
SCOOP: Concurrent Programming Made Easy

Piotr Nienaltowski
Chair of Software Engineering

ETH Zurich
8092 Zurich
Switzerland

+41 16 32 44 68

Piotr.Nienaltowski@inf.ethz.ch

Volkan Arslan

Chair of Software Engineering
ETH Zurich
8092 Zurich
Switzerland

+41 16 32 44 70

Volkan.Arslan@inf.ethz.ch

Bertrand Meyer

Chair of Software Engineering
ETH Zurich
8092 Zurich
Switzerland

+41 16 32 04 10

Bertrand.Meyer@inf.ethz.ch

ABSTRACT

The SCOOP model (Simple Concurrent Object-Oriented
Programming) provides a simple yet very powerful mechanism
for parallel computation. The model takes advantage of the
inherent concurrency implicit in object-oriented programming to
provide programmers with a simple extension enabling them to
produce parallel applications with little more effort than
sequential ones. SCOOP is applicable to many different physical
setups, from multiprocessing to multithreading, highly parallel
processors for scientific computation, distributed computation,
and Web services. In this article, we present the basic concepts of
the model and show how easily parallel and distributed
computation can be achieved in a way that preserves the full
power of all object-oriented techniques. Several programming
examples illustrate the discussion.

Categories and Subject Descriptors
Distributed, mobile, parallel, and real-time systems.

General Terms
Languages, design.

Keywords
Concurrent object-oriented programming, parallel and distributed
computation, Eiffel, Design by Contract™.

1. INTRODUCTION
In traditional sequential programming, the object-oriented model
has gained wide acceptance. Concurrent and distributed
programming remains, however, one of the last areas of software
engineering where no single direction has been generally
recognised as the preferred approach. Frameworks such as CSP,
CCS, and π-calculi enjoy strong academic support, but they
remain far from the techniques actually applied in the industry.

Finding a satisfactory framework for concurrent and distributed
development is an urgent issue for the industry. Concurrent
programming has become a required component of ever more
types of application, including some that were traditionally
thought of as sequential in nature. Beyond mere concurrency,
today’s systems have become distributed over networks,
including the network of networks — the Internet. The
telecommunication industry is in particularly dire need of simple,
teachable techniques, directly supported by tools, which can

guarantee the efficient production of correct and robust software
providing a high Quality of Service.

The SCOOP model offers a comprehensive approach to building
high-quality concurrent and distributed systems. The idea of
SCOOP is to take object-oriented programming as given, in a
simple and pure form based on the concepts of Design by
Contract [8], which have proved highly successful in improving
the quality of sequential programs, and extend them in a minimal
way to cover concurrency and distribution. The extension indeed
consists of just one keyword separate; the rest of the
mechanism largely derives from examining the consequences of
the notion of contract in a non-sequential setting. The model is
applicable to many different physical setups, from
multiprocessing to multithreading, network programming, Web
services, highly parallel processors for scientific computation, and
distributed computation. Writing applications with SCOOP is
extremely simple, since programmers do not need to deal with
low-level concepts typically used in concurrent programming
(semaphores, rendezvous, monitors etc.).

The SCOOP model has undergone several refinements since its
introduction in [10]. Currently, there is no publication taking into
account these developments and describing the model in its
entirety. This article tries to fill this void by presenting an up-to-
date, cohesive view of SCOOP as it is today.

The rest of the article is organised as follows: Section 2 presents
the SCOOP model; its basic concepts are described. Section 3
focuses on distributed programming in SCOOP. Section 4
presents library mechanisms of SCOOP. Section 5 discusses the
design criteria of the model; it also presents related work by other
authors. Finally, Section 6 summarises the article and points out
our current and future research directions.

2. THE SCOOP MODEL
SCOOP stands for Simple Concurrent Object-Oriented
Programming. Indeed, the very power of the model lies in its
simplicity. More precisely, the extension covering full-fledged
concurrency and distribution is as minimal as it can get starting
from a sequential notation: SCOOP adds a single new keyword to
the Eiffel programming language — separate.

Before describing the model itself, let us review the essential
criteria that should guide the development of an object-oriented
mechanism for concurrent and distributed programming. These
criteria have served as a basis for the model presented here (see
5.1 for a more in-depth discussion). The goals include:

• minimality of mechanism,
• full use of inheritance and other object-oriented techniques

(e.g. dynamic binding, genericity),
• compatibility with Design by Contract,
• provability,
• applicability to many forms of concurrency,
• support for the reuse of non-concurrent software,
• efficient deadlock-avoidance scheme,
• adaptability through libraries.

2.1 Architecture
SCOOP has a two-level architecture (see Figure 1). The top layer
of the mechanism is platform-independent. This is the layer which
most applications use, and which this article describes. To
perform concurrent computations, applications simply use the
separate mechanism implemented at this level. Internally, the
implementation relies on some practical concurrent architecture
(bottom layer). Figure 1 lists some possibilities:
• an implementation using the .NET platform, especially its

Remoting and Threading mechanisms [12],
• a thread-based implementation, e.g. with POSIX threads,
• a multi-threading implementation on a real-time operating

system, e.g. Windows CE .NET with the .NET Compact
Framework.

The proposed architecture largely simplifies the model: the
general concurrency mechanism implemented in the top layer is
very straightforward, and all the platform-specific features can be
accessed via libraries (see section 4).

2.2 Processors
SCOOP uses the basic scheme of the object-oriented computation:
the feature call, e.g. x.f(a), which should be understood in the
following way: the client object calls feature f on the supplier
object attached to x, with argument a (see Figure 2). In a
sequential setting, such calls are synchronous, i.e. the client is
blocked until the supplier has terminated the execution of the
feature. To introduce concurrency, SCOOP allows the use of
more than one processor to handle execution of features. If
different processors are used for handling the client and the
supplier objects, the feature call becomes asynchronous: the
computation on o1 can move ahead without waiting for the call
on o2 to terminate (see Figure 2). Hence the asynchronous
semantics of such feature calls.

