
Contract Driven Development =
Test Driven Development – Writing Test Cases

Andreas Leitner, Ilinca Ciupa,
Manuel Oriol, Bertrand Meyer

Chair of Software Engineering
ETH Zurich, Switzerland

{firstname}.{lastname}@inf.ethz.ch

Arno Fiva
Chair of Software Engineering

ETH Zurich, Switzerland
fivaa@student.ethz.ch

ABSTRACT
Although unit tests are recognized as an important tool in soft-
ware development, programmers prefer to write code, rather than
unit tests. Despite the emergence of tools like JUnit which auto-
mate part of the process, unit testing remains a time-consuming,
resource-intensive, and not particularly appealing activity.

This paper introduces a new development method, called Con-
tract Driven Development. This development method is based on
a novel mechanism that extracts test cases from failure-producing
runs that the programmers trigger. It exploits actions that devel-
opers perform anyway as part of their normal process of writing
code. Thus, it takes the task of writing unit tests off the develop-
ers’ shoulders, while still taking advantage of their knowledge of
the intended semantics and structure of the code. The approach is
based on the presence of contracts in code, which act as the oracle
of the test cases. The test cases are extracted completely automati-
cally, are run in the background, and can easily be maintained over
versions. The tool implementing this methodology is called Cdd
and is available both in binary and in source form.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools (e.g., data generators, coverage testing)

General Terms
Verification

Keywords
unit testing

1. INTRODUCTION
Unit tests are an important instrument in software engineering.

This is a generally recognized fact, but it does not change the cum-
bersome, time-consuming, and boring nature of the process of writ-
ing meaningful unit tests.

Consequently, researchers have studied ways to reduce this bur-
den on the developer, while maintaining or improving the quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

of the testing process. One possible solution is automated test-
ing, illustrated in tools like Agitator [4], Parasoft’s Jtest [1], Au-
toTest [13], Korat [5], TestEra [12], DSD-Crasher [6], Eclat [20],
Symstra [24], DART [9]. Such tools bring a great advantage by
the degree of automation that they provide, but they do face several
problems:

• Automated testing strategies cannot make up for the insights
that a human tester has into the semantics of the software
under test and the relationships between the different units.

• In the absence of explicit, executable specification tools can-
not distinguish between meaningful and meaningless input
data.

• The quality of the generated tests can be estimated by dif-
ferent means and measures (such as code coverage, mutation
testing, number of bugs found, time to first bug, proportion of
the fault-revealing tests out of total generated tests, etc), but
the exact measures to use or combination thereof depends on
the characteristics of the project under test and is very hard,
if not impossible, for a tool to determine automatically.

This paper shows how to reduce the burden of writing test cases
without interfering with the programmer, while still leveraging the
insights that he has into the semantics, structure, and possible weak
spots of the software. The starting point of this work is the obser-
vation that developers actually create and run test cases even if they
do not create comprehensive test suites. A developer typically adds
some features to a program and then runs the program in such a way
that the new feature is used. By placing assertions along the way
and by watching the output of the program in general, he checks
whether the program works correctly. A developer triggers the ex-
ecution of a newly added feature via one or both of the following
actions:

• Providing the right input.

• Changing parts of the program to force a certain path to be
taken.

Each execution of the program in such a way tests certain as-
pects of the program. During the lifecycle of a program many such
implicit test cases are created and run. One test case evolves into
the next, often being an only slightly different variant of its pre-
decessor. These implicit test cases are created by humans and do
not face the problems mentioned above that automated synthesizers
face. Such test cases have a very serious drawback however: they
are implicit; usually they exist only for one or very few runs and
cannot be kept for later automatic re-execution because:



• If the developer had to provide inputs, the test case cannot
be rerun without the developer providing the inputs again.
This requires manual intervention and the developer needs to
remember the exact inputs.

• If the developer changed parts of the program to force a cer-
tain path to be taken, then this change is unlikely to persist
as it limits the generality of the application. Usually such a
change is undone or altered yet again to create the next im-
plicit test case.

Such test cases are easy to run and create and, since they are not
permanent, don’t need any maintenance. These are the most likely
reasons why developers write and use them so often.

This paper presents a method that captures these implicit test
cases (including their oracle) and makes them explicit and persis-
tent. The captured test cases do not require user input, are sta-
ble with regards to system evolution, and are efficiently minimized
(and hence their execution time is improved). Without further con-
straints on the development method the resulting test suite will pro-
vide a regression suite for mistakes made by the developers in the
past. If the developer, before implementing a feature, writes its
contract and runs the application the resulting test suite will have
similar properties to a test suite resulting from test driven develop-
ment. In general the developer chooses which test cases should be
created by running the application with the corresponding inputs.

The Cdd tool1 is an implementation of this method. The acronym
expands to Contract Driven Development. Cdd targets Eiffel code,
because Eiffel natively supports contracts and real world source
code equipped with contracts is broadly available. Cdd is available
both in binary and source, and was integrated into the EiffelStu-
dio development environment. Cdd observes program executions
and, when a failure occurs, Cdd detects the last uninfected state and
takes a snapshot of this state. This snapshot is then recreated and
serves as the starting point of the extracted test case. Cdd chooses
the time at which it takes this snapshot so that it is early enough
for the state not to be infected but also late enough to reduce exe-
cution time. Also, in order to make the test case more robust with
regards to system change, the snapshot does not include that part of
the state that is irrelevant for reproducing the failure.

