
Stochastic Contracts for Runtime Checking of
Component-based Real-time Systems

Chandrakana Nandi
Department of Computer

Science, ETH Zurich
chandrakana.nandi@inf.ethz.ch

Aurelien Monot
ABB Corporate Research

aurelien.monot@ch.abb.com

Manuel Oriol
ABB Corporate Research

manuel.oriol@ch.abb.com

ABSTRACT
This paper introduces a new technique for dynamic verifica-
tion of component-based real-time systems based on statis-
tical inference. Verifying such systems requires checking two
types of properties: functional and real-time. For functional
properties, a standard approach for ensuring correctness is
Design by Contract: annotating programs with executable
pre- and postconditions. We extend contracts for specifying
real-time properties.

In the industry, components are often bought from ven-
dors and meant to be used off-the-shelf which makes it very
difficult to determine their execution times and express re-
lated properties. We present a solution to this problem by
using statistical inference for estimating the properties. The
contract framework allows application developers to express
contracts like“the execution time of componentX lies within
γ standard deviations from the mean execution time”. Ex-
periments based on industrial case studies show that this
framework can be smoothly integrated into existing control
applications, thereby increasing their reliability while having
an acceptable execution time overhead (less than 10%).

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs; G.3 [Prob-
ability and Statistics]: Distribution functions

Keywords
Design by Contract, runtime verification, real-time systems,
statistical inference, component-based engineering

1. INTRODUCTION
A real-time system is one for which respecting deadlines is

a part of the system specification. These systems are widely
used in developing safety critical applications [1] such as
control systems for nuclear power plants, safety systems of
automobiles, and avionics. Verifying such systems ensures

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CBSE’15, May 04–08, 2015, Montréal, QC, Canada.
Copyright c© 2015 ACM 978-1-4503-3471-6/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737166.2737173 .

that their behaviors satisfy the specifications. Among oth-
ers, component-based engineering is an approach for devel-
oping real-time safety critical systems [15], [3], [23] and a
lot of research has been done in verifying these systems [16],
[8], [17], [9], [12]. Most of these works are based on model
checking. One approach which is better suited for verifying
component-based systems due to its support for modular
abstraction is Design by Contract [18] (annotating programs
with executable pre- and postconditions) for specifying func-
tional and real-time properties [5], [22], [4], [14] and verifying
them using static or dynamic techniques.

A major challenge in specifying contracts for component-
based real-time systems lies in expressing the real-time prop-
erties. The existing work in this area focuses mainly on
checking very simple timed properties which may not be suf-
ficient for representing the behavior of a system. In practice,
real-time contracts for component-based systems should be
able to account for all real-time aspects such as availability
of resources like CPU and memory, exception handling dur-
ing the execution of a component and interactions with other
components. Another problem lies in reasoning about the
Worst Case Execution Times (WCETs) of the components.
Static analysis is a possible approach but it is not easy to
design and implement a static analyzer that can cater to
the needs of a particular industrial component-based sys-
tem. Even if one does so, it would not be reusable for other
such systems. Moreover, static analysis may not be feasi-
ble when the components are bought from vendors and the
source code is not available [21]. Probabilistic analysis is yet
another approach which is used for determining the proba-
bility density functions of the execution times. This tech-
nique is not applicable to all systems because the execution
time distribution depends on the behavior of a particular
component. The results for one component cannot be gen-
eralized to all components.

In this paper we present solutions to the problems of ex-
pressing and checking real-time properties by incorporat-
ing empirical stochastic analysis in the contracts: instead
of determining the exact WCET values of the components
or predicting the execution time probability distributions,
we estimate the WCET values based on empirical distribu-
tion functions and then specify the contracts. Our contract
framework allows us to specify properties like “execution
time of component X should lie within γ standard
deviations from the mean execution time of X” and
check them dynamically. The mean and the standard de-
viation of the execution times are estimated by statistical

1

111

inference and the parameter γ is a property of a particular
component.

We validated our approach on a state-of-the-art component-
based framework, FASA (Future Automation System Archi-
tecture) [20] developed at ABB Corporate Research. Our
experiments are based on industrial case studies and show
that for applications deployed on a single host controller, the
average execution time overhead added due to the contracts
is less than 10%, which makes it efficient and easy to incor-
porate on top of any component-based real-time application.

