
Automated Translation of
Java Source Code to Eiffel

Marco Trudel1, Manuel Oriol2, Carlo A. Furia1, and Martin Nordio1

1 Chair of Software Engineering, ETH Zurich, Switzerland
{marco.trudel, carlo.furia, martin.nordio}@inf.ethz.ch

2 University of York, United Kingdom
{manuel@cs.york.ac.uk}

Abstract. Reusability is an important software engineering concept ac-
tively advocated for the last forty years. While reusability has been ad-
dressed for systems implemented using the same programming language,
it does not usually handle interoperability with different programming
languages. This paper presents a solution for the reuse of Java code
within Eiffel programs based on a source-to-source translation from Java
to Eiffel. The paper focuses on the critical aspects of the translation
and illustrates them by formal means. The translation is implemented
in the freely available tool J2Eif; it provides Eiffel replacements for the
components of the Java runtime environment, including Java Native In-
terface services and reflection mechanisms. Our experiments demonstrate
the practical usability of the translation scheme and its implementation,
and record the performance slow-down compared to custom-made Eiffel
applications: automatic translations of java.util data structures, java.io
services, and SWT applications can be re-used as Eiffel programs, with
the same functionalities as their original Java implementations.

1 Introduction

Code reuse has been actively advocated for the past forty years [12], has become
a cornerstone principle of software engineering, and has bred the development
of serviceable mechanisms such as modules, libraries, objects, and components.
These mechanisms are typically language-specific: they make code reuse practi-
cal within the boundaries of the same language, but the reuse of “foreign” code
written in a specific language within a program written in a different “host” lan-
guage is a problem still lacking universally satisfactory solutions. The reuse of
foreign code is especially valuable for languages with a small development com-
munity: some programmers may prefer the “host” language because its design
and approach are more suitable for their application domain, but if only a small
community uses this language, they also have to wait for reliable implementa-
tions of new services and libraries unless there is a way to reuse the products
available, sooner and in better form, for a more popular “foreign” language. For
example, the first Eiffel library offering encryption3 was released in 2008 and still

3 http://code.google.com/p/eiffel-encryption-library/



is in alpha status, while Java has offered encryption services in the java.security
standard package since 2002.

A straightforward approach to reuse foreign code is to wrap it into compo-
nents and access it natively through a bridge library which provides the necessary
binding. This solution is available, for example, in Eiffel to call external C/C++
code—with the C-Eiffel Call-In Library (CECIL)—and Java code—with the
Eiffel2Java Library; the Scala language achieves interoperability with Java us-
ing similar mechanisms. Such bridged solutions execute the foreign code in its
native environment which is not under direct control of the host’s; this intro-
duces potential vulnerabilities as guarantees of the host environment (provided,
for example, by its static type system) may be violated by the uncontrolled for-
eign component. More practically, controlling the foreign components through
the interface provided by the bridge is often cumbersome and results in code
difficult to maintain. For example, creating an object wrapping an instance of
java.util.LinkedList and adding an element to it requires six instructions with
Eiffel2Java, some mentioning Java API’s signatures encoded as strings such as
method id := list.method id (”add”, ”(Ljava/lang/Object;)Z”).

A source-to-source translation of the foreign code into the host does not incur
the problems of the bridged solutions because it builds a functionally equivalent
implementation in another language. The present paper describes a translation
of Java source into Eiffel and its implementation in the tool J2Eif [8]. While
Eiffel and Java are both object-oriented languages, the translation of one into
the other is tricky because superficially similar constructs, such as those for
exception handling, often have very different semantics. In fact, correctness is
arguably the main challenge of source-to-source translation: Section 3 formalizes
the most delicate aspects of the translation to describe how they have been
tackled and to give confidence in the correctness of the translation.

As shown by experiments in Section 4, J2Eif can translate non-trivial Java
applications into functionally equivalent Eiffel ones; the system also provides
replicas of Java’s runtime environment and a precompiled JDK standard library.
The usage of the translated code is, in most cases, straightforward for Eiffel pro-
grammers; for example, creating an instance l of java.util.LinkedList and adding
an element e to it becomes the mundane (at least for Eiffel programmers):

create l.make JAVA UTIL LINKEDLIST ; r := l.method add from object (e)

Since Eiffel compiles to native code, a valuable by-product of J2Eif is the
possibility of compiling Java applications to native code. The experiments in
Section 4 show that Java applications automatically translated into Eiffel with
J2Eif incur in a noticeable slow-down—especially those making an intense use
of translated data-structure implementations. The slow-down is unsurprising, as
a generic, automated translation scheme is no substitute for a carefully designed
re-engineering that makes use of Eiffel’s peculiarities. Using J2Eif, however, en-
ables the fast reuse of new Java libraries in Eiffel applications—a valuable service
to access Java’s huge codebase in a form congenial to Eiffel programmers. Per-
formance enhancement belongs to future work.