The rest of this paper is organized as follows. The next section
motivates the approach. Section 3 gives the intuition behind how
Cdd works in practice with the help of a use case. Section 4 ex-
plains the main abstractions behind Cdd, namely traces, failures,
and test cases. Section 5 presents the implementation, Section 6
outlines future work, and Section 7 concludes.

2. MOTIVATION
Writing unit tests during the development of software systems

brings obvious benefits. Although developers are aware of these
benefits, they still write only very minimal unit tests. In order to
find the reasons for this, we conducted a small scale study on Com-
puter Science students from the ETH Zurich, asking them various
questions about their unit-test-writing habits. Their degree of expe-
rience in writing software varied widely, from 6 months to 9 years.
So did the number of software projects that they had worked on un-
til then, from 1 to 5. 45% of the students said that they never wrote
a unit test case before the implementation and 36% do it only very
seldom. After implementation, only 18% of the students always
write unit tests. 54% do it very often. We also asked the students to
rank (on a scale from 1 to 5, where 1 represents total disagreement

1http://eiffelsoftware.origo.ethz.ch/index.php/CddBranch/

and 5 total agreement) the causes that prevent them from writing
unit tests. The causes and associated average ranks were:

• “Writing unit tests takes too much time”: 4.4

• “It takes too much effort to maintain the unit tests”: 3.6

• “Writing unit tests is too much effort for the provided bene-
fits”: 3.2

• “It takes too much time to run the unit tests”: 2.1

• “Unit tests are not useful”: 1.8

The results of our study show that the time and effort involved
in writing and maintaining unit tests are the most often occurring
causes for the developers’ dislike of unit testing, as also indicated
by other studies. Various research groups have tried to tackle these
problems from different stand points. Many approaches try to take
the burden off the developers’ and testers’ shoulders by promoting
test automation as a solution. Some fully automated or close to
full automation testing tools are already available; among them are
DSD-Crasher [6], DART [9], FindBugs [10], AutoTest [13],
Jartege [15], Eclat [20], Symstra [24], JTest [1], Agitator [4], and
Java PathFinder [23]. All these tools have the potential of being a
great support to developers and testers, but they lack the insights
into the semantics of the tested applications that a human has and
hence are very likely to miss bugs that a human would find easily.
This paper presents an approach which aims at filling this gap that
automated testing leaves open: while our tool also does not get into
the way of the developer, it leverages actions that the developers
perform anyway as part of the process of writing software.

Other approaches also rely on this principle of least interference
in established development processes. This is the case for the Agi-
tator [4] tool (currently called AgitarOne). While this tool achieves
a high degree of automation, it also allows the developer to improve
the testing process by interacting with the tool in a way which only
slightly affects his work flow.

Yet other research directions try to shift this burden of writing
tests onto other activities. For instance, several research groups
have investigated test generation from test specifications [3], [18],
from formal software specifications [14] and from specification in
the form of (abstract) state machines [8]. By introducing parame-
terized unit tests, Tillmann et al. [22] simplify the problem of au-
tomated input data synthesis and allow the developer to write more
expressive oracles.

Several recent publications discuss the relationship between De-
sign by Contract and Agile methods: Ostroff et al. [19] highlight
the complementary nature of the techniques and Feldmann [7]
shows the interplay of contracts and refactorings.

The relationship between contracts and test driven development
is of particular interest: developing with contracts has the advan-
tage of making use of a practical, lightweight, and executable form
of specification that is able to express more about the intended se-
mantics of the program than a finite number of test cases can. How-
ever, test cases are automatically executable; hence, they can be
used for instant and continuous verification. Programs equipped
with contracts do not have this property, because they lack con-
crete instances satisfying the preconditions of the methods under
test. While the preconditions implicitly specify all valid inputs, au-
tomatically finding actual instances that fulfill these preconditions
require tools such as constraint solvers or model checkers and in-
volve translation of the program from the implementation level to a
more abstract level and back. Satisfying the preconditions present
in real software systems on the implementation level is beyond the



Figure 1: Screenshot of the bank account application. User is
able to deposit and withdraw money and check his balance.

class BANK_ACCOUNT
inherit

ANY
redefine

default_create
end

feature
default_create

do
balance := 300

end
balance: INTEGER
deposit (an_amount: INTEGER)

do
ensure

balance_increased : balance > old balance
deposited : balance = old balance + an_amount

end
withdraw (an_amount: INTEGER)

do
balance := balance − an_amount

ensure
balance_decreased: balance < old balance
withdrawn: balance = old balance + an_amount

end
...

invariant
balance_not_negative : balance >= 0

end

Listing 1: Main class of running example, representing a bank
account.

capabilities of today’s tools. The automated test case extraction de-
scribed in this paper is able to provide this missing part and hence
unify the advantages of contracts (thorough specification) and test
cases (concrete and automatically verifiable).

With the contract driven development method, the developer is
freed from the task of writing explicit test cases, but required to
provide contracts instead. Contracts do provide benefits besides
the ability to extract test cases: contracts allow for more precision
during design, they serve as documentation throughout the lifecy-
cle by more clearly specifying the semantics of interfaces and they
increase chances of detecting failures closer to their source.

3. A USE CASE
To give the intuition behind our proposed method and the tool

that implements it (Cdd), this section presents an example of prac-
tical use of the tool during the development of an application.

