les intérêts précis de chaque composant
dans un environnement hautement dynamique.

Cette thèse présente le paradigme de publication/souscription basé sur les types
(TPS), et un algorithme servant a implémenter ce paradigme. TPS représente pour
le paradigme de publication/souscription ”classique”, ce que l’appel de procédure

à distance représente pour le passage de messages synchrone: une variante de
paradigme de plus haut niveau, qui cache certains aspects indésirés de la distri-
bution, et qui ainsi se marie bien avec un modèle de programmation par objets.
Nous illustrons TPS par Java, d’abord en l’implémentant comme une librarie, et en-
suite, en ajoutant des primitives de langage spécifiques. Nous proposons un nouvel
algorithme de multicast probabiliste, qui permet d’exploiter au mieux le potentiel
d’adaptation à large echelle offert par TPS en tant qu’abstraction.

To the Inventors of Alka-Seltzer �...

Acknowledgements

Above all, I would like to express all my gratitude to my supervisor, Prof. Rachid
Guerraoui, for combining, at perfection, the role of supervisor with those of col-
league, and also friend. His constant support, both in terms of encouragement as
well as ideas, have given the best possible foundation for this work.

I am eternally grateful also to my “fellow-sufferer” and friend Romain Boichat for
his constant support and advice. Such good friends are hard to find.

My thanks go also to the members of the jury, for the time they have spent applying
their expert knowledge to the examination of this thesis: Prof. Klaus R. Dittrich,
Prof. Ole Lehrmann Madsen, Prof. Martin Odersky, Dr Robbert van Renesse, and
Dr Joseph Sventek. Also, I am very grateful to Prof. Emre Telatar for accepting to
head my PhD examination.

Prof. Martin Odersky (and his team), and Dr Joseph Sventek deserve a special
mention, as, just like Nicolas Ricci, they have considerably contributed to the ac-
complishment of this thesis through extremely valuable input and feedback.

I am also thankful to all the other people I was brought to work with. Among
these, I would like to thank Dr Pascal Felber, Dr Benôıt Garbinato, and other
members of the “former lab” for fruitful collaboration and good times. Very special
thanks go to Christian Heide Damm, with whom I have especially enjoyed working,
and all “current lab” members I have had the pleasure of collaborating with, Petr
Kouznetsov, Sidath Handurukande, and Sébastien Baehni. Of course many thanks
go to the lab’s good spirit, Kristine Verhamme, for taking care of so many important
issues.

Last but not least, I would like to thank all my beloved; my whole family and Sandra
for their love and support, and of course, all my friends :-)

Preface

During my time as Ph.D. student and research assistant, I was brought to work
around different subjects. Before starting my actual Ph.D. studies, I was involved
in research around object group systems, including technologies such as CORBA
or DCOM, and around underlying group communication issues. I have co-authored
two publications in that area [FDES99,GEF+00].

In the context of this thesis, I have, on the one hand, worked on abstractions for
distributed programming, and, on the other hand, on algorithms implementing these
abstractions.

The former axis of research has resulted in various publications around the subject of
publish/subscribe [EGS00,EG01a,EGS01,EGD01,EG00,EFGK01,DEG01], of which
mainly the first four are covered by this thesis. I am currently involved in the writing
of a book about distributed programming abstractions in general. The second re-
search direction was concerned with dissemination algorithms for publish/subscribe
systems. I have co-authored several publications related to this subject, mainly on
probabilistic algorithms [EBGS01,EGH+01,EKG01,EG01b]. The algorithm related
by the last paper is included in this thesis as well.

[FDES99] P. Felber, X. Défago, P.Th. Eugster, and A. Schiper. Replicating CORBA
Objects: A Marriage between Active and Passive Replication. In Proceedings of
the 2nd IFIP International Working Conference on Distributed Applications and
Interoperable Systems (DAIS ’99), pages 375–387, June 1999.

[GEF+00] R. Guerraoui, P.Th. Eugster, P. Felber, B. Garbinato, and K. Mazouni.
Experiences with Object Group Systems. Software - Practice and Experience,
30(12):1375–1404, October 2000.

[EGS00] P.Th. Eugster, R. Guerraoui, and J. Sventek. Distributed Asynchronous
Collections: Abstractions for Publish/Subscribe Interaction. In Proceedings of
the 14th European Conference on Object-Oriented Programming (ECOOP 2000),
pages 252–276, June 2000.

[EG01a] P.Th. Eugster and R. Guerraoui. Content-Based Publish/Subscribe with
Structural Reflection. In Proceedings of the 6th Usenix Conference on Object-
Oriented Technologies and Systems (COOTS’01), pages 131–146, January 2001.
Awarded best student paper.

[EGS01] P. Th. Eugster, R. Guerraoui, and J. Sventek. Loosely Coupled Compo-
nents. In Software Architectures and Component Technology: The State of the Art
in Research and Practice, chapter 8. Kluwer, 2001.

[EGD01] P.Th. Eugster, R. Guerraoui, and C.H. Damm. On Objects and Events.
In Proceedings of the 16th ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA 2001), pages 131–146, October 2001.

[EG00] P.Th. Eugster and R. Guerraoui. Type-Based Publish/Sub-scribe. Techni-
cal Report DSC/2000/029, Swiss Federal Institute of Technology, Lausanne, June
2000. In submission.

[EFGK01] P.Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The
Many Faces of Publish/Subscribe. Technical Report DSC/2001/004, Swiss Federal
Institute of Technology, Lausanne, January 2001. In submission.

[DEG01] C.H. Damm, P.Th. Eugster, and R. Guerraoui. Abstractions for Dis-
tributed Interaction: Guests or Relatives?. Technical Report DSC/2001/052,
Swiss Federal Institute of Technology, Lausanne, September 2001. In submission.

[EBGS01] P.Th. Eugster, R. Boichat, R. Guerraoui, and J. Sventek. Effective Mul-
ticast Programming in Large Scale Distributed Systems. Concurrency and Com-
putation: Practice and Experience, 13(6):421–447, May 2001.

[EGH+01] P.Th. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and
P. Kouznetsov. Lightweight Probabilistic Broadcast. In IEEE International Con-
ference on Dependable Systems and Networks (DSN 2001), pages 443–452, June
2001.

[EKG01] P.Th. Eugster, P. Kouznetsov, and R. Guerraoui. Δ−Reliable Broadcast.
Technical Report DSC/2001/010, Swiss Federal Institute of Technology, Lausanne,
January 2001. In submission.

[EG01b] P.Th. Eugster and R. Guerraoui. Probabilistic Multicast. Technical Re-
port DSC/2001/051, Swiss Federal Institute of Technology, Lausanne, September
2001. In submission.

CONTENTS i

Contents

1 Introduction 1

2 Background: Abstractions for Distributed Programming 5

2.1 Message Passing . 5

2.1.1 Sockets . 5

2.1.2 Connected Sockets . 6

2.1.3 Unconnected Sockets . 7

2.1.4 Multicast Sockets . 8

2.2 Remote Procedure Call (RPC) . 9

2.2.1 From Remote Procedures to Remote Objects 10

2.2.2 Proxies . 10

2.2.3 Synchronous RPC . 11

2.2.4 Asynchronous RPC . 12

2.2.5 Notifications . 15

2.2.6 From Proxies to Shared Objects 15

2.3 Shared Spaces . 16

2.3.1 Tuple Spaces . 16

2.3.2 Message Queues . 18

2.3.3 Advanced Primitives . 19

2.4 Publish/Subscribe . 19

2.4.1 From Shared Spaces to Publish/Subscribe 20

2.4.2 Subject-Based Publish/Subscribe 20

2.4.3 Content-Based Publish/Subscribe 22

2.4.4 Event Correlation . 24

ii CONTENTS

3 Type-Based Publish/Subscribe (TPS): Concepts 27

3.1 Object-Oriented Publish/Subscribe 27

3.1.1 Type Safety . 28

3.1.2 Encapsulation . 28

3.1.3 Requirements Overview . 29

3.2 Obvents: Marrying Events and Objects 30

3.2.1 Unbound Objects . 30

3.2.2 Bound Objects . 31

3.3 Publishing Obvents . 32

3.3.1 Semantics . 32

3.3.2 Publishing in Perspective . 33

3.3.3 Sending Obvents over the Wire 34

3.4 Subscribing to Obvent Types . 35

3.4.1 Background: Conformance and Subtyping 35

3.4.2 Obvent Type Systems . 37

3.5 Fine-Grained Subscriptions . 43

3.5.1 Modelling Subscriptions . 43

3.5.2 The Never-Ending Story: Attributes vs Methods 47

3.5.3 Degrees of Expressiveness . 48

3.6 Ensuring Type Safety . 50

3.6.1 Sources of Type Errors . 50

3.6.2 Type Safety in Obvent Dissemination 51

3.6.3 Type Safety in Obvent Delivery 51

3.7 Discussion . 52

3.7.1 Type-Based vs “Traditional” Publish/Subscribe 52

3.7.2 Related Notions of Typed Publish/Subscribe 54

3.7.3 Object Model . 57

4 GDACs: A TPS Library 61

4.1 Background: Collections . 61

4.1.1 Language-Integrated Collection Frameworks 61

4.1.2 External Frameworks . 62

4.2 GDACs Overview . 62

CONTENTS iii

4.2.1 “G” for “Generic” . 63

4.2.2 “D” for “Distributed” . 65

4.2.3 “A” for “Asynchronous” . 65

4.2.4 “C” for “Collections” . 66

4.3 GDAC API . 67

4.3.1 Methods . 67

4.3.2 GDACs with GJ . 71

4.4 GDAC Classes . 72

4.4.1 Expressing Variations . 72

4.4.2 Order . 73

4.4.3 Reliability . 75

4.5 A Filter Library . 76

4.5.1 Accessors . 76

4.5.2 Conditions . 80

4.5.3 Subscription Patterns . 82

4.5.4 Performance Evaluation . 84

4.6 Programming with GDACs: The Stock Trade Example 90

4.6.1 Preliminary: Stock Trade in TPS 90

4.6.2 Stock Trade with GDACs . 90

4.6.3 RMI and TPS: Hand in Hand 93

4.7 Discussion . 93

4.7.1 Subject-Based Publish/Subscribe 95

4.7.2 Message Queuing . 96

4.7.3 Ensuring Type Safety of Patterns at Compilation 97

5 JavaPS: Integrating TPS into the Programming Language 103

5.1 Overview . 103

5.1.1 Motivations: Lessons Learned from the Library Approach . . 103

5.1.2 Java Primitives for TPS . 104

5.2 Publishing . 105

5.2.1 Syntax . 105

5.2.2 Obvents . 106

5.3 Subscribing . 110

iv CONTENTS

5.3.1 Syntax . 110

5.3.2 Obvent Handlers . 110

5.3.3 Filters . 112

5.3.4 Restrictions on Closures . 113

5.3.5 Concurrency . 114

5.3.6 Managing Subscriptions . 115

5.3.7 Programming the Stock Trade Example with JavaPS 116

5.4 Translating Primitives . 117

5.4.1 Typed Adapters, Listeners and Filters 117

5.4.2 Publishing . 118

5.4.3 Subscriptions . 119

5.4.4 Filters . 120

5.4.5 Compilation . 121

5.5 Discussion . 121

5.5.1 Fork . 122

5.5.2 Callback . 123

5.5.3 A Homogenous Translation 124

5.5.4 Failures and Exceptions . 126

5.5.5 Structural Conformance . 127

6 hpmcast : A Dissemination Algorithm for TPS 131

6.1 Background: Probabilistic Broadcast Algorithms 132

6.1.1 Reliability vs Scalability . 132

6.1.2 Basic Concepts . 133

6.1.3 Related Gossip-Based Algorithms 134

6.2 From Broadcast to Multicast . 137

6.2.1 Broadcast with Receiver Filtering 137

6.2.2 Sender Filtering . 140

6.3 Overview of Hierarchical Probabilistic Multicast 142

6.3.1 Membership Scalability . 143

6.3.2 Locality . 143

6.3.3 Redundancy . 144

6.3.4 Garbage Collection . 144

CONTENTS v

6.4 Hierarchical Membership . 145

6.4.1 Model . 145

6.4.2 Membership Management . 149

6.5 Hierarchical Probabilistic Multicast (hpmcast) 151

6.5.1 hpmcast Algorithm . 152

6.5.2 Analysis . 154

6.5.3 Simulation Results . 158

6.5.4 Tuning hpmcast . 160

6.6 Discussion . 162

6.6.1 Exploiting Hierarchies . 162

6.6.2 Broadcasting with hpmcast 165

6.6.3 Levels . 166

7 Conclusions 171

Bibliography 179

List of Figures 193

List of Tables 197

Curriculum Vitae 199

1

Chapter 1

Introduction

Large Scale Computing: Sometimes Size Does Matter

Large scale networks, like the Internet, or more recently, mobile and ad-hoc networks,
represent an important step towards global connectivity. Exploiting these large
infrastructures to provide useful services to its end-users is a primary concern for a
vast industrial branch.

Devising software applications for these large scale networks in a way such that they
meet the requirements of end-users both in simplicity but also in efficiency is very
challenging.

Mastering the inherent complexity of distributed applications, i.e., the development
of such applications in an acceptable time frame, is a non-trivial task, which has led
to a proliferation of both research and industrial development around the subject of
distributed programming.

Object-Oriented Programming: When One Small Step Becomes a Giant
Leap

One very important advancement towards a rapid conception of such applications,
indeed any application, was given by the powerful object abstraction. The resulting
object-oriented programming led to a better modularity, extensibility and reusability
of application components, reducing the burden on developers [Weg90].

The object paradigm has been straightforwardly applied to distributed settings, by
leveraging a form of remote procedure call (RPC) [BN84] on objects: objects are
distributed over a set of nodes, and functions are invoked the same way on remote
objects than on local ones. The RPC has become very popular as a simple yet
powerful abstraction for distributed object-oriented programming, mainly due to the
fact that it provides type safety and encapsulation, by concealing details concerning
distribution behind application-defined types.

2 Chapter 1. Introduction

The Limits of Engineering: One Size Can not Fit All

It has long been argued that distribution is an implementation issue and that the very
well known metaphor of objects as “autonomous entities communicating via RPC”
can directly represent the interacting entities of a distributed system. This approach
has been conducted by the legitimate desire to provide distribution transparency,
i.e., hiding all aspects related to distribution under traditional centralized constructs.
One could then reuse, in a distributed context, a centralized program that was
designed and implemented without distribution in mind.

As widely recognized however (e.g., [Gue99]), distribution transparency is a myth
that is both misleading and dangerous. Distributed interactions are inherently unre-
liable and often introduce a significant latency that is hardly comparable with that
of local interactions. The possibility of partial failures can fundamentally change
the semantics of an invocation.

The RPC abstraction, initially conceived for strict pairwise interactions between
objects, has been indeed adapted to reflect the unpredictability of the underlying
network to some extent, but does not apply well to the dissemination of information
to a wide audience of objects. This limited scalability manifests quickly by leading
to unbearably poor performances as the audience targeted by an interaction grows
in size. Yet, such multicast-style interactions are the very base for large scale appli-
cations. In 1998, a study [LAJ98] measured that 30% of Internet traffic consisted of
multicast interactions, and already announced the growth of this proportion to over
50% at this day.

To meet the requirements of large scale distributed programming, several abstrac-
tions have been proposed or adapted, like multicast sockets, or the shared space [Gel85]
abstraction widely employed in parallel and concurrent programming, which has
been applied to object settings. These have however altogether failed in providing
an appropriate high-level abstraction addressing both ease-of-use, and even more
important, the stringent scalability requirements of modern applications.

Publish/Subscribe vs Objects: Out of Sight, Out of Mind

More recently, the publish/subscribe paradigm [OPSS93] has proven to be an ad-
equate abstraction for large scale information dissemination. At that time, the
desire for scalability and other properties like platform interoperability had become
so strong, that some of the nice principles which had led to the success of the ob-
ject paradigm were devoted little to no attention, and the market was invaded by
publish/subscribe systems based on very pragmatic programming models.

In 1999, while observing the rapid proliferation of publish/subscribe engines and the
promoted schemes, Koenig [Koe99] interprets the lacks for type safety and encapsu-
lation in existing systems as an inherent impossibility of combining these principles
with the publish/subscribe paradigm.

3

Back to Objects: When the Dust Settles

The truth is that, while other abstractions for distributed programming have ben-
efited from thorough studies in the context of object-orientation, only little consid-
eration has been given the publish/subscribe paradigm in the object community.

This thesis argues that publish/subscribe, until today, still remains the distributed
programming abstraction offering the biggest potential for scalability at the abstrac-
tion level [EFGK01], and that it is very appealing to merge the benefits of objects
with those of an asynchronous event-based programming model for distributed in-
teractions such as publish/subscribe [EGS00]. We make a case for such a marriage,
by describing a novel variant of the publish/subscribe paradigm, called type-based
publish/subscribe, or in short, TPS, which serves as vehicle for smoothly integrating
objects and events.

TPS aims at providing publish/subscribe those properties that made the RPC famous
in object-oriented settings, mainly type safety and encapsulation with application-
defined types, without hampering with the inherent scalability properties of pub-
lish/subscribe. We illustrate the feasibility of our concepts by instrumenting a stat-
ically typed object-oriented language, the ever popular JavaTM , with TPS; first, by
putting TPS to work through a library based on GJ, an extension of Java [BOSW98],
and second, by adding language primitives for TPS.

A Multicast Algorithm for TPS: Going the Whole Nine Yards

The best abstraction is worthless without a powerful underlying algorithm. While
seeking for adequate multicast algorithms to implement TPS, we have devoted much
effort to a rigorous study of gossip-based algorithms [DGH+87]. In fact, these non-
deterministic algorithms date back to the original USENET news protocol developed
in early 1980’s, and have experienced a true revival through the strong lack for
scalable algorithms, with applications in various contexts (e.g., [vRMH98, vR00]).
Gossip-based multicast algorithms fill this gap by providing very good practical
reliability, and excellent scalability properties.

To illustrate how TPS preserves the scalable nature of publish/subscribe, we have
developed a novel algorithm, custom-tailored to a strongly dynamic environment
such as TPS, but nevertheless general enough to be applied in a wide set of contexts.

Our Hierarchical Probabilistic Multicast (hpmcast) algorithm relies on a hierarchi-
cal membership. This hierarchical orchestration of participants adds a notion of
memory resource consumption scalability, by reducing the membership view of every
participant, to the network resource consumption scalability inherent to gossip-based
algorithms. Furthermore, we illustrate how this hierarchy enables the exploitation
of the topology of the system, and at the same time, also commonalities between
interests of participants in that system.

4 Chapter 1. Introduction

Roadmap: The Walk to the Talk

Chapter 2 overviews abstractions and paradigms for distributed programming. The
chosen perspective is oriented towards illustrating the supremacy of the general
publish/subscribe paradigm in terms of adequacy for scalable mass information dis-
semination. Also, we overview the evolution of prevalent abstractions for distributed
programming in the face of object-oriented programming.

Chapter 3 discusses type-based publish/subscribe from an abstract point of view.
We start by pinpointing the flaws of current publish/subscribe schemes with respect
to object-orientation, and summarizing the rationale underlying the efforts reported
in this dissertation.

Chapter 4 presents a seminal implementation of TPS based on a library approach.
This library promotes a programming abstraction called Generic Distributed Asyn-
chronous Collection (GDAC), which is implemented in Generic Java (GJ), a superset
of the Java language encompassing genericity. We give some results on the cost of
filtering events based on their methods, and we depict some optimizations.

Chapter 5 illustrates JavaPS , a home-grown extension of the Java language incorpo-
rating TPS. We relate the native Java language features which we have exploited,
and detail the primitives and mechanisms added to inherently support TPS.

Chapter 6 presents hpmcast, our novel gossip-based multicast algorithm. We show
how the hierarchical membership underlying hpmcast enables the reduction of the
membership views of participants, as well as the exploitation of both locality of
participants and redundancies in their individual interests.

We conclude this dissertation with remarks on a selected set of issues, including a
comparison of our library and language integration approaches, and future efforts
and application contexts for TPS.

5

Chapter 2

Background: Abstractions for
Distributed Programming

Several paradigms for programming at a distributed scale appear in the literature.
The most prominent paradigms and abstractions in this context include message
passing, remote procedure call, tuple spaces, and publish/subscribe. We outline these
interaction styles and the “typical” abstractions they rely upon.

Each of these abstractions has its respective advantages over others, making it prefer-
able in some contexts. We discuss these interaction paradigms here with particular
focus on their ability of providing scalability at the abstraction level. Akin to the
classification introduced in [Gel85], we discuss this ability in terms of coupling of
data producers and consumers, based on the assumption that reducing this cou-
pling between producers and consumers reduces the dependencies in a distributed
system, which in turn positively influences scalability. We discuss the case of pub-
lish/subscribe more in detail, conveying its advantages in terms of decoupling of
participants.

2.1 Message Passing

Tightly coupled to the socket abstraction, message passing can be viewed as the
most basic paradigm for distributed interaction. Though more elaborate interfaces
exist for message passing, like the Message Passing Interface (MPI) [For98], we focus
here on the socket abstraction as the best known abstraction for directly reflecting
the nature of the underlying network.

2.1.1 Sockets

The socket abstraction represents a communication endpoint with respect to a low-
level communication layer. Typical representatives are the layers 3 and 4 of the OSI

6 Chapter 2. Background: Abstractions for Distributed Programming

stack, corresponding to the network and transport layers respectively [Tan96].

Primitives

Message passing is asynchronous for the producer, and is usually implemented by a
send() primitive, which is invoked by passing the message as argument. Message
consumption on the other hand is generally synchronous, and is triggered by invoking
a receive() primitive which blocks until a message has been received and can be
delivered to the consumer.

Language Integration

Like many “distributed” interaction paradigms, message passing has also extensively
been used first in parallel and concurrent programming. Early, mainly procedural
and process-oriented languages, like Occam [Pou84] (promoting named unidirec-
tional connections) or also SR [AOC+88] (first with semi-synchronous sends, later
also with synchronous calls), inherently included some form of message passing, by
providing primitives like send() and receive() as built-in procedures.

Coupling

As summarized in Table 2.1 at the end of this chapter, the producer and the con-
sumer are coupled in time, meaning that they must be active at the same time.
Parties are also coupled in space, that is, the destination of a message is explicitly
specified. In other terms, the producer has an identifier or address referencing the
consumer. Finally, consumers are coupled in flow, since the flow of control of con-
sumers invoking the receive() primitive is blocked until a message is received and
delivered. This flow coupling however can become more important, for instance in
the case of connected sockets.

2.1.2 Connected Sockets

Connected sockets are tied to a remote address. This remote address is system-
atically used as a destination for outgoing messages, and the corresponding socket
hence represents a connection with a remote party. For receiving messages, a socket
is usually tied to its local address.

Channels and Streams

In practice, such sockets represent higher-level communication layers which offer
connection-oriented interaction, e.g., Transport Control Protocol (TCP), Sequenced
Packet Exchange (SPX) and consequently, give rather strong guarantees, like reliable
delivery (exactly-once). Connected sockets often give the illusion of a dedicated
network channel connecting the endpoints, and provide the application with a stream

2.1. Message Passing 7

abstraction, on which data is written and read in the same order. As a consequence,
the flow coupling with connected sockets is particularly strong, since the threads
of execution of both producers and consumers are inherently synchronized: once
invoked by a producer, a send() primitive only returns after the message has been
received by the consumer, as shown in Figure 2.1.

Logical Channel

Node 1 Node 2

ConsumerProducer Abstraction Interface Thread

Figure 2.1: Message Passing Interaction with a Connected Socket

Anthropomorphism: A Phone Call Away

For all abstractions presented in this chapter, we will attempt intuitive illustrations
of their characteristics through anthropomorphisms.

Communication based on a connected socket, for instance, can be roughly compared
to a telephone call. The two involved parties have to be there at the same time,
and the initiator at least has to “know” the callee by its phone number. Once
established, communication is bidirectional. Participants are however very aware of
the fact that they are not directly interacting, but merely communicating via an
intermediate mechanism.

2.1.3 Unconnected Sockets

In contrast to connected sockets, unconnected sockets are not tied to any remote
address, and can be used to send to virtually any address. The destination address
is hence given as a parameter every time the send() primitive is invoked, and there
is no illusion of a reserved network channel (cf. Figure 2.2).

Datagrams

In practice, as shown by the User Defined Protocol (UDP) or the Internetwork Pack-
age Exchange (IPX), unconnected sockets represent rather low-level communication
layers which do not have any notion of flow control. Producers send datagrams (sin-
gle packets) one-by-one to consumers, benefiting only from weaker semantics than

8 Chapter 2. Background: Abstractions for Distributed Programming

in the case of connected sockets (e.g., best-effort, at-most-once). In contrast, these
weaker guarantees offered by unconnected sockets are easier to implement and can
be satisfied without blocking producers.

Flow coupling is thus slightly reduced, since the threads of a message producer
and its consumer are not synchronized, and one could even imagine to view time
decoupling as relaxed; a consumer could be unavailable at the moment at which
a message is sent to it, but could become available while the message is in transit.
This remark can be extended to many interaction paradigms, but we do not consider
such “glitches” here.

Figure 2.2: Message Passing Interaction with an Unconnected Socket

Anthropomorphism: Short Message Service (SMS)

In the case of an unconnected socket, one can draw a comparison with sending
messages via short message service (SMS) from a mobile phone, a communication
mode which has become increasingly popular in the GSM mobile world. Indeed,
the sender edits a message, before choosing the destination phone number. On the
other hand, if the receiver needs the transmitted information, we will have to wait
for the message to arrive.

One could also compare unconnected sockets with answering machines. Instead of
trying to call a same person several times, until that person is finally reached, one
can simply leave a message on the answering machine. The guarantees provided are
however rather weak, since the message can be ignored by the targeted person, or
can be dropped by older models of answering machines whose memory capacities
are exceeded.

2.1.4 Multicast Sockets

The “classic” sockets represent endpoints for one single participant, and the result-
ing interaction is sometimes classified as one-to-one, since it inherently involves two
remote parties. In contrast, the term one-to-n (one-to-many) is used to denote
sockets which are characterized by logical addresses capturing several effective par-
ties (or any other such abstractions). Network-level protocols like UDP Broadcast
or IP Multicast [Dee91], or more sophisticated protocols (cf. Section 6) are usually
represented by multicast sockets.

2.2. Remote Procedure Call (RPC) 9

Connected Vs Unconnected

The choice between connected and unconnected sockets can be considered orthogonal
to the dissemination model (one-to-one vs one-to-n). As long as low-level protocols
are involved, it makes sense to provide unconnected interaction, while stronger guar-
antees could be implemented with connected sockets, even if several remote parties
are involved.

Multicast vs Broadcast

Note in this context that in the literature the terms multicast and broadcast are
sometimes used interchangeably, and sometimes separated according to various cri-
teria.

Besides in names of cited products, protocols or algorithms, the term broadcast will
be used in this thesis to denote a one-to-n dissemination scheme with more than
one potential destination. At every single primitive interaction, the entire set of
potential destinations is invariably addressed.

The term multicast will be used to refer to a one-to-n interaction with some-of-n
flavor. Precisely, this specific type of one-to-n interaction potentially involves more
than one destination just like a broadcast, but the effective set of destinations is in
general merely a subset of the potential set of destinations, and the former set can
differ from one simple interaction to another. In contrast, broadcast can hence be
viewed as manifesting a one-to-n dissemination model with all-of-n flavor.

Anthropomorphism: Group SMS

Several mobile communication companies already provide the possibility of send-
ing short messages atomically to a set of phone numbers. While most mobile
phones allow the explicit definition of several destinations when sending such mes-
sages, these mobile communication services include the transparent management of
“group” numbers.

2.2 Remote Procedure Call (RPC)

In any case, sockets represent an essential, yet low-level abstraction, on top of which
fewer distributed applications are nowadays built from scratch, since network ad-
dresses, the transformation of data to a more “physical” representation, and some-
times also flow control (e.g., retransmissions), have to be dealt with explicitly.

A more high-level paradigm, wrapping up network communication exposed by sock-
ets, is based on extending the notion of invocation to a distributed context, i.e.,
by providing a form of remote invocation This paradigm presents many variations,
which are regrouped under the term remote procedure call (RPC) [BN84, ATK92].

10 Chapter 2. Background: Abstractions for Distributed Programming

The RPC is probably one of the most popular paradigms for devising distributed
applications.

2.2.1 From Remote Procedures to Remote Objects

Originally introduced for procedural programming models, e.g., Sun RPC [Sri95],
DCE RPC [RKF93], remote invocations have been quickly applied to object-oriented
languages, promoting some form of remotely accessible entities, such as guardians
in Argus [Lis88] (follow-up of CLU [Lis93]), network objects in Modula-3 [CDJ+89]
and Obliq [Car95]. In the latter language, every object is potentially a network
object. More recently, Java [GJSB00] introduces remote objects through its remote
method invocation (RMI) [Sun99] paradigm. Also, interoperability has been added
to remote invocations on objects through so-called second-class RPC packages (in
contrast to first-class packages promoting a single language) such as the Common
Object Request Broker Architecture (CORBA) [OMG01a], or the Distributed Com-
ponent Object Model (DCOM) [Ses97]. This multiplicity is responsible for diverging
terminologies, e.g., “request/reply”, “client/server”.

2.2.2 Proxies

The common abstraction underlying these approaches is best known by the name
of proxy [Sha86]. In the original RPC implemented mainly in procedural languages,
proxies where viewed as ”empty” procedures representing effective procedures in
remote address spaces. Straightforwardly, the proxy has been mapped in object-
oriented settings to an object which mimics the remote object, i.e., it provides a
similar (if not identical) interface to the one of the object it represents, and its
methods (member functions, operations, etc.) are invoked locally as if the invoca-
tions were made on the original remote object. This is illustrated in Figure 2.3, by
equipping the proxy with the interface of the original object. The proxy is mainly
responsible for marshaling invocation arguments, that is, transforming them to a
format more suitable for lower-level communication layers. The opposite action is
called unmarshaling. Also here, many terminologies coexist. Proxies are sometimes
also called stubs (e.g., [Sun99, OMG01a]), while their remote counterparts, respon-
sible for unmarshaling, are usually called skeletons. Literature sometimes refers to
skeletons as (server-side) stubs.

Figure 2.3: Interaction with Remote Procedure Calls and Derivatives

2.2. Remote Procedure Call (RPC) 11

2.2.3 Synchronous RPC

By making remote interactions appear the same way as local ones, the RPC and
its derivatives make distributed programming very easy. Remote objects are syn-
chronously invoked through a proxy colocated with the invoker, and the thread of
control resumes once the reply has been processed. The transparency offered by the
RPC paradigm as a result of the exploiting of application-defined types explains the
tremendous popularity of this paradigm in distributed computing.

Anthropomorphism: Holograms

Finding an illustration for synchronous interaction through a proxy requires more
imagination, and we are forced here to have recourse to science fiction. “Holograms”
have been extensively used in futuristic visions of communication between humans.
A proxy can be compared to such a three-dimensional image which represents a far-
away person. One could talk to the hologram, ask it whatever question, and expect
a reply. Behind the scenes, one’s own voice, and possibly also image, would be
communicated to the effective partner (where this information might symmetrically
be used to constitute a hologram). The hologram is nearly perfect, in the sense that
it is very difficult to distinguish it from the real person.

Coupling

Remote interactions are however by their very nature different from local ones,
e.g., by giving rise to further types of potential failures. This difference might
be less visible in a local area network (LAN), but becomes more important once
the involved participants multiply throughout a wide area network (WAN) such
as the Internet, especially because the usual one-to-one semantics combined with
a synchronous invocation cannot be efficiently used to disseminate information to
several interested parties (see [BvR94] for a synopsis). Increased effort is required
to efficiently implement invocations on several objects at a time (e.g., [BI93]).

As shown in Figure 2.3, the synchronous nature of RPC introduces a strong time,
and space coupling since an invoking object requires a remote reference to each of
its invokees, which has to be up at the moment at which the invocation occurs. In
addition, the consumer1 is strongly coupled in flow, due to the awaiting of the reply.
Despite the inherent synchronization between consumers and producers (invokees),
we do not consider the latter ones as coupled in flow, since they are usually not
forced to explicitly “pull” for every invocation.

1The distinction of consumer/producer roles is not straightforward in RPC. We assume here
that an RPC which yields a reply attributes a consumer role to the invoker, while the invokee acts
as producer. As we will point out, the roles can be reversed with asynchronous invocations.

12 Chapter 2. Background: Abstractions for Distributed Programming

2.2.4 Asynchronous RPC

Several attempts have been made to reduce coupling in remote invocations, espe-
cially targeting at removing flow coupling in order to avoid blocking the caller thread
on the reply of a remote invocation.

Oneway Call

A first variant of an asynchronous invocation consists in simply omitting return
values in remote operations (e.g., CORBA oneway), as shown in Figure 2.4. This is
often implemented as invocations with weak reliability guarantees (e.g., best-effort)
because the sender does not implicitly receive success or failure notifications. This
is opposed to synchronous RPC, where a failed invocation (from the invoker’s point
of view) will return incorrectly.

From unconnected sockets to oneway calls. Oneway calls can be viewed as
a higher abstraction for asynchronous message sends (unconnected sockets), where
the primitive used for sending displays an application-defined signature, and the
arguments are automatically transformed to lower-level representations. Akin to
unconnected sockets, the producer (here the invoker), and the consumer (invokee)
are still coupled in time and space.

This ability of hiding underlying message passing mechanisms have motivated the in-
tegration of oneway calls in a series of object-oriented languages like ABCL/1 [YBS86]
or Hybrid [Nie87]. Also, like further forms of asynchronous invocations discussed in
the following, oneway calls suit very well the actor [Agh85] model of computation,
e.g., Actalk [Bri89].

Anthropomorphism: a man’s best friend. In this case, one can imagine a
hologram which looks like the far-away person, but does not reply. Such a hologram
can be used for instance to transmit indisputable orders to the receiver, or just to
represent your best friend, whose behavior, while listening to your stories, can be
fixed to simple gestures, in particular, nodding.

Figure 2.4: Oneway RPC

2.2. Remote Procedure Call (RPC) 13

Explicit Futures

This second, less restrictive kind of asynchronous invocations, attempts to remove
the inherent blocking of the consumer and hence flow coupling, yet by supporting
return values.

Pull. However, instead of making an invoking thread wait for a result, a handle
is directly returned upon the invocation. With this variant, commonly referred to
as future (future type message passing [YBS86]), a client queries an asynchronous
object for information by issuing a request to it. Instead of blocking however, the
invoking thread can immediately proceed (Figure 2.5). Thanks to the handle, the
client may query the result later (lazy synchronization, wait-by-necessity [Car93]),
or ignore it. This mechanism has been successfully implemented in a wide variety
of concurrent languages, e.g., ABCL/1, Concurrent Smalltalk [YT87], or also actor
languages like Act++ [KML93].

Figure 2.5: Asynchronous RPC Interaction with Pull-Style Futures

Callback. Some of these languages also implement callback mechanisms, to re-
move any form of flow coupling on the consumer side. Typically, when invoking an
operation on a proxy, a callback object is provided as additional argument by the
invoker, and is automatically invoked once the reply is ready (Figure 2.6). More
recently, explicit futures with callback (as well as pulling flavors) have been inte-
grated into the CORBA platform through the Asynchronous Messaging Interface
(AMI) [OMG01a].

Anthropomorphisms: holograms for dummies. We can again use the holo-
gram example to illustrate pulling futures. Such a hologram would not give a “real”
reply to our queries, yet would for instance return a phone number that could be
called later (or similarly a web address), to obtain the reply. Obviously, if the reply
is not ready, we would only get the answering machine. This type of hologram could
be ideally used to put off persons considered too nosy, or to avoid the honest but
nevertheless infamous reply “I don’t know”.

To realize callbacks, we would give our mobile phone number to the hologram, such
that we could be called back later, and the original reply of the remote interlocutor
would be replayed to us.

14 Chapter 2. Background: Abstractions for Distributed Programming

Figure 2.6: Asynchronous RPC Interaction with Callback Futures

Implicit Futures

This third style of futures tries to get the best of both the worlds of transparency
and asynchrony. Remote objects are invoked in a seemingly synchronous style,
but the thread of control can continue before the reply has been received or even
computed, for as long as there is no attempt to effectively make use of the result
in the subsequent code. Once the return value has been received on the client
side, it is automatically “inserted” into the corresponding variable. Examples of
languages including such implicit futures are Eiffel// [Car93], Karos [GCLR92], or
Meld [KPHW89].

Avoiding (lazy) synchronization. This scheme, by all evidence, relies on a
strong system support, and can be optimally exploited by using return values of
remote invocations “as late as possible”, since an attempt of using a return value
before it has been received results again in blocking the corresponding thread. This
constraint has to be kept in mind when devising applications based on implicit
futures, but also with explicit futures supporting pull-style interaction. Indeed,
many implementations of pull-style futures provide primitives for reading the future
value which block the thread of execution if they are invoked ”prematurely”. Hence,
also in this case, flow coupling is not systematically avoided. Implicit futures however
still offer the advantage over such explicit futures that the signatures of methods
provided by the proxies do not deviate from the original ones.

Anthropomorphism: holograms for smarts. This case requires even more
imagination. Such a hologram would reply unclearly to us, making us believe that
we have understood. At the moment when we would really need the information
however, we would have to think about the previously received reply, and might
even rely on information received in the meantime to complete the puzzle. This
gives the questioned person time to communicate a complete reply, while giving the
interrogator the time to understand, and the firm belief that the questioned had the
answer ready from the beginning.

2.2. Remote Procedure Call (RPC) 15

2.2.5 Notifications

With oneway invocations, a scheme similar to a callback future can be implemented
by splitting a synchronous remote invocation into two oneway calls: the first one
sent by the client to the server, accompanied by the invocation arguments including
a callback reference to an object controlled by the client, and the second one sent
by the server to the client to return the reply.

This scheme can be easily used to express several replies by having the server make
several callback invocations on the client.

This type of interaction, where consumers register their interest directly with pro-
ducers which manage subscriptions and send notifications, corresponds to a “dis-
tributed variant” of the so-called observer design pattern [GHJV95], illustrated in
Figure 2.7. This communication style is often built on oneway invocations in order
to enforce flow decoupling and corresponds thus more to a scheme or protocol than
to a class of abstractions or paradigms. Though publishers asynchronously notify
subscribers, both remain coupled in time and in space. Furthermore the communi-
cation management is left to the publisher and can become very burdensome as the
system grows in size.

Figure 2.7: Notification-Based Interaction

2.2.6 From Proxies to Shared Objects

The original idea common to most implementations of objects globally accessible
through proxies is that invocations made on those proxies are transmitted to the
original object.

Smart Proxies

As widely noticed however (e.g., [WWWK94, Lea97b, Gue99]), remote invocations
can be confronted with different behavior patterns than local ones, like increased
latency, congestion, or link failures in the network. In reply to these constraints, and
also to address further requirements (e.g., tracing, debugging), many RPC packages
nowadays support configurable proxies (smart proxies) which can for each invoca-
tion, in addition to performing pre- and postinvocation actions, decide whether the
operation should be effectively invoked on the represented remote object, or should
rather be performed by another remote or local object. This also gives the proxy
the possibility of playing the role of cache.

16 Chapter 2. Background: Abstractions for Distributed Programming

Distributed Object Implementations

The next step consists in distributing the effective implementation of the repre-
sented object, e.g., by replicating components. Such distributed shared objects (e.g.,
Globe [vSHT99]) aim at avoiding fully centralized components, and hence, single
points of failure. Distributed shared objects are of application-defined types, and
enable remote entities to indirectly interact. Providing a framework which automa-
tizes the distribution of a custom object implementation is however non-trivial, and
it is more convenient to use a more direct interaction between distributed address
spaces based on specific predefined types of shared objects, such as the ones we will
introduce in the next section.

Anthropomorphism: A Hologram for Hal

Smart proxies can be pictured as holograms generated by a computing device with
some form of intelligence. Instead of sending a question to the remote person, the
reply can be given by the computer itself,2 or can be rerouted to another person.

A hologram representing a shared object could represent a somewhat “virtual” per-
son, e.g., reflecting a computer-generated entire personality. Such holograms could
be used for instance to ease the communication with computers manifesting human-
like behavior, such as a substitute “best friend”, which besides nodding would also
give simple replies like “yes”, “of course”, or even “you’re the best”.

2.3 Shared Spaces

An indirect interaction between distributed address spaces is achieved by the dis-
tributed shared memory (DSM) [PTM96] paradigm which can be seen as a specific
type of shared object, representing a common shared memory. Like any kind of
shared object, synchronization and communication between participants take place
through operations on shared data.

2.3.1 Tuple Spaces

The tuple space underlying the generative communication style originally advocated
by Linda [Gel85] provides a simple, yet powerful, distributed shared memory abstrac-
tion that is integrated with a language. A tuple space is composed of a collection of
ordered tuples, equally accessible to all hosts of a distributed system.

Primitives

Hosts indirectly interact by inserting and removing tuples into/from the tuple space.
Three main operations can be performed: out() to export a tuple in a tuple space,

2Such as “Hal” in Stanley Kubrick’s “2001: Space Odyssey”.

2.3. Shared Spaces 17

in() to import and remove a tuple from the tuple space and read() to read without
withdrawing a tuple from the tuple space.

Tuples

A tuple inserted into the space is an arbitrary set of actual arguments. A tuple read
from a space can be specified by actual arguments and formal arguments acting as
placeholders. A candidate tuple must conform to such a tuple template in the sense
that the types of the formal arguments of the latter one must match the types of the
corresponding actual arguments of the former one, and the actual arguments of the
latter one must match the corresponding arguments of the former one in type and
value. In the original tuple space, tuple arguments were mainly values of primitive
types, like integers, floats or character strings.

Concurrency and Coupling

This interaction model provides time and space decoupling in that tuple producers
and consumers remain anonymous with respect to each other, and the tuple space
acts as buffer between them. The creator of a tuple needs no knowledge about the
future use of that tuple or its destination. An in()-based blocking pull interaction
implements one-to-n semantics with one-of-n flavor, where only a single among
several potential consumers reads a given tuple. In contrast, read()-based blocking
pull interaction is able of providing one-to-n message delivery with some-of-n flavor,
i.e., a given tuple can be read by all consumers whose criteria match that tuple.
However, there is no flow decoupling since consumers pull new tuples from the space
in a synchronous style (Figure 2.8).

Object Spaces

There have been a series of attempts to transform the structured form of tuples to
an object form, mainly by extending the exact type equivalence for tuple elements in
Linda to the notion of type conformance (see Section 3.4.1). While early approaches
to integrating the tuple space with objects, like [MK88] (for Smalltalk [GR83]),
promoted tuples as sets of objects, later approaches, like [Pol93] (C++ [Str97]),
[Kie97] (Objective Linda), or [FHA99, CR97, LLW99] (Java) considered tuples as
single objects, however often degrading their attributes (fields, instance variables,
etc.) to tuple arguments (Section 3.1.2 gives more details on this).

Anthropomorphism: Bookstore

A tuple space manifests characteristics of both bookstores and public libraries. In-
formation published in books or journals by authors, most probably personally un-
known to the effective readers, can be bought (in()). In libraries, readings can be
copied (read), or in the case of archives, can be printed. The bookstore only has a

18 Chapter 2. Background: Abstractions for Distributed Programming

Logical Container

Figure 2.8: Interaction with Tuple Spaces

single copy of each book, and it is not a necessity that a new copy of a sold book
will be reordered. In any case however, the reader personally picks up the desired
piece of literature at the bookstore.

2.3.2 Message Queues

More recently, the shared space paradigm has been revisited by more industrial
strength approaches, commonly termed message queues, e.g., [Sys00, BHL95, DEC94,
Mic97, Ora99]. At the interaction scheme level, message queues recall much of tuple
spaces, by representing global spaces which are fed with messages from producers.

First Come, First Serve

These queues promote a pull-style interaction of concurrent consumers with the
queue, mainly in a way corresponding to the in() primitive found in tuple spaces
(one-to-n with one-of-n flavor, also called point-to-point in this context). Which
element is retrieved by a consumer is however not primarily defined by the element’s
structure, but by the order in which the elements are stored in (i.e., received by)
the queue. Similarly to tuple spaces, producers and consumers are thus decoupled
both in time and in space, but there is a lack of flow decoupling since consumers
synchronously pull messages (Figure 2.9).

From a functional point of view, message queuing systems additionally provide trans-
actional, timing, and ordering guarantees not necessarily considered by tuple spaces.

Anthropomorphism: Bookworms

Message queues can also be pictured as bookshops, with a rather specific type of
clients, which are interested in any topic. Once the last book has been read to the
end, another stop at the bookstore provides a client with a new reading.

2.4. Publish/Subscribe 19

Logical Queue

Figure 2.9: Interaction with Message Queues

2.3.3 Advanced Primitives

Tuple spaces have turned out to address the requirements of many distributed ap-
plications in terms of both interaction and synchronization. The latter possibility
is mainly provided by the in()-style interaction, which integrates a powerful con-
currency mechanism with communication, e.g., a form of mutual exclusion can be
implemented with such an interaction style.