2



Section 2 gives an overview of the architecture of J2Eif; Section 3 describes
the translation in detail; Section 4 evaluates the implementation with four ex-
periments and points out its major limitations; Section 5 discusses related work;
Section 6 concludes.

2 Design Principles

J2Eif [8] is a stand-alone compiler with graphical user interface that translates
Java programs to Eiffel programs. The translation is a complete Eiffel application
which replicates the functionalities of the Java source application by including
replacements of the Java runtime environment (most notably, the Java Native
Interface and reflection mechanisms). J2Eif is implemented in Java.

Java 
Program 
Source 
Code

Eiffel 
Program 
Source 
CodeJava 

Libraries 
Source 
Code

JRE
Library
 Source 
Code

Native 
Libraries

Eiffel 
Compiler .exe

Helper
Classes

J2Eif

T1 T2 Tn

Fig. 1. High-level view of J2Eif.

High-level view. Figure 1 shows the high-level usage of J2Eif. To translate
a Java program, the user provides the source code of the program, its Java
dependencies, as well as any external native libraries referenced by the program.
J2Eif produces Eiffel source code that can be compiled by an Eiffel compiler
such as EiffelStudio. Native libraries called by native methods in Java are then
directly called from Eiffel. While J2Eif can compile the complete code of the
Java Runtime Environment (JRE) library source, it comes with a precompiled
version which drastically reduces the overall compilation time.

Translation. J2Eif implements the mapping T : Java→ Eiffel of Java code into
Eiffel code. Both languages follow the object-oriented paradigm and hence share

3



several notions such as objects, classes, methods, and exceptions. Nonetheless,
the semantics of the same notion in the two languages are often quite different.
Section 3 describes all the aspects taken into account by the translation and
focuses on its particularly delicate features by formalizing them.

J2Eif implements the translation T as a series T1, . . . , Tn of successive incre-
mental transformations on the Abstract Syntax Tree. Every transformation Ti
takes care of exactly one language construct that needs adaptation and produces
a program in an intermediate language Li which is a mixture of Java and Eiffel
constructs: the code progressively morphs from Java to Eiffel code.

T ≡ Tn ◦ · · · ◦ T1, where


T1 : Java → L1

T2 : L1 → L2

· · ·
Tn : Ln−1 → Eiffel

The current implementation uses 35 such transformations (i.e., n = 35).
Combining small transformations has some advantages: several of the individual
transformations are straightforward to implement and all are simple to maintain;
it facilitates reuse when building other translations (for example into a language
other than Eiffel); the intermediate programs generated are readable and easily
reviewable by programmers familiar with Java and Eiffel.

3 Translating Java to Eiffel

This section describes the salient features of the translation T from Java to Eiffel,
grouped by topic. Eiffel and Java often use different names for comparable object-
oriented concepts; to avoid ambiguities, the present paper matches the terms in
the presentation, whenever possible without affecting readability, and uses only
the appropriate one when discussing language-specific aspects. Table 1 lists the
Java and Eiffel names of fundamental object-oriented concepts.

Java Eiffel

class class
abstract/interface deferred

concrete effective
exception exception

Java Eiffel

member feature
field attribute

method routine
constructor creation procedure

Table 1. Object-oriented terminology in Java and Eiffel.

3.1 Language Features

We formalize some components of T by breaking it down into simpler functions
denoted by ∇; these functions are a convenient way to formalize T and, in

4



general, different than the transformations Ti discussed in Section 2; the end
of the present section sketches an example of differences between ∇’s and Ti’s.
The following presentation ignores the renaming scheme, discussed separately
(Section 3.4), and occasionally overlooks inessential syntactic details. The syntax
of Eiffel’s exception handling adheres to the working draft 20.1 of the ECMA
Standard 367; adapting it to work with the syntax currently supported is trivial.

Classes and interfaces. A Java program is defined by a collection of classes;
the function ∇C maps a single Java class or interface into an Eiffel class or
deferred (abstract) class.

T (C1, ..., Cn) = ∇C(C1), . . . ,∇C(Cn)
∇C(class name extend { body }) = class name ∇I(extend) ∇B(body) end
∇D(interface name extend { body }) = deferred class name ∇I(extend) ∇iB(body) end
where name is a class name; extend is a Java inheritance clause; and body a Java class body.

∇I translates Java inheritance clauses (extends and implements) into Eiffel
inherit clauses. The translation relies on two helper classes:

JAVA PARENT is ancestor to every translated class, to which it provides helper
routines for various services such as access to the native interface, exceptions,
integer arithmetic (integer division, modulo, and shifting have different se-
mantics in Java and Eiffel), strings. The rest of this section describes some
of these services in more detail.

JAVA INTERFACE PARENT is ancestor to every translated interface.

Java generic classes and interfaces may have complex constraints which can-
not be translated directly into Eiffel constraints on generics. T handles usages
of genericity with the same approach used by the Java compiler: it erases the
generic constraints in the translation but enforces the intended semantics with
explicit type casts added where needed.