Our approach builds on the work on continuous testing [21], by
trying not to affect the developer’s work flow, but rather to exploit
actions that the developer performs as part of the normal develop-
ment process. An additional advantage of this approach is that it

class TEST_CASE_1
feature

test
local

ba: BANK_ACCOUNT
do

ba := new_object ("BANK_ACCOUNT")
set_field (ba, "balance", 300)
check_invariant (ba)
ba. deposit (30)

end
end

Listing 2: Class TEST_CASE_1, automatically extracted from
run of application that deposited money.

class TEST_CASE_2
feature

test
local

ba: BANK_ACCOUNT
do

ba := new_object ("BANK_ACCOUNT")
set_field (ba, "balance", 300)
check_invariant (ba)
ba.withdraw (20)

end
end

Listing 3: Class TEST_CASE_2, automatically extracted from
run of application that withdrew money.

creates unit test suites for those developers that did not intend to
write unit tests (due to time constraints or other reasons). While
such test suites might not be complete, they are likely to provide a
good foundation for regression testing, since every test case from
the suite proved to fail at least once during the development cycle.

Let us consider an application written in Eiffel providing the
means to deposit and withdraw money from a bank account. List-
ing 1 shows the main class of this application and Figure 1 shows a
screenshot of the running application. In addition to class
BANK_ACCOUNT (shown in Listing 1), which implements the
main business concept of the software system, the actual applica-
tion also contains:

• Class MAIN_WINDOW, which represents a GUI window show-
ing the current account balance and allowing the user to enter
an amount that he can then deposit or withdraw.

• Class INTERFACE_NAMES, which contains some global ap-
plication constants.

• Class APPLICATION, which serves as the entry point of the
application. It creates a bank account and a main window,
passes the account to the main window, displays the main
window, and starts the event loop.

Note that this example represents an application currently under
development; it contains both incorrect and unfinished code. How-
ever, the developer tests the application by launching it as it is. He
starts out with an empty unit test suite. He runs the application from
within the debugger of his IDE (with Cdd support installed) and en-
ters through the GUI that he wants to deposit 30 EUR. The GUI in-
vokes the method deposit of class BANK_ACCOUNT, which throws
a postcondition error and stops the application. As usual, the de-
bugger indicates the line of the violation, the current stack frame



(a) After one failure (b) After two failures (c) After fixes applied

Figure 2: Test-cases automatically extracted from failures (Screenshot of test-case-window as integrated into EifelStudio IDE)

and the values of the variables in scope. Without the Cdd extraction
mechanism, the developer would have to fix the bug immediately
or the failure information would be lost. When the Cdd extension
is installed, the test case extractor becomes active when a failure is
observed and extracts, saves, and runs a test case in the background
automatically. This test case is added to the previously empty test
suite, which now looks as shown in Figure 2(a). The extracted test
case referenced in this window is depicted in Listing 2. The actual
test case does not provide an oracle, since the postcondition takes
over this responsibility.

The reason why this failure occurs is that there is no implemen-
tation yet for method deposit . This is very much in the spirit of
test driven development, where a test case (here only the contract)
is written before the implementation.

As this example shows, the developer has to provide the inputs
triggering the postcondition violation only once; then Cdd:

• Automatically extracts a test case.

• Minimizes it to that part of the application relevant for the
failure.

• Frees it from external state (the GUI) and non-determinism
(the user input).

Similarly, had the user circumvented the GUI programatically and
hard-coded somewhere an invocation of deposit , Cdd would have
extracted the same test case.

Since the failure is now reproducible via a test case, the devel-
oper no longer has to fix the fault immediately. He can go on and
test another aspect of the application. For example, he can try to
withdraw something from the bank account. If he does that, the de-
bugger will once again stop the application and signal a fault in the
postcondition. In this case the method was implemented correctly,
but the postcondition contains an error. Cdd again automatically
extracts a test case (depicted in Listing 3) for this failure. Then it
adds this test case to the test suite, and compiles and runs it in the
background. The test case status window is hence updated to show
two failing test cases 2(b).

Suppose the developer now adds a correct implementation for
method deposit and fixes the postcondition of method withdraw
. Since Cdd employs continuous testing [21], the test cases are
flagged with PASS automatically, as shown in the test case status
window (Figure 2(c)).

4. MODEL
This section explains how test cases are extracted from failures.

The first part of the section introduces the notions of trace, fail-
ure, and failure-recipient. The second part explains how test cases
are represented in this model, how their oracle works, and how test
cases can be executed and extracted from failures. The section con-
cludes with an overview of possible applications to debugging.

Note that throughout the section each notion is presented through
the use of mathematical functions that return the needed informa-
tion, in order to keep notions as simple and language-agnostic as
possible.

4.1 Traces
The test case extraction process is based on abstractions of traces

of programs. Traces are what the developer produces when running
the program in the debugger of the IDE.

The trace abstraction is based on a tree that captures what called
what. Every node in the called_by tree is an instruction invoca-
tion, i.e. the invocation of an instruction at a given point in time
during the execution that produced the trace at which we are look-
ing. An instruction invocation is a pair of an instruction and the
context in which it was executed. The called_by-tree only knows
the following three kinds of instructions:

• Object creation (including data allocation and constructor ex-
ecution).

• Method call.

• Delegate call.

The purpose of the tree is to enable test case abstraction and not
to model all details of a trace. This is why only the above three
kinds of instructions need to be looked at.

An example graph can be seen in Figure 3. This graph is based
on a trace of the bank account example introduced in Section 3.