2. OVERVIEW

2.1 Motivating Example
We consider a typical control loop with a combination of a

feed-forward and a feedback controller as our running exam-
ple. Figure 1 shows the schematic diagram for this system.
The application has a component, Sensor which measures

 Feed-forward
controller

Feedback
controller

+ System

Sensor

+

output
current

input
current

 desired
 current -

Figure 1: A control system with a combination of
an open loop and a closed loop controller

the value of a physical quantity, in our case electric current
generated by System. The feedback loop in our example is
based on negative feedback because the output current mea-
sured by Sensor is subtracted from the desired current value
to generate an error. This error is used by the component,
Feedback controller to dynamically regulate the output of
the System. The other component is a Feed-forward con-
troller. This controller does not measure the output current
generated by System and as a result, the latter has no ef-
fect on it. The net effect on the input to System is the sum
of the effects of the two controllers. In practice, a combi-
nation of a feed-forward and a feedback controller is often
used for ensuring faster convergence to the desired value of
the physical quantity being measured.

2.2 FASA
FASA (Future Automation System Architecture) is a com-

ponent based framework developed at ABB Corporate Re-
search [20] used for cyclic real time control applications. A
FASA application is made up of function blocks (compo-
nents) which communicate with each other through ports.
Ports can be input or output. A function block receives
data at an input port and sends out data through an output
port. An input port is connected to an output port through
a unidirectional channel. FASA has a centralized scheduler
which is responsible for scheduling the function blocks on
the available controllers. The execution of an application is
triggered by the launching of the FASA kernel which is the
main entry point to the framework. The function blocks are
implemented as C++ classes and have a dedicated method,
operator() where their behavior is described.

Referring to our running example, the Feed-forward con-
troller, the Feedback controller, the Sensor, the two Addi-

tion Components (shown in Figure 1 with + sign) and the
System are FASA function blocks. The arrows indicate the
direction of data flow through the channels.

2.3 Types of Contracts
Our contract framework facilitates the specification and

monitoring of functional and real-time properties. For the
functional specifications, it supports preconditions, postcon-
ditions and class invariants. It supports loop invariants and
loop variants for checking the correctness of loops and the
old construct as used in some languages such as Eiffel [18],
which specifies properties about the state of an object. Fig-
ure 2 is a code snippet showing a functional contract for
Sensor from our running example. Sensor has an attribute
interval which records the current cycle number. In every
cycle, this value is incremented by one. Before every up-
date, the current value of interval is saved using the OLD

macro. In the postcondition, the old value is retrieved us-
ing another macro, GET_OLD which takes two arguments, the
type and the attribute name. The postcondition states that
the value must be correctly updated in each cycle.

class SENSOR_BLOCK
{
public:

int interval;

void operator()
{

OLD(interval);
interval = interval + 1;
...

}

void functional_post_conditions()
{

POSTCONDITION(interval == GET_OLD(int, interval) + 1);
}

};

Figure 2: Functional contract for monitoring the
state of a class attribute for Sensor from the run-
ning example

For the real-time specifications, the properties supported
by our framework are related to:

1. Execution times of the function blocks.

2. Cycle times of the control applications: our target ap-
plications are cyclic in nature and since they are safety
critical, they must not violate the desired cycle time.

3. Jitter margin: applications must not exceed the max-
imum deviation from the cycle time that can be toler-
ated. This upper limit is called jitter margin.

The cycle time and jitter margin for industrial component-
based systems are usually predefined by the control engineer.
The execution time analysis of the individual components is
very difficult due to several reasons. First, developing a com-
prehensive static analyzer for WCET analysis which can be
used for any component-based system is very difficult. Sec-
ond, components are often bought from vendors and used
off-the-shelf due to which their source code may not be avail-
able. Third, some existing probabilistic approaches try to
model the execution times of all components using a particu-
lar density function; we executed 24 different function blocks
from 11 control applications and found that upon executing
the blocks for 1000 cycles or more, the distributions converge
to a single peak but are very different from one another. As

