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Abstract. We describe a strategy to automatically test software built
using pre- and postconditions. The strategy searches for valid routine
calls: calls for which the preconditions are satisfied. If such calls fail
(because the postcondition or another check is violated), we have found
a bug. The testing strategy automatically builds a model of the software
under test. The model is an abstract version of the semantics given by
the pre- and postconditions. We use planning and learning to find a
sequence of instructions that constructs the arguments to a valid routine
call. The strategy is fully automatic and can be used to find bugs without
intervention of the user. The generated test cases complement the unit
tests that a designer may write by hand. We also illustrate the use of
our experimental implementation on a non-trivial example.

1 Introduction

Although testing has become an important part of the software development
process, facts show that the support for it is still insufficient. According to a
NIST Report dated May 2002 [25], the cost of inadequate infrastructure for
software testing is approximately $ 60 billion per year in the US alone.

Testing is a notoriously tedious and repetitive activity. Furthermore, once
the test cases have been written, they need to be kept up to date as the target
system changes. As a consequence, proper tool support is essential. Unit testing
frameworks such as JUnit [1] help to reduce the cost of testing. These frameworks
automate test execution. However, test cases and their oracles still have to be
provided and maintained manually.

A fully automatic testing process requires the automation of both test case
and oracle generation. Automating test case generation has recently been the
topic of much research [4,20,28,26,14,27]. Automatic oracle generation can be
done based on the specification of the system under test, if the latter is available.
This idea is exploited in specification-based testing and was first formalized
by Richardson et. al. [23]. For testing a software system it is crucial that the
specification be

– executable,
? Part of this work was done while the author was at Graz University of Technology.
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– mappable – it should be possible to locate the part of the specification that
is relevant for the software element under test, and

– integrated – the specification should be embedded within the source code to
reduce the risk of desynchronization.

The contracts written using the Design by Contract software development
methodology [22] have this property. Such contracts can be written in Eiffel [21],
in Java (using the Java Modeling Language [18] or iContract [17]), in the Object
Constraint Language [24,13], or in Spec# [3]. In Design by Contract, a client
(the caller of a routine) is required to satisfy a supplier’s (the called routine)
precondition. If the precondition is not satisfied, the supplier does not guarantee
anything. If the precondition is satisfied, the supplier has to fulfill its postcon-
dition. If the supplier does not establish its postcondition, it violates the speci-
fication and thus contains a fault. These semantics enable automatic generation
of test cases and oracles and thus completely automatic testing [2,12,8].

Throughout this paper we use the term contract-based testing to refer to the
testing methodology which uses contracts to derive the testing oracle. A naive
approach to contract-based testing, the random testing strategy, uses random
arguments to call a routine under test and hopes to satisfy its precondition (oth-
erwise it tries again with different arguments). If the precondition is satisfied,
it hopes that the routine fails, which uncovers a bug. This process is fully au-
tomatic and precisely locates the fault. No knowledge other than the routine’s
signature and contract is needed.

The clear drawback of the random testing strategy is that it is likely to
be unable to test routines with strong preconditions. The main contribution
of this paper is a new completely automatic contract-based testing strategy.
Our approach uses planning combined with learning to satisfy strong precon-
ditions. We use the information from postconditions to select routines that are
likely to change the state of the target object and arguments so that they sat-
isfy the precondition of the routine under test. Using the information that the
postconditions provide in order to satisfy preconditions is a novel technique in
specification-based testing.

When using instruction sequences to create objects that satisfy preconditions
the search space explodes due to the number of possible combinations of routine
calls and arguments. Our approach limits the possible state transitions (and thus
prunes the search space) using information from both the specification (pre- and
postconditions) and implementation (learning by executing).