Improving Expressiveness

However, several primitives have been added to the original tuple space model, ad-
dressing certain flaws, like the lack for efficient multiple reading [RW96] (repeated
invocations of the non-destructive read() primitive by a consumer can yield the
same tuple, while other similarly eligible tuples might be ignored), and also several
specific requirements. For instance, eval() is a more sophisticated primitive sup-
porting functions as arguments of a tuple. These functions are evaluated, and are
replaced by their return values in the tuple inserted into the space. Also, the use
of multiple tuple spaces (see [Gel89] for the case of Linda) has been investigated to
limit the scope for tuple spaces and their contained tuples.

Reducing Flow Coupling

More recently, several systems have introduced callback primitives aiming at re-
moving the flow coupling on the consumer side, like JavaSpaces [FHA99] or also
TSpaces [LLW99], both in the case of Java. Similarly, many message queuing sys-
tems integrate callback mechanisms. Such primitives are often provided with one-
to-n semantics, leading to a publish/subscribe-like interaction scheme.

2.4 Publish/Subscribe

The publish/suscribe paradigm is characterized by the complete decoupling of pro-
ducers (publishers) and consumers (subscribers) in time, in space, but also in flow.

20 Chapter 2. Background: Abstractions for Distributed Programming

As outlined above, the latter coupling is removed by calling back consumers. Ta-
ble 2.1 summarizes the decoupling abilities of the different interaction styles.

2.4.1 From Shared Spaces to Publish/Subscribe

Publish/subscribe-based systems often provide an abstraction similar to the shared
space describe above, i.e., giving the impression of a globally accessible data reposi-
tory or software bus. Hence, publish/subscribe, together with message queuing often
provided by database systems, are sometimes regrouped under the term message-
oriented middleware (MOM).

Since we will however take a less industrial and message-centric, but rather a higher-
level view of publish/subscribe as an interaction paradigm based on the notification
of events between remote objects, we will not deal with the whole complexity of
industrial strength solutions.3

A more precise discussion of the different debates related to the publish/subscribe
paradigm and its incarnations and implementations can be found in [EFGK01], and
an initial proposition for a unified terminology is the subject of [RW97]. A further
taxonomy, emphasizing transactional features in publish/subscribe, can be found in
[TR00].

2.4.2 Subject-Based Publish/Subscribe

Examples of publish/subscribe abstractions fostering the illusion of a ubiquitous soft-
ware bus (Figure 2.10) are plentiful, e.g., Information Bus [OPSS93, AEM99, Col99,
UM99], Event Channel [OMG01b, OMG00], Connector [Ske98]. Also, Smart Sock-
ets [Cor99] allude to the similarity between multicast sockets and publish/subscribe.

Logical
Channel

Figure 2.10: Interaction with Publish/Subscribe

3As illustration of the complex programming models of industrial systems, note that IBM has
instrumented its ever famous MQSeries product with two API’s, the Common Messaging Inter-
face (CMI) and the Application Messaging Interface (AMI), as simpler alternatives to the original
Message Queuing Interface (MQI).

2.4. Publish/Subscribe 21

Channels and Groups

To divide the event space, systems usually provide for several distinct spaces, or
channels, by associating names with these. Such channels resemble much the groups
[Pow96] known from group communication underlying for instance replication pro-
tocols [Bir93]: by subscribing to a group T one becomes member of the group T.

This scheme was implemented by nearly all early systems, and these groups also
often appear under the name of subjects, leading to the widely adopted terminology
of subject-based publish/subscribe implemented by many early systems. Examples
include [Cor99, Ske98, TIB99, AEM99, EGS00].

Channels and subjects are often dissociated by the nature of their naming: in the
context of channels, names are often viewed as network addresses like addresses
of IP Multicast groups often built upon, while subjects are seen as represented by
logical addresses (e.g., “MyEvents”). Even though IP Multicast sockets usually
promote a pull-style interaction on the consumer side, they are sometimes pictured
as implementing a publish/subscribe interaction [HGM01].

Subjects and Topics

Similarly, the term topic-based publish/subscribe is sometimes used as a synonym
for subject-based publish/subscribe (e.g., [HGM01]), while some authors dissociate
these two concepts by viewing the hierarchical disposition of names as reserved to
subject-based publish/subscribe (e.g., [CRW00]). In any case, most approaches to
publish/subscribe based on a group-like paradigm promote hierarchies with a URL-
kind notation of group names, e.g., “/MyEvents/Today”. A subscription to a node
in the hierarchy triggers subscriptions to the entire subtree, and wildcards can be
used to perform pattern matching on subject names. All the above cited prototypes
integrate such facilities.

Explicit Addressing

We believe the channel, topic, and subject abstractions to provide essentially equiv-
alent addressing schemes, i.e., events are always published to specific groups. Any
variant of group-based addressing strongly supports interoperability, by solely rely-
ing on names (character strings) to “connect” remote entities, especially in combina-
tion with events supporting some form of introspection (a form of dynamic queries,
see Section 4.5.1) on their content. Such self-describing events (called self-describing
messages in [OPSS93]), illustrated in Figure 2.11 with Java syntax, can be viewed
as dynamic structures,4 and are implemented by most current systems.

The dissemination is invariably based on a one-to-n model, mainly with all-of-n
flavor, since when subscribing to a subject, one is interested in all events published
for that subject.

4The dynamic any found in CORBA reflects the same design.

22 Chapter 2. Background: Abstractions for Distributed Programming

It is worth noting that sometimes space decoupling is considered as incompletely
achieved by group-based publish/subscribe, since there is still an explicit notion of
“address”. Additions to the subscription scheme, like hierarchies, or aliases permit-
ting the tagging of groups with different names [AEM99] make subscriptions more
expressive, yet do not affect the basic addressing scheme. Any kind of interaction
however requires a contract, whether this is an explicit group name, or a structural
constraint put on the exchanged data.

Anthropomorphism: Paper Boy

Subscribing to a subject is like subscribing to a journal or newspaper. All subscribers
receive a copy of every edition, which is delivered to them by the postman or a paper
boy. The subject can be seen as the title of the journal, and, when viewing subjects as
organized in hierarchies, one could also imagine that journals are classified according
to keywords.

This illustrates the adequacy of publish/subscribe for mass-dissemination of infor-
mation, as well as the difference to the shared space abstraction: when buying
books from a bookstore, a consumer (unless already knowing the desired books and
ordering them via Internet) has to pick these up in person.

public class DynamicallyStructuredEvent {
public static final int IntegerType = 1;

public static final int FloatType = 2;

public static final int StringType = 3;

...

public void addInteger (String fieldName , int i) {...}
public void addFloat(String fieldName , float f) {...}
public void addString (String fieldName , String s) {...}
...

public int getInteger (String fieldName) throws WrongTypeException {...}
public float getFloat(String fieldName) throws WrongTypeException {...}
public String getString(String fieldName) throws WrongTypeException {...}
...

public String[] getFieldNames () {...}
public int getFieldType (String fieldName) {...}
...

}

public class WrongTypeException extends Exception {...}

Figure 2.11: Dynamically structured event

2.4.3 Content-Based Publish/Subscribe

Despite the improvements brought by subscription schemes based on hierarchies or
aliases, any derivative of the group-based addressing style basically provides for an
explicit division of the event space according to a single dimension. E.g., introducing

2.4. Publish/Subscribe 23

two dimensions requires every possible value for the second dimension to be mapped
to a nested subject in every subject representing a value of the first dimension.
A more refined and expressive subscription scheme has been introduced through
content-based (property-based [RW97]) publish/subscribe, e.g., [SAB+00, CRW00,
ASS+99, CNF98].

Properties

Content-based publish/subscribe comes closer to its spiritual ancestor, the tuple
space, by taking into consideration inherent properties of the conveyed data. Sub-
scriptions are expressed as predicates based on these properties, and these subscrip-
tion patterns are viewed as filters when (generated and) applied by the communica-
tion middleware. The explicit addressing known from subject-based systems hence
disappears, and becomes implicitly given by the individual properties of events.

In most content-based systems, events are viewed as sets of values of primitive types,
or records, and properties of events are viewed as fields of such structures. Dynamic
structures, as depicted in Figure 2.11, can develop their full flavor with content-
based publish/subscribe, by allowing attributes, and hence properties of events, to
be initialized at runtime. Likewise, most standardized API’s, like the Java Message
Service (JMS) [HBS98], view properties as characteristics explicitly attached to
events.

Expressing Subscriptions

Subscriptions can be viewed as issued to a channel, which similarly to a tuple space,
can be a singleton, or when combining with subjects, can be a channel reflecting a
specific subject. In any case, such a channel provides a one-to-n interaction style with
some-of-n flavor. Subscription criteria consist of desired values for given properties,
and can be expressed in various ways.

Query languages. Often, a subscription language is used to express property-
value pairs. Examples can be found plentiful, e.g., the Structured Query Language
(SQL), the OMG’s Object Query Language (OQL) used in the Cambridge Event
Architecture (CEA) [BMB+00], or the Default Filter Constraint Language used in
the CORBA Notification Service [OMG00]. Relying on such pairs enables very
efficient realizations, since computational overhead is reduced by allowing events to
be represented and handled by indexed structures.

Arguments. Approaches like the Component Object Model (COM+) or also the
CORBA Event Service and Notification Service make use of the proxy principle to
implement a publish/subscribe scheme. An invocation made on a proxy of type T
is performed on every subscriber of type T, and hence registering an object of type
T means subscribing to any method defined by T.

24 Chapter 2. Background: Abstractions for Distributed Programming

To respect the asynchronous nature of publish/subscribe, proxies provide oneway
operations. In contrast to the tuple space, where the out() primitive could take
an arbitrary number of arguments of different types, the proxy principle allows the
application to furthermore give own names to primitives. We will come back to this
specific kind of publish/subscribe interaction in Section 3.7.2.

Templates. With tuple spaces, producers obtain tuples by providing a tuple to the
in() or read() primitive whose arguments are not necessarily all initialized. Such
tuples can be understood as templates, and most tuple space derivatives incorpo-
rating an asynchronous variant of the non-destructive read() primitive to promote
publish/subscribe-like interaction are based on this approach.

Hence, when subscribing, a consumer provides a template object, which is matched
with the potential objects of interest, for instance attribute-wise, or based on a
specific match() method implemented by all events.

Anthropomorphism: Selective Readers

Content-based subscribing can be viewed as subscribing to individual journal edi-
tions. To be more precise, instead of subscribing to journals and only effectively
reading some of the articles, (or even only some editions), one could imagine that
a big publisher, like the ACM, or IEEE, would offer the reader the possibility of
receiving only individual editions, yet of various journals (or even specifically com-
posed ones), which contain for instance articles covering specific subjects, containing
precise keywords, or which are written by our preferred authors or do not exceed a
given length.

2.4.4 Event Correlation

Another face of publish/subscribe is called event correlation [KR95, MSS97, CRW00].
With event correlation, subscribers can express interest in being notified upon the
occurrence of specific combinations of events only.

Subscription Scheme

Event correlation has been sometimes viewed as a publish/subscribe style of its own.
We view event correlation as orthogonal to the main addressing scheme. For exam-
ple, a subscriber could be interested in being notified of the occurrence of a pattern of
events appearing under respective subjects. The subscription scheme however obvi-
ously depends on the addressing scheme, e.g., subscribing to hierarchically organized
subjects requires events to be published to the same subjects.

In most systems based on event correlation, content-based subscribing is predom-
inant. The individual events are merged, and the subscriber receives a compound
event, which is composed of (subsets of) the attributes of each of the individual

2.4. Publish/Subscribe 25

Abstraction Space
Coupling

Time
Coupling

Flow
Coupling

Connected Sockets Yes Yes Yes
Unconnected Sockets Yes Yes Consumer
RPC Yes Yes Consumer
Oneway RPC Yes Yes No
Explicit Future (Pull) Yes Yes No
Explicit Future (Callback) Yes Yes No
Implicit Future Yes Yes No
Notifications (Observer Design Pattern) Yes Yes No
Tuple Spaces (Pull) No No Consumer
Message Queues (Pull) No No Consumer
Subject-Based Publish/Subscribe No No No
Content-Based Publish/Subscribe No No No

Table 2.1: Decoupling Abilities of Interaction Paradigms

events. Event correlation can hence be viewed as providing what we call a m-to-
n (many-to-many) interaction style, since a single interaction can involve several
producers and several consumers.5 In the context of event correlation, subscription
criteria are often called event patterns [RW97].

Anthropomorphism: Gourmet Readers

With event correlation, one can subscribe by providing all the criteria outlined in
the case of selective reading, but will receive individually composed journals which
only contain those articles which correspond to the specified criteria, these articles
having been written and published at different moments.

5Note that often the “basic” publish/subscribe paradigm, without event correlation, is said
to provide many-to-many interaction. According to the taxonomy adopted in this thesis, which
focuses on single interactions, i.e., single data exchanges between consumers and producers, event
correlation is the only interaction paradigm to involve several producers and consumers into the
same interaction. In fact, event correlation provides m-to-n semantics with some-of-m and some-
of-n semantics, when a content-based subscription style is chosen.

26 Chapter 2. Background: Abstractions for Distributed Programming

Summary

Distributed computing would be hardly conceivable without any form of sockets.
This fact is conveyed by the inherent support that this paradigm benefits from in
prevalent operating systems. Akin, RPC mechanisms have been integrated into most
operating systems. Forms of shared spaces are viewed as foundations for parallel,
concurrent, and distributed programming. In other terms, all these paradigms have
proven their immense practical value in respective contexts, for which they have
been designed.

The publish/subscribe paradigm has been motivated by scalability requirements of
todays applications in wide-area networks like the Internet. The excellent scalability
properties offered by publish/subscribe at the abstraction level can be explained by
its strongly asynchronous flavor, ensuring a strong decoupling of participants in time
(participants do not have to be up at the same time), in space (participants do not
have to know each other), and in flow (the main flow of control of participants is
not blocked).

27

Chapter 3

Type-Based Publish/Subscribe
(TPS): Concepts

Common approaches to publish/subscribe interaction altogether fail in sufficiently
providing type safety with application-defined event types, and expressive content-
based matching based on these types, while preserving encapsulation.

The type-based publish/subscribe (TPS) paradigm addresses these requirements.
Events are viewed as objects, i.e., instances of application-defined object types.
Subscribers outline their preferences based on the types of the desired event ob-
jects (obvents), along with more refined content-based queries based on the public
members of these event types.

TPS does not require any explicit notion of event kind, nor any explicit addressing
scheme, but relies solely on an “ordinary” type system common to all event types,
e.g., that of an object-oriented programming language, to describe subscriptions.
By basing subscriptions on the types of the events, the type of the received events
is known, and type checks can be performed.

This chapter presents the TPS paradigm for distributed programming in a general
manner. Increased attention is however given to the Java [GJSB00] programming
language, in whose context we will describe TPS in the two following chapters.

3.1 Object-Oriented Publish/Subscribe

While the implementation of message passing, RPC, and shared spaces in an object-
oriented setting have been thoroughly studied, only comparably little effort has
been made to merge the benefits of event-based distributed programming based on
publish/subscribe with those of the object paradigm. Current publish/subscribe
models are inadequate for object settings, and we outline their flaws, mainly with
respect to type safety and encapsulation.

28 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

3.1.1 Type Safety

Very few approaches to publish/subscribe permit the use of application-defined event
types. Events are often viewed as low-level messages, and a predefined set of such
message types are offered by most systems, which provides for very little flexibility.

Dynamic Structures

To repair this lack of flexibility to some extent, many systems propose a variant
of self-describing events. These indeed increase flexibility, and are very useful in
certain scenarios where dynamic interaction is required. Nevertheless, just like invo-
cations interpreted dynamically through the dynamic skeleton interface in CORBA
(or similarly in DCOM) are far less often encountered than plain static invocations,
the systematic use of self-describing events can become cumbersome, and in addition
jeopardizes type safety.

Only the Best is Good Enough

Promoting events as instances of a low-level data type like a byte array can easily lead
to an API which appears type-safe. From the application point of view however, such
an API is weakly typed, since application objects have to be explicitly transformed
to and from such low-level types. We do not consider such an API as type-safe,
and this remark can be extended to self-describing events and any kind of event or
message promoting a non-object abstraction.

Also, any event abstraction which necessarily entails explicit type checks and casts
when using own event types is here considered as not type-safe. We hence focus
mainly on static typing, in the sense that we assume that, in a language which
enforces static type-checking, these same checks should be applied to any remote
communication, in our case, to the exchange of events.

Application-Defined Types

As already successfully shown by RPC packages, type-safe distributed interaction
can be indeed achieved with application-defined types. Such application-defined
types can nonetheless express their distributed nature, for instance by inheriting
“distributed behavior” from predefined basic types.

3.1.2 Encapsulation

Existing approaches which enforce application-defined event types offer API’s which
do not take these types into consideration, with a negative effect on type safety. For
example, such systems provide an API where formal arguments representing events
appear as instances of a basic event type T , while the use of instances of any subtype

3.1. Object-Oriented Publish/Subscribe 29

T ′ of T implies casts from type T to that more narrow type T ′, if features added by
type T ′ have to be accessed.

Furthermore, these types are most commonly viewed as sets of attributes, though
promoted as objects, and this unconditionally leads to violating encapsulation in
subscriptions and filtering. Note here that we do not abolish any direct access of
attributes, but try to avoid attributes as the only possibility of describing event
properties (see Section 3.5.2).

Query Languages

Often, subscription patterns are based on attribute-value pairs, and are expressed
through SQL-like query languages. Besides violating encapsulation, type safety is
jeopardized again, since such queries are usually expressed through strings which
must be parsed at runtime. Increased portability is a flawed argument for query
languages, given the multitude of different languages.

Templates

Implementing template-based subscriptions with attribute-wise matching again vio-
lates object encapsulation, since the developer is constrained to having this scheme
in mind, and devising objects as sets of publicly accessible attributes. Moreover,
template-based subscriptions offer only limited expressiveness: attributes are veri-
fied for strict equality with a value. Hence, it is not possible to match an attribute
against a range of values. Also is it impossible to express a constraint not on an
entire attribute, but recursively only on one of it’s attributes. Implementing the
matching inside the template object rules out any performing of optimizations by
the middleware, such as regrouping filters and factoring out redundancies.

Optimizations

In fact, as illustrated by Gryphon [ASS+99], the stifled scalability of content-based
publish/subscribe systems resulting from high expressiveness can be counteracted by
exploiting common interests of subscribers to avoid redundant filtering and routing.
In subsequent discussions, the importance and impact of such optimizations will be
devoted more attention.

3.1.3 Requirements Overview

By attempting to merge the benefits of objects and event-based distributed pro-
gramming based on the publish/subscribe paradigm, this thesis precisely makes a
case against the argument that type safety and encapsulation are inherently incom-
patible with the publish/subscribe paradigm. More precisely, TPS addresses the
following requirements:

30 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

Type safety: Distributed applications, by their nature, tend to become extremely
complex. Type safety helps counteracting potential errors resulting from this
inherent complexity, and should be enforced by any distributed programming ab-
straction.

Encapsulation: Events are to be viewed as objects, and the encapsulation of these
objects should not be systematically violated through fine-grained (content-based)
subscriptions. In particular, the expression of subscription patterns should not
impose viewing events as sets of attributes.

Application-defined event types: Applications should be free to define their own event
types, and should not have to abide to a restricted set of predefined types. Such
predefined event types can indeed assist developers, but should not be the only
admissible event types.

Qualities of Service: Different applications have different requirements in terms of
guarantees ensured by the communication medium. The latter component should
provide different semantical choices, reflecting Qualities of Service (QoS) typical
for distributed contexts.

Optimizable subscriptions: Subscriptions should not be opaque to the communica-
tion middleware, allowing it to apply optimizations when performing the actual
routing and filtering of events.

Several similar notions of typed publish/subscribe exist in the literature, yet none
succeeds in respecting all these requirements. We overview the closest related ap-
proaches in Section 3.7.

3.2 Obvents: Marrying Events and Objects

To depict more precisely how type-based publish/subscribe (TPS) unites the two
worlds of event-based distributed interaction and object-orientation, we introduce
an object model which distinguishes two main categories of objects. The distinction
is coarse, and is made very roughly according to the granularity of these objects. The
resulting model strongly resembles the model presented by Oki et al. in the context
of subject-based publish/subscribe [OPSS93]. The added value of the object model
presented here in the context of TPS consists in the introduction of two further
(sub)categories of objects.

3.2.1 Unbound Objects

Unbound objects are locality-unbound, that is, their semantics do not depend on any
local resource, and they are easily relocatable (data objects in [OPSS93]). In other
terms, these objects could at any moment be easily transformed into a representation
more suitable for lower-level communication layers, e.g., a byte array, and transferred
to another address space.

3.2. Obvents: Marrying Events and Objects 31

Fine-Grained Objects

In practice, these objects are “small”. The most simple, yet realistic, examples are
simple object types encapsulating a value of a primitive type, whether these are prim-
itive object types provided by the language (e.g., Java, Smalltalk, Eiffel [Mey92]),
or explicitly defined. Nevertheless, most unbound objects offer a complexity which
usually exceeds that of a single attribute of primitive type. It is very common to have
unbound objects encapsulate several attributes of primitive types, or even objects
which again encompass attributes. Again, since such objects have to be transmitted
over the wire, their size should be “reasonable”: although appealing, the goal is not
to provide a general service for object migration.

Such objects can be conveyed with various communication schemes, according to
the desired interaction style: they can be objects representing tuples, as used with
tuple spaces (Section 2.3)), or invocation arguments for RPCs which are passed by
value.

Obvents

Another specific kind of unbound objects are events. Such objects are used to notify
events, and we consider them as first-class citizens defined by the application.

Events can be represented as first-class citizens in mainly two ways, either (1) by
introducing specific object types reflecting events, or (2) by promoting specific con-
structs. Our main goal is to make events come as close as possible to “arbitrary”
objects, and we will hence not promote events as specific constructs. This is as
adequate to achieve type-safe event-based distributed interaction as adding spe-
cific constructs, while the latter approach unconditionally entails extensions to any
candidate language. To emphasize the fact that events are objects, these will be
henceforth called event objects, or to abbreviate notation, simply obvents.

3.2.2 Bound Objects

The second rough category of objects are locality-bound, i.e., they are rather coarse-
grained objects which are bound to an address space and remain in that address
space during their entire lifetime. They are termed service objects in [OPSS93].

Though such objects are very likely to make use of local resources, like any kind of
human-machine interface, or simply the file system, these objects do not necessarily
rely on a unique host, that is, such objects are not necessarily tied to a particular
address space for geographical reasons.

Coarse-Grained Objects

The distinction between bound and unbound objects goes more along our criteria
of relocation, based on the granularity of objects: bound objects cannot be easily
migrated, or in other terms, bound objects are not bound because they could not be

32 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

running in another address space, but because theycould not be transferred easily
to another address space.

Such objects are typical candidates for becoming objects which are remotely in-
vocable through RPC-style interaction. To support RPC, such objects are made
remotely “visible” by having them export a remote interface, through which they
can be directly invoked from another bound object. More generally, bound objects
communicate with other bound objects through various forms of remote communi-
cation, mainly by exchanging unbound objects. Typically, components in the sense
of component-oriented programming (e.g., Java Beans [Tho98], COM [Obe00]) can
be viewed as bound objects. Note in this context that event-based communication
based on the publish/subscribe paradigm has been largely adopted by such compo-
nent technologies, because of its strong decoupling of participants [EGS01].

Subscribers

In particular, when interacting in a publish/subscribe style, a bound object can take
the role of subscriber.

Similarly to event objects which can appear as “normal” objects, or as specific
constructs with limited semantics from the object point of view (maybe additional
semantics as event constructs), it is not a necessity that subscribers be reflected by
objects either. As we will depict in Chapter 5, subscribers can be viewed as pure
code, e.g., a procedure.1

Subscribers are not only bound because of their size, but also because they repre-
sent a “role”, a component’s participation in a publish/subscribe-style interaction.
A subscriber is always an incarnation of such a role, and a subscription could be mi-
grated without migrating the corresponding subscriber object, since such an object
is merely viewed as an incarnation.

3.3 Publishing Obvents

To avoid reduce synchronization between participants, we have adopted straightfor-
ward semantics for publishing obvents. Alternatives and dangers are discussed in
Section 3.7.3.

3.3.1 Semantics

In short, when an obvent is published, every subscriber receives a copy of that
obvent,2 the state of these copies being the state of the original obvent at the moment
of the publication.

1Any function can be represented by an object on which the function is defined. Inversely, an
object can be captured by a function which returns that object.

2For simplicity we suppose reliable communication here.

3.3. Publishing Obvents 33

More precisely, a distinct copy of a published obvent is created for each subscriber,
according to the following rules:

Obvent global uniqueness: Consider an obvent o published from an address space
a1: if an address space a2 contains two subscribers s1 and s2, these will receive
references to two new distinct clones of o, say o1 and o2. The obvent o can be
published several times, giving rise to several distinct clones in both a1 and a2.

Obvent local uniqueness: In the above scenario, if the address space a1 also contains
a subscriber s3, then s3 will receive a reference to a new obvent every time o is
published.

Alternatively, one could also suggest that a single copy of a published obvent is cre-
ated for each address space hosting subscribers. However, every subscriber (whether
colocated with other subscribers or not) which receives a given obvent might have
different tasks to perform upon reception of that obvent. In particular, these tasks
might also involve the modification of the obvent, which would require additional
effort to ensure synchronization between subscribers.

3.3.2 Publishing in Perspective

The action of publishing an obvent manifests flavors of two primitive actions com-
monly defined on objects, namely object creation, and object cloning.

Distributed Object Creation

The action of publishing an event object o can best be pictured as a distributed
form of object creation (new keyword in a vast range of prevalent object-oriented
programming languages), where o acts as template. The set of address spaces where
this action will take place is given by the set of address spaces who are willing to
host such objects, i.e., who contain subscribers whose subscription criteria match
the template object.

An obvent class can hence best be pictured as a factory for instances incarnating
notifications for events of the same kind, i.e., from the same event source.

Distributed Object Cloning

Similarly, with a published obvent o acting as template, such a publication can be
pictured as a distributed object cloning, where a clone of the object o is created
for every subscribed object. A subscription thus can be viewed as expressing the
desire of getting hold of a clone of every published object which corresponds to the
subscription criteria.

Note that in this context, the act of cloning corresponds to the term deep cloning
used in [GS00]: when a clone of an object is created, its attributes are recursively

34 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

cloned, i.e., a distinct copy is created, and not only a new reference to the respective
object.

3.3.3 Sending Obvents over the Wire

The deep cloning described above is a consequence of the remote nature of a pub-
lication: to create a copy of an obvent o in a distinct address space, o, or rather a
representation of its state, must be transferred to that address space, where a new
instance can be created and initialized with the same state. Therefore, clones of an
obvent cannot contain references to objects pointed to by the published obvent. Note
that if an attribute of a cloned object represents a proxy object (e.g., Java RMI), a
clone of that proxy can be created, however still giving access to the original remote
object.

Object Serialization

The action of recursively traversing the attributes of an object and writing these
to a more low-level representation is commonly called serialization, its antagonist is
called deserialization. The targeted data type can be a byte array, or a stream.

In practice, such serialization, resp. deserialization, of obvents can be rather easily
provided for objects representing primitive types, but requires more effort in the
case of nested application-defined types.

Note here that the terms marshaling and unmarshaling widely employed in the
context of RPC (cf. Section 2.2), are rather used to denote the serialization and
deserialization applied to entire sets of objects, e.g., representing a list of arguments
for a remote invocation.

Built-In Serialization Mechanisms

Certain languages offer built-in mechanisms to ease the serialization and deserial-
ization of application-defined types. For instance, Java has been inspired by the
Smalltalk model, and provides a basic serializable type which an application type
can subtype, making its instances serializable and deserializable without much effort.
Smalltalk, just like Java, offers a singly-rooted type hierarchy, yet integrates the ba-
sic serializable type with that very root, making every object serializable by default.
In contrast, Java introduces a specific type java.io.Serializable as parent for all
serializable types. Java however often “fakes” a serializable root by offering inter-
faces to core libraries where serializable objects are expected, but formal arguments
are of the very root object type (java.lang.Object), leading to potential exceptions
at runtime.

3.4. Subscribing to Obvent Types 35

Instrumenting Objects with Serialization

In languages lacking such types, explicit types can be introduced as parents for all
serializable types, with specific virtual methods which have to be implemented by
the developer, e.g., an instance method serialize() to obtain a low-level repre-
sentation from an object, and a class method deserialize() to create an instance
from a low-level representation. In languages lacking class methods, e.g., Eiffel, an
“empty” instance can be first created with an argument-less constructor, and ini-
tialized through an instance method deserialize(). To decouple classes from their
serialization and deserialization, a design pattern such as the factory method pat-
tern [GHJV95] can be chosen. If transformation into different data types is required,
the serialization pattern [RSB+98] is an interesting alternative.

3.4 Subscribing to Obvent Types

By using the types of obvents as basic subscription criteria, TPS strongly enforces
the melding of a publish/subscribe middleware with the application: by matching
the notion of event kind with that of an event type, i.e., using a “conventional” type
scheme as subscription scheme, the type of the received events is known, and type
checks can be performed. We discuss TPS in the face of different type systems.

3.4.1 Background: Conformance and Subtyping

By subscribing to a “type”, a subscriber manifests its interest in all instances of
that type. This includes any event object which conforms to that type, that is, also
instances of any distinct type which is through some relationship defined as part of
the considered type system, compatible with that type.

Conformance

Basically, a type system consists of mechanisms for describing sets of values (types)
and a set of conformance rules (type-checking rules) for testing compatibility between
types. The conformance rules define a substitution rule for values. Basically, if a
type T2 conforms to a type T1, then any instance of type T2 can be used in a
consistent manner anywhere an instance of type T1 is expected.

Subtyping

Usually, the set of types which conform to a type T1 somehow include the character-
istics of T1. We will henceforth make use of the widely adopted term subtyping to
describe the relationship between descending types, and denote it with the symbol
≤. A type T2 which conforms to a type T1 is a subtype of T1, written T2 ≤ T1,
and ∀ T , T ≤ T . According to the two main types of conformance, namely nominal

36 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

(explicit, sometimes also inheritance) conformance and structural (implicit) confor-
mance, two kinds of subtyping can be defined.

Nominal subtyping: With nominal subtyping, a type T2 inherits from a type T1,
meaning that T2 explicitly inherits T1’s characteristics. T2 is thus a subtype of T1,
and this is usually declared in the inheriting type (here T2), but can also be made
in the inherited type (T1), allowing to add new supertypes to existing types like
in Cecil [Cha95] or Sather [SOM94].

Structural subtyping: With structural subtyping, a type T2 which offers the same
public members (and more) than a type T1 is said to be a subtype of T1. The
conformance relationships are hence viewed as implicitly defined by structural
equivalences based on collections of signatures: any type which supports the re-
quired signatures can instantiate the parameterized declaration.

Subtyping in TPS

In general, the term “subtyping” is often used to express the possibility of “up-
dating” existing types, that is, either extending them or defining compatible alter-
natives. Following that interpretation, subtyping is a well-known paradigm which
offers a powerful means to address the requirements for extensibility, reusability, and
compatibility of software.

With TPS, one can benefit from a straightforward application of these concepts to
a distributed context, e.g., TPS gracefully enforces the extensibility of distributed
applications: akin to centralized contexts, distributed applications can be updated
by adding new subtypes of obvent types, in such a way that components which do
not have to react to the extensions remain fully operational.

Adding new Subtypes

Obviously, such an updating at runtime can only be performed with the a priori per-
mission of the language environment. Dynamic class loading has received an increas-
ing attention through the rapid proliferation of Java, which inspired by Smalltalk, is
based on the virtual machine concept. Conceptually, the Java virtual machine has,
besides proven to provide an ideal compromise between source code interpretation
and compilation, and thereby also portability and performance, addressed the in-
creasing demand for continuous updating in a rather unique way [LB98]. While for
instance Oberon [Rei91] or CommonLisp [Jr.90] have similarly introduced dynamic
loading and linking, they do not provide for type safety, user-defined class load-
ing policies, and multiple namespaces with lazy loading simultaneously. Dynamic
languages such as Lisp [MAE+65], Smalltalk and Self [US87] achieve type safety
through costly runtime type checks.

Strongly inspired by Java, C# [Lib01], is one of the most recent programming en-
vironments to promote dynamic class loading as integral part of its programming
model.

3.4. Subscribing to Obvent Types 37

3.4.2 Obvent Type Systems

In any case, and quite obviously, the semantics of type-based subscribing strongly
depends on the considered event type scheme. Such a type scheme can be given by
the programming language, leading to a first-class middleware in the sense of first-
class RPC packages which only consider a single language (e.g., Java RMI [Sun99]).
In practice, in this case, it is sometimes easier to consider only a subset of the
language’s type system, since such type systems are usually designed for a “local”
use, and a distributed deployment might introduce conflicts. For example, scopes of
types have a strong impact, as we will discuss shortly.

Alternatively, such an obvent type scheme can be specific for obvents, in order to
address requirements that differ from those for unbound objects (e.g., structural
conformance), and in order to aim at a second class TPS package, i.e., a language-
interopable approach. If the resulting type system is not at least a subset of every
considered language’s types system, this might require language modifications, e.g,
by introducing events as specific first-class constructs, without connection to the
language’s very type system (e.g., ECO, see Section 3.7.2).

The goal here is not to introduce the perfect type system, since there are several
tradeoffs between desirable properties (see [MMMP90]), leading to domain-related
solutions prioritizing certain of these properties. We rather aim at illustrating several
possibilities, pointing out the added complexity of devising a “distributed” (event)
type system. In particular, we focus on possible pitfalls when applying a type system
conceived without distribution in mind to a distributed setting.

A “Classic” Type System: C++

In certain languages based on nominal conformance, like C++, Eiffel, or Modula-
3 [CDJ+89], the code inheritance relation at the same time determines the type
conformance (subtype) relation. In such type schemes, the notions of type (abstract
type, type definition, interface, signature) and class (concrete type, type implemen-
tation) are identical, and accordingly subscribing to a type means subscribing to all
instances of the indistinguishable class and its inheriting subclasses.

C++ Classes. C++ applies the merging of types and classes straightforwardly.
The features offered by C++ include roughly the following:

Multiple subtyping: Multiple subtyping is provided through multiple inheritance: a
class can subtype one or several classes, making of its inherent type a subtype of
the types corresponding to the superclasses.

Abstract classes: Methods can be defined as abstract, that is, without method body.
Classes which contain at least one abstract method are called abstract classes.
These cannot be instantiated. Such an abstract class reflects an abstract type,
but can nevertheless be a subclass of a non-abstract class.

38 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

Parametric polymorphism: Classes can be parameterized by types (see Section 4.2.1
for more details). In C++, such classes are called template classes.

Friends: Classes can be defined as friends for single methods or entire classes, giving
access to otherwise hidden methods.

Nested Classes: C++ also offers nested classes,3 which are classes that are contained
in enclosing classes. The containment relationship of such nested classes affects
from our perspective mainly their naming, and poses no particular problems in our
context, since a nested class and its containing class do not have any particular
links to each other. This is different in Java, as we will show later.

Aggregate Types. C++ has inherited also a set of aggregate types from its an-
cestor C. In short, structures (structs) are a shorthand notation for classes whose
members are public by default (in contrast C structures represent data structures
without associated functions), arrays can be defined for any type, and unions enable
the expression of variants, i.e., a union can contain a value of several different types.
Albeit, at any moment, a single member is populated in such a union, and its size
in memory is thus the size of its largest member.

C++ also provides primitive types, which are however not relevant in our case, since
we are mostly interested in application-defined (event) types.

Inheritance. Though presented here as a “classic” type system, the C++ type
system presents potential conflicts when applied to obvents. We illustrate this here
through the different types of inheritance found in C++. Classes can inherit their
superclasses in a public, protected, or private way. Private inheritance implies that
the potentially visible (public and protected) members can only be accessed by the
inheriting subclass and its friends. A protected inheritance means that furthermore
the subclass’s recursive subclass and the latter one’s friends can access the visible
members of the inherited class. In particular, instances of a class C2 which inherits
in a protected or private way from a superclass C1 can not be cast to its supertype
outside of the class C2 itself or its friend classes. As a consequence, an instance of
such a class C2 cannot be assigned to a variable of the supertype C1 at any moment
(see p. 743 in [Str97]).

“Distributed” Scope. In the above scenario, a type coercion can however very
well take place inside the inheriting class C2, and such a cast instance can be passed
to the outside world. When such a cast object is then published, whether inside the
class C2 itself or after being passed outside as depicted above, the handling becomes
more delicate. Indeed, the object will be serialized, and later on deserialized. The
deserialization mechanism must be devised in a way which allows any class to de-
serialize instances of C2, which in this case leads to creating an instance of C2, yet
using it as an instance of C1.

3Following [Mad99], we will avoid the term inner class.

3.4. Subscribing to Obvent Types 39

The object which performs the deserialization of instances of C2 is not automatically
entitled to cast them to the supertype C1, making the deserialization impossible if
the deserialization mechanism has not been conceived as depicted above. The nature
of this problem lies in the now “distributed” scope of types. One way to solve this
particular problem, could consist in forcing any obvent class to declare a given
class C, which would then perform the cast, as friend. C would then be the class
responsible for deserialization of the corresponding obvent class.

Alternatively, a more general approach could consist in using a subset of the se-
mantics of the type system for obvent definition, e.g., restricting the use to globally
public types for obvents. In this case, like in many others, most pitfalls can be
avoided. A precise consideration of all singularities of the type system of a language
is however in any case advisable.

Separating Type Definition and Implementation: Java

In an often cited paper, Cook et al. [CHC90] advocate for a clear separation of inher-
itance and subtyping. Roughly, inheritance is viewed as a mechanism for behavior
sharing between classes (code reuse), while subtyping is pictured as defining confor-
mance rules between types, which can be independently implemented by classes.

Examples of Type Systems with Separation. Several languages have advo-
cated such a separation, like Objective-C [CN91], where protocols define abstract
types, and classes implement these, or Sather, where multiple subtyping and sub-
classing are similarly featured in different hierarchies. Rather recently, Java has
made this concept of separating types and classes more popular, through a more
simple, nonetheless flexible type system.4

Primitive Types. Inspired by C++, Java offers primitive types, like float, int,
boolean. The Java runtime environment however additionally defines correspond-
ing primitive object types, e.g., Float, Integer, Boolean, in the core package
java.lang.

Application-Defined Types. Java offers only simple inheritance, avoiding any
problems known from multiple inheritance, yet introduces multiple subtyping through
interfaces. In Java, types can be defined in the following two ways:

Explicit definition: A type can be explicitly declared by declaring an interface, which
can subtype several superinterfaces: an interface I1 which extends another inter-
face I2 represents a subtype of the type declared by I2.

Implicit definition: Defining a class C implicitly declares a type, and at the same
time gives the class which implements it. If a class C2 inherits from another class
4Note that several solutions have also appeared to augment existing programming languages

that lack this separation, e.g, by introducing signatures for C++ [BR97].

40 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

C1, then the type defined by C2 is a subtype of the type of C1. A class can subtype
multiple interfaces: for any interface I implemented by a class C, the type defined
by C is a subtype of I. Just like in C++, a class can also be made abstract, by
omitting at least one method body and tagging the corresponding method(s) as
abstract.

Note that a class C which implements a single interface I without adding any new
methods also defines a new type, which is a subtype of I’s type.

As a consequence of this duality of types, it must be possible in Java to subscribe
to interfaces as well as to classes.

Nested Java Types. Java supports nested types, which means that a type can
be declared within another. There are four different ways of declaring nested types
in Java.

Anonymous classes: These are classes that have no name. They combine the syntax
for class definition with the syntax for object instantiation. Such classes cannot
be referenced and can thus not be directly subscribed to.

Local classes: A local class is defined within a block of Java code, and is visible only
within that block. It can therefore not be defined as public. The only classes
that can inherit from such local classes, are other local classes defined in the same
body.

Static member classes and interfaces: A class (or interface) of this kind behaves much
like a top-level class (or interface), except that it is declared within another class
or interface. A static member class can access static fields (class variables) and
methods of the containing class which would otherwise be hidden.

Member classes: This last kind of nested class is much like the previous one, except
that an instance is associated with an instance of the class in which the member
class is declared. All fields and methods of that associated instance are thus
accessible as well. Note that for such classes to be serializable, the containing
class must be serializable as well, since the associated instance of the containing
class must be transferred with the member class instance in order to always be
accessible to the latter one.

Subscription Through Subtyping. A similar question to the one posed in the
case of C++ arises here: what happens if a type T2 is declared as subtype of a
public obvent type T1, but with a restricted scope? T2 can here be a nested type
with restricted scope, but also a type with package visibility. If instances of T2 are
published, they should be received by any subscriber which advertised interest in
the public supertype T1.

While C++ does not define any serialization mechanism, requiring care when devis-
ing an “own” mechanism which takes into account such special cases, Java defines

3.4. Subscribing to Obvent Types 41

its own serialization mechanism, which enables the deserialization of an instance of
a class which would not be visible at that moment.

Subscriptions to Nested Types. Another issue is the handling of direct sub-
scriptions to nested types. The case of anonymous classes in Java is fairly simple.
Since these are not named, they cannot be subscribed to.

In general, one must also consider that subscriptions to any type with a restricted
scope obviously only make sense if it is possible to publish any instances of that type
(or of any subtype). At a first glance, instances of local classes in Java can only be
published from inside the code fragment in which they are defined, which at the same
time limits their subscriptions: subtypes of these local classes can only be declared
in the same code fragment, which is also the only place where direct subscriptions to
such types can be issued. This makes the usefulness of supporting such local classes
in TPS questionable. At a second glance, many awkward situations appear with
the reflective capabilities of Java (see Section 4.5.1 for details). In the case of local
classes, a “reference” to that class can always be passed outside of the method body
declaring that class. That way, it is possible to create instances from outside of the
method body defining that class.

The same can be done in the case of (static) member types. However, a public
(static) member class C2 can always inherit from a private member class C1, and
hence instances of C1 can always be published from outside of the declaring class,
even without making use of reflective mechanisms. Supporting such types in TPS
thus makes more sense.

Interoperable Events: Event Definition Language

Supporting a distributed communication paradigm in a programming language is
often misinterpreted as limiting the use of a middleware platform to a single lan-
guage. As however successfully shown by CORBA, interoperability can indeed be
provided by integrating the middleware with several programming languages. The
case of RPC, the main interaction paradigm in CORBA, is not less tedious than
publish/subscribe, since it relies as much on the type systems and furthermore in-
vocation semantics of the various languages than TPS does.

Invocations. In CORBA the problem is mainly solved by introducing a neutral
Interface Definition Language (IDL) for types of remotely invocable objects. This
leads to a language-independent type system with mappings to concrete program-
ming languages, such as Java, C++, Smalltalk, Ada [Ada95], but also procedural
languages like C and Cobol; even the functional language Lisp. Along its predefined
primitive types, the IDL serves as the glue between different languages and plat-
forms. In particular, it identifies how invocations pass between different languages.

Objects. In the case of TPS, not only object references disguised as proxies are
passed from one address space to another, but entire obvents. Also concerning this

42 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

issue, the OMG has cleared the path: support for value types is also provided by
CORBA since version 2.3, allowing “arbitrary” objects to be passed by value between
different languages. There is however no magic behind the adopted solution. Such
value types have to be implemented in all potential languages and environments,
and factories for serialization and deserialization are required.

Also, the development of Microsoft’s Common Language Runtime (CLR) [TT01], an
inter-language virtual machine, has brought out the Common Language Specification
(CLS), which gives hints on the feasible semantics of an EDL, and also how to enforce
interoperability between objects of different languages.

Obvents. The part of the CORBA IDL specification concerning such value types
(probably even a subset) could be reused as an Event Definition Language (EDL) to
help adding interoperability to TPS. Proposals for similar languages are plentiful,
like the ODMG’s Object Definition Language (ODL) used in the Cambridge Event
Architecture [BMB+00], languages used in tuple space implementations, e.g., Object
Interchange Language (OIL) in Objective Linda [Kie97], or more recently, also the
eXtensible Markup Language (XML).

100% Pure Content: Structural Conformance

As outlined previously, certain programming languages promote structural confor-
mance, and hence structural subtyping, meaning that a type T2 is implicitly a sub-
type of another type T1, if T2 provides at least the public members of T1, with
conforming signatures.

Examples of Type Systems with Structural Conformance. Examples of
object-oriented languages with structural conformance include Amber [Car86], early
versions of Strongtalk [BG93], Cecil and. Theta [LCD+95] (based on so-called where
clauses originally proposed in CLU). Several extensions for languages like Java
have been proposed, e.g., [MBL97, LBR96], and certain authors also describe in-
teresting mixtures of structural and nominal subtyping, like the PolyTOIL language
[BSvG95], or an alternative type system for Java [BW98].

In Distribution. The advantages of structural conformance appear clearly, es-
pecially in a distributed context where different components have to be “glued”
together: one cannot expect vendors to agree on basic types, and the resulting
interfaces are by nominal conformance definitely incompatible.

RPC. In the context of RPC, structural conformance has also been successfully
put to work, e.g., in Obliq [Car95], or Emerald [BHJ+87]. In particular, it has
been shown that structural conformance can be ideally combined with language
interoperability. In the context of RPC, this feasibility has been illustrated through
the Renaissance [Muc96] system and its Lingua Franca IDL.