2

112

a result, it is not possible to fix a standard probability den-
sity function a-priori to model the real-time behavior of all
the function blocks. To overcomes these challenges, instead
of using static analysis or a particular probability density
function, we statistically estimate the execution time upper
bounds and specify contracts using these estimates. A real-
time contract for a component in our approach reads like
“execution time of component X should lie within γ stan-
dard deviations from the mean execution time of X”, where
the execution time upper bound is computed as a function of
the estimates of the mean and the standard deviation. Fig-
ure 3 shows this contract for Sensor. Our approach can be
used with any component-based system and its performance
is independent of the size of the application (in terms of the
number of components).

class SENSOR_BLOCK
{
public:

int interval;
Real_Time real_time;

void operator()
{

OLD(interval);
interval = interval + 1;
...

}

void real_time_post_conditions()
{

POSTCONDITION(EXECUTION_TIME <= real_time.estimated_mean
 + real_time.gamma * sqrt(real_time.estimated_variance));
}

};

struct Real_Time
{

float estimated_mean;
float estimated_variance;
float gamma;

};

Figure 3: Stochastic real-time contract for Sensor
from the running example

3. STOCHASTIC CONTRACTS
We use statistical inference for analysing the execution

times of the function blocks and specifying related contracts:
we estimate the WCET values based on the empirical cumu-
lative distribution functions (CDFs) of the execution times.
By definition, the CDF of a random variable X is given by:

F (x) = P [X 6 x] (1)

where P [X 6 x] is the probability that the random variable
X has value less than or equal to x. Let µ and σ represent
the mean and standard deviation of the unknown probability
density of the execution time of a function block. Using
equation (1) we can find an upper bound τπ on the execution
time such that P [X ≤ τπ] = π where π ∈ [0, 1]. Now, τπ
can be expressed as a function of µ and σ as:

τπ = µ+ γσ (2)

where γ gives us the distance of τπ from the mean, µ, in
terms of number of standard deviations, σs. Every function
block is executed for n cycles and the execution times are
recorded. Let e1, e2, e3...en denote this sample. The sample
data is used for determining the empirical CDF. Figure 4
shows the empirical CDF of our Sensor, based on 1000 cy-
cles. Next, the mean, µn, and the standard deviation, sn of
the sample are computed as:

µn =

∑n
i=1 ei

n

0.5 1 1.5 2 2.5

x 10
5

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

SensorBlock1000

0 2 4 6 8 10 12 14

x 10
5

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

FeedForwardBlock1000

0 0.5 1 1.5 2

x 10
6

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

CurrentControlBlock1000

0 0.5 1 1.5 2 2.5 3

x 10
6

0

0.2

0.4

0.6

0.8

1

time in ns

F
(x

)

MonitorBlock1000

Figure 4: Empirical cumulative distribution func-
tion of the Sensor from the running example based
on sample size of 1000

sn =

√∑n
i=1 (ei − µn)2

n− 1

Using equation (1) our framework estimates an upper
bound, τ̂π on the execution time, if a threshold probability
0 ≤ π ≤ 1 is given by the application developer. For ex-
ample, if the developer sets π to 0.99, then τ̂π is computed
so that 99% of the execution times lies within τ̂π from the
(n + 1)th cycle onward. Thus, the accuracy of the bound
depends on π. Similar to equation (2), τ̂π can be expressed
as a function of µn and sn as:

τ̂π = µn + γsn (3)

The reason why we express the bound as a function of µn
and sn is that it makes dynamic updating of the bound (as
explained later) faster. The framework computes γ only
once and treats it as a constant while updating µn and sn
and re-estimating the bound. τ̂π , µn and sn are unbiased
estimators [11] of τπ, µ and σ respectively. Following is the
formal definition of unbiased estimators.

Definition. Let e1, e2, e3...en be a random sample drawn
from a population and let θ be an unknown parameter of the

population which is to be estimated. Let θ̂ = υ(e1, e2, e3...en)

be a function of the sample. By definition, θ̂ is an unbiased

estimator of θ if the expected value of θ̂ is equal to θ, i.e.

E[θ̂] = θ

We use unbiased estimators because they have desirable
properties [11]. The proof of the unbiasedness of µn and sn
are standard results in statistical inference. They are also
provided in [19]. We use them in the following theorem.

