Flexible locking in SCOOP

Piotr Nienaltowski

Chair of Software Engineering
Swiss Federal Institute of Technology Zurich
CH-8092 Zurich, Switzerland
piotr.nienaltowski@se.inf.ethz.ch

Abstract. The SCOOP model provides programmers with a simple ex-
tension of Eiffel that allows them to produce high-quality concurrent
applications with little more effort than sequential ones. The model is
simple yet powerful. Nevertheless, its access control policy is pessimistic:
(1) all separate actual arguments of a feature call are locked, even if it
is not necessary, and (2) at most one client object can access a given
supplier object at any time. This results in increased potential for dead-
locks; additionally, some interesting synchronisation scenarios cannot be
implemented efficiently. This paper presents two mechanisms that in-
crease the flexibility of locking in SCOOP: (1) a type-based mechanism
to specify which arguments of a routine call should be locked, and (2)
a lock-passing mechanism that allows for safe handling of callbacks and
complex synchronisation scenarios that involve mutual locking of several
separate objects. When combined, these two approaches greatly increase
the expressive power of SCOOP and reduce the risk of deadlock.

1 Introduction

Controlling access to shared resources is one of the main problems in concurrent
programming. Uncontrolled access to shared resources is very dangerous as it
may lead to an inconsistent program state. In procedural programming, solutions
to conflict problems involve proper synchronisation among processes based on
the concept of critical section — a process requesting a shared resource has to
wait for executing its critical section if another process is currently accessing the
shared resource. The situation changes significantly when we deal with object-
oriented computations. Explicit critical sections are not necessary because they
may be encapsulated in class routines, as in the SCOOP model [1]. The most
important question is how to ensure that concurrent calls to the routines of the
same object do not cause deadlock and do not violate the integrity of the object
(i.e. the invariant of its base class). An appropriate locking policy may be applied
in order to ensure these two conditions. The SCOOP model proposes such a
policy. SCOOP-based applications satisfy the safety requirements — they exhibit
no data races and no invariant violations due to parallelism. Unfortunately, this
comes at a very high price: all accesses to a separate supplier object must be
wrapped in a routine body that represents a critical section; this results in a very
coarse-grained parallelism. Also, all separate arguments of a feature call have to



be locked, even if they are never used by the feature. Additionally, a client
that holds a lock on a given resource cannot relinquish it temporarily when the
lock is not needed. As a result, certain scenarios, e.g. callbacks involving separate
suppliers, cannot be implemented. In most cases, the amount of locking is higher
than necessary. Such a pessimistic locking policy makes SCOOP-based programs
more deadlock-prone.

We present two ways of relaxing the access control policy: (1) we introduce
a mechanism for specifying which arguments of a routine call should be locked,
and (2) we allow clients to temporarily pass on their locks to separate suppliers.
We illustrate the discussion with numerous code examples.

The article is organised in the following way. Section 2 shortly describes
the basic synchronisation policy of SCOOP. Section 3 describes the type-based
mechanism for precise specification of formal arguments to be locked. Problems
of precondition weakening and precursor calls discussed in that section are not
concurrency-specific; their analysis and the proposed solution (rule 1’) may be
regarded as contributions to DbC in general. Section 4 introduces the lock-
passing mechanism. Section 5 discusses related work. Finally, Section 6 concludes
the article and describes future research directions.

The use of detachable and attached types in the context of SCOOP is part
of joint work with Bertrand Meyer. The need for lock passing — as a way to
clarify SCOOP semantics — was initially pointed out by Phil Brooke and later
reflected in the CSP semantics for SCOOP [2] in the form of transitive locking,
whereby suppliers are allowed to “snatch” a lock from their clients when neces-
sary. Although we use the same name for our mechanism, we follow a different
approach here: we require a client to pass locks explicitly; our goal is to increase
the flexibility of the model while preserving the possibility to reason about the
order of feature calls. The differences between both solutions are discussed in
section 5.

2 SCOOP model

The SCOOP model (Simple Concurrent Object-Oriented Programming) offers
a disciplined approach to building high-quality concurrent systems. The idea of
SCOOQP is to take object-oriented programming as given, in a simple and pure
form based on the concepts of Design by Contract [3], which have proved highly
successful in improving the quality of sequential programs, and extend them in
a minimal way to cover concurrency and distribution. The extension consists
of just one keyword separate; the rest of the mechanism largely derives from
examining the consequences of the notion of contract in a non-sequential setting.

2.1 Processors

SCOOQOP uses the basic scheme of object-oriented computation: the feature call
z.f (a), which should be understood in the following way: the caller object calls



feature f on the supplier object attached to z, with the argument a. In a se-
quential setting, such calls are synchronous, i.e. the caller is blocked until the
supplier has terminated the execution of the feature. To introduce concurrency,
SCOOP allows the use of more than one processor to handle the execution of
features. A processor is an autonomous thread of control capable of support-
ing the sequential execution of instructions on one or more objects. If different
processors are used for handling the caller and the supplier objects, the feature
call becomes asynchronous: the computation on the caller object can move ahead
without waiting for the call to terminate. Processors are the principal concept
that SCOOP adds to the sequential object-oriented framework. Contrary to a
sequential system, a concurrent system may have any number of processors,
independently of the number of available CPUs.

