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ABSTRACT 

The SCOOP model (Simple Concurrent Object-Oriented 
Programming) provides a simple yet very powerful mechanism 
for parallel computation. The model takes advantage of the 
inherent concurrency implicit in object-oriented programming to 
provide programmers with a simple extension enabling them to 
produce parallel applications with little more effort than 
sequential ones. SCOOP is applicable to many different physical 
setups, from multiprocessing to multithreading, highly parallel 
processors for scientific computation, distributed computation, 
and Web services. In this article, we present the basic concepts of 
the model and show how easily parallel and distributed 
computation can be achieved in a way that preserves the full 
power of all object-oriented techniques. Several programming 
examples illustrate the discussion. 

Categories and Subject Descriptors 
Distributed, mobile, parallel, and real-time systems.  

General Terms 
Languages, design. 

Keywords 
Concurrent object-oriented programming, parallel and distributed 
computation, Eiffel, Design by Contract™. 

1. INTRODUCTION 
In traditional sequential programming, the object-oriented model 
has gained wide acceptance. Concurrent and distributed 
programming remains, however, one of the last areas of software 
engineering where no single direction has been generally 
recognised as the preferred approach. Frameworks such as CSP, 
CCS, and π-calculi enjoy strong academic support, but they 
remain far from the techniques actually applied in the industry. 

Finding a satisfactory framework for concurrent and distributed 
development is an urgent issue for the industry. Concurrent 
programming has become a required component of ever more 
types of application, including some that were traditionally 
thought of as sequential in nature. Beyond mere concurrency, 
today’s systems have become distributed over networks, 
including the network of networks — the Internet. The 
telecommunication industry is in particularly dire need of simple, 
teachable techniques, directly supported by tools, which can 

guarantee the efficient production of correct and robust software 
providing a high Quality of Service. 

The SCOOP model offers a comprehensive approach to building 
high-quality concurrent and distributed systems. The idea of 
SCOOP is to take object-oriented programming as given, in a 
simple and pure form based on the concepts of Design by 
Contract [8], which have proved highly successful in improving 
the quality of sequential programs, and extend them in a minimal 
way to cover concurrency and distribution. The extension indeed 
consists of just one keyword separate; the rest of the 
mechanism largely derives from examining the consequences of 
the notion of contract in a non-sequential setting. The model is 
applicable to many different physical setups, from 
multiprocessing to multithreading, network programming, Web 
services, highly parallel processors for scientific computation, and 
distributed computation. Writing applications with SCOOP is 
extremely simple, since programmers do not need to deal with 
low-level concepts typically used in concurrent programming 
(semaphores, rendezvous, monitors etc.). 

The SCOOP model has undergone several refinements since its 
introduction in [10]. Currently, there is no publication taking into 
account these developments and describing the model in its 
entirety. This article tries to fill this void by presenting an up-to-
date, cohesive view of SCOOP as it is today. 

The rest of the article is organised as follows: Section 2 presents 
the SCOOP model; its basic concepts are described. Section 3 
focuses on distributed programming in SCOOP. Section 4 
presents library mechanisms of SCOOP. Section 5 discusses the 
design criteria of the model; it also presents related work by other 
authors. Finally, Section 6 summarises the article and points out 
our current and future research directions. 

2. THE SCOOP MODEL 
SCOOP stands for Simple Concurrent Object-Oriented 
Programming. Indeed, the very power of the model lies in its 
simplicity. More precisely, the extension covering full-fledged 
concurrency and distribution is as minimal as it can get starting 
from a sequential notation: SCOOP adds a single new keyword to 
the Eiffel programming language — separate. 

Before describing the model itself, let us review the essential 
criteria that should guide the development of an object-oriented 
mechanism for concurrent and distributed programming. These 
criteria have served as a basis for the model presented here (see 
5.1 for a more in-depth discussion). The goals include: 



• minimality of mechanism, 
• full use of inheritance and other object-oriented techniques 

(e.g. dynamic binding, genericity), 
• compatibility with Design by Contract, 
• provability, 
• applicability to many forms of concurrency, 
• support for the reuse of non-concurrent software, 
• efficient deadlock-avoidance scheme, 
• adaptability through libraries. 

2.1 Architecture 
SCOOP has a two-level architecture (see Figure 1). The top layer 
of the mechanism is platform-independent. This is the layer which 
most applications use, and which this article describes. To 
perform concurrent computations, applications simply use the 
separate mechanism implemented at this level. Internally, the 
implementation relies on some practical concurrent architecture 
(bottom layer). Figure 1 lists some possibilities: 
• an implementation using the .NET platform, especially its 

Remoting and Threading mechanisms [12], 
• a thread-based implementation, e.g. with POSIX threads, 
• a multi-threading implementation on a real-time operating 

system, e.g. Windows CE .NET with the .NET Compact 
Framework. 

The proposed architecture largely simplifies the model: the 
general concurrency mechanism implemented in the top layer is 
very straightforward, and all the platform-specific features can be 
accessed via libraries (see section 4).  
 
 

 

2.2 Processors 
SCOOP uses the basic scheme of the object-oriented computation: 
the feature call, e.g. x.f(a), which should be understood in the 
following way:  the client object calls feature f on the supplier 
object attached to x, with argument a (see Figure 2). In a 
sequential setting, such calls are synchronous, i.e. the client is 
blocked until the supplier has terminated the execution of the 
feature. To introduce concurrency, SCOOP allows the use of 
more than one processor to handle execution of features. If 
different processors are used for handling the client and the 
supplier objects, the feature call becomes asynchronous: the 
computation on o1 can move ahead without waiting for the call 
on o2 to terminate (see Figure 2). Hence the asynchronous 
semantics of such feature calls. 