The proposed strategy complements manually written unit tests. Some mis-
takes in writing the code are not uncovered when manually writing unit tests. In
particular, a developer may write precondition A, while intending precondition
B. When called with unexpected input (input satisfying A ∧ ¬B), the imple-
mentation is unlikely to establish the postcondition. As the developer is likely
to use the intended precondition when writing test cases, she will test only with
data satisfying B and not with data satisfying A ∧ ¬B, which would reveal the
fault. An automated tool will not make this mistake. For example, we found a
bug in the EiffelBase library in which a function was supposed to be used only
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as an initializer. This constraint was not stated, and a failure was detected by
the testing software when the function was used in a different setting [19].

Our strategy can be applied to any approach using embedded specification
such as Eiffel, iContract, JML, OCL, and Spec#. The experimental implemen-
tation targets Eiffel for the following reasons:

– It allows us to test existing software as-is,
– Existing Eiffel libraries offer a very large code base on which we can test our

approach, and
– The contracts in these libraries have not been written with automatic testing

in mind and thus provide an unbiased source to test the effectiveness of our
approach.

Related work on automatic test case generation includes the Korat tool [4].
Korat focuses on generation of input data and achieving high data coverage.
It generates all input data up to a given bound and tests it against the class
invariant. While executing the invariant, it monitors the read accesses to object
fields and uses this information to prune the search space. Korat constructs
input data by setting the field values directly, not by routine invocations as in
our approach. It may still be hard to find combinations of input data satisfying a
precondition among the data generated by Korat and, on the other hand, a large
amount of data may not always be necessary. Also, Korat cannot automatically
handle systems that depend on external state.

Java PathFinder has been extended to generate test input [27] using model
checking and symbolic execution. Constraints on inputs that increase code cov-
erage are generated and passed to a constraint solver for instantiation. To avoid
state space explosion they use lazy initialization and conservative preconditions
(i.e. preconditions that evaluate to false only if an initialized part evaluates to
false). In contrast to our approach, their process is not fully automatic: the
conservative precondition must be created manually.

Another approach to input value generation uses genetic programing to pro-
duce test cases that satisfy a coverage criterion [26]. The eToc tool represents
test cases as chromosomes. Each chromosome is a sequence of instructions. Us-
ing recombination and mutation, new populations are generated based on a
coverage-optimizing fitness criterion. The approach does not use the informa-
tion provided by contracts and the oracle has to be provided manually to each
generated test case.

Adele E. Howe et. al. [14] describe how techniques from the AI planning do-
main can be used to generate test cases. The system under test is represented as
a planning problem. Instead of creating the test case manually, the user specifies
what to test as a planning goal. The planner finds a path to reach the goal, which
is translated to a test case. This approach is also not automatic: the planning
domain and the path translation tool have to be provided manually.
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2 Test Environment

The planning strategy introduced in this paper was implemented as a prototype
testing strategy for TestStudio3. TestStudio implements the idea of contract-
based testing. It was developed by Greber [12] and Ciupa [8] at based on the
ideas of Arnout, Rousselot, and Meyer [2].

TestStudio is a completely automatic push-button testing environment, which
tests source code as it is (without any need for special annotations or modifica-
tions). It has a graphical user interface which allows to specify several options
on a feature, class, and cluster level.

The idea of contract-based testing is applicable to source code annotated
with contracts in any implementation language. Therefore TestStudio can be
extended to support any such language. However, we chose Eiffel as the target
language, because it has native support for preconditions, postconditions, and
invariants. The assertions are written by the developer not with automatic test
case generation in mind, but as a design, documentation, and debugging aid.
With contract-based testing those assertions serve a fourth purpose: automatic
test case generation. Thus source code written in Eiffel is immediately testable
without any extra effort.

Standard libraries and third party libraries are equipped with contracts. Test-
Studio was able to detect several bugs in unmodified production quality libraries
using the random strategy [19].

3 Planning

3.1 Motivation

In order to test a routine we must satisfy its precondition. A routine with a
strong precondition is unlikely to be satisfied using a random target object and
random arguments. The goal of our approach is to find an object and a set of
arguments that satisfy a given preconditions. To this end, we use a planning
system.

