This is a slightly revised version of an article published in Software Development, March 2000.
For the published version see

www.sdmagazine.com/documents/s=746/sdm0003d/0003d.htm?temp=N3TyuRoNcQ
(Registration required, but possible for free.)
Copyright Bertrand Meyer, 1999

The Ethics of Free Software

Bertrand Meyer, March 2000

The movement in favor of free and open-source software has recently reached a highly visible
status, not only in the computer profession but in the popular media, with mass-circulation
magazines as widely available as Time and Newsweek giving prominent coverage to such
heroes of the movement as Richard Stallman, Eric Raymond and Linus Torvalds. Comments on
free software in its various form have overwhelmingly been laudatory, hailing the approach for
its selflessness, little attention has been devoted to justifying this assessment and, more
generally, to explore the associated ethical issues.

In this article 1 will try to correct this situation by taking a close look at the moral aspects
of free and open-source software.

1. ABOUT ETHICS

It is useful first to define a basis for this discussion by recalling some principles of ethics. I will
stay away from controversial aspects, limiting the list to generally recognized ideas.

e Ethics is about right and wrong. Human beings are equipped with an ability, partly
innate and partly acquired, to judge human actions as morally good or bad. This does
not mean that “right” and “wrong” mean exactly the same for everyone, simply that
everyone possesses a notion of right and wrong.

e In spite of the diversity of moral views, ethics includes a universal component. The
differences are not only individual (my next-door neighbor may find repellent a
behavior which to me is perfectly acceptable) but also cultural: for example in Western
countries we find it normal that a woman should show her face in public, a conduct that
in some parts of the world is considered immoral. But many principles are culture-
independent. Killing an innocent person, for example, is not morally acceptable,
regardless of your culture. This discussion will assume that there are a number of such
moral absolutes and will ignore more specific principles.

e Ethical rules may be rated as more or less important. Most people would accept all of
the following as consequences of moral imperatives: do not litter a public park by
disposing of a paper napkin on the lawn; if you are sitting in a bus and see that an
obviously tired elderly person cannot find a seat, cede yours; do not steal from the
corner grocery store; do not kill the next person that you see walking peacefully down
the street; do not send tanks, troops and aviation to grab land from your neighboring
country. But some of these are more fundamental than others, meaning in particular that
corresponding violations are more repulsive than others (perhaps, for these examples, in
the order given).

e Human beings have both good and bad impulses. A society in which everyone is evil all
of the time would be impossible to manage; but in no society is everyone good all the
time.

e One should judge people on their actions. Intentions can sometimes provide extenuating
circumstances, but what counts is what people voluntarily do, not the reason they have,
or invoke, for doing it. Hell is paved with good intentions. Aside from other reasons,
limiting ourselves to judging deeds, not thoughts, is easy to justify on purely pragmatic
grounds: you can observe my actions, or at least their results; you cannot tell whether
my excuses are real or imagined.

¢ Not causing unjustified loss of human life is one of the universal moral imperatives.
o Not damaging someone else’s reputation through misrepresentation is another.

¢ Not acquiring someone else’s legitimate property against his will is yet another.

o Justly remunerating someone else’s services is related to the preceding one.

The word “justly” makes the last principle perilous to apply in practice, since fairness is a
subjective concept. Since this discussion is only about ethics, we cannot resolve the issue fully
because this would involve economics (in a market economy, fairness is a tradeoff between
demand and supply). You, my publisher, may offer me $100 for my latest novel, adding that it’s
really boring and you are doing me a favor, whereas |, having spent five years on it and being
convinced that the result is —frankly — brilliant, scream that anything less than a million
would be a moral outrage. Ethics won’t bring a resolution here, only economics and the strength
of our respective negotiating positions. But if | accept your proposal and the next day you sell
the rights to Steven Spielberg for $10 million, many people will consider that you have done me
wrong ethically.

An area perhaps more directly related to ethics than economics is the law. In an ideal
world, there might be perfect identity between the legal and the moral. But not in the real world.
What’s legal is not necessarily moral: it is not very moral to say nasty things to your mother on
her birthday, but you’re not violating any laws. What’s moral is not necessarily legal: not so
long ago Southern US states forbade a white person from bringing a black acquaintance into a
“whites only” public place, contradicting the obvious moral imperative that one should not
discriminate against people because of the color of their skin. It would be exaggerated and
cynical to infer that there is altogether no connection between ethics and the law; but at most
what the law will give us (even if we exclude obviously immoral laws like the last one cited) is,
rather than an absolute criterion, a rough indication, valid for a particular place at a particular
time, of practices deemed socially desirable, partly for moral reasons and partly for others.

2. ABOUT FREE SOFTWARE

Even among the proponents of Free and Open Source software the definition of these terms is a
constant source of controversy. For example the GNU project (at
http://www.gnu.org/philosophy/free-software-for-freedom.html) chides Eric Raymond’s Open
Source initiatives for attempting to trademark the term “open source”. It also criticizes many
providers of free software such as Apple (see www.gnu.org/philosophy/apsl.html), the Berkeley
Unix Software distribution (bsd.html in the same directory) and Netscape (netscape.html) for
not observing the exact GNU definition of “free”, or using license terms different from those of
GNU. It would thus be futile to attempt to provide a comprehensive definition here. For the
present discussion, however, the general scope is clear; we consider software that:

e s legally available from without payment from at least one source (which does not
preclude other sources from offering it for payment, for example to people who want a
distribution on CD rather than downloaded, or require commercial support).

e Can be used for commercial as well as not-for-profit development, even by people who
have not paid for it. (There may be some restrictions on commercial uses, for example
the requirement that additions to the free software be free t00.)

e Can be obtained in source code form, and hence modified.

Until it arrives at a more precise set of definitions (in section 3), this discussion will use the
term “free software” to denote products that satisfy the properties listed above. Note that this is
not the definition promoted by the GNU project, which, as we will see, uses “free” in a much
stronger sense. The intent is not to fight over terminology, but simply to make do with the
limited number of terms in the English language. In addition, the rapidly growing interest in
“free” software extends to many products that would not be considered free under the GNU
definition, but fall well within the one above.

The growth of free software has indeed been remarkable in the past few years. One of the
most visible results has been the Linux operating system, developed under the leadership of
Linus Torvalds and nominally available at no cost (although usually installed from a CD
obtained, for a price, from a commercial company). Other widely used free tools — some
having for-a-fee variants too — include the TEX and LATEX document processing utilities, a
quasi-standard for preparing theses in computer science departments; GCC, the GNU project’s
C and C++ compiler; Apache, one of the most widely used Web servers; the FreeBSD operating
system kernel, a Linux competitor; the EMACS and VIM text editors. Through these and other
products, the free software movement has already established an indelible mark on the computer
industry.

Perhaps the most striking aspect of this movement is the worldwide availability of often
talented software developers willing to contribute their time, energy and creativity to free
software.