Members (features). ∇B and ∇iB respectively translate Java class and in-
terface bodies into Eiffel code. The basic idea is to translate Java fields and
(abstract) methods respectively into Eiffel attributes and (deferred) routines.
A few features of Java, however, have no clear Eiffel counterpart and require a
more sophisticated approach:

Anonymous classes are given an automatically generated name.
Arguments and attributes can be assigned to by default in Java, unlike in

Eiffel where arguments are read-only and modifying attributes requires set-
ter methods. To handle these differences, the translation T introduces a
helper generic class JAVA VARIABLE [G]. Instances of this class replace
Java variables; assignments to arguments and attributes in Java are trans-
lated to suitable calls to the routines in the helper class.

Constructor chaining is made explicit with calls to super.
Field hiding is rendered by the naming scheme introduced by T (Section 3.4).
Field initializations and initializers are added explicitly to every constructor.

5



Inner classes are extracted into stand-alone classes, which can access the same
outer members (features) as the original inner classes.

JavaDoc comments are ignored.
Static members. Eiffel’s once routines can be invoked only if they belong

to effective (not deferred) classes; this falls short of Java’s semantics for
static members of abstract classes. For each Java class C, the translation T
introduces a class C STATIC which contains all of C ’s static members and
is inherited by the translation of C; multiple inheritance accommodates such
helper classes. C STATIC is always declared as effective (not deferred), so
that static members are always accessible in the translation as once routines.

Varargs arguments are replaced by arguments of type array.
Visibility. Eiffel’s visibility model is different than Java’s, as it requires, in

particular, to list all names of classes that can access a non-public member.
T avoids this issue by translating every member into a public Eiffel feature.

Instructions. ∇M maps Java method bodies to Eiffel routine bodies. As ex-
pected, ∇M is compositional: ∇M (inst1 ; inst2) = ∇M (inst1) ; ∇M (inst2),
hence it is sufficient to describe how ∇M translates Java instructions into Eiffel.
The translation of many standard instructions is straightforward; for example,
the Java conditional if (cond){doThen} else {doElse} becomes the Eiffel condi-
tional if ∇E(cond) then ∇M (doThen) else ∇M (doElse) end, where ∇E maps
Java expressions to equivalent Eiffel expressions. The following presents the
translation of the constructs which differ the most in the two languages.

Loops. The translation of loops is tricky because Java allows control-flow break-
ing instructions such as break. Correspondingly, the translation of while loops
relies on an auxiliary function∇W : JavaInstruction×{>,⊥} → EiffelInstruction
which replicates the semantics in presence of break (with t ∈ {>,⊥}):
∇M (while (stayIn) {body}) = from breakFlag := False

until not ∇E(stayIn) or breakFlag
loop ∇W (body, ⊥) end

∇W (break, t) = breakFlag := True

∇W (inst1 ; inst2, t) =

{
∇W (inst1, t) ; ∇W (inst2, >) if inst1 contains break

∇W (inst1, t) ; ∇W (inst2, t) if inst1 doesn’t contain break

∇W (atomicInst, >) = if not breakFlag then ∇M (atomicInst) end
∇W (atomicInst, ⊥) = ∇M (atomicInst)

The break instruction becomes, in Eiffel, an assignment of True to a fresh
boolean flag breakFlag, specific to each loop. Every instruction within the loop
body which follows a break is then guarded by the condition not breakFlag
and the loop is exited when the flag is set to True. Other types of loops (for,
do..while, foreach) and control-flow breaking instructions (continue, return)
are translated similarly.

Exceptions. Both Java and Eiffel offer exceptions, but with very different se-
mantics and usage. The major differences are:

– Exception handlers are associated to whole routines in Eiffel (rescue block)
but to arbitrary (possibly nested) blocks in Java (try..catch blocks).

6



– The usage of control-flow breaking instructions (e.g., break) in Java’s try..
finally blocks complicates the propagation mechanism of exceptions [15].

The function ∇M translates Java’s try..catch blocks into Eiffel’s agents (similar
to closures, function objects, or delegates) with rescue blocks, so that exception
handling is block-specific and can be nested in Eiffel as it is in Java:

∇M (try {doTry} catch (t e) {doCatch}) = skipFlag := False
(agent (args) do

if not skipFlag then∇M (doTry) end
rescue

if e.conforms to (∇T (t)) then
∇M (doCatch) ; Retry := True ; skipFlag := True
else Retry := False end

end).call
∇M (throw (exp)) = (create {EXCEPTION}).raise (∇E(exp))

The agent’s body contains the translation of Java’s try block. If executing it
raises an exception, the invocation of raise on a fresh exception object transfers
control to the rescue block. The rescue’s body executes the translation of the
catch block only if the type of the exception raised matches that declared in the
catch (∇T translates Java types to appropriate Eiffel types, see Section 3.2).
Executing the catch block may raise another exception; then, another invoca-
tion of raise would transfer control to the appropriate outer rescue block: the
propagation of exceptions works similarly in Eiffel and Java. On the contrary, the
semantics of Eiffel and Java diverge when the rescue/catch block terminates
without exceptions. Java’s semantics prescribes that the computation continues
normally, while, in Eiffel, the computation propagates the exception (if Retry is
False) or transfers control back to the beginning of the agent’s body (if Retry
is True). The translation ∇M sets Retry to False if catch’s exception type is
incompatible with the exception raised, thus propagating the exception. Other-
wise, the rescue block sets Retry and the fresh boolean flag skipFlag to True:
control is transferred back to the agent’s body, which is however just skipped
because skipFlag = True, so that the computation continues normally after the
agent without propagating any exception.