2.2 Separate calls

A declaration of an entity, which normally appears as z: SOME_CLASS may now
also be of the form z: separate SOME_CLASS. Keyword separate indicates
that entity z is handled by a (potentially) different processor, so that calls on z
might be asynchronous and may proceed in parallel with the rest of computation.
With such a declaration, x becomes a separate entity. If the target of a call is a
separate expression — a separate entity or an expression involving at least one
separate entity — such call is referred to as separate call.

2.3 Synchronisation

SCOOQOP caters for the synchronisation and communication needs of concurrent
programming such as mutual exclusion, locking, and waiting by relying on Design
by Contract and argument passing.

Mutual exclusion A basic rule of SCOOP says that a separate call an_z.f (a)
(where an_z is separate) is only permitted if an_r appears as formal argument
of the enclosing routine; calling a routine with such a separate argument will
make the client object wait until the corresponding separate supplier object is
exclusively available to the caller. So, if the client calls r (z), where routine r is
defined as

r (an_x: separate X)
do

c;'r;,x. f (a)

end

the call will wait until the processor handling z is available to the client (i.e. no
other client is using it). This rule provides the basic synchronisation mechanism
for SCOOP. It avoids the most common mistake in concurrent programming



that consists in assuming that, when making two successive calls on a separate
object, e.g.

my-stack.push (some_value)

z 1= my_stack.top

nothing may happen to the object represented by my_stack between the two
calls. In the example above, we would expect that the object assigned to =z
is indeed the object denoted by some_value that we just pushed on my_stack.
Unfortunately, such “sequential thinking” does not apply in a concurrent setting,
since other clients may interfere with the object referred to by my_stack between
the two calls. In SCOOP, routine bodies represent critical sections (w.r.t. to their
separate arguments) — the client gets an exclusive access to all the processors that
handle the separate arguments of the routine. In the example above, my_stack
must be an argument of the enclosing routine, therefore there is no danger that
another client “jumps in” and modifies the state of the supplier object between
two consecutive calls issued by our client.

Condition synchronisation SCOOP provides support for condition synchro-
nisation by giving a different semantics to preconditions in a concurrent con-
text. Precondition clauses that involve separate calls become wait-conditions;
the client object is forced to wait until they are satisfied. We do not discuss the
condition synchronisation mechanism any further here because it is not influ-
enced by the new access control policy; interested readers should refer to [1] for
more details. In a separate article [4] we propose a generalised semantics for con-
tracts in SCOOP that unifies the concepts of preconditions and wait-conditions.

Resynchronisation No special mechanism is required for a client object to re-
synchronise with its supplier after a separate call z. f (a) has gone off in parallel.
The client will wait if and only if it needs to, i.e. when it requests information
on the object through a query call, as in value := z.some_query. This automatic
mechanism is known as wait-by-necessity [5]. The lock-passing mechanism de-
scribed in section 4 will slightly modify that policy: procedure calls that involve
lock-passing will also require the client object to wait, as in the case of a query
call.

3 Eliminating unnecessary locks

In this section, we take the first step towards relaxing the locking policy of
SCOOP — we present a simple mechanism that allows the programmer to spec-
ify precisely which formal arguments of a routine should be locked. This allows
us to eliminate the unnecessary locking — only the locks that are strictly neces-
sary will be acquired. The mechanism relies on the concept of detachable types
recently introduced in the Eiffel language [6]; it is fully compatible with other



object-oriented concepts such as polymorphism, inheritance, and genericity. The
application of detachable types to SCOOP is a result of joint work with Bertrand
Meyer; the basic idea was described in [7]. Here, we take a closer look at the
mechanism, discuss its applications, and study its impact on other language
features.

3.1 (Too much) locking considered harmful

Recall that SCOOP requires that all separate arguments of a routine call be
locked before the call can proceed. This policy is too restrictive and it unnec-
essarily increases the likelihood of deadlock. Consider feature r in Figure 1.
According to SCOOP, the processors that handle z, y, and z must be locked by

r (z: separate X; y: separate Y; z: separate 2)
require
some_precondition
local
my-y: separate Y
my_z: separate Z

do
z.f —— separate call
my-y =y
x.g —— separate call
my-z = z
s (2)

end

Fig. 1. Original feature

the client object before the body of r can be executed. Is it really necessary to
lock all of them? Let’s see: the body of r contains two calls on z, therefore z
needs to be locked. There is no way around it — we must ensure that no other
client is currently using z. On the other hand, y only appears on the right-hand
side of an assignment; no calls on y are made. Similarly, z only appears as source
of an assignment and as actual argument of a feature call. It seems that we only
need to lock the processor that handles z; it is not necessary for y and z because
the body of r does not contain any calls on them.