It is this pool of enthusiastic contributors, willing to work even without immediate
monetary reward, that has led in part to the general feeling of goodwill surrounding the free
software community.

It should be pointed out, however, that the existence of a community of dedicated, well-
intentioned and sincere defenders of a cause is unrelated to the ethical value of that cause. As an
example, one of the tragedies of the twentieth centuries has been the diversion of the energy and
passion of countless honest and idealistic volunteers towards support for Soviet-style
communism, a regime that cause tens of millions of deaths, uncounted cases of human misery,
and the destruction of civil society in entire countries. This example is obviously not a

comparison with the free software community, simply a reminder that no idea can be justified
on the basis of the quality of its supporters. The observation works the other way too: bad
people can defend good causes. A corrupt and dishonest politician may sincerely support
principles of democracy and freedom. His personal failings do not disqualify the ideas of
democracy and freedom any more than the Nazi regime’s impressive building of autobahnen
disqualifies the merits of freeways.

3. THE ECONOMICS OF FREE SOFTWARE

The term “free software” (with the earlier definition, implying availability at no cost) is almost
always a misnomer since software is produced by humans and in modern societies no human
can live without money; so even if no one paid for the software someone must have paid the
software developer. In practice the only possible cases are the following:

e The software developer may have a personal fortune freeing him from the monetary
concerns of most of his fellow human beings. Although this case may have occurred in
connection with free software, 1 am not aware of any example. We may treat it (if it
arises) as a special case of the next one.

e The software developer may have other sources of income, paid by an employer or
client as compensation for services unrelated to the free software. The developer may
then, in his own time and using his own resources, without direct or indirect
participation of the client or employer, and without violating agreed restrictions on
external activities, develop products that he makes available as free software. As will be
clear from the other cases, this is in the only case in which it is really appropriate to talk
of “free software”, although this term is in fact too weak; “donated software” would be
more accurate.

e Many public institutions such as universities will release for general use most of the
software developed by their employees (although, as universities around the world are
being pressed by the purse-string holders to enhance their economic value, and
recognize the economic potential of the software they develop, this generous attitude is
not as universal as it used to be). In this case the software may be free to its users but it
was not free to produce. “Free software” is a misnomer; one should talk, in the case of
public universities, of Taxpayer-funded software. For example the GNU Eiffel compiler
was developed at the University of Nancy by employees of that university who (in
contrast with commercial Eiffel vendors, who need paying customers to survive) get
every month a salary from the state, whether the users are happy or not with the
product. This is a typical case of taxpayer-funded software.

o Companies may find it beneficial to release some of their software products without
asking for a fee. The goal may be: favorable publicity; an attempt to establish the
company’s chosen solution as the standard, thus gaining a competitive edge and moving
technologically one step ahead of the competition; a desire to get rid of maintenance
costs and efforts by offloading the work to unpaid (or more commonly paid by someone
else) volunteers; a sincere effort to help the community; several of the above. In this
case we should again not talk of free software; the phrase should be “privately funded
software”.

e It may be useful to define a special case of the previous two for situations in which the
developers were not officially required by their supervisors to develop the software, but
did it anyway on company time, or using company resources, or both, and were then
authorized to release for free. For example Richard Stallman’s description (at

www.april.org/actions/rms/10111998/texte.html) of the origins of his EMACS editor,
one of the most visible early examples of free software, makes it clear that this
happened as part of his job as systems programmer at the Massachusetts Institute of
Technology. Although this is very close to the previous two cases, we may use the more
specific terms “Taxpayer-sponsored software” and “Privately-sponsored software”.
Even the icon of free software, GNU, started in the same way according to Stallman (on
the page just cited)1:

*“So | resigned from MIT and | started to write the GNU system in January of
1984. Fortunately the lab’s director allowed me to continue using the lab’s
computers. | assume that | could have found machines elsewhere, since the
EMACS program | had written was rather respected, but that way | didn’t have
to look.”

The story goes on to state that Stallman later “resigned” — presumably meaning that he
stopped using the MIT’s machines, since it appears from the above that he had already
resigned — because “sometimes, universities take software written by their employees
to sell them as proprietary products”. (What a shame indeed: that a university would
think it has any rights at all on products developed by people it pays, on machines that it
owns!)

The categories identified here — donated, taxpayer-funded, privately-funded, taxpayer-
sponsored and privately-sponsored — seem to exhaust the economic possibilities; they provide
precise and accurate terminology, more useful in practice than the catch-all term of free
software.

4. VOICES FROM THE REVOLUTION

Many of the contributions of the free software community are admirable. Highly disturbing,
however, is its common hatred and slander of the commercial software world.

Richard Stallman from GNU and the Free Software Foundation (FSF), the best-known figure of
free software, professes an absolute refusal of any notion of commercial software. Software
should be free, period. A few samples from the GNU and FSF web pages include:

“Signing a typical software license agreement means betraying your neighbor: ‘I
promise to deprive my neighbor of this program so that | can have a copy for myself.””
(www.gnu.org/philosophy/shouldbefree.html.)

“When a program has an owner, the users lose freedom to control part of their own
lives.” (www.gnu.org/philosophy/why-free.html.)

“The system of copyright gives software programs ‘owners’, most of whom aim to
withhold software’s potential benefit from the rest of the public. They would like to be
the only ones who can copy and modify the software that we use.” (Same URL.)

“l think that to try to own knowledge, to try to control whether people are allowed to
use it, or to try to stop other people from sharing it, is sabotage. It is an activity that
benefits the person that does it at the cost of impoverishing all of society. One person
gains one dollar by destroying two dollars’ worth of wealth. | think a person with a

! The reference cited is a transcript of a lecture given in Paris by Dr. Stallman, in French, in November of 1998. The
citation, as well as two later ones from the same source, is a literal translation into English.

conscience wouldn’t do that sort of thing except perhaps if he would otherwise die.”
(BYTE interview, www.gnu.org/gnu/byte-interview.html.)

And so on (there are countless other examples). These are strong indictments, based on moral
terms. They are morally unjustifiable. Nowhere in the hundreds of pages of GNU and FSF
literature is there any serious explanation of why it is legitimate, for example, to make a living
selling cauliflowers, or lectures (as a professor does), or videotapes of your lectures, but
criminal to peddle software that you have produced by working long hours, sweating your heart
out, thinking brilliantly, and risking your livelihood and that of your family.

This absence of rational justification for the extremist view that all commercial software
is evil is all the more striking given that some other parts of the GNU/FSF literature can be
serious and reasoned. Its criticism of software patents, for example, is often cogent, and takes
the trouble of presenting the opposite view to refute it. As soon as the discussion is about free
software — and that’s where it is much of the time — argument yields to excommunication.