Theorem. For any given function block, τ̂π is an unbiased
estimator of the upper bound τπ on its execution time.

Proof. E[τ̂π] = E[µn + γsn]
= E[µn] + E[γsn]
= E[µn] + γE[sn]
= µ+ γσ
= τπ using equation (2)

Algorithm 1 describes the process for computing γ. It
takes the execution time data and π as inputs and returns
γ. The algorithm sorts and bins the execution times, where
the number of bins is the square root of the total data count
and calculates the upper limit for the first bin (line 12).
Then it computes the probability of the data falling into
the first bin (lines 13-20). If this probability exceeds (or
is equal to) π, τ̂π is set to the upper limit of the first bin.

3

113

Otherwise, it computes the next bin’s upper limit (line 25)
and the process repeats until π is reached. Ultimately, the
algorithm returns γ computed using equation (3).

Algorithm 1 Empirical CDF

1: procedure EmpiricalCdf(execution times, π): γ
2: sum, y ← 0, 0
3: buffer size ← size(execution times)
4: sort(execution times)
5: min ← execution times[0]
6: max ← execution times[buffer size−1]
7: µn← mean(execution times)
8: sn← std dev(execution times)
9: upper bound ← max

10: number of bins ← sqrt(buffer size)

11: bin width ← (max−min)
number of bins

12: upper limit of bin ← (execution times[0] + bin width)
13: while upper limit of bin ≤ max do
14: while y ≤ buffer size do
15: if execution times[y] ≤ upper limit of bin then
16: sum ← sum+1
17: end if
18: y ← y+1
19: end while
20: probability ← sum

buffer size

21: if probability ≥ π then
22: τ̂π← upper limit of bin
23: break
24: end if
25: upper limit of bin ← upper limit of bin + bin width
26: sum, y ← 0, 0
27: end while
28: γ ← τ̂π−µn

sn
29: return γ
30: end procedure

Once γ (based on the data from the first n cycles) is ob-
tained, we can specify contracts like“Execution time of func-
tion block X should not exceed γ standard deviation from
the mean of X” from the (n + 1)th cycle onward. The pa-
rameter γ is a characteristic property of a particular function
block. This technique of computing a function block specific
parameter γ and using it for specifying the real-time con-
tracts eliminates the problems of using the same probability
density function to model the execution times of all function
blocks.

As the function blocks continue to execute beyond the
first n cycles, the accuracy of the upper bound may dete-
riorate due to several reasons. First, a function block may
take longer time to execute due to platform related reasons
such as waiting to acquire a resource and this might affect
its execution time. Second, the execution time depends on
the path of execution followed by a function block: in a cer-
tain cycle, it may have to handle an exception which might
take longer than usual. Third, the execution time of a func-
tion block depends on interactions with the other function
blocks and if the other function blocks have a delay, then
that will affect the execution time of all the interacting func-
tion blocks. To account for these factors, it is important to
dynamically update the computed upper bound from time
to time. Since all computations are performed at runtime,
running Algorithm 1 too many times during the execution of
the control application would degrade the application’s per-
formance. To prevent this, we only re-estimate µn and sn
at runtime and update τ̂π using the new value of µn and sn
and the previously computed value of γ (based on the first n

cycles). For updating the estimates, we use a sliding window
mechanism: after a certain number h of cycles, the oldest h
values of the execution time of a function block are replaced
by the newest h values and µn and sn are recomputed.

4. IMPLEMENTATION
We implemented the contract framework as a C++ li-

brary. Contracts are checked dynamically. When a contract
fails, a message is logged. The logging is done by the FASA
scheduler during the time left in each cycle after all function
blocks are executed. This time is called the slack time. If
there is no slack time remaining in a cycle, the messages are
stored in a buffer and carried on to the next cycle, where
they are logged before the cycle’s own messages. The con-
tracts are specified within the function blocks in “contract
methods”. This can be seen in the examples in Figure 2 and
Figure 3. To test the performance of our framework, we fixed
an upper bound on the execution time overhead added due
to contracts as 10%, consistent with standard practices [13].

