
Practical framework for contract-based concurrent object-oriented programming

Piotr Nienaltowski

c© Piotr Nienaltowski, 2007

Doctoral Thesis ETH No. 17061

Practical framework for contract-based concurrent
object-oriented programming

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH ZURICH)

for the degree of
Doctor of Sciences (Dr. sc. ETH Zurich)

presented by
Piotr Nienaltowski

DEA Université Joseph Fourier/INPG Grenoble, France
born on 30 June 1976

Polish citizen

accepted on the recommendation of
Prof. Dr. Bertrand Meyer, ETH Zurich, examiner
Prof. Dr. Peter Müller, ETH Zurich, co-examiner

Prof. Dr. Jonathan Ostroff, York University, Toronto, co-examiner

2007

Foreword

CONCURRENT programming, we have been told many times, is difficult. (The adjective difficult
is usually embellished in this context with one of: inherently, intrinsically, extremely, or at least
very.) Boyapati, Lee, and Rinard [28] warn against the pitfalls of widely used multithreading:

Multithreaded programming is difficult and error-prone. Synchronization errors
(...) are among the most difficult programming errors to detect, reproduce, and
eliminate.

Sutter and Larus [135] point the mismatch between existing techniques and practical needs:

Not only are today’s languages and tools inadequate to transform applications into
parallel programs, but also it is difficult to find parallelism in mainstream applica-
tions, and — worst of all — concurrency requires programmers to think in a way
humans find difficult.

Harris, Herlihy et al. [63] observe the lack of modularity in current programming models:

A particular source of concern is that even correctly implemented concurrency ab-
stractions cannot be composed together to form larger abstractions.

The research effort described here stems from an optimistic belief that, although orches-
trating several concurrent activities is more complicated than performing a single one, well-
established software engineering techniques can help reduce the complexity of this task. Sim-
plicity, abstraction, and modularity brought by object technology have been shown to improve
dramatically the quality of sequential software; I have decided to learn how to apply them to
solving concurrency problems. This dissertation is a report from my research journey into the
fascinating world of object-oriented programming and Design by Contract to discover simple
and convenient techniques for building high-quality concurrent systems.

iii

Abstract

CONCURRENCY, in its many variants from multithreading to multiprocessing, distributed com-
puting, Internet applications, and Web services, has become a required component of ever more
types of systems, including some that are traditionally thought of as sequential. The software
industry badly needs a concurrent programming technique enjoying the same simplicity and in-
spiring the same confidence as the accepted constructs of sequential programming. The object-
oriented framework presented in this thesis — SCOOP — provides a suitable support to solving
a large class of concurrency problems. It carries the advantages of object technology and De-
sign by Contract to the concurrent context: concurrent software can be understood, analysed,
written, and reused in a much simpler manner than with other state-of-the-art techniques.

We start from a previous version of the model: SCOOP 97. It is an interesting candi-
date for modelling concurrent applications because it takes advantage of the existing synergies
between object-oriented concepts and concurrency. At the outset of this work, no implemen-
tation of SCOOP 97 was available and the conceptual implications of the model had not been
fully worked out. Also missing was a detailed comparison with other approaches. This thesis
fills these gaps by carrying out an in-depth analysis of the model, identifying inconsistencies,
proposing adequate solutions to the encountered problems, extending the model, formalising it,
and providing an implementation. The main results are:

• An enriched type system to detect and eliminate potential atomicity violations.

• A generalised semantics of contracts, applicable in concurrent and sequential contexts.

• A flexible locking policy to optimise the use of resources and to minimise the danger of
deadlocks.

• A seamless integration of the concurrency model with Eiffel: a full-blown object-oriented
language.

• A library implementation of SCOOP and a compiler which type-checks SCOOP code and
translates it into pure Eiffel with embedded library calls; a supporting library of advanced
concurrency mechanisms is also provided.