The only stated justification for the indictment of commercial software — apart from
nostalgic reminiscences of how nice life was in the early days of the MIT Atrtificial Intelligence
Laboratory, and how horrible it became when printer manufacturers started distributing the
software in binary form, a tale that may elicit sympathy from the reader but hardly has any
universal moral value (I too remember fondly when you could get access to US National Parks
for free by just showing a foreign passport, but that doesn’t mean the National Park Service has
suddenly turned evil) — is that software is different from other wares since it can be reproduced
so easily. But this does not stand a minute’s scrutiny. The difference is a matter of degree, not
nature; software reproduction always costs something, even if it is as little as a dollar for a CD,
one cent of network connection time for an Internet download, or the marginal cost of using up
more memory. With a good scanner or photocopier, you can reproduce a book, too, for very
little money these days. Yet another example is TV signals from satellites, which unlike
software are in fact truly free to reproduce once you have paid for your own antenna and
receiver. We may grumble at having to pay for a mere wave in the ether, but is it immoral?
Most people don’t think so, accepting instead that it would be immoral to obtain the contents of
the signals without economic compensation to the people — producers, actors, technicians —
who worked to produce it.

In any case the idea that a low reproduction cost should imply a free product has no
rational basis. In fact no known moral law implies that purchase cost should even be related to
production cost. | may find ridiculous the idea of paying eight times as much for a BMW as for
a Toyota Corolla if I guess that it costs far less than eight times as much to produce; but that
doesn’t make BMW guilty of moral horrors. This is a purely economic issue (how much is
prestige worth to the buyer?).

A social philosopher preoccupied with fairness might argue that, as every American is
entitled by birth to an affordable car, denying it is a moral outrage; but this is unrelated to the
issue since Toyota’s cheaper prices are presumably due not to superior social awareness but to a
self-serving business strategy — the decision to target a different market.

The GNU and FSF view is that it is OK to sell anything except software. (To be precise, |
have not found any example of something else whose selling they find immoral; satellite signals
might seem a logical candidate.) Computers are OK; services are OK. But if the work of your
life is a great software package, trying to make a living out of selling it — unless you also give
it away, an immediate business-killer — is a moral abomination. It should be pointed out here
that history suggests the reverse moral lesson. Until the 18th century, writers were ripped off by
publishers. The gradual imposition of a copyright (due largely in France to Beaumarchais,
author of the Barber of Seville and the Marriage of Figaro as well as smuggler of arms to the

American Revolution) was a major moral correction, re-establishing the rights of the creators.
The new idea was that the “software” (the abstract contents) had a value, not just the
“hardware” (the actual paper, leather and ink making up a physical book). One of the first
authors to benefit from this new economic order was Voltaire, who used his great wealth,
arising originally from the sale of his books — his software —, to fund his lifelong fight against
tyranny and injustice. The extremist free-software view would have us return, for software, to a
pre-eighteenth-century world: you can make money from selling CDs, but cannot protect the
contents of those CDs!

GNU’s and FSF’s use of moral terms to indict commercial software providers, without
any moral basis, relies on a perverse distortion of language. The authors take pains to explain
that “free” means not cost-free but available for modification by anyone. Free as in free speech,
the cliché goes, rather than free beer. This is acceptable: after all, the word “free” is ambiguous
in English, whereas other languages distinguish between liberty (as in libre) and zero cost (as in
gratuit). It is common, in scientific and technical discourse, to use a term from everyday
language in a specialized sense, as long as you state your definition precisely and stick to it. But
the use of “free” and “freedom” in the GNU literature is far from neutral. Much of that literature
is in effect a pamphlet demanding “freedom” for software developers. The GNU license itself
reads not like a license but like a manifesto against the evils of proprietary software. These
passionate speeches, based on a specialized notion of “freedom”, use the universal appeal of this
word, derived from centuries of humankind’s struggle for freedom in the usual (political and
moral) sense of the term, to defend the authors’ own agenda, based on a narrow and
controversial notion of freedom.

This distortion — the hijacking for private purposes of a word that holds such a sacred
aura for most people — is unethical.

Extreme analogies are another dubious rhetorical device. One of the first comments one
encounters in the GNU pages (www.gnu.org) is a comparison to the Soviet Union:

“All four practices [of the Software Publishers Association, to prevent theft of
software] resemble those used in the former Soviet Union, where every copying
machine had a guard to prevent forbidden copying, and where individuals had to

copy information secretly and pass it from hand to hand as ‘samizdat’.

There is a comic side to such pronouncements; hearing the epitomes of capitalism — Microsoft
and such — accused of bolshevism by a group that advocates collective property of all software
seems bit far-fetched. In fact Bob Metcalfe, in a recent Infoworld column, did not hesitate to
write that “Richard Stallman is a communist”. I do not actually think such comments are
particularly useful; the best way to counter the sometimes outrageous attacks of the most
extreme “freedom” advocates may be to keep a cool- headed, rational attitude, and not try to
match their antics. (Dr. Stallman himself said, in response to a Byte interviewer, that he is
neither a socialist nor a communist.)

It would all the same be a mistake to portray that group as slightly eccentric do-gooders.
Their propaganda is a campaign of hatred against people whose only “crime” is to want to make
a living out of the wares they produce. A recent encounter with Richard Stallman illustrates this
attitude. Mutual friends had thought it a good idea to bring him and a commercial software
developer to a dinner party in a restaurant. The software developer, curious about the idea of
free software and interested in sharing ideas with a creative colleague with a different
background, tried to open a friendly discussion with: “I am a commercial software developer,
but | appreciate much of your work and have in fact recently changed the terms of our free
software license as a result of your observations”. Unfortunately, he never in the entire evening
got to the “but”, as the opening triggered an explosion of abuse to the effect that in such a case

there was not even anything to discuss, commercial software being the most horrible thing on
earth and a denial of everyone’s right to freedom. The rest of the evening, needless to say, was
rather painful, as no one likes friendly overtures to be met with violent rebuke. It also led the
commercial software developer, who until then had not been unreceptive to the quasi-universal
eulogy of free software, to a much more carefully researched assessment of the pros and cons of
the movement.

It is unfair, of course, to judge an idea from the character of its proponents. But in the
case at hand the connection is close, as Dr. Stallman is the living icon of the free software
movement, widely admired, imitated and idolized (almost like a sect leader) by his followers; he
is also listed as the author of much of the GNU literature — the only one, in fact, in the
documents that | have seen. So his attitude shapes much of the free software community’s
perception of commercial software.

That perception is that commercial software is evil. In fact, one of the catchy GNU links
is entitled “Is Microsoft really the great Satan?”. The page to which it leads
(www.gnu.org/philosophy/microsoft.html) gives the answer. In short, yes indeed, but don’t just
pick on Microsoft; anyone else who “denies users their rightful freedom” (i.e. sells software) is
just as satanic.