The eager locking applied by SCOOP might be very dangerous as it often
leads to deadlocks — the more resources a client requires, the more likely it is
to get in a deadlock situation. The locking policy can be easily refined to avoid
these drawbacks.

3.2 Detachable types and their concurrent semantics

The attached type mechanism is an extension of Eiffel’s type system [6]. Every
type is declared either as “attached” or as “detachable”; an attached type guar-



antees that the corresponding values are never void. The default case is attached,
e.g. z: X means “zis of type attached X’. Detachable types are marked with ‘7’
e.g. y: 7Y means “yis of type detachable Y. A qualified call z. f (a) is valid only
if the type of zis attached. A new validity rule allows an attachment (assignment
or argument passing) from the attached version of a type to the detachable ver-
sion but not the other way round (unless a check of non-voidness is performed)
[7]. We can rely on the use of detachable and attached types to specify which
arguments of a routine should be locked. We require that all attached formal
arguments of a routine be locked. Conversely, no detachable formal arguments
are locked. This is not a mere overloading of the semantics of detachable types.
In fact, this rule captures the essence of call validity: a client is allowed to make a
call if and only if the target is non-void and the client has exclusive access to the
target’s processor. We use attached annotations to satisfy both requirements.
Let’s apply the rule to the example in Figure 1. Now, only the processor that
handles x will be locked when a call to r is executed. The processors that handle
y and z will not be locked (see Figure 2). Note that the applied rule is consistent

r (z: separate X; y: ?separate Y; z: ?separate Z)
local
my_y: 7separate Y
my-z !separate Z

do
z.f
my-y: =y
z.g
my-z:= z
s (2)
end

Fig. 2. Redefined feature

with the general property of detachable and attached types: an entity needs to
be attached only if we perform a call on it. Since no calls are made on y and 2z,
there is no need to declare them as attached (and to lock their processors).

3.3 Support for inheritance and polymorphism

Our technique is compatible with inheritance and polymorphism. Since T is a
subtype of 7T, we may redefine a feature in a descendant class following Rule 1.

Rule 1. Result and argument redefinition.

— The return type of a feature may be redefined from ?7T to T.
— The type of a formal argument may be redefined from T to ?T.



If the original version of the feature takes an argument of type separate T, we
can redefine it in a descendant so that it takes an argument of type 7separate

T. A client that uses the original class will need to pass an attached actual
argument. Even if the redefined version of the feature is called (due to dynamic
binding), that actual argument will conform to the required type. Obviously, we
cannot redefine a detachable formal argument into an attached one — the type
safety would not be preserved in the presence of polymorphism and dynamic
binding. Note that the contravariant redefinition rule for the “detachability” of
formal arguments (as opposed to the covariant rule for their class types) implies
that a redefined version of a feature may lock at most as many arguments as
the original one. In other words, the clients will not be cheated on — they may
expect at most as much locking as specified by the signature of the feature; no
additional locking may be introduced when redefining the feature.

There are, however, two problems related to the use of contravariant redefi-
nition:

— The use of Precursor calls is not always possible.

— Inherited precondition and postcondition clauses that involve calls on rede-
fined formal arguments may become invalid.

Consider the common programming pattern depicted in Figure 3. The redefined
version of feature r lists precondition new_precondition that weakens the require-
ments put on clients (assume that the original feature is depicted in Figure 1).
The body of rfollows a simple pattern: if new_precondition holds, some particular
actions corresponding to that new case are taken; otherwise, Precursor (z, y,

2) is called. But this call will be rejected by the compiler because the types of
actual arguments y and z (?separate Y and 7separate Z, respectively) do not
conform to the types of the corresponding formals (separate Y and separate

Z, respectively). In order to use calls to Precursor, explicit downcasts (object
tests) must be performed.

r (z: separate X; y: 7separate Y; z: ?separate Z)
require else
new_precondition
do
if new_precondtion then
—— do something here
else
Precursor (z, y, z) —— Invalid!
end
end

Fig. 3. Use of Precursor



While the problem of invalid precursor calls is easy to detect (it amounts to a
simple type-check performed by the compiler) and to deal with, the second prob-
lem mentioned above — contract inheritance — is much trickier. Consider again
the programming pattern used in Figure 3. The else part implicitly assumes
that some_precondition holds because we know that some_precondition or else

new_precondition holds and new_precondition is false. This assumption is valid

if some_precondition does not involve calls on y or z. What happens if such
calls do appear in some_precondition? For example, take some_precondition to
be x.is_empty and y.is_empty. What is the meaning of y.is_empty in the context
where y is of a detachable type? According to the call validity rule, call y.is_empty
is valid only if the type of y is attached, which obviously is not the case here.
Nevertheless, in the context of the inherited routine where y was attached, it was
a valid call. So, it seems that we have a problem with contract inheritance — due
to contravariant redefinition of formal arguments from attached to detachable,
it is possible to invalidate inherited assertions that involve calls on redefined
arguments. There are two simple solutions to this problem:

1. Ignore all inherited assertions that involve calls on detachable formal ar-
guments, i.e. assume that these assertions hold vacuously. For example,
z.is_empty and y.is_empty would reduce to z.is_empty and true hence to
z.1s_empty if y is detachable.