Processors are the principal new concept for adding concurrency
to the framework of sequential object-oriented computation. A

concurrent system may have any number of processors, as
opposed to just one for a sequential system. In the SCOOP model,
a processor is an autonomous thread of control capable of
supporting the sequential execution of instructions on one or more
objects. It should not be confused with a physical CPU. In fact, it
can be implemented by a piece of hardware (a computer), but also
by a process of the underlying operating system, or a single
thread. In the .NET Framework, processors can be mapped to
application domains [12]. Viewed by the software, a processor is
an abstract concept; the same concurrent application may be
executed on very different architectures without any change to its
source text (see section 3).

2.3 Separate calls
Since the effect of a call depends on whether the client and the
supplier objects are handled by the same processor or by different
ones, the software text must indicate that fact unambiguously. A
declaration of an entity or function, which normally appears as
x: SOME_CLASS may now also be of the form
x: separate SOME_CLASS. Keyword separate indicates
that entity x is handled by a different processor, so that calls on x
should be asynchronous and can proceed in parallel with the rest
of computation. With such a declaration, any creation instruction
create x.make (…) will spawn off a new processor to
handle calls on x. We do not specify which processor to use for
handling the object. The important thing is the fact that this
processor is different from the processor handling the current
object1.

Instead of declaring a single entity x as separate, the declaration
of its base class may also be of a new form:
separate class SOME_CLASS. In this case SOME_CLASS
will be called a separate class2, and all its instances will be
separate objects. The following conventions follow:
• a type is separate if:

1 In section 3.1 we describe how processors are mapped to

physical resources.
2 It follows from the Eiffel syntax convention that a class may be

at most one of: separate, expanded, or deferred [8]. The
separateness of a class is not inherited: a class is separate or not
according to its own declaration, regardless of its parents’
status.

Figure 2. Feature call in SCOOP

o1

prev_instruction

 x.f (a)

next_instruction

PROCESSOR 1 PROCESSOR 2

SCOOP
platform-independent

.NET
 .NET

 Compact
 Framework

POSIX …

Figure 1. Two-level architecture of SCOOP

o2

o it is based on a separate class, or
o it is of the form separate T for some T (T itself may

be non-separate or separate),
• an entity is separate if its type is separate,
• an object is separate if it is attached to a separate entity,
• a function is separate if its type is separate,
• an expression is separate if it is either a separate entity or a

call to a separate function,
• a call or creation instruction is separate if its target is a

separate expression,
• a precondition clause is separate if it involves a separate call.

If a target of a call is a separate expression, i.e. a separate entity
or an expression involving at least one separate entity, such call is
referred to as separate call. In Figure 2, x is a separate entity, o2
is a separate object, and x.f(a) is a separate call.

2.3.1 Validity of separate calls
The validity of separate calls is governed by the Separateness
Consistency Rules:
• If the source of an attachment (assignment instruction or

assignment passing) is separate, its target entity must be
separate too.

• If an actual argument of a separate call is of a reference type,
the corresponding formal argument must be declared as
separate.

• If the source of an attachment is the result of a separate call
to a function returning a reference type, the target must be
declared as separate.

• If an actual argument of a separate call is of an expanded
type3, its base class may not include, directly or indirectly,
any non-separate attribute of a reference type.

2.4 Contracts in a concurrent setting
As mentioned before, SCOOP relies on the principles of Design
by Contract. Therefore, before discussing the access control
policy for SCOOP, let us have a closer look at the relation
between contracts and concurrent execution.

2.4.1 Preconditions
The semantics of preconditions is different in sequential and
concurrent setting. In sequential programs, preconditions are
assertions that have to be fulfilled by the client object before
calling the routine of the supplier object. If one or more
preconditions are not met, the contract is broken and an exception
is raised in the client object. The contract is broken because the
client has not fulfilled the requirements before calling the given
routine. For instance, it has tried to store a value into a full buffer.
Since the execution is sequential, the state of the buffer cannot
change (no other client can try to consume an element from the
buffer in the meantime) so the only solution is to signal the
abnormal situation by raising an exception.
Let us examine a similar situation in a concurrent context (see
Example 1). The buffer may be full when the client object is
trying to store a value into it, but nothing prevents another client
object from consuming an element from the buffer later on.

3 Entities of an expanded type represent directly an object, not a

reference to it [8]. Examples: INTEGER, REAL, BOOLEAN.

Therefore the buffer may become non-full at some point of
execution, and the client object attempting to store an element can
succeed. A non-satisfied precondition does not break the contract,
it just forces the client object to wait until the precondition is
satisfied. This simple example shows that preconditions not
involving any separate entities (e.g. value_provided) keep
their original semantics also in a concurrent setting (they are
correctness conditions); on the other hand, preconditions
involving separate expressions (e.g. buffer_not_full)
become wait conditions.

Example 1. Preconditions and postconditions

store (buffer: separate BUFFER [INTEGER];
 value: INTEGER) is
 -- Store value into buffer.
 require
 buffer_not_full: not buffer.is_full
 value_provided: value /= Void
 do
 buffer.put (value)
 ensure
 buffer_not_empty: not buffer.is_empty
 end

2.4.2 Postconditions
The consequences of concurrent execution on the properties of a
call are twofold. On one hand, to satisfy the contract, the client
has fewer properties to ensure before the call (only the
preconditions clauses that do not involve separate entities). On the
other hand, the client should be more careful when relying on
postconditions that involve separate entities. In Example 1, the
postcondition buffer_not_empty is satisfied when the call is
finished, but the client cannot rely on it (e.g. use it in the
if…then statement) within the scope of the feature (say r) that
contains the call to store unless the actual argument passed to
store is a formal argument of r. Outside that scope, the
postcondition may not hold, since other clients may have
invalidated it in the meantime.