3.5. Fine-Grained Subscriptions 43

TPS. The benefits of structural conformance also become apparent in the case of
event-based interaction. When considering content-based queries based on method
invocations, without association with an event type, the resulting filters can be
viewed as promoting “pure” content-based publish/subscribe. This will become
visible in the next section, which describes a simple model for content-based sub-
scription pattern expression in TPS.

3.5 Fine-Grained Subscriptions

Object types offer richer semantics than just information about inclusion relation-
ships. An object type encompasses contracts guiding the interaction with its in-
stances: an interface composed of public members describing its incarnations. This
information can be naturally used to express more fine-grained subscription patterns,
in a way equivalent to content-based publish/subscribe.

3.5.1 Modelling Subscriptions

The following abstract model supports the expression of complex subscriptions in a
way that preserves the encapsulation of event objects [EG01a].

Overview

Roughly speaking, the application programmer defines conditions on obvents, by
specifying methods through which these objects should be queried, along with ex-
pected values that are compared to the values returned by invoking these methods.

This results in an entirely novel flavor of content-based subscription. At present, all
approaches to content-based subscription, even when viewing events as instances of
application-defined types, rely on a more primitive view of these events, i.e., as sets
of attributes without any associated methods.

Accessors

Accessors are specific objects used to access partial information on the runtime event
objects.

Nested Invocations. An accessor a is characterized by a set of method-parameters
pairs (m1, p1), ..., (mv , pv), where every mi is a method and pi = pi,1, ..., pi,il its
corresponding argument list. Whenever a method mi is applied to an object, this
subsumes the fact that mi is invoked with its arguments pi.

Applying Accessors. An accessor can also be seen as a function which, applied
to an object, returns another object:

44 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

a(object o) �→ object

When applied to an event object o, the accessor’s methods are applied to o in a nested
way in order to obtain relevant information from that obvent. More precisely, m1 is
invoked on o and every method mi+1 (0 < i < v) is recursively invoked on the result
of mi. Finally, the result of mv is returned:

a(o) ⇔ o.m1(p1.1, p1.2, ..., p1.1l
).mv(pv.1, pv.2, ..., pv.vl

)

With v = 0, the obvent o itself is accessed as a whole. The special case il = 0 reflects
the case where mi is an argument-less method.

Note however that we do not consider here potential side effects of methods, e.g.,
the modification of the state of the corresponding objects through queries. The
responsibility of avoiding such situations is left to the user.

Conditions

While an obvent is queried through an accessor, a condition evaluates the obtained
information, i.e., decides whether it represents a desirable value.

Applying Conditions. A condition represents a single constraint that a sub-
scriber puts on obvents, and can be viewed as a function taking an object as argu-
ment and returning a boolean value indicating whether the object complies with the
represented constraint:

c(object o) �→ boolean

A condition makes use of an accessor a to obtain relevant information from an
obvent, and compares the obtained information to an expected result r (possibly a
range of values) according to a binary predicate b, which can be viewed as a function
taking two objects as arguments, and returning a boolean value:

b(object o, object r) �→ boolean

Evaluating a condition for a given obvent o hence results in evaluating the encapsu-
lated binary predicate for (1) the value obtained by applying the accessor to o, and
(2) the expected result r:

c(o) ⇔ b(a(o), r)

Object Queries. Figure 3.1 schematically outlines the proposed scheme. Similar
approaches can be found for object queries in object-oriented data management
systems, e.g., Tigukat [SO95]. In fact, both publish/subscribe messaging systems
including a notion of content-based filtering, as well as database systems, deal with
large amounts of data. The major difference between queries in an object database
and the filtering of obvents by a middleware is the duration of a query. With a
middleware system based on content-based publish/subscribe, the query is expressed
for future objects. In object databases, queries are ideally instantaneously performed
on objects that are already in the database, i.e., a snapshot of a usually centralized

3.5. Fine-Grained Subscriptions 45

database. Since a database client is blocked until the reply of the query is obtained,
most commercial solutions are willing to sacrifice encapsulation to reduce overhead
and thus latency.

However, the expression of a query can be made similarly in both situations. This
has been nicely demonstrated by Tigukat [SO95], which has attracted our attention
mainly because it provides a full encapsulation of objects in the database. These
objects are always viewed as instances of abstract data types, and, similarly to our
approach, queries are based on invocations on these objects.5

p1 r

ComparisonInvocation 1

p2

Invocation 2

...o TRUE/FALSE

Delivery?

m1 m2 b

Figure 3.1: Content-Based Filtering with Method Invocations

Comparisons. Conditions vary by the comparisons they encapsulate, and many
different comparisons can be imagined based on relationships between objects. Preva-
lent comparisons between arbitrary objects are based on the following characteristics:

Identity: In object-oriented settings, a unique identity is usually associated with
every object. Two variables can hence point to distinct objects, or to the same
object.

State (value): Two distinct objects can represent the same “value”, or distinct “val-
ues”. These “values” are usually defined by the state of the objects (or parts
of it). This type of comparison is usually implied by the previous one, i.e., it is
reflexive: an object has a same value than itself, and hence it is not important
how “deep” a value-based comparison goes: two top-level objects whose attribute
variables point to the same objects are equal in value. Furthermore, value-based
comparison is transitive (if an object o1 is equal to an object o2 and o2 is equal
to o3, o1 and o3 should be equal as well), symmetric (if o1 is equal to o2, then o2

is equal to o1) and consistent (if two objects o1 and o2 are equal in value at time
t0, they should be so at any t after t0, for as long as the individual values do not
change).

Ordering: An order can be defined on objects, based on different criteria. This
enables more refined value-based comparisons than the previous strict equality
check. Relationships are usually represented by symbols such as <, or <=. Just
like the above equality, these are consistent, transitive, e.g., o1 < o2, o2 < o3

⇒ o1 < o3, yet anti-symmetric, e.g., o1 < o2 ⇒ o1 �> o2.
5Reflective mechanisms also enable a closer integration of the language with the object

database [PO93].

46 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

While the latter two types of comparisons make much sense when comparing event
objects, the first one is not typical for a distributed context like TPS: according to
the general object model and the semantics of obvent publishing defined above, every
published obvent triggers the reception of a new, distinct clone by every subscriber.
Thus it does usually not make sense for a subscriber to “seek” for a precise event
object: whether itself publishes that event object or someone else, the received object
will in any case have a new distinct identity. This type of comparison can however
become useful in special cases, e.g., when a subscription criteria involves objects
reifying environment parameters which are viewed as singletons.

Primitive types. When thinking of these standard comparisons and operators,
primitive types such as floats, bytes, or booleans immediately come to mind. When
picturing events as ultimately composed of (nested) attributes of mainly such prim-
itive types, the importance of standard comparisons becomes clear.

In object languages which are designed according to the uniform philosophy that
“everything is an object”, e.g., Smalltalk or Eiffel, such standard comparisons lead
to corresponding methods. Also, certain languages support operator overloading
as a means of redefining such operators for primitive object types, or for arbitrary
application-defined types. C++, for instance, enables the definition of the previously
mentioned operators for basically any object type.

Accessors or comparisons? One can always think of more comparisons between
the result of an accessor and expected values, e.g, relationships such as ∈ or ⊂. An
interesting example could consist in checking an object for its conformance to a given
type. Many languages support this, either through a primitive (for static checks),
or also by reifying types and supporting the dynamic querying of an object for its
type (e.g., Java, Smalltalk). In the second case, a specific method is implemented
by every object, and the returned value can be easily compared with another reified
type. In the above framework, there are two things as part of which this specific
method can be viewed:

Accessor: Being at the end of the invocation chain, this method can be viewed as mv.
The remaining comparison then simply consists of a state-based identity check,
since reified types are usually represented as unique objects. This represents one
of the rare situations where object comparisons based on identities would make
sense.

Comparison: In this case, the method is viewed as part of the comparison. The
comparison then becomes a specific one, in that it verifies whether the type of the
object obtained through the accessor is equal to the type represented by r.

We believe that putting as much as possible into the accessor, and providing condi-
tions for only basic comparisons, like the ones outlined above, is the more general
approach. However, conditions encapsulating methods mu, ...,mv (u ≤ v) can be of
interest if a quicker evaluation is guaranteed, or if the expressed shortcut represents
a true gain in terms of ease of use.

3.5. Fine-Grained Subscriptions 47

Subscription Patterns

Subscription patterns, akin to conditions, are evaluated against objects (obvents),
returning a boolean value indicating whether the considered obvent is of interest for
the corresponding subscriber:

s(object o) �→ boolean

Subscription patterns are however viewed as logical combinations of individual con-
ditions (e.g., and, or). To that end, a subscription pattern s is pictured as comprising
a set of w basic conditions c1, ..., cw , which are all evaluated for a given obvent o,
and a function f which takes w boolean values as arguments, and returns a boolean
value:

f(boolean b1, ..., boolean bw) �→ boolean

When a subscription pattern is evaluated, all conditions are first evaluated.6 After
that, its function f is evaluated, by combining the results of the individual conditions
accordingly through f :

s(o) ⇔ f(c1(o), ..., cw(o))

3.5.2 The Never-Ending Story: Attributes vs Methods

The direct use of attributes instead of methods can be chosen as alternative to
methods to describe accessors, and hence to express subscription patterns.

Politically Speaking

In general, the controversy between directly accessing attributes, or forcing the use of
getter-/setter-methods to handle these attributes, is an ever recurring issue. Though
everyone seems to agree that encapsulation is vital to object-oriented programming,
the direct manipulation of attributes is still a widely accepted practice.

For once, this issue seems to be less a conflict between academia and industry, but
between a data- and logic-oriented view. While defenders of the former view tend to
reason in terms of data and their representation, and, as illustrated by the database
community, do not seem always comfortable with encapsulated objects, the latter
view is more inclined to objects, since these greatly simplify the development and
maintenance of application logic.

Technically Speaking

Programming languages handle attribute accesses differently. Eiffel, like Cecil, offers
a nice compromise by automatically generating methods accessing attributes. In
Eiffel, the exact name of the attributes are used for the access methods, and since

6In practice, conditions are evaluated one by one, and as soon as f could not be satisfied anymore,
any further evaluation is aborted.

48 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

argument-less methods can be called without trailing empty parentheses (), direct
attribute access and attribute access methods are unified. More recently, Java, like
so many other languages, does not prohibit direct attribute accesses. Instead, Java
offers the possibility of synchronizing these accesses.

Beyond defending encapsulation, methods have been not chosen in the model merely
in attempt to abolish any direct manipulation of attributes. Methods simply offer
more expressiveness, in that an attribute access can always be modelled as an in-
vocation of a method, while the opposite is not always possible. As a side effect,
the use of methods helps contradict the wide-spread belief that object-orientation
and publish/subscribe are inherently opposed in that any form of content-based
publish/subscribe necessarily breaks encapsulation [Koe99].

3.5.3 Degrees of Expressiveness

Compared to earlier models of subscription patterns, e.g., [ASS+99, CRW00], the
above model for invocation-based subscription patterns offers an increased expres-
siveness, by getting closer to an object-oriented programming model. We discuss
here several considered levels of expressiveness. Each level corresponds to an im-
provement over “classic” content-based subscription schemes. We present these im-
provements in an order reflecting their respective gains in expressiveness, starting by
the most significant. The impact of increased expressiveness on performance, and
how to deal with it, will become more visible in the following chapter.

Nested Invocations

By offering the possibility of performing nested invocations, an arbitrarily fine grain
of matching can be achieved. In contrast, viewing events as dynamic structures with
one single level is characteristic for most prevalent content-based systems. With
nested invocations, events can come closer to a “general” notion of objects, and
their design is less influenced by a future use with a TPS system. Now obvents
can have attributes which are objects and have attributes themselves, etc., without
having to project the attributes’ methods to the top-level obvent type.

Invocation Arguments

The advantage of nested invocations over “flat” structures would already be offered
without supporting method calls with parameters. A minimalistic approach, also
avoiding direct manipulation of attributes could consist in only supporting parame-
terless methods for reading attributes. By allowing parameters however, expressive-
ness is again increased, and the application logic can be encapsulated in the obvents.
Consequently, the expressiveness is less dependent from possible comparisons offered
by conditions, etc.

3.5. Fine-Grained Subscriptions 49

Accessors as Expected Results

A further degree of expressiveness can be added by enforcing the use of accessors
in the place of expected values for conditions: conditions can be formulated as
comparisons of an invocation chain on obvents with the result(s) of one or more
additional chains, e.g, the difference between the nominal value of a stock quote and
its current value.

Accessors as Invocation Arguments

Moreover, accessors can be accepted as actual parameters for other accessors. This
improvement presents an added value similar to the previous one. With the use
of methods with arguments for describing subscription patterns, on one hand, the
developer can use the full logic contained in an obvent type for querying. With the
use of accessors as expected results or invocation arguments on the other hand, the
developer does not have to think of possible comparisons, and include these as logic
into the obvents.

Handling Exceptions

In many object-oriented programming languages, exceptions are supported as means
of signalling the occurrence of abnormal events. Such exceptions can sometimes be
raised by the runtime environment, or, on purpose by the application at an any
execution point. To support the full semantics of methods invocations, subscription
patterns expressed in such languages can also be equipped with the possibility of
handling such exceptions occurring during the execution of a method in the context
of obvent filtering. Such exceptions can for instance also be handled by defining
a value which is then used like a return value of the method where the exception
occurred, possibly by shortcutting the remaining nested invocations.

Limits

For quite obvious reasons, the above list is not an exhaustive enumeration of all pos-
sible levels of expressiveness that could be achieved in an object-oriented language.
One could come up with additional levels, for instance by considering passing param-
eters in another way than by value. Accessors could then also be used as parameters
to invocations, or to reflect expected results. Ultimately, an expressiveness very
close to what you can do in the language itself can be achieved.

One could even think of method invocation chains rooted at other objects than the
queried obvent, e.g., a proxy for RPC interaction to implement filters which, though
migrated for performance reasons to remote hosts, are continuously (maybe not
at every invocation, but regularly) updated by the subscriber to reflect the latest
preferences.

50 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

Mobility vs Expressiveness

Carzaniga et al. [CRW00] point out a tradeoff between expressiveness and scalability,
based on the observation that the more complex the subscription criteria become,
the less coverage can be expected between the individual subscriptions, making
optimizations hard.

With the increased expressiveness that we promote here by relying on application-
defined code, an additional tradeoff is introduced between mobility of filters and
their expressiveness. Indeed, filters should be defined in a way such that they become
open to the middleware, in order to enable the middleware to perform optimizations
by regrouping filters of several subscribers and factoring out redundancies between
these.

Filters are hence potentially moved to foreign hosts, where they are applied at a
more favorable stage. The more complex such filters become, the more difficult it
is to guarantee that they do not rely on any local resource or bound object, and to
foresee their effects in general. Consider only the complexity introduced by making
use of subtyping: if an actual argument provided for an accessor is an instance of a
subtype of the corresponding formal argument, the corresponding class might have
to be transferred to the filtering host. (We will come back to the feasibility of such
expressiveness levels in Section 5.)

3.6 Ensuring Type Safety

Now that we have discussed a model of subscription expression which enforces encap-
sulation, and discussed “what to subscribe to”, the main remaining issues concern
“how to subscribe”, and “how to ensure that you get what you subscribe to”. While
the second issue will be covered in the next two chapters, and the third one partially
depends on it, we give below an overview on how to deal with the last issue in a way
that ensures type safety.

3.6.1 Sources of Type Errors

In the context of an implementation of type-based publish/subscribe, we roughly
distinguish two places where type errors can occur.

Obvent dissemination: It has to be ensured that published obvents are conveyed cor-
rectly by the TPS engine. That is, obvents are routed to all subscribers whose
subscription criteria match these obvents. Besides requiring an adequate sub-
scription mechanism (see next chapters), avoiding errors at this stage mandates
a sound implementation of the TPS engine, and correctly defined and applied
content filters.

Obvent delivery: Furthermore, it has to be ensured that a subscriber effectively “re-
ceives” obvents of the correct type. A satisfactory behavior with respect to this

3.6. Ensuring Type Safety 51

requirement depends on the way obvents are delivered from the engine to the
subscriber, relying more on the promoted abstractions.

3.6.2 Type Safety in Obvent Dissemination

A key for achieving type safety in obvent dissemination is type safety in subscription
patterns, i.e., filters. If type information is available, type checks can be enforced
to verify that a method m1 specified by a subscriber for filtering is indeed defined
in the subscribed type T , and recursively, every mi is defined on the return type
of mi−1. Also, the types of the actual arguments pi = pi,1, ..., pi,il can be verified
for their conformance with the formal arguments of mi. These type checks can be
performed at runtime by the TPS middleware, or, when expressing filters through
the programming language itself, even at compilation.

3.6.3 Type Safety in Obvent Delivery

While approaches like JavaSpaces ensure that any obvent delivered to a subscriber
conforms to the subscribed type (given implicitly by the type of the template ob-
ject), the interaction between the JavaSpace and the callback object representing
the subscriber is untyped, requiring a cast in the application code.

The Goal

In a statically typed language, such an interaction should take place in a statically
type-safe manner. When subscribing to a type T, whether implicitly or explicitly,
it should be ensured that the received instances are of type T , and are at least
delivered as instances of type T , i.e., are assigned to variables of type T . Using any
supertype of T can lead to errors when performing type casts. Returning a more
narrow type is obviously only possible if the subscriber advertises the expected type,
i.e., offers variables of subtypes of T .

Interaction which satisfies our criteria of type safety can be achieved in several ways.
We give a preview of the two alternatives dealt with in the two following chapters
(in reverse order).

Generating Typed Adapters

The most straightforward way seems to be the generation of some form of typed
proxies. In [OPSS93] these are termed adapters, which helps avoiding confusion;
the term proxy is prevalently used in the context of RPCs, where it denotes an
object which mimics the remote object [Sha86], and thus provides an interface which
conforms to the interface of that remote object. In the case of TPS, adapters provide
interfaces which are similar among each other: they differ in the types of formal
arguments representing obvents. This type is accorded to the type of obvents they
are used with.

52 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

Similarly to proxies however, adapters are intermediate entities between the com-
munication system and the application, whose role consists mainly in mediating
between serialized data and a more higher-level representation.

Such adapters can be generated by a specific (pre)compiler. As shown by second
class RPC packages, a precompiler offers the ideal way of dealing with interoper-
ability. This scheme will be applied in our language integration approach described
in Chapter 5.

Type-Parameterized Adapters

As we will illustrate in the next chapter, adapters can also be viewed as proxies
for a ubiquitous first-class channel abstraction. In such a case, a more dynamic
solution than above can be obtained, which is strongly encouraged by languages
incorporating reflective capabilities like Java or Smalltalk, where basically anything
can be done dynamically (with a corresponding cost in performance).

To avoid type errors at obvent delivery, the same adapter type can be parameterized
by the obvent type. Thanks to reflective mechanisms, the behavior of these adapters
can be adapted at runtime to the types used, avoiding type errors at obvent dissem-
ination.

3.7 Discussion

In this section, we discuss several issues related to TPS. In particular, we inves-
tigate more closely the limits between TPS and content-based and subject-based
publish/subscribe, as well as related approaches to typed publish/subscribe.

3.7.1 Type-Based vs “Traditional” Publish/Subscribe

We compare here TPS with conventional publish/subscribe styles, pointing out
the fact that TPS can be viewed as a higher-level variant of publish/subscribe,
which nevertheless allows the expression of its ancestors, i.e., the subject-based and
content-based variants.

The State is the Content

With TPS, similarly to content-based publish/subscribe, publishers have no knowl-
edge of any “address” they are publishing to. The set of subscribers which potentially
receive a given obvent is implicitly defined by the set of subscribers whose criteria
match the “content” inherently given by the state of that obvent. Nevertheless, sub-
scription patterns are not systematically described through this state, and equally,
this state is not necessarily accessed directly upon filtering.

A content-based scheme in the sense advocated by most systems implementing a
form of content-based subscribing, i.e., based on some form of self-describing events

3.7. Discussion 53

(Figure 2.11), can be easily achieved with TPS. Since any event type can be used,
nothing prevents from using a single event type representing dynamic structures.

By furthermore describing subscription patterns based on the methods provided by
such a type, encapsulation can be effectively preserved.

The Type is the Subject

It has been widely recognized that content-based publish/subscribe is more general
than its subject-based kin. A subject-based scheme can be easily deployed on top
of a content-based engine, by associating an attribute representing a set of subject
names (reflecting a hierarchy), e.g., an array of character strings, with every event.

A TPS engine can be used straightforwardly to express the traditional subject-
based publish/subscribe. By introducing a root obvent type with a method to read
a subject attribute, one can easily perform subject-based matching on obvents. As
depicted in Figure 3.2, this can be done in a way that promotes subjects as static
in nature, along with dynamic content-based publish/subscribe.

Note however that we do not consider performance issues here. The amount of
static information introduced in subject-based systems, by allowing subjects to be
predefined (e.g., set up by a system programmer), can be exploited to achieve con-
siderable speedups. In comparison, systems which are completely dynamic, e.g.,
pure content-based systems, or subject-based systems where subjects can be defined
arbitrarily, are more difficult to implement efficiently.

public class SubjectEvent extends DynamicallyStructuredEvent {
public static final String wildcard = "∗";
private String[] subject;

public String[] getSubject () { return subject; }
public boolean matches(String[] isOfSubject) {

if (isOfSubject .length > subject.length) return false;

for (int i = 0; i < isOfSubject .length; i++)

/∗ verify if subject name component is same, or wildcard ∗/
if (isOfSubject [i] != subject[i] && isOfSubject [i] != wildcard)

return false;

return true;

}
}

Figure 3.2: Expressing a Mixed Subject/Content-Based Scheme with TPS

TPS and RPC

Clearly, the goal of supporting TPS is not to replace any other distributed program-
ming abstraction. In fact, all abstractions outlined in the previous chapter have
proven their superiority in certain contexts, while being quite inefficient in others.

54 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

In particular, the RPC has been often claimed to be the interaction paradigm for
distributed object settings. There are mainly two differences between such remote
invocations and our obvent-based model:

Interaction styles: The RPC model promotes the same abstraction for remote object
interactions as for local ones. By doing so, (synchronous) RPC is inherently inte-
grated with the language, and requires little more support than that very inherent
interaction abstraction. In contrast, our model promotes two interaction styles,
namely (1) event-based publish/subscribe interaction remotely, and (2) method
invocations locally, making the application developer more aware of distribution.

Object passing semantics: With remote invocations, there are two possible ways of
passing objects, namely (1) by reference, i.e., a proxy object is created in the re-
ceiver’s address space, and (2) by value. The distinction goes along the notion of
the granularity mediated in Section 3.2, i.e., “large” locality-bound objects inter-
act via remote invocations, where the invocation arguments are “small” unbound
objects or references to other “large” remotely invocable objects. In contrast,
when using our obvent-based model, objects are primarily passed by value.

However, TPS and RPC are not contradictory, but complement each other. A com-
bination of both represents a very powerful tool for devising distributed applications,
e.g., by passing object references as, or with, obvents. This will be illustrated in the
next two chapters, through an identical example implemented according to the two
approaches outlined in those two chapters.

3.7.2 Related Notions of Typed Publish/Subscribe

Several similar, yet not equivalent, notions of typed publish/subscribe have been
described in the literature. We discuss these here mainly with respect to type safety
and encapsulation, pointing out the fact that they altogether fail in providing both
type safety with application-defined events (Table 3.1), and content-based queries
on these preserving encapsulation (Table 3.2).

COM+

Microsoft’s COM+ [Obe00] promotes a model based on the types of subscribers:
the application can provide a specific interface defining its own operations through
which it will be called. Because the provided event notification service supports
asynchronous (oneway) interaction, operations are not allowed to return results.
With this incarnation of the oneway proxy abstraction known from RPC (see Sec-
tion 2.2.4), events are hence represented by asynchronous invocations, but are not
reified.

The primary filtering is thus made on the types of the subscribers, leading to a
more explicit notion of destination than in the case of TPS. Though subscribers are

3.7. Discussion 55

not specified by their identities, they are specified by their type. In contrast, TPS
promotes the implicit type of events as notion of destination.

By viewing an invocation as an event, the invocation arguments can be viewed as
the attributes of the resulting notification. Filters in COM+ are based on argument-
value pairs, i.e., expected values for invocation arguments, and are expressed through
a limited subscription grammar. Encapsulation seems to be preserved by avoiding
the reification of events. To ensure type safety, the application is responsible for
providing a typed “dummy” proxy (an EventClass object), that will only be used
during compilation.

CORBA Event Service

As already mentioned, the OMG has specified its own CORBA service for commu-
nication based on the publish/subscribe paradigm, known as the CORBA Event
Service [OMG01b]. According to the general service specified, a consumer interacts
with an event channel expressing thereby an interest in receiving all the events from
the channel. In other words, the filtering of events is done according to the channel
names, which basically correspond to subject names. However, no containment re-
lationships are implicitly defined for subjects, that is, there is no inherent support
for hierarchies.

A form of typed interaction is provided, similar to the model in COM+, enabling
the use of the types of consumers or producers, since the event service supports
pull- and push-style interaction. All operation parameters in the former case must
be tagged out, and in the latter case in. Typed proxies are generated based on the
application’s interface, which in practice requires a specific compiler. According to
[OMG00], the specification for typed interaction is difficult to understand for many
users, and implementors find it hard to deal with. Most implementations therefore
only provide untyped events.

TAO Event Service. The deficiencies of the CORBA Event Service, such as the
difficulties with typed events as well as missing support for QoS and realtime re-
quirements, were apparent soon after commercial implementations became available.
They have been well documented by Schmidt and Vinoski [SV97].

The former author was involved in the development of the TAO Realtime ORB,
which brought up the probably most significant service implementation incorporat-
ing proprietary extensions ([HLS97]). Together with other extended event services
(e.g., OrbixTalk [ION96]), the TAO Realtime ORB plausibly demonstrated the de-
ficiencies of the CORBA Event Service specification, emphasizing mainly realtime
and QoS issues. Nevertheless, events are still viewed as structures, and filtering is
based on the identities of publishers and/or the event types. In the latter case, the
“type” is represented by the value of an attribute of enumerative type, and does
hence not affect the interfaces of the service.

56 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

CORBA Notification Service

After the emergence of such extended and proprietary approaches aimed at fixing
the shortcomings of the event service, the OMG issued a request for proposal for an
augmented specification. The outcome, the CORBA Notification Service [OMG00],
promotes the notification channel as an event channel with additional functionalities.
Notions like priority and reliability are explicitly dealt with.

A new form of (semi-) typed events, called structured events is introduced. These
represent a form of dynamic structures, which are roughly composed of an event
header and an event body. Both parts consist of a fixed part. The fixed header for
instance consists of attributes like event type and event name. The fixed body can
carry anything (reflected by the CORBA any type). The specification also describes
conversions between different kinds of events, e.g., between “typed” and structured
events.

The variable parts of structured events are composed of name-value (name-any)
pairs, for which the specification mentions a set of standardized and domain-specific
mappings, while most applications will require their own mappings. In the context
of content-based filtering, the name-value pairs are seen as the attributes of the
event and are directly accessed through filters. Constraints are described as strings
following a complex subscription grammar given by the Default Filter Constraint
Language, which extends the OMG’s Trader Constraint Language. A second type
of filters, called mapping filters, filter events with respect to the desired QoS.

JavaSpaces

Inspired by the Linda tuple space [Gel85], a JavaSpace [FHA99] is a container of
objects that can be shared among various suppliers and consumers. The JavaSpace
type is described by a set of operations among which a read() operation to get a
copy of an object from a JavaSpace, and a notify() operation aimed at registering
a consumer object which is to be alerted about the presence of some specific ob-
jects in the JavaSpace. With a JavaSpace, one can thus build a publish/subscribe
communication scheme in which the JavaSpace plays the role of the event channel
aimed at broadcasting event notifications to a set of subscriber objects. Custom
events can be defined by subtyping the basic Event type, which is used for formal
arguments representing events in the API. Type safety is hence not ensured, and it
is unavoidable that nasty type checks and type casts pollute the code.

A given subscriber of a JavaSpace advertises the type of events it is interested in
by providing a template object t. A necessary condition for o, an object notifying
an event, to be delivered to that subscriber, is that o conforms to the type of t.
Furthermore, the attributes of t are compared byte-wise with the corresponding at-
tributes of o, with null playing the role of wildcard. Besides violating encapsulation,
this scheme suffers from the severe limitations in expressiveness of template-based
subscription schemes already outlined in Section 3.1.2. In the case of JavaSpaces,
moreover, attributes cannot be of primitive types, must be declared public, and since
null is reserved for the sake of representing an arbitrary value, it cannot be used as

3.7. Discussion 57

matching criterion.

ECO

An approach to integrating event-based interaction with a programming language,
namely C++, is discussed in the ECO (events + constraints + objects) model
[HMN+00]. The authors also dissociate the two main ways of adding event se-
mantics to an object-oriented language, opting however for the second one; the ad-
dition of events as specific language constructs decoupled from the main application
objects. Their ECO model hence necessitates a considerable number of language
add-ons. The use of a precompiler to handle these extensions is also mentioned, but
[HMN+00] gives no details about its implementation. Filtering can be based on the
publisher’s identity (the source), and several types of constraints. Notify constraints
are expressed based on the parameters (attributes) of events, once more neglect-
ing encapsulation by inherently representing events as sets of attributes. Further
constraints, like preconstraints and postconstraints use the state of the receiving
instance. All constraints, as well as methods for event handling are declared on a
per-class base, while subscriptions/unsubscriptions, i.e., contracts between the event
handlers and the handled event types, are performed instance-wise. The potential
mismatches implied by this will be discussed more in detail in Section 5.5.2.

CEA

The Cambridge Event Architecture (CEA) [BMB+00] uses a publish/register/notify
interaction style, where an intermediate event trader mediates between publishers
and subscribers. The CEA is based on an interoperable object model, in which events
are described by the ODMG’s Object Definition Language (ODL), but alternative
specification languages, like XML, are also mentioned. Events are typed according
to the definition language, and C++ and Java mappings are mentioned. Precompil-
ers generate specific adapters (called stubs in the CEA) for interaction with typed
events. Filtering mechanisms are also included, however once more based on view-
ing the events as sets of attributes, forcing the application to define filters based on
attribute-value pairs.

3.7.3 Object Model

We discuss the object model presented in Section 3.2 in detail, focusing on its limi-
tations and certain alternatives.

Publishers

In the above model we do not introduce a specific publisher type. In fact, most
variants and applications of the publish/subscribe paradigm inherit the property of
“anonymity of participants” from the tuple space paradigm, which is viewed as a

58 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

System Type of Reflected by Implementation
COM+ Subscribers Typed Proxy Appl.-Provided Proxies
CORBA Event S. Subscribers Typed Proxy Precompilation
CORBA Notif. S. Subscribers Typed Proxy Precompilation

Events String attribute Dynamic Structures
TAO Event S. Events Integer Attribute Dynamic Structures
JavaSpaces Events Inherent Type Untyped Proxies
ECO Events Inherent Type Precompilation
CEA Events Inherent Type Precompilation

Table 3.1: Common Approaches to “Typed” Publish/Subscribe

System Type of Content Matching
COM+ Subscribers Argument Aalues
CORBA Event Service Subscribers No Support
CORBA Notification Service Subscribers Attribute Values

Events Attribute Values
TAO Event Service Events No Support
JavaSpaces Events Attribute values
ECO Events Attribute Values
CEA Events Attribute Values

Table 3.2: Content-Based Support in “Typed” Publish/Subscribe

merit (anonymous communication [OPSS93]). Making the type, or even identity, or
a publisher visible to subscribers is useful in some cases, and can still be achieved
without viewing publishers as specific objects. Using the publisher type or identify as
a subscription criterion, as successfully promoted by some approaches overviewed in
the previous section, such as the TAO Event Service, or the original CORBA Event
Service, in the case of typed pull-style interaction,7 leads to interesting solutions.
Nevertheless, we focus here on the types of the exchanged events, and on a complete
anonymity of participants at the abstraction level.

By not considering publishers as specific objects, any object can publish obvents. In
particular, obvents can publish obvents, even themselves.

Subscriptions

Subscriptions are similarly viewed as actions involving subscribers. A subscription
is however not reflected in the state of the corresponding subscriber. In particular,
a subscription cannot be handed over by simply transferring the corresponding sub-
scriber object. To emphasize the generally local nature of a subscription, subscribers

7Note that such an interaction style does not correspond exactly to the definition of the pub-
lish/subscribe paradigm given in Section 2.4, which relies on a more push-style interaction.

3.7. Discussion 59

have been defined as bound objects above. The opposite would have required a con-
siderable effort to avoid all possible conflicts. In particular, obvents could have been
given the possibility to subscribe to obvents, which however might lead to non-trivial
issues.

This becomes visible when considering an obvent o which is published, yet is a
subscriber itself. What about obvents corresponding to o’s subscription criteria
which are published between the moment when the publication of o is triggered
and the moment when a considered copy of o is created for a given subscriber? In
fact, if the obvent notified to any subscriber whose criteria correspond to o is to be
an exact copy of the original obvent o, one could argue that any copy o′ of o must
receive all obvents received by o after o has been published, since that is the moment
when the creation of o′ has been triggered. This would require a considerable effort
at the implementation level, to replay obvents published meanwhile. Given this
assumption moreover, the case when o subscribes to itself (self-subscription) would
lead to an endless recursion.

Alternatively, one could consider the publication of an obvent as an atomic action,
in the sense that a copy of o only receives obvents published after its creation. This
would however impose strong synchronization constraints on the system.

60 Chapter 3. Type-Based Publish/Subscribe (TPS): Concepts

Summary

TPS is to publish/subscribe what remote method invocations are to RPC: a higher-
level, object-driven paradigm variant. TPS strives for an “easy” programming
model. In our case, we have identified mainly type safety and encapsulation as key
concepts for assisting developers in safely devising distributed applications. Achiev-
ing these without reducing the high expressiveness inherited from content-based pub-
lish/subscribe introduces new challenges, e.g., how to express type-safe subscription
patterns which are nevertheless transparent to the underlying TPS middleware.

TPS is nevertheless general, in the sense that it captures traditional forms of pub-
lish/subscribe. In particular, TPS can be used to express more traditional flavors of
publish/subscribe, like the content-based variant. TPS can hence be put to work in a
first-class TPS package, i.e., supporting a single language like Java, as illustrated in
the following chapters, or could also be imagined in a language-interoperable second
class TPS package.

61

Chapter 4

GDACs: A TPS Library

Our first implementation of TPS is based on a library approach, which provides a
first-class channel abstraction to the application developer. Channels correspond to
obvent types, i.e., a channel representing type T can be used to publish obvents of
type T (including any subtypes of T), and to issue subscriptions to type T.

These channels are viewed as instances of a particular variant of the well-known col-
lection abstraction. These Generic Distributed Asynchronous Collections (GDACs)
are collections specialized for distributed and asynchronous interaction based on pub-
lish/subscribe [EGS00, EG00, EG01a, EGS01]. According to the commonly chosen
approach of providing families of different collections addressing various purposes
in collection frameworks, we propose different GDAC (sub)types, reflecting different
QoS.

GDACs are implemented in GJ, an extension of Java adding genericity, and fit
naturally into the collection framework offered as part of the Java environment.
GDACs constitute one of the foundations of the Distributed Asynchronous Comput-
ing Environment (DACE) [DACE], a project targeted at exploring algorithms and
abstractions for large scale distributed programming.

4.1 Background: Collections

Before introducing our Generic Distributed Asynchronous Collections (GDACs), we
first roughly overview collection frameworks in object-oriented programming lan-
guages.

4.1.1 Language-Integrated Collection Frameworks

A collection framework is a unified architecture for representing containers for ob-
jects, allowing them to be manipulated independently of their representation. Such

62 Chapter 4. GDACs: A TPS Library

collection frameworks are offered by many object-oriented languages as part of in-
herent class libraries.

Smalltalk

In a language like Smalltalk, in which everything is an object, and even control
structures like loops are provided by classes, it seems natural to provide a rich set
of libraries as part of the language. In particular, Smalltalk comes with a collection
framework, rooted at the Collection class, that reduces the programming effort
by providing useful data structures and algorithms together with high-performance
implementations ([IBM95]).

Java

Java follows this model by providing a package java.util [Sun00c] encompassing
various kinds of object containers, like sets or hashtables, as part of its environ-
ment [Sun00b]. Figure 4.1 shows an extract of the type hierarchy of the Java col-
lection framework.

Despite the various purposes addressed by the inherent Java collection framework,
many additions have been proposed, like the Java Generic Library (JGL) [Obj99]
which leverages remotely accessible collections, or the collections proposed by Lea
[Lea97a] for more fine-grained synchronization between accessing objects.

4.1.2 External Frameworks

Unlike Java or Smalltalk, which provide rich sets of class libraries, several languages
have been initially conceived without standard libraries in mind, and thus lack such
a collection framework. For C++, this lack has been compensated by the Standard
Template Library (STL) collection framework [SL95]. The STL is probably at the
present one of the most complete and widely employed library of collections.

Note that the fact that Eiffel has failed in bringing out a set of standard libraries
is often stated as reason for the language’s stifled spread.1 In particular, many
developers find Eiffel’s lack for an inherent collection framework very inconvenient
and discouraging.

4.2 GDACs Overview

Just like any collection, a GDAC is an abstraction of a container object that repre-
sents a group of objects. It can be seen as a means to store, retrieve and manipulate
objects that form a natural group, like a mail folder or a file directory.

1Besides, of course, the obvious problems induced by the way its type system implements co-
variant subtyping [Coo89], and fundamental marketing and opportunistic issues.

4.2. GDACs Overview 63

Set

SortedSet

List

HashSet Vector

LinkedList

Collection

TreeSet

implements extends

ArrayList

AbstractList

Stack

AbstractColl.

Abstr.Seq.List

AbstractSet

Interface Class Abstract Cl.

Figure 4.1: Collections in Java (Excerpt)

4.2.1 “G” for “Generic”

By interacting with a given GDAC, one expresses interest in obvents of a particular
kind, namely those handled by that GDAC. Since in TPS the notion of event kind
is equivalent to event type, TPS can be straightforwardly expressed through GDACs
for specific types. If a GDAC corresponds to a type T, any obvent conforming to
type T can be published through that GDAC, and subscribers can express their
interest in obvents of type T through that GDAC.

Background: Genericity

Since all obvents entering and leaving a GDAC for a type T are of that same type
T, T should appear as the type of every formal argument representing an obvent
in the interface of the GDAC. Strongly typed interaction can be achieved with-
out generating specific interfaces nor classes for every used obvent type by relying
on genericity [Mil77], where the obvent type handled by a GDAC is viewed as a
parameter or attribute of the GDAC.

64 Chapter 4. GDACs: A TPS Library

Parametric types. One face of genericity is usually referred to as parametric
polymorphism, and the resulting types are called parametric types alluding to their
type parameters. Forms have appeared as templates in C++ (unbounded paramet-
ric polymorphism), in Eiffel [Mey86] (bounded parametric polymorphism: bounds
can be defined on type parameters, like formal arguments), and Sather (F-bounded
parametric polymorphism [CCH+89]: a type parameter can appear as parameter of
its bound). The latter form underlies most of today’s efforts, and has turned out to
be particularly convenient for binary methods [BCC+95].

Virtual types and other forms of genericity. Another variant of generic-
ity consists in representing such a type parameter as an effective attribute of the
generic type, which provides useful runtime information. Such types are com-
monly called virtual types, and have been initially introduced in the BETA lan-
guage [KMMPN83]. Virtual types and parametric types have been the subject of
many comparisons [BOW98, TT99].

A very similar form of genericity has been adopted in Ada 95 through its generic
types, which can be parameterized by types, but also functions or values. The
possibility of extending types passed as parameters to generic types, provides for
mixin inheritance [BC90].

Genericity in Java

Statically typed languages like Java or Oberon [Rei91], or dynamically typed lan-
guages like Smalltalk have been initially designed to support generics by the idiom
of replacing variable types by the root of the type hierarchy. For such languages
lacking generic types and methods, extensions have been widely studied.

Proposals. In the case of Java, there has been a true proliferation of prototypes
augmenting Java with some form of genericity: Pizza [OW97], and its follow-up
Generic Java (GJ) [BOSW98] both provide F-bounded parametric polymorphism,
and are implemented as homogenous translations, i.e., type parameters are replaced
by the root object type and casts are automatically inserted wherever required.
Consequently, an extended compiler can do the whole work. NextGen [CS98] is a
superset of GJ, inspired by Eiffel, which relies on a heterogenous translation (specific
variants of parametric types are generated for every appearing combination of values
for type parameters). Another heterogenous translation using a specialized loading
of classes in the virtual machine, and including a proposal for the extension of the
byte code format is given by [AFM97]. PolyJ [MBL97] provides a very flexible model
through where clauses (also promoting a form of structural conformance) and comes
with an extended virtual machine, and [Tho97] describes a homogenous translation
of virtual types.

The outcome. All these efforts have proven the strong interest for some form of
genericity in the Java language. As a consequence, Sun has started investigating

4.2. GDACs Overview 65

feasible extensions to the Java language. The current prototype is based on GJ, and
a first official appearance in Java is expected in 1.5.

Interestingly, the usefulness of such parametric types has been often demonstrated
on collections.2 It seems thus very promising to apply genericity to our GDACs as
well. Currently, the implementation of GDACs relies on Sun’s prototype, i.e., GJ.

4.2.2 “D” for “Distributed”

Unlike a conventional collection, a GDAC is however a distributed collection whose
operations might be invoked from various nodes of a network. GDACs differ funda-
mentally from the distributed collections in JGL for instance, by being asynchronous
and essentially distributed, i.e., GDACs can be seen as omnipresent entities. In
contrast, the distributed collections in JGL are centralized collections that can be
remotely accessed through Java RMI.

Participants act with a GDAC through a local proxy, which is viewed as a local
collection and hides the distribution of the GDAC, as outlined in Figure 4.2. GDACs
are not centralized on a single host, in order to guarantee their availability despite
certain failures. We will illustrate a possible implementation in Chapter 6.

o

Propagation
P S2S1

Publisher

Subscriber

P

Si

o o
GDAC

Figure 4.2: GDAC Distribution

4.2.3 “A” for “Asynchronous”

Our notion of Distributed Asynchronous Collection represents more than just a dis-
tributed collection. In fact, a synchronous invocation of a distant object can involve
a considerable latency, hardly comparable with that of a local one. In contrast,
asynchronous interaction is enforced with our collections. By calling an operation of
a GDAC, one can express an interest in future elements. Therefore, when such an
object is eventually “pushed” into the GDAC, the interested party is asynchronously
notified.

GDACs vs Futures

The interaction between subscribers and GDACs bears a strong resemblance with
the notion of future discussed in Section 2.2.4.

2Even in the case of C++, a good proof of the advantages of parametric types is given by the
widely used STL collection framework.

66 Chapter 4. GDACs: A TPS Library

Figure 4.3 compares the two paradigms. When programming with GDACs, the
subscriber can be viewed as the client. The GDAC incarnates a server role in this
scenario, since the publishers, which are the effective information suppliers, remain
anonymous.

By calling an operation on a GDAC, the caller requests certain information. The
main difference between GDACs and futures lies in the number of times that in-
formation is supplied to the client. Within the notion of future, a single reply is
provided to the client,3 whereas with GDACs, every time an information which is
interesting for the registered client is created, it will be sent to it.

Asynchronous Invocations TPS with GDACs

Asynchr. ObjectClient Subscriber GDAC

1

1

1

n

Invocation

Future

Invocation

Notifications

Figure 4.3: GDACs vs Futures

GDACs vs Observer Design Pattern

The interaction between subscribers and GDACs appears like an interaction based
on the observer design pattern ([GHJV95], cf. Section 2.2.5). Indeed, from the per-
spective of a subscriber, the GDAC is not distinguishable from an effective publisher
of obvents, and when subscribing, the subscriber has the impression of interacting
directly with “the” publisher. According to the terminology adopted in the observer
design pattern, the GDAC is hence the subject and its client is the observer.

TPS differs from a distributed implementation of the observer design pattern in
that producers and consumers remain anonymous, since consumers do not directly
interact with producers. GDACs, just like any channel abstractions represent neutral
intermediate entities which decouple obvent producers and consumers.

4.2.4 “C” for “Collections”

As discussed already in Section 2.4 and Section 3.7.2, there are various interpreta-
tions of the publish/subscribe paradigm. In particular, the CORBA Event Service
supports both pull- or push-style interaction between the channel and producers
with either pull- or push-style interaction between the channel and the consumers.

Also, any form of distributed communication relying on an intermediate abstrac-
tion, e.g., shared space, comes close to the channel abstraction, and much effort

3Although there are exceptions, like in ABCL/1 [YBS86], where several replies may be returned.

4.3. GDAC API 67

has been made in the context of GDACs to analyze relationships between different
interaction styles: in the perspective of unifying several existing interaction styles
without blurring their differences, we have attempted to identify an abstraction that
is both general but also supports effective implementations. This is the rationale
underlying the use of the intuitive collection abstraction, which can indeed be used
to unify different interaction styles.