5. VALIDATION AND RESULTS
We evaluated our framework on five industrial case studies

developed at ABB Corporate Research. The applications
were tested on MacMini computers with 4 GB RAM and
quad code processors, each core running at 1.8 GHz. The
operating system was 64 bit Ubuntu 13.04. The results are
shown for 10000 executions of each application. For the
real-time contracts, the cycle time was taken as 10ms for
the first four case studies and 100ms for the fifth case study
in order to handle network communication delays and the
jitter margin was set to 0.1ms for all the case studies. The
entire list of contracts for each application is available in
[19].

Simple Counter. There is a single function block. It
does not have any ports. An integer variable counter is ini-
tialized to 1 in the block constructor and is incremented in
every cycle up to 10. For the functional contracts, the frame-
work checks a loop variant, a loop invariant and a postcon-
dition to ensure the correct incrementation of counter up
to 10 in every cycle. For the stochastic contracts, the value
of the threshold probability π is set to 0.95 and the sliding
window updating interval h is set to 1.

Gaussian Generator. The application generates ran-
dom numbers having a Gaussian distribution. A Random
Generator block generates two random numbers according
to the Uniform Distribution, U [0, 1]. It then sends the two
values to a Gaussian Generator block which generates two
standard normal, N(0, 1) random values using the Box-Muller
transformation1. These two values are sent to a Range Cal-
culator which computes the range of the two Gaussian ran-
dom numbers. The framework checks functional precondi-
tions for verifying the connectivity of the ports for every
function block before they start transmitting data. For the
Random Generator, it checks postconditions to ensure that
the generated random numbers lie within [0, 1], as required
by the Gaussian Generator. For the Range Calculator, a
postcondition ensures that the computed range is ≥ 0. The
values of π and h are set to 0.97 and 10 respectively for the
stochastic properties.

Energy Pack Core Model. This is our running ex-
ample, shown in Figure 1. The application is described

1http://en.wikipedia.org/wiki/Box-Muller transform

4

114

Table 1: Performance summary for five case studies
Case Study Number of contracts execution time overhead

without contracts with contracts
Simple Counter 9 0.5447 0.5574 2.33%

Gaussian Generator 27 1.4202 1.5161 6.75%
Energy Pack Core Model∗ 36 1.7467 1.8657 6.81%

Binary Search∗ 43 1.5865 1.6761 5.65%
Net Proxy: sender 10 0.4746 0.6359 33.99%
Net Proxy: receiver 10 0.8016 1.1531 43.85%

*median execution time is computed due to outliers in the data.

in section 2.1. The functional contracts include precondi-
tions for ensuring the connectivity of ports, postconditions
for monitoring the states of variables and attibutes and class
invariants. For this application, π is set to 0.95 and h to 5.

Binary Search. A Random Integer Generator gener-
ates a random integer which is sent to an Array Creator.
The latter stores the integer in a dynamic array. It sends
the array to a Sorter to be sorted in ascending order. The
sorted array is sent to a Binary Search block. This block has
second input port where it receives a random number from
the Random Integer Generator and searches for this random
number in the sorted array that it receives from the Sorter
and shows the index of the number if it is found, otherwise it
prints −1 as the index. After every 10th cycle, the memory
allocated to the array is cleared. Thus, the maximum size
of the array is 10. The functional contracts check precondi-
tions for the connectivity of the ports and loop variants and
invariants to ensure the total correctness of the loops in the
Array Creator, the Sorter and the Binary Search block. For
the execution time related contracts, π is set to 0.98 and h
to 5.

Net Proxy. There are two separate applications launched
on two separate host controllers. The first application has
a Sender and a Net Proxy Send block. The latter trans-
mits integer values from the Sender through the network.
The second application has a Net Proxy Receive block and
a Receiver. The Net Proxy Receive block receives the in-
teger value from the network and sends it to the Receiver.
In order to synchronize the clocks on the two hosts, the
Precision Time Protocol (PTP) is used. For the Sender, the
functional contracts include a precondition to check the con-
nectivity of the output port, a postcondition to monitor the
state of an attribute and a class invariant. For the Receiver,
a precondition checks the connectivity of the input port and
a postcondition monitors the state of an attribute. π is set
to 0.99 and h to 10 for both the applications. A real-time
postcondition checks the completion time of the Receiver
with respect to the Sender in a contract like “execution of
Receiver must terminate within 0.2ms from the start of the
execution of the Sender”, in order to account for the network
communication delays.