Our framework supports the essential object-oriented mechanisms: (multiple) inheritance,
polymorphism, dynamic binding, genericity, expanded and attached (non-nullable) types, and
agents. It is implemented as an extension of Eiffel but the results of this work are directly
applicable to other object-oriented languages that support Design by Contract, e.g. Spec] and
JML/Java.

v

Kurzfassung

NEBENLÄUFIGKEIT, in seinen vielen Varianten, angefangen bei Multithreading und Multipro-
cessing über Verteilte Systeme und Internet-Anwendungen bis hin zu Web-Services, ist ein
notwendiger Bestandteil von immer mehr Systemen, auch solchen, welche früher als klas-
sisch sequenziell galten. Die Softwareindustrie benötigt dringend Techniken zur Erstellung
von nebenläufigen Programmen, welche so einfach und zuverlässig sind wie die verbreit-
eten Ansätze für sequenzielle Programmierung. Das objektorientierte Modell und Framework
SCOOP, welches Thema dieser Arbeit ist, unterstützt in angemessener Weise die Lösung eines
breiten Feldes an Problemstellungen. Es überträgt die Vorteile von Objekttechnologie und De-
sign by Contract auf das Gebiet der Nebenläufigkeit: nebenläufige Anwendungen werden viel
einfacher verstanden, analysiert, implementiert und wiederverwendet.

Ausgegangen sind wir von einer bestehenden Version des Modells, welche ein interessanter
Kandidat für die Modellierung von nebenläufigen Anwendungen ist, weil sie die vorhande-
nen Beziehungen zwischen objektorientierten Konzepten und Nebenläufigkeit ausnutzt. Zu Be-
ginn war weder eine Implementierung vorhanden, noch waren die konzeptionellen Auswirkun-
gen des Modells vollständig ausgearbeitet. Auch fehlte ein detaillierter Vergleich mit anderen
Ansätzen. Diese Arbeit schliesst diese Lücken durch eine tiefgreifende Analyse des Modells.
Inkonsistenzen werden identifiziert und adäquate Lösungen werden vorgeschlagen. Das Modell
wird formalisiert und eine Implementierung bereitgestellt. Die wesentlichen Ergebnisse sind:

• Ein angereichertes Typensystem, welches mögliche Probleme mit der Atomarität
aufdeckt.

• Ein verallgemeinertes Verständnis von Contracts, welches in nebenläufigen und sequen-
ziellen Anwendungen gleichermassen gilt.

• Ein flexibles Verfahren des Locking, welches Ressourcen optimal ausnutzt.

• Eine nahtlose Integration des Modells in eine vollständige, objektorientierte Program-
miersprache.

• Eine Implementierung von SCOOP als Bibliothek und ein typüberprüfender Compiler,
welcher den Code in reines Eiffel unter Verwendung der Bibliothek übersetzt; eine weit-
ere Hilfsbibliothek mit fortgeschrittenen Mechanismen für Nebenläufigkeit wird ausser-
dem bereitgestellt.

Unser Framework unterstützt die wesentlichen objektorientierten Mechanismen: Vererbung,
Polymorphie, Generizität, sowie Agents. Es ist als Erweiterung der Programmiersprache Eiffel
umgesetzt, aber die Resultate sind direkt auf andere objektorientierte Sprachen mit Design by
Contract anwendbar, beispielsweise Spec] oder JML/Java.

vii

Acknowledgments

Many persons contributed to the completion of this work. First of all, I would like to thank
my advisor Bertrand Meyer for giving me the opportunity to work with him and discover the
beauty of object technology. His informative criticism has guided my research efforts, bringing
this work to sharper focus. I have particularly appreciated his insistence on excellence and
practicality of the undertaken research, and the constant encouragement to develop various
professional and personal skills.

I am grateful to Peter Müller and Jonathan Ostroff for acting as reviewers of this dissertation.
Their perspicacious comments have helped improve this work. Peter’s course on semantics of
programming languages and his research on ownership types provided much of the impetus for
this work. I have benefited greatly from numerous discussions with Jonathan and his students.

Jean-Raymond Abrial’s teaching talent and unlimited enthusiasm for proofs have helped
overcome my initial fears of formal methods. I have appreciated his cheerful attitude which has
proved infectious in many lectures and meetings of the ETH Formal Methods Club.