Listing 4 provides some more details of the bank account appli-
cation introduced previously. We use this example throughout this
section. Class APPLICATION contains the main event loop (which
we consider to be the application’s entry point for our discussion)
in method event_loop. This method is responsible for calling the
corresponding subscribers for each observed event. The method
uses the Eiffel agent mechanism (which is similar in intent to the
C# delegate mechanism), where each event keeps a list of its sub-
scribers. A subscriber is just another method (that must have been
registered before with the event). The event_loop method con-
sists of two nested loops: the outer loop is executed once for ev-



ery event, while the inner loop iterates over the subscribers of each
event and calls these subscribers. Methods deposit_amount and
withdraw_amount respectively subscribe to the events associated
to the two buttons of the application (“deposit” and “withdraw”, as
seen in Figure 1). These methods in turn read the amount entered
via a text entry box and then call the corresponding method from
class BANK_ACCOUNT.

class APPLICATION
feature
...

event_loop
do

...
from
until

should_quit
loop

wait_for_event
from

ev . subscribers . start
until

ev . subscribers . after
loop

ev . subscribers . item . call
ev . subscribers . forth

end
end

end
...

end
class MAIN_WINDOW
feature

...
amount: TEXT_FIELD
account: BANK_ACCOUNT
deposit_amount

do
account . deposit (amount. to_integer )

end

withdraw_amount
do

account .withdraw (amount. to_integer )
end

...
end

Listing 4: Partial source for example application. It shows the
root class (APPLICATION) and the class representing the main
window (MAIN_WINDOW)

The context of an instruction invocation contains the program
state in which the instruction has to be executed, plus the bindings
of the instruction. For example a method call requires one target-
object and one object per argument. Let I be the set of instructions
and C the set of contexts, then the set of instruction invocations is
I × C. An instruction invocation is said to be well formed if its
context is such that the instruction can be executed from it without
any syntax or typing errors:

wellformed : I × C → B

Every instruction invocation executes on a target object. In the case
of a method invocation, the target can either be explicit (qualified
call) or implicit (unqualified call). In the case of a creation instruc-
tion the object being created serves as the target object. Let O be

the set of objects. Then the signature of target is:

target : C → O

The edges of the called_by-tree indicate which instruction invo-
cation was called by which other instruction invocation. Let <
i1, c1 > and < i2, c2 > be two invocations. Then < i2, c2 >
is called by < i1, c1 > if and only if i1, while executing in context
c1, directly (i.e. not indirectly via some other instruction invoca-
tion) invokes r2 in C2:

called_by : I × C → I × C

Any node in the tree can potentially trigger a failure, i.e. the execu-

event_loop, 
c0

wait_for_event, 
c1

start, 
c2

after, 
c3

call, 
c4

call, 
c8

forth, 
c12

deposit_amount, 
c5

deposit, 
c6

to_integer, 
c7

withdraw_amount, 
c9

withdraw, 
c10

to_integer, 
c11

i,c

called_by

< i, c >

Legend

Figure 3: called_by-tree showing which methods in what con-
texts called which other methods and in what context.

tion of the instruction invocation directly triggers a failure. Failures
occur due to a contract violation, method call on void target, oper-
ating system signals or other kinds of exceptions. Each programing
language will have its own set of causes. For Eiffel the list is given
in the Eiffel ECMA standard Section 8.26.1.

In the presence of contracts every failure not only has an origin
(the instruction invocation that immediately triggered the failure),
but also a recipient. Intuitively the recipient is the method respon-
sible for the failure. In most cases the recipient and origin are the
same instruction invocation.

For Eiffel the recipient is defined in the ECMA Standard Section
8.26.10. The semantics of recipient is extended to not only mean
the receiving method, but also its context. With F being the set of
failures, the signature of recipient becomes:

recipient : F → I × C

4.2 Test Cases
In the present work, a test case is a particular (and hence deter-

ministic) invocation of an instruction and the corresponding con-
tracts (which serve as oracles).

At first, the notion of an invocation as a test case might seem
too restrictive. Tools from the xUnit family (jUnit, nUnit, pyUnit,
Gobo Eiffel Test, VSUnit, etc.) share the convention of having test
methods contained in test classes. Test cases often consist of many
instructions involving control flow, object creation, method invoca-
tion, and assert instructions. Traditional test methods must be cre-
ated argument-less and deterministic. The developer has to provide
the corresponding set-up and arguments for the element under test,



turning to mock-objects when the set-up becomes too complicated.
The instructions used here are perfectly capable to represent such
test cases. A method call that first creates the test object, invokes
the set-up method and finally invokes the test method.

Conventionally, the oracle for unit tests is provided by certain
library calls or special keywords (e.g. assert ). Similar to many
recent approaches, the present work relies on the presence of em-
bedded and executable specification as oracle instead. Such a spec-
ification subsumes the traditional approach, as the library calls or
keywords providing the oracle in traditional unit tests easily inte-
grated with a contracted oracle [11]. In addition to that inspection
points can also be in the middle of the test case: the contracts are
interleaved into the entire program, and not just present at the level
of the test case method.

Let < i, c > be a test case. It is executed in the following way:

1. Recreate context c.

2. Check invariant of c (if violated → invalid test case).

3. Check precondition of i in c (if violated → invalid test case).

4. Run instruction i in c (if normal termination and postcondi-
tion is satisfied → pass, otherwise → fail).

More formally the oracle of a test case can be defined in the
following way:

tcvalid : I × C → B
tcvalid(i, c) , wellformed(i, c) ∧ inv(i, c) ∧ pre(i, c)

tcpassing : I × C → B
tcpassing(i, c) , tcvalid(i, c) ∧ n-terminates(i, c) ∧

post(i, c)

tcfailing : I × C → B
tcfailing(i, c) , tcvalid(i, c) ∧ ¬ tcpassing

Here precondition is the predicate that is defined as the result of the
evaluation of the precondition of an instruction. For method and
delegate calls this is equivalent to checking the precondition of the
called method. With object creation it is equivalent to checking the
precondition of the invoked constructor.

postcondition is the predicate that is defined as the evaluation of
the postcondition of an instruction. This is equivalent, similarly
to the precondition, to the evaluation of the postcondition of the
called method or constructor. Note that the postcondition will not
be evaluated if the method does not terminate.