Push

The “classic” publish/subscribe interaction style is based on push-style interaction
between publishers and the channel, and similarly between the channel and sub-
scribers. This interaction style indeed supports scalable implementations, since
events are sent from the source to the destinations, and are “immediately” delivered,
i.e., buffering is minimal, and the inherent all-of-n semantics remove any need for
concurrency control between subscribers. This is the main interaction style with
GDACs.

Pull

Nevertheless, GDACs also support pull-style interaction, however only with respect
to subscribers. In other terms, obvents are always pushed from publishers towards
GDACs, but consumers can choose to pull obvents from GDACs. Such a pull-style
interaction can be blocking (the pulling object is blocked until an obvent correspond-
ing to its criteria is received) or non-blocking (polling : if no event is available, the
call returns immediately or after a given timeout). However, the same dissemina-
tion model than above (all-of-n) is provided, i.e., a given obvent is usually not only
received by a single consumer.

In Section 4.7 we will illustrate the flexibility of the GDAC abstraction, by illus-
trating how it permits the expression of alternative interaction styles, like message
queuing models, i.e., pull-style interaction of consumers with the channel in combi-
nation with a one-of-n dissemination model.

4.3 GDAC API

In this section, we present the main functionalities of our Java implementation of
GDACs, reflected through their interface.

4.3.1 Methods

Figure 4.4 summarizes the main methods of the GDAC interface, and Figure 4.5
overviews further types in the GDAC framework. We roughly distinguish between
original (adapted) methods, and specifically added methods. (More methods will be
introduced later on in this dissertation.)

68 Chapter 4. GDACs: A TPS Library

package GDACs;

import java.util.∗;

public interface GDAC<T> extends Collection<T> {
/∗ original methods ∗/
public boolean contains(T t);

public boolean add(T t);

/∗ all−of−n, push−style ∗/
public void contains(Subscriber<T> ts, Condition c);

/∗ all−of−n, pull−style ∗/
public void get(ExceptionHandler h, Condition c);

public T get(ExceptionHandler h, long timeout);

/∗ consumer leaving ∗/
public void clear(ExceptionHandler h);

...

}

Figure 4.4: GDAC Interface (Excerpt)

package GDACs;

import java.util.∗;

/∗ basic exception ∗/
public abstract class NotificationException extends Exception {...}

/∗ callback interfaces for consumers ∗/
public interface ExceptionHandler {

public void handleException (NotificationException ne);

}
public interface Subscriber<T> extends ExceptionHandler {

public void notify(T t);

}

/∗ basic condition ∗/
public interface Condition implements Serializable {

public boolean conforms(Object o);

public Condition and(Condition c);

public Condition or(Condition c);

public Condition nand(Condition c);

public Condition nor(Condition c);

public Condition xor(Condition c);

public Condition not();

}

Figure 4.5: Various Types used with GDACs

4.3. GDAC API 69

Adapted Methods

Since a GDAC is in the first place a collection, the GDAC interface inherits from
the standard java.util.Collection interface.4 The inherited methods are not
denatured but adapted.

contains(T t): A GDAC is first of all a representation of a collection of elements.
This method allows to query the collection for the presence of an object. Note
that an object that is contained in a GDAC is of the type represented by that
GDAC.

add(T t): This method allows to add an object to the collection. The corresponding
meaning for a GDAC is straightforward: it allows to publish an obvent of the type
represented by that collection. An asynchronous variant of this method could
consist in advertising the eventual production of notifications. By combining with
the registration of a callback object, that the GDAC would poll in order to obtain
new obvent notifications from the producer, a producer-side pull-style interaction
(pullsupplier in the terminology adopted in CORBA [OMG01b, OMG00]) could
be achieved.

Added Methods

We have added several methods to express the decoupled nature of publish/subscribe
interaction specific to GDACs. Not all operations known from conventional collec-
tions find an analogous meaning in an asynchronous distributed context.

contains(Subscriber<T> ts, Condition c): The effect of invoking this method
is not to check if the collection already contains an object revealing certain charac-
teristics, but is to manifest an interest in any such object, that should be eventually
pushed into the collection. The interested party advertises its interest by provid-
ing a reference to an object implementing the Subscriber interface (Figure 4.5),
through which it will be notified of obvents, and an instance of Condition, which
represents a condition according to the model represented for content-based query
description in the previous chapter.

get(ExceptionHandler h, Condition c): The original get() method found in
the Java Map interface enables the retrieving of an element from the collection
based on its associated key. In the case of GDACs, this method is reused to im-
plement a pull model supporting several parallel pulling clients. As elucidated
above, pulling is supported with all-of-n semantics. To distinguish which ele-
ments have already been delivered to which consumers, push-style consumers first
register through this method with an ExceptionHandler, which is then used to
identify consumers upon every subsequent attempt to pull a new obvent. Also,
when registering, a subscription pattern is specified.
4Note that when we refer to the standard Java collection root type, we mean the generic variant

provided as part of Sun’s generic compiler.

70 Chapter 4. GDACs: A TPS Library

get(ExceptionHandler h): This method is effectively used to pull new elements
corresponding to the criteria registered with the corresponding consumer.

clear(ExceptionHandler h): The conventional argument-less clear() method al-
lows to erase all elements from the collection, whereas this asynchronous variant
expresses the end of a consumer’s interaction with the GDAC. We have refrained
from reusing the remove() method defined in the original collection interface, for
the simple reason that we have reused that method to express destructive reading
(one-of-n), leading to a form of message queuing interaction (cf. Section 4.7).

Obvent Types

While existing publish/subscribe frameworks introduce specialized event (message)
types, e.g., JMS, our TPS approach frees the application programmer from the
burden of explicitly inserting objects into and extracting them from instances of
predefined event types. In our context, an event can be basically of any object
type. In other terms, any type can be passed as value for the type parameter T ,
whether interface or class. By all evidence however, any candidate obvent type has
to implement Serializable to benefit from Java’s default serialization.

Introducing bounds. With GJ, one could easily express that all obvent types
must be serializable, by introducing the root serializable type as bound for the type
parameter:

public interface GDAC<T implements Serializable> {...}

This makes use of bounded parametric polymorphism, which is a subset of F-
bounded parametric polymorphism offered by GJ, as described before-hand, which
ensures at compilation that all obvent types used with GDACs are effectively seri-
alizable.

In the present library approach, to follow Java’s philosophy consisting in faking a
serializable root type (Section 3.3.3), and also to emphasize the fact that obvents are
application-defined objects, we do however not impose any bound on obvent types,
as shown by the GDAC interface.

Predefined obvent types. In contrast to specifications like JMS, which aim at
wrapping industrial strength solutions for publish/subscribe and message queuing
interaction, our GDACs represent a prototype, aimed at proving the feasibility of
TPS. As a consequence, our APIs have been designed for intuitive use, and are
certainly not as elaborate as the industrial systems which make QoS an integral
part of their programming models.

As result of the testing of our GDACs in industrial contexts nevertheless, e.g.,
[Ros01], a set of predefined obvent types have emerged, manifesting attributes like
the identity of the sender, priorities, time-to-live, etc., which seem to be of a consid-
erable usefulness in industrial applications. This does in no way contradict one of the

4.3. GDAC API 71

main driving forces behind TPS, which is the possibility of defining own types. This
feature is still fully supported by giving the programmers the possibility to define
their own obvent types, for instance as subtypes of predefined ones, and, unlike in
approaches like JavaSpaces, type safety is ensured with any such subtypes through
genericity.

4.3.2 GDACs with GJ

GJ enables the use of the original Java virtual machine, and comes as an extended
Java compiler, yet fully compatible with the Sun release.

Type Erasing in GJ

As already briefly mentioned, GJ applies a homogenous translation, consisting in
translating generic constructs to non-generic ones. GJ proceeds by erasing all type
parameters, mapping type variables to their bounds, and inserting casts into the
compiled class code. No specific classes or interfaces are thus created, as in the
case of heterogenous translations. Type conversions do not take place in a generi-
cally defined class, but in the objects which invoke instances of that class. This is
schematically outlined in Figure 4.6, which depicts the case of a GDAC delivering
an obvent to a subscriber.

Cast

Untyped Typed

SubscriberGDAC

Figure 4.6: Type Erasing: GDAC Invoking a Subscriber

Runtime Support

GJ presents certain limitations, detailed in [BOSW98]. For our application pur-
pose however, mainly its lack for runtime support represents a sensible shortcoming.
Indeed, in our distributed context, runtime support is rather important: roughly
spoken, a GDAC for a given type T has to know that its type parameter is T in
order to “connect” to other GDACs for T (Figure 4.2). Note that this same issue
has been pointed out as a flaw when dealing with orthogonal persistence [SA98]: an
instance of a parametric type whose state is recovered must know its bounds to be
correctly reincarnated.

72 Chapter 4. GDACs: A TPS Library

Providing type information. We have considered two ways of providing an
instance of a parametric type in GJ with runtime type information concerning its
parameters, namely implicitly and explicitly. In the first case, information on type
parameters is implicitly provided to a parametric object through an object (or an
array) of the corresponding parameter type, ideally through a constructor.5 This
solution is however not fully satisfactory, since an object (similarly an array of
objects) of any type T2 ≤T1 can always be passed where an object (an array of
objects) of type T1 is expected.

In the second case, the actual parameter types are explicitly communicated to the
parametric object in the form of class meta-objects. Also here, type safety cannot
be ensured, since there can be a complete mismatch between the type represented
by such a meta-object and the actual type parameter. Indeed, unlike in the implicit
approach, compilation cannot even ensure that the meta-object represents a subtype
of the actual type parameter.

A pragmatic approach. We have adopted an approach based on the latter of the
two alternatives outlined above, however by automatizing the passing of the meta-
object. The GJ compiler is “wrapped”, that is, a first precompilation phase is added
before invoking the GJ compiler itself. In that first phase, an array containing the
class meta-objects for all actual type parameters in the order of their appearance is
added as constructor argument. For example, a statement like
GDAC<T> ts = new GDAStrongSet<T>();

is transformed by adding an argument reflecting the meta-object(s) of the type
parameter(s)
GDAC<T> ts = new GDAStrongSet<T>(new Class[]{T.class});

It is evident that this requires all constructors for generic classes to be defined with
an additional argument, namely an array of class meta-objects. This also reflects
its limitation: the signatures of type parameterized methods, also supported by GJ,
would have to be modified, implying however more severe ramifications.

4.4 GDAC Classes

The previous section focused on the interface, through which an application can use
our GDACs abstractions for publish/subscribe. As depicted earlier, our framework
consists of a variety of GDACs spanning different semantics and guarantees, since
different applications have different requirements.

4.4.1 Expressing Variations

These different semantics can be seen as QoS, and the various parameters are re-
flected by a variety of classes implementing the same interface. Hence, while im-

5The approach of passing an array is also mentioned in [BOSW98] as a poor man’s factory.

4.4. GDAC Classes 73

plementations change, the interface remains the same. Figure 4.7 outlines different
semantics implemented in the GDAC framework through different classes.

The framework is extensible, in that new classes can easily be added, (possibly
extending existing ones) to implement new semantical choices. In particular, the
classes presented in Figure 4.7 are abstract classes (though we use these classes as
if they were concrete classes in the examples). Different concrete classes can extend
such an abstract class, to provide the same semantics, yet with different implementa-
tions (e.g., using network-level or application-level protocols, see Chapter 6), also in
different system models (e.g., crash-stop [FLP85] or crash-recovery [ACT00]). Due
to these variable semantics, the notions of order and reliability used in the following
are difficult to define rigorously for the entire framework.6

Reliable?

GDAC

Duplicates?

Criteria?

GDAWeakSetGDAWeakBag

Duplicates?

Ordering?

GDAStrongSetGDAStrongBag

Duplicates? Duplicates?

GDASortedSetGDASortedBagGDAListGDAArray

Best-effort At-most-once

At-least-once Exactly-once

At-least-once
FIFO

Exactly-once
FIFO

At-least-once
Total Order

Exactly-once
Total Order

Yes Yes

Yes

YesYes

No

No

No

No No

NoYes

ImplicitExplicit

Figure 4.7: GDAC Framework

4.4.2 Order

Collections are often characterized by the way they store their elements. Plain sets or
bags for instance do not rely on a deterministic order of their elements. Conversely,

6The decomposition of such protocols has been thoroughly studied in the context of group
communication, for instance in Horus [vRBM96], or the Bast [GG00] and OGS (Object Group
Service) [FG00] object systems developed in our lab.

74 Chapter 4. GDACs: A TPS Library

sequences can store their elements in an order given explicitly, e.g., through indexes,
or implicitly based on properties of the elements.

Storage vs Delivery Order

In GDACs however, the notion of space is somehow replaced by the notion of time.
If some centralized collections reveal a deterministic storage order, a distributed
asynchronous sequence may offer a deterministic ordering in terms of delivery to
subscribers. In the Java collection framework for instance, a sorted set is a sequence
which is characterized by an ordering of the elements based on their properties. This
can be seen as an implicit order.

With our GDACs, an implicit order is a global delivery order on which the GDAC
itself decides. The GDASortedSet class for instance presents a total order of delivery.
Inversely, a first-in-first-out (FIFO) delivery order can be seen as an explicit order:
it is given by the order in which obvents are notified to the GDAC by a publisher.

Insertion Order

In different centralized collections, the insertion order may have an impact on the
storage order. In a queue or a stack for instance, the chronological insertion order
will drive the storage order as well as the extraction order. A position can be given
as additional argument to an insertion into a list for instance.

In an asynchronous collection however, the order of insertion can be interpreted
as the order of sending (publishing). It seems however obvious that inserting an
element at a specific position cannot be supported, since it would translate into
delivering an obvent at a certain moment in time relative to other obvents; inserting
an obvent at the beginning of a list would translate into sending that obvent before
obvents that have possibly already been delivered to subscribers. Therefore there
is never any explicit argument for the order passed when “inserting” a new element
into a GDAC.

Extraction Order

Elements can be extracted from a centralized sequence, without any key nor explicit
index, in mainly two ways, namely according to a FIFO order such as in queues, or
in a last-in-first-out (LIFO) order corresponding to stacks.

Extracting obvents from a centralized collection translates into pulling obvents from
a distributed asynchronous one. In the case of consumers polling a GDAC for new
obvents, only a FIFO order ensures that the order determined by the underlying
dissemination algorithm is respected when the obvents are effectively delivered to
(pulled by) the consumer. One could however very well imagine to equip GDACs,
which do not incorporate any notion of order of delivery, with a LIFO order with
respect to pulling consumers. Nevertheless, we have chosen to adopt a FIFO order

4.4. GDAC Classes 75

for all classes presented in Figure 4.7. A LIFO order can, if really required, still be
implemented on top.

4.4.3 Reliability

For the sake of simplicity, we have always considered reliable delivery of obvents
until now, i.e., a published obvent is received by all (correct) subscribers. With-
out loss of validity of the previously introduced models, we now distinguish more
refined semantics. For instance, the GDAWeakSet does not offer more than plain
unreliable delivery, whereas other classes guarantee reliability (e.g., GDAStrongSet).
By distinguishing between unreliable and reliable GDACs, our framework hierarchy
is roughly split into two subtrees, as depicted by Figure 4.7.

Duplicate Elements vs Duplicate Deliveries

While bags might typically contain duplicate elements, sets usually do not contain
any duplicates. In the context of GDACs, duplicates can be considered in two places.
First, similarly to centralized collections, when inserting obvents, and second, in
delivering obvents.

According to the semantics of obvent publication defined in Section 3.3, the same
obvent can be published twice, giving more freedom to the application. To respect
this design choice, GDACs must accept duplicates. In the “traditional” sense, all
GDACs hence represent bags. GDACs vary however by the way they handle dupli-
cate delivery. Depending on the underlying algorithms, an obvent published once
can give rise to several distinct clones of that very same obvent delivered to a given
subscriber.

The simple GDAWeakBag class for instance does not prevent a notification to be de-
livered more than once, whereas the GDAWeakSet class gives stronger guarantees by
eliminating duplicate elements. This property is orthogonal to other characteris-
tics of our GDACs. For that reason, our framework contains a variant with and
without duplicates for every other property, as shown in Figure 4.7. When allowing
duplicates and combining with unreliable delivery for instance, the outcome is best-
effort semantics. In return, with “reliable” delivery, at-least-once semantics can be
guaranteed.

Persistence

Obvents may be volatile, which means that they may be dropped immediately after
delivery. Conversely, the obvent could be stored in memory or even on persistent
storage. In the context of this thesis, we did not deal with persistence of obvents.
Obvents are considered volatile, and can even be dropped as soon as they have
been delivered to the corresponding subscribers.7 Missed obvents are therefore not

7Most implementations however buffer the last k delivered obvents that are still referenced by
the application, k being configurable.

76 Chapter 4. GDACs: A TPS Library

replayed to late subscribers or temporarily disconnected participants, though in the
framework provided by the language integration approach presented in the next
chapter, we have made room for this possibility at the programming level.

4.5 A Filter Library

We have used the model underlying content-based queries in TPS presented in Sec-
tion 3.5 as a design pattern for devising a filter library. In short, we have imple-
mented a set of conditions, which encapsulate different comparisons, and subscrip-
tion patterns are built by customizing and combining such primitive filters. The
resulting design pattern is schematically outlined in Figure 4.8.

Accessor

Condition

boolean conforms(Object)
Condition and(Condition)
Condition or(Condition)
...

Object eval(Object)
 throws Exception

1..*

0..1

Invoke Access

Equals Compare

Figure 4.8: Types for Reifying Subscription Patterns

4.5.1 Accessors

Accessors are specific objects used to access partial information on the runtime event
objects and are similar to the function objects defined in JGL.8

Querying Objects

In Java, an accessor object implements the interface Accessor given in Figure 4.9,
and is evaluated by calling the eval() method with the event object as argument.
This method can also throw exceptions raised when evaluating the method chain,
which enables the reaction to exceptions. Returning null in case of exceptions
would contradict the use of null as matching criterion.

8As we will show later, our accessors differ from function objects in JGL, in that they are used
to represent parts of subscription patterns, and are hence devised in a way enabling optimizations.

4.5. A Filter Library 77

package GDACs.Conditions ;

public interface Accessor {
public Object eval(Object e) throws Exception ;

}

Figure 4.9: Accessor Interface

Reflection-Based Accessors

We have implemented accessors in Java using structural reflection [EG01a], one of
the two main kinds of reflection pointed out in [Fer89]. While this structural reflec-
tion reifies the structural aspects of a program, such as data types, or obvents in our
case, the second main kind of reflection, termed behavioral reflection (computational
reflection), is concerned with the reification of computations and their behaviour.

Reflection in Java. The inherent Java language reflection capabilities [Sun00a]
consist in a type-safe API that supports introspection about classes and objects in
the current Java virtual machine at runtime. We view introspection as one aspect
of structural reflection, limited to the reification, in the sense of representation, of
structures of types and classes at runtime. A second aspect, the modification of
those structures (also sometimes termed intercession) is not addressed by the Java
core reflection API.9

Note that starting at Java 1.3, a limited mechanism for behavioral reflection has
been added through the java.lang.reflect.Proxy class. We will come back to
this in Section 4.7.3.

Implementing accessors. Java provides meta-objects which reify not only classes,
but also methods, fields, constructors, etc. We make extensive use of meta-objects
for methods (java.lang.reflect.Method) to reify the mi’s of accessors, as shown
in the design pattern in Figure 4.8.

Such a meta-object representing a method defers to runtime the choice of which
method is to be invoked, and enables also the actual performing of such a dynamic
invocation.

In languages lacking meta-objects representing methods, specific objects can be
generated either manually for the methods that will be used, or by a compiler.

9Javassist [Chi00] and OpenJava [TCKI00] are two approaches to instrumenting Java with load-
time structural reflection, i.e., the ability of modifying classes at runtime prior to instantiation.
OpenJava promotes a compiletime meta-object protocol (MOP) [Chi95] based on an extension of
java.lang.Class, and makes use of the Sun Java compiler, while Javassist provides an extended
class loader supporting the creation of new methods as copies of existing ones.

78 Chapter 4. GDACs: A TPS Library

package GDACs.Conditions .Accessors;

import java.io.∗;
import GDACS.Conditions .∗;

public class Invoke implements Accessor, Serializable {
/∗ specified by names ∗/
public Invoke(String methodNames , Object[][] ps) {...}
/∗ specificied by methods ∗/
public Invoke(Method[] methods, Object[][] ps) {...}
/∗ nested accessor, by name ∗/
public Invoke(Accessor nested, String methodName , Object[] ps) {...}
/∗ nested accessor, by method ∗/
public Invoke(Accessor nested, Method method, Object[] ps) {...}
...

}

Figure 4.10: Invoke Class (Excerpt)

Implementation Examples

These meta-objects have enabled the implementation of the Invoke class shown
in Figure 4.10. Accessors represented by instances of that class can be used with
any obvent type. For illustration purposes, we have likewise also implemented an
accessor enforcing direct attribute accesses, i.e., based on meta-objects representing
fields (java.lang.reflect.Field). Figure 4.11 gives an outline of its API.

package GDACs.Conditions .Accessors .∗;

import java.io.∗;
import GDACs.Conditions .∗;

public class Access implements Accessor, Serializable {
/∗ specified by names ∗/
public Access(String fieldNames) {...}
/∗ specificied by fields ∗/
public Access(Field[] fields) {...}
/∗ nested accessor, by name ∗/
public Access(Accessor nested, String fieldName) {...}
/∗ nested accessor, by field ∗/
public Access(Accessor nested, Field field) {...}
...

}

Figure 4.11: Access Class (Excerpt)

4.5. A Filter Library 79

Specifying methods. Our accessor classes offer different constructors for conve-
nience. The first two constructors for the two illustrated accessors enable the direct
expression of a nested “access”. The methods and attributes are represented either
by name or by corresponding meta-objects. In the former case, names are separated
by a “.” as for instance in "method1.method2. ... methodv" illustrating nested
methods.

We illustrate these two ways for an application to initialize accessors in the case of
method invocations:

By method object: The application explicitly deals with reflection, and provides a
Method object. As a direct consequence of Java’s nominal subtyping, a method
object m is bound to a single type T : if a method object m for type T is applied
to an object o which does not conform to T , an exception is thrown, even if
o implements a method of the same name and signature as m. By specifying
methods as objects, the application implicitly defines the type of event objects it
is interested in.

By method name (and signature): Specifying the name of a method and its actual
arguments is much easier for the application developer. In TPS, the types of
the expected obvents is known when subscribing to a GDAC, and the lookup of
the corresponding method object (through java.lang.Class) by the accessor can
take place automatically, once and for all. With Java reflection, the most suitable
method for the actual arguments is obtained. Note however that during this
lookup, only the dynamic types of the actual arguments are considered, i.e., the
method chosen to effectively handle the invocation is the same than the one that
is obtained in a static call with arguments of static types equal to the dynamic
types of the actual arguments passed to the accessor.10

Mixing attributes and methods. The other constructors shown in Figure 4.10
and Figure 4.11 enable the creation of an accessor reflecting nested accesses by
specifying an explicitly created nested accessor.

We have chosen this general design offering the possibility of breaking down an
accessor into its single stages to enable an easy mixing of attribute accesses and
method invocations inside the same condition.

Type Safety in Accessors

Knowing the type of the fitting event objects also represents a step towards type
safety. If every mi of an accessor is reified, the return type of each such mi can be
checked (at runtime) for its conformance to the type bound to mi+1. Similarly, the
type of each provided actual argument pi,j can be checked for its conformance to
the type of the j-th formal argument of mi. By enforcing these checks, the Invoke
class rules out type errors.

10In languages offering dynamic multi-dispatch the obtained methods would be the same in both
cases (see Section 5.5.2).

80 Chapter 4. GDACs: A TPS Library

Avoiding type errors. Note that the implementation of these type checks relies
strongly on the isAssignableFrom() method in class java.lang.Class. For that
purpose, all arguments representing primitive types are transformed to their cor-
responding object counterparts. In general, when specifying accessors, a developer
must always reason in terms of objects:

Method arguments: When specifying which methods are to be used by an accessor,
actual values for formal arguments of primitive types have to be passed as their
object counterparts. This can give rise to conflicts when specifying a method by
its name and actual arguments. For example, during method lookup, an accessor
has no means of knowing whether the developer was thinking of a method which
takes a single parameter of type int or a single parameter of type Integer. A
class which contains such a method pair gives rise to two method objects, with
different meta-objects for their respective formal arguments. To correctly handle
the case where only a method with a parameter of type int exists, the Invoke
class is implemented in such a way that it tries one permutation of types/primitive
types after another, until it finds a fitting method through introspection (if there
is any).

Return type: Similarly, with reflection, a value of primitive type returned by a method
call is transformed to its object variant, which is rather convenient. E.g., an invo-
cation chain can contain a call to a method defined on the Integer type, while the
previous method yields a value of int. In static code, an object of type Integer
would have to be explicitly created. Note that, unlike with method arguments,
this case could not lead to any ambiguities, since in Java, return types are not
considered to be part of the method signatures (in the sense that one can not de-
fine two methods with corresponding formal arguments but different return types
in the same class).

Achieving structural conformance with reflection. By specifying methods
by their name and signature, a primitive form of structural conformance of types
could be achieved by refraining from any type checks, hence deferring the method
lookup to runtime. Prototype implementations of certain GDACs for that end im-
plement a method containsAll() (borrowed from the original Java collections),
with a signature similar to the contains() method for subscribing.

This however implies, for each evaluated event object, a costly dynamic lookup to
obtain the appropriate method meta-object (see Section 4.5.4).

4.5.2 Conditions

While an obvent is queried through an accessor, a condition object evaluates the
obtained information, i.e., decides whether the obtained object represents a desirable
value for the corresponding subscriber.

4.5. A Filter Library 81

In Java

In Java, a condition object implements the Condition interface given in Figure 4.5.
It is evaluated for a given event object o by invoking conforms() with o as argument.
The condition classes we propose are conceptually similar to the predicates found in
JGL that are used in conjunction with centralized collections.

Comparisons

The different condition classes we provide vary by the comparison functions they
encapsulate. The other attributes of conditions according to the model presented in
Section 3.5.1, namely the used accessor and the expected result, can be viewed as
initialization arguments of our condition classes.

In short, Java inherently implements the three basic comparison mechanisms out-
lined in the previous chapter. The comparison of two objects with the == operator
(identity) yields true iff the two arguments are references to the same object, but
is less useful in our context.

State (value). Every object can also be compared to any other object by means
of the equals() method, which is inherent to all Java objects and can be overridden
by application-defined classes. When overriding, one must be careful to guarantee a
reflexive, transitive, consistent (cf. Section 3.5.1), and symmetric implementation.
Supposing two objects o1 and o2, the latter property manifests itself in that calling
the equals() on either o1 or o2 with the other object as argument yields the same
result.

Ordering. This is for objects implementing the java.lang.Comparable interface,
the counterpart to the well-known Magnitude type in Smalltalk [GR83]. Comparable
objects in Java provide a method compareTo() which returns an integer, indicating
the order of the object o1 with respect to o2 (usually -1 if o1 is smaller, 1 if bigger,
0 if equal). Such objects manifest a natural ordering, e.g., class Integer, and can
thus be matched against a range of values. Comparisons can be moved out of the
compared objects by using java.util.Comparator objects, which represent binary
predicates.

Example Implementations

Hence, as outlined in Section 3.5.1, and as illustrated by the two most relevant
comparisons in Java, b is represented by a method, and can also be viewed as mv.
Inversely, methods mu...mv (1 ≤ u ≤ v) can be seen as part of the comparison.

Equals. In our condition classes, like the Equals class given in Figure 4.12 (repre-
senting a value-based equality test), we have added constructors which alleviate their

82 Chapter 4. GDACs: A TPS Library

use. The third constructor in the figure for instance enables the expression of nested
method calls by providing a string denoting the names of the methods/attributes.
The accessor is in that case created implicitly.

The increased flexibility offered by the possibility of mixing methods and attribute
accesses however mandates that argument lists for methods be provided as (possibly
empty) arrays. In contrast, the argument lists for field accesses are represented by
null values when creating immediately a nested accessor. This is necessary for the
condition to be able to distinguish between attribute accesses and methods, since
an attribute and a method can have the same name in a given class.

package GDACs.Conditions ;

import java.io.∗

public class Equals implements Condition , Serializable {
/∗ compare the event object as a whole ∗/
public Equals(Object to) {...}
/∗ compare return value of accessor ∗/
public Equals(Accessor a, Object to) {...}
/∗ implicit accessor creation ∗/
public Equals(String names, Object[][] ps, Object to) {...}
...

}

Figure 4.12: Equals Class (Excerpt)

Compare. Figure 4.13 outlines the Compare class, which implements a condition
representing an order-based comparison of two objects. The first constructor ex-
presses a comparison of the evaluated obvent itself with an object to. The result
is compared to the integer value provided as argument. The comparison hence not
only consists of an invocation of the compare() method, but also of a value-based
comparison of the returned integer value with the provided one r.11

Similarly to the Equals class, the Compare class provides constructors which enable
the implicit construction of the accessor. Furthermore, the Compare class provides
constructors enabling the specification of an explicit comparator of type Comparator,
as described above.

4.5.3 Subscription Patterns

In Java, a subscription pattern s is represented by an object of type Condition,
and the function f indicating how to combine the outcome of the involved basic

11This scheme slightly diverges from the model presented in the previous chapter, since the
Compare class is able of representing any simple comparison like > or =<. For simpler use, our
framework contains more specific classes, such as Greater, LessEqual, etc.

4.5. A Filter Library 83

package GDACs.Conditions ;

import java.io.∗

public class Compare implements Condition , Serializable {
/∗ compare the event object as a whole ∗/
public Compare(Object to, int r) {...}
/∗ compare return value of accessor ∗/
public Compare(Accessor a, Object to, int r) {...}
/∗ implicit accessor creation ∗/
public Compare(String names, Object[][] ps, Object to, int r) {...}
/∗ compare the event object as a whole ∗/
public Compare(Object to, Comparator b, int r) {...}
/∗ compare return value of accessor ∗/
public Compare(Accessor a, Object to, Comparator b, int r) {...}
/∗ implicit accessor creation ∗/
public Compare(String names, Object[][] ps, Object to, Comparator b, int r)

{...}
...

}

Figure 4.13: Compare Class (Excerpt)

conditions is not directly reified. In fact, f is explicitly constructed by combining
conditions. These combinations are expressed through specific conditions, reflecting
binary predicates, like And (Figure 4.14), Or, etc. Furthermore, we propose a unary
predicate Not for inverting conditions.

Expressing Condition Combinations

For example, if the arguments first and second in Figure 4.14 passed to the con-
structor are not themselves composed conditions, then w = 2, and furthermore
f(b1, b2) = b1 ∧ b2. To ease the expression of combinations, we have added
methods for simple composition to the Condition interface. By calling the and()
method, an instance of the And class in Figure 4.14 is implicitly created. This pattern
counteracts Java’s lack for operator overloading (see Section 4.7).

Type Safety

This subscription scheme based on conditions has the nice advantage of inherently
expressing the subscription grammar. Syntax errors known from subscription lan-
guages, where they are only recognized at execution of the parser, are here detected
by the Java compiler. Badly typed method and attribute names, on the other hand,
are detected at runtime thanks to the provided type information in TPS.

84 Chapter 4. GDACs: A TPS Library

package GDACs.Conditions ;

import java.io.∗;
import GDACs.∗;

public class And implements Condition , Serializable {
/∗ the two arguments ∗/
private Condition first;

private Condition second;

/∗ combine two subpatterns ∗/
public And(Condition first, Condition second)

{ this.first = first; this.second = second; }
/∗ primitive evaluation ∗/
public boolean conforms(Object m)

{ return first.conforms(m) && second.conforms(m); }
...

}

Figure 4.14: And Class (Excerpt)

4.5.4 Performance Evaluation

Reflective systems and meta-level architectures offer increased modularity and flex-
ibility. The benefit of such dynamism is often, but not necessarily, diminished by
performance degradation.

Preliminary: Cost of Reflection

According to the way we have described our implementation, methods are invoked
dynamically, i.e., through reified methods. Such dynamic invocations are much more
expensive than static ones. Moreover, when subscribing to structurally conforming
objects, method objects are obtained at runtime for each obvent. Such lookups are
very costly, and are summed with the overhead of dynamic invocations.

Figure 4.15 depicts the cost of dynamic calls by comparing the overhead of local
method invocations with a varying number of arguments (between 0 and 10 objects).
These are performed using (1) dynamic invocations, each combined with a method
lookup, (2) dynamic invocations without lookups, and (3) static invocations. These
tests were made on a Sun Ultra 60 (Solaris 2.6, 256 Mb RAM, 9 Gb harddisk)
with Java 1.2 (native threads). The test setting did not involve any just in time
(JIT) compiler. The speedup factor observed for static invocations when using a
JIT compiler was over three. The speedup in the case of dynamic evaluation is, as
expected, insignificant.

4.5. A Filter Library 85

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

L
at

en
cy

 [m
s/

In
vo

ca
ti

on
]

Arguments (Object)

Dynamic w. Lookup
Dynamic

Static

Figure 4.15: Latency with Different Invocation Styles

Optimizations

The type information available in TPS enables the application of optimizations when
structural conformance is not required. We propose here two different optimizations.

Avoiding redundant invocations. Obvents are usually matched against pat-
terns of several subscribers at a time, and these patterns are likely to present re-
dundancies. We discuss here an optimization based on that observation, which is
similar, but not identical to the tree matching algorithm used in Gryphon [ASS+99].
The tree matching algorithm factors out redundant subpatterns with simplified as-
sumptions: everything is decomposed into ands of basic conditions, and the latter
ones are primitive comparisons of attribute values with predefined values.

In contrast, our filter library offers more expressiveness, e.g., nested method invoca-
tions, different comparators and combinations (and, or, ...). Such combinations are
performed statically, and dynamic queries on obvents represent the critical factor
in our system. As a consequence, we focus on detecting common denominators of
accessors, in order to avoid the evaluation of redundant dynamic method invocation
chains.

Figure 4.16(a) shows a simple example of redundant accessors where each subscriber
specifies a pattern consisting of a single basic condition. An invocation tree, like the
one shown in Figure 4.16(b), is constructed from all accessors and is evaluated for
every filtered event object.

Enforcing static filters. Based on the observation that dynamic invocations are
far more costly than static ones, we have implemented an alternative optimization.
Any dynamic invocations are avoided by generating static source code from accessors
after performing type checks.

86 Chapter 4. GDACs: A TPS Library

Subscriber S1: a1 = (m1, p1)
Subscriber S2: a2 = (m2, p2), (m3, p3)
Subscriber S3: a3 = (m2, p2), (m3, p3), (m4, p4)
Subscriber S4: a4 = (m2, p2), (m3, p5)

(a) Redundancy Between Accessors

m1(p1)

m3(p3)

m2(p2)

m4(p4)

m3(p5)

S2

S1

S

S4

3

(b) Resulting Invocation Tree

Figure 4.16: Optimizing Accessors

The generated source code is then directly compiled, by calling the original Sun
Java compiler (sun.tools.javac), in a way similar as this is done in [TCKI00] or
[KMS98].12

Obviously, this technique could be combined with the first optimization. We have
however not pursued this approach here. The resulting static compound filter would
have to be recompiled every time a single subscription pattern is modified.

Evaluation

We evaluate here the benefits of the two above optimizations by comparing the
resulting performances with two non-optimized scenarios. These are namely (1)
the filtering of structurally conforming obvents, and (2) the filtering of obvents
conforming by name.

Testbed. Our measurements were made with the Java virtual machine 1.2, en-
abled JIT and native threads on Sun Solaris 2.6. A single producer was publishing
obvents encapsulating a single string from one network (Sun Ultra 60, 256 Mb RAM,
9 Gb harddisk), to subscribers equally distributed over two further networks; one
composed of altogether 60 Sun SuperSparc 20 stations (model 502: 2 CPU, 64 Mb
RAM, 1Gb harddisk), and the second one composed of 60 Sun Ultra 10 (256 Mb
RAM, 9 Gb harddisk) stations. The individual stations and the different networks
were communicating via 100 Mbit Ethernet.

12[KMS98] terms this technique (runtime) linguistic reflection, which is seen as a synonym of
structural reflection.

4.5. A Filter Library 87

Parameters. We have made a set of extensive tests, in which we have always
varied one of four parameters for the subscriptions. These are namely, (1) the
average fraction of positive matches for any subscriber p1, (2) the total number of
subscribers n, (3) the maximum nesting level of invocations for queries v, and (4)
the number of different query methods w at each nesting level.

Varying p1: From 100 published obvents, an average of 100p1 obvents matched a
given subscribers pattern. Figure 4.17 shows the effect of varying p1. It confirms
the intuition that the cost of sending obvents with UDP does not depend on the
matching scheme, and can be seen as fixed. With p1 < 0.01 in this scenario, the
pure cost of matching is measured. In order to accentuate the differences between
the matching schemes without contradicting our concrete applications, we have
chosen p1 = 0.1 for the following measurements.

Varying n: Similarly to the scenario in Figure 4.16, we have chosen one basic con-
dition per subscriber. Figure 4.18 reports the effect of scaling up n, conveying
that the two optimizations are almost equivalent with a large n.13 As shown in
the previous figure, UDP is a limiting factor with an increasing number of sends
(here due to a large n). Performance drops faster with static filters, since every
additional subscriber involves a full pattern evaluation. In contrast, the optimized
dynamic scheme is less sensitive since redundant queries are avoided.

Varying v: The probability of having i nested invocations was chosen as 1/(v +
1) ∀i ∈ [0..v]. Increasing v reduces throughput with static invocations, as illus-
trated in Figure 4.19, since static accessors comprise more invocations. Similarly,
the optimized dynamic scheme is less efficient with an increasing v, since the total
number of performed methods increases with the depth of the tree.

Varying w: One of w methods was chosen at each nesting level with a probability
of 1/w. Varying w obviously does not influence static filter evaluation. On the
other hand, increasing w might lead to increasing the potential number of edges
leaving from any node in the invocation tree. The resulting performance loss is
directly visible in Figure 4.20. The optimized dynamic scheme is however more
penalized by increasing w, as shown in the previous figure. This is due to the fact
that increasing v by 1 might result in up to d new edges in every former leaf of
the invocation tree.

Interestingly the optimized dynamic matching scheme never outperformed the static
scheme, even if the speedups became close with a large number of obvents published.
One could believe that with a strong redundancy between patterns, and a large
number of subscribers, the dynamic scheme would become more efficient. Even with
extreme parameter values, we have however never encountered such a scenario.

13As we will elucidate in Chapter 6, a possible dissemination algorithm relies on a hierarchical
topology of participants, among which membership information is split up. A single participant
rarely considers more than 100 participants when matching an obvent.

88 Chapter 4. GDACs: A TPS Library

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

T
h

ro
u

gh
p

u
t [

m
sg

/m
s]

Divider for Matching Rate

Static
Opt. Dynamic

Dynamic
Dynamic w. Lookup

Figure 4.17: Varying the Matching Rate p1 (v = 0, n = 20, w = 1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

20 40 60 80 100 120

T
h

ro
u

gh
p

u
t [

m
sg

/m
s]

Subscribers

Static
Opt. Dynamic

Dynamic
Dynamic w. Lookup

Figure 4.18: Varying the System Size n (p1 = 0.1, w = 1, v = 2)

4.5. A Filter Library 89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

T
h

ro
u

gh
p

u
t [

m
sg

/m
s]

Nesting Level (max.)

Static
Opt. Dynamic

Dynamic
Dynamic w. Lookup

Figure 4.19: Varying the Complexity of Subscriptions v (p1 = 0.1, n = 100, w = 1)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

gh
p

u
t [

m
sg

/m
s]

Different Query Methods

Static
Opt. Dynamic

Dynamic
Dynamic w. Lookup

Figure 4.20: Varying the Redundancy of Subscriptions w (p1 = 0.1, n = 100, v = 1)

90 Chapter 4. GDACs: A TPS Library

4.6 Programming with GDACs: The Stock Trade Ex-
ample

We illustrate the convenience of distributed programming with GDACs through a
simple stock trade example. We first introduce the stock trade example in the face
of TPS, and then focus on how to program the example with GDACs.

4.6.1 Preliminary: Stock Trade in TPS

As depicted in Figure 4.21, the communication medium is pictured as consisting of
nested channels for obvent types.

Stock Obvents

Obvents are propagated on the corresponding channels, and subscriptions which are
expressed for types are issued to the appropriate channels.

The example encompasses several obvent types. According to the subtyping rules
in Java, by subscribing to a type StockObvent, one receives instances of its sub-
types StockQuote and StockRequest, and hence all objects of type SpotPrice and
MarketPrice.

Scenario

A possible scenario is the following. The stock market p1 publishes stock quotes,
and receives purchase requests. These can be “spot price” requests, which have
to be satisfied immediately, or “market price” requests for purchasing quotes only
at the end of the day, or once another given criterion is fulfilled. As outlined in
Figure 4.21, these different kinds of events result in corresponding obvent types,
rooted at the StockObvent type (details of the elaborate obvent types are omitted
here for simplicity).

Market price requests can however expire, and for the broker’s (e.g., p2) convenience,
an intermediate party (p3), e.g., a bank, might also handle such requests on behalf
of her/him, for instance by issuing spot price requests to the stock market once the
broker’s criteria are satisfied. Figure 4.21 illustrates this through p2, which expresses
only interest in stock quotes that cost less than $100.

4.6.2 Stock Trade with GDACs

We illustrate how to put the stock trade application to work with GDACs. Fig-
ure 4.22 depicts two simple stock obvent types used in this example, corresponding
to the types roughly outlined in Figure 4.21.

4.6. Programming with GDACs: The Stock Trade Example 91

P1

P2 P3

cheaper(100) == true

StockObvent

StockQuote StockRequest

MarketPrice SpotPrice

String company
float price
int amount
long id

cheaper(float)

Figure 4.21: The Stock Trade Example in TPS

Publishing Stock Quotes

With GDACs, stock quotes can simply be published by adding them to a GDAC
complying with the stock quote type:

GDAC<StockQuote> quotes = new GDAStrongSet<StockQuotes>();

StockQuote q = new StockQuote ("Telco Mobiles", 80, 100, 12373);

quotes.add(q);

Subscribing to Stock Quotes

Expressing a subscription requires more effort. A notifiable type has to be first
created to handle callbacks:

public class StockQuoteSubscriber implements Subscriber<StockQuote> {
public void notify(StockQuote q) {

System.out.print("Got offer: ");

System.out.println(q.getPrice ());

}
}

92 Chapter 4. GDACs: A TPS Library

import java.io.∗;

public abstract class StockObvent implements Serializable {
private String company;

private float price;

private int amount;

private long id;

public String getCompany () { return company; }
public float getPrice () { return price; }
public int getAmount () { return amount; }
public long getId() { return id; }
public boolean cheaper(float than) { return price < than; }
public StockOvent (String company, float price, int amount, long id)

{
this.company = company;

this.price = price;

this.amount = amount;

this.id = id;

}
}

public class StockQuote extends StockObvent {
...

public StockQuote (String company, float price, int amount, long id)

{ super(company, price, amount, id); }
...

}

Figure 4.22: Simple Stock Obvent Types

Subscription patterns are expressed by combining conditions from our filter library.
Here we express interest in stock quotes with a price less than $100 for the entire
Telco group, not only the mobile division:

GDAC<StockQuote> quotes = new GDAStrongSet<StockQuote>();

Object[][] args1 = new Object[][]{{null},{"Telco"}};
Condition notContained =

new Equals(".getCompany .indexOf", args1, new Integer(−1));
Object[][] args2 = new Object[][]{{new Float(100.0)}};
Condition cheaper = new Equals(".cheaper", args2, new Boolean(true));

Condition pattern = notContained .not().and(cheaper);

quotes.contains(new StockQuoteSubscriber(), pattern);

Note that the second condition expressed through the cheaper() method imple-
mented by all stock quote obvents could be similarly expressed by querying the
price of stock quotes and comparing the obtained value through an instance of the
Compare condition.

...

Object[][] args2 = new Object[][]{{}};
Condition cheaper = new Compare(".getValue", args2, new Float(100.0), −1);
...

4.7. Discussion 93

4.6.3 RMI and TPS: Hand in Hand

TPS is a distributed programming paradigm which perfectly fits modern applica-
tion’s need for mass dissemination of information. Again, any implementation of
TPS in Java is not to be viewed as conflicting with Java RMI, but rather comple-
mentary. We illustrate this by making the two interaction paradigms collaborate to
complete the above stock trade example.

Improving Stock Trade

Though the use of a publish/subscribe interaction for the dissemination of stock
quotes seems appropriate by scaling easily to many brokers, it might seem more
appropriate in certain cases to use a synchronous interaction with the stock market
when purchasing stock options, e.g., a remote method invocation to ensure that the
order has been received.

Figure 4.23 illustrates an extended StockQuote type, and a subscriber type. When
publishing stock quotes, the stock market simply adds a remote reference to an
object capable of handling purchase requests. When receiving stock quotes, the
broker can thereby directly interact with the stock market to initiate a purchase.

Limitations

To correctly handle the serialization of remote objects (in the sense of Java RMI),
the Java RMI serialization mechanism is used, enabling a transparent integration of
RMI and TPS.