I am indebted to Richard Paige, Phil Brooke, Haifeng Huang, Faraz Torshizi, and Jeremy
Jacob for the hot debates on SCOOP which have contributed to the better understanding of the
model.

The friendly and motivating environment at the Chair of Software Engineering has made my
stay at ETH an enjoyable and fruitful experience. My warmest thanks go to all my present and
former colleagues: Karine Arnout, Volkan Arslan, Arnaud Bailly, Stephanie Balzer, Till Bay,
Ruth Bürkli, Susanne Cech, Ilinca Ciupa, Ádám Darvas, Werner Dietl, Vijay D’silva, Patrick
Eugster, Claudia Günthart, Stefan Hallerstede, Hermann Lehner, Andreas Leitner, Lisa Liu,
Luc de Louw, Farhad Mehta, Martin Nordio, Manuel Oriol, Michela Pedroni, Marco Piccioni,
Joseph Ruskiewicz, Bernd Schoeller, Sébastien Vaucouleur, Laurent Voisin, and Jenny Xiaohui.
It has been a great pleasure to work on SCOOP-related projects with a number of smart students:
Andreas Compeer, Daniel Moser, Yann Müller, Christopher Nenning, Gabriel Petrovay, and
Ganesh Ramanathan. I am particularly thankful to all the students who took the Concurrent
Programming II course in 2006. Their feedback was invaluable; so was their patience with the
early versions of SCOOP tools.

I would like to thank my family for their continuous encouragement and belief in the success
of my projects and endeavours.

Finally, the very special thanks go to Marie-Hélène Ng Cheong Vee for her support, under-
standing, and amazing patience. Thank you for putting up with me in the tough times preceding
the completion of this work. I promise some improvement in the future.♥

ix

Contents

Abstract v

Contents xi

1 Introduction 3
1.1 Thesis statement . 6
1.2 Goals and evaluation criteria . 6
1.3 Conventions . 8

2 Summary and main results 9
2.1 Summary . 9
2.2 Topics not covered in this dissertation . 10
2.3 Organisation of the dissertation . 12
2.4 Main results and contributions . 12

3 Previous work 25
3.1 Object-oriented concurrency models . 25
3.2 Multithreading . 30
3.3 Concurrency in Eiffel . 35

4 Original SCOOP 97 model 41
4.1 Development . 41
4.2 SCOOP 97 in detail . 42

4.2.1 Processors and separate objects . 42
4.2.2 Separate entities, classes, and calls . 43
4.2.3 Synchronisation . 44
4.2.4 Consistency rules . 48
4.2.5 Additional rules and mechanisms . 50
4.2.6 Proof rule for feature calls . 52
4.2.7 Advanced features . 53

4.3 Related work . 53

5 Beyond SCOOP 97: critique and roadmap 61
5.1 Semantics of separate annotations . 61
5.2 Separate call rule . 63

xi

xii CONTENTS

5.3 Feature call vs. feature application . 64
5.4 Consistency rules . 66
5.5 Reasoning about object locality . 67
5.6 Semantics of contracts . 68
5.7 Proof rules . 70
5.8 Locking policy . 71

5.8.1 Eager locking . 71
5.8.2 Cross-client locking and separate callbacks 72
5.8.3 Void separate arguments . 73

5.9 Quasi-asynchrony . 74
5.10 Polymorphism and dynamic binding . 75
5.11 Genericity . 77
5.12 Practical considerations . 78

5.12.1 Enclosing routines . 78
5.12.2 Deferred classes . 79
5.12.3 Software reuse . 80

5.13 Discussion . 81

6 Type system for SCOOP 83
6.1 Computational model . 83

6.1.1 Feature call . 84
6.1.2 Feature application . 86
6.1.3 Synchronisation . 87

6.2 From consistency rules to a type system . 88
6.2.1 SCOOP types . 88
6.2.2 Processor tags . 90
6.2.3 Implicit types . 91