2.4.3 Invariants
Another interesting problem is the relation between concurrent
execution and class invariants. The class invariant is the most
important part of a contract because it ensures the consistency of
the class instances (objects). An object-oriented software system
can be consistent if and only if every object in the system is
consistent with its specification (its base class).
At first, the connection between class invariants and concurrency
does not seem so obvious. If one tries to reason about concurrent
programs written in SCOOP, the use of invariants is indeed
exactly the same as in a sequential context (see section 2.7). This
is because the access control policy of SCOOP allows only one
feature to be called on the supplier object at any time (see section
2.5), so satisfying or violating the invariant of the supplier’s base
class depends only on the outcome of this routine call. Suppose
that we try to change the locking policy and allow concurrent
execution of several routines of the same supplier object. If two or
more of these routines may change the invariant, we should make
sure that these routines are not executed at the same time.
Otherwise, the invariant may be violated, even if the sequential
execution of the same routines would not violate it. On the other

hand, if we are sure that the routines do not change the invariant,
we are allowed to execute them concurrently [11].

2.5 Access control policy
Controlling the access to shared resources is the main problem in
concurrent computation. In non-object-oriented settings the
concept of “critical section” is used: it is simply a code fragment
in which a shared resource is accessed. At most one process4 can
be executing the critical section at any given time. Efficient
solutions to conflict problems must be characterised by a
synchronisation among processes, so that they have to wait for
executing a critical section if another process is accessing the
shared resource. This kind of synchronisation is called “mutual
exclusion” (from running the critical section at the same time).
The situation changes significantly when we deal with object-
oriented computations. Explicit critical sections are not required
any more, since they may be encapsulated in class routines. The
most important question is: how to ensure that concurrent calls to
the routines of the same object do not cause deadlock, and do not
violate the integrity of the object (i.e. the invariant of its base
class)? An appropriate locking policy should be applied in order
to ensure these two conditions.
SCOOP does not use the concept of critical section, instead it
relies on the mechanism of argument passing. For a separate call
to be valid, the target of the call must be a formal argument of the
enclosing routine. Such “embedding” of separate calls in routines
allows exclusive locking of separate objects.
Consider Example 2. We deal with the producer-consumer
synchronisation. Assume that several producer objects are
producing integer values and storing them into the shared buffer
buf; several consumer objects are consuming elements from that
buffer. From the point of view of both the producers and the
consumers, buf is a separate object (that is why it is declared as
separate in the source code of both classes). In order to
perform any call to buf, a client object (be it producer or
consumer) must obtain an exclusive lock on buf. Since SCOOP
relies on the argument passing mechanism for this purpose, the
target of a separate call must appear as an argument of the
enclosing routine; that is why all the calls to buf are embedded
into routines store and consume_one. Direct calls to
buf.put, buf.item, and buf.remove are forbidden (see
the example).

Example 2. Producer-consumer synchronisation5
class PRODUCER

feature

 store (buffer: separate BUFFER [INTEGER];
 value: INTEGER) is
 -- Store value into buffer.
 require
 buffer_not_full: not buffer.is_full
 value_provided: value /= Void
 do
 buffer.put (value)

4 Here process = thread of execution. It may be called process,

thread, processor, etc.
5 To simplify the example, the postconditions have been omitted.

 end

 random_gen: RANDOM_GENERATOR

 buf: separate BUFFER [INTEGER]

 produce_n (n: INTEGER) is
 -- Produce n integer values and store
 -- them into a buffer.
 local
 value: INTEGER
 i: INTEGER
 do
 from i := 1
 until i > n
 loop
 value := random_gen.next
 store (buf, value)
 -- buf.put (value) is forbidden
 -- here
 i := i + 1
 end
 end

end -- class PRODUCER

class CONSUMER

feature

 consume_one (buffer: separate
 BUFFER [INTEGER])
 is
 -- Consume one element from buffer.
 require
 buffer_specified: buffer /= Void
 buffer_not_empty: not buffer.is_empty
 do
 value := buffer.item
 buffer.remove
 end

 buf: separate BUFFER [INTEGER]

 consume_n (n: INTEGER) is
 -- Consume n elements from a buffer.
 local
 i: INTEGER
 do
 from i := 1
 until i > n
 loop
 consume_one (buf)
 -- buf.item and buf.remove are
 -- forbidden here
 i := i + 1
 end
 end

end -- class CONSUMER

Let us have a closer look at the locking mechanism. When a
consumer object is making a call to consume_one inside
routine consume_n, it passes buf as argument to that call.
According to the SCOOP access control policy, when one or more
arguments of a routine are separate objects, the client must obtain
exclusive locks on all these objects before executing the routine.

Therefore, the consumer object in our example must obtain an
exclusive lock on buf before executing consume_one. If
another object is currently holding the lock, the client has to wait
until the lock has been released, and then try to acquire it. When
the client has finally acquired the lock, the preconditions are
checked. If all the preconditions hold, the routine is executed, and
the lock is released after the routine has terminated the execution.
Should one or more preconditions involving separate objects (i.e.
wait conditions, see 2.4.1) not hold, the client releases all the
locks and restarts the whole process from the beginning: first
acquiring the locks, then checking the preconditions6. This allows
other clients to access the supplier object, hopefully changing its
state, so that the wait conditions required by our client are
eventually met.
The locking policy of SCOOP states that at most one client may
access any supplier object at any given time. This ensures that
(correct) separate calls do not violate the integrity of the supplier
object. It also makes it easier to reason about concurrent
programs. Since only one client object can hold a lock on the
supplier object at any time, interference between several client
objects is impossible. Therefore, one can easily decide which
object is responsible for possible breaches in the contract (e.g.
breaking the invariant of the class corresponding to the supplier
object).