Our experiments [19] have shown that the random strategy leaves routines
with strong preconditions untested. For example, all features from the class
LINKED LIST (taken from the data structure library EiffelBase) that require
not off are left untested. To explain the property off it is necessary to know
that the class LINKED LIST has an internal cursor, which can be moved back
and forth. Using this cursor, all items of the list can be accessed. There are
two special positions that the cursor can be placed on: before (before the first
element of the list) and after (after the last element of the list). The predicate
off is defined as before ∨ after. For example, one can only delete or query the
current item, when the internal cursor is not off.

We propose a strategy based on planning with learning that can find a se-
quence of feature calls to create objects that satisfy a strong precondition, thus
3 http://se.inf.ethz.ch/people/leitner/test_studio/

http://se.inf.ethz.ch/people/leitner/test_studio/
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making routines with such preconditions testable. For the sake of clarity, in this
section we will explain the planning approach assuming that we can determine
which variables are modified by a given procedure. In Section 4, we will show
that this assumption is not warranted, that this complicates planning, and that
we can make up for the missing information by learning about the executions.

3.2 Simple List

We will illustrate our approach using SIMPLE LIST, a simplified version of
EiffelBases’s class LINKED LIST. The list only stores how many items it has;
it does not actually store any items. It also has a notion of an internal cursor.
Thus, the property not off can still be expressed and automatic testing still
fails. Listing 1.1 shows the interface of SIMPLE LIST, written in Eiffel. An
Eiffel feature can be an attribute or a routine, postconditions are indicated by
ensure, the class invariant is indicated by invariant and comments start with
two dashes. Preconditions do not appear in Listing 1.1, which means that they
are tautologous.

Listing 1.1. Interface of SIMPLE LIST
class SIMPLE LIST

3 feature −− Queries

index : INTEGER
6 −− Index of item at current cursor position

count : INTEGER
9 −− Number of items in this list

is last : BOOLEAN
12 −− Is internal cursor on the last item?

off : BOOLEAN
15 −− Is internal cursor not at a valid position?

feature −− Commands
18

force
−− Add an element.

21 ensure
count = old count + 1

24 finish
−− Move internal cursor to last item.

ensure
27 count > 0 implies is last

invariant
30

count + 1 > 0
index + 1 > 0

33 index < count + 2
is last = ((count > 0) and (index = count))
off = ((index = 0) or ( index = count + 1))

36
end

3.3 Planning Systems

Planning systems extract plans (also called solutions) from planning problems.
A planning problem is made up of three parts:
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Domain Theory – Description of the world the problem is set in. The domain
consists of state and actions. Actions, when applied, modify the state. The
semantics of an action is defined via a precondition clause (in what situations
can the action be applied) and an effect clause (how does the action change
the state).

Initial State(s) – Valid initial state(s). If there are several start states, a plan
needs to be applicable to each initial state.

Goal State(s) – Valid goal state(s). One of the goal states must be reached.

The Model Based Planner [6] first encoded a planning problem as a non-
deterministic finite automaton (NFA). The NFA itself is represented as a Bi-
nary Decision Diagram [5]. Algorithms developed to verify properties written in
Computation Tree Logic in model checking [9] are used to extract plans from
the planning problem. For our implementation we used the Bifrost planner [15],
because of its powerful expression language and support for non-deterministic
domains. Both MBP and Bifrost use universal plans instead of the conventional
sequential plans. A sequential plan is a sequence of actions to execute, whereas
a universal plan is a state-action table. Looking up the current state, the table
prescribes the set of applicable actions.

There are different kinds of universal plans that can be extracted from a
planning problem. The usually preferred plan, the strong solution [7], guarantees
that starting in a valid initial state, following the instructions of the solution,
one of the goal states will be reached in a finite number of steps. Intuitively, a
strong solution is a solution for pessimists. It is even applicable in a world were
everything left uncertain by the domain description will go wrong.