5. A SKEWED MORAL PERSPECTIVE

The preceding citations indicate that free software advocates condemn commercial software
vendors (meaning most of the industry) on the basis of moral absolutes. As later citations will
show, they present themselves as generous benefactors of humanity. What is striking is the
reduction of all software-related moral issues to one aspect, a special notion of “freedom”, as if
nothing else mattered. This leads to pronouncements that would be funny if they weren’t also
scary at times. Dr. Stallman writes at www.april.org/actions/rms/10111998/texte.html:

“[...] scientists used sometimes to be able to cooperate even when their countries were
at war. | read that once American soldiers who landed on an island of the Pacific
Ocean, during World War I, found a building with a note saying: ‘To American
soldiers. This building is a marine biology laboratory. We put all our samples and
reports in order so that US scientists can go on with our work.” Because, for them, they
were working only for humanity. Not only for Japan. They wanted their work to be
useful for humanity, regardless of the outcome of the war. But today we live in a state of
civil war between small groups, in every country. In which every group acts to stop the
others, hinder the others, hamper the others. It’s sad.”

Ethically, this is appalling. In the absence of a reference it is not clear where the anecdote
comes from; but to cite as an ideal, without so much as a qualification, one alleged act of
scientific chivalry from a country whose troops conducted World War 1l as an series of
atrocities including countless war crimes, and to claim that the situation of today’s peaceful
industrialized societies is “sadly” worse (a “civil war”) because some selfish people refuse to
share the source of their software, shows a noxious contempt for the hierarchy of ethical values.
What would a survivor of the horrendous Singapore POW camps or the Rape of Nanking think
of Dr. Stallman’s little miseries resulting (as described a few lines down from the above extract)
from computer manufacturers that

“took the X Window system [originally free software from MIT], compiled it for their
system, and distributed copies as a proprietary product with exactly the same lack of
freedom as with Unix.”

This is the danger of single-issue proponents: they lose all sense of perspective and start
thinking that their perceived “moral” problem is the only one that counts.

Here is another example of the consequences. Eric Raymond, another of the leaders of
the free software movement — although he prefers the term “open source” — uses his Web
page to proselytize for gun rights. One quote will suffice, although readers interested in this
propaganda can find it at www.netaxs.com/~esr/quns/gun-ethics.html and neighboring pages.
The title is Ethics from the Barrel of a Gun: What Bearing Weapons Teaches About the Good
Life; note the reference to ethics. It starts:

“There is nothing like having your finger on the trigger of a gun to reveal who you
really are. Life or death in one twitch — ultimate decision, with the ultimate price for
carelessness or bad choices. It is a kind of acid test, an initiation, to know that there is
lethal force in your hand and all the complexities and ambiguities of moral choice have
fined down to a single action: fire or not?”

Such balderdash would be easy to dismiss if it were not highly visible from the author’s Open
Source pages (I came across it when looking for Mr. Raymond’s famous essay, The Cathedral
and the Bazaar) and didn’t have any ethical implications.*

A bit of background is useful for non-US readers. A minority of gun nuts (a term that Mr.
Raymond actually applies to himself), supported by an all-powerful lobby, the National Rifle
Association, has managed to terrorize Congress into maintaining loose gun laws with no
equivalent in the rest of the civilized world. The official pretext — the Constitution’s Second
Amendment, devised in the late 18th century to establish a popular, Swiss-style militia guarding
against the return of oppressive power — is absurd for many reasons: there is ho Swiss-style
militia in the US (guns are used for pleasure and, of course, for killing ordinary people); the US
political system has a remarkable combination of checks and balances, making the imposition of
a dictatorship rather unlikely; the historical exceptions to this observation — such as
McCarthyism and institutionalized racial discrimination — were not, if memory serves us well,
met by armed resistance from an outraged citizenry; and a real aspiring dictator would have
means of oppression, such as missiles, tanks and perhaps nuclear weapons, against which even
the sophisticated guns on which Mr. Raymond roves ecstatic in his Web pages would be rather
powerless.

But the results of such a stance are clear to everyone, and a shock to citizens of other
democratic countries: a murder rate higher than in any other first-world country, a constant race
between police and criminals for ever more lethal weapons, free availability of murderous
devices in barely regulated “gun shows”, 12-year-olds trained in weapons since kindergarten
who go on shooting rampages with guns borrowed from the family cupboard. Month after
month, the reports of death and devastation, most avoidable with the common-sense rules in
place in other countries, hit the headlines. To which the “gun nuts” respond with: “Guns don’t
kill people, people do”. (Sure. Try murdering fifteen of your co-students and five of your
teachers in five minutes with a kitchen knife.)

Is it right, one might ask, to make a connection between Mr. Raymond, who is only one
person, and the rest of the free software community? Although some readers will disagree I
believe the answer is yes, for at least three reasons:

% This passage about Raymond’s gun advocacy caused a lot of criticism from some readers, as the issue is
highly controversial in the US. | have left it for completeness, but it is only a side argument; the reader
who doesn’t agree with me on this point can ignore it, as the rest of the discussion stands without it.

e His propaganda is prominent in his Web pages, one of the most frequently accessed
sources of information about the free software movement, to which the media’s
references draw countless unsuspecting visitors.

e Eric Raymond has been one of the most visible proponents of the Open Source
movement, widely interviewed and cited. He is a public person; his views inevitably
commit the rest of the movement unless it disavows them.

e They have not indeed, as far as | know, been publicly disavowed by other open source
leaders; for example Richard Stallman, whose differences and competition with Eric
Raymond are widely known, has not to my knowledge — dissociated himself from the
gun propaganda.

These other leaders would be well-inspired in my opinion to dissociate themselves from
Raymond’s view of freedom, and confirm that it’s not what they have in mind. Given the choice
between

e a society where all software would be proprietary, and civilized measures would be in
place preventing (for example) a disturbed white supremacist from buying a police gun
without any background check at a gunshow, then going to a Jewish day camp in Los
Angeles to shoot at everyone in sight (a tragedy that happened just a few weeks ago);

e asociety where all software would be free and Mr. Raymond’s views on gun “freedom”
were fully realized

any ethically conscious person would choose the former. The free software advocates should
acknowledge that some issues are more important than who owns software, and that human life
is one of them.

6. THE QUALITY CONCERN

One issue that is less important than human life (except that it may ultimately affect human
lives) but has obvious ethical resonances is the quality of the software a programmer produces.

Isn’t it relevant, for an ethics-preoccupied software engineer, to worry about this aspect?
Is it more or less important than software ownership?

In a way, it is unfair to take the free software advocates to task on this issue because part
of the success of offerings such as Linux and GCC has been their reputation for quality, and the
often repeated comment that, if you find a bug in one of these products, you will have a much
easier time reporting it and getting it fixed than if you try calling Sun® or Microsoft customer
support about a problem with their proprietary, binary-only products. With open source you
benefit — so the explanation goes — from the collective ability of many people to dive into the
code and find out what’s wrong.