An exception raised in a try..finally block is normally propagated after
executing the finally; the presence of control-flow breaking instructions in the
finally block, however, cancels the propagation. For example, the code block:

b=2; while(true){try{throw new Exception();}finally{b++; break;}} b++;

terminates normally (without exception) with a value of 4 for the variable b.
The translation ∇M renders such behaviors with a technique similar to the

Java compiler: it duplicates the instructions in the finally block, once for normal
termination and once for exceptional termination:

∇M (try {doTry} finally {doFinally}) = skipFlag := False
(agent (args) do

if not skipFlag then∇M (doTry ; doFinally) end
rescue ∇M (doFinally)

if breakFlag then
Retry := True ; skipFlag := True

end
end).call

7



A break sets breakFlag and, at the end of the rescue block, Retry and skipFlag;
as a result, the computation continues without exception propagation. Other
control-flow breaking instructions are translated similarly.

Other instructions. The translation of a few other constructs is worth discussing.

Assertions. Java’s assert exp raises an exception if exp evaluates to false,
whereas a failed check exp end in Eiffel sends a signal to the runtime which
terminates execution or invokes the debugger. Java’s assertions are therefore
translated as if not exp then ∇M (throw (new AssertionError ())) end.

Block locals are moved to the beginning of the current method; the naming
scheme (Section 3.4) prevents name clashes.

Calls to parent’s methods. Eiffel’s Precursor can only invoke the parent’s
version of the overridden routine currently executed, not any feature of the
parent. The translation T augments every method with an extra boolean
argument predecessor and calls Precursor when invoked with predecessor
set to True; this accommodates any usage of super:

∇B(type method (args) { body }) = method (args ; predecessor: BOOLEAN): ∇T (type) do
if predecessor then Precursor (args, False)
else ∇M (body) end

end
∇E(method(exp)) = method (∇E(exp), False)
∇E(super.method(exp)) = method (∇E(exp), True)

Casting and type conversions are adapted to Eiffel with the services pro-
vided by the helper class JAVA TYPE HELPER.

Expressions used as instructions are wrapped into the helper routine
dev null (a: ANY): ∇M (exp) = dev null (∇E (exp)).

Switch statements become if..elseif..else blocks in Eiffel, nested within a
loop to support fall-through.

How J2Eif implements T . As a single example of how the implementa-
tion of T deviates from the formal presentation, consider J2Eif’s translation of
exception-handling blocks try{doTry} catch(t e){doCatch} finally{doFinally}:

skipFlag := False ; rethrowFlag := False
(agent (args) do

if not skipFlag then ∇M (doTry)
else if e.conforms to (∇T (t)) then ∇M (doCatch) else rethrowFlag := True end end
skipFlag := True ; ∇M (doFinally)
if rethrowFlag and not breakFlag then (create {EXCEPTION}).raise end

rescue if not skipFlag then skipFlag := True ; Retry := True end
end).call

This translation applies uniformly to all exception-handling code and avoids
duplication of the finally block, hence the agent’s body structure is more similar
to the Java source. The formalization ∇M above, however, allows for a more
focused presentation and lends itself to easier formal reasoning (see Section 4.1).
A correctness proof of the implementation could then establish that ∇M and
the implementation J2Eif describe translations with the same semantics.

8



3.2 Types and Structures

The naming scheme (Section 3.4) handles references to classes and interfaces as
types; primitive types and some other type constructors are discussed here.

Primitive types with the same machine size are available in both Java and
Eiffel: Java’s boolean, char, byte, short, int, long, float, and double ex-
actly correspond to Eiffel’s BOOLEAN, CHARACTER 32, INTEGER 8,
INTEGER 16, INTEGER 32, INTEGER 64, REAL 32, and REAL 64.

Arrays in Java become instances of Eiffel’s helper JAVA ARRAY class, which
inherits from the standard EiffelBase ARRAY class and adds all missing
Java functionalities to it.

Enumerations and annotations are syntactic sugar for classes and interfaces
respectively extending java.lang.Enum and java.lang.annotation.Annotation.

3.3 Runtime and Native Interface

This section describes how J2Eif replicates, in Eiffel, JRE’s functionalities.