There are problems where no strong solution exists, because under the most
pessimistic assumptions, the goal is unreachable. In that case, there is no solution
promising unconditional success, but weak solutions [7] can still be extracted. A
weak solution is a solution for optimists. It assumes that the world cooperates
to help us reach our goal. This implies that it is only guaranteed to reach a goal
state if everything uncertain works in our favor. It might work in other cases,
but that is not guaranteed to.

The problems described in this section are such that a strong solution exists,
but in Section 4, we will show that in general, neither strong nor weak plans
satisfy our requirements, and we need learning.

3.4 Problem Creation

Figure 1 shows the different steps of the simple planning strategy. The system
under test is written in Eiffel and thus augmented with pre- and postconditions.
This system is converted into a planning problem. The precondition defines
when it is possible to call a routine and the postcondition defines the effect of
the routine call. From the planning problem a strong solution is extracted. The
solution represents the test case, which is then executed on an interpreter. In
this section we show how to convert the SIMPLE LIST class into a planning
problem.
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Fig. 1. Planning Strategy without Learning

Planning problems for the Bifrost planner are written in ExtNADL. An
extNADL problem consists of the following sections: variables (describing the
domains state space) actions (describing the possible transformations), an ex-
pression describing the initial states, and an expression for the goal states.

Listing 1.2 shows an extNADL problem representing class SIMPLE LIST.
The four attributes index, count, is last, and off are translated to variables.
Note that a precision of 2 bits per integer is assumed. With our approach the
created model is only an approximation to the original system. These simplifi-
cations make the resulting problem smaller and thus make it feasible to extract
a solution.

The routines force and finish are translated to actions. The two routines don’t
have preconditions, meaning they default to True. Note that the postcondition
in the planning problem consists of the conjunction of the Eiffel postcondition
and the Eiffel invariant, but the precondition of the action does not contain
the invariant. This follows from the assumption that it is the duty of a routine
to maintain the invariant of its object. It is assumed that the invariant is not
destroyed from the outside (only in some rare circumstances does this assumption
not hold). Primed variables in the problem denote the value of the variable after
the execution of the action, unprimed variables denote the value before the
execution. The modifies clause sets the variables that can be modified by an
action; in this example it is set by hand.

The initial state expression is derived from the default values of the variables
and the goal state expression is derived from the precondition of the feature
under test.

References and compound objects do not occur in the SIMPLE LIST exam-
ple, but can be handled by the more general approach described in Section 5.

As mentioned in Section 3.3, the planner converts the problem to an NFA.
A strong solution is extracted via a backwards breadth first search starting with
the set of goal states, and attempts to construct a shortest path from an initial
state to a goal state. Table 1 shows the strong solution that Bifrost extracted
from this planning problem. The table tells which actions can be called in which
states in order to reach one of the goal states. The values represent bit patterns; a
star (“?”) represents both 0 and 1. Executing the solution leads to the following
path:

1. The initial state is count = 0 ∧ index = 0 ∧ ¬is last ∧ off. The solution
suggests to execute force.

2. The state now changed to count = 1 ∧ index = 0 ∧¬is last ∧ off . The
solution suggests finish.

3. A goal state was reached: count = 1 ∧ index = 1 ∧ is last ∧¬off.
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Listing 1.2. Problem for SIMPLE LIST
VARIABLES

3 nat (2) count
nat (2) index
bool i s l a s t

6 bool o f f

SYSTEM
9

agt : l i s t
f o r c e

12 mod : count
pre : t rue
e f f : ( count ’ = count + 1) /\

15 ( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\
( index ’ < count ’ + 2) /\

18 ( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) )

21 f i n i s h
mod : index , i s l a s t , o f f
pre : t rue

24 e f f : ( ( count ’ > 0) => ( i s l a s t ’ = 1)) /\
( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\

27 ( index ’ < count ’ + 2) /\
( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) )

30

INITIALLY
33 count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t

GOAL
36 ˜ o f f

Table 1. Strong solution for SIMPLE LIST

count index is last off

00 ?0 0 1 force
01 ?? ? 1 finish
1? ?? ? 1 finish

The solution is what was expected: first use force to add an element, then
use finish to move the cursor to point at this element.