This reasoning is largely correct, at least for some of the major free software products.
Linux and GCC are widely praised by their users. Yet not all is rosy. Like commercial software,
free software is — surprise — of very variable quality. You find the best and the worst. My own
experience with free software has included both kinds. Recently, my company has had more
than our share of the second; we have had to cancel one major project, and reengineer a product
completely, after wasting many person-months and disappointing customers, because of the
deficiencies of two separate GNU products (the GCC compiler for Windows and the editor

® Since the appearance of this article a significant part of Sun’s software has been open-sourced.

under GTK). In both cases the scenario was the same: fixes to well-known bugs being promised
and promised again; everyone waiting for months and months, until it becomes clear that
nothing will happen; in the end, having to write off all the affected developments. Since no one
is in charge, and you didn’t pay for the products, there is no one to blame.

Even in products that are good or excellent overall, the distribution of work among many
people may mean a high degree of variation between components of a product. One person who
doesn’t share the general enthusiasm for Linux is Ken Thompson from AT&T, co-creator of the
original Unix and recipient of the Turing award (the “Nobel prize” of computing). In a recent
interview he couldn’t contain his scorn for the quality of the Linux code:

“I’ve looked at the source, and there are pieces that are good and pieces that are not ...
My experience and some of my friends’ experience is that Linux is quite unreliable.
Microsoft is really unreliable but Linux is worse.” (IEEE Computer, 32, 5, May 1999,
page 61.)

In a different case, the newsgroups comp.risks recently published a report of rather horrendous
and elementary C errors found in a quick and simple check of the source of the FreeBSD
operating system (see catless.ncl.ac.uk/Risks/20.18.html#subj9.1).

Even though the GNU products are often good, the licenses which accompany them are
no better, in the warranties (or rather absence thereof) they offer to the user, than commercial
software. A typical quote, from www.gnu.org/software/year2000.html:

“The Free Software Foundation does not provide warranties for its software. We can’t
afford to. So we can’t promise that GNU software has no Year 2000 bugs, any more than
we could promise you the same thing about another sort of bug.”

It is indeed amusing to note, in the GNU public license, the place where the inflammatory
proclamations about freedom stop and the tone becomes much more measured. That is also —
surprise! — the place where the license switches to the topic of software “warranties”. At this
point the discourse begins to sound much more familiar (upper case in the original, see
www.gnu.org/copyleft/gpl.html):

“EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.”

Doesn’t this sound familiar? Where have we seen it before? Oh yes! In the hated “proprietary”
licenses, those which “take away your freedom and mine”: no warranty of any kind; “AS IS”;
caveat emptor.

In using such terms the GNU license is neither better nor worse than most of the rest of
the industry. Very few providers of software are able, today, to warrant their software the way
producers of non-software artifacts warrant their offerings. (It should be pointed out, however,
in reference to the first of the quotations above, that Y2K-compliance guarantees are becoming
increasingly available.)

We cannot be too harsh on GNU and consorts in this respect. But given the violence of
their attacks on the rest of the software industry, and their self-positioning as freedom-
defending angels, it is fair to ask: do you have your priorities right?

Here is a hypothetical question to help understand what’s at stake. Assume two pieces of
software with a similar purpose. We could imagine for example that they are both for managing
a surgical device or airplane controls, but let’s not make things unnecessarily dramatic and
simply assume a normal software application, important and useful but not necessarily life-
threatening — a text editor, a compiler, a graphics library, a Web server. Now assume that the
two products differ as follows:

e Product F is free software. It comes with the standard no-warranty warranty.

e Product P is proprietary software. It costs $50 for the binary-only version. It uses the
most advanced techniques of software engineering. It never crashes, or departs in any
way from its (mathematically expressed) specification. The seller is, in fact, so sure of
those qualities that he will commit in writing that any violation of the specification
during execution will immediately lead to reimbursement of the purchase price and
compensation for any damages incurred.

According to the free software literature, product F, being the only one that preserves users’
“freedom”, is the ethical one. The seller of product P is still a repugnant profiteer.

The question, left as an exercise for the reader, is: which one of these solutions do you
consider the more ethical? Auxiliary question: does your answer change if the price of the
product becomes $5000? $50,000? $5 million?

Hypothetical though they may be (an unfortunate result of the current state of the art in
software engineering), these are bona fide questions. | think I know my own answers: | would
consider the second solution more ethical (certainly at $50, and possibly regardless of the price,
unless perhaps someone can show that it takes advantage of an undue monopoly), but | don’t
claim these are the only possible answers. The free software advocates, for their part, do sound
like they have found the truth. What I mostly see is that by concentrating on one aspect of the
picture they have developed a skewed view of ethics, which can, by itself, become unethical.

Second auxiliary question for special credit: you think the revolutionary software
development technigque you have just invented makes it possible to produce provably bug- free
products such as P. You need $20 million dollars to productize it. Your university will be glad
to pay for a postdoc for six months if you teach an extra course. The government funding
agencies, after taking a year to review your application, tell you to get lost as your proposal has
no commercial value. (Public funding is very much “goal-oriented” these days.) But you have
found a group of investors that values your idea. Of course they expect to make a huge windfall
from their investment, so they’ll laugh if you suggest free software.

The question: should you go with them, or is it more ethical to turn down the proposal
and devote the next five years of your life to a free LATEX extension for Babylonian
cuneiform?

7. PRODUCTS AND SERVICES

If we accept that the matter of software quality may have ethical implications, one of the tenets
of the free software movement becomes rather disturbing. The free software axioms hold, as we
have seen, that although charging for software is wrong it is all right to charge for services
associated with the software, such as maintenance and training. The risk here is that such an
attitude may lead to products with known deficiencies, giving the provider a ready-made source
of juicy service contracts.

To date, there is no proof that any provider of free software has engaged in such
practices, so it would be unfair to turn this worry into a criticism of the current state of the art in
free software. But as a worry it is legitimate, especially at a time when ever bigger fish from the
mainstream software industry clamor their newly discovered fondness and enthusiasm for the
gospel of free software (proclamations which, in some cases, cannot but leave a strange
aftertaste).

The practice of releasing products that are just good enough to convince buyers, and just
bad enough to turn into service cash cows, is not unheard of in the software industry: anything
to make a buck. This is not the fault of the free-software people. But their all-out focus on one
single issue, “freedom” as they define it, and their refusal to attach any ethical value to another,
quality, does nothing to help advance this critical component of the software profession’s social
and moral responsibility to the world around it.

8. HOLIER THAN THOU

Why do people write free software? The free software literature mostly cites one motive: an
altruistic desire to help fellow human beings. Richard Stallman had this to say at the start of the
GNU project:

“I’m looking for people for whom knowing they are helping humanity is as important as
money.” (www.gnu.org/gnu/initial-announcement.html.)

and recently (Linux World, 1999):

“Although we do business to make a living and live, there are things that are above and
beyond that. Such as making the world a better place.”

Wow!

GNU describes its goals (www.gnu.org/philosophy/pragmatic.html) as “pragmatic idealism’:

“Every decision a person makes stems from the person’s values and goals. People can
have many different goals and values: fame, profit, love, survival, fun, and freedom, are
just some of the goals that a good person might have. When the goal is to help others as
well as oneself, we call that idealism.

My work on free software is motivated by an idealistic goal: spreading freedom and
cooperation.”