Processors are the principal new concept for adding concurrency 
to the framework of sequential object-oriented computation. A 

concurrent system may have any number of processors, as 
opposed to just one for a sequential system. In the SCOOP model, 
a processor is an autonomous thread of control capable of 
supporting the sequential execution of instructions on one or more 
objects. It should not be confused with a physical CPU. In fact, it 
can be implemented by a piece of hardware (a computer), but also 
by a process of the underlying operating system, or a single 
thread. In the .NET Framework, processors can be mapped to 
application domains [12]. Viewed by the software, a processor is 
an abstract concept; the same concurrent application may be 
executed on very different architectures without any change to its 
source text (see section 3). 

 

2.3 Separate calls 
Since the effect of a call depends on whether the client and the 
supplier objects are handled by the same processor or by different 
ones, the software text must indicate that fact unambiguously. A 
declaration of an entity or function, which normally appears as 
x: SOME_CLASS may now also be of the form 
x: separate SOME_CLASS. Keyword separate indicates 
that entity x is handled by a different processor, so that calls on x 
should be asynchronous and can proceed in parallel with the rest 
of computation. With such a declaration, any creation instruction 
create x.make (…) will spawn off a new processor to 
handle calls on x. We do not specify which processor to use for 
handling the object. The important thing is the fact that this 
processor is different from the processor handling the current 
object1.  

Instead of declaring a single entity x as separate, the declaration 
of its base class may also be of a new form: 
separate class SOME_CLASS. In this case SOME_CLASS 
will be called a separate class2, and all its instances will be 
separate objects. The following conventions follow: 
• a type is separate if: 
                                                                 
1 In section 3.1 we describe how processors are mapped to 

physical resources. 
2 It follows from the Eiffel syntax convention that a class may be 

at most one of: separate, expanded, or deferred [8]. The 
separateness of a class is not inherited: a class is separate or not 
according to its own declaration, regardless of its parents’ 
status.  

Figure 2. Feature call in SCOOP 
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o it is based on a separate class, or 
o it is of the form separate T for some T (T itself may 

be non-separate or separate), 
• an entity is separate if its type is separate, 
• an object is separate if it is attached to a separate entity, 
• a function is separate if its type is separate, 
• an expression is separate if it is either a separate entity or a 

call to a separate function, 
• a call or creation instruction is separate if its target is a 

separate expression, 
• a precondition clause is separate if it involves a separate call. 

If a target of a call is a separate expression, i.e. a separate entity 
or an expression involving at least one separate entity, such call is 
referred to as separate call.  In Figure 2, x is a separate entity, o2 
is a separate object, and x.f(a) is a separate call. 

2.3.1 Validity of separate calls 
The validity of separate calls is governed by the Separateness 
Consistency Rules: 
• If the source of an attachment (assignment instruction or 

assignment passing) is separate, its target entity must be 
separate too. 

• If an actual argument of a separate call is of a reference type, 
the corresponding formal argument must be declared as 
separate. 

• If the source of an attachment is the result of a separate call 
to a function returning a reference type, the target must be 
declared as separate. 

• If an actual argument of a separate call is of an expanded 
type3, its base class may not include, directly or indirectly, 
any non-separate attribute of a reference type. 

2.4 Contracts in a concurrent setting 
As mentioned before, SCOOP relies on the principles of Design 
by Contract. Therefore, before discussing the access control 
policy for SCOOP, let us have a closer look at the relation 
between contracts and concurrent execution. 

2.4.1 Preconditions 
The semantics of preconditions is different in sequential and 
concurrent setting. In sequential programs, preconditions are 
assertions that have to be fulfilled by the client object before 
calling the routine of the supplier object. If one or more 
preconditions are not met, the contract is broken and an exception 
is raised in the client object. The contract is broken because the 
client has not fulfilled the requirements before calling the given 
routine. For instance, it has tried to store a value into a full buffer. 
Since the execution is sequential, the state of the buffer cannot 
change (no other client can try to consume an element from the 
buffer in the meantime) so the only solution is to signal the 
abnormal situation by raising an exception. 
Let us examine a similar situation in a concurrent context (see 
Example 1). The buffer may be full when the client object is 
trying to store a value into it, but nothing prevents another client 
object from consuming an element from the buffer later on. 

                                                                 
3 Entities of an expanded type represent directly an object, not a 

reference to it [8]. Examples: INTEGER, REAL, BOOLEAN. 

Therefore the buffer may become non-full at some point of 
execution, and the client object attempting to store an element can 
succeed. A non-satisfied precondition does not break the contract, 
it just forces the client object to wait until the precondition is 
satisfied. This simple example shows that preconditions not 
involving any separate entities (e.g. value_provided) keep 
their original semantics also in a concurrent setting (they are 
correctness conditions); on the other hand, preconditions 
involving separate expressions (e.g. buffer_not_full) 
become wait conditions.  