Table 1 shows the total number of the contracts, the mean
execution times in ms for the five case studies with and
without contracts enabled and the execution time overheads.
The number of contracts include all functional and real-time
contracts for every function block in the respective applica-
tion [19]. The execution time overhead for the first four
applications is well under our 10% limit. For the fifth case
study, the overhead is more due to delays in the network

communication (some of the real-time contracts for the Re-
ceiver relied on data obtained through the network).

6. RELATED WORK
[25] and [6] describe the use of contracts for verification

of programs in Ada. In [7] a tool has been developed for
the BIP [3] component framework which checks a program
against programmer written specifications at runtime. [5]
introduces a framework for specifying contracts in temporal
logic. The use of contracts for distributed embedded system
design is shown in [27]. None of the above support real-time
contracts for reasoning about metric time. Closest to our

Table 2: Characteristics of different contract frame-
works

functional temporal stochastic
updates

AdaCore[25] X × ×
Hi-Lite[6] X × ×
Barbacci et al.[2] X X ×
Härtig et al.[10] X X ×
Stierand et al.[27] × X ×
Sangiovanni-Vincentelli
et al.[24]

X × ×

RV-BIP[7] X × ×
OCRA[5] X × ×
Sojka et al.[26] × × ×
Stochastic Contracts X X X

idea are the works [10] and [2] in the sense that both focus
on specification of functional and timed properties for real-
time systems, but, unlike their tools, our tool does not rely
only on statically defined contracts. Instead, it updates the
contracts at runtime to ensure that they remain meaningful
throughout the execution of an application, taking into con-
sideration the changes in the underlying platform related
factors. [26] and [24] show contracts in multiple layers of
real-time systems. The similarity with our work lies in the
layered structure of the contracts. In our framework, we
specify real-time contracts in two hierarchical layers: func-
tion block level (WCET related) and application level (cy-
cle time and jitter related). [24] only supports functional
properties while [26] supports properties related to resource
reservation.

To our knowledge, our framework is the first to make use
of statistical techniques for dynamically estimating and up-
dating real-time contracts related to execution times of an
application’s components. Table 2 summarizes the charac-
teristic features of the existing contract frameworks which
are relevant for our research and the characteristics of our
own contract framework (the final row).

5

115

7. CONCLUSIONS AND FUTURE WORK
We presented a statistical inference based approach for

computing real-time contracts for component-based real-time
control applications. Based on experiments with industrial
control applications deployed on a single controller (without
network communication), we demonstrated that our con-
tract framework adds an acceptable execution time overhead
(much less than 10%).

We used statistical inference for estimating upper bounds
on the execution times of the function blocks. A possible
extension would be to use machine learning techniques such
as neural networks and compare the quality of the obtained
estimates from the two approaches. The challenge in the
latter approach lies in limiting the overhead added by the
heavy computations at runtime, either by performing the
learning offline or by other optimization techniques.

8. ACKNOWLEDGEMENTS
We would like to thank Viktor Kuncak for his guidance,

Carlo A. Furia, Chris Poskitt and Nadia Polikarpova for
their feedback on the drafts of the paper and the anonymous
reviewers for their suggestions. The first author is currently
funded by ERC grant no. 291389 and thanks Bertrand Meyer
for supporting the work.

9. REFERENCES
[1] R. Alur. Techniques for automatic verification of

real-time systems. PhD thesis, Stanford University,
1991.

[2] M. Barbacci and J. M. Wing. Specifying functional
and timing behavior for real-time applications. In
Proc. Parallel Architectures and Languages Europe,
Volume I, pages 124–140, London, UK, UK, 1987.
Springer-Verlag.

[3] A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and
J. Sifakis. Using bip for modeling and verification of
networked systems – a case study on tinyos-based
networks. IEEE NCA’07, pages 257–260.

[4] S. S. Bauer, A. David, R. Hennicker,
K. Guldstrand Larsen, A. Legay, U. Nyman, and
A. W ↪asowski. Moving from specifications to contracts
in component-based design. FASE’12, pages 43–58,
Berlin, Heidelberg. Springer-Verlag.