Reflection. Compared to Java, Eiffel has only limited support for reflection
and dynamic loading. The translation T ignores dynamic loading and includes
all classes required by the system for compilation. The translation itself also
generates reflection data about every class translated and adds it to the produced
Eiffel classes; the data includes information about the parent class, fields, and
methods, and is stored as objects of the helper JAVA CLASS class. For example,
T generates the routine get class for JAVA LANG STRING STATIC, the Eiffel
counterpart to the static component of java.lang.String, as follows:

get class: JAVA CLASS once (”PROCESS”)
create Result.make (”java.lang.String”)
Result.set superclass (create {JAVA LANG OBJECT STATIC})
Result.fields.extend ([”count” field data])
Result.fields.extend ([”value” field data])
...
Result.methods.extend ([”equals” method data]))
...

end

Concurrency. J2Eif includes a modified translation of java.lang.Thread which
inherits from the Eiffel THREAD class and maps Java threads’ functionalities
to Eiffel threads; for example, the method start() becomes a call to the routine
launch of class THREAD. java.lang.Thread is the only JRE library class which
required a slightly ad hoc translation; all other classes follow the general scheme
presented in the present paper.

Java’s synchronized methods work on the implicit monitor associated with
the current object. The translation to Eiffel adds a mutex attribute to every class
which requires synchronization, and explicit locks and unlocks at the entrance
and exit of every translated synchronized method:

∇B(synchronized type method(args){body}) = method (args): ∇T (type)
do mutex.lock ; ∇M (body) ; mutex.unlock end

9



Native interface. Java Native Interface (JNI) supports calls to and from pre-
compiled libraries from Java applications. JNI is completely independent of the
rest of the Java runtime: a C struct includes, as function pointers, all references
to native methods available through the JNI. Since Eiffel includes an extensive
support to call external C code through the CECIL library, replicating JNI’s
functionalities in J2Eif is straightforward. The helper class JAVA PARENT—
accessible in every translated class—offers access to a struct JNIEnv, which
contains function pointers to suitable functions wrapping the native code with
CECIL constructs. This way, the Eiffel compiler is able to link the native imple-
mentations to the rest of the generated binary.

This mechanism works for all native JRE libraries except for the Java Virtual
Machine (jvm.dll or jvm.so), which is specific to the implementation (OpenJDK
in our case) and had to be partially re-implemented for usage within J2Eif. The
current version includes new implementations of most JVM-specific services,
such as JVM FindPrimitiveClass to support reflection or JVM ArrayCopy to
duplicate array data structures, and verbatim replicates the original implementa-
tion of all native methods which are not JVM-specific (such as
JVM CurrentTimeMillis which reads the system clock). The experiments in
Section 4 demonstrate that the current JVM support in J2Eif is extensive and
sufficient to translate correctly many Java applications.

Garbage collector. The Eiffel garbage collector is used without modifications;
the marshalling mechanism can also collect JNI-maintained instances.

3.4 Naming

The goal of the renaming scheme introduced in the translation T is three-fold:
to conform to Eiffel’s naming rules, to make the translation as readable as pos-
sible (i.e., to avoid cumbersome names), and to ensure that there are no name
clashes due to different conventions in the two languages (for example, Eiffel is
completely case-insensitive and does not allow in-class method overload).

To formalize the naming scheme, consider the functions η, φ, and λ:

– η normalizes a name by successively (1) replacing all “ ” with “ 1”, (2)
replacing all “.” with “ ”, and (3) changing all characters to uppercase—for
example, η(java.lang.String) is JAVA LANG STRING;

– φ(n) denotes the fully-qualified name of the item n—for example, φ(String)
is, in most contexts, java.lang.String;

– λ(v)is an integer denoting the nesting depth of the block wherev is declared—
for example, in the method void foo(int a){int b; for(int c=0;...)...}, it is
λ(a) = 0, λ(b) = 1, λ(c) = 2.

Then, the functions ∆C , ∆F , ∆M , ∆L respectively define the renaming scheme
for class/interface, field, method, and local name; they are defined as follows,
where ⊕ denotes string concatenation, “className” refers to the name of the
class of the current entity, and ε is the empty string.

10



∆C(className) = η(φ(className))
∆F (fieldName) = “field” ⊕ λ(fieldName) ⊕ “ ” ⊕ fieldName ⊕ “ ” ⊕ ∆C(className)
∆L(localName) = “local” ⊕ λ(localName) ⊕ “ ” ⊕ localName
∆M (className(args)) = “make ” ⊕ ∆A(args) ⊕ ∆C(className)
∆M (methodName(args)) = “method ” ⊕ methodName ⊕ ∆A(args)

∆A(t1 n1, . . . , tm nm) =

{
ε if m = 0

“from ”⊕ δ(t1)⊕ . . .⊕ δ(tm) if m > 0

δ(t) =

{
“p”⊕ t if t is a primitive type

t otherwise

The naming scheme renames classes to include their fully qualified name. It
labels fields and appends to their name their nesting depth (higher than one
for nested classes) and the class they belong to; similarly, it labels locals and
includes their nesting depth in the name. It pre-pends “make” to constructors—
whose name in Java coincides with the class name—and “method” to other
methods. To translate overloaded methods, it includes a textual description of
the method’s argument types to the renamed name, according to function ∆A;
an extra p distinguishes primitive types from their boxed counterparts (e.g.,
int and java.lang.Integer). Such naming scheme for methods does not use the
fully qualified name of argument types. This favors the readability of the names
translated over certainty of avoiding name clashes: a class may still overload a
method with arguments of different type but sharing the same unqualified name
(e.g., java.util.List and org.eclipse.Swt.Widgets.List). This, however, is extremely
unlikely to occur in practice, hence the chosen trade-off is reasonable.