2.5.1 Scheduling policy
The scheduling policy in SCOOP ensures that a separate call is
scheduled as soon as all the necessary locks can have been
acquired on the supplier object(s) and all the wait conditions are
satisfied. The calls on the same supplier are executed in the FIFO
order, and there is no starvation. The implementation of such
policy is straightforward (it has been done, for instance, in the
SCOOPLI library [12]).

2.6 Synchronisation and wait by necessity
Thanks to the asynchronous semantics of separate calls, clients
executing such calls are not blocked and can proceed with the rest
of their computation. But surely a client may need to
resynchronise with the supplier. When should we wait for the call
to terminate?

It would seem that a special mechanism is needed, as has been
proposed by some concurrent object-oriented languages such as
Hybrid, to reunite the client computation with the separate call
that has been made. In SCOOP, no explicit wait mechanism is
needed: instead, we use the idea of wait by necessity, introduced
by Denis Caromel [4]. The goal is to wait only when we truly
need to, but no earlier.

When does the client need to make sure that a call x.f (...),
for x attached to a separate object o1, is finished? Not when the
client is doing something else on other objects, be they separate or
not; not even necessarily when it has started a new procedure call
x.g (...) on the same separate object (in such situations,

6 We only consider wait conditions here. As already explained in

section 2.4.1, preconditions that do not involve any separate
entities are correctness conditions, so their violation is handled
in the same way as in a sequential setting, i.e. by raising an
exception in the client.

subsequent calls can be simply logged so that they can be
processed in the FIFO order). The client should wait if and only if
it needs to access some property of o1. Then o1 must be
available, and all preceding calls to it must have finished.

According to the Command-Query Separation principle [8],
features of a class can be divided into commands (procedures),
which perform some transformation on the target objects, and
queries (functions and attributes) which return information about
it. Command calls do not need to wait, but query calls may.

Example 3. Wait by necessity with a single supplier
consume_two(buffer: separate BUFFER) is
 -- Consume two elements from buffer.
 local
 value: INTEGER
 require
 buffer_specified: buffer /= Void
 at_least_two_elements:
 buffer.count >= 2
 do
 value := buffer.item
 buffer.remove
 value := buffer.item
 buffer.remove
 end

Consider the feature consume_two in the example above.
Using this feature, a consumer object consumes two subsequent
elements from a buffer. The first assignment
value := buffer.item can be executed without waiting.
After calling buffer.remove, but before the call has finished,
the client tries to call buffer.item once again. Since
buffer.item is a query call, the client cannot proceed: it must
wait for the previous call (buffer.remove) to terminate.

Wait by necessity also applies to situations where calls to several
separate objects are involved. Consider the following example:

Example 4. Wait by necessity with multiple suppliers
some_feature (x,y,z: separate SOME_CLASS) is
 -- Make some calls to x, y, and z
 do
 x.f
 y.f
 x.g
 z.f
 y.g
 v := x.is_empty
 v := x.value > y.value
 end

The client object makes subsequent calls to features of the
separate supplier objects x, y, and z. The call y.f can proceed
without waiting for x.f to terminate. Also the calls z.f and y.g
do not need to wait, neither for x.f nor for x.g. Still, the call
y.g has to wait for y.f to finish, because they involve the same
separate object. Similarly, x.g has to wait until x.f has
terminated. The first assignment involves objects z and x,
therefore it is blocked until all previous calls on these objects
have terminated. On the other hand, it does not involve object y,
so it can be executed even before y.f and y.g have terminated.
The second assignment involves all three separate objects x, y,
and z. Therefore, its execution will be blocked until all the

previous calls have terminated. Here are a few examples of a
correct schedule7 (run):

• x.f ║ y.f ; y.g ║ x.g ║ z.f ;
v := x.is_empty ; v := x.value > y.value

• x.f ; z.f ║ x.g ; v := x.is_empty ║ y.f ;
y.g ; v := x.value > y.value

• z.f ║ y.f ║ x.f ; x.g ; v := x.is_empty ║
y.g ; v := x.value > y.value

These observations yield the basic concept of wait by necessity: if
a client has started one or more calls on a certain separate object,
and it executes on that object a call to a query, that call will only
proceed after all the earlier ones have been completed, and any
further client operations will wait for the query call to terminate.

2.6.1 An optimisation
We may go further by examining whether the query’s result is of
an expanded type or a reference type. If the type is expanded, for
example if it is BOOLEAN or another of the basic types, there is
no choice: the client needs the value, so it must wait until the
query has computed the result. On the other hand, for a reference
type, one can imagine that a smart implementation could still
proceed while the result, a separate object, is being computed; in
particular, if the implementation uses proxies for separate objects,
the proxy object itself can be created immediately, so that the
reference to it is available even if the proxy does not yet refer to
the desired separate object.
Such optimisation, however, complicates the concurrency
mechanism because it means that proxies must have a “ready or
not” boolean attribute, and all operations on separate references
must wait until the proxy is ready. It also seems to prescribe a
particular implementation – through proxies. Therefore, we do not
retain it as part of the basic SCOOP mechanism.