The predicate n-terminates is true if and only if the method ter-
minates normally. In the case of Eiffel (and Spec#) an abnormal
termination (such as a null pointer dereference, division by zero,
operating system signal, etc.) does not guarantee any postcondi-
tion, which is the case described by the formalism above.

In JML there is a pair of pre- and postconditions for normal ter-
mination and separate pairs for different kinds of abnormal termi-
nation. The above formalism can be easily adapted to this case.
Similarly to the way one big pre- and postcondition pair is formed
for theorem proving JML annotated programs, a big pre- and post-
condition pair can be used for the oracle predicates above.

It might be confusing that above the invariant is applied not only
to the context, but to the whole instruction invocation. At first sight,
one might be tempted to require the invariant to hold for all objects
in the scope. However, there is a need to temporarily break the in-
variant in order to allow for object state to change. The exact way

in which this is implemented depends on the contract-enabled lan-
guage. In Eiffel the following rule fulfills this purpose: the object
which is the target of the currently executing method is allowed to
have its invariant temporarily violated. A method can trigger the
execution of another method. Consequently, more than one object
at any given point in time can have a violated invariant.

It is incorrect to check the invariant of all objects in the scope.
Runtime assertion monitoring is typically implemented so that the
invariant is checked at the beginning and end of each method execu-
tion, also due to performance reasons. This approach is not applica-
ble for our setting either, since an invariant breach due to a method
call in the middle of a method call operates not on the initial heap,
but on a potentially modified one. Hence it is not clear whether
the invariant violation was caused by the instruction invocation or
was part of the original context. This distinction is important. For
example, a test case might be extracted at first with a context con-
taining a set of objects that satisfy invariants, but then, as a result
of changes in the program, the invariant of a class is strengthened
and the extracted context may contain objects that do not satisfy the
new invariant.

Neither complete invariant checking nor the checking employed
by traditional assertion monitoring is appropriate. Instead, the scope
of the invariant check must be broadened to include the informa-
tion of the executing instructions and their called_by information.
A first intuition is to check the invariant of all those objects in the
scope, except those which are target to any of the methods currently
executing (e.g. the targets of the instructions in the transitive clo-
sure of the called_by relation to the current invocation). In order
to express this, the notion of the target set of an instruction invoca-
tion is handy. It is the set of all objects serving as target to any of
the currently executing methods (where called_by? is the reflexive
transitive closure of called_by):

target_set : I × C → P(O)

target_set(i, c) , {target(c′)|
〈i′, c′〉 called_by?〈i, c〉}

However, requiring all objects not in the target-set to have a valid
invariant is overly protective for the purpose of test case execution.
The context might perfectly well contain objects with broken in-
variants that are not needed for the execution of an instruction in-
vocation. In such a case (caused by natural program evolution) one
should not be required to throw away the test case. We hence use
a notion of necessary objects of a program invocation: an object is
necessary for an instruction invocation if and only if the execution
accesses the object.

necessary : I × C ×O → B

Based on these notions, the final definition of the invariant check
is:

inv : I × C → B
inv(i, c) , ∀o ∈ O|

(necessary(i, c, o) ∧ ¬(o ∈ target_set(i, c)))

=⇒ invobj(o)

where invobj is the invariant of an object as defined in the class’s
contracts.

Given these definitions, extracting a test case from a failure be-
comes very simple:

testcasefailure : F → I × C

testcasefailure(f) , recipient(f)



4.3 From Test Cases to Debugging
Failure test suites and the fault lifecycle. One of the advantages

of automatic test case extraction is that a developer observing a
failure has the choice of fixing the fault either immediately or later,
since the failure is automatically reproducible. Furthermore, Cdd
can also provide a benefit that extends into the process of fixing the
fault. Most non-trivial faults need to be fixed in several places, not
just in one, and Cdd-style test case extraction can provide guidance
for this process. For example, an observed failure stemming from
a null pointer dereference in a method m can be fixed by either
changing the implementation of m in a way so that the null case is
treated via a special path, or by strengthening the precondition of
m to exclude the case in which the reference is null to begin with.
Note that, if the developer chooses this latter fix, now the calling
site of m violates m’s precondition. The extracted test case does
not prove this since it only starts with the execution of m. This
is just one of several failure evolution scenarios, all of which can
be coped with by extracting not just one test case per failure but a
whole test suite, that is one test case per method on the call stack:

testsuitefailure : F → P(I × C)

testsuitefailure(f) , {tc(i′, c′)|
recipient(f) called_by?〈i′, c′〉}

Extracting unit test suites from system level tests. So far test case
extraction was always based on the presence of a failure. Via the re-
cipient the failure determines the method for which to extract a unit
test case. The approach works however equally well if the method
for which to extract a test case is known through other means. This
is achieved by generalizing the test suite notion from above from
failures to instruction invocations:

testsuiteinvoc : I × C → P(I × C)

testsuiteinvoc(i, c) , {tc(i′, c′)|
〈i, c〉 called_by?〈i′, c′〉}

The method selection criteria can stem from a coverage criterion. It
can also be used to extract unit tests from system level tests. Devel-
opers are often more inclined to write system level tests (i.e. black
box tests that exercise the whole program) rather than unit level
tests (i.e. tests that exercise one method at a time). The reason is
that a few system level tests can achieve a reasonably high coverage
and hence require less effort for creation and maintenance. How-
ever, modern development practices rely on instant feedback to the
developer.