[5] A. Cimatti, M. Dorigatti, and S. Tonetta. Ocra: A
tool for checking the refinement of temporal contracts.
IEEE ASE’13, pages 702–705.

[6] Y. M. Cyrille Comar, Johannes Kanig. Integrating
formal program verification with tesing. 2014.
http://www.adacore.com/uploads_gems/Hi-Lite_

ERTS-2012.pdf.

[7] Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and
S. Bensalem. Runtime verification of component-based
systems. volume 7041 of LNCS, pages 204–220.
Springer Berlin Heidelberg. In SEFM’11.

[8] G. Gössler, S. Graf, M. Majster-Cederbaum,
M. Martens, and J. Sifakis. An approach to modelling
and verification of component based systems. volume
4362 of LNCS, pages 295–308. Springer Berlin
Heidelberg. In SOFSEM 2007.

[9] Z. Gu and K. G. Shin. Model-checking of
component-based event-driven real-time embedded
software. IEEE ISORC’05, pages 410–417.

[10] H. Härtig, S. Zschaler, M. Pohlack, R. Aigner,
S. Göbel, C. Pohl, and S. Röttger. Enforceable
component-based realtime contracts. Real-Time Syst.,
35(1):1–31, Jan. 2007.

[11] R. Hogg and C. A. McKean, J.W. Introduction to
Mathematical Statistics. Pearson Education, 2005.

[12] P.-A. Hsiung, W.-B. See, T.-Y. Lee, J.-M. Fu, and
S.-J. Chen. Formal verification of embedded real-time
software in component-based application frameworks.
APSEC’01, pages 71–78.

[13] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu,
S. A. Smolka, S. D. Stoller, and E. Zadok. Software
monitoring with controllable overhead. Int. J. Softw.
Tools Technol. Transf., 14(3):327–347, June 2012.

[14] R. Koymans. Specifying real-time properties with
metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[15] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and
P. Ancilotti. A hierarchical framework for
component-based real-time systems. Electronic Notes
in Theoretical Computer Science, 116(0):253 – 266,
2005. TACoS 2004.

[16] G. Macariu and V. Cretu. Timed automata model for
component-based real-time systems. IEEE ECBS
2010, pages 121–130.

[17] G. Madl, S. Abdelwahed, and G. Karsai. Automatic
verification of component-based real-time corba
applications. IEEE RTSS’04, pages 231–240.

[18] B. Meyer. Object-Oriented Software Construction, 2nd
Edition. Prentice-Hall, 1997.

[19] C. Nandi. Contracts for Real-Time, Safety Critical
Systems, 2014. M.Sc thesis, EPFL, Switzerland.
http://infoscience.epfl.ch/record/203686?ln=en.

[20] M. Oriol, M. Wahler, R. Steiger, S. Stoeter, E. Vardar,
H. Koziolek, and A. Kumar. Fasa: A scalable software
framework for distributed control systems. ACM
ISARCS’12, pages 51–60, New York, NY, USA.

[21] R. Perrone, R. Macedo, G. Lima, and V. Lima. An
approach for estimating execution time probability
distributions of component-based real-time systems. J.
UCS, 15(11):2142–2165, 2009.

[22] S. Quinton and S. Graf. Contract-based verification of
hierarchical systems of components. SEFM’08, pages
377–381.

[23] S. Richter, M. Wahler, and A. Kumar. A framework
for component-based real-time control applications. In
13th Real-Time Linux Workshop, Prague, Czech
Republic, 2011.

[24] A. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone. Taming dr. frankenstein:
Contract-based design for cyber-physical systems*.
European Journal of Control, 18(3):217 – 238, 2012.

[25] E. Schonberg. Towards Ada 2012: An interim report.
ACM SIGAda ’10, pages 63–70, New York, NY, USA.

[26] M. Sojka and Z. Hanzalek. Modular architecture for
real-time contract-based framework. IEEE SIES ’09,
pages 66–69.

[27] I. Stierand, P. Reinkemeier, T. Gezgin, and
P. Bhaduri. Real-time scheduling interfaces and
contracts for the design of distributed embedded
systems. SIES’13, pages 130–139.

6

116