2.7 Proving the correctness of programs
After each feature call, the invariant of the object’s base class
should be satisfied. This is necessary for preserving the
consistency of the object. Let us have a look at the lifecycle of an
object (see Figure 3).
The object is externally observable only in the states represented
by S1, S2, S3, etc. That is to say, after the creation of the object
and after every application of a feature on that object. To prove
the correctness of the underlying class, we only have to verify that
the following properties hold:
Property 1. For a creation procedure make, if the body of make
is executed when the object has been initialised to the default
values and the precondition holds, the resulting state will satisfy
the postcondition and the invariant. It can be expressed as:
 {default and premake} bodymake {postmake and INV}

7 a║b parallel execution (a and b overlap)

 a;b sequential execution (b executes after a has terminated)

 ║ binds stronger than ;

Property 2. For an exported feature f, if the body of f is
executed when the precondition and invariant hold, the resulting
state will satisfy the postcondition and the invariant:

 {pref and INV} bodyf {postf and INV}

In the sequential context, there are no complicated run-time
scenarios to analyse. Therefore, we can rely on such simple
properties to check the consistency of objects, as well as the
consistency of the whole software system. Introducing concurrent
execution complicates things: we have to analyse all possible
interleavings, which leads to a combinatorial explosion of cases to
consider. For that reason, SCOOP lets at most one routine execute
on any given object at a time. The result of such restriction is the
single locking policy8.
Certainly, the two properties mentioned above are not sufficient
to prove the correctness of a software system. Nevertheless, they
constitute a first step in the process of devising a mathematical
model for reasoning about concurrent programs. We are
convinced that such model will be very helpful in proving the
correctness of SCOOP-based programs.

3. DISTRIBUTED COMPUTATION WITH
SCOOP

When writing SCOOP-based applications, programmers can rely
on the high-level concepts of separate object and processor,
without taking into account the mapping of processors to the
actual physical resources. This is one of the strongest ideas
brought by SCOOP: it allows developers to write applications
which would run both on a local machine (see Figure 4) and on
several machines distributed over a local network or Internet (see
Figure 5), without the need to make any changes in the software
text. The mapping of processors to physical resources is not
specified by the software text, hence the facility of executing
SCOOP-based applications in a distributed setting.
In our example, Processors 1, 2, and 3, which are located on
the same machine Computer 1 may be also easily placed on
three different machines: Processor 1 may be handled by the
computer susi.ethz.ch, Processor 2 by the computer
ruth.ethz.ch, and Processor 3 may remain on the local
machine Computer 1. The objects handled by each processor
become thereby physically distributed. Nevertheless, from the
application’s point of view, as well as from the programmer’s
point of view, there is no difference between the two situations
depicted by Figures 4 and 5. The SCOOP mechanism takes care
of all the “dirty work”, that is to say for making the distributed
architecture completely transparent for the application, so that it
can run as if all processors were located on the same machine.

8 A multiple locking policy for SCOOP has been proposed in [11].

S2

S3
x.f x.g

create
x.make x.f

Figure 3. Lifecycle of an object

S1

3.1 Concurrency Control File
The Concurrency Control File (CCF) specifies the mapping of
processors to actual physical resources: machines, processes,
threads, application domains, web services, etc. The CCF file is
separated from the software text. What’s more, it is not a
compulsory part of a SCOOP-based application. If the CCF
exists, the mapping of the processors is done according to the
information in the file. Should CCF be not available, a default
mapping scheme is used9. The compilation of a concurrent
application is completely independent from the existence or non-

9 For example, on the .NET platform each new processor is, by

default, mapped to a new application domain on the local
machine [12].

existence of a CCF. This means that the mapping to physical
resources is done at run time10.

Example 5. Concurrency Control File
creation

system
 "susi.ethz.ch" (2): "c:/prog/appl1.exe"
 "ruth.ethz.ch" (4): "c:/prog/appl2.dll"
 Current: "c:/prog/appl1.exe"
end

end
external

db_handler: "schlemmer.ethz.ch" port 9000
web_handler: "papi.ethz.ch" port 8080

end
default

port: 8001; instance: 10
end

The creation part specifies which physical resources should be
used for separate creations of the form create x.make, where
x is separate. In the example above:

• two processors will be created at location represented by the
application appl1.exe on the computer susi.ethz.ch,

• the next four processors will be created at location
appl2.dll on the computer ruth.ethz.ch,

• the following ten will be created on the local computer.
Value 10 comes from the instance entry in the default
part of the CCF.

The allocation scheme is repeated for further separate object
creations, starting again with two separate objects on the
computer susi.ethz.ch, four on ruth.ethz.ch, and so
on.
Sometimes, applications need references to separate objects
previously created by another program. In such cases, the
application relies on the CCF: the external part of the CCF
specifies which external services should be used for requesting a
reference to (persistent) separate objects. These may include
database handlers, web services, ftp servers, etc. In our example,
the location of database handler schlemmer.ethz.ch and
web handler papi.ethz.ch is specified. The application can
get a reference to a separate database object by using an
appropriate function from facility class CONCURRENCY (see
section 4):
server (name:STRING; ...): separate DATABASE
with the argument “db_handler”.
Finally, the default part of the CCF provides default values for
SCOOP-related parameters used by the application, e.g. the
standard port number for creation of a new processor, the default
number of processors to be created, etc.

4. LIBRARY MECHANISMS
We have strived for the simplicity and elegance of the proposed
model. The way to achieve these goals has been to keep the basic
mechanism as minimal as possible. Naturally, users’ needs cannot

10 See section 4.1 for more details.

Computer 1

Processor1 Processor2 Processor3

o1

o2

o6

o5

o3

Figure 4. SCOOP application on a single machine

ruth.ethz.ch susi.ethz.ch

Processor1 Processor2

o1

o2

o6

o5

Figure 5. SCOOP application on distributed machines

LAN

Computer 1

Processor3

o3

INTERNET

be fully predicted, that is why SCOOP offers several library
mechanisms that extend the capabilities of the mechanism. In this
section, we describe two of them:

• the physical resource management, which allows for a finer
degree of resource control than the CCF files,

• the mechanism of duels, which may serve as a basis for real-
time programming.