With the presented test case extraction mechanism it is possible
to extract short running unit level tests automatically from existing
system level tests in just one step. When the IDE signals that the
developer is about to change a certain module (in the sense of class
or package), relevant system level tests can be executed automati-
cally and for each method invocation of the targeted module a test
case is extracted.

While the developer changes the module, he gets instant feed-
back about whether he broke anything, without the added overhead
of unit test suite maintenance.

Deep invariant checks for traditional debugging.
The traditional approach to runtime monitoring of invariants (check-

ing the invariant at method entry and exit) is a compromise between
performance and correctness. It captures many invariant violations,
but methods accidentally violating the invariant of objects other
than the target object can lead to an infected state that is not dis-
covered at the time of the infection.

Figure 4: Screenshot of Cdd-integration in the EiffelStudio
IDE

The deep invariant check proposed in Section 4.2 can be used
in such cases, to selectively check the invariant in situations where
one suspects an infected state.

5. IMPLEMENTATION
As described in Section 2, the main motivation of the model de-

veloped in Section 4 is to extract test cases in a completely auto-
mated way while developers program applications. The approach
fundamentally relies on the presence of contracts. We targeted the
Eiffel language with our implementation because contracts are first
level citizens in this language and practitioners using the language
are known to provide contracts in real world settings. This provides
for a good setting in which the tool can be validated.

Our implementation is a modified version of EiffelStudio2, the
predominant IDE for Eiffel development. The resulting tool, Cdd,
supports Contract Driven Development as described in this paper.
The prototype3 is available for download in both binary and source
form under an open source license. A screenshot of EiffelStudio
integrating Cdd can be seen in Figure 4.

5.1 Using Cdd
Test case extraction. Cdd tightly integrates with the debugger of

EiffelStudio in order to extract test cases during the regular devel-
opment cycle of an application. When the developer runs an appli-
cation and an exception is raised, the debugger stops the execution
and shows the developer the source code line where the exception
was raised, the current call stack, and the content of the variables
in scope. In addition to that, the test case extractor of Cdd be-
comes active and tries to extract a test case that is able to reproduce
the current failure. First the test case extractor determines which
method to extract a test case for. This is often (but not always) the
method that raised the exception. As described in Section 4, Cdd
chooses the method receiving the failure as the method under test.

The extractor proceeds to extract a snapshot of the state that is
required to invoke the method under test. The target object and all
method arguments and their transitive reference closure are serial-
ized. This is an efficient over-approximation of the set of neces-
2http://www.eiffel.com
3http://eiffelsoftware.origo.ethz.ch/index.php/CddBranch/



sary objects. The result is a test case as can be seen in Listings 2
and 3. The current implementation of Cdd extracts a test case only
for the failure-receiving method. To improve flexibility, future re-
leases will extract one test case for each method of the current call
stack as described in Section 4.3.

The Cdd implementation poses no runtime overhead during de-
bugging, since the extractor becomes active only at the time of an
observed failure. At this point the debugger stops the application
anyway, so extraction takes place when the application is not run-
ning. The application under test is not instrumented or altered in
any way. This has the clear advantage of interfering as little with
the developer’s working habits as possible.

It is not possible to know a priori that a given call will fail, so
Cdd extracts the state after the failure. Instrumenting every method
to capture its prestate has prohibitive performance overhead. In
most cases, extracting the state after the failure is sufficient in or-
der to obtain a test case that exhibits the same error. In some cases
though, it is not sufficient and the only possibility is to replay the
program with a pre-state capture. Recent advances in capture and
replay [17, 16] promise finer grained control and much better per-
formance. We are currently working on integrating such a selective
capture replay mechanism into Cdd.

It should be noted that the extracted test cases are implicitly min-
imized. Instead of re-executing the whole trace that led to the fail-
ure, the resulting unit test executes only the method directly respon-
sible for the observed failure. Such test cases are only feasible in
the presence of contracts, which serve as oracle. They are only able
to cover robustness related failures and functional failures, where
the functional behavior has been expressed via contracts.

Test case visualization. The extracted test cases are displayed
in a tree where they are grouped by the class and the method that
they are testing (see Figures 2). The developer can choose to see
all test cases or only failing ones. It is also possible to disable the
background extraction and execution of test cases, as well as select
an individual test case for debugging (the latter is described in more
detail below). Each test case node displays the status of its last
execution and the assertion violation raised, if any. The developer
can use each test case node to navigate to the source code of the
test case or to the receiving method.

Test case execution. Whenever the IDE finds a compilable sys-
tem, all extracted test cases for that system get compiled and ex-
ecuted. For each test case, Cdd first recreates the context, then
checks the invariant, and finally invokes the method under test with
the created context. The current version of Cdd only checks the
invariant of the object under test (the thorough invariant check de-
scribed in Section 4.2 is work in progress). If the invariant was
found to be violated the test case is flagged as invalid and this test
case is not executed. Otherwise the method under test is executed
with the recreated target object and arguments.

During execution, assertion monitoring is enabled and violated
assertions are reported in the form of exceptions back to the test
case executor. If the precondition of the method under test has
been violated, Cdd flags the test case again as invalid and does not
execute it further. There is an important point to note here: only the
violation of the outermost precondition flags an invalid test case; a
precondition evaluated as part of a method call triggered directly
or indirectly from the method under test flags a failing test case
instead. This is also true if the method under test is recursive. All
exceptions (e.g. invariants, postconditions, preconditions, check
instructions, segmentation faults, division by zero, etc.) other than
the outermost precondition and invariant check signal a failing test
case.