6.3 Subtyping . 92
6.4 Type combinators . 95
6.5 Valid targets . 100
6.6 Object creation . 103
6.7 Handling false traitors . 104
6.8 Object import . 106
6.9 Object equality . 108
6.10 Expanded types . 109
6.11 Formalisation of the type system . 111

6.11.1 SCOOPC programs . 111
6.11.2 Typing environments . 112
6.11.3 Valid types . 114
6.11.4 Subtyping . 114
6.11.5 Well-formed environments . 115
6.11.6 Type rules . 119

6.12 Properties of the type system . 121
6.12.1 Example . 121

CONTENTS xiii

6.12.2 Lemmas . 142

7 Flexible locking 145
7.1 Eliminating unnecessary locks . 145

7.1.1 (Too much) locking considered harmful 145
7.1.2 Semantics of attached types . 146
7.1.3 Support for inheritance and polymorphism 147

7.2 Lock passing . 152
7.2.1 Need for lock passing . 152
7.2.2 Mechanism . 153
7.2.3 Lock passing in practice . 156

7.3 Related work . 160

8 Contracts and concurrency 163
8.1 Generalised semantics of contracts . 164

8.1.1 Preconditions . 164
8.1.2 Postconditions . 168
8.1.3 Invariants . 170
8.1.4 Loop assertions and check instructions 171

8.2 Towards a proof rule . 172
8.3 Discussion . 175

8.3.1 Contract redefinition . 175
8.3.2 Importance of lock passing . 176
8.3.3 Run-time assertion checking . 176

8.4 Related work . 178

9 Advanced object-oriented mechanisms in SCOOP 181
9.1 Inheritance and polymorphism . 181

9.1.1 Multiple inheritance . 181
9.1.2 Polymorphism and dynamic binding 183
9.1.3 Deferred classes . 188

9.2 Genericity . 189
9.2.1 Generic parameters . 190
9.2.2 Constrained genericity . 191
9.2.3 Actual result types . 193
9.2.4 Actual argument types . 194
9.2.5 Detachable generic parameters . 195
9.2.6 Type conformance . 196
9.2.7 Discussion . 201

9.3 Agents . 202
9.3.1 Agents as potential traitors . 203
9.3.2 Separate agents . 206
9.3.3 Open targets . 212
9.3.4 Applications of separate agents . 213

xiv CONTENTS

9.4 Once routines . 218
9.5 Discussion . 219

10 Using SCOOP in practice 221
10.1 Classic examples . 221

10.1.1 Dining philosophers: atomic locking of multiple resources 221
10.1.2 Producers-consumers: condition sychronisation 225
10.1.3 Binary search trees: efficient parallelisation 226
10.1.4 Santa Claus: barriers and priority scheduling 229

10.2 Agents and asynchrony . 232
10.2.1 Rendezvous synchronisation and active objects 234
10.2.2 Waiting faster . 236
10.2.3 Resource pooling . 239
10.2.4 Event-driven programming . 242

10.3 Control systems . 244
10.3.1 Elevator . 244
10.3.2 Arm robot . 246

10.4 Code reuse . 250
10.5 Inheritance anomalies . 252
10.6 Discussion . 257

11 Implementation: issues and solutions 259
11.1 Supported mechanisms . 260
11.2 SCOOPLI library . 262

11.2.1 Processors . 262
11.2.2 Separate objects . 263
11.2.3 Separate calls . 264
11.2.4 Scheduling, locking, and wait conditions 265
11.2.5 Lock passing . 266
11.2.6 Quiescence and termination . 266
11.2.7 Garbage collection . 266

11.3 Scoop2scoopli tool . 267
11.3.1 Code generation . 268
11.3.2 Bootstrapping . 271
11.3.3 Invariant checking . 272
11.3.4 Postcondition checking . 272

11.4 CONCURRENCY library . 273
11.4.1 CONCURRENCY . 274
11.4.2 EXECUTOR . 275
11.4.3 ANSWER COLLECTOR . 275
11.4.4 EVALUATOR . 275
11.4.5 POOL MANAGER . 276
11.4.6 LOCKER . 276
11.4.7 SCOOP-enabled EVENT TYPE . 276