4 Learning

4.1 Underspecification

The strong solution described in the last section could only be extracted because
we set the modifies clauses by hand. It is not easy to extract such information
from the source automatically. The reason for this is that the class SIMPLE LIST
is underspecified (in the same way that the class LINKED LIST is underspeci-
fied). For example, the postcondition of the routine finish is count > 0 implies
is last. Because of the invariant, this is equivalent to count > 0 implies index =
count. The intended meaning of the postcondition is that finish moves the list’s
cursor to the last element of the list by changing index. However, the routine
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Table 2. Weak solution for second SIMPLE LIST problem

count index is last off

0? ?? ? 1 force
10 ?? ? 1 force
?? ?? ? 1 finish

does not explicitly state whether it changes index, count, or both to satisfy the
postcondition. Thus, it would be valid for finish to set count to 0. This corre-
sponds to removing all elements — certainly not what a human would expect
from a routine called finish.

Note that finish may change index and off, although they are not mentioned
explicitly in the postcondition. On the other hand, it does not change count,
although it is mentioned.

In practice, almost all routines are underspecified in the same way that finish
is.

Since we cannot easily conclude which variables a routine changes, we will
assume that every routine can change any variable as long as it satisfies the post-
condition. We will first show that this makes it impossible to find a good plan,
and then we will show how we can use learning in combination with planning to
bring us to our goal.

4.2 Difficulties in Planning

Listing 1.3 describes the same problem as Listing 1.2 except that now every
action is able to modify every variable. This planning problem can be inferred
automatically from the source code. A strong solution cannot be extracted from
this new problem. This is because according to the specification a valid list
implementation could have force increase count and have finish reset both count
and index to 0. With such a list implementation, not off is not reachable. In the
absence of a strong solution, we extract a weak solution. It is shown in Table 2.
Executing this second solution is less straightforward, but works if at every step
we take a random action from among the allowed ones:

1. The initial state is count = 0 ∧ index = 0 ∧¬is last ∧ off. The solution sug-
gests to execute force or finish. Executing finish does not change the object
state, only force is effective in this state. If we execute actions repeatedly,
eventually force is executed in this state.

2. After executing force the state has changed to count = 1 ∧ index = 0
∧¬is last ∧ off. The solution suggests finish.

3. The goal state is reached: count = 1 ∧ index = 1 ∧ is last ∧ off

As mentioned earlier a weak solution is not guaranteed to work in practice.
If, for example, the goal of above problem is strengthened to not off and count =
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Listing 1.3. Second SIMPLE LIST Problem
VARIABLES

3 nat (2) count
nat (2) index
bool i s l a s t

6 bool o f f

SYSTEM
9

agt : l i s t
f o r c e

12 mod : count , index , i s l a s t , o f f
pre : t rue
e f f : ( count ’ = count + 1) /\

15 ( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\
( index ’ < count ’ + 2) /\

18 ( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) )

21 f i n i s h
mod : count , index , i s l a s t , o f f
pre : t rue

24 e f f : ( ( count ’ > 0) => ( i s l a s t ’ = 1)) /\
( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\

27 ( index ’ < count ’ + 2) /\
( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) )

30
INITIALLY

count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t
33

GOAL
˜ o f f

Table 3. Weak solution for third SIMPLE LIST problem

count index is last off

01 ?? ? ? force
0? ?? ? ? finish
10 ?? ? 1 finish
11 ?? ? ? finish

2, a weak solution fails every time. This new problem can be seen in Listing 1.4.
The weak solution to this problem is shown in Table 3. An agent executing
this solution will never reach the goal state (assuming the list implementation
behaves as expected).

The solution would lead to the following execution.