Background execution of test cases allows the developer to al-

Debugger
System under

Test

State
Extractor

Test Case
Serializer

Compiler &
Executor

Display

Figure 5: Architecture of Cdd implementation

ways see the latest state of the test cases. However, in addition to
this, the developer may want to more clearly understand why a par-
ticular test case fails. For this case Cdd allows him to execute a test
case in the regular debugger. When doing this on a failing test case,
the debugger will automatically stop at the exception being raised
and thus allow the developer to inspect the concrete values. Addi-
tionally the developer can set breakpoints and thus step through the
test case (including the method under test) line by line and inspect
the state at method entry point and how this state evolves.

5.2 Architecture
Cdd is implemented as a modification to the EiffelStudio IDE.

The implementation consists of approximately 50 new classes to-
taling to around 6000 lines of code. The addition is relatively small
compared to EiffelStudio itself ( 1400 classes and 2 million lines
of code) and, to keep maintenance efforts reasonable, we kept the
number of existing classes that we modified to a minimum. The
classes of the extension can be roughly divided into groups achiev-
ing the following:

• Model (internal representation of test cases)

• State and code extraction using the interface of the debugger

• Test case serialization

• Compilation and execution of the serialized test cases

• Test harness (simple unit testing framework)

• Visualization and user interface

• Example code

Figure 5 shows the basic control flow. The debugger is in con-
trol over the system under test (the application that the developer
is working on). When a failure occurs, the state extractor retrieves
information from the debugger about the current state of the appli-
cation. The test case serializer saves this state into a compilable
unit test case. The resulting test case is then compiled and executed
and finally the results are displayed.

6. FUTURE WORK
Our current implementation does not cope with concurrent ap-

plications. The SCOOP [2] mechanism extends the semantics of



contracts to the concurrent case. A contract equipped language
supporting SCOOP will allow us to handle concurrent applications
with minimal modifications on our implementation.

The recently introduced selective capture and replay [17, 16]
mechanism, promises much increased performance of both the cap-
ture and replay phase. It is based on the idea that a program is di-
vided into two parts, an observed part and an external part. Instead
of capturing state or state changes, all in and outgoing events are
recorded instead. In and outgoing data only needs to be recorded
in a shallow fashion. For replaying a run, the replay-harness is able
to replace the external part completely, freeing the application from
all dependencies that this part introduces. We are currently working
on a selective capture and replay implementation for Eiffel, which
will provide significant benefits in the following areas:

Prestate extraction. To correctly extract a test case from a failure,
the state (i.e the relevant objects on the heap) have to be captured at
the right before the recipient of the failure is called. We currently
capture the state at the time of the failure, which is too late. At the
time right before the recipient is called it is not clear yet whether
the call will result in a failure or not and once the failure has been
detected the original pre-state might be already changed. Capturing
the real pre-state for all method calls is prohibitive due to its per-
formance and memory overhead. A solution would be a posteriori
user-guided extraction, but this would require manual intervention.
Given the right border, selective capture and replay makes it pos-
sible to capture all executions by default, while inflicting minimal
performance and memory overhead. Replays can then be run com-
pletely automatically in the background, which would remove the
need for the user’s intervention, but still capture the correct prestate.

Non-determinism. While most programming languages do not
provide a source for non-determinism directly, programmers can
typically use the foreign function interface to acquire external in-
puts (user input, network, database, etc.), and this can be consid-
ered a cause of non-determinism within the program. With se-
lective capture and replay it is possible to put all sources of non-
determinism into the external part, which makes replays completely
deterministic. Even if a failure-producing trace was dependent on
certain GUI inputs, network connections, or data base state, the re-
play is completely freed from these dependencies.

External state. The foreign function interface also introduces
references to outside data (e.g. window handles, file handles, pointer
to partially untyped C values) and this data that cannot be reflected.
Such state is never directly manipulated within the program; ex-
ternal code is invoked instead. The implicit state minimization of
selective capture and replay removes this dependency on the exter-
nal state (again given that all external code is part of the unobserved
code).

7. CONCLUSIONS
This article explains the fundamentals of the Contract Driven De-

velopment approach. A tool autonomously observes the developer
while he is working on a program and extracts test cases from fail-
ures either provoked by the developer (in the spirit of test driven
development) or by mistake (leading to a regression test). The ap-
proach is novel in that complete test cases are extracted not only
from the information provided by the system under test, but also
from non-permanent clues given by the programmer during devel-
opment.

The approach is introduced by a case study and explained via a
language agnostic model, applicable to arbitrary contracted code.
The extracted test cases are both fast executing, small, and stripped
of many dependencies. To aid the debugging process, failure test
suites can be extracted and give the developer guidance during

multi-step correction cycles. As a corollary to test case extrac-
tion based on failures, we show how the approach can be used to
automatically extract fast executing unit test from slow executing
system level tests.

The Cdd tool implements the idea of contract driven develop-
ment. Cdd is integrated into EiffelStudio, a major Eiffel IDE. De-
velopers can use the tool without changing their development pro-
cess, since the approach is completely non-intrusive. Cdd offers
the advantages of automatic test case extraction from actions that
developers perform anyway while writing source code, and thus
builds up a comprehensive unit test suite and offers support for
functional testing, debugging, and regression testing.

7.1 Acknowledgements
We thank Jocelyn Fiat and Manu Stapf for their support and in-

sights on the compiler and IDE. We are especially grateful to An-
dreas Zeller and Martin Burger with whom we had many discus-
sions that helped shape this work. We thank Bernd Schoeller for
many fruitful discussions.