Both mechanisms may be implemented as a facility class
CONCURRENCY [8].

4.1 Resource management
With a CCF-like approach (see 3.1), the application software will,
most of the time, not concern itself with the mapping of
processors to the physical concurrency architecture. Some
application developers may, however, need to exert a finer degree
of control from within the application, at the possible expense of
dynamic reconfigurability. Some CCF functionalities must then
be accessible directly to the application, enabling it, for example,
to select a specific process or thread for a certain processor. They
will be available through libraries as part of the two-level
concurrency architecture [8].
At the other extreme, some applications may want unlimited run-
time reconfigurability. It is not enough to read a CCF at start-up
time and then be stuck with it. But we cannot either expect to re-
read the configuration file before each operation, as this would
kill performance. The solution is once again to use a library
mechanism: a procedure must be available to read or re-read the
configuration information dynamically, allowing the application
to adapt to a new configuration when (and only when) it is ready
to do so.

4.2 Duels
SCOOP allows the processor in charge of an object to execute at
most one routine at any given time (see section 2.5). The main
reason for this restriction is to retain the ability to reason about
our software. Nevertheless, in cases of emergency, or if a client
keeps a lock on a supplier object for too long, it should be
possible to interrupt the client by triggering an exception. This
observation has inspired us to introduce the mechanism of duels.
A duel can be defined as an attempt to snatch a shared object from
its current holder. Let us illustrate this with an example. An object
executes the instruction r(b), where b is separate. After having
waited for the object b to become free, and for the separate
precondition clauses to hold, the object captures b, and becomes
its current holder. It should be emphasised that the execution of r
on b has started on behalf of the holder, but is not finished.
Another separate object, which we call the challenger, executes
s(c), where c is separate and attached to the same object as b.
In normal case, the challenger has to wait until the call to r is
over. If the challenger is in hurry or has something more
important to do with the reserved object, it can use the facilities of
the library class CONCURRENCY to snatch the reserved object.
Class CONCURRENCY provides, for this purpose, features yield
and retain for the holder and features demand and insist
for the challenger (see Table 1). On the holder’s side, yield
means that the holder is ready to release his hold if a challenger
with a more urgent need comes along. By calling the feature
retain, which is the default behaviour, the holder can retain his
hold. On the challenger’s side, demand means that the challenger

wants to get immediately the hold. If the holder has called yield
then the challenger will indeed get the hold, and the holder will
get an exception, otherwise the challenger will get an exception.
On the contrary, insist on the challenger’s side means that the
challenger tries to get the hold, but if the holder has called
retain, the challenger will not get an exception; it will simply
wait. Otherwise, that is if the holder has called yield, the
challenger will get the hold, and the holder will get an exception.
For the challenger to return to the default behaviour of waiting for
the holder to finish, wait_turn is used. A call to one of these
features will retain its effect until another one supersedes it. It
should be emphasised that the two sets of facilities are not
exclusive; for example a challenger could use both insist to
request special treatment and yield to accept being interrupted
by another client. Table 1 summarises the results of a duel in all
possible cases. Default options and behaviour are underlined.

Table 1. Sematics of duels

Challenger →
↓ Holder

wait_turn demand insist

retain Challenger
waits

Exception in
challenger

Challenger
waits

yield Challenger
waits

Exception in
holder’s
routine

Exception in
holder’s
routine; serve
challenger

We plan to extend the duel mechanism with a priority scheme, in
order to support advanced real-time programming.

5. DISCUSSION
5.1 Design criteria
In section 1, we mentioned several criteria that should guide the
design and implementation of an object-oriented concurrency
mechanism. Let us discuss these criteria in more detail and see
how the SCOOP model fulfills them.

5.1.1 Minimality of mechanism
Object-oriented software construction is a rich and powerful
paradigm, which intuitively seems ready to support concurrency.
It is essential, then, to aim for the smallest possible extension.
Minimalism here is not just a question of good language design. If
the concurrent extension is not minimal, some concurrency
constructs will be redundant with the object-oriented constructs,
or will conflict with them, making the developer’s task hard or
impossible. To avoid such a situation, we must find the smallest
syntactic and semantic epsilon that will add concurrent execution
capabilities to our object-oriented programs.
The extension presented in this article is indeed minimal, since it
is not possible to add less than one new keyword.

5.1.2 Full use of object-oriented techniques
It would be unacceptable to have a concurrent object-oriented
mechanism that does not take advantage of all object-oriented
techniques, in particular inheritance. Please note that the
“inheritance anomaly” [7], which causes so much trouble in the
approaches proposed by other authors, as well as other potential

conflicts, are not inherent to concurrent object-oriented
development but follow from specific choices of concurrency
mechanisms, in particular active objects, state-based models and
path-expressions-like synchronisation; the appropriate conclusion
is to reject these choices and retain inheritance.
The SCOOP model allows the programmer to use the full power
of all the object-oriented techniques offered by the underlying
language Eiffel, including multiple inheritance, genericity (see
5.1.5), agent mechanism, and information hiding.

5.1.3 Compatibility with Design by Contract
It is essential to retain the systematic, logic-based approach to
software construction and documentation expressed by the
principles of Design by Contract.
A fundamental place in the SCOOP mechanism has been given to
assertions, in particular preconditions. In fact, the model is largely
derived from the analysis of the new semantics of preconditions
in a concurrent setting (see 2.4).

5.1.4 Applicability to many forms of concurrency
A general criterion for the design of a concurrent mechanism is
that it should support many different forms of concurrency:
shared memory, multitasking, client-server computing, distributed
processing, real-time programming, etc.
With such a broad set of application areas, a language mechanism
cannot be expected to provide all the answers. Nevertheless, it
should lend itself to adaptation to all the intended forms of
concurrency. In SCOOP, this is achieved by using the abstract
notion of processor, and relying on a distinct facility
(Concurrency Control File, libraries) to adapt the solution to any
particular hardware architecture that may be available.