1. The initial state is count = 0 ∧ index = 0 ∧¬is last ∧ off. The solution
suggests to execute finish.

2. Executing finish does not change the state. We end up in an infinite loop
without ever reaching the goal state.

Note that the postcondition of force does not preclude its reaching the goal
state in one step; finish cannot do this, since it can only increase count by one.
Thus, force is on the shortest path from the initial states to the goal states, but
finish is not.
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Listing 1.4. Third SIMPLE LIST Problem
VARIABLES

3 nat (2) count
nat (2) index
bool i s l a s t

6 bool o f f

SYSTEM
9

agt : l i s t
f o r c e

12 mod : count , index , i s l a s t , o f f
pre : t rue
e f f : ( count ’ = count + 1) /\

15 ( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\
( index ’ < count ’ + 2) /\

18 ( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) )

21 f i n i s h
mod : count , index , i s l a s t , o f f
pre : t rue

24 e f f : ( ( count ’ > 0) => ( i s l a s t ’ = 1)) /\
( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\

27 ( index ’ < count ’ + 2) /\
( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) )

30

INITIALLY
33 count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t

GOAL
36 ˜ o f f /\ count = 2

4.3 Planning with Learning

The above example clearly demonstrates that in cases where no strong plan
can be extracted (and in practice this is true for all Eiffel systems, because
of underspecification) weak plans can fail. For instance, in the presence of a
routine with no postcondition (in which case the postcondition defaults to True)
a weak plan will always assume that the routine goes from every start state to a
goal state directly. We will now introduce an iterative strategy that interleaves
planning with learning. In many cases this strategy can overcome the problem
uncertainty presents.

The weak solution fails because of too much uncertainty in post-conditions.
It is only guaranteed to work if everything uncertain will work in the favor of
the plan executing agent. The learning-based strategy shown in Figure 2 tries to
reduce uncertainty with each iteration by learning from previous plan executions:

1. A planning problem is created from the Eiffel source code.
2. A weak solution is extracted from the problem.
3. The solution is executed by the interpreter and the state transitions are

recorded: The object state of every routine execution is recorded before
(state) and after the execution (state′).

4. If the goal is reached, the process stops and the routine can now be tested.
If the goal is not reached after a certain number of routine executions, the
recorded state transitions are added to the problem: Let posti be the post-
condition of a routine: the new postcondition is then defined as: posti+1 :=
posti ∧(state → state′)
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Fig. 2. Iterative Planning Strategy

5. Go to Step 2.

Learning based on state transitions assumes deterministic behavior. If a non-
deterministic system is under test, learning may fail, because the same behavior
may not always repeat, and learned behavior may not be correct.

Using this learning-based strategy on the SIMPLE LIST problem, the initial
plan is again the one from Listing 1.4. As a consequence the extracted weak plan
is again the one from Table 3.

1. As before, we start from the state count = 0 ∧ index = 0 ∧¬is last ∧ off and
the solution suggests to execute finish. We record the transition (count = 0
∧ index = 0 ∧¬is last ∧ off) → (count = 0 ∧ index = 0 ∧¬is last ∧ off).
As in the last section, the sugested action leaves us in the initial state again
and repeating it would cause an infinite loop.

2. After trying for a few times (to allow for nondeterminism), the new algorithm
stops executing actions and creates a new plan using the recorded transition.
The new plan can be seen in Listing 1.5. The weak solution for this plan is
shown in Table 4. At this point, the new plan is executed.

3. The initial state is count = 0 ∧ index = 0 ∧¬is last ∧ off.
4. The solution suggests to execute force. We thus record the transition (count

= 0 ∧ index = 0 ∧¬is last ∧ off) → (count = 1 ∧ index = 0 ∧¬is last ∧ off).
5. In the new state the plan suggests either force or finish. One action is chosen

at random, let’s assume it is force (the plan succeeds either way). We record
the new transition: (count = 1 ∧ index = 0 ∧¬is last ∧ off) → (count = 2
∧ index = 0 ∧¬is last ∧ off).