Example 1. Preconditions and postconditions 

store (buffer: separate BUFFER [INTEGER]; 
       value: INTEGER) is 
    -- Store value into buffer. 
  require 
    buffer_not_full: not buffer.is_full 
    value_provided: value /= Void 
  do 
    buffer.put (value) 
  ensure 
    buffer_not_empty: not buffer.is_empty 
  end 

2.4.2 Postconditions 
The consequences of concurrent execution on the properties of a 
call are twofold. On one hand, to satisfy the contract, the client 
has fewer properties to ensure before the call (only the 
preconditions clauses that do not involve separate entities). On the 
other hand, the client should be more careful when relying on 
postconditions that involve separate entities. In Example 1, the 
postcondition buffer_not_empty is satisfied when the call is 
finished, but the client cannot rely on it (e.g. use it in the 
if…then statement) within the scope of the feature (say r) that 
contains the call to store unless the actual argument passed to 
store is a formal argument of r. Outside that scope, the 
postcondition may not hold, since other clients may have 
invalidated it in the meantime.  

2.4.3 Invariants 
Another interesting problem is the relation between concurrent 
execution and class invariants. The class invariant is the most 
important part of a contract because it ensures the consistency of 
the class instances (objects). An object-oriented software system 
can be consistent if and only if every object in the system is 
consistent with its specification (its base class). 
At first, the connection between class invariants and concurrency 
does not seem so obvious. If one tries to reason about concurrent 
programs written in SCOOP, the use of invariants is indeed 
exactly the same as in a sequential context (see section 2.7). This 
is because the access control policy of SCOOP allows only one 
feature to be called on the supplier object at any time (see section 
2.5), so satisfying or violating the invariant of the supplier’s base 
class depends only on the outcome of this routine call. Suppose 
that we try to change the locking policy and allow concurrent 
execution of several routines of the same supplier object. If two or 
more of these routines may change the invariant, we should make 
sure that these routines are not executed at the same time. 
Otherwise, the invariant may be violated, even if the sequential 
execution of the same routines would not violate it. On the other 



hand, if we are sure that the routines do not change the invariant, 
we are allowed to execute them concurrently [11].  

2.5 Access control policy 
Controlling the access to shared resources is the main problem in 
concurrent computation. In non-object-oriented settings the 
concept of “critical section” is used: it is simply a code fragment 
in which a shared resource is accessed. At most one process4 can 
be executing the critical section at any given time. Efficient 
solutions to conflict problems must be characterised by a 
synchronisation among processes, so that they have to wait for 
executing a critical section if another process is accessing the 
shared resource. This kind of synchronisation is called “mutual 
exclusion” (from running the critical section at the same time). 
The situation changes significantly when we deal with object-
oriented computations. Explicit critical sections are not required 
any more, since they may be encapsulated in class routines. The 
most important question is: how to ensure that concurrent calls to 
the routines of the same object do not cause deadlock, and do not 
violate the integrity of the object (i.e. the invariant of its base 
class)? An appropriate locking policy should be applied in order 
to ensure these two conditions. 
SCOOP does not use the concept of critical section, instead it 
relies on the mechanism of argument passing. For a separate call 
to be valid, the target of the call must be a formal argument of the 
enclosing routine. Such “embedding” of separate calls in routines 
allows exclusive locking of separate objects. 
Consider Example 2. We deal with the producer-consumer 
synchronisation. Assume that several producer objects are 
producing integer values and storing them into the shared buffer 
buf; several consumer objects are consuming elements from that 
buffer. From the point of view of both the producers and the 
consumers, buf is a separate object (that is why it is declared as 
separate in the source code of both classes). In order to 
perform any call to buf, a client object (be it producer or 
consumer) must obtain an exclusive lock on buf. Since SCOOP 
relies on the argument passing mechanism for this purpose, the 
target of a separate call must appear as an argument of the 
enclosing routine; that is why all the calls to buf are embedded 
into routines store and consume_one. Direct calls to 
buf.put, buf.item, and buf.remove are forbidden (see 
the example).  

Example 2. Producer-consumer synchronisation5 
class PRODUCER 

feature 

 store (buffer: separate BUFFER [INTEGER]; 
        value: INTEGER) is 
     -- Store value into buffer. 
  require 
    buffer_not_full: not buffer.is_full 
    value_provided: value /= Void 
  do 
    buffer.put (value) 
                                                                 
4 Here process = thread of execution. It may be called process, 

thread, processor, etc. 
5 To simplify the example, the postconditions have been omitted. 

  end 

 random_gen: RANDOM_GENERATOR 

 buf: separate BUFFER [INTEGER] 

  
 produce_n (n: INTEGER) is 
      -- Produce n integer values and store 
      -- them into a buffer. 
   local 
     value: INTEGER 
     i: INTEGER 
   do 
     from i := 1 
     until i > n 
     loop 
       value := random_gen.next  
       store (buf, value) 
         -- buf.put (value) is forbidden 
         -- here 
       i := i + 1 
     end 
   end 

end -- class PRODUCER  

class CONSUMER 

feature 

 consume_one (buffer: separate 
                BUFFER [INTEGER]) 
   is 
     -- Consume one element from buffer. 
   require 
     buffer_specified: buffer /= Void 
     buffer_not_empty: not buffer.is_empty 
   do 
     value := buffer.item 
     buffer.remove 
   end 

 buf: separate BUFFER [INTEGER] 

 consume_n (n: INTEGER) is 
      -- Consume n elements from a buffer. 
   local 
     i: INTEGER 
   do 
     from i := 1 
     until i > n 
     loop 
       consume_one (buf) 
         -- buf.item and buf.remove are  
         -- forbidden here 
       i := i + 1 
     end 
   end 

end -- class CONSUMER  

 

Let us have a closer look at the locking mechanism. When a 
consumer object is making a call to consume_one inside 
routine consume_n, it passes buf as argument to that call. 
According to the SCOOP access control policy, when one or more 
arguments of a routine are separate objects, the client must obtain 
exclusive locks on all these objects before executing the routine. 