5.1.5 Support for the reuse of non-concurrent
software
It is necessary to support the reuse of existing, non-concurrent
software, especially libraries of reusable software components.
SCOOP allows for a smooth transition between sequential classes
such as QUEUE [G]11 and their concurrent counterparts such as
BUFFER [G]. The latter, which we have used in several code
examples within this article (see Example 1, 2, and 3), can be
simply defined as:

separate class BUFFER [G]

 inherit QUEUE [G]

end

Sometimes, as an inescapable consequence of the semantic
differences between sequential and concurrent computation, some
wrapper classes may be needed but, in most cases, they are very
easy to write.

5.1.6 Efficient deadlock-avoidance scheme
One area in which more work remains necessary is how to
guarantee deadlock avoidance. Deadlock potential is a fact in a
concurrent life. For example any mechanism that can be used to

11 QUEUE [G] is a generic class. G is the formal generic

parameter, which should be replaced by an actual generic
parameter, e.g. INTEGER.

program semaphores can cause deadlock, since semaphores are
trivially open to that possibility.
The solution lies partly in the use of high-level encapsulation
mechanisms. For example a set of classes encapsulating
semaphores should come with behaviour classes that
automatically provide a free operation for every reserve, thereby
guaranteeing deadlock avoidance for applications that follow the
recommended practice by inheriting from the behaviour class.
This approach may be insufficient, however, and it is advisable to
design simple anti-dealock rules, automatically checkable by
static tools (at compilation time). Devising an efficient deadlock-
avoidance scheme is one of our principal goals.

5.1.7 Adaptability through libraries
Many concurrency mechanisms have been proposed over the
years (see section 5.3). Each has its partisans, and each may
provide the best approach to certain problem areas. It is
important, then, that the proposed model should support at least
some of these mechanisms. More precisely, the solution must be
general enough to allow us to program various concurrency
constructs.
One of the most important aspects of the SCOOP model is that it
supports the construction of libraries for widely used schemes.
The library construction facilities (classes, assertions, genericity,
multiple inheritance, deferred classes and others) allow us to
express many concurrency mechanisms in the form of library
components. We expect that a number of libraries will be
produced, relying on the basic tools and complementing them, to
support concurrency models catering to specific needs and tastes.
In section 4, we have also seen the use of library classes such as
CONCURRENCY to provide various refinements to the basic
scheme defined by the language mechanism.

5.2 Implementation
SCOOP has only had prototype implementations so far. One of
our principal goals is to provide working, production-quality
implementations of SCOOP on several platforms.
The first implementation [12] takes advantage of the Remoting
library of the new .NET framework, available today from
Microsoft and in the process of being ported to non-Microsoft
architectures, in particular Linux and BSD in two separate open-
source implementations. .NET is attractive as an infrastructure for
several reasons: the general quality of its design; its support for
multi-language interoperability, so that components developed in
one language can be made available to many others; its innovative
solutions in the area of Internet programming, especially its
support for Web services; and particularly the power of the
Remoting library that provides a general basis which appears to
match particularly well the needs of the SCOOP model.
Other targeted platform include the POSIX threading library and
the .NET Compact Framework.

5.3 Related work by other authors
Hewitt and Agha’s Actors model [1], which predates the object-
oriented renaissance and comes from a somewhat different
background, has influenced many object-oriented approaches.
Actors are computational agents similar to active objects, each
with a mail address and a behaviour. An actor communicates with
others through messages sent to their mail addresses; to achieve

asynchronous communication, the messages are buffered. An
actor processes messages through functions and by providing
“replacement behaviours” to be used in lieu of the actor’s earlier
behaviour after a certain message has been processed.
One of the earliest and most thoroughly explored parallel object-
oriented languages is POOL [2]; POOL uses a notion of active
object, which was found to raise problems when combined with
inheritance. For that reason inheritance was introduced into the
language only after a detailed study which led to the separation of
inheritance and subtyping mechanisms. The design of POOL is
also notable for having shown, from the start, a strong concern for
formal language specification.
[21] contains the description of several influential Japanese
developments, such as ABCL/1. MUSE, an object-oriented
operating system developed at Sony Computer Science
Laboratory, was presented by Tokoro and his colleagues at
TOOLS Europe 1989 [20]. The term “inheritance anomaly” was
introduced by Matsuoka and Yonezawa [7], and further papers by
Matsuoka and collaborators which propose various remedies.
Work on distributed systems has been particularly active in
France, with the GUIDE language and system [3] and the SOS
system [17]. In the area of programming massively parallel
architectures, primarily for scientific applications, the EPEE
system has been developed [6].
Also influential has been the work done by Nierstrasz and his
colleagues at the University of Geneva around the Hybrid
language [13][15], which does not have use two categories of
objects (active and passive) but relies instead on the notion of
thread of control, called activity. The basic communication
mechanism is the remote procedure call (RPC), either
synchronous or asynchronous.
A special issue of the Communications of the ACM [9] presents a
number of important approaches to concurrent object-oriented
programming, originally drawn from concurrency papers at
various TOOLS conferences. An earlier collective book edited by
Yonezawa and Tokoro [21] served as catalyst for much of the
work in the field and is still good reading.
There are several survey articles on aspects of concurrent object-
oriented languages. [14] discusses systems providing process or
object migration in a distributed context. [19] studies several
languages and discuss whether the concurrency is appropriately
integrated into them. [15] gives a first classification of concurrent
object-oriented languages. Large surveys on COOLs are provided
by [18] and [16].