2. Prohibit the redefinition of formal arguments involved as targets of feature
calls in preconditions and postconditions.

The first solution is compatible with the rules of Design by Contract when ap-
plied to preconditions — inherited preconditions are simply weakened. Unfortu-
nately, postconditions may get weakened too, which is clearly against the rules
of DbC. The second solution does not suffer from that drawback. Nevertheless,
it forces the programmer to preserve the attached type of a formal argument
even if the redefined version of the routine does not rely on any properties of
that argument anymore. It might have no importance in the sequential context
but in a concurrent context, where the detachability of an argument implies less
locking, such restriction is very unwelcome. Essentially, once a formal argument
has been used in a precondition or a postcondition, it cannot be redefined from
attached to detachable in descendants. This means that there is no possibility
to reduce the locking requirements of the routine.

In practice, we may expect that an attached separate formal argument in-
volved in a postcondition will never be redefined into a detachable one, simply
because all redefined versions of a routine have to satisfy the original postcon-
dition (possibly strengthened) and there is no way to satisfy the postcondition
without the guarantee that no other clients may change the state of the object
represented by the formal argument. Such guarantee may only be obtained by
locking the argument for the duration of the call which will only happen if the
type of the argument is attached. On the other hand, it is logical that a rede-
fined version of a routine that does not need to lock a given formal argument
does not make any assumptions about the state of the object represented by
that argument, i.e. it simply ignores the precondition clauses concerning that



argument. Therefore, we could combine both solutions presented above into one
solution that is both sound (i.e. it follows the principles of Design by Contract)
and flexible. We disallow the redefinition of a formal argument from attached to
detachable if the inherited postcondition involves calls on that formal argument.
No such restrictions are put on arguments involved in preconditions; if an inher-
ited precondition clause involves a call on a detachable formal argument, that
clause is considered to hold vacuously. We refine the rule for result and argument
redefinition accordingly.

Rule 1°. Result and argument redefinition (refined).

— The return type of a feature may be redefined from 77T to T.
— The type of formal argument z may be redefined from T to 7T, provided
that no calls on x appear in the inherited postcondition.

3.4 Discussion

In addition to the solution based on attached types, we considered two alternative
ways of specifying which formal arguments should be locked. The first solution
is a compiler optimisation: if the body of r does not perform any calls on z, then
the processor handling = does not need to be locked. The programmer does not
need to use any additional type annotations to mark the arguments to be locked.
Unfortunately, this solution is not acceptable for two main reasons:

— The client cannot see whether the formal argument is locked or not without
looking at the implementation of the feature; the interface is not precise
enough to infer all the necessary information.

— In the presence of polymorphism and dynamic binding the client might be
cheated on — a redefined version of the feature might lock an argument that
the original version does not lock.

The second solution relies on the extensive use of preconditions. In order to
make sure that the processor handling z is locked throughout the execution of
r’s body, we need to include the assertion is_available (z) in the precondition
clause. The fact that zis a formal argument of the routine does not automatically
imply locking.

r (z: separate X; y: separate Y; z: separate 2)
require
is_available ()

do

end

Such assertions are like wait-conditions (see 2.3) — they force clients to wait until
the processor that handles the corresponding formal argument is available (i.e.
it can be locked). This solution is compatible with polymorphism and dynamic



binding. Removing is_available () from the precondition clause of a redefined
version of r eliminates the lock requirement on z’s processor. Such redefinition
can be viewed as a particular case of precondition weakening which is a standard
technique of Design by Contract. Although theoretically sound, this solution is
not likely to be accepted in practice because it is too verbose and it puts too
much burden on the programmer. Also, it is based on the special semantics for
the assertion is_available which might be a bit misleading — programmers might
think that is_available is a feature applicable to Current. Finally, as a matter
of taste, it seems much easier to write (and read) code like this

s (z, y, z: separate X; a: 7separate A)
do ...
end

using the technique based on attached types, than clumsy code like that

s (z, y, 2: separate X; a: separate A)
require
is_available (z)
is_available (y)
is_available (z)
do ...
end

The solution based on attached types is the only one that is theoretically sound,
practical, and elegant. It also integrates best with other object-oriented mecha-
nisms. We decided to propose it as the standard approach.

4 Lock passing

The next step to refine the access control policy and increase the expressiveness
of the model is to allow clients to temporarily pass on their locks to their sep-
arate suppliers when needed. This was impossible to implement in the original
SCOOP model where clients would keep exclusive locks during the execution of
the routine that acquired the locks. Our approach relies on the mechanism de-
scribed in section 3 — clients and suppliers use detachable and attached types to
specify whether lock passing should take place. The proposed mechanism makes
concurrent programs less deadlock-prone and allows programmers to implement
interesting synchronisation scenarios.