6. In the new state only finish is suggested. We again record the transition
((count = 2 ∧ index = 0 ∧¬is last ∧ off) → (count = 2 ∧ index = 2 ∧is last
∧¬ off)) and end up in the goal state.

It only took one learning cycle for the new learning-based strategy to solve the
problem that was initially unsolvable using conventional planning algorithms.



Automatic Testing through Planning 13

Listing 1.5. Fourth SIMPLE LIST Problem
VARIABLES

3 nat (2) count
nat (2) index
bool i s l a s t

6 bool o f f

SYSTEM
9

agt : l i s t
f o r c e

12 mod : count , index , i s l a s t , o f f
pre : t rue
e f f : ( count ’ = count + 1) /\

15 ( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\
( index ’ < count ’ + 2) /\

18 ( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) )

21 f i n i s h
mod : count , index , i s l a s t , o f f
pre : t rue

24 e f f : ( ( count ’ > 0) => ( i s l a s t ’ = 1)) /\
( count ’ + 1 > 0) /\
( index ’ + 1 > 0) /\

27 ( index ’ < count ’ + 2) /\
( i s l a s t ’ <=> ( ( count ’ > 0) /\ ( index ’ = count ’ ) ) ) /\
( o f f ’ <=> ( ( index ’ = 0) \/ ( index ’ = count ’ + 1 ) ) ) /\

30 ( ( count = 0 /\ index = 0 /\ ˜ i s l a s t /\ o f f ) =>
( count ’ = 0 /\ index ’ = 0 /\ ˜ i s l a s t ’ /\ o f f ’ ) )

33 INITIALLY
count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t

36 GOAL
˜ o f f /\ count = 2

5 Modelling Eiffel

In the last section we have shown that a strategy that uses planning interleaved
with learning can satisfy preconditions (and thus enable automatic testing) for
routines where pure planning would fail. We will now discuss how the conversion
algorithm that creates a planning problem from a set of Eiffel classes works. For
simplicity, we have so far only dealt with one class and one object per problem.

An object-oriented language such as Eiffel is different from the extNADL
problem description language:

ExtNADL has

– Only static memory (finite state),
– Actions with no arguments,
– Only natural numbers and booleans (no composite types), and
– Only limited, side-effect free and non recursive expressions.

Eiffel has

– Dynamic memory management (dynamic object creation),
– Routines with arbitrary many arguments,
– Integers, floating point values, composite objects, references, etc., and
– Multiple inheritance and dynamic binding, and
– side effects and recursive expressions.
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Table 4. Weak solution for fourth SIMPLE LIST problem

count index is last off

00 00 0 1 force
01 ?? ? ? force
00 00 0 0 finish
00 00 1 ? finish
00 01 ? ? finish
00 1? ? ? finish
01 ?? ? ? finish
10 ?? ? 1 finish
11 ?? ? ? finish

The following algorithm is able to handle multiple classes and objects. The
main difference from the planning problems we have presented so far and the
ones created by the algorithm below is that the algorithm introduces an object
model. Its purpose is to represent the runtime state of an object oriented system.
The variables in the planning domain form an array of slots. Each slot is able to
store an arbitrary Eiffel object or Void (meaning the slot is empty). A slot knows
if it contains an object (via a boolean flag) and if so what type the object has
(via a natural number representing the type id). The following describes how a
planning problem is derived:

Attributes (data members) Each slot has a variable for every attribute of every
supported class. The variable is only of significance if the slot is not empty
and the attribute is part of the type of the object in the slot. (This model
is rather space inefficient; it has been chosen for its simplicity.) Boolean
variables are directly supported by extNADL, integers are mapped to natural
numbers of a given precision, and references become indices into the table.