However, the current implementation of Java RMI presents a severe caveat, which
becomes especially visible through this integration with obvents. In fact, the dis-
tributed garbage collection keeps a remotely accessible object from being garbage
collected as long as there is at least one proxy for that object. When publishing
an obvent containing a reference to a remote object, such a proxy is created for
each subscriber, which can sum up to several 1000’s. Every time a proxy is garbage
collected, the Java virtual machine hosting the represented object is notified. Con-
sequently, if a single subscriber crashes, the remote object will never be garbage
collected. With a “weaker” implementation of Java RMI, such as the one proposed
in [CNH99], this problem could be circumvented.

4.7 Discussion

We discuss here the expression of alternative communication styles with our collec-
tions, and also possible enhancements.

94 Chapter 4. GDACs: A TPS Library

import java.rmi.∗;
import java.rmi.server.∗;

/∗ stock broker ∗/
public interface StockBroker extends Remote {...}

/∗ stock market ∗/
public interface StockMarket extends Remote {

public boolean buy(String company, float price,

int amount, StockBroker buyer)

throws RemoteException ;

...

}

/∗ full stock quotes ∗/
public class StockQuote extends StockObvent {

private StockMarket market;

public Stockmarket getMarket () { return market; }
public StockQuote (String company, float price,

int amount, long id, StockMarket market)

{
super(company, price, amount, id);

this.market = market;

}
...

}

/∗ a stock subscriber ∗/
public class StockQuoteSubscriber implements Subscriber<StockQuote> {

private final StockBroker broker = ...; /∗ reference to this broker ∗/
public void notify(StockQuote q) {

System.out.print("Got offer: ");

System.out.println(q.getPrice ());

...

boolean bought =

q.getMarket ().buy(q.getCompany (), q.getPrice (),

q.getAmount (), broker);

...

}
}

Figure 4.23: Advanced Stock Obvent Types and Subscriber

4.7. Discussion 95

4.7.1 Subject-Based Publish/Subscribe

As already explained in the previous chapter, one can quite obviously devise a
subject-based scheme on top of TPS, since TPS includes a form of content-based
subscription, e.g., by designing an obvent type (possibly the root obvent type) which
contains an attribute reflecting a subject name.

Retrospective: DACs

We would like to recall that the GDACs presented in this chapter are descendants of
the (non-generic) Distributed Asynchronous Collections (DACs) originally presented
in [EGS01]. Indeed, these were initially intended as general abstractions for decou-
pled communication between distributed producers and consumers, and [EGS01]
presented an illustration through subject-based publish/subscribe.

Expressing Subjects with DACs

A DAC basically represents a channel for unbound objects of a certain kind, and
this event kind can also be easily mapped to something different than an event type,
like a subject.

Subject Scheme. This can be implemented by adding a subject name as at-
tribute to the DAC itself, and initializing it upon creation of the DAC. Typically, a
nested subject name such as “/Chat/Insomnia” is a reference to the subject called
“Insomnia” which is a nested subject of “Chat”, and all events published through a
DAC created for “Chat/Insomnia” implicitly belong to that subject “Chat”.

The root of the hierarchy is represented by an abstract subject (denoted by “/”). Top-
level subjects, which are no specializations of already existing ones, are contained
in the abstract subject only. Subscribing to a subject triggers subscriptions to the
contained subjects as well.

Subscribers. With the push model adopted in DACs, subscribing entities must
register a callback object. That callback object must implement a specific interface,
namely the (non-generic) Subscriber interface, shown in Figure 4.24. Through a
call to the notify() method, the DAC notifies the subscriber that it contains a
new notification. Note that the second argument is required since an event does
not implicitly carry the subject it was published to. As a consequence the same
callback object can be used here for several unrelated subjects, while with GDACs
this is not possible because of the type parameter (and its implementation in GJ).
With two distinct types T1 and T2, even if T2 ≤T1, a subscriber for type T2 is
not a subscriber for T1 (∀R,T1, T2 : R〈T1〉 ≤ R〈T2〉 ⇔ T1 = T2). This increased
flexibility is however neglectable regarding the loss in type safety.

96 Chapter 4. GDACs: A TPS Library

package DACs;

public interface Subscriber {
public void notify(Object o, String subjectName);

}

Figure 4.24: Subscriber Interface used with DACs

Combining Subjects and Types

Though not presented here, one could easily imagine a mixture of subjects and
types, by providing GDACs for specific subjects. This could lead to several separate
spaces for an obvent type T ; one for each subject for which there exist GDACs
parameterized by that same obvent type T.

4.7.2 Message Queuing

As outlined in Section 2.3.2, the shared space paradigm has given rise to more
industrial strength variants, commonly termed “message queues”.

Removing Future Elements. To express such queuing interaction with GDACs,
we overload the remove() primitive known from conventional Java collections. This
reflects an asynchronous removal of objects, where objects can be “removed” though
not yet present: future elements added to the GDAC are delivered and successively
removed from the GDAC.

Callback. As outlined through GDACs, the all-of-n semantics, characteristic for
“traditional” publish/subscribe can also be provided as pull-style interaction of the
consumers with the channel. Inversely, message queuing (one-of-n) can be imple-
mented with callbacks to consumers. In other terms, the choice of push- or pull-
style interaction of consumers with a shared space is orthogonal to the dissemination
model.14

GDACs consequently implement several variants of the remove() method, as shown
in Figure 4.25.

14Note that we have abandoned the model introduced in [EGS01], which artificially separated
message queuing (one-of-n) and publish/subscribe (all-of-n) in two distinct subtype hierarchies.
As successfully shown by the tuple space, one-of-n and all-of-n can be merged inside the same
abstraction, by keeping certain possible conflicts in mind.

4.7. Discussion 97

package GDACs;

import java.util.∗;

public interface GDAC<T> extends Collection<T> {
...

/∗ one−of−n, pull−style ∗/
public void remove(ExceptionHandler h, Condition c);

public T remove(ExceptionHandler h);

/∗ one−of−n, push−style ∗/
public void remove(Subscriber<T> t, Condition c);

...

}

Figure 4.25: GDAC Interface (Second Excerpt)

4.7.3 Ensuring Type Safety of Patterns at Compilation

The outlined filter library implemented with structural reflection faithfully reflects
the model of subscriptions outlined in the previous chapter, and furthermore repre-
sents a very flexible solution, in that methods can be specified as meta-objects, or
simply by their name (and signature). In the latter case, the system can perform
the lookup of the corresponding method immediately, inherently performing type
checks.

Static Type Checks

In the “normal” case, methods are specified according to the second possibility,
i.e., by name and actual arguments, and type checks are performed, however only
at runtime with introspection. In contrast, the parametric polymorphism applied
to GDACs ensures type-safe obvent delivery at compilation. Hence it would make
much sense to perform type checks on filters at compilation, e.g., through the Java
compiler itself.

Exploiting Behavioral Reflection in Java

A starting point for static type checks on subscription patterns is given by a limited
mechanism for behavioral reflection which made its way into Java version 1.3. In
short, while meta-objects representing methods enable to decide at runtime only
which invocation to perform, the java.lang.reflect.Proxy class enables to defer
to runtime the decision of what effect an invocation should have. An instance of this
proxy class can thus be used at runtime as a meta-object, for instance to perform
computation prior to, and following, the invocation of the actual target object.

98 Chapter 4. GDACs: A TPS Library

Expressing Conditions with Proxies. In our case, such proxy objects can be
used to “register” the invocations used later to query objects. The application de-
picts what methods it wants obvents of type T to be queried through by (statically)
invoking them on proxy objects provided by a GDAC for type T . The proxy simply
registers these invocations and the corresponding arguments at runtime, and gen-
erates the subscription pattern. This scheme could be implemented by having the
asynchronous contains() method for subscription return a proxy for type T , as
outlined in Figure 4.26.

More precisely, the instance of T returned by the contains() method could then be
used to apply an invocation, which would be registered by the handler. The return
value of the handler would again be a new handler (for nested invocations), until a
boolean value would be found. Consider the following illustration with stock quotes:

GDAC<StockQuote> g = new GDAStrongSet<StockQuote>();

StockQuote proxy = g.contains(new StockQuoteSubscriber());

proxy.getCompany ().equals("Telco Mobiles");

Here, the proxy object holds an instance of the Proxy class defined as part of the
Java core reflection API. A condition is simply expressed through proxy, by invoking
the right methods in a nested way, yet finishing by a method returning a boolean
value.

Note that the method selection is made statically by the compiler, in contrast to the
dynamic method selection explicitly performed in the case of the filter library, i.e.,
based on the dynamic types of invocation arguments.

Limitations. The above illustration of the use of behavioral reflection through
proxies would however not work, for the simple reason that Java currently only
supports proxies for interfaces, i.e., only for abstract types, and not for classes. As
a consequence, all return types of methods of obvent types would currently have
to be interfaces, and GDACs could only be parameterized by interfaces as well,
meaning that for virtually any concrete obvent type there would have to be an
explicit interface defined, and subscriptions to classes would not be possible. As
a consequence, built-in classes like those representing primitive object types could
not be used, and we would have to introduce an alternative type hierarchy for the
use with GDACs, rooted by an abstract type like the ObjectIntf type given in
Figure 4.27.

Introducing own primitive object types could however in addition solve the prob-
lem of expressing subscription patterns as combinations of simple conditions, by
integrating binary functions, such as and(), or or() into the new boolean type:

GDAC<StockQuote> g = new GDAStrongSet<StockQuote>()

StockQuote proxy = g.contains(new StockQuoteSubscriber());

BooleanIntf first = proxy.getCompany ().equals("Telco Mobiles")

BooleanIntf second =

proxy.getValue ().compareTo(new FloatImpl(100.0)).equals(new IntegerImpl (1));

first.and(second);

The obvious flaw with this approach is that anyone could provide its own implemen-

4.7. Discussion 99

package GDACs;

import java.lang.reflect.∗;

public class GDAStrongSet<T> implements GDAC<T> {
private Class TClass;

public GDAStrongSet (Class[] classes) { this.TClass = classes[0];}

public T contains(Subscriber<T> ts) {
return (T)Proxy.newProxyInstance (TClass.getClassLoader (),

new Class[] { TClass },
new Registrar(new Context(), 1));

}

private class Context {...}

private class Registrar implements InvocationHandler {
private Context context;

private int level;

public Registrar (Context context, int level) {
this.context = context;

this.level = level;

}

public Object invoke(Object proxy, Method method, Object[] args)

throws Throwable

{
/∗ register the invocation ∗/
...

/∗ return a new handler ∗/
Class returnClass = method.getReturnType ();

if (returnClass .equals(Class.forName("java.lang.Boolean")) | |
returnClass .equals(Boolean.TYPE))

return new Boolean(true);

...

return Proxy.newProxyInstance (returnClass .getClassLoader (),

new Class[] { returnClass },
new Registrar(context, level + 1));

}
}
...

}

Figure 4.26: Statically Type-Safe Filters with Behavioral Reflection

100 Chapter 4. GDACs: A TPS Library

tation of these abstract types. This is probably the main underlying rationale to
supporting proxies only for interfaces. A proxy declaration for a final class (which
cannot be inherited from) would yield a subclass of that class, jeopardizing the
security aspects often underlying the definition of final classes.

package GDACs.PrimitiveObjects ;

/∗ interfaces ∗/
public interface ObjectIntf {

public BooleanIntf equals(ObjectIntf o);

...

}
public interface BooleanIntf extends ObjectIntf {

public BooleanIntf and(BooleanIntf b);

public BooleanIntf or(BooleanInt b);

...

}
public interface NumberIntf extends ObjectIntf {...}
public interface IntegerIntf extends NumberIntf {...}
public interface FloatIntf extends NumberIntf {...}
...

/∗ classes ∗/
public abstract class ObjectImpl implements ObjectIntf {...}
public class BooleanImpl implements BooleanIntf {...}
public abstract class NumberImpl implements NumberIntf {...}
public class IntegerImpl implements IntegerIntf {...}
public class FloatImpl implements FloatIntf {...}
...

Figure 4.27: Defining Own Primitive Object Types

Improvements

We summarize the current limitations which make the viability of the above scheme
as a solution for transparent subscription pattern description rather questionable.
Improvements could address the following:

Class proxies: Restricting developers to use only interfaces in obvent types, and
furthermore only subscribing to abstract obvent types appears to be too restrictive.
A more powerful model could be imagined, by having Java support proxies for all
non-final classes, possibly even including a control over proxy creation for final
classes in Java’s security framework.

Operators: Operators for primitive types should be reflected by methods in the cor-
responding object types, enabling proxies to intercept these calls. This can for
instance be implemented as part of operator overloading, like in C++. That way,
if an invocation chain returns an integer object that object can be compared with
another integer object, also after having been increased.

4.7. Discussion 101

Primitive types: Another consequence of this missing operator overloading in Java
is that primitive types cannot be fully supported as return types of methods. This
would require that operators applied to such primitive types can be overloaded
as outlined above. Java proxies are very well able of supplying an instance of a
primitive object type instead of a value of the primitive type, but the method
implementing an operator would have to be furthermore invoked on the corre-
sponding primitive object class to make it interceptable.

The last two are to some extent redundant. Indeed, if all operators for primitive
types are implemented as methods on the corresponding primitive object types, there
is no need for primitive types as return types. Nevertheless, it would be very conve-
nient if operators applied to primitive types would be automatically transformed to
the corresponding method calls on the primitive object type, and hence on a proxy.

Whether operator overloading should or will be added to Java is another question.15

From our point of view, it would obviously make subscription patterns more in-
tuitive. However, if the language does not support this, then this lack appears in
various situations, not only in subscription patterns, and hence Java programmers
are prepared for this.

15In 1998, operator overloading in Java represented an active research area. The Numerics Work-
ing Group at the Java Grande Forum invested quite some effort in this issue, and Bill Gosling
himself seemed to encourage an adequate extension of Java. It seems however that this possibility
has met a serious reluctance, and the issue has been silently dropped.

102 Chapter 4. GDACs: A TPS Library

Summary

GDACs represent a library approach to expressing TPS in Java. Similarly to estab-
lished abstractions for subject-based publish/subscribe, GDACs represent first-class
channels. However, GDACs come as a framework integrated with the standard Java
collection framework, where the different GDAC (sub)types are used to express dif-
ferent QoS.

The implementation of GDACs has benefited strongly from the default serializa-
tion mechanism offered as part of Java, as well as from structural reflection. The
latter mechanism has allowed subscription patterns to respect the model presented
in Chapter 3, by querying obvents through methods. The subscription grammar is
expressed through an API, hence making use of the Java compiler to detect many
possible errors. Nevertheless, type safety is only ensured at compilation, since meth-
ods used for querying are defined dynamically. Also, subscription patterns expressed
through our filter library, though reflecting Java code, have only little in common
with the native Java syntax.

103

Chapter 5

JavaPS: Integrating TPS into
the Programming Language

In this chapter, we describe a second approach to putting TPS to work in Java. This
solution consists in augmenting the Java language with two primitives, publish and
subscribe, in order to inherently support TPS. We refer to this dialect of Java as
JavaPS [EGD01].

Our language integration approach benefits strongly from Java’s built-in serialization
mechanism, and the multiple subtyping provided through interfaces. The main
additions made to the Java language, for the sake of supporting TPS, are closures,
together with a very specific form of deferred code evaluation.

In order to avoid making the Java virtual machine distribution-aware, invocations
of our primitives are transformed at compilation to calls to specifically generated
classes encapsulating the effective communication infrastructure, implemented as
part of our DACE project. These adapter classes can be viewed as a form of proxies
for TPS. Inherent types and classes are regrouped in a package which we denote by
java.tps.

5.1 Overview

We overview the driving forces behind the idea of integrating primitives into the
Java language, and give an informal overview of these primitives.

5.1.1 Motivations: Lessons Learned from the Library Approach

The library approach is interesting from the point of view that it helps illustrate
that TPS can be implemented in a type-safe way with an “ordinary” programming
language such as Java. Nevertheless, our library approach turns out to present

104 Chapter 5. JavaPS: Integrating TPS into the Programming Language

mainly two flaws, besides the fact that subscription patterns expressed through the
filter library are not statically type-safe.

QoS

With GDACs, the only contracts between remote parties are the obvent types. By
publishing obvents of a type that matches a subscriber’s criteria, a publisher is
implicitly (though weakly) linked with that subscriber. The QoS related to the
interaction are defined on both sides through the types of the corresponding GDACs,
yet are not agreed upon. Indeed, suppose a producer publishing obvents of a type
T through a GDAC which is of a concrete type GDABag, ensuring only best-effort
handling of obvents. A consumer might very well subscribe to T through a GDAC
of type GDASet, expressing interest in reliable delivery of all instances of T. How to
reconcile these two diverging views?

There are certainly ways of negotiating between different QoS requirements. The
resulting QoS however represent a compromise, which might strongly differ from
individual demands. In particular, it is difficult to define a general strategy to
find a common ground between different requirements, especially in a more realistic
scenario involving more than one publisher and more than a single subscriber for a
same type of obvents.

Channel Management

Part of this problem arises because the channel management is made explicitly in
the library approach, e.g., GDACs are explicitly created. This is in general an
unnecessary burden. A producer wanting to publish obvents should not have to
create a proxy before doing this, but should be able to simply “fire” obvents, and
inversely, a subscriber should not be forced to subscribe to a channel representing
the desired type. Ideally, a subscription should be expressible through the type
itself.

5.1.2 Java Primitives for TPS

These deficiencies are addressed by the current language integration approach. We
overview the two primitives added to the Java language.

Publishing

An obvent o is published through a primitive publish, leading to the simple syntax:

publish o;

This statement triggers the creation of a copy of o for every subscriber, according to
the rules described in Section 3.3. In that sense, the action of publishing manifests its
strong relationship with the new primitive found in many languages, by appearing

5.2. Publishing 105

as a similar primitive. Syntactically however, the publish primitive bears more
resemblances with the very common return primitive, or the throw primitive for the
raising of an exception in Java, by taking an object as argument. The main difference
consists in that the intended receiver is not the invoker (e.g., of the encapsulating
method body), but a wider audience, given by the set of subscribers with matching
criteria.

Note here that exceptions in Java are subtypes of the root object type, just like our
obvents.

Subscribing

A subscription encompasses a type T, as well as the desired properties of obvents of
that type T. Such a subscription pattern appears directly as a predicate, or filter.
We thus combine a subscription to a type T with the declaration of a filter, and an
obvent handler:
subscribe (T t) {...} {...}

The first expression delimited by brackets represents a block, provided by the appli-
cation, which expresses which obvents of type T (represented by a formal argument
called t here) are of interest. The evaluation of this first block yields a boolean value.
The second expression is a block which is evaluated every time an obvent succes-
sively passes the filtering phase, and corresponds thus to the subscriber object. The
same formal argument t represents the obvent of interest in this case.

The subscribe primitive only enables the expression of a subscription. Its activa-
tion, deactivation, as well as the setting of certain parameters, requires a subscription
handle, which is returned by the subscribe primitive.

5.2 Publishing

An obvent can be published, which means that it will be asynchronously sent to any
concerned subscriber. Following the Java language specification [GJSB00] based on
a LALR(1) grammar, we introduce below a new statement for publishing obvents.

5.2.1 Syntax

A PublishStatement conforms to the following syntax. Figure 5.1 shows in more
details how it fits into the Java language syntax (definitions added are typed in
bold font).

PublishStatement:
publish Expression ;

Here Expression is a non-null expression of a specific type Obvent, as opposed to
the library approach. Though most class libraries relying on Java serialization use

106 Chapter 5. JavaPS: Integrating TPS into the Programming Language

formal parameters of the root type java.lang.Object, yet expect an object of a
specific type java.io.Serializable (throwing an exception at runtime if the actual
argument is not serializable, Section 3.3.3), core language features strive for static
type safety. For instance, all exceptions in Java are subtypes of the Throwable type,
which subtypes the very root object type. Only instances of such specific types can
be thrown, and this is verified at compilation both in method headers and bodies.

Nevertheless, an exception of type CannotPublishException can be thrown by the
publish primitive at runtime, signalling any problems in transmitting the obvent.
Figure 5.2 summarizes the basic exceptions.

Statement: § 14.5
StatementWithoutTrailingSubstatement
...

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement
PublishStatement

PublishStatement:
publish Expression ;

Figure 5.1: Syntax of Publish Statements in JavaPS

package java.tps;

public abstract class NotificationException extends Exception {...}
public class CannotPublishException extends NotificationException {...}
public class CannotSubscribeException extends NotificationException {...}
public class CannotUnsubscribeException extends NotificationException {...}

Figure 5.2: Exceptions in JavaPS

5.2.2 Obvents

Remember that a key concept of TPS is to view events as application objects, and
as illustrated through the previous chapter, this can be achieved fairly easily in

5.2. Publishing 107

Java by exploiting its built-in serialization mechanism. Accordingly, obvents are
serializable Java objects, and unlike in the library approach, a root Obvent type,
subtyping Serializable, is explicitly introduced here. The motivations for this are
given by (1) the desire to illustrate that obvents are specific unbound objects (and
to statically type-check these as explained above), and (2) issues concerning their
implementation (see Section 5.4.2).

package java.tps;

import java.io.∗;

public interface Obvent extends Serializable {...}
public interface Reliable extends Obvent {}
public interface Certified extends Reliable {}
public interface TotalOrder extends Reliable {}
public interface FIFOOrder extends Reliable {}
public interface CausalOrder extends FIFOOrder {}
public interface Timely extends Obvent {

public long getTimeToLive ();

public long getBirth();

}
public interface Prioritary extends Obvent {

public int getPriority ();

}

Figure 5.3: Obvents in JavaPS

QoS and Obvents

Obvents can serve different purposes. Distributed applications have diverging re-
quirements: due to the inherent difficulty of combining (1) strong guarantees and
(2) high performance in a large scale asynchronous distributed system such as the In-
ternet, high throughput is often combined with “primitive” guarantees, while strong
guarantees are usually more expensive to implement. Beyond this tradeoff and the
feasible implementations, we foresee different characteristics for obvents. 1

Delivery semantics. The first kind of characteristics are the delivery semantics
associated with obvents; an expression of quality of delivery.

Unreliable: When such an obvent is published, there is no guarantee that it will be
received by any subscriber. There is only a best-effort attempt to deliver it. This
is assumed by default.

1Note that the QoS framework elucidated in the following differs from the one proposed in the
library approach.

108 Chapter 5. JavaPS: Integrating TPS into the Programming Language

Reliable: Once successfully published, a reliable obvent will be received by any sub-
scriber that is “up for long enough”. A subscriber which does not halt (whether
prematurely by failure or intentionally) will eventually deliver every such obvent.

Certified: With such obvents, even if a subscriber temporarily disconnects or fails,
it will eventually deliver the obvent.2

Totally ordered: Obvents can furthermore be notified in a total order to the sub-
scribers: roughly spoken, two subscribers s1 and s2 which deliver two obvents o1

and o2 both deliver o1 and o2 in the same order (we also term this subscriber-side
order).

FIFO ordered: Two obvents o1 and o2 that are published through the same object
are delivered to all objects whose subscription matches both o1 and o2, and in the
same order they were published (publisher-side order).

Causally ordered: This type of obvents are delivered in the order they are published,
as determined by the happens-before relationship [Lam78]. Note that the notion
of “event” in [Lam78] represents either the sending or the reception of a message.
These translate respectively into the publishing and receiving of an obvent in our
case (global order).

Transmission semantics. Further semantics, called transmission semantics, can
be associated to obvents. These govern the handling of obvents when they are in
transit, also with respect to other obvents.

Prioritary: Obvents can have priorities, that is, the delivery of obvents can be de-
layed to defer to obvents with a higher priority.

Timely: Similarly, certain obvents might “expire”. In other terms, obvents can be-
come obsolete.

These different semantics are not all mutually exclusive. For instance, obvents can
be certified and have some notion of priority, or be certified and totally ordered at
the same time. It appears that contradictions reside for instance between reliable
and simultaneously timely limited obvents, as well as between orders (total, FIFO,
or causal order) and priorities. In the above cases, the first type takes precedence
(Figure 5.4 illustrates the dependencies between the different semantics).

Note that for any kind of order expressed by an obvent type, its instances satisfy
that order with respect to instances of the same type, its subtypes, and supertypes
with that same order only.

Expressing Obvent Semantics

To avoid any complex negotiation of QoS semantics between participants, and since
we abolish any first-class channel abstraction which could reflect QoS, such semantics

2We use here the terminology of [TIB99]. [OPSS93] refers to this as guaranteed delivery.

5.2. Publishing 109

Total Order

Causal Order

Certified FIFO Order

PriorityTimelyReliable

Obvent

Serializable

Figure 5.4: Dependencies Between Obvent Semantics

can be expressed by associating them with obvents, i.e., by making them become
part of these obvents. Indeed, it makes most sense that every obvent reflects its
semantics (which can be seen as a context), such that a correct handling of the
obvent can be assured at every moment of the transfer.

Expressing QoS through subtyping. Since instances of an obvent type are
bound to the same obvent source, they present the same characteristics, and the only
(implicit) contracts between publishers and subscribers are these types. We have
hence chosen to associate such characteristics with the obvent types. In other terms,
we introduce different abstract obvent types, which can be subtyped by application-
defined types to inherit their QoS. Figure 5.3 shows the Java types corresponding
to the different delivery semantics outlined above.

Our DACE framework is constantly updated with new types representing concrete
dissemination algorithms. The corresponding obvent types also subtype those basic
obvent types of Figure 5.3 whose properties they inherit.

Multiple subtyping. Since several characteristics can be combined, this scheme
can strongly benefit from a mechanism for expressing multiple subtyping. This is
independent of whether it is assured through some form of (static) multiple inheri-
tance (e.g., C++, Cecil, Eiffel), by subtyping abstract types (like interfaces in Java),
or even through mixin inheritance (e.g., Flavors [Moo86], Ada). The term multi-
ple subtyping here simply denotes the ability of expressing multiple specialization
relationships.

110 Chapter 5. JavaPS: Integrating TPS into the Programming Language

5.3 Subscribing

As briefly illustrated in Section 5.1, we introduce a second primitive ,subscribe, to
express a subscription.

5.3.1 Syntax

A subscription expression combines the subscription to a type T with (1) a closure
declaration representing a filter, and (2) a second closure defining an obvent handler.
The signature of the first closure can be simply outlined by the following:

T �→ boolean

Closures representing obvent handlers have a different syntax, since they need not
return any value:

T �→ void

A subscription expression hence has the following syntax in Java (details are given
in Figure 5.5):

Subscription:
subscribe (ObventType Identifier) Block Block

Here ObventType represents a type which can be widened to the Obvent type, that
is, ObventType is a special case of the ClassOrInterfaceType (§ 4.3 in [GJSB00]).

The creation of a subscription returns an object of type Subscription (cf. Fig-
ure 5.6). Such a handle uniquely identifies a subscription on a given host.

Note that, quite obviously, one can easily subscribe to all obvents of a type T by
doing something like the following:

Subscription s = subscribe (T t) { return true; } {...};

5.3.2 Obvent Handlers

Obvent handlers are very close to the closures known from Smalltalk (block closures)
or Cecil (anonymous functions), and represent an intuitive way of handling callbacks
from the underlying event dissemination system.

Implementing Callbacks

In standard Java, and other languages lacking support for closures (or higher or-
der functions), the execution of custom code respecting a given signature is often
implemented by capturing one or several methods with required signatures in an
abstract type. The application then provides a “callback object” as an instance of
the application’s own implementation of that abstract type. In Java, an interface

5.3. Subscribing 111

Primary: § 15.8
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
Type . class
void . class
this
ClassName . this
(Expression)
ClassInstanceCreationExpression
FieldAccess
MethodInvocation
ArrayAccess
Subscription

Subscription:
subscribe SubscriptionDeclaration

SubscriptionDeclaration:
SubscriptionDeclarator FilterBody HandlerBody

SubscriptionDeclarator:
(SubscriptionFormalParameter)

SubscriptionFormalParameter:
ObventType Identifier

FilterBody:
Block

HandlerBody:
Block

ObventType:
ClassOrInterfaceType

Figure 5.5: Precise Syntax of Subscription Expressions

package java.tps;

public final class Subscription {
public void activate() throws CannotSubscribeException;

public void activate(long id) throws CannotSubscribeException;

public void deactivate () throws CannotUnsubscribeException;

public void setSingleThreading();

public void setMultiThreading(int maxNb);

...

}

Figure 5.6: Subscriptions in JavaPS

112 Chapter 5. JavaPS: Integrating TPS into the Programming Language

implemented for callbacks, whose instances take the role of the observer according to
the observer design pattern, is commonly called a listener. To enforce strong typing
in our case, the type of the formal argument of a callback method in a listener must
conform to the type of the obvents of interest. This can easily be achieved in lan-
guages which support a form of genericity, without generating specific listener types
for every potential obvent type. This has been exploited in the library approach.

Regrouping Related Code

In any case, such a listener leads to isolating the obvent handling in a separate class,
and hence potentially scattering the code related to a subscription throughout the
entire program. The use of a closure on the other hand enables the regrouping of all
code related to a subscription in a single succinct expression. If desired, the code for
handling obvents can obviously still be isolated from the effective subscription ex-
pression, e.g., by simply forwarding the handled obvents to a previously instantiated
class.

With the closures we introduce here silently, callback objects can be avoided, and
there is no need for specific listeners or parametric polymorphism to avoid an im-
portant source of type errors, i.e., obvent delivery (cf. Section 3.6.1).

By viewing these closures as objects, the handlers take the role of the subscriber
objects outlined in Section 3.2.

5.3.3 Filters

Akin to handlers, filters are closures with a specific signature. Besides the concen-
tration of subscription-related code, the use of such a syntax in the case of filters
is further conducted by the desire of confining the code for the filtering, while still
“revealing” it.

Optimizable Filters

This way of expressing filters enables (1) the migration of the code to foreign hosts
possibly entirely dedicated to filtering, as well as (2) the optimization of the filter-
ing phase by delaying evaluation of filters and regrouping these in order to avoid
redundancies in filters of different subscribers gathered on individual hosts.

The application context is one of the two main differences between our filters and
Application-Specific Handlers (ASHs) [WEK97]. The latter filters similarly repre-
sent some form of message filters, yet are however more low-level and applied locally.

Deferring Evaluation

The second difference consists in the expressing of our obvent filters in the native
Java language syntax, while ASHs promote a neutral specification language. In

5.3. Subscribing 113

our case, this enables the static type-checking of these filters. Nevertheless, the
evaluation of these filters is deferred, in a sense similar to the paradigm of deferred
code evaluation underlying two-level programming [NN88], or generalized to more
than two levels, multi-stage programming, as advocated by MetaML [TS97].

Deferred evaluation is in some sense already given by the closure paradigm. In
our context, one could also refer to this way of proceeding as deferred compilation,
since no compilation is immediately performed. However, as we will elucidate in
Section 5.4.4, compilation, in the proper sense, might not be performed at all, by
making use of dynamic invocations like in the case of our filter library discussed in
the previous chapter.

5.3.4 Restrictions on Closures

Handlers and filters hence represent different forms of closures, with different se-
mantics and restrictions.

“Local” Closures

“Local” closures vary in the degree of self-containment they advocate: the first-class
block closure in Smalltalk can use any variables in scope at the closure declaration
(at compilation), and these variables are bound for the entire lifetime of the closure,
even if it is executed in a context where some of these variables are not visible. To
avoid some of this binding of variables, Java’s substitute for closures, which are the
anonymous classes, can only access final variables (immutable variables, constants,
etc.) from the enclosing block in addition to the non-local variables (members) in
scope at compilation. The handlers described previously adopt these semantics.

“Distributed” Closures

Our “distributed” use of closures in the case of filters requires however even more
restrictions.

Transparent filters. Any variable used in a filter might reference an object (which
might reference an object, etc.) of a type which is not known on a host where that
filter is evaluated, forcing the transfer of code. Similarly, any method invocation,
whether performed on a variable or as a static call, might force the transfer of further
code. In the case of Java, a class can be compiled despite the unavailability of the
source code of all types it uses, making it very difficult to foresee the effects of calls
to such classes.

The situation of missing classes is of course not impossible to handle (Section 3.4.1),
and can occur, as a consequence of subtype substitutability, when deserializing ob-
vents. E.g., an obvent attribute can contain an instance of a subtype of the static
attribute type.

114 Chapter 5. JavaPS: Integrating TPS into the Programming Language

Pragmatic semantics. In the absence of a precise formalism, we have adopted a
pragmatic approach to cutting down method invocations (including the use of con-
structors) to the essential ones. The goal is to avoid, as far as possible, filters using
opaque code as well as types unknown on filtering hosts. The following restrictions
are imposed on filters:

Invocations: The only method invocations allowed in a filter are (nested) invocations
on its variables.

Variables: The only variables (besides variables used in catch clauses of exceptions)
allowed in a filter are (1) the formal argument representing a filtered obvent, (2)
local variables, and (3) final outer variables (from the enclosing block or class
members). The latter two types of variables are restricted to primitive types (e.g.,
int) and their object-counterparts (e.g., Integer), including String.3

These restrictions enforce the location-independency of an expressed filter, offering
the possibility of applying it at a more favourable stage (e.g., a remote host) to
reduce network load and filtering cost. If the filter declares any local variables of
illicit types, or performs invocations differing from the ones described above, its
migration might be problematic. In such a scenario, the filter might be applied
locally (see next section).

Loopholes. As illustration of the inherent difficulty of guaranteeing the location-
independency of filters, consider the following case: as already mentioned in Sec-
tion 4.5.1, Java includes reflective capabilities, which can be “misused” in several
ways. In particular, any Java object gives access to a meta-object representing
its class (java.lang.Class) through a getClass() method, similarly to Smalltalk,
through which basically any class can be reached (invoked) by respecting the guide-
lines given above. We will come back to this particular loophole in Section 5.5.

5.3.5 Concurrency

Once an obvent has reached an address space hosting an interested subscriber, it is
delivered by executing the handler. The handler can allow several levels of concur-
rency.4

Thread Policies

In JavaPS , we distinguish two main kinds of thread policies, leading to different levels
of concurrency in obvent handlers.

3In terms of the different levels of expressiveness outlined in Section 3.5.3, this allows for accessors
as expected results, and invocation arguments.

4This issue has not been discussed in the library approach.

5.3. Subscribing 115

Multi-threading: A handler can be executed concurrently for any number of obvents.
These semantics are assumed by default, except in the case of ordered obvents.

Single-threading: A handler never processes more than one obvent at a time. In the
case of ordered obvents, these semantics are required to not compromise the order
defined by the underlying dissemination algorithm.

One could easily extend this set, for instance by a thread policy ensuring that only
one instance of the same obvent type/class is processed at a time.

Expressing Thread Policies

Java already integrates mechanisms for concurrency control with which the two
above policies can be achieved. To ensure that never more than one obvent is
processed at a time by a handler, one could for instance write:
final Object lock = new Object();

Subscription s = subscribe (T t)

{ /∗ filter ∗/ } {
synchronized (lock) { /∗ handler ∗/ }

};

However, to obtain more sophisticated concurrency control, or to involve the pub-
lish/subscribe system into concurrency issues with the goal of optimizing concur-
rency, thread policies should be made explicit. In our case, it seems most straight-
forward to express these through the subscription handle, since such an object
uniquely defines a subscription. To control such parameters, corresponding methods
are added to the Subscription type shown in Figure 5.6.

5.3.6 Managing Subscriptions

As explained above, the subscribe primitive merely creates an expression repre-
senting a subscription. Such a subscription must then be activated, to trigger the
effective action of subscribing, and later on, deactivated.

Activating a Subscription

Instead of defining specific language primitives for activating (deactivating) a sub-
scription, we have chosen to provide these actions through method calls on subscrip-
tion handlers.

A subscription is activated by a call to the activate() method on the corresponding
subscription handle. An exception of type CannotSubscribeException is thrown by
this method if the subscription cannot be issued, e.g., if the subscription is already
activated.
Subscription s = ...;

s.activate();

...

116 Chapter 5. JavaPS: Integrating TPS into the Programming Language

The variant of the activate() method with an argument is used in combination
with certified obvents. Indeed, with such obvents, the lifetime of subscriptions might
exceed the actual lifetime of the hosting process. When recovering from a failure,
or reactivating an intentionally deactivated subscription, the concerned subscription
can be (locally) uniquely identified through the identifier passed as argument to this
method.

Deactivating a Subscription

Similarly, the action of unsubscribing is expressed through a deactivate() method
defined on subscription handles. This method can throw an exception of type
CannotUnsubscribeException.

...

s.deactivate ();

...

As an immediate consequence, a subscription can be cancelled also from inside a
subscription, i.e., its associated handler. This is interesting when a particular event,
from the point of view of the concerned subscriber, can make any following events
obsolete, or signal the absence of any further events. Since a handler can only
handle final variables declared in its enclosing block however, the variable that the
subscription handle is assigned to must be declared outside of that block, for instance
as a private attribute of the enclosing class.

The activation and deactivation of subscriptions can be interleavingly performed
an unlimited number of times. Corresponding exceptions are also thrown upon an
attempt of (de-)activating an already (de-)activated subscription.

5.3.7 Programming the Stock Trade Example with JavaPS

To contrast the present language integration approach to TPS with the library
approach outlined in the previous chapter, we return to the stock trade example
presented in Section 4.6.

GDACs vs JavaPS for Stock Trading

The only difference between the obvent types used here and the ones outlined in the
previous relies on the fact that we introduce an explicit root type for all obvents
in the case of JavaPS . The resulting StockObvent hence simply subtypes Obvent
instead of Serializable.

public abstract class StockObvent implements Obvent {...}

Publishing Stock Quotes

Stock quotes can be published by writing something like the following:

5.4. Translating Primitives 117

StockMarket market = ...; /∗ reference to this market ∗/
StockQuote q = new StockQuote ("Telco Mobiles", 80, 100, 12373, market);

publish q;

This is indeed much simpler than publishing through a GDAC.

Subscribing to Stock Quotes

Akin, a subscription can be expressed rather easily. The subscription issued below
covers the same set of obvents than the one presented in the context of the library
approach:
final StockBroker broker = ...; /∗ this broker ∗/
...

Subscription s = subscribe (StockQuote q)

{
return (q.getCompany ().indexOf("Telco") != −1

&& q.cheaper(100.0));

}
{

...

boolean bought =

q.getMarket ().buy(q.getCompany (), q.getPrice(),

q.getAmount (), broker);

...

};
s.activate();

...

In terms of clarity, the approach used in the context of GDACs for the expression
of subscriptions is in no case comparable to the present solution.

5.4 Translating Primitives

We have adopted the approach of transforming TPS-specific statements and expres-
sions to standard Java code, more precisely, to method invocations. For illustration
purposes, we describe the translation procedure following a form of heterogenous
translation. The possibility of a more homogenous translation will be discussed in
Section 5.5.3.

5.4.1 Typed Adapters, Listeners and Filters

To avoid making the Java virtual machine distribution-aware, we use adapters to
encapsulate the entire communication middleware. These adapters mainly bridge
the gap between serialized generic objects and strongly typed obvents. In contrast
to the GDAC approach reported in the previous chapter however, adapters are here
generated at compilation for any given obvent class C. Besides the corresponding
CAdapter class encompassing code for publishing, and subscribing to, instances of C,
a listener type CSubscriber, and a filter type CLocalFilter for local application

118 Chapter 5. JavaPS: Integrating TPS into the Programming Language

(see Section 5.4.4) are generated. Similarly, to support subscriptions to abstract
types, for any given abstract obvent type I (including abstract classes), a class
IAdapter is generated with code for subscribing to instances of I, as well as a
listener type ISubscriber and a filter type ILocalFilter. Figure 5.7 illustrates an
adapter and the corresponding listener for a given obvent type T .

import java.tps.∗;

public final class TAdapter {
/∗ subscribing ∗/
public static Subscription subscribe(TLocalFilter l, TSubscriber s) {...}
public static Subscription subscribe(RemoteFilter r, TSubscriber s) {...}
/∗ publishing , only if T is a non−abstract class ∗/
public static void publish(T t) throws CannotPublishException {...}
public static Class getType() { return T.class; }
...

}

public interface TSubscriber {
/∗ deliver obvent ∗/
public void notify(T t);

}

public interface TLocalFilter {
/∗ filter obvent ∗/
public boolean conforms(T t);

}

Figure 5.7: Types Generated for an Obvent Type T

5.4.2 Publishing

Since a published obvent is disseminated through the adapter for its dynamic type,
which might be only known at runtime, a PublishStatement cannot be directly trans-
formed to a call to a publish() method on the corresponding adapter class. Hence,
we add a publish() method to the Obvent interface in Java (Figure 5.8), whose
body is however automatically generated at compilation for each obvent class C in
the application:

public class C ... {
/∗ automatically generated ∗/
public void publish() throws CannotPublishException

{ CAdapter.publish(this); }
...

}

Accordingly, a PublishStatement expressing the publishing of an obvent o,

publish o;

5.4. Translating Primitives 119

is transformed into a call to the publish() method of o, provided that o’s static
type can be widened to Obvent.
o.publish();

Without this condition, any object declaring a parameterless publish() method
could be accepted as argument to the publish primitive.

package java.tps;

import java.io.∗;

/∗ obvents ∗/
public interface Obvent extends Serializable {

/∗ generated by psc ∗/
public void publish() throws CannotPublishException;

}

/∗ for predefined types ∗/
public final class ObventAdapter {

public static Subscription subscribe(ObventLocalFilter l,

ObventSubscriber s) {...}
public static Subscription subscribe(RemoteFilter r,

ObventSubscriber s) {...}
public Class getType() { return Obvent.class; }
...

}
public interface ObventSubscriber {

public void notify (Obvent o);

}
public interface ObventLocalFilter {

public boolean conforms(Obvent o);

}

public final class ReliableAdapter {...}
...

/∗ remotely applied filters ∗/
public class RemoteFilter {...}
...

Figure 5.8: Details of Class Obvent, and further Types in java.tps

5.4.3 Subscriptions

By similarly transforming subscriptions to invocations of (static) methods on the
corresponding obvent types, subscriptions to interfaces would be impossible. Hence,

120 Chapter 5. JavaPS: Integrating TPS into the Programming Language

subscriptions, as well as unsubscriptions, are handled differently. In short, a sub-
scription statement involving a type T is transformed to an invocation of one of the
subscribe() methods in class TAdapter (possibly ObventAdapter or an adapter
for any other predefined obvent type), as shown in Figure 5.7.5

An instance of an anonymous class representing a subscriber is created from the
handler of a subscription expression such as the following:

subscribe (T t) {...} { /∗ handler ∗/ }

Such an anonymous class implements the TSubscriber interface given in Figure 5.7:

new TSubscriber () {
public void notify(T t) {

/∗ handler ∗/
}

}

An anonymous class declaration, just like a closure can be passed as argument, here
to the subscribe() method of the corresponding adapter.

5.4.4 Filters

The handling of filters represents the most complex task during compilation. A filter
for a type T whose statements deviate from the guidelines which strongly enforce
its mobility according to Section 5.3.4, is similarly transformed into an anonymous
class representing a unary predicate.

Applying Filters Locally

Such a predicate is an instance of a specific filter type TLocalFilter inheriting from
the LocalFilter type shown in Figure 5.8, and is applied locally. A subscription
expression such as

subscribe (T t) { /∗ filter ∗/ } {...}

is hence transformed into an invocation of the corresponding adapter class:

TAdapter.subscribe(

new TLocalFilter () {
public boolean conforms(T t) {

/∗ filter ∗/
}
...

},
new TSubscriber () {...}

)

5One can easily enforce a separation of different applications at the programming level, by
prohibiting subscriptions to predefined abstract types.

5.5. Discussion 121

Applying Filters Remotely

If the depicted restrictions are respected, an intermediate representation (similar to
a first-class parse tree) of the filter is generated. In fact, most of the infrastructure
devised for content-based filters in the library approach has been reused.

More specifically, our precompiler generates two tree-like constructs, which are more
specific than for instance the parse trees used in Smalltalk (the structure of the
program is reified by nodes: a program node contains method nodes etc. [Riv96]).
This information is stored in an instance of the RemoteFilter class (Figure 5.8).

Invocation tree: First, a representation of the invocations made in the filter is gen-
erated: the root represents the filtered obvent, and every intermediate node rep-
resents a method invocation. A leaf node stands for the outcome of a condition
on the value obtained by applying the methods of the nodes on the path downto
that leaf in a nested fashion (nodes can also represent attribute accesses). This
tree conforms to the scheme presented in Section 3.5 for combining conditions,
just like the sample invocation tree depicted in Figure 4.16.

Evaluation tree: Second, a tree representing the relationships between the leaves of
the former tree and the outcome of the filtering is generated: its nodes represent
mainly logical combinations of its subnodes etc., and the leaves are references to
the leaves of the former tree.

5.4.5 Compilation

Our first implementation of JavaPS was based on a precompiler [EGD01]. Like
with most Java precompilers however, the developer ended up with two versions
of the source code, namely the original one, and the translated code. The original
Java compiler had to be run on the translated code, while the original one could not
simply be discarded nor moved. Hence, two versions of the same code had to coexist,
and these had to be managed in a way that prevented potential name conflicts.

To circumvent this deficiency, the precompiler was integrated with a Java compiler.
More precisely, we have made use of JaCo [ZO01], an extensible Java compiler. Jaco
made the integration of precompilation and compilation very easy.

This integration with the compiler made it difficult to translate our code to GDACs.
Indeed, GDACs themselves already required a specific compiler, GJ, which was even
extended to make up for the lack of runtime support.