4.1 The need for lock passing

In SCOOP, clients executing a routine that locks separate suppliers hold exclu-
sive locks on these suppliers during the whole duration of the routine call. As
pointed out in section 2.3, this policy ensures that no other client can jump in
and modify the state of the supplier object between two consecutive calls issued



by our client. While such a guarantee is very convenient for reasoning about con-
current software — we may apply similar techniques as for sequential programs —
it unnecessarily limits the expressiveness of SCOOP and leads to deadlocks. To
illustrate the problems caused by the restrictive locking policy, we use a simple
example in Figure 4. Calls to z.f, z.g, and y. f are asynchronous (f and g are

r (z: separate X; y: separate Y)

do
z.f
z.g (y) —— x waits for y to become available.
y.f
z := z.some_query —— Current waits for x.
—— DEADLOCK!
end

Fig. 4. Deadlock caused by cross-client locking

commands), so the client will not wait for their completion. In fact, following
the wait-by-necessity principle (see section 2.3), the client will only wait for the
result of the query call z.some_query. Unfortunately, this will cause a deadlock
because the processor that handles z will not be able to evaluate some_query be-
fore finishing all the previously requested calls on z; it will not be able to execute
z.g (y) until it acquires a lock on the processor handling y but that processor is
still locked by the client and it can only be unlocked once the client finished the
execution of r’s body. So, the client is waiting for z’s processor and vice-versa;
none of them will ever make any progress.

In fact, getting into a deadlock situation is even simpler. The client may
simply pass itself as an actual argument to a separate query call, as in Figure 5.
Since feature g called on x needs to lock the processor that handles Current, it
will block until that processor is unlocked. But it will never be unlocked because
it is waiting for the completion of the call to ¢g. Again, we have a deadlock. This
time, it is caused by a callback (or rather a “lock-back”) of ¢’s processor on
Current’s processor. Note that the body of g does not even need to involve any
real callback on Current in order to cause a deadlock.

s (z: separate X)
do
z := z.¢g (Current) —— x waits for Current; Current waits for x.
—— DEADLOCK!
end

Fig. 5. Deadlock caused by a callback



Meyer [1] suggested that the problem depicted in Figure 5 could be solved
by the use of the business card principle — clients may only pass the reference
to Current to features that do not lock the corresponding formal argument,
i.e. whose body does not contain any calls on that argument. Unfortunately, the
business card principle does not work well with inheritance and polymorphism
— it suffers from the same drawbacks as the first alternative approach to locking
that we discussed in section 3.4. Also, it only solves the problem if there are no
callbacks in the body of routine g. In the presence of actual callbacks, we would
still end up with a deadlock.

Note that, in both examples, the deadlock occurs at the moment when the
client waits for one of its suppliers. Since the client is waiting, it does not perform
any operations on its suppliers. Therefore, it makes no use of the locks it holds.
If the client could temporarily pass on the lock on y (in Figure 4) respectively on
Current (in Figure 5) to its supplier z, the supplier would be able to execute the
requested feature and return the result, which would allow the client to continue.
We would be able to avoid deadlock. We use that observation to develop a lock
passing mechanism that allows clients to agree to “lend” their locks to suppliers
for the duration of a single separate call. The solution proposed by Brooke et
al. [2] takes the opposite approach — it allows suppliers to get locks from clients
without their consent. See section 5 for a comparison of both approaches.

4.2 The mechanism

We cannot simply say that locks are passed whenever possible as this would
limit the number of synchronisation scenarios that can be implemented. In par-
ticular, some synchronisation scenarios supported by the original model would
not be implementable in the extended SCOOP. Obviously, we want to preserve
the backward-compatibility with the original model while making it more flex-
ible and expressive. We want to give the programmers the possibility to decide
whether lock passing should take place in a given situation or not. Once again,
detachable types offer a simple solution. We introduce the lock passing rule based
on the new semantics for detachable types and argument passing.

Rule 2. Lock passing. Assume that client ¢ and suppliers z and y are han-
dled by processors Py, P>, and Ps, respectively. If P; holds a lock on P, and Ps,
and ¢ makes a separate call z.f (y) then, if the formal argument of routine f
that corresponds to y is of an attached type, the call will be executed synchro-
nously, with P; passing on all its locks to P, and waiting until the execution of
f terminates, then revoking all its locks from P, and continuing its own execution.

Let us re-consider our examples. Feature rin Figure 6 is identical with feature
rfrom Figure 4 but the semantics of argument passing follows Rule 2. As a result,
call z.g (y) will be executed synchronously, with the client passing on all its locks
to 2. No deadlock occurs at the moment when the client evaluates z. some_query
because z is not blocked anymore, as it was the case in Figure 4.



r (z: separate X; y: separate Y)

do
z. f
z.g9 (y) —— Current passes its locks to x
—— and waits until g terminates.
y-f
z := x.some_query —— No deadlock here!
end