Therefore, the consumer object in our example must obtain an 
exclusive lock on buf before executing consume_one. If 
another object is currently holding the lock, the client has to wait 
until the lock has been released, and then try to acquire it. When 
the client has finally acquired the lock, the preconditions are 
checked. If all the preconditions hold, the routine is executed, and 
the lock is released after the routine has terminated the execution. 
Should one or more preconditions involving separate objects (i.e. 
wait conditions, see 2.4.1) not hold, the client releases all the  
locks and restarts the whole process from the beginning: first 
acquiring the locks, then checking the preconditions6. This allows 
other clients to access the supplier object, hopefully changing its 
state, so that the wait conditions required by our client are 
eventually met. 
The locking policy of SCOOP states that at most one client may 
access any supplier object at any given time. This ensures that 
(correct) separate calls do not violate the integrity of the supplier 
object. It also makes it easier to reason about concurrent 
programs. Since only one client object can hold a lock on the 
supplier object at any time, interference between several client 
objects is impossible. Therefore, one can easily decide which 
object is responsible for possible breaches in the contract (e.g. 
breaking the invariant of the class corresponding to the supplier 
object). 

2.5.1 Scheduling policy 
The scheduling policy in SCOOP ensures that a separate call is 
scheduled as soon as all the necessary locks can have been 
acquired on the supplier object(s) and all the wait conditions are 
satisfied. The calls on the same supplier are executed in the FIFO 
order, and there is no starvation. The implementation of such 
policy is straightforward (it has been done, for instance, in the 
SCOOPLI library [12]). 

2.6 Synchronisation and wait by necessity 
Thanks to the asynchronous semantics of separate calls, clients 
executing such calls are not blocked and can proceed with the rest 
of their computation. But surely a client may need to 
resynchronise with the supplier. When should we wait for the call 
to terminate? 

It would seem that a special mechanism is needed, as has been 
proposed by some concurrent object-oriented languages such as 
Hybrid, to reunite the client computation with the separate call 
that has been made. In SCOOP, no explicit wait mechanism is 
needed: instead, we use the idea of wait by necessity, introduced 
by Denis Caromel [4]. The goal is to wait only when we truly 
need to, but no earlier. 

When does the client need to make sure that a call x.f (...), 
for x attached to a separate object o1, is finished? Not when the 
client is doing something else on other objects, be they separate or 
not; not even necessarily when it has started a new procedure call 
x.g (...) on the same separate object (in such situations, 

                                                                 
6 We only consider wait conditions here. As already explained in 

section 2.4.1, preconditions that do not involve any separate 
entities are correctness conditions, so their violation is handled 
in the same way as in a sequential setting, i.e. by raising an 
exception in the client. 

subsequent calls can be simply logged so that they can be 
processed in the FIFO order). The client should wait if and only if 
it needs to access some property of o1. Then o1 must be 
available, and all preceding calls to it must have finished. 

According to the Command-Query Separation principle [8], 
features of a class can be divided into commands (procedures), 
which perform some transformation on the target objects, and 
queries (functions and attributes) which return information about 
it. Command calls do not need to wait, but query calls may. 

Example 3. Wait by necessity with a single supplier 
consume_two(buffer: separate BUFFER) is 
     -- Consume two elements from buffer. 
   local 
     value: INTEGER 
   require 
     buffer_specified: buffer /= Void 
     at_least_two_elements: 
              buffer.count >= 2 
   do 
     value := buffer.item 
     buffer.remove 
     value := buffer.item 
     buffer.remove 
   end 

Consider the feature consume_two in the example above. 
Using this feature, a consumer object consumes two subsequent 
elements from a buffer. The first assignment 
value := buffer.item can be executed without waiting. 
After calling buffer.remove, but before the call has finished, 
the client tries to call buffer.item once again. Since 
buffer.item is a query call, the client cannot proceed: it must 
wait for the previous call (buffer.remove) to terminate. 

Wait by necessity also applies to situations where calls to several 
separate objects are involved. Consider the following example: 

Example 4. Wait by necessity with multiple suppliers 
some_feature (x,y,z: separate SOME_CLASS) is 
     -- Make some calls to x, y, and z 
  do 
    x.f 
    y.f 
    x.g  
    z.f 
    y.g 
    v := x.is_empty 
    v := x.value > y.value 
  end 

The client object makes subsequent calls to features of the 
separate supplier objects x, y, and z. The call y.f can proceed 
without waiting for x.f to terminate. Also the calls z.f and y.g 
do not need to wait, neither for x.f nor for x.g. Still, the call 
y.g has to wait for y.f to finish, because they involve the same 
separate object. Similarly, x.g has to wait until x.f has 
terminated. The first assignment involves objects z and x, 
therefore it is blocked until all previous calls on these objects 
have terminated. On the other hand, it does not involve object y, 
so it can be executed even before y.f and y.g have terminated. 
The second assignment involves all three separate objects x, y, 
and z. Therefore, its execution will be blocked until all the 



previous calls have terminated. Here are a few examples of a 
correct schedule7 (run): 

• x.f ║ y.f ; y.g ║ x.g ║ z.f ; 
v := x.is_empty ; v := x.value > y.value 

• x.f ; z.f ║ x.g ; v := x.is_empty ║ y.f ; 
y.g ; v := x.value > y.value 

• z.f ║ y.f ║ x.f ; x.g ; v := x.is_empty ║ 
y.g ; v := x.value > y.value 

These observations yield the basic concept of wait by necessity: if 
a client has started one or more calls on a certain separate object, 
and it executes on that object a call to a query, that call will only 
proceed after all the earlier ones have been completed, and any 
further client operations will wait for the query call to terminate.  