The already cited Paris lecture opened up (no trace of any pandering to the audience) with:
“I can describe the idea of free software in three words: liberty, equality, fraternity.”

The reader does not have to be a cynic to start wondering, after a few too many affirmations of
one’s unmitigated devotion to the sole purpose of “helping humanity”, what the real story is.
Saints do not typically go around clamoring “l am a saint”. Tartuffe, however, did. (Moliérere’s
Le Tartuffe, ou I’Imposteur is required high-school reading in France. Maybe that’s why French
people often have such a hard time taking proclamations of absolute abnegation seriously.)

Questioning the motives of self-proclaimed benefactors of humanity is only normal, if
only because they themselves not only question the motives of those whom they views as
enemies of humanity (the commercial developers) but openly present them as liars:

“The economic argument [for charging for software] goes like this: ‘I want to get rich’
(usually described inaccurately as ‘making a living’)”
(www.gnu.org/philosophy/shouldbefree.html).

This slandering of commercial software developers, presenting the asserted desire to “make a
living” as a lie covering their unabated greed, is pretty outrageous. It is all the more revolting,
from an ethical standpoint, in view of the reality that many developers of “free” software of the
taxpayer-funded category have the comfort of a monthly salary from an institution that cannot
legally go bankrupt, such as a state-funded university. This provides a convenient vantage point
for bashing commercial software developers, who have often put everything at risk to pursue
their ideal. Many of them fail miserably, gaining only ruin and a divorce; some manage to
“make a living”; a few will become rich, as they are indeed entitled to if their talent, effort,
business sense and luck get them there. The functionaries have no right to deny them this right
to live from honest work.

Here it should be pointed out that besides money a common motivating force for software
entrepreneurs is their rejection by traditional institutions, including those who support free
software. Many a successful industry figure has told the story of how he or she went to
management with a great idea, only to be rebuked, and was so outraged by the reaction as to go
away, implement the idea as a software package, and prove the idiots wrong. The motives of
such people deserve respect, not abuse.

Even if all commercial software developers became wealthy, there would be no ethical
basis for picturing them as greedy liars. Wanting to get rich is not morally reprehensible. If it
were, shouldn’t we hate people who buy lottery tickets? We don’t. (Moralists tend to reserve
their scorn for the lottery organizers.) At least the entrepreneur who starts a software company,
perhaps with the hope of becoming rich, takes a personal risk, far higher than the price of a
lottery ticket. That doesn’t automatically make her a hero — and it is indeed one of the
differences between commercial and “free” software developers that the former do not, in
addition to other expected benefits, demand that the world hail them as saintly benefactors of
humanity. But it also doesn’t make her a despicable thug. There is nothing wrong about
believing enough in one’s ideas, and ideals, to put one’s livelihood at stake.

The character assassination of commercial software developers by the extremists of free
software, and their failure to accept that people with different views of the world can be honest
and even idealistic in their own ways, has no moral basis.

It would be a natural reaction to counter at the same level, and dismiss the free software
folks as a bunch of hypocrites. That would be a mistake. One should not respond to intolerance
by intolerance. (And you never know: someone might, after all, advertise his sainthood and be a
saint, if an immodest one*.)

We should, as noted, question their motives; but this does not necessarily mean
dismissing these motives as obvious lies. We must investigate them with an open mind,
expecting that we will find cases of the advertised generosity — along with other impulses,
some noble, some self-serving. We must, in other words, dispassionately try to understand,
beyond the self-aggrandizement of some of the free software literature, why people do write
free software.

* In the name of full disclosure, the reader must be warned that all comments about sainthood in this
article are based on hearsay rather than on the author’s personal experience or encounters.

9. REASONS FOR PRODUCING FREE SOFTWARE

People who stumble across free software for the first time are often surprised that anyone would
willingly decide to give up any fees for the products he or she develops. But in fact it is not hard
to find several reasons why, for many developers, this makes sense. All the reasons cited below
occur quite commonly in practice.

According to some of the literature cited above, the sole reason is desire to do good. It is
not the sole reason, but may be a reason. Someone sincerely wants to help the rest of the
industry with software tools. There is no cause to doubt that this is often part of the free
software developers’ motives.

Another common motive is the realization that there is no money to be made from the
development. You make your software free because you feel that you couldn’t sell it anyway —
there is no market, or you can’t find investors to get a company started, or you realize you are
better at programming than salesmanship. These days, for example, few people will pay for an
editor; it is not surprising that many editors are free. Netscape, to take another example, only
made its browser free (in two different ways: permitting use of the binary versions at no cost,
and releasing the Mozilla product as open source) when Microsoft made its own Internet
Explorer available on Windows at no cost, killing the market overnight. Until then, the
Netscape browser was sold for a fee.

A motive that combines some of the previous two is the attempt to correct limitations or
deficiencies of existing tools. You are not completely happy with an existing product
(commercial or free) and fear that its producer won’t correct the problem fast enough for your
needs; so you decide to go ahead and do it yourself — either as an add-on to the existing
product or as a redevelopment. You may feel, especially in the case of an add-on, that your
contribution is not significant enough to convince people to buy the result.

Making a product free is also a great way to enlist the help of others. You realize that you
can’t do everything by yourself and discover that free, open-source development helps you find
collaborators. One of the marvelous effects of the Internet has indeed been to enable software
developers to put out announcements and obtain help from many people, often complete
strangers until then, all over the world.

Another common reason is the desire to learn. You want to enter a new, promising area
but don’t know much about it. Because this is you first foray into that area, you realize that no
one would pay you for developing the product, but that’s OK because the primary benefit you
expect is education. You realize that the best way to learn is often to do. Often this case implies
the previous one as well: by developing the software in a free and open fashion you hope to get
help from people who are also learning, or (better yet) already know the field.

Related to the desire to learn is increasing one’s marketability. The industry is always in
need of talented software engineers, but everyone who has to hire developers knows the
incredible range in programming skills — most managers will readily admit that they see a ratio
of 1 to 20 in the productivity of people with seemingly comparable backgrounds — and how
difficult it is to evaluate candidates based on anything else than their tangible record of actually
producing successful software. If you want to price yourself above your peers, what’s better
than spending a couple of years building a great free utility, then come to a technically savvy
recruiter and say “Oh, by the way, | wrote the WIMP (Wimp Isn’t Microsoft Project) Microsoft-
Project look-alike for Linux, which 15,000 people download every day and Red Hat includes in
its distribution”. A great way to help the world, nibble away at the Great Satan of Redmond, and
advance your career.