Fig. 6. Cross-client locking without deadlock

Similarly, the problem of separate callbacks can be solved thanks to lock
passing. Routine s in Figure 7 is not deadlock-prone anymore because separate
call z.g (Current) results in lock passing that allows z to obtain a lock on
Current without waiting. In this particular case Rule 2 has been applied taking
P, = P; — the client and the actual argument are both Current, therefore they
are handled by the same processor; we assume that every processor, when non-
idle, implicitly holds a lock on itself. Note that, whenever lock passing occurs

s (z: separate X)
do
z := z.g (Current) —— x gets lock on Current from Current.
—— No deadlock here!
end

Fig. 7. Callback without deadlock

as a result of a feature call, the client passes all its locks to the supplier, not
only the locks on processors that handle the objects corresponding to the actual
arguments of the call. This is because the client does not use any locks anyway
while waiting until the execution of the supplier’s feature has terminated. On
the other hand, the supplier might require these additional locks in order to
terminate the execution of the feature. Therefore, all locks are passed “just in
case”. Such generous behaviour of clients avoids more potential deadlocks than
passing just the specified locks.

4.3 Lock passing in practice

We said that programmers should be able to decide whether lock passing takes
place or not, and that the new locking policy should be backwards-compatible
with the original SCOOP approach. This means that all scenarios supported by
SCOOQOP should be easily implementable in the extended model.



This flexibility can be achieved through different combinations of detachable
and attached types of formal and actual arguments of suppliers’ features. Rule 2
states that lock passing only takes place if the corresponding formal argument is
attached. From section 3.2 we know that an attached formal argument is locked
by the routine. So, a routine that declares an attached formal argument will
always lock that argument, either by waiting for the corresponding processor to
become free (if its client does not hold the lock), or by enforcing lock passing
from the client (if the client already holds the lock). Figure 8 illustrates these
two cases. Since feature fin class X takes an attached argument, z.f (y) will
result in lock passing whereas z.f (z) will be executed asynchronously without
lock passing (just like in original SCOOP). This is because the client holds a
lock on y but no lock on z.

——in class C
z: separate Y

r (z: separate X; y: separate Y)

do
z.f (y) —— Lock passing occurs because
—— Current has lock on y.
z.f (2) —— No lock passing because
—— Current has no lock on z.
z.g (y) —— No lock passing because
—— g takes detachable argument.
z.g (2) —— No lock passing because
—— g takes detachable argument.
end
——in class X
f (y: separate Y)
do
end

g (y: 7separate Y)
do

end

Fig. 8. Lock passing

If the called feature takes a detachable formal argument, as feature g in
class X in Figure 8, no lock passing is performed. This logically follows from



the fact that such a feature does not lock the formal argument, as expressed by
the locking rule in section 3.2. Since no lock is necessary, no lock passing takes
place, independently of whether the client holds a lock on the corresponding
actual argument (e.g. y) or not (e.g. z). Naturally, if a routine takes a detachable
formal argument, it is possible to pass a detachable entity as actual argument
(obviously, no lock passing takes place there because the client cannot hold a
lock on a detachable entity). The opposite situation, i.e. passing a detachable
actual argument to a routine that takes an attached formal argument, violates
the conformance rules of detachable and attached — it is rejected by the compiler.
Figure 9 recapitulates possible type combinations of formal and actual arguments
and the resulting semantics of argument passing (yes stands for “lock passing
takes place”, no stands for “no lock passing”).

actual locked by client actual not locked
actual attached, formal attached yes no
actual attached, formal detachable no no
actual detachable, formal detachable no no

Fig. 9. Lock passing combinations

Coming back to the problem of backward-compatibility of our approach with
the original SCOOP model, we can see that our new semantics corresponds to
the original one in case where actual argument is not locked by the client. On the
other hand, if the client holds a lock on actual argument, our semantics differs
from SCOOP’s. Nevertheless, it is possible to emulate the original semantics — at
a cost of some additional code — through the use of detachable formal argument
and an auxiliary feature that takes an attached formal argument, as illustrated
in Figure 10. The call to z.f (y) does not block, even though the client holds
a lock on y. The call to blocking_f will later block the supplier but it does not
influence the execution of our client’s code. Therefore, we obtain the semantics
of the original SCOOP model. Note the use of object test for a downcast from
detachable to attached in feature f.

5 Related work

This paper builds on our previous work on locking policy for SCOOP described in
a technical report [8]. The report discussed the use of detachable types in SCOOP
but did not cover the problems related to inheritance and polymorphism, such
as contract inheritance. The lock passing mechanism was only described shortly,
without considering more complex scenarios that we discuss in this paper. The
report also presented a basic mechanism for shared locking based on a refined
notion of pure query and a new semantics for only clauses. The shared-locking
mechanism proved unsound in the presence of polymorphism, therefore we do



——in class C
z: separate Y

r (z: separate X; y: separate Y)

do
z.f (y) —— No lock passing because
—— f takes detachable argument.
z.f (2) —— No lock passing because
—— f takes detachable argument.
end
——in class X
f (y: 7separate Y)
local

)

y’: separate Y
do
if {y’: separate Y} y then

blocking_f (y’)
end
end

blocking_f (y: separate Y)
do

end

Fig. 10. Emulating original SCOOP semantics

not consider it in this paper. We are currently working on a refinement of that
mechanism that provides full support for inheritance and polymorphism.