2.6.1 An optimisation 
We may go further by examining whether the query’s result is of 
an expanded type or a reference type. If the type is expanded, for 
example if it is BOOLEAN or another of the basic types, there is 
no choice: the client needs the value, so it must wait until the 
query has computed the result. On the other hand, for a reference 
type, one can imagine that a smart implementation could still 
proceed while the result, a separate object, is being computed; in 
particular, if the implementation uses proxies for separate objects, 
the proxy object itself can be created immediately, so that the 
reference to it is available even if the proxy does not yet refer to 
the desired separate object. 
Such optimisation, however, complicates the concurrency 
mechanism because it means that proxies must have a “ready or 
not” boolean attribute, and all operations on separate references 
must wait until the proxy is ready. It also seems to prescribe a 
particular implementation – through proxies. Therefore, we do not 
retain it as part of the basic SCOOP mechanism.  

2.7 Proving the correctness of programs 
After each feature call, the invariant of the object’s base class 
should be satisfied. This is necessary for preserving the 
consistency of the object. Let us have a look at the lifecycle of an 
object (see Figure 3).  
The object is externally observable only in the states represented 
by S1, S2, S3, etc. That is to say, after the creation of the object 
and after every application of a feature on that object. To prove 
the correctness of the underlying class, we only have to verify that 
the following properties hold:  
Property 1. For a creation procedure make, if the body of make 
is executed when the object has been initialised to the default 
values and the precondition holds, the resulting state will satisfy 
the postcondition and the invariant. It can be expressed as: 
  {default and premake} bodymake {postmake and INV} 

                                                                 
7 a║b parallel execution (a and b overlap) 

 a;b sequential execution (b executes after a has terminated) 

    ║ binds stronger than ; 

Property 2. For an exported feature f, if the body of f is 
executed when the precondition and invariant hold, the resulting 
state will satisfy the postcondition and the invariant: 

  {pref and INV} bodyf {postf and INV} 

In the sequential context, there are no complicated run-time 
scenarios to analyse. Therefore, we can rely on such simple 
properties to check the consistency of objects, as well as the 
consistency of the whole software system. Introducing concurrent 
execution complicates things: we have to analyse all possible 
interleavings, which leads to a combinatorial explosion of cases to 
consider. For that reason, SCOOP lets at most one routine execute 
on any given object at a time. The result of such restriction is the 
single locking policy8.  
Certainly, the two properties mentioned above are not sufficient 
to prove the correctness of a software system. Nevertheless, they 
constitute a first step in the process of devising a mathematical 
model for reasoning about concurrent programs. We are 
convinced that such model will be very helpful in proving the 
correctness of SCOOP-based programs. 

 

 

 

 

 

 

3. DISTRIBUTED COMPUTATION WITH 
SCOOP 

When writing SCOOP-based applications, programmers can rely 
on the high-level concepts of separate object and processor, 
without taking into account the mapping of processors to the 
actual physical resources. This is one of the strongest ideas 
brought by SCOOP: it allows developers to write applications 
which would run both on a local machine (see Figure 4) and on 
several machines distributed over a local network or Internet (see 
Figure 5), without the need to make any changes in the software 
text. The mapping of processors to physical resources is not 
specified by the software text, hence the facility of executing 
SCOOP-based applications in a distributed setting. 
In our example, Processors 1, 2, and 3, which are located on 
the same machine Computer 1 may be also easily placed on 
three different machines: Processor 1 may be handled by the 
computer susi.ethz.ch, Processor 2 by the computer 
ruth.ethz.ch, and Processor 3 may remain on the local 
machine Computer 1. The objects handled by each processor 
become thereby physically distributed. Nevertheless, from the 
application’s point of view, as well as from the programmer’s 
point of view, there is no difference between the two situations 
depicted by Figures 4 and 5. The SCOOP mechanism takes care 
of all the “dirty work”, that is to say for making the distributed 
architecture completely transparent for the application, so that it 
can run as if all processors were located on the same machine.     

                                                                 
8 A multiple locking policy for SCOOP has been proposed in [11]. 
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3.1 Concurrency Control File 
The Concurrency Control File (CCF) specifies the mapping of 
processors to actual physical resources: machines, processes, 
threads, application domains, web services, etc. The CCF file is 
separated from the software text. What’s more, it is not a 
compulsory part of a SCOOP-based application. If the CCF 
exists, the mapping of the processors is done according to the 
information in the file. Should CCF be not available, a default 
mapping scheme is used9. The compilation of a concurrent 
application is completely independent from the existence or non-

                                                                 
9 For example, on the .NET platform each new processor is, by 

default, mapped to a new application domain on the local 
machine [12]. 

existence of a CCF. This means that the mapping to physical 
resources is done at run time10. 