8. REFERENCES
[1] Jtest. Parasoft Corporation. http://www.parasoft.com/.
[2] ARSLAN, V., EUGSTER, P., NIENALTOWSKI, P., AND

VAUCOULEUR, S. SCOOP - concurrency made easy.
Dependable Systems: Software, Computing, Networks
(2006).

[3] BALCER, M., HASLING, W., AND OSTRAND, T. Automatic
generation of test scripts from formal test specifications. In
TAV3: Proceedings of the ACM SIGSOFT ’89 third
symposium on Software testing, analysis, and verification
(New York, NY, USA, 1989), ACM Press, pp. 210–218.

[4] BOSHERNITSAN, M., DOONG, R., AND SAVOIA, A. From
Daikon to Agitator: lessons and challenges in building a
commercial tool for developer testing. In ISSTA ’06:
Proceedings of the 2006 international symposium on
Software testing and analysis (New York, NY, USA, 2006),
ACM Press, pp. 169–180.

[5] BOYAPATI, C., KHURSHID, S., AND MARINOV, D. Korat:
automated testing based on java predicates. In Proceedings
of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2002), Rome, Italy
(2002).

[6] CSALLNER, C., AND SMARAGDAKIS, Y. Dsd-crasher: A
hybrid analysis tool for bug finding. In International
Symposium on Software Testing and Analysis (ISSTA) (July
2006), pp. 245–254.

[7] FELDMAN, Y. A. Extreme design by contract. In Fourth Int’l
Conf. Extreme Programming and Agile Processes in
Software Engineering (XP 2003) (2003), Springer Verlag,
pp. 261–270.

[8] GARGANTINI, A. Using model checking to generate fault
detecting tests. In Tests and Proofs (TAP 2007). Proceedings
(2007), Y. Gurevich and B. Meyer, Eds., Lecture Notes in
Computer Science, Springer.

[9] GODEFROID, P., KLARLUND, N., AND SEN, K. Dart:
directed automated random testing. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation (New
York, NY, USA, 2005), ACM Press, pp. 213–223.

[10] HOVEMEYER, D., AND PUGH, W. Finding bugs is easy.
SIGPLAN Not. 39, 12 (2004), 92–106.



[11] LEITNER, A., CIUPA, I., MEYER, B., AND HOWARD, M.
Reconciling manual and automated testing: the AutoTest
experience. In Proceedings of the 40th Hawaii International
Conference on System Sciences - 2007, Software Technology
(January 3-6 2007).

[12] MARINOV, D., AND KHURSHID, S. TestEra: A novel
framework for automated testing of Java programs. In
Proc. 16th IEEE International Conference on Automated
Software Engineering (ASE) (2001), pp. 22–34.

[13] MEYER, B., CIUPA, I., LEITNER, A., AND LIU, L. L.
Automatic testing of object-oriented software. In
Proceedings of SOFSEM 2007 (Current Trends in Theory
and Practice of Computer Science) (2007), J. van Leeuwen,
Ed., Lecture Notes in Computer Science, Springer-Verlag.

[14] OFFUTT, A. J., XIONG, Y., AND LIU, S. Criteria for
generating specification-based tests. In Proceedings of the
Fifth IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS ’99) (October 1999),
pp. 119–131.

[15] ORIAT, C. Jartege: a tool for random generation of unit tests
for Java classes. Tech. Rep. RR-1069-I, Centre National de la
Recherche Scientifique, Institut National Polytechnique de
Grenoble, UniversitÂt’e Joseph Fourier Grenoble I, June
2004.

[16] ORSO, A., JOSHI, S., BURGER, M., AND ZELLER, A.
Isolating relevant component interactions with JINSI.

[17] ORSO, A., AND KENNEDY, B. Selective Capture and
Replay of Program Executions. In Proceedings of the Third
International ICSE Workshop on Dynamic Analysis (WODA
2005) (St. Louis, MO, USA, may 2005), pp. 29–35.

[18] OSTRAND, T. J., AND BALCER, M. J. The
category-partition method for specifying and generating
fuctional tests. Commun. ACM 31, 6 (1988), 676–686.

[19] OSTROFF, J. S., MAKALSKY, D., AND PAIGE, R. F. Agile
specification-driven development. In XP (2004), J. Eckstein
and H. Baumeister, Eds., vol. 3092 of Lecture Notes in
Computer Science, Springer, pp. 104–112.

[20] PACHECO, C., AND ERNST, M. D. Eclat: Automatic
generation and classification of test inputs. In ECOOP 2005
— Object-Oriented Programming, 19th European
Conference (Glasgow, Scotland, July 25–29, 2005).

[21] SAFF, D., AND ERNST, M. D. An experimental evaluation
of continuous testing during development. In ISSTA 2004,
Proceedings of the 2004 International Symposium on
Software Testing and Analysis (Boston, MA, USA,
July 12–14, 2004), pp. 76–85.

[22] TILLMANN, N., AND SCHULTE, W. Parameterized unit tests
with unit meister, 2005.

[23] VISSER, W., PASAREANU, C. S., AND KHURSHID, S. Test
input generation with java pathfinder. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis (New York, NY,
USA, 2004), ACM Press, pp. 97–107.

[24] XIE, T., MARINOV, D., SCHULTE, W., AND NOTKIN, D.
Symstra: A framework for generating object-oriented unit
tests using symbolic execution. In Proceedings of the 11th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 05) (April
2005), pp. 365–381.