Meyer [7] discusses detachable types, in particular their use for eliminat-
ing catcalls. He also describes the idea of using detachable types in the context
of SCOOP which was a result of our earlier discussions. He does not discuss
the problem of feature redefinition in a concurrent context. Nevertheless, his
solution of the catcall problem prompted us to dig into the issue of contract
redefinition that is also relevant to SCOOP. To prevent catcalls, Meyer’s rule
for argument redefinition requires that if the class type of a formal argument is
redefined covariantly, it must become detachable. Nevertheless, no restrictions
are put on formal arguments that appear as call targets in inherited precon-
ditions and postconditions; inherited assertions involving calls on detachable
targets are evaluated using an implicit object test. For example, for attached
z and detachable y, expression x.is_empty and y.is_empty is understood as z.
is_empty and ({y’: Y}y implies y.is_empty), hence z.is_empty if y is void and
x.is_empty and y.is_empty otherwise. Besides being complicated, this solution
is inconsistent with Design by Contract — as we demonstrated in section 3.3, it



may lead to postcondition weakening. Our refined rule for result and argument
redefinition (Rule 1’) may be combined with Meyer’s solution to ensure consis-
tency with DbC and to simplify his approach. This shows that our technique,
initially developed to solve concurrency issues, proves very useful in a sequential
context as well.

——in class C

r (z: separate X; y: separate Y)
—— We assume that y = x.my_y, so both Current and x will
—— call the same separate object.

do
z.f —— Body of f will request lock on y.
—— Will lock passing happen here?
y.f
—— Or here?
y-9
—— Or here?
y.h
—— Or here?

end

——in class X

my_y: separate Y

f —— Perform some calls on my_y.
do
s (my_y) —— Snatch lock from client.
end

s (y: separate Y) do ... end

Fig. 11. Problems with transitive locking

Brooke et al. [2] propose a CSP semantics for SCOOP. The authors identify
the problem of repetitive locking and propose to solve it by applying transitive
locking by default. That is to say, if client object ¢ holds locks on supplier
objects z and y and x requests a lock on y, z will temporarily “snatch” that
lock from the client object. An advantage of transitive locking is that it offers
more potential parallelism than our solution (we apply synchronous semantics
to calls that involve lock passing). Nevertheless, the programmer has no control
over lock passing; transitive locking is always applied, even if there is no danger
of deadlocking. Furthermore, it is possible that calls on y issued by ¢ and z are
interleaved: even though c¢ temporarily loses its lock on y, it is impossible to



predict when it happens. If ¢ executes several calls on y after the call on z (see
Figure 11), lock passing may occur either before the call to y. f, before the call
to y.g, before the call to y.h, or after the latter. In fact, lock passing may even
not happen at all — if the execution of routine f by z is very slow then the client
object may be able to schedule all its calls on y and terminate the body of r
before z tries to snatch the lock. As a result, one cannot assume the order of
execution of separate calls; hence, assertional reasoning about separate calls is
not possible. This problem is particularly acute in the context of inheritance
and polymorphism: even if the original version of routine f in class X does not
perform any calls that would lead to lock passing, a redefined version may do so.
Clients of the original class are completely unaware of that and do not expect any
lock passing. Our solution avoids such problems: clients make explicit decisions
about lock passing; a redefined version of a routine cannot require more locks
than the original version. Furthermore, Brooke et al. only allow locks on separate
objects to be passed to the supplier. As a result, the separate callback depicted
in Figure 5 still leads to a deadlock. Another difference w.r.t. our solution is the
fact that only one lock is passed at a time; nevertheless, additional locks can
be demanded by subsequent calls. The CSP model proposed by Brooke et al.
may be extended to account for the differences mentioned above. In particular,
every call involving lock passing should be treated similarly to a query call, i.e. it
should be executed synchronously, with the client’s handler being blocked until
the call returns.

Rodriguez et al. [9] enrich JML with annotations for specifying atomicity and
synchronisation constraints. Features can specify a list of locks that they acquire
and release during their execution. A locks clause may appear in the specification
of a feature after a precondition. By default, the locks clause has value \nothing

for a non-synchronised feature. For features declared as synchronised, locks
evaluates to this (or the class object if the considered feature is static). Another
predicate, lock_protected (<o>),is added to the specification language. It allows
to state that a given object (o) is protected by a (non-empty) set of locks, and
that all these locks are held by current thread. Further, predicate thread_local

(<o0>) marks objects as thread-local, i.e. only reachable by current thread.
Thread-local objects correspond to non-separate objects in SCOOP. Accesses
to thread-local objects do not interfere with the activity of other threads, so
they do not need to be synchronised. Although locking is specified at the feature
level, it is more fine-grained than in our approach — locks are applied to single
objects rather than whole processors. Also, lock passing is naturally supported.
Nevertheless, the support for inheritance and polymorphism is lacking, e.g. it is
possible to cheat on clients by performing more locking in a redefined version of
a feature.