Example 5. Concurrency Control File 
creation 

system 
  "susi.ethz.ch" (2): "c:/prog/appl1.exe" 
  "ruth.ethz.ch" (4): "c:/prog/appl2.dll" 
  Current: "c:/prog/appl1.exe" 
end 

end 
external 

db_handler: "schlemmer.ethz.ch" port 9000 
web_handler: "papi.ethz.ch" port 8080 

end 
default 

port: 8001; instance: 10 
end 

The creation part specifies which physical resources should be 
used for separate creations of the form create x.make, where 
x is separate. In the example above: 

• two processors will be created at location represented by the 
application appl1.exe on the computer susi.ethz.ch, 

• the next four processors will be created at location 
appl2.dll on the computer ruth.ethz.ch, 

• the following ten will be created on the local computer. 
Value 10 comes from the instance entry in the default 
part of the CCF. 

The allocation scheme is repeated for further separate object 
creations, starting again with two separate objects on the 
computer susi.ethz.ch, four on ruth.ethz.ch, and so 
on. 
Sometimes, applications need references to separate objects 
previously created by another program. In such cases, the 
application relies on the CCF: the external part of the CCF 
specifies which external services should be used for requesting a 
reference to (persistent) separate objects. These may include 
database handlers, web services, ftp servers, etc. In our example, 
the location of database handler schlemmer.ethz.ch and 
web handler papi.ethz.ch is specified. The application can 
get a reference to a separate database object by using an 
appropriate function from facility class CONCURRENCY (see 
section 4):  
server (name:STRING; ...): separate DATABASE 
with the argument “db_handler”. 
Finally, the default part of the CCF provides default values for 
SCOOP-related parameters used by the application, e.g. the 
standard port number for creation of a new processor, the default 
number of processors to be created, etc. 

4. LIBRARY MECHANISMS 
We have strived for the simplicity and elegance of the proposed 
model. The way to achieve these goals has been to keep the basic 
mechanism as minimal as possible. Naturally, users’ needs cannot 

                                                                 
10 See section 4.1 for more details.  
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be fully predicted, that is why SCOOP offers several library 
mechanisms that extend the capabilities of the mechanism. In this 
section, we describe two of them: 

• the physical resource management, which allows for a finer 
degree of resource control than the CCF files,  

• the mechanism of duels, which may serve as a basis for real-
time programming. 

Both mechanisms may be implemented as a facility class 
CONCURRENCY [8].   

4.1 Resource management 
With a CCF-like approach (see 3.1), the application software will, 
most of the time, not concern itself with the mapping of 
processors to the physical concurrency architecture. Some 
application developers may, however, need to exert a finer degree 
of control from within the application, at the possible expense of 
dynamic reconfigurability. Some CCF functionalities must then 
be accessible directly to the application, enabling it, for example, 
to select a specific process or thread for a certain processor. They 
will be available through libraries as part of the two-level 
concurrency architecture [8]. 
At the other extreme, some applications may want unlimited run-
time reconfigurability. It is not enough to read a CCF at start-up 
time and then be stuck with it. But we cannot either expect to re-
read the configuration file before each operation, as this would 
kill performance. The solution is once again to use a library 
mechanism: a procedure must be available to read or re-read the 
configuration information dynamically, allowing the application 
to adapt to a new configuration when (and only when) it is ready 
to do so. 

4.2 Duels 
SCOOP allows the processor in charge of an object to execute at 
most one routine at any given time (see section 2.5). The main 
reason for this restriction is to retain the ability to reason about 
our software. Nevertheless, in cases of emergency, or if a client 
keeps a lock on a supplier object for too long, it should be 
possible to interrupt the client by triggering an exception. This 
observation has inspired us to introduce the mechanism of duels. 
A duel can be defined as an attempt to snatch a shared object from 
its current holder. Let us illustrate this with an example. An object 
executes the instruction r(b), where b is separate. After having 
waited for the object b to become free, and for the separate 
precondition clauses to hold, the object captures b, and becomes 
its current holder. It should be emphasised that the execution of r 
on b has started on behalf of the holder, but is not finished. 
Another separate object, which we call the challenger, executes 
s(c), where c is separate and attached to the same object as b. 
In normal case, the challenger has to wait until the call to r is 
over. If the challenger is in hurry or has something more 
important to do with the reserved object, it can use the facilities of 
the library class CONCURRENCY to snatch the reserved object. 
Class CONCURRENCY provides, for this purpose, features yield 
and retain for the holder and features demand and insist 
for the challenger (see Table 1). On the holder’s side, yield 
means that the holder is ready to release his hold if a challenger 
with a more urgent need comes along. By calling the feature 
retain, which is the default behaviour, the holder can retain his 
hold. On the challenger’s side, demand means that the challenger 

wants to get immediately the hold. If the holder has called yield 
then the challenger will indeed get the hold, and the holder will 
get an exception, otherwise the challenger will get an exception. 
On the contrary, insist on the challenger’s side means that the 
challenger tries to get the hold, but if the holder has called 
retain, the challenger will not get an exception; it will simply 
wait. Otherwise, that is if the holder has called yield, the 
challenger will get the hold, and the holder will get an exception. 
For the challenger to return to the default behaviour of waiting for 
the holder to finish, wait_turn is used. A call to one of these 
features will retain its effect until another one supersedes it. It 
should be emphasised that the two sets of facilities are not 
exclusive; for example a challenger could use both insist to 
request special treatment and yield to accept being interrupted 
by another client. Table 1 summarises the results of a duel in all 
possible cases. Default options and behaviour are underlined. 