4 Evaluation

This section briefly discusses the correctness of the translation T (Section 4.1);
evaluates the usability of its implementation J2Eif with four case studies (Sec-
tion 4.2); and concludes with a discussion of open issues (Section 4.3).

4.1 Correctness of the Translation

While the formalization of T in the previous sections is not complete and over-
looks some details, it is useful to present the translation clearly, and it even
helped the authors find a few errors in the implementation when its results did
not match the formal model. Assuming an operational semantics for Java and
Eiffel (see [17]), one can also reason about the components of T formalized in
Section 3 and increase the confidence in the correctness of the translation. This
section gives an idea of how to do it; a more accurate analysis would leverage a
proof assistant to ensure that all details are taken care of appropriately.

The operational semantics defines the effect of every instruction I on the

program state: σ
I−→ σ′ denotes that executing I on a state σ transforms the

state to σ′. The states σ, σ′ may also include information about exceptions and
non-terminating computations. While a Java and an Eiffel state are in general
different, because they refer to distinct execution models, it is possible to de-
fine an equivalence relation ' that holds for states sharing the same “abstract”

11



values [17], which can be directly compared. With these conventions, it is pos-
sible to prove correctness of the formalized translation: the effect of executing a
translated Eiffel instruction on the Eiffel state replicates the effect of executing
the original Java instruction on the corresponding Java state. Formally, the cor-
rectness of the translation of a Java instruction I is stated as: “For every Java

state σJ and Eiffel state σE such that σJ ' σE , if σJ
I−→ σ′J and σE

∇M (I)−−−−→ σ′E
then σ′J ' σ′E .”

The proof for the the Java block B: try {doTry} catch (t e) {doCatch},
translated to ∇M (B) as shown on page 7, is now sketched. A state σ is split
into two components σ = 〈v, e〉, where e is ! when an exception is pending and ?
otherwise. The proof works by structural induction on B; all numeric references
are to Nordio’s operational semantics [17, Chap. 3]; for brevity, consider only
one inductive case.

doTry raises an exception handled by doCatch: 〈vJ , ?〉
doTry−−−−→ 〈v′J , !〉, the

type τ of the exception raised conforms to t, and 〈v′J , !〉
doCatch−−−−−→ 〈v′′J , e〉, hence

〈vJ , ?〉
B−→ 〈v′′J , e〉 by (3.12.4). Then, both 〈vE , ?〉

∇M (doTry)−−−−−−−→ 〈v′E , !〉 and

〈v′E , !〉
∇M (doCatch)−−−−−−−−−→ 〈v′′E , e′〉 hold by induction hypothesis, for some v′E ' v′J ,

v′′E ' v′′J , and e′ ' e. Also, e.conforms to (∇T (t)) evaluates to false on the

state v′E . In all, 〈vE , ?〉
∇M (B)−−−−−→〈v′′E , e′〉 by (3.10) and the rule for if..then.

4.2 Experiments

Table 2 shows the results of four experiments run with J2Eif on a Windows
Vista machine with a 2.66 GHz Intel dual-core CPU and 4 GB of memory. Each
experiment consists in the translation of a system (stand-alone application or
library). Table 2 reports: (1) the size in lines of code of the source (J for Java)
and transformed system (E for Eiffel); (2) the size in number of classes; (3) the
source-to-source compilation time (in seconds) spent to generate the translation
(T , which does not include the compilation from Eiffel source to binary); (4) the
size (in MBytes) of the standard (s) and optimized (o) binaries generated by
EiffelStudio; (5) the number of dependent classes needed for the compilation
(the SWT snippet entry also reports the number of SWT classes in parentheses).
The rest of the section discusses the experiments in more detail.

Size #Classes Compilation Binary Size #Required
(locs) (sec.) (MB) Classes

J E J E T s o
HelloWorld 5 92 1 2 1 254 65 1208
SWT snippet 34 313 1 6 47 318 88 1208 (317)
java.util.* 51,745 91,162 49 426 7 254 65 1175
java.io tests 11,509 28,052 123 302 6 255 65 1225

Table 2. Experimental results.

12



HelloWorld. The HelloWorld example is useful to estimate the minimal number
of dependencies included in a stand-alone application; the size of 254 MB (65
MB optimized) is the smallest footprint of any application generated with J2Eif.