5.5 Discussion

While devising our primitives for TPS in Java, we have considered many design and
implementation alternatives. We discuss here the underlying issues through a subset
of these alternatives.

122 Chapter 5. JavaPS: Integrating TPS into the Programming Language

5.5.1 Fork

This first alternative for the expression of TPS inside the Java language makes use
of a fork-similar primitive for notification delivery.

Obvent Variable

A delivered obvent is assigned to a variable, and a block representing a handler is
executed every time a new value is assigned to the variable:

T t = null;

t = subscribe { /∗ filter ∗/ } { /∗ handler ∗/ };
/∗ here t is null ∗/

This primitive could, in the case of Java, be implemented like the solution presented
throughout this chapter. Yet, this syntax makes it difficult to express unsubscrip-
tions: by the absence of a subscription handle (it competes for its place with the
obvent variable), a subscription cannot be referred to from outside of the subscrip-
tion expression. Unsubscriptions would have to be dealt with inside the handlers,
which could be implemented through a parameterless unsubscription statement, or
by having the handler return a boolean value after each obvent evaluation to signal
whether the subscription is to be pursued. Either variant leads to a restrictive so-
lution, where a subscription can only be cancelled after the next obvent has been
delivered. While this can be desirable in many cases, it should not be the only
possibility of cancelling a subscription. (In contrast, the solution adopted in JavaPS

allows this, yet does not force it.)

In contrast, this problem does not occur in the case of a “classic” fork primitive
for spawning a new coroutine, since the execution of the block performed by the
new coroutine takes place once only. Here, notifications are delivered continuously,
leading to a repeated evaluation of the handler.

Filter

Regardless of this drawback, one could think of implementing filters in this model
by giving the application the possibility of instantiating the future variable t, and
in that sense, using it simultaneously as a template object:

T t = new T(...);

t = subscribe {...};

As explained previously in Section 3.1.2 however, filtering obvents by matching them
against template objects offers only little expressiveness, and either violates encap-
sulation, or renders the matching opaque to the middleware, disabling performance
optimizations targeted at avoiding redundancies in filters.

5.5. Discussion 123

5.5.2 Callback

As outlined in Section 5.3.2, a very common way of implementing a callback in a
language such as Java consists in constraining the application to provide a callback
object implementing a given interface.

Implementing Listeners

This second considered alternative comes closer to the practices characteristic for
nearly all Java API’s for publish/subscribe engines, including GDACs. A specific
listener like the ObventSubscriber (Figure 5.8) is in this case explicitly implemented
and instantiated by the application to catch obvents:

class MySubscriber implements ObventSubscriber {
public void notify(Obvent o) {

StockQuote q = (StockQuote)o;

System.out.print("Got offer: ");

System.out.println(q.getPrice ());

}
}

ObventSubscriber sr = new mySubscriber ();

Subscription s = subscribe (T t) { /∗ filter ∗/ } sr;

Also, this approach could enable an easy expressing of thread policies: by subtyping
specific abstract callback types, concrete subscribers could inherit threading policies.
Multiple subtyping, exploited to express a limited form of QoS for obvents, could
here be used again to express complex obvent handling semantics.

As shown by the above code extract however, the declared notify() method with
its weakly typed argument strongly jeopardizes type safety.

Dynamic Overriding

A dynamic overriding of the notify() method, e.g., adding a variant with an ar-
gument type StockQuote in MySubscriber without implementing a specific listener
StockQuoteSubscriber, would allow handlers for several obvent types to be pro-
vided by the same subscriber.

We have been initially attracted by the flexibility such a solution could offer by al-
lowing handlers for several obvent types, possibly subtypes of the actually subscribed
type(s), to be provided by the same subscriber.

Dynamic dispatching. This dynamic overriding of the notify method would
however make it a so-called multi-method. Yet, dispatching (method selection) in
Java, unlike CommonLisp or Cecil, does not support multi-methods. Dispatching in
Java, similarly than in C++, offers dynamic uni-dispatch, i.e., the class of the object
referenced by an invoked variable (representing its dynamic type) is determined at

124 Chapter 5. JavaPS: Integrating TPS into the Programming Language

runtime, but only static multi-dispatch. This prevents a typed solution based on
dynamic overriding of the notify() method described above.

There have been several approaches to overcoming Java’s lack for multi-methods,
ranging from an intensive and costly use of reflection [Cha98], using a precom-
piler [BC97], modifying the compiler [CLCM00], to extending the virtual machine
[DLS+01].

Double dispatch. A common workaround to this problem is also given by double
dispatch [Ing86], which could however not be applied in this case, unless a specific
subscriber type is again generated and implemented for every obvent type that a
subscriber type handles, introducing a strict matching between handlers and handled
types.

This again introduces a strict equivalence between formal arguments of handlers
and the actually handled types. In our eyes, this contradicts the only valuable
justification for an approach based on listeners, which is precisely the freedom of
defining obvent handlers for any types.

Bottom line. We have indeed investigated a merging of the ideas advocated by
the precompiler or compiler approaches mentioned above with the translation of our
primitives, for instance by inserting code at the beginning of the notify() method
for handling instances of type Obvent with explicit type checks (instanceof) and
dispatches (with corresponding casts). Yet, we deem dynamic multi-dispatch a high
price to pay if it is only introduced for the use with TPS primitives,6 especially given
the fact that it does not improve type safety.

Note furthermore that the scenario of multiple subscriptions of a same listener to
the same type, or through subtyping related types, is not straightforward to handle:
are the different filters combined, and is the same obvent delivered several times?
These potential conflicts can be observed in any model which dynamically associates
first-class entities (e.g., representing handlers or filters) in subscriptions (e.g., ECO,
cf. Section 3.7.2).

5.5.3 A Homogenous Translation

A homogenous translation of TPS primitives can be a viable solution as well. The
above heterogenous translation has in fact been driven mainly by early implementa-
tions, which relied on a class-based dissemination model [EG00], where performance
could benefit from the static nature of adapters. With dissemination algorithms,
such as the one we present in the next chapter however, the TPS middleware is
pictured as a single channel, conveying objects of type Obvent.

6This same remark could be made regarding closures. To the application developer, closures do
however less appear as such, since they are “inlined” in subscription expressions.

5.5. Discussion 125

package java.tps;

public final class ObventAdapter {
...

public static Subscription subscribe(ObventLocalFilter l,

ObventSubscriber s,

Class c) {...}
public static Subscription subscribe(RemoteFilter r,

ObventSubscriber s,

Class c) {...}
public static void publish(Obvent o) throws CannotPublishException {...}
...

}

Figure 5.9: Details of Class ObventAdapter

From Heterogenous to Homogenous

Here, the basic types ObventAdapter, ObventSubscriber, and ObventLocalFilter
are sufficient for publishing and delivering obvents.

Nevertheless, the ObventAdapter type is augmented to reflect the dynamically typed
nature of this translation. First, a publish() method is added, through which all
obvents will be published (in contrast, in the heterogenous approach, nothing is
published through the ObventAdapter, since it reflects an abstract type). Second,
the subscribe() methods are augmented by a parameter representing a class meta-
object, since the type of interest must be in any case advertised underneath to ensure
a correct routing of obvents.

Publishing

In this case, a PublishStatement expressing the publishing of an Obvent o,

publish o;

can be simply transformed into a call to the publish()method in the ObventAdapter
class, provided that o’s static type can be widened to Obvent.

ObventAdapter .publish(o);

126 Chapter 5. JavaPS: Integrating TPS into the Programming Language

Subscriptions

For subscriptions, consider the simple case where a local filter is generated from a
subscription such as the following:
subscribe (T t) { /∗ filter ∗/ } { /∗ handler ∗/ }

Such a subscription expression is transformed to the following call, which neverthe-
less provides type safety:
ObventAdapter .subscribe (

new ObventLocalFilter() {
public boolean conforms(Obvent o) {

T t = (T)o;

/∗ filter ∗/
}

},
new ObventSubscriber () {

public void notify(Obvent o) {
T t = (T)o;

/∗ handler ∗/
}

},
T.class

)

Remotely applied filters, like in the heterogenous approach, and similarly to the
filters used in the library approach, can be considered as untyped. Indeed, they
contain merely dynamic type information, since they are not compiled and not
statically evaluated.

5.5.4 Failures and Exceptions

Remote interactions involve different semantics and failure patterns than local ones.
QoS, which allow to grasp the more complex semantics in remote interactions, have
been discussed abundantly in the context of the present language integration ap-
proach to TPS. Failure patterns on the other hand can be reflected by exceptions,
which in common middlewares are dealt with according to two diverging philoso-
phies.

Hiding Distribution

In the previous library approach, subscribers are forced to deal with exceptions, by
adding a method for exception handling to the listener type implemented by the
application. In the current language integration we have considered two alternatives
given by the rich exception handling features offered by the Java language.

In Java, RuntimeExceptions represent exceptions occurring during the “normal”
operation of the Java virtual machine. They do not have to be declared in method
signatures, nor do they have to be caught. The Java mapping for CORBA introduces
communication failures as subtypes of such runtime exceptions, which consequently

5.5. Discussion 127

do not have to be caught. This gives the illusion that remote and local invocations
can be viewed as equivalently behaving.

Embellishing Distribution

Interestingly, Java RMI does not promote its basic type for exceptions reflecting
problems due to the remote nature of invocations, the RemoteException, as runtime
exception, but instead forces every method in a remotely accessible interface to
reflect the possibility of such an exception during invocation. Consequently, in every
remote invocation, exceptions have to be dealt with explicitly.

We have pursued a similar approach to Java RMI, since we are convinced that it
is a bad approach to try to hide this aspect of distribution (like certain others).
We believe that adequate abstractions for distributed programming should behave
much like a facial lifting for distribution, by making its appearance nicer, but that
distribution has certain facets which simply have to be dealt with at some point.

Exception Handlers

Remember that in the GDAC approach, a consumer has to implement a method
called handleException() for handling any kind of exceptions that could occur,
and that the methods used for the actual interaction such as add(), or contains(),
do not throw any exceptions, as opposed to the corresponding primitives in JavaPS .
We believe that it is a better approach to reflect exceptions exactly where they can
occur, as in JavaPS , but the approach chosen with the GDACs was motivated by
two reasons, namely that (1) otherwise new exceptions would have been added to
the exceptions thrown by methods inherited from the original collections, and that
(2) the introduced exception handler could be used at the same time as an identifier
for subscriptions, to avoid the problems described above when subscribing several
times the same listener.

5.5.5 Structural Conformance

Though one can argue that languages which do not inherently support structural
subtyping should not be instrumented with a distributed interaction style that re-
lies on that paradigm, we believe that this could lead to a very appealing style of
distributed programming.

Reflection

A simple, though not very effective, form of structural conformance could be achieved
in the case of a language integration, similarly to the library approach, through
reflection. Java’s introspection mechanisms enable the querying of arbitrary objects
for their type, and also members, through the getClass() method:

128 Chapter 5. JavaPS: Integrating TPS into the Programming Language

Subscription s = subscribe (Obvent o)

{
...

Class c = o.getClass();

Method m = c.getMethod("getPrice", null);

return

m.invoke(o,null).equals(new Float(150));

...

} {...};

With the above filter, any obvent type which implements a given method getPrice()
(e.g., the StockQuote class) can be captured, and the following handler could simi-
larly dynamically extract information from a conforming obvent.

Note that the self-describing events advocated by [OPSS93] and implemented by
most existing engines aim precisely at making up for this lack in most programming
languages.

Tuple Spaces: Back to the Roots

Another way of achieving structural equivalence could consist in coming back to the
concept of tuples. In that sense, the publish primitive could be extended in order
to accept any number of actual arguments:

String company = ...;

float price = ...;

int amount = ...;

StockMarket market = ...;

publish (company, price, amount, market);

Inversely, the subscribe primitive could be used with an arbitrary number of formal
arguments, e.g,

Subscription s = subscribe (String company,

float price,

int amount,

StockMarket market)

{ /∗ filter ∗/ }
{ /∗ handler ∗/ };

which could all be used as subscription criteria by the filter, and could all be accessed
by the handler. This requires however more complex filtering and an alternative way
of expressing QoS.

5.5. Discussion 129

Summary

Quite obviously, the presented extension of the Java language enables the writing of
much more succinct and clear code for TPS than the library approach. Especially
subscription patterns become intuitively understandable and also statically type-
safe, by using “standard” Java syntax.

These benefits however come at a fairly high cost, namely closures, and a specific
form of deferred code evaluation are introduced for the sole purpose of rendering
subscription pattern expression more intuitive. Also, the proposed deep integration
is not easily portable to other languages, since, besides serialization already pre-
supposed in the previous library approach, also multiple subtyping is exploited for
specifying a form of QoS. (We will come back to language mechanisms and their
application in distributed programming in the concluding remarks.)

In general, the expression of such QoS has been probably the most tedious task when
devising our language primitives. Such QoS seem to become increasingly important
when programming at a distributed scale, but there is to our knowledge only very
little work on how to inherently express QoS in a programming language, in an other
way than through an API.

131

Chapter 6

hpmcast : A Dissemination
Algorithm for TPS

In our DACE project, diverging requirements expressed through QoS are mainly
explored by a variety of different delivery semantics implemented through different
dissemination algorithms ranging from “classic” Reliable Broadcast [HT93], to new
and original algorithms, like the broadcast algorithm we introduce in [EBGS01], and
which ensures reliable delivery of events despite network failures.

While striving for strong scalability, we have invested considerable effort in exploring
probabilistic (gossip-based) algorithms. These appear to be more adequate in the
field of large scale event dissemination than traditional strongly reliable approaches
like [HT93]. Basically, probabilistic algorithms trade the strong reliability guarantees
against very good scalability properties, yet still achieve a “pretty good degree of
reliability” [EKG01].

Until now, most work on gossip-based algorithms considers broadcasting information
to all participants in a system, paying little or no attention to individual and dynamic
requirements, as typically encountered in content-based dissemination.

We present here Hierarchical Probabilistic Multicast (hpmcast [EG01b]), a novel
gossip-based algorithm which deals with the more complex case of multicasting an
event to a subset of the system only. Requirements, such as limiting the consumption
of local memory resources by view and message buffering, as well as exploiting
locality (the proximity of participants) and redundancy (commonalities in interests
of these participants), are all addressed.

Though hpmcast has been motivated by our specific context of TPS, it is general
enough to be applied to any context in which a strongly scalable primitive for event,
message, or information dissemination is required.

132 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

6.1 Background: Probabilistic Broadcast Algorithms

The achievement of strong reliability guarantees (in the sense of [HT93]) in practical
distributed systems requires expensive mechanisms to detect missing messages and
initiate retransmissions.

6.1.1 Reliability vs Scalability

Due to the overhead of message loss detection and reparation, algorithms offering
such strong guarantees do not scale over a couple of hundred participants [PS97].

Network-Level Protocols

In [EGS00], we describe a simple publish/subscribe architecture based on IP Mul-
ticast. Such network-level protocols however have turned out to be insufficient:
IP Multicast lacks any reliability guarantees, and so-called reliable protocols do not
scale well. The well-known Reliable Multicast Transport Protocol (RMTP) [PSLB97]
for instance generates a flood of positive acknowledgements from receivers, loading
both the network and the sender, where these acknowledgements converge.1 More-
over, such protocols hide any form of membership [ADKM92, MMSA91], making
their exploitation more difficult with more dynamic dissemination (filtering).

Probabilistic Algorithms

Gossip, or rumor mongering algorithms [DGH+87], are a class of epidemiologic algo-
rithms, which have been introduced as an alternative to such reliable network-level
broadcast protocols. They have first been developed for replicated database con-
sistency management, and have been mainly motivated by the desire of trading
the strong reliability guarantees offered by costly deterministic algorithms against
weaker reliability guarantees, but in return obtaining very good scalability proper-
ties.

The analysis of such algorithms is usually based on stochastics similar to the theory
of epidemics [Bai75], where the execution is broken down into steps. Probabilities are
associated to these steps, and such algorithms are therefore sometimes also referred
to as probabilistic algorithms.

Reliability Degree

The “degree of reliability” is typically expressed by a probability; like the proba-
bility 1-α of reaching all participants in the system for any given message, or by a
probability 1-β of reaching any given participant with any given message. Ideally,

1Similarly, the scalability offered by other reliable network-level protocols, like Reliable Multicast
Protocol (RMP) [WMK95], Log-Based Receiver-Reliable Multicast (LBRM) [HSC95], or Scalable
Reliable Multicast (SRM) [FJM+96] is not sufficient for many current application scenarios.

6.1. Background: Probabilistic Broadcast Algorithms 133

α and β are precisely quantifiable. A more precise measure, called Δ-Reliability,
based on the distribution of the probability of reaching a fraction of participants, is
given in [EKG01].

6.1.2 Basic Concepts

Decentralization is the key concept underlying the scalability properties of gossip-
based broadcast algorithms, i.e., the overall load of (re)transmissions is reduced by
decentralizing the effort. Participants are viewed as peers, symmetric in role, which
are all equally eligible to forward information.2 This makes gossip-based algorithms
ideal candidates for systems with an underlying peer-to-peer model.

Parameters

More precisely, retransmissions are initiated in most gossip-based algorithms by hav-
ing every participant periodically, i.e., every P ms (step interval), send information
to a randomly chosen subset of participants inside the system (gossip subset). The
size F of the subset is usually fixed, and is commonly called fanout. Gossip al-
gorithms differ in the number of times the same information is gossiped. Every
participant might gossip the same information the same number of times, meaning
that the number of repetitions is fixed. Alternatively, the same information might be
forwarded only once by a same participant, and the longest causal chain of message
forwards can be limited by fixing the number of hops H (or forwards). Also, the
number of rounds T (step intervals) that a message remains in the system can be
limited.

Approaches

Gossiping techniques have been proposed in a broad spectrum of contexts. Conse-
quently, these algorithms vary a great deal in their further characteristics.

Messages. Gossip-based algorithms differ in the kind of information that is shipped
by gossiped messages (gossips). In early gossip algorithms, gossips reflect the
sender’s message buffer, including information about missing messages. Gossips
have also been used to directly propagate the multicast payload (e.g., [EGH+01]),
like events in the case of TPS.

Interaction between peers. With the latter type of gossip-based algorithms, the
interaction between peers invariably relies on pushing messages, e.g., events, from
one participant to a set of neighbors.

2Note that the SRM protocol also relies on a peer-based approach. A retransmitted message is
however rebroadcast to the entire system.

134 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

The former type of gossip-based algorithms, i.e., aiming at propagating digests, vary
in the way participants react to incoming gossip messages. With a gossiper-pull, a
gossip receiver retransmits missing messages to the gossip sender. With gossiper-
push, a gossip target replies with a retransmission request to the gossip sender. The
term anti-entropy is sometimes used to denote a combined push/pull scheme, i.e., a
bidirectional updating [Gol92]. In database replication, gossiper-pull has been shown
to converge faster [DGH+87]. The same observation is made in the context of gossip-
based broadcast algorithms, when a majority of participants have a message [SS00].

Faces of Scalability

Gossip-based approaches are said to be inherently scalable, meaning that the con-
sumption of network resources (the amount of network messages necessary for suc-
cessfully disseminating an application message) increases only slightly with an in-
creasing system size. Scalability appears however under a variety of other faces,
which can be devoted different priorities, depending on the context.

The case of membership. Most importantly in the context of TPS, implementa-
tions of content-based publish/subscribe have revealed the inherent difficulty of map-
ping individual and strongly dynamic requirements to a set of static groups [OAA+00]:
not all possible values for all attributes of events are known in advance, especially
as new event types are added at runtime. When considering a broadcast group for
every possible subset of participants of a system of size n, the views of an individual
participant sum up to a total of

∑n−1
m=1

(
n−1
m

)
m = (n − 1)2n−2 entries.3 Since these

membership views have to be managed explicitly, a further barrier to scalability is
introduced. There have been indeed proposals on how to reduce the views of par-
ticipants, however again without taking into account individual interests of these
participants.

Interferences. Furthermore, the scalability of an algorithm can be limited by the
size of message buffers, requiring subtle schemes for garbage collection. In general,
the different faces of scalability are intermingled. As a first example, by highly
loading the network, information can be spread quickly, reducing the size of buffers.
As a second example, message buffers and data structures representing the system
view compete for memory resources. Last but not least, when performing filtering
to avoid sending events to participants which do not manifest any interests in these
events, network resources are more wisely used, at the expense of processing power.

6.1.3 Related Gossip-Based Algorithms

Instead of presenting an exhaustive view of all work on gossip-based algorithms
to date, we overview approaches that are closest to ours. These approaches are

3And this without counting the participant itself. Otherwise, the sum totals even to n2n−1

entries.

6.1. Background: Probabilistic Broadcast Algorithms 135

discussed by pointing out the way they deal with the different aspects of scalability
overviewed above.

Probabilistic Broadcast

With Probabilistic Broadcast (pbcast [BHO+99]), Birman et al. have triggered a
resurrection of gossip-based algorithms. pbcast, which is also called Bimodal Multi-
cast,4, relies on two phases: a “classic” best-effort multicast (e.g., IP Multicast) is
used for a first rough dissemination of messages. A second phase assures reliability
with a certain probability, by using a gossip-based retransmission: every partici-
pant in the system periodically gossips a digest of its received messages, and gossip
receivers can solicit such messages from the sender if they have not received them
previously.

Membership scalability. The membership problem is not dealt with in [BHO+99],
but the authors refer to a paper by van Renesse et al. which deals with failure detec-
tion based on gossips [vRMH98], while another paper describes Capt’n Cook [vR00],
a gossip-based resource location algorithm for the Internet, which can in that sense
be seen as a membership algorithm.

This also enables the reduction of the view of each individual participant: each
participant has a precise view of its immediate neighbours, while the knowledge
becomes less exhaustive at increasing “distance”. The notion of distance is expressed
in terms of host addresses (names). Capt’n Cook only considers the propagation of
membership information.

The Grid Box [GvRB01] describes a more recent approach to arranging participants
in a system according to a hierarchy, for the means of computing an aggregate
function on outputs of all participants (e.g., sensor values). The hierarchy used is in
essence the same as the one we will discuss later on, yet is applied in a very specific
manner, by aggregating values at every level of the hierarchy.

Buffer scalability. The significant work accomplished at Cornell around gossiping
techniques also includes efforts on how to enforce scalability in message buffering,
by limiting the number of participants which store a same message [OvRBX99], or
applying gossiping techniques to perform garbage collection [GHvR+97].

These, as well as the membership and failure detection facets of scalability are all
dealt with separately, proving their applicability to a wide range of algorithms (even
algorithms which do not make use of gossiping techniques for the main spreading
of the payload), yet only little to no information is given on the possibility and
consequences of a cooperation in pbcast.

4We will however adhere to the first name, to comply with the taxonomy adopted in Section 2.1.4.

136 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

Reliable Probabilistic Broadcast

Reliable Probabilistic Broadcast (rpbcast [SS00]), an algorithm developed by IBM
in the context of the Gryphon project, is strongly inspired by pbcast. There are
two main differences. First, while pbcast has been originally described as using
gossiper-push, rpbcast uses a pull scheme for its faster convergence. Second, and
more important, rpbcast adds a third phase to achieve strong reliability. The sys-
tem is instrumented with loggers, which log messages on stable storage. These are
consulted whenever the two initial phases fail in providing some participant with a
relevant5 message. [SS00] does not give hints on membership management, nor on
message buffering.

Directional Gossip

Directional Gossip [LM99] is an algorithm especially targeted at wide area networks,
developed at the University of San Diego. By taking into account the topology of the
network and the current participants, optimizations are performed. More precisely,
a weight is computed for each neighbour node, representing the connectivity of that
given node. The larger the weight of a node, the more possibilities exist for it to
be infected by any node. The algorithm applies a simple heuristic, which consists
in choosing nodes with higher weights with a smaller probability than nodes with
smaller weights, reducing the number of redundant sends.

Membership scalability. The algorithm hence supposes that not all participants
are connected, or rather, know each other. This implies partial views, and in prac-
tice, a single gossip server is assumed per LAN which acts as a bridge to other LANs.
This however leads to a static hierarchy, in which the failure of a gossip server can
isolate several participants from the remaining system.

Determinism. An approach to analyzing the performance achieved when every
participant attempts to infect a deterministically determined subset of the system,
involves the same authors [LMM00]. Subsets are established through a graph con-
necting the participants, called Harary graph, leading to a flooding of the system
over such a graph. The introduced determinism, as intuition suggests, reduces the
number of message sends. However, the reliability of the gossip-based algorithm
used for comparison appears to degrade slightly more gracefully with an increasing
number of participant failures, and the establishment of the connections according
to the Harary graph introduces an important overhead.

5Similar to other algorithms, an upcall to the application determines how much effort is deemed
suitable to recover a missed message [ORO00].

6.2. From Broadcast to Multicast 137

Lightweight Probabilistic Broadcast

Lightweight Probabilistic Broadcast (lpbcast [EGH+01]) is a probabilistic broadcast
algorithm developed in our lab. lpbcast adds an inherent notion of memory consump-
tion scalability to the notion of network consumption scalability primarily targeted
by gossip-based algorithms.

Probabilistic membership. In contrast to the deterministic hierarchical mem-
bership approaches in Directional Gossip or Capt’n Cook, lpbcast represents a prob-
abilistic approach to membership: each participant has a random partial view of
the system. lpbcast is lightweight in the sense that it consumes little resources in
terms of memory and requires no dedicated messages for membership management:
gossips are used to disseminate the payload (i.e., events) and to propagate digests
of received events, but also to propagate membership information. The analysis
presented in [EGH+01] includes all of these aspects.

Probabilistic buffering. The basic lpbcast algorithm furthermore also buffers
events in a fully probabilistic sense. To respect a maximum buffer size, every par-
ticipant only buffers a random subset of the events gossiped in the system. This
results in an effect similar to the one targeted by [OvRBX99], namely consisting in
buffering individual messages only on a subset of the system

Optimizations for lpbcast, such as trying to “force” a more uniform distribution of
the individual views, or prioritizing the buffering of more recent events, have been
proposed in [KGHK01].

6.2 From Broadcast to Multicast

A broadcast algorithm can be obviously used to multicast events. We depict two
gossip-based broadcast algorithms used to achieve multicasting of events, and out-
line the respective limitations of these approaches, leading to a more consolidated
algorithm presented in the following sections.

6.2.1 Broadcast with Receiver Filtering

A pragmatic way of multicasting information inside a system subset consists in
broadcasting within the entire system and filtering upon reception of events, i.e., an
event is delivered to the application iff that participant is interested in that given
event.

rfpbcast Algorithm

Figure 6.1 outlines a modified probabilistic broadcast algorithm called here Receiver
Filtering Probabilistic Broadcast (rfpbcast). Every participant, similarly to a proba-

138 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

bilistic broadcast, periodically (every P milliseconds) gossips to a randomly chosen
subset of the system. In our context, a gossiper forwards every buffered event to a
randomly chosen subset of size F of the system.

When receiving an event, a participant only delivers that event if it effectively is of
interest for it.6 This is represented at Line 16 of Figure 6.1 through the � operator
indicating whether a given event is of interest for a certain participant. This can be
viewed as evaluating the participant’s subscription pattern for the considered event:
event � participant returns true iff participant is interested in event.

Executed by participanti

1: initialization
2: view
3: gossips ← ∅

4: task gossip {every Pmilliseconds}
5: for all (event, round) ∈ gossips do
6: if round < T then {not too many rounds}
7: round ← round + 1
8: dests ← ∅
9: repeat F times {choose potential destinations}

10: dest ← random(view - dests)
11: dests ← dests ∪ {dest}
12: send(event, round) to dest

13: upon receive(event, round): do
14: if � ∃ (event, ...) ∈ gossips then {buffer the gossip and deliver it}
15: gossips ← gossips ∪ {(event, round)}
16: if event � participanti then
17: rfpdeliver(event)

18: upon rfpbcast(event): do
19: gossips ← gossips ∪ {(event, 0)}

20: function random(from) {choose random participants}
21: return dest ∈ from

Figure 6.1: Receiver Filtering Broadcast Algorithm

Analysis

For our formal analysis we consider a system composed of n participants, and we ob-
serve the propagation of a single event notification. We assume that the composition
of the system does not vary during the run (consequently n is constant). According
to the terminology applied in epidemiology, a participant which has delivered a given
notification will be termed infected, otherwise susceptible.

Assumptions. The stochastic analysis presented below is based on the assumption
that participants gossip in synchronous rounds, and there is an upper bound on

6This is equivalent to performing the filtering in a higher layer, possibly in the application itself.

6.2. From Broadcast to Multicast 139

the network latency which is smaller than a gossip period P .7 P is furthermore
constant and identical for each participant, just like the fanout F < n. We
assume furthermore that failures are stochastically independent. The probability
of a network message loss does not exceed a predefined ε > 0, and the number of
participant crashes in a run does not exceed f < n. The probability of a participant
crash during a run is thus given by τ = f / n. We do not take into account the
recovery of crashed participants, nor do we consider Byzantine (or arbitrary) failures.
At each round, we suppose that each participant has a complete view of the system.

Number of infected participants. The analysis presented resembles the analy-
sis applied to pbcast in [BHO+99] and lpbcast in [EGH+01]. The probability p that
a given gossiped event is received by a given participant, is given as a conjunction of
several conditions, namely that (1) the considered participant is effectively chosen
as target, (2) the gossiped event is not lost in transit, and (3), the target participant
does not crash.

p(n,F) =
(

F

n − 1

)
(1 − ε) (1 − τ) (6.1)

We denote the number of participants infected with a given event at round t as st,
1 ≤ st ≤ n. Note that when the event is injected into the system at round t = 0, we
have st = 1.

Accordingly, q(n,F) = 1−p(n,F) represents the probability that a given participant
is not reached by a given infected participant. Given a number j of currently infected
participants, we are now able to define the probability that exactly k participants
will be infected at the next round (k− j susceptible participants are infected during
the current round). The resulting homogenous Markov chain is characterized by the
following probability pjk of transiting from state j to state k (j > 1, 1 ≤ k ≤ n):

pjk(n,F) = P (n,F)[st+1 = k|st = j]

=

{(n−j
k−j

)
(1 − q(n,F)j)k−jq(n,F)j (n−k) j ≤ k

0 j > k

(6.2)

The distribution of st can then be computed recursively (1 ≤ k ≤ n). In summary:

P (n,F)[st = k] =

⎧⎪⎨
⎪⎩

1 t = 0, k = 1
0 t = 0, k > 1∑k

j=k/(1+F) P (n,F)[st−1 = j]pjk(n,F) t ≥ 1

(6.3)

7This analysis does not rely on the assumption that the underlying system is synchronous, nor
does the algorithm force the system to behave so.

140 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

Expected number of rounds. In the rfpbcast algorithm, there are still two un-
defined parameters, which are the fanout F , and the number of rounds T . According
to Pittel [Pit87], the total number of rounds necessary to infect an entire system
of size n (large), in which every infected participant tries to infect F > 0 other
participants, is given by the following expression:

log F+1 n +
1
F

log n + c + O(1) =

log n

(
1
F

+
1

log (F + 1)

)
+ c + O(1)

(6.4)

By fixing either F or T , the other value can be computed based on this expression,
or if more detailed information is required, through the above Markov chain.

However, the model in [Pit87] does not consider the possibility of losing events
between a gossiper and a (potential) destination. In our case, only F (1− ε) (1− τ)
participants are expected to be infected at a given round by a gossiper, leading to
the following expression:

T (n,F) = log n

(
1

F (1 − ε) (1 − τ)
+

1
log (F (1 − ε) (1 − τ) + 1)

)
+ c + O(1)

(6.5)

Note that it has been shown in [KMG00] that, when limiting the number of repe-
titions to 1 (every participant forwards a given event at most once), choosing the
natural logarithm of the system size as value for F brings the probability of reaching
all participants very close to 1. Though in our model the number of gossips is not
limited through the number of repetitions, but through the maximum number of
rounds that an event can spend in the system, a logarithmic value could reflect a
reasonable fanout.

6.2.2 Sender Filtering

A first, very strong limitation of the above rfpcast algorithm appears immediately.
As reflected through the analysis, a gossiped event is sent to every participant,
regardless of whether it is effectively interested in that event. Accordingly, especially
with events which are of interest for only a small fraction of the system, there is a
high waste of network bandwidth and also local memory for buffering.

To avoid sending an event to a participant for which that event is irrelevant, the fol-
lowing modified broadcast algorithm (pmcast) performs the filtering before sending.
It can be seen as a genuine multicast ([GS01]) algorithm in the sense that events are
only received by interested participants, and only these participants are involved in
the algorithm.

6.2. From Broadcast to Multicast 141

pmcast Algorithm

Similarly to the previous rfpbcast algorithm, every participant periodically gossips
every event in its buffer to a subset of participants in the system. In this Probabilistic
Multicast (pmcast) algorithm (Figure 6.2) however, after picking a random subset
of size F of the system, the set of destinations is further restricted to the subset of
participants effectively interested in the considered event.

Note that no filtering is necessary at reception, since no spurious event is sent to
any participant.

Executed by participanti

1: initialization
2: view
3: gossips ← ∅

4: task gossip {every P milliseconds}
5: for all (event, round) ∈ gossips do
6: if round < T then {limit the time an event spends in the system}
7: round ← round + 1
8: dests ← ∅
9: repeat F times {choose potential destinations}

10: dest ← random(view - dests)
11: dests ← dests ∪ {dest}
12: if event � dest then
13: send(event, round) to dest

14: upon receive(event, round): do
15: if � ∃ (event, ...) ∈ gossips then {buffer the gossip and deliver it}
16: gossips ← gossips ∪ {(event, round)}
17: pdeliver(event)

18: upon pmcast(event): do
19: gossips ← gossips ∪ {(event, 0)}

20: function random(from) {choose random participants}
21: return dest ∈ from

Figure 6.2: Probabilistic Multicast Algorithm

Analysis

The fraction of the system which is effectively interested in an observed event is of
primary importance for the analysis. We can represent the size of the interested
subset as n p1, where p1 is the probability that a given participant is interested
in the event. In other terms, when considering that n1 participants among n are
interested in a particular obvent, then p1 = n1

n .

Number of infected participants. The effective expected number of partici-
pants that are gossiped to at each round by an infected participant is F p1 (without

142 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

considering network message loss and participant failures). The expression for p (the
probability that a gossip reaches a given participant), is hence given in this case as
follows:

p(n p1, F p1) =
(

F p1

n p1 − 1

)
(1 − ε) (1 − τ)

q(n p1, F p1) = 1 − p(n p1, F p1)
(6.6)

This is similar to gossiping in an effective system of size n p1, however with a fanout
of only p1F . The resulting Markov chain is characterized by the probability pjk of
transiting from state j to state k, as follows:

pjk(n p1, F p1) = P (n p1, F p1)[st+1 = k|st = j]

=

{(
n p1−j

k−j

)
(1 − q(n p1, F p1)j)k−jq(n p1, F p1)j(n p1−k) j ≤ k

0 j > k

(6.7)

And the distribution of st can then again be computed recursively. In summary:

P (n p1, F p1)[st = k] =⎧⎪⎨
⎪⎩

1 t = 0, k = 1
0 t = 0, k > 1∑k

j=k/(1+F) P (n p1, F p1)[st−1 = j]pjk(n p1, F p1) t ≥ 1
(6.8)

Expected number of rounds. Similarly, the expression for the expected number
of rounds above (Equation 6.5) can be adapted to reflect the sender filtering.

T (n p1, F p1) =

log n p1

(
1

F p1(1 − ε)(1 − τ)
+

1
log (F p1(1 − ε)(1 − τ) + 1)

)
+ c + O(1)

(6.9)

Yet, since Pittel’s formula is valid for large systems, this formula only offers useful
results as long as n p1 is still large.

6.3 Overview of Hierarchical Probabilistic Multicast

The above pmcast algorithm is indeed smarter than the rfpbcast algorithm, yet still
presents an important number of sensible limitations. We discuss these and overview
how our Hierarchical Probabilistic Multicast (hpmcast) repairs these lacks.

6.3. Overview of Hierarchical Probabilistic Multicast 143

6.3.1 Membership Scalability

In both modified broadcast algorithms, every participant has a “full” view of the
system, i.e., every participant knows every other participant. As already pointed out
in [EGH+01], this can become a severe barrier for scalability as the system grows in
size.

In order to reduce the amount of membership knowledge maintained at each partici-
pant, a participant should only know a subset of the system. The individual subsets
known by the participants should nevertheless ensure two properties, namely (1)
that every participant is known by several others (for reliability), and (2) that no
participant knows all participants (for scalability).

Random Approach

A random subset as chosen in lpbcast also ensures membership scalability, and can
be put to work in a way that, with a uniform distribution of knowledge, the prop-
agation of information is virtually not impacted by the reduction of the amount
of membership knowledge. This approach applies well to broadcast, but gives less
good results in a practical multicast setting, especially if the exploiting of locality
and redundancy is desired.

Hierarchical Approach

In contrast, hpmcast is based on a hierarchical disposition of participants bearing
strong resemblances with the Capt’n Cook and the Grid Box approaches. The
extent of interactions between participants depends on their “distance”, but the
hierarchical membership is used to multicast events inside the system. Participants
have a complete knowledge of their respective immediate neighbours, but only a
decreasing knowledge about more “distant” participants.

To that end, a participant can represent a subnetwork, or subsystem, for partici-
pants outside of the respective subsystem. In other terms, a participant outside of a
subsystem, yet who knows that subsystem, will only know such representing partic-
ipants, called delegates. Among the delegates for neighbor subsystems, again a set
of delegates are chosen recursively, giving rise to a hierarchy of several (l) levels.

Delegates that appear at a high level in the hierarchy are known by more partic-
ipants in the system than lower-level participants. Nevertheless, all participants
have membership views of comparable sizes, since every participant has a view of
its subsystem for every level. Also, a participant which is elected as delegate for a
given hierarchy level still remains visible in views of its lower level subsystems.

6.3.2 Locality

Another limitation of the two previous algorithms (rfpbcast and pmcast) is that
they do not take locality into account, i.e., a participant randomly picks destinations

144 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

regardless of its “distance” to those participants. Far away participants are chosen
with the same probability than close neighbors. It seems more adequate to aim first
a, rough and wide distribution of events, before attempting a more complete and
local dissemination.

Dissemination of events inside our hierarchy follows a level-wise dissemination, i.e.,
the highest level of the hierarchy is first infected, and then the following levels are
successively infected in the order of their depth. This approach is opposed to the
Grid Box, where however the goal is different; a global function has to be applied
to values collected from all participants. In contrast, when multicasting inside the
hierarchy, a value originates from a single participant and is propagated as such.8

Since higher levels regroup participants representing various distant subsystems,
a level-wise gossiping ensures that events are in a first step spread coarsely, and
that a finer coverage of the individual subsystems takes place successively. Only a
“reasonable” number of sends between distant participants takes place, given by the
number of gossip rounds expected to infect the corresponding level of the hierarchy.
Once sparsely spread, an event is only more sent between more local participants.

6.3.3 Redundancy

Furthermore, in the pmcast algorithm, every participant stores every other partic-
ipant’s individual interests, and filtering is made independently for every chosen
participant. Significant performance optimizations, like the exploiting of redundan-
cies of individual subscription patterns, as proposed in [ASS+99], cannot be applied.

The higher the level at which a delegate can be found in the hierarchy, the more
participants that delegate represents. Accordingly, the delegate manifests interest in
any event that is of interest for any of the participants it represents. Or, in the termi-
nology of TPS, its subscription pattern, from the perspective of another participant,
is a compound pattern created from the subscription patterns of the participants it
represents. Redundancy of these individual patterns can be exploited, by creating
such condensed patterns which avoid redundancies between the individual patterns.

Observe however that redundancy competes to some extent with locality: geograph-
ically “close” neighbors do not necessarily present “close” interests, and any scheme
relying on one of these two notions of proximity might rule out the exploiting of the
other notion.

6.3.4 Garbage Collection

Most dissemination algorithms apply a combination of acknowledgements (acks) and
negative acknowledgements (nacks) to verify the stability of a given message and to
perform garbage collection. Such schemes, as well as more sophisticated schemes
(cf. [OvRBX99, GHvR+97] for pbcast, or [KGHK01] for lpbcast), rely on unique

8It would be very interesting to exploit this aggregate function to reflect event correlation (see
Section 2.4.4).

6.4. Hierarchical Membership 145

message identifiers. This again applies well to the case of broadcast, but is less
straightforward to apply to a multicast setting, where a given multicast event is
only significant for a subset of participants, and this significance can only be verified
through the event itself, not through an identifier.

On the other hand, it is difficult to perform garbage collection by statically limiting
the number of repetitions, forwards or hops. Indeed, as shown by Equation 6.9
above, parameters F and T are related, yet in a way depending on the fraction
of interested participants (reflected by p1), which is individual for every considered
event. In fact, according to Equation 6.9, the number of rounds necessary to infect
all interested participants increases as the number of these interested participants
decreases. By fixing the number of rounds that an event can spend in the system,
one ends up with considerably weaker reliability for events with a small “audience”.
While this can indeed make sense in specific contexts, we view this rather as an
undesirable property.

We have hence chosen to integrate garbage collection into the multicast algorithm,
by limiting the number of rounds that an event remains in the system. In fact,
the expected number of rounds necessary to infect all participants in a subset of the
system, as well as parameters of the system can be approximated. Inherently limiting
this way the life-time of an event applies naturally, since gossips are used primarily
to transport events, and not to exchange message identifiers aiming at detecting
message stability. The feasibility of limiting the lifetime of gossiped events a priori,
i.e., renouncing to any explicit garbage collection algorithm, has been illustrated by
lpbcast.

6.4 Hierarchical Membership

This section describes a precise model of our hierarchy, while the corresponding
membership management is informally described. We elucidate how this hierarchy,
besides reducing the memory resource consumption of the membership view, also
offers a nice compromise between locality and redundancy.

6.4.1 Model

As elucidated above, hpmcast is based on a hierarchical membership, where the
knowledge that an individual participant has about other participants decreases
with the “distance” from these participants.

Addresses

Before going further into the description of the membership, we require a definition
of the notion of “distance” between two participants. An approach could consist in
using an average communication delay between two participants as a measure for
their distance. However, since we are considering asynchronous systems, such values

146 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

are difficult to determine. We will thus base the decision of which participants out
of a subsystem are to be considered as neighbors, and also as prioritized (to become
delegates), on the addresses of those participants, more precisely, on the distances
between them.

This notion of “distance” can be approximated by network addresses, but can as
well be simulated by associating logical addresses with participants. Irrespective of
how these addresses are determined, we will in the following simply consider such
addresses as sequences of values, of the following form:

x(l − 1). · · · .x(0),
∀i 0 ≤ i ≤ l − 1, 0 ≤ x(i) ≤ ai − 1

(6.10)

The total number of different addresses and thus the maximum number of partici-
pants is given by

∏
0≤i≤l−1

ai (6.11)

Though participants in the sense of TPS can be colocated on the same host, or even
in the same process, we will consider here for the sake of simplicity that there is
one participant per host. Indeed, the last components of an address could easily be
used to express a port number. To cover all possible IP addresses for instance, one
could choose l = 4 and ai = 28 = 256 ∀i, or l = 11 and ai = 24 = 16 ∀i to include
212 = 4096 port numbers.9 DNS addressed would have to be inversed.

Branch Addresses

We call a “partial” address, like x(l−1). · · · .x(i) (0 < i ≤ l−1; ∅ for i = l) a branch
address of level i. Such a branch address denotes a subsystem or subnetwork. All
participants sharing a branch address belong to the corresponding subsystem. In
other terms, there might be several addresses x(i−1). · · · .x(0) that can be appended
to a same branch address to denote a concrete participant.

The distance between two addresses is expressed based on this notion. In fact,
the distance between two participants is equal to the level of their longest common
branch address, e.g., if two participants p1 and p2 share a branch address of level i,
then they are said to be at a distance of i. Also, they belong to the same subsystem
of level i of the hierarchy. A distance of 0 would mean that the two participants
share the same address and are thus equivalent.

9Note that certain IP addresses and port numbers are reserved for special purposes, e.g., IP
addresses 224.0.0.0 to 239.255.255.255 are reserved for IP Multicast groups. Those exceptions will
not be discussed here.

6.4. Hierarchical Membership 147

Electing Delegates

All participants which share a given branch address x0 = x0(l− 1). · · · .x0(1) form
a group of level 1. The number of such participants (at the moment of observation)
is denoted |x0(l − 1). · · · .x0(1)|. Quite obviously, for any given branch address
x(l − 1). · · · .x(1), |x(l − 1). · · · .x(1)| ≤ a0.

Of the |x0| participants, R delegates are chosen deterministically by all participants
sharing x0, e.g., by taking the R participants with the smallest addresses (we assume
that ∀ x(l − 1). · · · .x(1), |x(l − 1). · · · .x(1)| ≥ R, i.e., every populated system of
level 1 contains at least R participants).

Figure 6.3 illustrates a simple example. R represents a redundancy factor, which
however has no relationship with the notion of redundancy observed in subscription
patterns. R represents the number of delegates that are elected to represent a
subsystem, and is best chosen such that R > 1, in order to improve the reliability
of the membership: with R = 1, the hierarchy is very sensitive to crash failures of
individual participants, leading to an increased risk of a partitioned membership.