Routines (methods) are converted to actions. Instead of one action per routine,
2n actions per routine are created. There are 2n slots we thus create one
action per slot. Those extra actions help to reduce uncertainty: we assume
that an object will only change its own attributes and express this via the
modifies clause (this assumption does not hold in general, but we assume
that it holds in most cases). Because the modifies clauses only support a
list of variables, each slot (and thus object) must have its own specialized
list, which contains only those variables that belong to the current slot. The
precondition clause makes sure that the target object of the action is alive
and of correct type and that the Eiffel precondition is fulfilled.
If emptyslot indicates whether the slot number slot is empty, typeslot holds
the type id of the object stored in slot number slot, type id represents the
id of the type to which the routine is applicable, and prerout represents
the precondition of the routine, the complete precondition for the action
is: ¬ emptyslot ∧ typeslot = type id ∧prerout. The effect clause of the action
consists of the routines postcondition and the class invariant.



Automatic Testing through Planning 15

Creation Routines (constructors) are similar to regular routines. The modi-
fies clause also contains emptyslot and typeslot and the effect clause contains
the additional contraint ¬ emptyslot ∧ typeslot = type id.

(Boolean) Expressions occur in several places: precondition clauses, effect
clauses, initial states clause, goal states clause. Because extNADL supports
neither arrays nor references, quantification needs to be emulated by a con-
junction of implications. For example the Eiffel expression ref .i = 3, is trans-
lated to extNADL as (ref = 0) → (i0 = 3) ∧ (ref = 1) → (i1 = 3) ∧ (ref =
2) → (i2 = 3)∧ (ref = 3) → (i3 = 3) (again assuming a precision of two bits
for references). Here ij indicates the variable with the name i in the j-th
slot.

In the initial states all slots are empty. The goal states require at least one
slot to contain an object satisfying the precondition of the routine under test.

Our approach creates models that are approximations of the system under
test, because we lose precision during problem creation and use optimistic algo-
rithms to extract plans. Thus, we may conceivably fail to find a possible plan,
and thus a possibility to test a routine. Likewise, the extracted plans may not
work on the system under test, i.e., they might not establish the precondition.
However, the user will only be presented with valid test cases, because the in-
terpreter executes all infeasible plans to see if they are valid.

6 Conclusions

In this paper we have presented a novel approach to fully automatic testing.
The problem that we address is the difficulty of testing routines with strong pre-
conditions automatically. Our strategy combines planning with learning to find
sequences of feature calls to create objects that satisfy such strong preconditions.
First we derive a planning problem from the system under test. A planner then
extracts a weak solution from this problem. The solution is executed and state
transition information is recorded. If we reach the planning goal, we satisfy the
precondition of the routine under test. Otherwise, we use the information gained
by recoding the state transitions to reduce uncertainty in the problem and ex-
tract a new solution, which has increased chances to succeed. We have also given
an example where conventional planning algorithms fail and have illustrated how
our experimental implementation succeeds after just one learning step.

We would like to explore if we could generalize the learning process by using
techniques similar to the ones used by Daikon [11]. Another way of removing
uncertainty in postconditions is by monitoring write accesses, i.e., we could as-
sume that attributes that are repeatedly observed to not change will never be
changed by a certain routine.

Various methods have been developed to increase test coverage and should be
evaluated for integration with our strategy. Korat aims towards good input data
coverage. It could be combined with planning in different ways: planning can be
used to find a first set of arguments satisfying a certain routine. Starting with
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these objects a Korat-like approach can be used to derive similar input values
that still satisfy the precondition. A second way to combine both approaches
could be to use Korat first and then planning. After running Korat, the planner-
based approach can be used to target those spots not yet covered by Korat.

Mutation testing [16] could be used to verify both the quality of contracts
and the generated test cases, as could other coverage measures.

Model checking of finite state models benefits from abstraction [10]. Better
methods for abstraction should be integrated into our approach.

Automatic testing is complementary to manual unit testing. Good integration
with traditional unit testing frameworks is thus desirable. With contract-based
testing the quality of contracts has a great effect on the quality of derived test
cases.
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