SWT snippet. The SWT snippet generates a window with a browsable calen-
dar and a clock. While simple, the example demonstrates that J2Eif correctly
translates GUI applications and replicates their behavior: this enables Eiffel pro-
grammers to include in their programs services from libraries such as SWT.

java.util.* classes. Table 3 reports the results of performance experiments on
some of the translated version of the 49 data structure classes in java.util. For
each Java class with an equivalent data structure in EiffelBase, we performed
tests which add 100 elements to the data structure and then perform 10000
removals of an element which is immediately re-inserted. Table 3 compares the
time (in ms) to run the test using the translated Java classes (column 2) to the
performance with the native EiffelBase classes (column 4).

Java class Java time Eiffel class Eiffel time Slowdown

ArrayList 582 ARRAYED LIST 139 4.2
Vector 620 ARRAYED LIST 139 4.5
HashMap 1,740 HASH TABLE 58 30
Hashtable 1,402 HASH TABLE 58 24.2
LinkedList 560 LINKED LIST 94 6
Stack 543 ARRAYED STACK 26 20.9

Table 3. Performance of translated java.util classes.

The overhead introduced by some features of the translation adds up in the
tests and generates the significant overall slow-down shown in Table 3. The fea-
tures that most slowed down the translated code are: (1) the indirect access
to fields via the JAVA VARIABLE class; (2) the more structured (and slower)
translation of control-flow breaking instructions; (3) the handling of exceptions
with agents (whose usage is as expensive as method call). Applications that do
not heavily exercise data structures (such as GUI applications) are not signifi-
cantly affected and do not incur a nearly as high overhead.

java.io test suite. The part of the Mauve test suite [11] focusing on testing
input/output services consists of 102 classes defining 812 tests. The tests with
J2Eif excluded 10 of these classes (and the corresponding 33 tests) because they
relied on unsupported features (see Section 4.3). The functional behavior of the
tests is identical in Java and in the Eiffel translation: both runs fail 25 tests and
pass 754. Table 4 compares the performance of the test suite with Java against
its Eiffel translation; the two-fold slowdown achieved with optimizations is, in
all, usable and reasonable—at least in a first implementation of J2Eif.

13



Overall Average time Slowdown
time (s) per test (ms)

Java 4 5 1
Eiffel standard 21 27 5.4
Eiffel optimized 9 11 2.2

Table 4. Performance in the java.io test suite.

4.3 Limitations

There is a limited number of features which J2Eif does not handle adequately;
ameliorating them belongs to future work.

Unicode strings. J2Eif only supports the ASCII character set; Unicode sup-
port in Eiffel is quite recent.

Serialization mechanisms are not mapped adequately to Eiffel’s.
Dynamic loading mechanisms are not rendered in Eiffel; this restricts the ap-

plicability of J2Eif for applications heavily depending on this mechanism,
such as J2Eif itself which builds on the Eclipse framework.

Soft, weak, and phantom references are not supported, because similar no-
tions are currently not available in the Eiffel language.

Readability. While the naming scheme tries to strike a good balance between
readability and correctness, the generated code may still be less pleasant to
read than in a standard Eiffel implementation.

Size of compiled code. The generated binaries are generally large. A finer-
grained analysis of the dependencies may reduce the JRE components that
need to be included in the compilation.

5 Related Work

There are two main approaches to reuse implementations written in a “foreign”
language within another “host” language: using wrappers for the components
written in the “foreign” language and bridging them to the rest of the application
written in the “host” language; and translating the “foreign” source code into
functionally equivalent “host” code.

Wrapping foreign code. A wrapper enables the reuse a foreign implementa-
tion through the API provided by a bridge library [5, 4, 19, 13]. This approach
does not change the foreign code, hence there is no risk of corrupting it or of
introducing inconsistencies; on the other hand, it is usually restrictive in terms
of the type of data that can be retrieved through the bridging API (for exam-
ple, primitive types only). J2Eif uses the wrapping approach for Java’s native
libraries (Section 3.3): the original Java wrappers are replaced by customized
Eiffel wrappers.

Translating foreign code. Industrial practices have long encompassed the
manual, systematic translation of legacy code to new languages. More recently,

14



researchers proposed semi-automated translation for widely-used legacy pro-
gramming languages such as COBOL [2, 14], Fortran-77 [1, 21], and C [23]. Other
progress in this line has come from integrating domain-specific knowledge [6],
and testing and visualization techniques [18] to help develop the translations.

Other related efforts target the transformation of code into an extension
(superset) of the original language. Typical examples are the adaptation of legacy
code to object-oriented extensions, such as from COBOL to OO-COBOL [16,
20, 22], from Ada to Ada95 [10], and from C to C++ [9, 24]. Some of such efforts
try to go beyond the mere execution of the original code by refactoring it to
be more conforming to the object-oriented paradigm; however, such refactorings
are usually limited to restructuring modules into classes.