CONTENTS 1

12 Teaching SCOOP 279
12.1 Topics . 279
12.2 Assessment . 280
12.3 Students’ feedback . 281
12.4 Discussion . 286

13 Critique and conclusions 289
13.1 Applicability to other languages . 290
13.2 Limitations and future work . 299
13.3 Final remarks . 304

A CONCURRENCY library 305

B Glossary 317

Bibliography 321

List of Figures 331

1
Introduction

THE real world is concurrent — several things happen at the same time. Computer systems that
are intended to model the world must account for its concurrent nature. Concurrent program-
ming has become a required component of ever more types of systems, including some that
were traditionally thought of as sequential. There are numerous examples of such applications:
banking systems with multiple ATMs, avionics systems, booking systems, multi-user operating
systems. Very often, sequential tasks may be parallelised and solved faster using several com-
puting units working concurrently. Reactive systems which interact with their environment can
be naturally modelled as concurrent systems [35]. When many activities are performed concur-
rently, they need to communicate and coordinate. Coordination should ensure that there is no
harmful interference which may falsify the results of computation. Also, no activity should be
infinitely prevented from progressing by others.

The industry is still looking for a good way to produce concurrent applications. The contrast
with sequential programming is stark: there, a widely accepted set of ideas — standard control
and data structuring techniques, modularity and information hiding, object-oriented principles
— have displaced the lower-level concepts that used to predominate [94]. But the techniques
commonly used to produce concurrent applications are still elementary and often haphazard.
The explicit specification and control of low-level parallelism in multithreading models, e.g. in
Java [79] and C] [46], is a source of new programming errors due to incorrect synchronisation.
Three main types of synchronisation errors can be identified:

• Data race: a situation where different threads simultaneously access the same data with-
out ordering, with at least one thread modifying the data. Data races lead to data incon-
sistency and unintended non-determinism.

• Atomicity violation: unwanted interleaving of operations performed by different threads,
leading to harmful interference between threads which results in an inconsistent state of
the system.

• Deadlock: a situation where synchronisation between threads causes a cyclic wait, e.g.
thread A is waiting for thread B, B is waiting for C, and C is waiting for A, which prevents
the involved threads from progressing.

A suitable concurrency model is needed that provides the basic safety and liveness guarantees,
shielding programmers from these common mistakes and errors. Furthermore, the model should
be flexible enough to provide support for many kinds of concurrent systems.

Is there a simpler and better basis for concurrent programming: a disciplined approach
to building high-quality software systems? No unique solution will cater for the needs of all

3

4 CHAPTER 1. INTRODUCTION

possible applications of concurrency but is it possible to devise a simple technique, applicable
to a large number of problems, that helps programmers design and develop correct and reusable
concurrent programs in a modular way with little more effort than sequential ones?

Benefits of object technology

Object-oriented software construction is the building of software systems as collections of
classes corresponding to well-defined data abstractions. These collections are structured us-
ing two inter-class relations: client and inheritance [94]. At run time, a system is represented
by a set of objects (instances of classes) which communicate through feature calls. Object tech-
nology and its underlying principles permit building software that satisfies a number of quality
factors. Of particular interest are:

• Modularity: the possibility to build a software system from smaller components, and to
reason about its properties based on the properties of these components.

• Ease of reuse: the applicability of existing software elements to different contexts, and
their utility as building blocks for new software systems.

• Extendibility: the possibility to easily change and extend existing components and sys-
tems.

Modularity and ease of reuse can be improved by minimising the coupling between software
modules, and maximising the cohesion of single modules. As observed by Meyer [94], two
techniques are essential for improving extendibility:

• Design simplicity: a simple architecture will always be easier to adapt to changes than a
complex one.

• Decentralisation: the more autonomous the modules, the higher the likelihood that a
simple change will affect just one module, or a small number of modules, rather than
triggering off a chain reaction of changes over the whole system.