Table 1. Sematics of duels 

Challenger →
↓ Holder 

wait_turn demand insist 

retain Challenger 
waits 

Exception in 
challenger 

Challenger 
waits 

yield Challenger 
waits 

Exception in 
holder’s 
routine 

Exception in 
holder’s 
routine; serve 
challenger 

 

We plan to extend the duel mechanism with a priority scheme, in 
order to support advanced real-time programming. 

5. DISCUSSION 
5.1 Design criteria 
In section 1, we mentioned several criteria that should guide the 
design and implementation of an object-oriented concurrency 
mechanism. Let us discuss these criteria in more detail and see 
how the SCOOP model fulfills them. 

5.1.1 Minimality of mechanism 
Object-oriented software construction is a rich and powerful 
paradigm, which intuitively seems ready to support concurrency. 
It is essential, then, to aim for the smallest possible extension. 
Minimalism here is not just a question of good language design. If 
the concurrent extension is not minimal, some concurrency 
constructs will be redundant with the object-oriented constructs, 
or will conflict with them, making the developer’s task hard or 
impossible. To avoid such a situation, we must find the smallest 
syntactic and semantic epsilon that will add concurrent execution 
capabilities to our object-oriented programs. 
The extension presented in this article is indeed minimal, since it 
is not possible to add less than one new keyword. 

5.1.2 Full use of  object-oriented techniques 
It would be unacceptable to have a concurrent object-oriented 
mechanism that does not take advantage of all object-oriented 
techniques, in particular inheritance. Please note that the 
“inheritance anomaly” [7], which causes so much trouble in  the 
approaches proposed by other authors, as well as other potential 



conflicts, are not inherent to concurrent object-oriented 
development but follow from specific choices of concurrency 
mechanisms, in particular active objects, state-based models and 
path-expressions-like synchronisation; the appropriate conclusion 
is to reject these choices and retain inheritance. 
The SCOOP model allows the programmer to use the full power 
of all the object-oriented techniques offered by the underlying 
language Eiffel, including multiple inheritance, genericity (see 
5.1.5), agent mechanism, and information hiding. 

5.1.3 Compatibility with Design by Contract 
It is essential to retain the systematic, logic-based approach to 
software construction and documentation expressed by the 
principles of Design by Contract. 
A fundamental place in the SCOOP mechanism has been given to 
assertions, in particular preconditions. In fact, the model is largely 
derived from the analysis of the new semantics of preconditions 
in a concurrent setting (see 2.4).  

5.1.4 Applicability to many forms of concurrency 
A general criterion for the design of a concurrent mechanism is 
that it should support many different forms of concurrency: 
shared memory, multitasking, client-server computing, distributed 
processing, real-time programming, etc. 
With such a broad set of application areas, a language mechanism 
cannot be expected to provide all the answers. Nevertheless, it 
should lend itself to adaptation to all the intended forms of 
concurrency. In SCOOP, this is achieved by using the abstract 
notion of processor, and relying on a distinct facility 
(Concurrency Control File, libraries) to adapt the solution to any 
particular hardware architecture that may be available. 

5.1.5 Support for the reuse of non-concurrent 
software 
It is necessary to support the reuse of existing, non-concurrent 
software, especially libraries of reusable software components. 
SCOOP allows for a smooth transition between sequential classes 
such as QUEUE [G]11 and their concurrent counterparts such as 
BUFFER [G]. The latter, which we have used in several code 
examples within this article (see Example 1, 2, and 3), can be 
simply defined as: 

separate class BUFFER [G]  

  inherit QUEUE [G] 

end 

Sometimes, as an inescapable consequence of the semantic 
differences between sequential and concurrent computation, some 
wrapper classes may be needed but, in most cases, they are very 
easy to write.      

5.1.6 Efficient deadlock-avoidance scheme 
One area in which more work remains necessary is how to 
guarantee deadlock avoidance. Deadlock potential is a fact in a 
concurrent life. For example any mechanism that can be used to 

                                                                 
11 QUEUE [G] is a generic class. G is the formal generic 

parameter, which should be replaced by an actual generic 
parameter, e.g. INTEGER.   

program semaphores can cause deadlock, since semaphores are 
trivially open to that possibility. 
The solution lies partly in the use of high-level encapsulation 
mechanisms. For example a set of classes encapsulating 
semaphores should come with behaviour classes that 
automatically provide a free operation for every reserve, thereby 
guaranteeing deadlock avoidance for applications that follow the 
recommended practice by inheriting from the behaviour class. 
This approach may be insufficient, however, and it is advisable to 
design simple anti-dealock rules, automatically checkable by 
static tools (at compilation time). Devising an efficient deadlock-
avoidance scheme is one of our principal goals. 

5.1.7 Adaptability through libraries 
Many concurrency mechanisms have been proposed over the 
years (see section 5.3). Each has its partisans, and each may 
provide the best approach to certain problem areas. It is 
important, then, that the proposed model should support at least 
some of these mechanisms. More precisely, the solution must be 
general enough to allow us to program various concurrency 
constructs. 
One of the most important aspects of the SCOOP model is that it 
supports the construction of libraries for widely used schemes. 
The library construction facilities (classes, assertions, genericity, 
multiple inheritance, deferred classes and others) allow us to 
express many concurrency mechanisms in the form of library 
components. We expect that a number of libraries will be 
produced, relying on the basic tools and complementing them, to 
support concurrency models catering to specific needs and tastes. 
In section 4, we have also seen the use of library classes such as 
CONCURRENCY to provide various refinements to the basic 
scheme defined by the language mechanism.  