Elect Delegate

1 ... x...

Branch Address:
x=x(l-1).x(l-2).....x(1)

x(0) x(0)... ...
1 x

...

...

Figure 6.3: Electing Delegates for a Group of Level 1

In general, ∀x = x(l − 1). · · · .x(i), |x| represents the number of different x(i − 1)
that can be appended to x to denote a legal branch address, or in other words, the
number of populated subsystems of x. Quite obviously, for any such branch address
x = x(l − 1). · · · .x(i), |x| ≤ ai−1.

Constructing a hierarchy. Together with R delegates for each other of the
|x0(l − 1). · · · .x0(2)| neighbor trees, the R delegates of |x0| form a group of level 2.

Recursively, any branch address x0(l−1). · · · .x0(i) (l > i > 0) is shared by altogether
|x0(l − 1). · · · .x0(i)| ≤ ai−1 subtrees with a different x(i − 1), each represented by
R delegates. Together, these form a group of level i. (Figure 6.4). At the highest
level (l), there are |∅| = |x0(l − 1). · · · .x0(i)|i=l subtrees.

Remember that by promoting a participant as delegate, that participant’s knowledge
does not increase. This merely means that it is known by more participants, not
that itself will have to know more participants. Consequently, a participant which
appears as delegate of level i thus also appears as delegate of all levels i‘, such that
1 ≤ i′ < i.

148 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

Level 1

Level 2

Level 3

...

...

...

Figure 6.4: Electing Delegates Recursively (R = 3)

Individual knowledge. A given participant with address x0 = x0(l−1). · · · .x0(0)
knows for each of its branch addresses x0(l − 1). · · · .x0(i) (1 ≤ i ≤ l) all the
|x0(l − 1). · · · .x0(i)| different subtrees, and for each of those subtrees R delegates.
Furthermore, for level 1, it knows all |x0(l − 1). · · · .x0(1)| participants.

Thus, the total number of participants known by participant x0(l − 1). · · · .x0(0) is

|x0(l − 1). · · · .x0(1)| +
l∑

i=2

R |x0(l − 1). · · · .x0(i)| (6.12)

where a delegate of level i is also taken into account at any level below i. Also,
the knowledge of the participant itself is considered (depending on the level of the
considered participant, between 1 and l occurrences.)

Joint interest. The total number of participants that a delegate at level i with
address x0(l − 1). · · · .x0(0) represents is given by

‖ x0(l − 1). · · · .x0(i) ‖ =
∑

x(i−1).··· .x(1)

|x0(l − 1). · · · .x0(i).x(i − 1). · · · .x(1)|

(6.13)

Hence, when considering that every such participant is expected to be interested in a
given event with p1, the delegate itself, on behalf of these participants, is interested
in any event with a probability

6.4. Hierarchical Membership 149

pi = 1 − (1 − p1)‖x0(l−1).··· .x0(i)‖ (6.14)

6.4.2 Membership Management

Due to the inherent complexity of the membership algorithm, we present the way
the membership is managed more informally.

The membership views are exchanged between participants through gossips, i.e.,
they are piggybacked by event gossips, except in the absence of events (dedicated
gossips are used in this case). Hence, every participant periodically sends informa-
tion about a random level of its view of the hierarchy to a subset of the system.

Propagating Information

More precisely, each participant maintains a table for each level, representing the
participant’s view of that level. Membership information updating is based on
gossip-pull. To that end, every line in every table has a timestamp associated.
This represents the last time the corresponding line of the table was updated. Peri-
odically, a participant randomly selects participants of a hierarchy level and gossips
to those delegates. A gossip carries a list of tuples (line, timestamp) for every line in
every table. The receiver compares all the timestamps to its own timestamps, and
updates the gossiper for all lines in which the gossiper’s timestamps are smaller.

As explained above, such membership information can be piggybacked when gos-
siping events, or in the absence of such events, can be propagated with dedicated
gossips. Similarly, as we will elucidate in Section 6.5.1, other gossips can be used to
piggyback information. In some cases, this can even lead to a bidirectional updating
as in anti-entropy (e.g., [Gol92]).

Joining. When a participant decides to join, it needs to know at least one par-
ticipant. That participant contacts the “lowest” delegates it knows that the new
participant will have. This is made recursively, until the immediate delegates of the
new participant have been contacted. Hence, if the becoming participant contacts
a “close” participant (if there are any), this procedure completes faster and induces
less overhead.

Once neighbors (lowest-level neighbors of the becoming participant) have been con-
tacted, these transmit their view of the system to the new participant.

The hierarchy is hence constructed stepwise, by adding one participant after another.
An a priori knowledge of the approximate size of the hierarchy can in that sense be
very useful to adjust parameters of the hierarchy, such as its depth: as we will show
in the following sections, this parameter indeed has an impact on the performance
of the system.

150 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

Leaving and Failures. The same lowest-level neighbors are also involved when a
participant leaves. A participant wishing to leave will send a message to a subset of
its lowest-level neighbors. These will remove the leaving participant from their views,
and this information will successively propagate throughout the system through
subsequent gossips.

For the purpose of detecting the failure of participants, every participant keeps track
of the last time it was contacted by its lowest-level participants. This implements
a simple form of failure detection, and makes sense at the lowest level, since such
neighbors are supposed to be “close”. The reduced average network latency makes
failure detection more accurate. Section 6.6.1 discusses more refined ways of detect-
ing failures.

Subscription Patterns

The operation of compacting a table of level i into a line of the table of level i + 1
is called condensation function in Capt’n Cook. In our case, this function consists
of the three following operations:

Regroup patterns: To represent the interests of all participants of the table, the sub-
scription patterns of the respective participants must be regrouped. This is done
in a way which avoids redundancies, i.e., not just by simply forming a conjunction
of the individual patterns. A simple example of optimizing accessors representing
simple method invocations is depicted in Figure 4.16.

Count participants: The total number of participants at any level can be very use-
ful for several kinds of heuristics. In particular, it enables the estimation of the
number of gossip rounds necessary to complete the infection of all concerned par-
ticipants.

Select delegates: Delegates have to be chosen based on a deterministic characteristic,
since all participants in the same subsystem of level i must decide on the same
set of delegates without explicit agreement. Currently, delegates with the smallest
addresses are chosen. Alternatively, one could take into consideration other criteria
associated with participants, like their resources in terms of computing power or
memory, or also the nature of their subscription patterns, to reduce the amount of
“pure” forwarding of delegates, i.e., handling events as delegate on behalf of other
participants, without being itself interested in these events. This optimization task
is however not trivial: one can choose participants such that they individually, or
altogether, cover as many interests of the represented participants as possible.

Example Scenario

We depict the view of a small system in the case of multicasting based on type
information. Subscriptions are made to unrelated types, e.g., A, B, and more fine-
grained subscription patterns are not considered to keep this illustration intuitive.

6.5. Hierarchical Probabilistic Multicast (hpmcast) 151

We map IP addresses straightforwardly to our logical addresses (l = 4,∀0 ≤ i ≤
l − 1 ai = 256). Every participant has a table representing its view of level 1, its
view of level 2, a.s.o. Consider a possible configuration of the views for several par-
ticipants sharing branch address 128.178.73, illustrated in Figure 6.5. The selected
redundancy level R is 3. 128.178.73.3 is delegate of level 3, which means that it is
known by all participants with x3 = 128.

View of Level 4
x3 Types of interest x2.x1.x0

3 A, C, D, E 2.230.23, 18.2.78, 188.203.99
18 B, C, E, F 12.2.183, 12.34.24, 180.37.217
128 A, B, C, D, F 3.2.230, 18.120.2, 56.12.234

View of Level 3 (x3 = 128)

x2 Types of interest x1.x0

3 A, B, C 2.230, 18.2, 188.203
18 B, C, D 120.2, 122.34, 180.37
56 C, F 12.234, 18.220, 173.3
178 A, B, C, F 41.21, 73.3, 88.10

View of Level 2 (x3.x2 = 128.178)

x1 Types of interest x0

41 A, C 21, 23, 24
73 A, B, C, F 3, 17, 19
88 B, F 10, 13, 78
98 A, B, C 15, 17, 128
110 C 1, 6, 7

View of Level 1 (x3.x2.x1 = 128.178.73)

x0 Types of interest
3 A, C
17 A
19 C, F
115 F
116 A, B, F
119 B, C
124 A, B
223 B

Figure 6.5: Hierarchical Membership View

6.5 Hierarchical Probabilistic Multicast (hpmcast)

In this section we present hpmcast, our gossip-based multicast algorithm which is
based on the hierarchical membership outlined in the previous section.

152 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

6.5.1 hpmcast Algorithm

The algorithm presented for hpmcast in Figure 6.6 differs from the pmcast algo-
rithm presented in Figure 6.2 mainly by applying the above-mentioned hierarchical
multicast scheme, and by furthermore making the inherent performing of garbage
collection based on an estimation of the number of necessary rounds more explicit.

Level-Wise Multicasting

As we discussed earlier, the system is pictured as a hierarchy, and the multicasting
procedure follows this structure. An event is first propagated in the highest level,
from where it moves down level by level. As a consequence, the effective gossips,
besides conveying events, also contain the level in which the event is currently being
multicast.

Receiving. Upon reception of a gossip, the information about the level is used to
place the event in the corresponding gossip buffer. To ensure that the event passes
from one level to the next, it is crucial that a participant at level i gossips a received
event in any level i′ < i, and thus also remains in the view of any of these subsequent
levels.

Multicasting. A participant would only require gossip buffers from the highest
level at which it appears, down to the bottom level, since it will not receive messages
from higher levels. However, when hpmcast-ing, it is reasonable that a participant
takes part in the entire gossip procedure at all levels, especially at the topmost one.
This increases the probability that an event is well propagated in contrast to a simple
scheme where a new event would simply be sent once to a subset of the delegates
forming the upmost level. Also, since the membership is dynamic, a participant can
be “bumped up” to a higher level at any moment, as well as it can be “dropped” to
a lower level.

When a participant hpmcasts an event, and that event is only of interest for the
top-level delegates of a single particular top-level subgroup (e.g., the participant’s
own subgroup), the first round can easily be skipped, in order to reduce the load on
the top-level delegates.

A feigned multicast. Note here that this multicast algorithm does not comply
with the notion of genuine multicast proposed in [GS01]: a genuine multicast differs
from a feigned multicast by the minimality property : only participants which are
interested in the considered event are effectively involved in the algorithm. Here, a
delegate can be involved in the dissemination at a given level, though it is not itself
interested. Just like rfpbcast, hpmcast is a feigned multicast according to [GS01],
though one can expect all participants to be infected iff p1 = 1. With rfpbcast, this
is much more likely to occur, since it is the declared goal of that algorithm to treat

6.5. Hierarchical Probabilistic Multicast (hpmcast) 153

Executed by participanti

1: initialization
2: view[1..l]
3: gossips[1..l] ← ∅

4: task gossip {every Pmilliseconds}
5: for all level ∈ [l..1] do
6: for all (event, prob, round) ∈ gossips[level] do
7: if round < rounds(level, prob) then {not too many round}
8: round ← round + 1
9: dests[1..F] ← ∅

10: repeat F times {choose potential destinations}
11: dest ← random(view[level] - dests)
12: dests ← dests ∪ {dest}
13: if event � dest then
14: send(event, prob, round, level) to dest
15: else
16: gossips[level] ← gossips[level] \ {(event, prob, round)}
17: if level > 1 then
18: gossips[level-1] ← gossips[level-1] ∪ {(event, getprob(level-1, event), 0)}

19: upon receive(event, prob, round, level): do
20: if � ∃ level ∈ [1..l] ∃ (event, ..., ...) ∈ gossips[level] then {buffer and deliver}
21: gossips[level] ← gossips[level] ∪ {(event, prob, round)}
22: if event � participanti then
23: hpdeliver(event)

24: upon hpmcast(event): do
25: gossips[l] ← gossips[l] ∪ {(event, getprob(l, event), 0)}

26: function rounds(level, prob) {expected number of rounds}
27: return log(|view[level]| R prob) (1

log(Fprob+1)
+ 1

(Fprob)
)

28: function random(from) {choose random participants}
29: return dest ∈ from

30: function getprob(level, event) {probability of matching this event at this level}
31: hits ← 0
32: for all dest ∈ view[level] do
33: if event � dest then
34: hits ← hits + 1
35: return hits

|view[level]| R

Figure 6.6: Hierarchical Probabilistic Multicast Algorithm

154 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

participants regardless of their interests when disseminating, and to filter events
only locally before possibly passing them to the application (layer).

Parameters

As previously outlined, the expected number of rounds can be used to estimate the
number of rounds necessary to disseminate a given event. Note here that this does
not require participants to be synchronized, nor does it make any assumption on
delivery delays. The computation of this expected number of rounds relies however
on several parameters, like the fraction of interested participants, or the average
message transmission loss (Equation 6.9).

Fraction of interested participants. The probability p1 that a given partici-
pant is interested in a particular event at a given level can be simply measured by
matching that given event against all the subscription patterns of all participants
for that given level. This is a costly operation, but is only performed by a maximum
of R participants at each level except the topmost one, since this is the maximum
number of processes infected initially in a subsystem. At the upmost level, only the
participant effectively publishing the event will perform this matching.

Since delegates represent several participants, the measured probability can be ex-
pected to be higher than p1 (except for the lowest level), according to 6.14.

Expected number of rounds. With the fraction of interest, the expected num-
ber of rounds for a given level can be computed. This requires the number of
delegates forming the level (with respect to the subsystem of the considered par-
ticipant), which is given by multiplying the number of different subsystems of level
i − 1 in the view of level i, i.e., the number of lines in the corresponding view table
(noted |view[i]| in Figure 6.6), by the number of delegates for each subsystem. If
this number of delegates is not a system constant, one can alternatively simply use
the total number of delegates in the view of level i.

Environmental parameters. Environmental parameters, such as the probabil-
ity of message loss, or the probability of a crash failure of a participant, are to be
considered when computing the expected number of rounds necessary to spread an
event. These are however more difficult to approximate ([EKG01]), especially the
latter one. Like in most gossip-based algorithms, where simulations or analytical ex-
pressions enable the computing of “reasonable” values for parameters such as hops
or forwards, choosing conservative values is the best way of ensuring a good perfor-
mance. (For simplicity, these parameters have not been added in the algorithm.)

6.5.2 Analysis

For analysis, we presuppose a “regular” hierarchy, i.e., for any participant, all branch
addresses derived from that participant’s address x = x(l−1). · · · .x(0) have the same

6.5. Hierarchical Probabilistic Multicast (hpmcast) 155

number of subsystems, which we denote by a.

∀x, i x = x(l − 1). · · · .x(0), 1 ≤ i ≤ l

|x(l − 1). · · · .x(i)| = a ≤ ai
(6.15)

Accordingly, the total number of participants in the system is simply given by

n = al (6.16)

Also, we consider that, with respect to a given event, the participants interested in
that event are uniformly distributed over the entire system.

View Size

Every participant must know the delegates of every level as shown in Figure 6.4 (for
l = 4 and R = 3).

According to Equation 6.12, a participant knows the following number of partici-
pants for the different levels of a regular hierarchy:

mi =

{
R a 1 < i ≤ l

a i = 1
(6.17)

which adds up to a total of

m =
l∑

i=1

mi = R a (l − 1) + a

∈ O(l R n1/l) l ≥ 2

(6.18)

Expected Number of Rounds

Based on Equation 6.14, we can determine that, in a regular hierarchy,

pi = 1 − (1 − p1)a
i−1

(6.19)

Furthermore, the number of expected rounds can be approximated by the sum of
the rounds spent at each level of the hierarchy:

156 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

Ttot =
l∑

i=1

Ti =
l∑

i=1

T (mi pi, F pi) (6.20)

This expression is pessimistic, by neglecting the very fact that every interested
subsystem, except the topmost one, starts with an expected number of infected
participants which is bigger than 1, namely R.10 These delegates already being
infected, we can obtain a more precise expression by subtracting at each level the
time necessary to get from 1 to R infected participants:

T ′
tot =

l∑
i=1

T (mi pi, F pi) − (l − 1) T (R,F) (6.21)

The probability in the terms added in Equation 6.21 reflects that, at each level,
every interested subsystem is represented by R delegates, which are all (probability
of 1) interested in the considered event.

Number of Infected Participants

A precise analysis of the spreading of the event in time, yielding a distribution of the
probability for the infection of a fraction of the system as in the above algorithms,
introduces a high complexity in this case due to the decomposition of the entire
system into subsystems. (At the lowest level, the number of different states is
potentially a(al−1) for a given number of rounds.) One can however reuse the same
Markov chain introduced previously to compute the expected number of infected
participants (or an approximation as in [Bai75], or [EKG01]) in a subsystem of level
i (1 ≤ i ≤ l) after gossiping at that given level:

E[sTi] =
mi pi∑
j=0

P (mi pi, F pi)[sTi = j]j (6.22)

This is again a pessimistic value, since we do not consider the possibility that the
subsystem (1 ≤ i < l) initially comprised more than one infected participant (cf.
6.21).

We are now able to compute the probability that an “entity” of level i is infected
after gossiping at that level (provided the corresponding subsystem of level i+1 was
initially infected):

10To be fully accurate, we would also have to consider that the number of participants to infect
at the topmost level is in the general case given by mlpl + 1, since the hpmcast-ing participant is
the initially infected one. That participant would have to be furthermore considered in any of its
own subsystems.

6.5. Hierarchical Probabilistic Multicast (hpmcast) 157

ri = 1 −
(

1 − E[sTi]
mi pi

)mi
a

(6.23)

For all levels, except the lowest one, an “entity” of level i means a subsystem of
level i (that is, its R delegates for that level). At the lowest level, an “entity” refers
to a participant. ri|i=1 hence simply resumes to E[sTi

]

a pi
, the expected fraction of

participants infected when gossiping in a system of level l.

Provided that gi+1 = j ≤ a(l−i)pi+1 entities were infected at level i + 1 (in total),
the probability of ending up with gi = k entities infected at level i (1 ≤ i ≤ l) is
given as follows:

pijk = P [gi = k|gi+1 = j]

=

{
P [gi+1 = j]

(j a pi
k

)
rk
i (1 − ri)j a pi−k k ≤ j a pi

0 k > j a pi

(6.24)

Finally, we can compute the probability of having k entities infected at level i:

P [gi = k] =

⎧⎪⎪⎨
⎪⎪⎩

1 i = l + 1, k = 1
0 i = l + 1, k �= 1∑a(l−i)pi+1

j=k/(a pi)
P [gi+1 = j]pijk 1 ≤ i ≤ l

(6.25)

Expected Number of Infected Participants

Based on the upper equation, we are able to express the expected number of infected
entities gi after gossiping in a subsystem at level i (≤ i ≤ l)

E[gi] = ri a pi (6.26)

Consequently, the expected number of totally infected participants is given by the
following expression:

l∏
i=1

E[gi] (6.27)

The expected reliability degree can be simply obtained by dividing the upper ex-
pression by the number of effectively interested participants, n p1.

158 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

6.5.3 Simulation Results

We have simulated hpmcast, by simulating successive rounds, and observing the
spread of a single obvent. Different parameters of the algorithm have been varied.
We use these results to pinpoint the limitations of the basic variant of hpmcast
presented throughout this section. Ways of counteracting these limitations, not
considered here for simplicity of presentation, will be discussed in Section 6.5.4.

Interest

On the one hand, Pittel’s formula gives extremely good results when the system
grows in size. This is visible in Figure 6.7, which shows a very good overall degree
of reliability. On the other hand, smaller systems, and hence “rather small” values
for p1, are not well captured by this asymptote. Figure 6.8 zooms in on the previous
figure, to show the decrease of reliability with small values for p1. Indeed, the
computed expected number of rounds increases first with a decreasing p1, before
decreasing quickly and becoming 0 in n p1 = 1 (Figure 6.9). Though this last
value reflects reality, the asymptote gives less accurate information towards that
value. Even with a better approximation this problem can be observed, since the
stochastic approaches underlying epidemiology, and hence gossip-based algorithms,
indeed reflect the interest of large populations. This loss in reliability was hence
expected, and there are several ways of counteracting it (see Section 6.5.4).

More precisely, the interpretation of “rather small” depends on the considered level,
and hence on pi, but also on mi. In fact, pi becomes bigger at every level i, and
hence, the number of potentially interested participants increases, making higher
levels less prone to this type of undesired effect. Lower levels, especially the lowest
one, are most likely to reach critically low sizes, since their pi become smaller. At
the level i = 1, mi is furthermore smaller than in all above layers.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
of

 D
el

iv
er

y

Fraction of Interested Participants

Figure 6.7: Varying p1; n ≈ 10000 (a = 22), l = 3, R = 3, F = 2

6.5. Hierarchical Probabilistic Multicast (hpmcast) 159

0.998

0.9985

0.999

0.9995

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
of

 D
el

iv
er

y

Fraction of Interested Participants

Figure 6.8: Reliability Depending on p1; n ≈ 10000 (a = 22), l = 3, R = 3, F = 2

Fanout

As typical for gossip-based algorithms, increasing the fanout decreases the number
of rounds necessary to infect the concerned participants. Since in our case we have
not considered the gossiping of digests for mutual updates based on gossiper-pull,
but limit the entire propagation of events by the number of expected rounds, the
estimation of this latter value has a certain impact on reliability.

Scalability

It is however not clear whether, and how, the performance of hpmcast is impacted
when increasing the scale of the system. For the above reasons, a slightly increased
number of participants leads to a better approximation of the number of necessary
rounds, and can even lead to a better reliability degree. On the other hand, one
can also expect that increasing the size of the system, and hence the number of
expected rounds, also increases the potential difference between the latter value and
the effective number of necessary rounds.

As conveyed by Figure 6.11 in any case, hpmcast shows very good scalability prop-
erties when increasing a in a hierarchy of fixed depth (the system size increases
following al!). The scalability however depends on the proportion of interested par-
ticipants. With a small p1, the above-mentioned problem manifests itself in a slightly
stronger decreasing reliability with an increased system size. This effect is however
counteracted by the better approximation of the number of necessary rounds with
larger (sub)system sizes.

160 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

-120

-100

-80

-60

-40

-20

0

20

0 0.2 0.4 0.6 0.8 1

R
ou

n
d

s

Fraction of Interested Participants

-120

-100

-80

-60

-40

-20

0

20

0 0.2 0.4 0.6 0.8 1

R
ou

n
d

s

Fraction of Interested Participants

Figure 6.9: Rounds Depending on p1; n = 100, F = 2

Hierarchy Depth

Similarly, one can expect that increasing the hierarchy depth has a similar impact
on the reliability degree as decreasing p1, since one can expect the size mi of the
individual groups to decrease, and reach quickly a critically small size.

This can be indeed observed in certain cases, just like the opposite. The various
intervening parameters seem to hinder the appearance of any clear trend.

Redundancy

Increasing redundancy obviously increases reliability, since the probability that at
any given level an interested subsystem becomes isolated decreases by increasing R.
This redundancy however has less impact on the main problem encountered with
small p1, since this problem appears first at the lowest level, and any redundancy
factor R > 1 leads to multiplying the number of potentially interested participants
by R. Hence, when further increasing R, only little more reliability is gained (see
Figure 6.12).

6.5.4 Tuning hpmcast

We have considered several possibilities of tuning hpmcast with respect to small
values for p1.

Possibilities

Besides adding a gossip-based exchange phase for digests of received events (peri-
odically sending identifiers of buffered events to interested participants), one can

6.5. Hierarchical Probabilistic Multicast (hpmcast) 161

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8

P
ro

b
ab

il
it

y
of

 D
el

iv
er

y

Fanout

Figure 6.10: Reliability Depending on F ; n ≈ 10000 (a = 22), l = 3, R = 3, p1 = 0.2

basically distinguish two ways of improving the performance of hpmcast. These are
namely, (1) using Pittel’s asymptote, however increasing artificially the number of
interested participants, and (2) by applying another approximation of the number
of necessary rounds. The second approach can for instance be achieved by using a
more rough approximation of T (n,F), possibly associated with an expected reliabil-
ity degree (e.g., [Bai75]).11 We have however been more attracted by the accuracy
offered by Pittel’s asymptote, and are more interested in very large systems (even
exceeding the feasibility of a simulation), where an absolutely small p1 still leads to
a large number of interested participants in a lowest-level group.

Increasing the Audience

We have adopted a more pragmatic approach, consisting in increasing the audience
by adding participants to the set of interested participants. To that end, we have
modified the above algorithm to include non-interested participants if the number
of interested participants in the system drops below a threshold D. In that case,
every involved participant decides that the D first participants in the view of the
corresponding level are interested, in addition to the remaining effectively interested
participants. By fixing a lower bound on the desired reliability degree, D can be
obtained through analysis or simulation. The result of such a tuning is illustrated by
Figure 6.13, which compares the original degree of reliability with the one obtained
after tuning hpmcast.

11With such an approach, the term
E[sTi

]

mi pi
in 6.23 can be directly replaced by the expected

reliability degree of gossiping in a system of size mi pi.

162 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

0.9

0.92

0.94

0.96

0.98

1

10 15 20 25 30 35 40

P
ro

b
ab

il
it

y
of

 D
el

iv
er

y

Subsystem Size

Interest 0.5
Interest 0.2

Figure 6.11: Scalability when increasing a; l = 3, R = 4, F = 3

6.6 Discussion

We discuss several issues related to our hierarchical approach outlined above, in-
cluding the effect of increasing the depth of the hierarchy.

6.6.1 Exploiting Hierarchies

The hierarchical organization of participants can be exploited for several aspects of
reliable event delivery.

Filtering

Higher-level delegates receive more gossips than lower-level participants. One way of
reducing the load on these delegates could consist in applying filters with a weaker
accuracy, in order to speedup filtering.

Filter coverage. More precisely, when filtering at a high level, events might suc-
cessfully pass this filtering, with respect to a set of participants, though these events
are of interest for none of these participants, nor for any of the participants they
might represent. This idea is based on the notion of filter coverage [M0̈1], where a
first filter is said to be covered by a second filter if everything that passes the first
filter also passes the second one (but not necessarily vice-versa). By applying such
a weaker filter instead of the covered precise filter, filtering cost can be substantially
reduced.

Event coverage. The difference becomes more important if the format of the
filtered events follows this modified accuracy. For instance, (parts of) events can

6.6. Discussion 163

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1 2 3 4 5 6 7 8

P
ro

b
ab

il
it

y
of

 D
el

iv
er

y

Delegates

Figure 6.12: Reliability Depending on R; n ≈ 10000 (a = 22), l = 3, F = 5, p1 = 0.2

be reflected by more primitive representations, such as XML structures transferred
with the effective event objects. This can avoid the deserialization of events every
time they are filtered. At a very first level, an event can for instance even be viewed
as “data plus a type identifier”.

Example. A resulting mapping of filter and event coverage to hierarchy levels
could be the following (by increasing hierarchy levels):

Method invocations: The original filter expressed on arbitrary method invocations,
as in the model presented in Section 3.5, is applied in the subscriber’s process, to
ensure that the subscriber receives exactly what was specified through the filter.

Attribute comparisons: The next level already works with an XML-like representa-
tion of events, reflecting their attributes. Attribute comparisons, though expressed
through access methods in the initial filter code, are mapped to reads of the cor-
responding entries of the XML structure with comparisons. Only such simple
comparisons are applied at this level, which presupposes that the middleware
has the possibility of identifying the attributes of arbitrary event objects.12 This
can be for instance achieved through conventions on the names of corresponding
methods (getxxx()). Filters applied at this level represent a simple conjunction
(without redundancies) of the filters regrouped from the different subscribers at
the next hierarchy level.

Selective comparisons: At the next level, only more certain attributes are verified.
For instance, attributes for which a subsystem gives different ranges of values of
12Note here that, on the one hand, directly accessing attributes in filters, in a way controlled

by the middleware, can lead to a considerable benefit in terms of performance, and should hence
not be precluded. Supporting attributes as the only properties of events for describing subscription
patterns, on the other hand, is very compelling and should be prohibited.

164 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
of

 D
el

iv
er

y

Interest

Original
Improved

Figure 6.13: Varying p1; n ≈ 10000 (a = 22), l = 3, R = 3, F = 2 with tuned
hpmcast

interest are not filtered anymore. Also, filters for related types, which are in a
subtype relation, are replaced by a compound filter possibly only checking events
for conformance with the most general type. In a hierarchy with more levels, one
could imagine several degrees for this selectivity.

Type conformance: At the highest level, events are only filtered based on their event
type. As suggested above, type information can even be attached as an identifier
encoded in a set of bytes. This circumvents any deserialization of events, or parsing
of XML descriptions.

When covering filters, the effective probability p1 of interest for any given participant
cannot be as easily computed based on the previous level. In contrast, without
weakening filters, one could compute an estimation of the probability pi at a given
level based on pi+1 and Equation 6.19, and then improve that approximation by
successively matching the event against F participants and adjusting the effective
matching rate.

Dissemination

The hierarchical disposition of participants can also be used to apply different dis-
semination media. As an example, a UDP Broadcast could be used at the lowest
level instead of gossips, if for instance the lowest level is characterized by highly
populated LANs.

One can also imagine using a more reliable network protocol, also for intermediate
levels. Depending on the desired compromise between reliability and performance,
a “more” reliable algorithm can be very advantageous at the upmost level. Indeed,
an unsuccessfully completed attempt of infecting a higher-level “entity” induces a
domino effect, by isolating the entire subsystem.

6.6. Discussion 165

Failure Detection

Last but not least, the membership can be implemented in a way that applies dif-
ferent failure detection mechanisms at different levels. For instance, delegates of a
given level can decide to autonomously exclude other participants if they have not
received any gossips from them for some time.

At a lower level, e.g., LAN, participants can apply a less “passive” style, by actively
pinging participants from which no gossips have been received for a long time before
effectively removing them from views.

6.6.2 Broadcasting with hpmcast

It might be interesting to apply our hierarchical membership to the broadcasting
of gossips. We show here that the number of expected rounds necessary to infect
the entire system does not depend on the use of a hierarchy, more precisely, on the
number of levels in the hierarchy, in the case of a broadcast (p1 = 1).

In fact, for p1 = 1, the number of rounds necessary to multicast an event is similar
to the number of rounds in the non-hierarchical algorithm (pmcast), or, in other
terms, Ttot = T (n,F).

Indeed, according to Equation 6.21 (and 6.17):

T ′
tot = (l − 1) T (a R,F) + T (a, F) − (l − 1) T (R,F)

=
[
log (R a)l−1 + log a − log (Rl−1)

](1
F (1 − ε)(1 − τ)

+ ...

)

= (log n)
(

1
F (1 − ε)(1 − τ)

+
1

log(F (1 − ε)(1 − τ) + 1)

)
= T (n,F)

(6.28)

Consequently, the depth of the hierarchy has no impact on the time it takes to
broadcast an event in the entire system.

This might seem surprising at first glance, since in this hpmcast algorithm, an event
is simultaneously gossiped in al−i distinct subsystems at level i. As however al-
ready pointed out in [Pit87], a gossiped event spreads slowly at the beginning, since
very little participants are infected and can hence infect susceptible participants, as
well as towards the very end, since an increasing fraction of the system is already
infected, and these “absorb” many gossips. In between, the spreading proceeds
quickly. Increasing the size of the system only increases the number of necessary
rounds logarithmically (6.4), which makes gossip-based approaches so attractive for
large scale settings.

166 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

6.6.3 Levels

We analyze the effect of increasing the depth of the hierarchy on the performance
of the system, through several aspects.

View Size

The first considered measure is the size of the view that every participant has for
its corresponding subsystem.

We can show that the number of participants that a given participant knows is
minimal with a hierarchy level l = log n. More precisely, m decreases as l increases,
as long as l < log n.

Indeed, based on 6.18, and the fact that

d(n1/l)
dl

= − log n

l2
n1/l (6.29)

we can see that m decreases as long as l ≤ log n:

dm

dl
= R n1/l

(
1 − log n

l

)

< 0 ∀l < log n

(6.30)

In fact, l = log n is a minimum:

d2m

dl2
=

R n1/l (log n)2

l3(
d2m

dl2

)
l=logn

=
R e

log n

> 0

(6.31)

In practice, this limit is probably never reached, since in most cases R will be chosen
such that R > e:

R > e

⇒a > e (a ≥ R)

⇒l < log n (a = n1/l) (6.32)

6.6. Discussion 167

Failure Sensitivity

Increasing the depth of the hierarchy however also has effects on the stability of the
membership.

Participants to be updated. Increasing R improves fault tolerance, by reduc-
ing the probability of partitioning, and the probability of isolation of an interested
subsystem. This is however not the only measure of reliability. For instance, the
average number of participants whose membership views have to be updated upon
failure of any given participant decreases as l increases.

For a given level i, we have di participants:

di =

⎧⎪⎨
⎪⎩

R a i = l

R al−i (a − 1) 1 < i < l

al−1 (a − R) i = 1

(6.33)

The number of participants which know a given participant of level i, i.e., the number
of participants which have to be updated upon failure of a given participant of level
i is

ui = ai − 1 1 ≤ i ≤ l (6.34)

The average number of participants which have to be updated after a failure is hence
given by

uupd =
1
n

l∑
i=1

di ui

= (a − 1)[R (l − 1) + 1]

(6.35)

which in fact corresponds to the number of participants known by every participant
without considering duplicates, i.e., by counting a delegate at level i only for that
level, and not for lower levels. This is not really surprising, since every participant
knows uupd distinct participants, and hence, in average, a participant is known by
uupd participants. uupd ∈ O(ln1/l) scales well with n, and decreases similarly to m.

The failure of a participant which is not delegate can be dealt with more easily
than the failure of a delegate. The latter failure type involves more membership
updates. By increasing the depth l of the hierarchy, the number of participants
which are delegates of some level increases. However, one can expect the number of
participants that have to be updated to decrease: a hierarchy of 1 level will see the
updating of all participants in the system upon the failure of a single participant,

168 Chapter 6. hpmcast: A Dissemination Algorithm for TPS

while in a hierarchy of 2 levels already, a failed participant is with a big probability
only known by approximately a number of participants equal to the square root of
the size of the system, while only R times that same number of participants are
known by all participants, etc.

Average level of a participant. This is however not the only measure of stability
for the hierarchy. Indeed, if a participant of a higher level fails, the information about
its failure will have to travel over more levels, which becomes increasingly important
if such updates are piggybacked by event gossips, like in our case.

In turns out that the average number of levels of the hierarchy that an update
will travel increases with the depth of the hierarchy, since the average level of a
participant in the hierarchy increases as the number of levels increases.

This result can be intuitively easily explained, since in a hierarchy consisting of only
1 level, any participant can potentially only reach level 1, while in a hierarchy of
level 2 already, several participants will reach level 2, etc.

Consider the average level lupd of all participants given by the following expression:

lupd =
1
n

l∑
i=1

di i

≈ 1
n

l∑
i=1

R (a − 1) al−i i (large l)

≈ R a

∫ l

i=1
a−i i di

=
R a

log a

(
i a−i − a−i

log a

)l

i=1

=
l2 R n1/l

n log n

(
1 − 1

log n

)
+

l R

log n

(
l

log n
− 1
)

(6.36)

Both of these remaining terms increase as l increases.

Hence, increasing the number of levels in the hierarchy, as intuition suggests, cannot
be done indefinitely without side effects. Indeed, as already illustrated by simulation
results, similar tradeoffs can be expected concerning the dissemination of the events
in the hierarchy. Parameters, such as the number of total rounds, the obtained
reliability degree, but moreover also the number of infected participants which are
not themselves interested in a given event, but only act as delegates, and the filtering
load on an average participant might probably not be modified without affecting the
others.

6.6. Discussion 169

Summary

The Hierarchical Probabilistic Multicast (hpmcast) algorithm presented in this chap-
ter is a novel gossip-based algorithm, which abides well to strongly dynamic and
largely scaled settings, such as TPS. The principles adopted in hpmcast are never-
theless general, and do not only make sense in our precise context of TPS, but in
any form of completely decentralized, peer-to-peer architecture.

hpmcast exploits locality and redundancy properties of the underlying system, and
intrinsically reduces the view of each participant.

The presented analysis and simulations convey the strong scalability of hpmcast, and
enable the trimming of parameters, e.g., based on a prediction of the upper bound
on the number of participants in the system. As a result of the inherent compromises
between certain faces of scalability, e.g., memory, as well as computing and network
resources, it is difficult to define optimal values for parameters such as the depth of
the hierarchy.

171

Chapter 7

Conclusions

This thesis (1) introduces TPS, a higher-level variant of the publish/subscribe paradigm,
(2) expresses it in Java through both a library and a language integration approach,
and (3) introduces an original and strongly scalable multicast algorithm to imple-
ment it.

Before debating strategic directions for future work, we summarize our experiences
gathered with TPS by opposing our library and language approaches, in an attempt
of subsequently drawing conclusions on language mechanisms in favor of “clean”
implementations of libraries for TPS, with some side effect conclusions on distributed
programming in general [DEG00].

Library vs Language: The Case of TPS

A question that naturally arises is, whether (in general) a library or a language
integration approach to TPS is a better fit. We attempt to answer this question
in the case of Java by comparing our two approaches, emphasizing a concise set of
different criteria (summarized in Figure 7.1).

Library Language Integration
Type Safety − +
Simplicity − +
Readability − +
Flexibility + −
Performance = =

Table 7.1: Library vs Language Integration: Summary

172 Chapter 7. Conclusions

Type Safety

By all evidence, the language extension provides for more type safety than the
library approach. Let aside the fact that to obtain type safety in obvent delivery
(Section 3.6.1) with the library, we had to make use of genericity currently not part
of Java, type safety in obvent dissemination (with respect to subscription patterns)
could only be achieved unsatisfactorily. Indeed, filters, though in principle based on
the invocation semantics of Java, can only be type-checked at runtime.

We do not take into account the fact that these filters permit the expression of a
primitive form of structural conformance, since this rather represents a side effect
unrelated to the original motivations for TPS, and can with some effort also be
achieved in the language integration approach.

Simplicity

Simplicity represents a scale for characterizing how easily TPS can be put to work
by a developer. One can obviously always add more features to a language in order
to allow for very concise TPS statements, which however might as well involve a
more important learning phase. A library API, on the other hand, can be clean and
simple to use for developers aware of similar systems, but can as well turn out be
very elusive.

In the present case, programming with a library involves learning a rather complex
API for describing subscription patterns, while JavaPS uses the native Java syntax.
The advantage of the latter solution is however diminished, since only very limited se-
mantics are associated with subscription patterns for the sake of making them easily
transferable and optimizable. Unexperienced developers will be strongly tempted to
trespass these restricted semantics, while the filter library used in conjunction with
GDACs inherently enforces its boundaries.

In short, both approaches have their shortcomings with respect to simplicity, though
an advantage must be awarded JavaPS .

Readability

Readability is a measure of how easily a developer can understand TPS-related code
developed by a third party. Concrete issues underlying readability include, how
concise and clear TPS-related code is, and where the code is actually located.

Concerning this issue, the language integration approach clearly overtrumps its rival.
Subscription expressions are very concise, and nevertheless expressive and clear, by
promoting native Java syntax.

Subscribers in the library approach are implemented in specific classes. Though
in Java these can be “inlined” (by defining anonymous classes on the fly), their
syntax is less concise than the TPS-specific subscription expressions in JavaPS , and
a subscription in the library approach involves a GDAC, which has to be set up

173

previously. More importantly however, subscription patterns in the library approach
are only poorly readable.

Flexibility

With the flexibility of an implementation of TPS we mean how easily developers can
apply TPS to specific domains. This aspect is important, because an implementation
of TPS, which only supports a limited problem domain, can only be of modest
interest in the face of a language integration.

As one might expect, the library approach offers more flexibility than the language
integration approach, by presenting several ways of performing customizations. For
instance, a developer can decide to define very specific filters (conditions) [EG01a],
and skilled developers can decide to devise their own GDACs, leading to new QoS
(though this increased flexibility nourishes the potential mismatches in QoS).

In the case of the language integration approach, new conditions can be encapsulated
inside individual obvent types, however only prior to deployment, and QoS are
concealed behind predefined obvent types. Though new types can easily added by
the engine develops, it becomes more difficult for the application developer to “plug
in” own algorithms.

Performance

In terms of performance, we have observed similar behavior in both cases, provided
that both approaches made use of the same subscription patterns, since the same
model underlies subscription patterns in both approaches, and these patterns are
converted to similar representations for the sake of optimizations.

Language Mechanisms for TPS

As a logic continuation, we tackle here the issue of identifying concepts that a lan-
guage would have to incorporate to enable a TPS library implementation satisfying
all our requirements outlined in Section 3.1.3. Ultimately, the answer to this question
might also give useful information for other distributed programming paradigms.

Clearly, obvent types could be precompiled to obtain something similar to the typed
adapters outlined in the language integration approach. We are here however think-
ing of a language incorporating mechanisms which would make any specific compi-
lation obsolete.

Type Safety

Part of the question is thereby already answered. Subscriptions are inherently pa-
rameterized by the considered obvent type, i.e., a subscription pattern and its asso-

174 Chapter 7. Conclusions

ciated handler deal with the same, arbitrary type of obvents. To ensure type safety,
yet avoiding any specifically generated typed adapters, or automatically inserted
type casts, libraries reflecting the association of handlers and filters TPS mandate
a form of genericity.

Furthermore, since we are in a distributed context, there must be a way for dis-
tributed participants making use of the same obvent types to “connect”. This re-
quires runtime type information, e.g., to reify types. Indeed, verifying how types are
related, and performing dynamic type inclusion checks on objects are a sound base
for avoiding type errors at obvent dissemination, i.e., the communication infrastruc-
ture level. Such reflective mechanisms are commonly viewed as part of introspection,
or more generally, structural reflection.1

As shown by our generic library approach, runtime support for genericity can be
useful to make the “connection” described above safer, and also to support dynamic
type checks based on structural reflection, if the filters cannot be checked at compi-
lation.

Subscription Patterns

In JavaPS , filters are implemented through some form of deferred code evaluation
to ensure that these can be type-checked at compilation, by nevertheless offering
an insight to the middleware. Also, behavioral reflection, possibly combined with
operator overloading, could provide for an ideal compromise of static type-checking
and deferred evaluation. A program reification in the form of a parse tree, such as
in Smalltalk (see Section 5.4.4), could address the same requirement.

The requirements posed by filters are the most tedious to fulfill, and there are
currently probably only very few statically typed languages which provide sufficient
mechanisms.

Subscribers

Subscribers can be represented by methods implemented by callback objects of a
specific type, or closures. While closures enable the concentration of all subscription-
related code, references to such closures (or higher order functions) enable the plac-
ing of the obvent handler at any point, and methods force the definition of a specific
class. With respect to type safety, as mentioned above, the main goal consists in
verifying that the signature of the provided piece of code coincides with the filter,
i.e., the handler and the filter each have a single formal argument with a coinciding
type. In the case of a callback object, to avoid generating specific callback types for
each obvent type, genericity can be used again to type parameterize the callback
type.

1In the case of a dynamically typed language such as Smalltalk, this would become increasingly
important through the absence of type checks at compilation, as supported for instance by genericity.

175

Obvents

Subtyping, a key paradigm in object-oriented programming provides the necessary
foundation for the ability of updating applications. Especially in a distributed con-
text, the full exploitation of this paradigm is only given by dynamic class loading,
that is, the possibility of updating existing components by adding new subtypes at
runtime.

Also, we have made use of multiple subtyping in both the library and language in-
tegration approaches to form new QoS expressions from several more basic ones.
Though it is not impossible to achieve similar behavior without multiple subtyping
as part of the type system, for instance by applying a corresponding design pat-
tern [GHJV95], we believe that any form of expressing multiple inclusion eases QoS
expression.

No Limits

The prominent mechanisms stated above have all been investigated in the context
of this thesis, and by no means the intention here is to claim that the outlined
mechanisms cover all possibilities. As conveyed by the advantages of our language
integration approach over the library approach however, Java is not sufficient for
TPS.

Establishing a more exhaustive list of languages and features would require a detailed
study of all established and prototypical object-oriented languages in all their vari-
ants and versions, as well as all existing concepts (including the above-mentioned).

Consider for instance the myType type qualifier introduced by Bruce et al. in Poly-
TOIL, and inherited by its follow-up Loom [BPF97]. In any given method body,
this type qualifier refers to the dynamic type of the considered object, the type
of this. In the words of the authors, myType is “anchored” to the type of the
object in which it appears. This paradigm enables an inherently clean implemen-
tation of binary methods. In the context of TPS, it could be used in combination
with behavioral reflection and simple unbounded parametric polymorphism (also
part of PolyTOIL), to ensure type-safe direct subscriptions to application-defined
obvent classes (without first-class adapters), which subtype a specific root obvent
type Obvent. Following the Java syntax, one could imagine having something like
the following:2

public class Obvent {
public myType subscribe(Subscriber<myType> s) {

...

/∗ return a proxy ∗/
}

}
public class MyObvent extends Obvent {...}

2myType has a companion, written @myType, which denotes the exact dynamic type of this, i.e.,
subtypes are considered harmful. To be fully precise, the following example should use @myType as
type parameter for the subscriber.