When properly applied, object technology permits to improve all these quality factors in se-
quential software, thanks to the use of the following principles and mechanisms:

• Abstraction and information hiding
Abstraction permits stripping away irrelevant details, e.g. how a given feature is imple-
mented. An abstract concept may have many different implementations; clients should
be able to use a class through a clearly defined interface, without the need to see the im-
plementation details. Information hiding is an important means to achieve high levels of
abstraction. It is possible for the author of a class to decide that a feature is available to
all clients, to no client, or to specified clients only. It is also possible to write a class as
deferred, i.e. specified but not fully implemented. Deferred classes are useful for analysis
and design because they allow capturing the essential aspects of a system while leaving
details to a later stage.

5

• Inheritance
Software development usually involves a large number of classes; many are variants of
others. A class may inherit from other classes, thus incorporating the others’ features in
addition to its own. Inheritance is a convenient tool for abstraction and specialisation; it
helps explore relations between the concepts modelled by classes, and it results in a clear
and compact software structure.

• Static typing
A well-defined type system guarantees run-time type safety, i.e. the absence of run-time
errors of certain kinds, by enforcing a number of type declarations and consistency rules.
Static typing increases the confidence in the correctness of a system before the system is
executed.

• Polymorphism and dynamic binding
Entities may be attached to objects of various types. In a typed language, such polymor-
phism is not arbitrary: it is controlled by the type rules. Calling a feature on an entity
triggers the feature corresponding to the actual run-time type of the corresponding object,
which may vary in different executions of the call. The run-time choice of the adequate
version of a feature is referred to as dynamic binding.

Carrying the advantages of object technology to a concurrent context seems to be a natural next
step in the development of software engineering techniques. Unfortunately, previous attempts
at bringing together concurrency and object-oriented techniques have not been very successful.
Existing concurrent object-oriented languages (see chapter 3) provide a limited support for
advanced techniques such as inheritance, polymorphism, and genericity, and they fail to take full
advantage of modularity, extendibility, and the potential for reuse offered by object technology.
Löhr [86] observes that it is important for practical software engineering that both sequential and
concurrent programs can be developed within the same framework, and the boundary between
sequentiality and concurrency be no impediment to reuse. This calls for a full integration of
concurrency and object-oriented techniques, to minimise the syntactic and semantic differences
of sequential and concurrent code.

Can the full power of object-oriented techniques be unleashed in a concurrent context? Can
concurrent software be designed, analysed, and implemented in a modular manner, and reused
in a simple and efficient way?

Benefits of Design by Contract

Design by Contract [92, 94, 99] permits equipping class interfaces with contracts which express
the mutual obligations of clients and suppliers. There are three main categories of assertions:
preconditions, postconditions, and invariants. Routine preconditions specify the obligations
on the client and the guarantee given to the supplier (routine implementor). Conversely, routine
postconditions express the obligation on the supplier and the guarantee given to the client. Class
invariants express the correctness criteria of a given class: an instance of a class is consistent
only if the corresponding invariant holds in every observable state. Additionally, loop assertions
facilitate proofs of loop correctness and termination. The modular design fostered by encapsu-
lation and Design by Contract reduces the complexity of software: correctness considerations
can be confined to the boundaries of components (classes) which can be proved and tested in

6 CHAPTER 1. INTRODUCTION

isolation. Clients can rely on the interface of a class without the need to know its implemen-
tation details. Through a precise definition of every module’s claims and responsibilities, a
significant degree of trust in large software systems can be attained.

Design by Contract has been applied successfully to sequential programming. It has proved
useful not only as a method of analysis and design but also during implementation and testing.
As pointed out in [94], writing the assertions at the same time as writing the software — or
indeed before writing the software — brings tremendous benefits:

• Producing software that is correct from the start because it is designed to be correct.

• Getting a much better understanding of the problem and its eventual solutions.

• Facilitating the task of software documentation.

• Providing a systematic basis for testing and debugging.

This results in improved modularity, reusability, and extendibility of sequential software. Can
Design by Contract bring all these improvements to concurrent software as well?