6. CONCLUSIONS AND FUTURE WORK
We have presented the basic concepts of the SCOOP model. We
introduced the notion of processor, and proposed an object-
oriented concurrency mechanism based on that concept. We have
discussed the semantics of contracts in a non-sequential setting
and their use for devising an access control policy for SCOOP.
We have shown how high-level concurrency constructs are
mapped to the physical concurrency architecture, and discussed
distributed programming with SCOOP. We have also presented
the library mechanisms of the model.

The main contribution of our work is the cohesive description of
SCOOP: a compact yet powerful model for object-oriented

concurrent programming. Unlike other models, SCOOP is based
on very high-level concepts (processors and separate objects),
which make it possible to keep the full power of all object-
oriented techniques, and to apply the model to many different
forms of parallel programming. SCOOP makes concurrent and
distributed programming much easier: programmers can forget the
usual “concurrency nightmares” such as semaphores, monitors,
and locks. It also allows us to produce software that runs on very
different physical configurations (single machine, several
machines on a local network, machines distributed over Internet)
with no need to change the code (or re-compile it) each time the
configuration changes.

Another important result is an in-depth analysis of the semantics
of contracts in a concurrent setting. This has allowed us to
confirm the importance of Design by Contract as a key technique
for obtaining high-quality software.
We are currently implementing the SCOOP model on .NET [12].
We are also devising a new access control policy based on the
concept of pure function [11]. We are interested in providing a
mathematical model of execution of SCOOP-based programs,
which would permit to prove the correctness of SCOOP-based
programs and to define an efficient deadlock-prevention policy.
Finally, one of the main research topics is the application of
SCOOP to real-time systems. This involves an extension of the
duel mechanism with a priority scheme, and devising timing
assertions.

7. ACKNOWLEDGMENTS
The research work presented in this paper is part of the project
“SCOOP: Environment for dependable distributed and reliable
object-oriented computing, based on the principles of Design by
Contract”. This project has been financially supported by the
Hasler Foundation (Berne, Switzerland).

8. REFERENCES
[1] Agha, G. Concurrent Object-Oriented Programming, in

Communications of the ACM, 1990, 33(9), 125-141

[2] America, P., Beemster, M. A portable implementation of the
language POOL, in Proceedings of TOOLS EUROPE 1989,
ed. Jean Bézivin, SOL, Paris, 1989, 347-353

[3] Balter, R. et al. Architecture and Implementation of Guide,
an Object-Oriented Distributed System, in Computing
Systems, 1991, vol. 4

[4] Caromel, D. Towards a Method of Object-Oriented
Concurrent Programming, in Communications of the ACM,
Volume 36, Number 9, September 1993, 90-102

[5] Garcia-Molina, H., Ullman, J. D., Widom, J.D. Database
Systems: The Complete Book, Prentice Hall, 2002

[6] Jézéquel, J.-M. Object-Oriented Software Engineering with
Eiffel, Addison-Wesley, Reading (Mass.), 1996, chapter 9

[7] Matsuoka S., Yonezawa A. Analysis of Inheritance Anomaly
in Object-Oriented Concurrent Programming Languages, in
Agha G., Wenger P., Yonezawa A. (eds.), Research
Directions in Concurrent Object-Oriented Programming,
MIT Press, Cambridge (Mass.), 1993, 107-150

[8] Meyer, B. Object-Oriented Software Construction, 2nd
edition, Prentice Hall, 1997

[9] Meyer B. (ed.), Special issue on Concurrent Object-Oriented
Programming, in Communications of the ACM, 1993, 36(9)

[10] Meyer B. Systematic Concurrent Object-Oriented
Programming, in Communications of the ACM, Special issue
on Concurrent Object-Oriented Programming, 1993, 36(9),
56-80

[11] Nienaltowski, P. Extending the access control policy for
SCOOP, submitted for publication, available online at
http://se.inf.ethz.ch/people/nienaltowski/extended_acce
ss_control_draft.pdf

[12] Nienaltowski, P., Arslan, V. SCOOPLI: a library for
concurrent object-oriented programming on .NET, in
Proceedings of the 1st International Workshop on C# and
.NET Technologies for Algorithms, Computer Graphics,
Visualization, Scientific, Distributed and Web Computing,
2003

[13] Nierstrasz, O. A Tour of Hybrid: A Language for
programming with Active Objects, in Advances on Object-
Oriented Software Engineering, Meyer B., Mandrioli D.
(eds.), Prentice-Hall, 1992, 167-182

[14] Nuttal, M. A brief survey of systems providing process or
object migration facilities, Operating Systems Review, 1994,
28(4), 64-80

[15] Papathomas, M. Language design rationale and semantic
framework for concurrent object-oriented programming, PhD
Thesis, University of Geneva, Switzerland, 1992

[16] Philippsen, M. A survey of concurrent object-oriented
languages, Concurrency: Practice and Experience, 2000, 12,
917-980

[17] Shapiro, M., Gautron, P., Mosseri, L. Persistence and
Migration for C++ Objects, in ECOOP 1989, ed. Cook, S.,
Cambridge University Press, Cambridge (England), 191-204

[18] Turcotte, L.H. A survey of software environments for
exploiting network computing resources, Technical Report,
Mississippi State University, 1993

[19] Wyatt, B., Kavi, K., Hufnagel, S. Parallelism in object-
oriented languages: a survey, IEEE Computer, 1992, 11(6),
56-66

[20] Yokote, Y., Teraoka, F., Yamada, M., Tezuka, H., Tokoro,
M. The Design and Implementation of the MUSE Object-
Oriented Distributed Operating System, in TOOLS 1,
Bézivin J. (ed.), SOL, Paris, 1989, 363-370

[21] Yonezawa A., Tokoro M., eds. Object-Oriented Concurrent
Programming, MIT Press, Cambridge (Massachussetts),
1987