In Boyapati and Rinard’s Parametrized Race-Free Java (PRFJ) [10], to gain
an exclusive access to an object, a thread has to acquire the lock on the root of
the ownership tree that contains the object. Every object has an owner: an object
(possibly the object itself) or thisThread. If an object is owned by thisThread
(directly or indirectly), it is local to the corresponding thread and it cannot



be accessed by other threads. Ownership is fixed, i.e. objects cannot change
their owners over time. This ownership relation is very similar to the owner-
ship relation between processors and objects in SCOOP, although the ownership
structure in SCOOP is much simpler because objects cannot be owned by other
objects and ownership is not transitive. A method may require callers to hold
one or more locks before calling it — the locking requirements can be specified
using the requires clause. Although PRFJ does not support Design by Contract,
we may view requires annotations as part of routine contract. The support for
inheritance and polymorphism is very limited — PRFJ does not offer the same
flexibility w.r.t. routine redefinition as our approach. Also, unlike our approach,
PRFJ does not support the combination of condition synchronisation and atomic
locking of several objects.

6 Conclusions

We presented two simple refinements of the access control policy for SCOOP. We
proposed a mechanism for specifying which arguments of a routine call should be
locked. This mechanism, based on the novel concept of detachable types, allows
for a precise specification of locking requirements, thus eliminating unnecessary
locking that is often exhibited in SCOOP programs. We also introduced a lock-
passing mechanism that allows clients to temporarily pass on their locks to
separate suppliers. Both proposed mechanisms greatly improve the flexibility
of the model and reduce the danger of deadlocks. They allow programmers to
efficiently implement synchronisation scenarios that were difficult (or impossible)
to implement in the original SCOOP model.

The scoop2scoopli preprocessor and the SCOOPLI library ! support the lock-
passing mechanism. We tested these tools in two iterations of a graduate course
at ETH Zurich. A deadlock-detection scheme that supports lock-passing has
also been devised and implemented [11] as part of SCOOPLI. We are currently
working on the implementation of detachable types.

Our future research will be focused on the enhanced type system for SCOOP
[12][13] and its applications to deadlock prevention. We think that the assertion
language of Eiffel needs to be enhanced to allow for more expressive contracts
for concurrency. In particular, we would like to enrich the specification of frame
properties and use a refined notion of pure query to allow for safe interleaving of
pure queries requested by different clients. We have already proposed the basic
mechanism for shared locking [8] but more research is necessary to ensure its
compatibility with the principles of Design by Contract.

7 Acknowledgements

Bertrand Meyer largely contributed to the development of the detachable/at-
tached type mechanism and suggested its possible application in the context of

! Available for download at http://se.ethz.ch/research/scoop.html



SCOOP. Bernd Schoeller pointed out the problem of precursor calls in the pres-
ence of contravariance. We are grateful to the participants of the 2"¢ SCOOP
workshop for the discussions concerning the locking policy of SCOOP.

References

10.

11.

12.

13.

Meyer, B.: Object-Oriented Software Construction. 2nd edn. Prentice Hall (1997)
Brooke, P.J., Paige, R.F.; Jacob, J.L.: A CSP model of Eiffel’s SCOOP. Submitted
for publication (2005)

Meyer, B.: Applying “Design by Contract”. IEEE Computer 25 (1992) 40-51
Nienaltowski, P., Meyer, B.: Contracts for concurrency. In: First International
Symposium on Concurrency, Real-Time, and Distribution in Eiffel-like Languages
(CORDIE), York, United Kingdom (2006)

Caromel, D.: Towards a method of object-oriented concurrent programming. Com-
munications of the ACM 36 (1993) 90-102

ECMA: Eiffel analysis, design, and programming language. ECMA Standard 367
(2005)

Meyer, B.: Attached types and their application to three open problems of object-
oriented programming. In: European Conference on Object-Oriented Program-
ming. (2005) 1-32

Nienaltowski, P.: Refined access control policy for SCOOP. Technical Report
tr511, Computer Science Department, ETH Zurich (2006)

Rodriguez, E., Dwyer, M., Flanagan, C., Hatcliff, J., Leavens, G.T., Robby: Ex-
tending JML for modular specification and verification of multi-threaded programs.
In: European Conference on Object-Oriented Programming (ECOOP). (2005) 551
576

Boyapati, C., Rinard, M.: A parametrized type system for race-free java programs.
In: Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA). (2001)

Moser, D.: Design and implementation of a run-time mechanism for dead-
lock detection in SCOOP. ETH semester project (2005) available at
http://se.inf.ethz.ch/projects/daniel_moser.

Nienaltowski, P.: Efficient data race and deadlock prevention in concurrent object-
oriented programs. In: OOPSLA’04 Companion. (2004) 56-57

Arslan, V., Eugster, P., Nienaltowski, P., Vaucouleur, S.: Scoop: concurrency made
easy. In Meyer, B., Schiper, A., Kohlas, J., eds.: Dependable Systems: Software,
Computing, Networks. Springer Verlag (2006)