1.1 Thesis statement

This dissertation establishes the following theses:

• Object-oriented techniques coupled with Design by Contract constitute an adequate basis
for the modular development of correct concurrent programs.

• Sequentiality is a particular case of concurrency; consequently, the semantics of object-
oriented mechanisms — feature call, feature application, argument passing, and contracts
— can be generalised to cover both the concurrent and the sequential contexts. There
is no clash between concurrency and such essential object-oriented techniques as inher-
itance, polymorphism, dynamic binding, genericity, and agents; all of them can be fully
supported.

• Important information relative to concurrent execution based on asynchronous calls can
be expressed in types; a simple type system can eliminate potential atomicity violations in
the presence of asynchrony without restricting the usability of the programming language.

• The proposed approach is applicable to full-fledged object-oriented languages with inher-
itance, polymorphism, and genericity; it can be implemented in practice.

1.2 Goals and evaluation criteria

My main goal is to bring concurrent programming to the same level of abstraction and conve-
nience as sequential programming. This applies to several activities associated with software
construction: design, implementation, analysis, verification, and reuse. Object-oriented tech-
niques and Design by Contract, which constitute the basis of the Eiffel approach [92, 94], have
been very successful at improving the quality of sequential software. This study is an attempt

1.2. GOALS AND EVALUATION CRITERIA 7

to carry their advantages to the concurrent context. The intended practical outcome of this work
is SCOOP: an O-O contract-based framework for concurrent programming.

I want to demonstrate that there is no intrinsic conflict between object-oriented concepts
and concurrent programming. On the contrary: the full power of object technology can only
be unleashed in a concurrent context. This claim is against the usual view of concurrency and
object technology as two different, largely incompatible worlds. Although existing concur-
rent object-oriented programming languages (see chapter 3) provide only a limited support for
object-oriented mechanisms, I do not see why it is necessary to sacrifice the extent to which
O-O concepts, in particular inheritance, are supported. The apparent problems are caused by
insufficient understanding of object-oriented mechanisms; therefore, studying the relationship
between concurrent and O-O abstractions and capturing their intended semantics are important
goals of my research. I try to take advantage of the implicit concurrency present in O-O mech-
anisms, e.g. feature calls and contracts, to shield programmers from low-level concurrency
concepts such as threads, mutexes, and semaphores, letting them instead produce concurrent
applications along the same lines as sequential ones.

The focus of my work is resolutely practical: I want to give programmers a simple but
powerful tool for developing software. I base my work on Eiffel [92]; just like Eiffel is not only
a language but a full methodology, I want SCOOP to be a methodology for building high-quality
concurrent applications. Therefore, the “tool” becomes a complete programming framework
consisting of several parts:

• A computational model

• An extension of Eiffel to support the model

• A compiler and supporting libraries

• Teaching material

The computational model should be based on object-oriented principles; it should integrate
seamlessly all object-oriented mechanisms and take advantage of their power, rather than con-
straining them. Therefore, no typical “concurrency on top of O-O” or “O-O on top of concur-
rency” solution is acceptable where either O-O concepts or concurrency mechanisms are only
partially supported and there exist a number of “special” rules for the concurrent case. One may
expect that a full integration of O-O and concurrency will result in the absence of such rules;
I take it to be the primary evaluation criterion for this part of my work. Another important
criterion is the support for all O-O mechanisms: there should be no restrictions on the use of
genericity, inheritance, polymorphism, dynamic binding, and agents. The formal model should
also be a good platform for reasoning about software. Design by Contract enables modular
reasoning; so should SCOOP.

The language extension should be minimal, both in terms of the annotation burden put on
programmers, and the impact on the underlying sequential language. The extension should
introduce no ambiguity or inconsistency; the number of additional keywords should be kept to
a minimum. Syntactic constructs should correspond clearly to the concepts of the underlying
computational model, so that programmers can easily express their designs. Conversely, the
language should enforce clarity in the design. Since the language strives for abstraction and
convenience, it must hide low-level details irrelevant to most programmers. Nevertheless, if the
access to such details is necessary, it should be supported through libraries.