176 Chapter 7. Conclusions

Subscribing to an application-defined obvent class, such as the MyObvent class above,
can be done simply by first creating an instance of that class, and then invoking the
subscribe() method:
class MyObventSubscriber implements Subscriber<MyObvent> {...}
MyObvent proxy = new MyObvent ().subscribe(new MyObventSubscriber());

proxy.equals(new MyObvent (...));

The impact of every detail of a considered language’s type system becomes here
visible again. Indeed, the above subscription scheme could fulfill all our requirements
in a language which, unlike Java, does not provide any purely abstract types (since
the above design does not support subscriptions to abstract types). Furthermore, if
the myType type qualifier is available in class methods, one could omit creating an
instance of an obvent class just for subscribing to that type.

Note that it is more difficult to express subscriptions by subscribing to obvent classes
with F-bounded parametric polymorphism. Consider the following example:
public class Obvent<myType> {

public myType subscribe(Subscriber<myType> s) {...}
}
public class MyObvent extends Obvent<MyObvent>{...}

Here, one can indeed subscribe to the myObvent class as in the previous exam-
ple. However, the explicitly introduced type parameter myType is bound, and hence
remains the same in every subclass of MyObvent, jeopardizing type safety. Further-
more, compilation cannot ensure that every obvent type is parameterized by itself,
the way the MyObvent is. On the other hand, the subscribe() method can be easily
defined as a class method.

Similarly to the myType type qualifier, the concept of mixins could enable the merg-
ing of the abstraction for subscribing with the very event types; here by “adding”
methods expressing subscriptions and unsubscriptions to application-defined event
types at runtime, instead of inheriting them from an abstract event type.

Future Work

We are currently pursuing, or foreseeing the orientation of future efforts in several,
partly opposed directions.

Subscription Models

As already discussed in Section 3.7.2, the (oneway) proxy abstraction known from
RPC implementations has been used in several contexts to model a form of pub-
lish/subscribe interaction, where the addressing scheme is implicitly defined by the
types of the subscribers. This is opposed to TPS, where the addressing scheme is
implicitly given by the types of the events.

The division of the subscription space, if possible, according to several axes repre-
senting (static) filtering criteria such as subscriber, event, or even publisher types

177

could lead to very interesting models. Also, would it be interesting to see what
properties one could obtain by combining TPS, or any new hybrid model, with
event correlation, i.e., adding a time axis to the space of possible subscriptions.

Languages and Abstractions for Distributed Programming

A long-term goal behind seeking for languages which enable library implementations
of TPS without requiring additions to their very core, is to discover a set (or several
sets) of language mechanisms that might not only enable a “clean” implementa-
tion of TPS, but maybe also the implementation of any distributed programming
abstraction along the same lines, i.e., type safety, encapsulation, etc.

At the same time, we expect the collected experience to help us devising future
programming languages embracing paradigms for distributed programming. Clues
for this task could also be obtained by steering our previously mentioned research
around the “mother of all publish/subscribe abstractions” towards identifying the
“mother of all distributed programming abstractions”, an extremely versatile ab-
straction which could be instantiated for distributed interaction schemes as diverse
as RPC or shared spaces.

Interoperability

At a more short term, we are also looking at existing programming languages, in
order to devise an interoperable event type system based on an EDL. The currently
investigated solution attempts to promote structural conformance of obvents, moti-
vated by the obviously further increased decoupling of participants.

Rather than extending every candidate language to obtain something similar to
JavaPS in the case of Java, we are more attracted by a solution which would leave
the individual supported languages unchanged. The current approach consists in
generating adapters according to a well-defined pattern (and mappings with small
variances for the different languages), yet making these visible to the application de-
veloper. These adapters furthermore represent an ideal place to deal with structural
conformance.

This research is strongly driven by the desire of convincing the distributed systems
community that, in the context of publish/subscribe, interoperability and late bind-
ing seem to be no longer valid arguments against static typing.

Advanced Reliability

Last but not least, another field for long-term future research activity concerns
reliability issues, such as persistence, but also transactions not considered in this
dissertation. As shown by [TR00], there are several ways of integrating transac-
tions with asynchronous event delivery, depending on the precise interaction model.
Database systems supporting some form of publish/subscribe interaction nearly all
provide such transactions, especially also in combination with message queueing.

178 Chapter 7. Conclusions

This activity might also give more information on the links between general in-
teraction paradigms, and fundamental problems in distributed computing. Just
like a shared space can be used to provide an abstraction for mutual exclusion
by exploiting the destructive read() primitive, one could imagine exploiting the
straightforwardly appearing relationship between the group paradigm and the pub-
lish/subscribe paradigm. For instance, by the equivalence of the ever popular con-
sensus problem [FLP85] and total order multicast (atomic multicast) [CT96], a
publish/subscribe abstraction implementing totally ordered events can be used as a
general programming abstraction for consensus.

BIBLIOGRAPHY 179

Bibliography

[ACT00] M.K. Aguilera, W. Chen, and S. Toueg. Failure Detection and Consensus in
the Crash Recovery Model. Distributed Computing, 13(2):99–125, April 2000.

[Ada95] International Organization for Standardization. Ada 95 Reference Manual
- The Language - The Standard Libraries, January 1995. ANSI/ISO/IEC-
8652:1995.

[ADKM92] Y. Amir, D. Dolev, S. Kramer, and D. Mahlki. Membership Algorithms for
Multicast Communication Groups. In 6th Intl. Workshop on Distributed Al-
gorithms proceedings (WDAG), pages 292–312, November 1992.

[AEM99] M. Altherr, M. Erzberger, and S. Maffeis. iBus - A Software Bus Middleware
for the Java Platform. In Proceedings of the International Workshop on Reli-
able Middleware Systems of the 13th IEEE Symposium On Reliable Distributed
Systems (SRDS ’99), pages 43–53, October 1999.

[AFM97] O. Agesen, S.N. Freund, and J.C. Mitchell. Adding Type Parameterization to
the Java Language. In Proceedings of the 12th ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA ’97),
pages 49–65, October 1997.

[Agh85] G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-
tems. PhD thesis, University of Michigan, Computer and Communication
Science, 1985.

[AOC+88] G.R. Andrews, R.A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and
G. Townsend. An Overview of the SR Language and Implementation. ACM
Transactions on Programming Languages and Systems, 10(1):51–86, January
1988.

[ASS+99] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra.
Matching Events in a Content-Based Subscription System. In Proceedings of
the 18th ACM Symposium on Principles of Distributed Computing (PODC
’99), pages 53–62, November 1999.

[ATK92] A. L. Ananda, B. H. Tay, and E. K. Koh. A Survey of Asynchronous Remote
Procedure Calls. ACM Operating Systems Review, 26(2):92–109, April 1992.

[Bai75] N.T.J. Bailey. The Mathematical Theory of Infectious Diseases and its Appli-
cations (second edition). Hafner Press, 1975.

[BC90] G. Bracha and W.R. Cook. Mixin-Based Inheritance. In Proceedings of the 5th
ACM Conference on Object-Oriented Programming Systems, Languages and
Applications and 4th European Conference on Object-Oriented Programming
(OOPSLA/ECOOP ’90), pages 303–311, October 1990.

180 BIBLIOGRAPHY

[BC97] J. Boyland and G. Castagna. Parasitic Methods: Implementation of Multi-
Methods for Java. In Proceedings of the 12th ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA ’97),
pages 66–76, October 1997.

[BCC+95] K.B. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G.T. Leav-
ens, and B. Pierce. On Binary Methods. Theory and Practice of Object Sys-
tems, 1(3):221–242, 1995.

[BG93] G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a Pro-
duction Environment. In Proceedings of the 8th ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA ’93),
pages 215–230, October 1993.

[BHJ+87] A.P. Black, N. Hutchinson, E. Jul, H.M. Levy, and L. Carter. Distribution and
Abstract Types in EMERALD. IEEE Transactions on Software Engineering,
SE-13(1):65–76, January 1987.

[BHL95] B. Blakeley, H. Harris, and J.R.T. Lewis. Messaging and Queuing Using the
MQI: Concepts and Analysis, Design and Development. McGraw-Hill, 1995.

[BHO+99] K.P. Birman, M. Hayden, O.Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky.
Bimodal Multicast. ACM Transactions on Computer Systems, 17(2):41–88,
May 1999.

[BI93] A.P. Black and M.P. Immel. Encapsulating Plurality. In Proceedings of the 7th
European Conference on Object-Oriented Programming (ECOOP ’93), pages
56–79, July 1993.

[Bir93] K.P. Birman. The Process Group Approach to Reliable Distributed Comput-
ing. Communications of the ACM, 36(12):36–53, December 1993.

[BMB+00] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and
M. Spiteri. Generic Support for Distributed Applications. IEEE Computer,
33(3):68–76, March 2000.

[BN84] A.D. Birrel and B.J. Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(1):39–59, February 1984.

[BOSW98] G. Bracha, M. Odersky, D. Stoutamire, and Ph. Wadler. Making the Future
Safe for the Past: Adding Genericity to the Java Programming Language.
In Proceedings of the 13th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’98), pages 183–200, October
1998.

[BOW98] K.B. Bruce, M. Odersky, and Ph. Wadler. A Statically Safe Alternative to
Virtual Types. In Proceedings of the 12th European Conference on Object-
Oriented Programming (ECOOP ’98), pages 523–549, July 1998.

[BPF97] K.B. Bruce, L. Petersen, and A. Fiech. Subtyping Is Not a Good “Match” for
Object-Oriented Languages. In Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP ’97), pages 104–127, June 1997.

[BR97] G. Baumgartner and V.F. Russo. Implementing signatures for C++. ACM
Transactions on Programming Languages and Systems, 19(1):153–187, Jan-
uary 1997.

BIBLIOGRAPHY 181

[Bri89] J.-P. Briot. Actalk: A Testbed for Classifying and Designing Actor Languages
in the Smalltalk-80 Environment. In Proceedings of the 3rd European Con-
ference on Object-Oriented Programming (ECOOP ’89), pages 109–129, July
1989.

[BSvG95] K.B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A Type-Safe Polymor-
phic Object-Oriented Language. In Proceedings of the 9th European Confer-
ence on Object-Oriented Programming (ECOOP ’95), pages 27–51, August
1995.

[BvR94] K.P. Birman and R. van Renesse. RPC Considered Inadequate. In Reliable
Distributed Computing with the Isis Toolkit, pages 68–78. IEEE Computer
Society Press, 1994.

[BW98] M. Büchi and W. Weck. Compound Types for Java. In Proceedings of the
13th ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA ’98), pages 362–373, October 1998.

[Car86] L. Cardelli. The Amber Machine. In Combinators and Functional Program-
ming Languages, volume 242 of LNCS, pages 48–70. Springer, 1986.

[Car93] D. Caromel. Towards a Method of Object-Oriented Concurrent Programming.
Communications of the ACM, 36:90–102, September 1993.

[Car95] L. Cardelli. A Language with Distributed Scope. In Conference Record of
the 22nd ACM Symposium on Principles of Programming Languages (POPL
’95), pages 286–297, August 1995.

[CCH+89] P. Canning, W.R. Cook, W. Hill, W. Olthoff, and J.C. Mitchell. F-Bounded
Polymorphism for Object-Oriented Programming. In Proceedings 4th ACM
International Conference on Functional Programming and Computer Archi-
tecture (FPCA’89), pages 273–280, September 1989.

[CDJ+89] L. Cardelli, J. Donahue, M. Jordan, B. Kalsow, and G. Nelson. The Modula-3
Type System. In Conference Record of the 16th ACM Symposium on Princi-
ples of Programming Languages (POPL ’89), pages 202–212, January 1989.

[Cha95] C. Chambers. The Cecil Language Specification and Rationale: Version 2.0.
Technical Report UW-CS 93-03-05, Department of Computer Science and
Engineering, University of Washington, December 1995.

[Cha98] D. Chatterton. Dynamic Dispatch in Existing Strongly-Typed Languages. PhD
thesis, School of Computer Science & Software Engineering, Monash Univer-
sity, Australia, June 1998.

[CHC90] W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance Is Not Subtyping. In
Conference Record of the 17th ACM Symposium on Principles of Programming
Languages (POPL ’90), pages 125–135, January 1990.

[Chi95] S. Chiba. A Metaobject Protocol for C++. In Proceedings of the 11th ACM
Conference on Object-Oriented Programming Systems, Languages and Appli-
cations (OOPSLA ’96), pages 285–299, October 1995.

[Chi00] S. Chiba. Loadtime Structural Reflection in Java. In Proceedings of the 14th
European Conference on Object-Oriented Programming (ECOOP 2000), pages
313–336, June 2000.

182 BIBLIOGRAPHY

[CLCM00] C. Clifton, G.T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java. In Proceedings of the
15th ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 2000), pages 130–145, October 2000.

[CN91] B.J. Cox and A. Novabilsky. Object Oriented Programming: an Evolutionary
Approach. Addison-Wesley, 1991.

[CNF98] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an Event-Based Infras-
tructure to Develop Complex Distributed Systems. In Proceedings of the 10th
IEEE International Conference on Software Engineering (ICSE ’98), pages
261–270, April 1998.

[CNH99] M. Philippsen Ch. Nester and B. Haumacher. A More Efficient RMI for Java.
In Proceedings of the ACM 1999 Conference on Java Grande, pages 152–159,
June 1999.

[Col99] M. Colan. InfoBus 1.2 Specification. Technical report, Sun Microsystems Inc.,
February 1999.

[Coo89] W.R. Cook. A Proposal for Making Eiffel Type-Safe. In Proceedings of the 3rd
European Conference on Object-Oriented Programming (ECOOP ’89), pages
57–72, July 1989.

[Cor99] Talarian Corporation. Everything You need to Know about Mid-
dleware: Mission-Critical Interprocess Communication (White Paper).
http://www.talarian.com/, 1999.

[CR97] P. Ciancarini and D. Rossi. Jada - Coordination and Communication for
Java Agents. In Mobile Object Systems: Towards the Programmable Internet,
volume 1222 of LNCS, pages 213–228. Springer, April 1997.

[CRW00] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving Scalability and
Expressiveness in an Internet-Scale Event Notification Service. In Proceedings
of the 19th ACM Symposium on Principles of Distributed Computing (PODC
2000), pages 219–227, July 2000.

[CS98] C. Cartwright and G. Steele. Compatible Genericity with Runtime Types for
the Java Programming Language. In Proceedings of the 13th ACM Confer-
ence on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’98), pages 201–215, October 1998.

[CT96] T.D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Dis-
tributed Systems. Journal of the ACM, 43(2):225–267, March 1996.

[DACE] DACE Distributed Asychronous Computing Environment. http://www.d-a-
c-e.com.

[DEC94] DEC. DECMessageQ: Introduction to Message Queuing, April 1994.

[Dee91] S. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stan-
ford University, 1991.

[DEG00] C.H. Damm, P.Th. Eugster, and R. Guerraoui. Abstractions for Distributed
Interaction: Guests or Relatives? Technical Report DSC/2001/052, Swiss
Federal Institute of Technology, Lausanne, June 2000.

BIBLIOGRAPHY 183

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database
Maintenance. In Proceedings of the 6th ACM Symposium on Principles of
Distributed Computing (PODC ’87), pages 1–12, August 1987.

[DLS+01] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst. Multi-Dispatch
in the Java Virtual Machine: Design and Implementation. In Proceedings
of the 6th Usenix Conference on Object-Oriented Technologies and Systems
(COOTS’01), pages 77–92, January 2001.

[EBGS01] P.Th. Eugster, R. Boichat, R. Guerraoui, and J. Sventek. Effective Multicast
Programming in Large Scale Distributed Systems. Concurrency and Compu-
tation: Practice and Experience, 13(6):421–447, May 2001.

[EFGK01] P.Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many
Faces of Publish/Subscribe. Technical Report DSC/2001/004, Swiss Federal
Institute of Technology, Lausanne, January 2001.

[EG00] P.Th. Eugster and R. Guerraoui. Type-Based Publish/Subscribe. Technical
Report DSC/2000/029, Swiss Federal Institute of Technology, Lausanne, June
2000.

[EG01a] P.Th. Eugster and R. Guerraoui. Content-Based Publish/Subscribe with
Structural Reflection. In Proceedings of the 6th Usenix Conference on Object-
Oriented Technologies and Systems (COOTS’01), pages 131–146, January
2001.

[EG01b] P.Th. Eugster and R. Guerraoui. Probabilistic Multicast. Technical report,
Swiss Federal Institute of Technology, Lausanne, October 2001.

[EGD01] P.Th. Eugster, R. Guerraoui, and C.H. Damm. On Objects and Events. In
Proceedings of the 16th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2001), pages 131–146, Octo-
ber 2001.

[EGH+01] P.Th. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and
P. Kouznetsov. Lightweight Probabilistic Broadcast. In Proceedings of the
2001 IEEE International Conference on Dependable Systems and Networks
(DSN 2001), pages 443–452, June 2001.

[EGS00] P.Th. Eugster, R. Guerraoui, and J. Sventek. Distributed Asynchronous Col-
lections: Abstractions for Publish/Subscribe Interaction. In Proceedings of the
14th European Conference on Object-Oriented Programming (ECOOP 2000),
pages 252–276, June 2000.

[EGS01] P. Th. Eugster, R. Guerraoui, and J. Sventek. Loosely Coupled Components.
In Software Architectures and Component Technology: The State of the Art
in Research and Practice, chapter 8. Kluwer, 2001.

[EKG01] P.Th. Eugster, P. Kouznetsov, and R. Guerraoui. Δ−Reliable Broadcast.
Technical report, Swiss Federal Institute of Technology, Lausanne, January
2001.

[Fer89] J. Ferber. Computational Reflection in Class Based Object-Oriented Lan-
guages. In Proceedings of the 4th ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA ’89), pages 317–
326, October 1989.

184 BIBLIOGRAPHY

[FG00] P. Felber and R. Guerraoui. Programming with Object Groups in CORBA.
IEEE Concurrency, 8(1):48–58, January/March 2000.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley, June 1999.

[FJM+96] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang. A Reliable Mul-
ticast Framework for Light-Weight Sessions and Application Level Framing.
IEEE/ACM Transactions on Networking, pages 784–803, November 1996.

[FLP85] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the ACM, 32(2):217–246,
1985.

[For98] Message Passing Interface Forum. MPI-2: Extensions to the Message Passing
Interface. Technical report, Message Passing Interface Forum, May 1998.

[GCLR92] R. Guerraoui, R. Capobianchi, A. Lanusse, and P. Roux. Nesting Actions
through Asynchronous Message Passing: The ACS Protocol. In Proceedings
of the 6th European Conference on Object-Oriented Programming (ECOOP
’92), pages 170–184, June 1992.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, January 1985.

[Gel89] D. Gelernter. Multiple Tuple Spaces in Linda. In Proceedings of the Conference
on Parallel Architectures and Languages Europe (PARLE ’89) Vol. II, pages
20–27, June 1989.

[GG00] B. Garbinato and R. Guerraoui. An Open Framework for Reliable Distributed
Computing. ACM Computing Surveys, 32(1), March 2000.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GHvR+97] K. Guo, M. Hayden, R. van Renesse, W. Vogels, and K.P. Birman. GSGC: An
Efficient Gossip-Style Garbage Collection Scheme for Scalable Reliable Mul-
ticast. Technical Report TR97-1656, Cornell University, Computer Science,
December 1997.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Second Edition. Addison-Wesley, 2000.

[Gol92] R. Golding. Weak-Consistency Group Communication and Membership. PhD
thesis, University of California at Santa Cruz, December 1992.

[GR83] A.J. Goldberg and A.D. Robson. Smalltalk-80: The Language and its Imple-
mentation. Addison-Wesley, 1983.

[GS00] P. Gregono and M. Sakkinen. Copying and Comparing: Problems and So-
lutions. In Proceedings of the 14th European Conference on Object-Oriented
Programming (ECOOP 2000), pages 226–250, June 2000.

[GS01] R. Guerraoui and A. Schiper. Genuine Atomic Multicast in Asynchronous
Distributed Systems. Theoretical Computer Science, 254(1–2):297–316, March
2001.

BIBLIOGRAPHY 185

[Gue99] R. Guerraoui. What Object-Oriented Distributed Programming Does not
Have to Be, and what it May Be. Informatik, 2, April 1999.

[GvRB01] I. Gupta, R. van Renesse, and K.P. Birman. Scalable Fault-Tolerant Aggrega-
tion in Large Process Groups. In Proceedings of the 2001 IEEE International
Conference on Dependable Systems and Networks (DSN 2001), pages 433–442,
June 2001.

[HBS98] M. Happner, R. Burridge, and R. Sharma. Java Message Service. Technical
report, Sun Microsystems Inc., October 1998.

[HGM01] Y. Huang and H. Garcia-Molina. Publish/Subscribe in a Mobile Environment.
In 2nd ACM International Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE’01), 2001.

[HLS97] T. Harrison, D. Levine, and D.C. Schmidt. The Design and Performance of a
Real-Time CORBA Event Service. In Proceedings of the 12th ACM Confer-
ence on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’97), pages 184–200, October 1997.

[HMN+00] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul. Filtering and Scalability
in the ECO Distributed Event Model. In Proceedings of the 5th IEEE In-
ternational Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE 2000), pages 83–92, June 2000.

[HSC95] H.W. Holbrook, S.K. Singhal, and D.R. Cheriton. Log-Based Receiver-
Reliable Multicast for Distributed Interactive Simulation. In Proceedings of
the 1995 ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM ’95), pages 328–341, Au-
gust 1995.

[HT93] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Prob-
lems. In S. Mullender, editor, Distributed Systems, chapter 5, pages 97–145.
Addison-Wesley, 2nd edition, 1993.

[IBM95] IBM. Smalltalk Tutorial. http://www.smalltalksystems.com/references.htm,
1995.

[Ing86] D.H.H. Ingalls. A Simple Technique for Handling Multiple Polymorphism.
In Proceedings of the ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA ’86), pages 347–349, September
1986.

[ION96] IONA. OrbixTalk Programming Guide. IONA Technologies Ltd., Jul 1996.

[Jr.90] G.L. Steele Jr. CommonLisp the Language. Digital Press, second edition,
1990.

[KGHK01] P. Kouznetsov, R. Guerraoui, S.B. Handurukande, and A.-M. Kermarrec. Re-
ducing Noise in Gossip-Based Reliable Broadcast. In Proceedings of the 20th
IEEE Symposium On Reliable Distributed Systems (SRDS’01), October 2001.

[Kie97] Th. Kielmann. Objective Linda: A Coordination Model for Object Oriented
Parallel Programming. PhD thesis, Department of Electrical Engineering and
Computer Science, University of Siegen, Germany, September 1997.

186 BIBLIOGRAPHY

[KMG00] A.-M. Kermarrec, L. Massoulie, and A.J. Ganesh. Reliable Probabilistic Com-
munication in Large-Scale Information Dissemination Systems. Technical Re-
port MSR-TR-2000-105, Microsoft Research Cambridge, October 2000.

[KML93] D.G. Kafura, M. Mukherji, and G. Lavender. ACT++: A Class Library for
Concurrent Programming in C++ Using Actors. Journal of Object Oriented
Programming, pages 47–55, October 1993.

[KMMPN83] B.B. Kristensen, O.L. Madsen, B. Moller-Pedersen, and K. Nygaard. Ab-
straction Mechanisms in the BETA Programming Language. In Conference
Record of the 10th ACM Symposium on Principles of Programming Languages
(POPL ’83), pages 285–298, January 1983.

[KMS98] G. Kirby, R. Morrison, and D. Stemple. Linguistic Reflection in Java. Software
- Practice and Experience, 28(10):1045–1077, 1998.

[Koe99] P. Koenig. Messages vs Objects for Application Integration. Distributed Com-
puting, 2(3):44–45, April 1999.

[KPHW89] G.E. Kaiser, S.S. Popovich, W. Hseush, and S.F. Wu. Melding Multiple Gran-
ularities of Parallelism. In Proceedings of the 3rd European Conference on
Object-Oriented Programming (ECOOP ’89), pages 147–166, July 1989.

[KR95] B. Krishnamurthy and D.S. Rosenblum. Yeast: A General Purpose Event–
Action System. IEEE Transactions on Software Engineering, 21(10):845–857,
October 1995.

[LAJ98] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study of Internet
Stability and Wide-Area Backbone Failures. In Proceedings of the 29rd IEEE
International Symposium on Fault-Tolerant Computing (FTCS ’99), pages
278–285, June 1998.

[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, July 1978.

[LB98] S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine.
In Proceedings of the 13th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’98), pages 36–44, October
1998.

[LBR96] K. Läufer, G. Baumgartner, and V.F. Russo. Safe Structural Conformance for
Java. Technical Report CSD-TR-96-077, Department of Computer Sciences,
Purdue University and West Lafayette, December 1996.

[LCD+95] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and A.C.
Myers. Theta Reference Manual. Technical Report Programming Methodol-
ogy Group Memo 88, Massachusetts Institute of Technology, Laboratory for
Computer Science, February 1995.

[Lea97a] D. Lea. Concurrent Programming in Java. Addison-Wesley, 1997.

[Lea97b] D. Lea. Design for Open Systems in Java. In 2nd International Conference
on Coordination Models and Languages, http://gee.cs.oswego.edu/dl/coord/,
1997.

[Lib01] J. Liberty. Programming C#. O’Reilly and Associates, Inc., July 2001.

BIBLIOGRAPHY 187

[Lis88] B. Liskov. Distributed Programming in Argus. Communications of the ACM,
31(3):300–312, March 1988.

[Lis93] B. Liskov. A History of CLU. ACM SIGPLAN Notices, 28(3):133–147, March
1993.

[LLW99] T.J. Lehman, S.W. Mac Laughry, and P. Wyckoff. TSpaces: The Next Wave.
In Proceedings of the 32nd IEEE Hawaii International Conference on System
Sciences (HICSS-32), January 1999.

[LM99] M.-J. Lin and K. Marzullo. Directional Gossip: Gossip in a Wide Area Net-
work. In Proceedings of the 3rd European Dependable Computing Conference
(EDCC-3), pages 364–379, September 1999.

[LMM00] M.-J. Lin, K. Marzullo, and S. Masini. Gossip versus Deterministically Con-
strained Flooding on Small Networks. In Proceedings of the 14th International
Conference on Distributed Computing Distributed Computing (DISC 2000),
pages 253–267, October 2000.

[M0̈1] G. Mühl. Generic Constraints for Content-Based Publish/Subscribe Systems.
In Proceedings of the 6th International Conference on Cooperative Information
Systems (CoopIS), September 2001.

[Mad99] O.L. Madsen. Semantic Analysis of Virtual Classes and Nested Classes. In
Proceedings of the 14th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’99), pages 114–131, Novem-
ber 1999.

[MAE+65] J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.I. Levin. LISP
1.5 Programmer’s Manual. The MIT Press, 1965.

[MBL97] A.C. Myers, J.A. Bank, and B. Liskov. Parameterized Types for Java. In
Conference Record of the 24th ACM Symposium on Principles of Programming
Languages (POPL ’97), pages 132–145, January 1997.

[Mey86] B. Meyer. Genericity versus Inheritance. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’86), pages 391–405, September 1986.

[Mey92] B. Meyer. Eiffel: The Language. Object-Oriented Series. Prentice-Hall, 1992.

[Mic97] Microsoft. Microsoft Message Queuing Services, 1997.

[Mil77] R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computing Systems Sciences, 17:348–375, December 1977.

[MK88] S. Matsuoka and S. Kawai. Using Tuple Space Communication in Distributed
Object-Oriented Languages. In Proceedings of the 3rd ACM Conference on
Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA ’88), pages 276–284, November 1988.

[MMMP90] O.L. Madsen, B. Magnusson, and B. Moller-Pedersen. Strong Typing of
Object-Oriented Languages Revisited. In Proceedings of the 5th ACM Con-
ference on Object-Oriented Programming Systems, Languages and Applica-
tions and 4th European Conference on Object-Oriented Programming (OOP-
SLA/ECOOP ’90), pages 140–150, October 1990.

188 BIBLIOGRAPHY

[MMSA91] L.E. Moser, P.M. Melliar-Smith, and V. Agrawala. Membership Algorithms
for Asynchronous Distributed Systems. In Proceedings of the 11th IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS ’91), pages
480–489, May 1991.

[Moo86] D. A. Moon. Object-Oriented Programming with Flavors. In Proceedings of
the ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA ’86), pages 1–8, September 1986.

[MSS97] M. Mansouri-Samani and M. Sloman. GEM: A Generalized Event Monitoring
Language for Distributed Systems. Distributed Systems Engineering, 4(2):96–
108, June 1997.

[Muc96] P. Muckelbauer. Structural Subtyping in a Distributed Object System. PhD
thesis, Department of Computer Sciences, Purdue University, 1996.

[Nie87] O. Nierstrasz. Active Objects in Hybrid. In Proceedings of the 2nd ACM
Conference on Object-Oriented Programming Systems, Languages and Appli-
cations (OOPSLA ’87), pages 243–253, December 1987.

[NN88] F. Nielson and H.R. Nielson. Two-Level Semantics and Code Generation.
Theoretical Computer Science, 56(1):59–133, January 1988.

[OAA+00] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R.E. Strom, and D.C. Stur-
man. Exploiting IP Multicast in Content-Based Publish-Subscribe Systems.
In Proceedings of the 3rd IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware 2000), pages
185–207, April 2000.

[Obe00] R.J. Oberg. Understanding & Programming COM+. Prentice Hall, 2000.

[Obj99] ObjectSpace. JGL - Generic Collection Library.
http://www.objectspace.com/jgl/, 1999.

[OMG00] OMG. Notification Service Standalone Document. OMG, June 2000.

[OMG01a] OMG. The Common Object Request Broker: Architecture and Specification.
OMG, February 2001.

[OMG01b] OMG. CORBAservices: Common Object Services Specification, Chapter 4:
Event Service. OMG, March 2001.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus - An
Architecture for Extensible Distributed Systems. In Proceedings of the 14th
ACM Symposium on Operating System Principles (SOSP ’93), pages 58–68,
December 1993.

[Ora99] Oracle. Oracle8i Application Developer’s Guide – Advanced Queuing, 1999.

[ORO00] J. Orlando, L. Rodrigues, and R. Oliveira. Semantically Reliable Multicast
Protocols. In Proceedings of the 19th IEEE Symposium On Reliable Distributed
Systems (SRDS’00), October 2000.

[OvRBX99] O. Ozkasap, R. van Renesse, K.P. Birman, and Z. Xiao. Efficient Buffering in
Reliable Multicast Protocols. In Proceedings of the 1st International COST264
Workshop on Networked Group Communication (NGC ’99), pages 188–203,
November 1999.

BIBLIOGRAPHY 189

[OW97] M. Odersky and Ph. Wadler. Pizza into Java: Translating Theory into Prac-
tice. In Conference Record of the 24th ACM Symposium on Principles of
Programming Languages (POPL ’97), pages 146–159, January 1997.

[Pit87] B. Pittel. On Spreading of a Rumor. SIAM Journal of Applied Mathematics,
47:213–223, 1987.

[PO93] R.J. Peters and M.T. Özsu. Reflection in a Uniform Behavioral Object Model.
In Proceedings of the 12th International Conference on Entity-Relationship
Approach, pages 37–49, December 1993.

[Pol93] A. Polze. Using the Object Space: A Distributed Parallel make. In Proceedings
of 4th IEEE Workshop on Future Trends of Distributed Computing Systems,
pages 234–239, September 1993.

[Pou84] D. Pountain. The Transputer and its Special Language, Occam. Byte Maga-
zine, 9(8):361–366, August 1984.

[Pow96] D. Powell. Group Communications. Communications of the ACM, 39(4):50–
97, April 1996.

[PS97] R. Piantoni and C. Stancescu. Implementing the Swiss Exchange Trading
System. In Proceedings of the 27rd IEEE International Symposium on Fault-
Tolerant Computing (FTCS ’97), pages 309–313, June 1997.

[PSLB97] S. Paul, K.K. Sabnani, J.C. Lin, and S. Bhattacharyya. Reliable Multicast
Transport Protocol (RMTP). IEEE Journal on Selected Areas in Communi-
cations, 15(3):407–421, April 1997.

[PTM96] J. Protić, M. Tomašević, and V. Milutinović. Distributed Shared Memory:
Concepts and Systems. IEEE Parallel and Distributed Technology: Systems
and Applications, 4(2):63–79, August 1996.

[Rei91] M. Reiser. The Oberon System. ACM Press, 1991.

[Riv96] F. Rivard. Smalltalk: A Reflective Language. In Proceedings of the 1st In-
ternational Conference on Metalevel Architectures and Reflection (Reflection
’96), pages 21–38, April 1996.

[RKF93] W. Rosenberry, D. Kenney, and G. Fisher. OSF Distributed Computing En-
vironment: Understanding DCE. O’Reilly and Associates, Inc., 1993.

[Ros01] M. Roserens. Stock Trading with Distributed Asynchronous Collections. Mas-
ter’s thesis, Swiss Federal Institute of Technology, in collaboration with Lom-
bard & Odier Co., March 2001.

[RSB+98] D. Riehle, W. Siberski, D. Bäumer, D. Megert, and H. Züllighoven. Serial-
izer. In Pattern Languages of Program Design 3, chapter 17, pages 293–312.
Addison-Wesley, 1998.

[RW96] A. Rowstron and A. Wood. Solving the Linda Multiple rd Problem. In
Proceedings of the 1st International Conference on Coordination Models and
Languages, pages 357–367. Springer, April 1996.

[RW97] D.S. Rosenblum and A.L. Wolf. A Design Framework for Internet-Scale Event
Observation and Notification. In 6th European Software Engineering Confer-
ence/5th ACM Symposium on the Foundations of Software Engineering, pages
344–360, September 1997.

190 BIBLIOGRAPHY

[SA98] J.H. Solorzano and S. Alagic. Parametric Polymorphism for Java: A Reflective
Solution. In Proceedings of the 13th ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA ’98), pages 216–
225, October 1998.

[SAB+00] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based
Routing with Elvin4. In Proceedings of the Australian UNIX and Open Sys-
tems User Group Conference (AUUG2K), June 2000.

[Ses97] R. Sessions. COM and DCOM: Microsoft’s Vision for Distributed Objects.
John Wiley & Sons, 1997.

[Sha86] M. Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy
Principle. In Proceedings of the 6th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS ’86), pages 198–204, May 1986.

[Ske98] D. Skeen. Vitria’s Publish-Subscribe Architecture: Publish-Subscribe
Overview. http://www.vitria.com, 1998.

[SL95] A. Stepanov and M. Lee. The Standard Template Library. Technical report,
Silicon Graphics Inc., October 1995.

[SO95] D.D. Straube and M.T. Özsu. Query Optimization and Execution Plan Gen-
eration in Object-Oriented Data Management Systems. IEEE Transactions
on Knowledge and Data Engineering, 7(2), April 1995.

[SOM94] C. Szyperski, S. Omohundro, and S. Murer. Engineering a Programming Lan-
guage: The Type and Class System of Sather. In Programming Languages and
System Architectures, volume 782 of LNCS, pages 208–227. Springer, March
1994.

[Sri95] R. Srinivasan. RFC 1831: Remote Procedure Call Protocol Specification Ver-
sion 2. Technical report, Sun Microsystems, Inc., August 1995.

[SS00] Q. Sun and D.C. Sturman. A Gossip-Based Reliable Multicast for Large-Scale
High-Throughput Applications. In Proceedings of the 2000 IEEE International
Conference on Dependable Systems and Networks (DSN 2000), pages 347–358,
July 2000.

[Str97] B. Stroustrup. The C++ Programming Language, Third Edition. Addison-
Wesley, 1997.

[Sun99] Sun. Java Remote Method Invocation - Distributed Computing for Java (White
Paper), 1999.

[Sun00a] Sun. Java Core Reflection API and Specification, 2000.

[Sun00b] Sun. The Java Platform 1.3 API Specification, 2000.

[Sun00c] Sun. The Java Collections Framework, 2000.

[SV97] D. Schmidt and S. Vinoski. Overcoming Drawbacks in the OMG Event Ser-
vice. SIGS C++ Report magazine, 19(6), June 1997.

[Sys00] BEA Systems. Reliable Queuing Using BEA Tuxedo: White Paper.
http://www.beasys.com/products/, 2000.

BIBLIOGRAPHY 191

[Tan96] A.S. Tanenbaum. Computer Networks. Prentice-Hall, third edition, January
1996.

[TCKI00] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. A Class-Based Macro
System for Java. In Reflection and Software Engineering, number 1826 in
LNCS, pages 119–135. Springer, July 2000.

[Tho97] K.K. Thorup. Genericity in Java with Virtual Types. In Proceedings of the
11th European Conference on Object-Oriented Programming (ECOOP ’97),
pages 444–471, June 1997.

[Tho98] A. Thomas. Entreprise JavaBeans Technology: Server Component Model for
the Java Platform. Technical report, Sun Microsystems Inc., December 1998.

[TIB99] TIBCO. TIB/Rendezvous White Paper. http://www.rv.tibco.com/, 1999.

[TR00] S. Tai and I. Rouvellou. Strategies for Integrating Messaging and Distributed
Object Transactions. In Proceedings of the 3rd IFIP/ACM International Con-
ference on Distributed Systems Platforms and Open Distributed Processing
(Middleware 2000), pages 308–330, 2000.

[TS97] W. Taha and T. Sheard. Multi-Stage Programming. In Proceedings of the
ACM International Conference on Functional Programming (ICFP ’97), pages
321–321, June 1997.

[TT99] K.K. Thorup and M. Torgersen. Unifying Genericity: Combining the Bene-
fits of Virtual Types and Parameterized Classes. In Proceedings of the 13th
European Conference on Object-Oriented Programming (ECOOP ’99), pages
186–204, June 1999.

[TT01] H. Lam Th. Thai. .NET Framework Essentials. O’Reilly and Associates, Inc.,
June 2001.

[UM99] N. Uramoto and H. Maruyama. InfoBus Repeater: A Secure and Distributed
Publish/Subscribe Middleware. In International Workshops on Parallel Pro-
cessing of the 28th IEEE International Conference on Parallel Processing
(ICPP ’99), pages 260–265, September 1999.

[US87] D. Ungar and R.B. Smith. The Power of Simplicity. In Proceedings of the 2nd
ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA ’87), pages 227–241, October 1987.

[vR00] R. van Renesse. Scalable and Secure Resource Location. In Proceedings of the
33rd IEEE Hawaii International Conference on System Sciences (HICSS-33),
2000.

[vRBM96] R. van Renesse, K.P. Birman, and S. Maffeis. Horus: A Flexible Group
Communication System. Communications of the ACM, 39(4):76–83, April
1996.

[vRMH98] R. van Renesse, Y. Minsky, and M. Hayden. A Gossip-Style Failure Detec-
tion Service. In Proceedings of the 2nd IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware
’98), September 1998.

[vSHT99] M. v. Steen, Ph. Homburg, and A.S. Tanenbaum. Globe: A Wide-Area Dis-
tributed System. IEEE Concurrency, 7(1):70–78, January-March 1999.

192 BIBLIOGRAPHY

[Weg90] P. Wegner. Concepts and Paradigms of Object-Oriented Programming. ACM
Object-Oriented Programming and Systems Messenger, 1(1):7–87, August
1990.

[WEK97] D.A. Wallach, D.R. Engler, and M.F. Kaashoek. ASHs: Application-Specific
Handlers for High-Performance Messaging. IEEE/ACM Transactions on Net-
working, 5(4):460–474, August 1997.

[WMK95] B. Whetten, T. Montgomery, and S. Kaplan. A High Performance Totally
Ordered Multicast Protocol. In Theory and Practice in Distributed Systems,
number 938 in LNCS, pages 33–54. Springer, 1995.

[WWWK94] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on Distributed
Computing. Technical report, Sun Microsystems Inc., November 1994.

[YBS86] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-Oriented Concurrent
Programming in ABCL/1. Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA ’86),
pages 258–268, September 1986.

[YT87] Y. Yokote and M. Tokoro. Experience and Evolution of Concurrent Smalltalk.
In Proceedings of the 2nd ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’87), pages 406–415, 1987.

[ZO01] M. Zenger and M. Odersky. Implementing Extensible Compilers. In ECOOP
2001 Workshop on Multiparadigm Programming with Object-Oriented Lan-
guages, June 2001.

LIST OF FIGURES 193

List of Figures

2.1 Message Passing Interaction with a Connected Socket 7

2.2 Message Passing Interaction with an Unconnected Socket 8

2.3 Interaction with Remote Procedure Calls and Derivatives 10

2.4 Oneway RPC . 12

2.5 Asynchronous RPC Interaction with Pull-Style Futures 13

2.6 Asynchronous RPC Interaction with Callback Futures 14

2.7 Notification-Based Interaction . 15

2.8 Interaction with Tuple Spaces . 18

2.9 Interaction with Message Queues . 19

2.10 Interaction with Publish/Subscribe 20

2.11 Dynamically structured event . 22

3.1 Content-Based Filtering with Method Invocations 45

3.2 Expressing a Mixed Subject/Content-Based Scheme with TPS . . . 53

4.1 Collections in Java (Excerpt) . 63

4.2 GDAC Distribution . 65

4.3 GDACs vs Futures . 66

4.4 GDAC Interface (Excerpt) . 68

4.5 Various Types used with GDACs . 68

4.6 Type Erasing: GDAC Invoking a Subscriber 71

4.7 GDAC Framework . 73

4.8 Types for Reifying Subscription Patterns 76

4.9 Accessor Interface . 77

4.10 Invoke Class (Excerpt) . 78

4.11 Access Class (Excerpt) . 78

194 LIST OF FIGURES

4.12 Equals Class (Excerpt) . 82

4.13 Compare Class (Excerpt) . 83

4.14 And Class (Excerpt) . 84

4.15 Latency with Different Invocation Styles 85

4.16 Optimizing Accessors . 86

4.17 Varying the Matching Rate p1 (v = 0, n = 20, w = 1) 88

4.18 Varying the System Size n (p1 = 0.1, w = 1, v = 2) 88

4.19 Varying the Complexity of Subscriptions v (p1 = 0.1, n = 100, w = 1) 89

4.20 Varying the Redundancy of Subscriptions w (p1 = 0.1, n = 100, v = 1) 89

4.21 The Stock Trade Example in TPS 91

4.22 Simple Stock Obvent Types . 92

4.23 Advanced Stock Obvent Types and Subscriber 94

4.24 Subscriber Interface used with DACs 96

4.25 GDAC Interface (Second Excerpt) . 97

4.26 Statically Type-Safe Filters with Behavioral Reflection 99

4.27 Defining Own Primitive Object Types 100

5.1 Syntax of Publish Statements in JavaPS 106

5.2 Exceptions in JavaPS . 106

5.3 Obvents in JavaPS . 107

5.4 Dependencies Between Obvent Semantics 109

5.5 Precise Syntax of Subscription Expressions 111

5.6 Subscriptions in JavaPS . 111

5.7 Types Generated for an Obvent Type T 118

5.8 Details of Class Obvent, and further Types in java.tps 119

5.9 Details of Class ObventAdapter . 125

6.1 Receiver Filtering Broadcast Algorithm 138

6.2 Probabilistic Multicast Algorithm . 141

6.3 Electing Delegates for a Group of Level 1 147

6.4 Electing Delegates Recursively (R = 3) 148

6.5 Hierarchical Membership View . 151

6.6 Hierarchical Probabilistic Multicast Algorithm 153

LIST OF FIGURES 195

6.7 Varying p1; n ≈ 10000 (a = 22), l = 3, R = 3, F = 2 158

6.8 Reliability Depending on p1; n ≈ 10000 (a = 22), l = 3, R = 3, F = 2 159

6.9 Rounds Depending on p1; n = 100, F = 2 160

6.10 Reliability Depending on F ; n ≈ 10000 (a = 22), l = 3, R = 3, p1 = 0.2 161

6.11 Scalability when increasing a; l = 3, R = 4, F = 3 162

6.12 Reliability Depending on R; n ≈ 10000 (a = 22), l = 3, F = 5, p1 = 0.2 163

6.13 Varying p1; n ≈ 10000 (a = 22), l = 3, R = 3, F = 2 with tuned hpmcast164

LIST OF TABLES 197

List of Tables

2.1 Decoupling Abilities of Interaction Paradigms 25

3.1 Common Approaches to “Typed” Publish/Subscribe 58

3.2 Content-Based Support in “Typed” Publish/Subscribe 58

7.1 Library vs Language Integration: Summary 171

Curriculum Vitae

Patrick Th. Eugster was born on October 7, 1973, in Mineola, Long Island, New
York. At the age of 7, he moved near Zofingen, a small town in the german speaking
part of Switzerland, where he obtained a high school degree in natural sciences. In
1998, he received his M.S. in Computer Science from the Swiss Federal Institute
of Technology, Lausanne (EPFL). Since then he has been working as a research
assistant and Ph.D. student, first in the Operating Systems Laboratory (LSE) of
EPFL, and thereafter in the newly formed Distributed Programming Laboratory
(LPD).

During his stay in the LSE, he has been involved in the European research project
OpenDREAMS II (project 25262) where he represented EPFL in the role of technical
manager, and has also acted several times as lecturer for postgraduate classes on
reliable and object-based distributed programming. As member of the LPD, he
has given lectures in classes on both distributed programming as well as object-
oriented programming. Also, he co-initiated the DACE project, which served as
test environment for his research focusing on reliable and object-based distributed
systems and programming.