Also frequent is the desire to make money. This seems contradictory with the notion of
free software, but is in fact quite compatible. At the time of writing, the stock market has just
seen a successful IPO for Red Hat, a provider of Linux deliveries all based on free software.
Anything Linux-based makes investors vibrate (almost as much as anything Internet-related). A
number of companies, such as Cygnus (which according to the GNU pages has more than 50
employees) have built their business around distributing and servicing free software. Eric
Raymond writes:

“l expect to be quite wealthy once the dust from the Linux IPOs has settled.”
(www.netaxs.com/~esr/travelrules.htm)

There is nothing wrong with this — except when commercial developers trying to “make a
living” are accused of moral perversion because their alleged secret motive is ... to become
wealthy. One can only compliment the founders of Cygnus and Red Hat: they saw in free
software a great business opportunity, and banked on it. It is indeed true in some cases that you
can make more money by giving away the software and charging for services. But it’s an
economic strategy, not an ethical matter. A business model is not a moral imperative.

This list of motives is not in order of importance, but if it were we would probably have
to put pretty close to the top the search for glory. People want to get famous by writing a
program that everyone will use. It is indeed interesting to see that many of the advocates of free
software suffer no visible atrophy of the ego organ. An extreme case is Richard Stallman’s well-
known uneasiness at the widespread media attention devoted to Linux, a system that he feels
(no doubt with some justification) could not have succeeded without all the groundwork of the
GNU project. About a year ago, an editorial of the Linux Journal made much fun of a letter by
Dr. Stallman requesting that Linux — and, as a result, the journal — be renamed to a more
appropriate acronym, Lignux, acknowledging Linus Torvalds’s debt to GNU. People in charge
of both the operating system and the journal didn’t seem to find the idea that brilliant. Judging
from its current Web site, GNU seems to have given up on pushinng “Lignux”, but continues to
argue that the operating system should be called “GNU/Linux”. We wish them luck. Like
everyone else, they are entitled to recognition of their contribution. If they appear a little
vainglorious at times, who would cast the first stone? Just cease slandering people whose aims
are different. Some humans want to be rich more than they want to become famous; others want
fame more than they want wealth. Most people, given the opportunity, would gladly be rich,
and famous, and admired too. We’re all humans. Just spare us the sermon on how much nobler
you are.

This list of reasons why people go into free software is probably not complete. Its most
striking feature is how close it is to what motivates the developers of proprietary software. The
relative rankings may be different, but most of the categories will be present, to some extent, in
both cases. This is not so surprising. Apart from a minority of saints, most people share the
same basic desires, in a variable mix determined in part by personality and in part by
circumstances. One of the true differences between people is tolerance, or lack thereof. Most of
us can live with imperfect companions as long as we and they are tolerant of each other.
Intolerant saints, real or self-proclaimed, are a dangerous proposition.

10. THE GREAT SATAN
Among the reasons for free software, one more deserves some consideration: hatred of the “evil
empire” — Microsoft.

It is not hard to understand some of the reasons for the resentment of Microsoft. The
company grew unbelievably quickly. Software engineers have a nagging feeling that it was

partly a result of sheer luck: when IBM obtained DOS from Microsoft and hence created the
modern Personal Computer industry, it didn’t demand exclusivity, enabling the more prescient
Microsoft to sell the same solution to every IBM competitor. (It is interesting to see that IBM’s
mistake was based on a reasoning — we don’t make money out of software products, we make
money from selling “iron”, i.e. computers — that is not unlike the GNU/FSF argument that one
should not sell software, but it’s OK to sell computers, as well as services etc.) The reputation
of Microsoft among developers is not helped by the persistent rumor about Bill Gates —hailed
by the popular press as the all-time genius of software engineering — that when he did write
code the result wasn’t impressive. The perceived arrogance of Microsoft in dealing with
partners, competitors, computer vendors and customers does not help.

Anti-Microsoft feeling is also reinforced by the nature of the Microsoft tools. Not only do
they deserve their reputation of crashing frequently; even when they work, they often give
computer-savvy users the impression of forcing them into an intellectual stranglehold. Instead
of the Unix programmer’s freedom to drive the interaction with versatile commands and scripts,
you have to follow the exact scheme that the Redmond boys, in their wisdom, have devised for
you.

For all that it is easy to miss the incredible contributions of Microsoft — and its de facto
partner, Intel — to the just as incredible progress of the computer industry. By establishing a
mass market that enabled staggering price reductions, “Wintel” has made the computer
revolution possible. The most fanatical advocates of Linux do not seem to realize that, without
Microsoft, Intel and the resulting 200 million compatible PCs, without the $500 400-MHz
systems” including a complete operating system, there would be no Linux. The entire computer
world, Microsoft groupies and Microsoft haters, is riding on the coattails of Microsoft.

It is easy enough to lambaste Bill Gates. It is less self-flattering for the anti-Microsoft
community to understand why Microsoft has reached its unique status. There was the initial
stroke of luck, of course. But there was also an in-depth understanding of the market. There was
in particular a relentless effort at integration: you write a Microsoft Project plan, integrate a
Microsoft Excel spreadsheet and a Microsoft Word document into it at the click of a mouse,
post it on your Intranet with Microsoft Front Page for your colleagues to access with Microsoft
Internet Explorer, have it automatically generate an e-mail with Microsoft Outlook whenever a
deadline slips, and so on. The underlying engineering effort is huge, and does more to explain
Microsoft’s continued success than any conspiracy theory.

The other major explanation is the dismal failure of Microsoft’s competitors. The
torchbearer of commercial Unix, Sun Microsystems, had a once-in-a-lifetime opening circa
1989. Microsoft’s nascent Windows operating system was late and buggy; the Sparc
architecture with SunOS and OpenWindows was an exciting mass-market candidate. Instead
Sun apparently decided that the mass market was not good enough because of low margin and
ferocious competition, and that it was more profitable to sell high-priced servers —
replacements for IBM mainframe — to Wall Street. During all that time Bill Gates (as was later
reported) was scared of what Unix could do to his business; his competitors never seized the
opportunity.

When they woke up, it was too late: Microsoft owned the desktop and, with it, people’s
minds. Microsoft even had become skillful enough to recover from its initial misreading of the
Internet revolution. Its competitors had lost. Their feeble attempts to reinvent themselves with

® Post-publication note: these are supposed to be impressive figures (by 1999 standards). For the current
equivalents, check the ads in last Sunday’s papers.

other technologies (such as the Java programming language for Sun, a vain attempt to challenge
the Microsoft power) will not reverse that historic defeat.

In achieving this result, Microsoft, however unpopular some of its tactics may be, relied
for the most part on its business acumen and its technical dedication. The losers have no one to
blame but the skills of their competitor, and their own myopia.

This applies in part to the free software community. The initial 1984 announcement of the
GNU project (www.gnu.org/gnu/initial-announcement.html) stated that:

“Starting this Thanksgiving I am going to write a complete Unix-compatible software
system called GNU (for Gnu’s Not Unix), and give it away free to everyone who can use
it. Contributions of time, money, programs and equipment are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write and run C
programs: editor, shell, C compiler, linker, assembler, and a few other things. After this
we will add a text formatter, a YACC, an Empire game, a spreadsheet, and hundreds of
other things. We hope to supply, eventually, everything useful that normally comes with a
Unix system, and anything else useful, including on- line and hardcopy documentation.”