As far as fully automated translations are concerned, compilation from a
high-level language to a low-level language (such as assembly or byte-code) is
of course a widespread technology. The translation of a high-level language into
another high-level language with different features—such as the one performed
by J2Eif—is much less common; the closest results have been in the rewriting of
domain-specific languages, such as TXL [3], into general-purpose languages.

Google web toolkit [7] (GWT) includes a project involving translation of
Java into JavaScript code. The translation supports running Java on top of
JavaScript, but its primary aims do not include readability and modifiability of
the code generated, unlike the present paper’s translation. Another relevant dif-
ference is that GWT’s translation lacks any formalization and even the informal
documentation does not detail which features are not perfectly replicated by the
translation. The documentation warns the users that “subtle differences” may
exist,4 but only recommends testing as a way to discover them.

6 Conclusions

This paper presented a translation T of Java programs into Eiffel, and its im-
plementation in the freely available tool J2Eif [8]. The formalization of T built
confidence in its correctness; a set of four experiments of varying complexity
tested the usability of the implementation J2Eif.

Future work includes more tests with applications from different domains; the
extension of the translation to include the few aspects currently unsupported (in
particular, Unicode strings and serialization); and the development of optimiza-
tions for the translation, to make the code generated closer to original Eiffel
implementations.

Acknowledgements. Thanks to Mike Hicks and Bertrand Meyer for their support
and advice, and to Louis Rose for comments on a draft of this paper.

References

1. B. L. Achee and D. L. Carver. Creating object-oriented designs from legacy FOR-
TRAN code. Journal of Systems and Software, 39(2):179–194, 1997.

4 http://code.google.com/webtoolkit/doc/latest/tutorial/JUnit.html

15



2. G. Canfora, A. Cimitile, A. de Lucia, and G. A. D. Lucca. A case study of applying
an eclectic approach to identify objects in code. In IWPC, pages 136–143, 1999.

3. J. R. Cordy. Source transformation, analysis and generation in TXL. In PEPM,
pages 1–11, 2006.

4. A. de Lucia, G. A. D. Lucca, A. R. Fasolino, P. Guerra, and S. Petruzzelli. Mi-
grating legacy systems towards object-oriented platforms. Proc. of ICSM, pages
122–129, 1997.

5. W. C. Dietrich, Jr., L. R. Nackman, and F. Gracer. Saving legacy with objects.
SIGPLAN Not., 24(10):77–83, 1989.

6. H. Gall and R. Klosch. Finding objects in procedural programs: an alternative
approach. In WCRE, pages 208–216, 1995.

7. Google Web toolkit. http://code.google.com/webtoolkit/, 2010.
8. J2Eif. The Java to Eiffel translator. http://jaftec.origo.ethz.ch, 2010.
9. K. Kontogiannis and P. Patil. Evidence driven object identification in procedural

code. In STEP, pages 12–21, 1999.
10. A. Llamośı and A. Strohmeier, editors. Reliable Software Technologies–Ada-Europe,

volume 3063 of LNCS. Springer, 2004.
11. Mauve project. http://sources.redhat.com/mauve/, 2010.
12. D. Mcilroy. Mass-produced software components. In ICSE, pages 88–98, 1968.
13. B. Meyer. The component combinator for enterprise applications. JOOP, 10(8):5–

9, 1998.
14. R. Millham. An investigation: reengineering sequential procedure-driven software

into object-oriented event-driven software through UML diagrams. In COMPSAC,
pages 731–733, 2002.

15. P. Müller and M. Nordio. Proof-Transforming Compilation of Programs with
Abrupt Termination. In SAVCBS ’07, pages 39–46, 2007.

16. P. Newcomb and G. Kotik. Reengineering procedural into object-oriented systems.
In WCRE, pages 237–249, 1995.

17. M. Nordio. Proofs and Proof Transformations for Object-Oriented Programs. PhD
thesis, ETH Zurich, 2009.

18. M. Postema and H. W. Schmidt. Reverse engineering and abstraction of legacy
systems. Informatica, pages 37–55, 1998.

19. M. A. Serrano, D. L. Carver, and C. M. de Oca. Reengineering legacy systems for
distributed environments. J. Syst. Softw., 64(1):37–55, 2002.

20. H. Sneed. Migration of procedurally oriented cobol programs in an object-oriented
architecture. In Software Maintenance, pages 105–116, 1992.

21. G. V. Subramaniam and E. J. Byrne. Deriving an object model from legacy Fortran
code. ICSM, pages 3–12, 1996.

22. T. Wiggerts, H. Bosma, and E. Fielt. Scenarios for the identification of objects in
legacy systems. In WCRE, pages 24–32, 1997.

23. A. Yeh, D. Harris, and H. Reubenstein. Recovering abstract data types and object
instances from a conventional procedural language. In WCRE, pages 227–236,
1995.

24. Y. Zou and K. Kontogiannis. A framework for migrating procedural code to object-
oriented platforms. In APSEC, pages 390–399, 2001.

16