5.2 Implementation 
SCOOP has only had prototype implementations so far. One of 
our principal goals is to provide working, production-quality 
implementations of SCOOP on several platforms. 
The first implementation [12] takes advantage of the Remoting 
library of the new .NET framework, available today from 
Microsoft and in the process of being ported to non-Microsoft 
architectures, in particular Linux and BSD in two separate open-
source implementations. .NET is attractive as an infrastructure for 
several reasons: the general quality of its design; its support for 
multi-language interoperability, so that components developed in 
one language can be made available to many others; its innovative 
solutions in the area of Internet programming, especially its 
support for Web services; and particularly the power of the 
Remoting library that provides a general basis which appears to 
match particularly well the needs of the SCOOP model. 
Other targeted platform include the POSIX threading library and 
the .NET Compact Framework. 

5.3 Related work by other authors 
Hewitt and Agha’s Actors model [1], which predates the object-
oriented renaissance and comes from a somewhat different 
background, has influenced many object-oriented approaches. 
Actors are computational agents similar to active objects, each 
with a mail address and a behaviour. An actor communicates with 
others through messages sent to their mail addresses; to achieve 



asynchronous communication, the messages are buffered. An 
actor processes messages through functions and by providing 
“replacement behaviours” to be used in lieu of the actor’s earlier 
behaviour after a certain message has been processed. 
One of the earliest and most thoroughly explored parallel object-
oriented languages is POOL [2]; POOL uses a notion of active 
object, which was found to raise problems when combined with 
inheritance. For that reason inheritance was introduced into the 
language only after a detailed study which led to the separation of 
inheritance and subtyping mechanisms. The design of POOL is 
also notable for having shown, from the start, a strong concern for 
formal language specification. 
[21] contains the description of several influential Japanese 
developments, such as ABCL/1. MUSE, an object-oriented 
operating system developed at Sony Computer Science 
Laboratory, was presented by Tokoro and his colleagues at 
TOOLS Europe 1989 [20]. The term “inheritance anomaly” was 
introduced by Matsuoka and Yonezawa [7], and further papers by 
Matsuoka and collaborators which propose various remedies. 
Work on distributed systems has been particularly active in 
France, with the GUIDE language and system [3] and the SOS 
system [17]. In the area of programming massively parallel 
architectures, primarily for scientific applications, the EPEE 
system has been developed [6]. 
Also influential has been the work done by Nierstrasz and his 
colleagues at the University of Geneva around the Hybrid 
language [13][15], which does not have use two categories of 
objects (active and passive) but relies instead on the notion of 
thread of control, called activity. The basic communication 
mechanism is the remote procedure call (RPC), either 
synchronous or asynchronous.  
A special issue of the Communications of the ACM [9] presents a 
number of important approaches to concurrent object-oriented 
programming, originally drawn from concurrency papers at 
various TOOLS conferences. An earlier collective book edited by 
Yonezawa and Tokoro [21] served as catalyst for much of the 
work in the field and is still good reading.  
There are several survey articles on aspects of concurrent object-
oriented languages. [14] discusses systems providing process or 
object migration in a distributed context. [19] studies several 
languages and discuss whether the concurrency is appropriately 
integrated into them. [15] gives a first classification of concurrent 
object-oriented languages. Large surveys on COOLs are provided 
by [18] and [16].  

6. CONCLUSIONS AND FUTURE WORK 
We have presented the basic concepts of the SCOOP model. We 
introduced the notion of processor, and proposed an object-
oriented concurrency mechanism based on that concept. We have 
discussed the semantics of contracts in a non-sequential setting 
and their use for devising an access control policy for SCOOP. 
We have shown how high-level concurrency constructs are 
mapped to the physical concurrency architecture, and discussed 
distributed programming with SCOOP. We have also presented 
the library mechanisms of the model. 

The main contribution of our work is the cohesive description of 
SCOOP: a compact yet powerful model for object-oriented 

concurrent programming. Unlike other models, SCOOP is based 
on very high-level concepts (processors and separate objects), 
which make it possible to keep the full power of all object-
oriented techniques, and to apply the model to many different 
forms of parallel programming. SCOOP makes concurrent and 
distributed programming much easier: programmers can forget the 
usual “concurrency nightmares” such as semaphores, monitors, 
and locks. It also allows us to produce software that runs on very 
different physical configurations (single machine, several 
machines on a local network, machines distributed over Internet) 
with no need to change the code (or re-compile it) each time the 
configuration changes. 

Another important result is an in-depth analysis of the semantics 
of contracts in a concurrent setting. This has allowed us to 
confirm the importance of Design by Contract as a key technique 
for obtaining high-quality software. 
We are currently implementing the SCOOP model on .NET [12]. 
We are also devising a new access control policy based on the 
concept of pure function [11]. We are interested in providing a 
mathematical model of execution of SCOOP-based programs, 
which would permit to prove the correctness of SCOOP-based 
programs and to define an efficient deadlock-prevention policy. 
Finally, one of the main research topics is the application of 
SCOOP to real-time systems. This involves an extension of the 
duel mechanism with a priority scheme, and devising timing 
assertions. 
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