The GNU project has produced many good tools, for which the software community must be
grateful; but it has not produced, fifteen years later, the announced system. The closest thing to
the kernel is Linux, which came from outside the project.

Microsoft envy is very palpable in the current excitement around Linux. On the floor of a
conference such as Linux World (now held twice a year in the US, with equivalents in many
other countries) one can hear the constant Microsoft bashing. The jokes can be funny up to a
point, but soon one starts to realize that the problem most people have is not Microsoft. It’s that
they are not Microsoft.

A famous French comic strip and animated cartoon shows the Grand Vizir (who goes by
the name Iznogoud) at the Caliph’s court, constantly plotting to get rid of his debonair master,
and constantly failing in his schemes, every new one cleverer than the last. His motto, repeated
in every tone from envy to complaint to exasperation, is “I want to be the Caliph in the Caliph’s
place!”.

Iznogoud is, pathetically, human. Most of us, given a choice, would really like to be the
Caliph in the Caliph’s place. What motivates the wheelers and dealers at Linux world may be,
for a part, a desire to help their fellow computer users. But, mostly, they want to be the Caliph
in the Caliph’s place. They might just as well admit it in as many words.

11. THE ETHICS OF ACKNOWLEDGMENT

A point of ethics that arises in the design of free software has not yet been raised in this
discussion (or anywhere else that | have seen).

Many free-software products are “copycat” versions of commercial software. The GNU
project indeed made its mark by providing quality replacements for dozen of Unix utilities,
from awk and yacc to troff and cc. (It is ironic that, even though the goal of the project, quoted
above, was to replace Unix with a free operating system, most of its results were for a long time
used mostly on commercial Unix systems.)

Such tools usually do not raise a legal issue: it is considered acceptable to start from a
tool’s specification and reimplement an equivalent version, as long as you don’t use any of the
original code.

The ethical picture is not as clear, especially given the uncompromising nature of the
attacks on commercial software developers, abundantly illustrated earlier. By reimplementing
someone’s design, you are not stealing his code, but you are taking his ideas. That by itself is
not unethical; building on the insights of others is in fact an integral part of the scientific
process — at least as long as you respect them. Respect implies, in particular, acknowledgment.

Many open-source software developer seem to think they are somehow above this rule.
Take the book Gimp: the GNU Image Manipulation Program by Michael J. Hammel, published
in 1999 by SSC (publishers of Linux Journal). It includes a 4-page acknowledgment section,
stating at the beginning that

“Of course, there are the original authors of the GIMP, Spencer Kimball and Peter
Mattis. At the time of the GIMP’s original release, they were undergraduate students at
the University of California at Berkeley. [...] The story goes something like this: Spencer
and Peter [decided] that a Photoshop-like tool for UNIX systems would be a fun thing to do.”

GIMP is indeed a free-software “copycat” of Adobe’s Photoshop commercial product. What’s
striking here is that nowhere do the four pages of acknowledgments include any suggestion that
the people who designed Photoshop at Adobe might, possibly, deserve a modicum of
recognition too.

This absence, unfortunately typical, shows a grave ethical lapse. That the Adobe
developers were paid for their efforts does not remove the need to acknowledge their
contribution. They invented a brilliant design and worked hard to implement it. However
generous the authors of GIMP may have been to the world by producing a “free” imitation of
that invention, they could not have done it without the anterior contribution of the Photoshop
folks, and Adobe’s money.

In software, much of the hard work and creativity goes into specifying a system. You also
have to implement it, but that’s not necessarily the place where you will show your brilliance.
Seeing your specification, and having access to your system, a good developer can often
reimplement it at reasonable effort. Doing something that has already been done by someone
else — like Linux after Unix — is an order of magnitude easier, if only because there is an
existence proof: the reimplementer knows it can be done.

It is both a boon and a bane that the interface of a product to the rest of the world, often
the most difficult part of the work, is also the hardest to protect (since you cannot let customers
use the product without telling them how to use it!). It’s a boon for users, competitors, and free-
software advocates; it’s a bane if you work hard only to see a more powerful competitor prosper
on the strength of your ideas. (The first spreadsheet program, VisiCalc, was an immediate hit,
leading to great commercial success not for its inventor but for the next implementer, Lotus.)

It is legal, and it may be ethical, to start from someone else’s design and reimplement it.
It is profoundly unethical not to acknowledge it, whether the originator dealt in free or in
commercial software.

This is not just a matter of being fair and courteous to the people who made possible your
own job and hence your own little claims to fame and a great career. It is also a matter of
acknowledging the tremendous contributions of commercial software. Commercial products not
only save lives; more prosaically, they established the historical basis without which there
wouldn’t have been any free software. GNU, as we have seen, was unable by itself to build an
operating system; the paragon of evil, Microsoft, provided the economic basis that made Linux
possible. There would also not have been a GNU (and a GCC, a Linux, a Bison and so on) if
there hadn’t been a Unix in the first place, arising from the stroke of genius of two AT&T Bell
laboratories researchers — Thompson and Ritchie — working in a strictly proprietary context.

Thompson and Ritchie, by the way, derived many of their ideas from Multics, a sixties’
research project from MIT. The cycle is complete: commercial software builds on public
software, and free software builds on commercial software. Sometimes you want one kind,
sometimes the other. Both can be bad; both can be admirable. Both result from the hard work of
skilled, hard-working, dedicated, often-idealistic software enthusiasts. It’s the same people on
both sides of the fence: the passionate “hackers” who think software, dream algorithms, eat data
structures, drink objects, and long through the night will continue discussing the pros and cons
of generating code for a machine with a clever instruction prefetch scheme.

Mongering hatred of the members of one of these two complementary communities is
unproductive and unethical.

12. THE WORLD IS BIG ENOUGH FOR ALL OF US

What should be done? | will conclude with a suggested agenda for everyone, whether a
commercial software developer or merely a computer user.

e Recognize the major contributions of the free software community, from Linux and
GCC to TEX, LATEX and Ghostscript.

e Accept that both commercial and free software have a role to play, and that neither will
ever go away.

o Be respectful of the authors of good free software.
e Try to convince them to apply the reciprocal goodwill.

o Refuse and refute the moral defamation of commercial software developers. If you are a
software developer, be proud of your profession.

e Call the extremists” bluff by questioning their moral premises. Re-establish ethical
priorities.

o Refuse the distortion of moral values and the use of free software as a pulpit from
which to spread ethically dubious ideologies.

e Demand (in the spirit of faithful advertising) that the economic origin of “free” software
be clearly stated, and that the products be classified as one among “donated”,
“taxpayer-funded” and the other categories described in this article.

e For Microsoft, whose unique position in the community creates unique responsibilities:
promote a more open attitude towards the rest of the world; open up; be less mean. You
can afford to be.

e For everyone: focus on quality. Work with every competent person — free or
commercial software developers — to address the increasingly critical, and increasingly
ethical, issue of software quality.

e Strive to combine the best of what the two communities have to offer.