8 CHAPTER 1. INTRODUCTION

A language is only as good as its supporting tools. A compiler is necessary to translate
SCOOP programs to executable code. This can be done either directly or indirectly, e.g. by
translating SCOOP to pure Eiffel and then relying on an existing compiler. The main evaluation
criterion for the tools is the extent to which SCOOP constructs are supported; compatibility
with existing Eiffel tools and libraries is also essential.

The last component of the framework — teaching material — might come as a surprise but
I believe that no model or methodology may ever be successfully used in practice, or claimed
to be simple, if it is difficult to learn. Therefore, I have decided to teach SCOOP in a graduate
course on concurrent programming at the ETH Zurich. Since the course participants have very
different backgrounds in terms of industrial experience and previous use of other concurrency
mechanisms, but none of them has used SCOOP before, the course is a good testbed for the
framework. I take the results of the course and students’ feedback to be important evaluation
criteria for simplicity and usability of SCOOP and its tools.

1.3 Conventions

This dissertation describes my own work but — research being a collective activity — many of
the presented ideas are a result of discussions and cooperation with other people. Discussion
sections acknowledge the contributors and give references to existing work.

This document is intended to be self-contained. Nevertheless, a good command of object-
oriented concepts and Design by Contract, as described in Bertrand Meyer’s book “Object-
Oriented Software Construction” (OOSC2) [94], is a prerequisite for understanding the disser-
tation.

The dissertation uses the nomenclature introduced in OOSC2 and the recent ECMA/ISO
Eiffel standard [53, 68]. The naming conventions differ somewhat from those of Java, C++, and
C]. A glossary of basic terms is included in appendix B. The BON notation [145] is used in
class diagrams. The notation for object diagrams is extended with SCOOP-specific elements.
Diagrams include a key; in a series of related diagrams shown in the same chapter, only the first
one has a key.

Writing “the original SCOOP model” and “the current SCOOP model” in technical discus-
sion is confusing and burdensome. From now on, I will refer to the original SCOOP model as
SCOOP 97, and to the current model developed in this dissertation simply as SCOOP. Chapter
4 gives a precise justification for this convention.

“O-O” is used as shorthand for “object-oriented”. I also use “DbC” as shorthand for “Design
by Contract”, and “COOL” as shorthand for “concurrent object-oriented language”. For brevity,
I use words such as “he” and “his”, in reference to unspecified persons, as shortcuts for “he or
she” and “his or her”, with no connotation of gender.

Although I have written the present chapter in the first person singular, I use the plural form
“we” in the rest of the dissertation. This enables putting myself in the background and avoiding
awkward changes of style between sections dealing with my own work and those describing
joint work with other people.

2
Summary and main results

THIS chapter outlines the approach, defines the scope of the dissertation, and describes its main
results and contributions.

2.1 Summary

This dissertation presents SCOOP: a practical framework for the development of high-quality
concurrent software. The framework carries the advantages of object technology and Design by
Contract to the concurrent context. We put an emphasis on the practical aspects of the method-
ology: it is simple, expressive, and well-supported by tools. It achieves simplicity by relying
on the basic O-O concepts; its expressive and modelling power is due to the full support for ad-
vanced O-O mechanisms and DbC. Abstraction and encapsulation enable modular design and
analysis of programs, which results in good scalability. Unlike most existing COOLs, SCOOP
is a full-blown O-O language: it supports (multiple) inheritance, polymorphism, dynamic bind-
ing, genericity, and contracts. It comes with a compiler and a set of libraries. We also deliver
teaching material in the form of lecture slides, exercises, and examples.

We consider the SCOOP 97 model introduced by Bertrand Meyer in [93, 94] to be a con-
venient basis for our study. It is a good candidate for modelling object-oriented concurrent
applications because it relies on powerful object-oriented principles, and it tries to take advan-
tage of Design by Contract. The framework presented in this dissertation should be seen as
a further development of Meyer’s model, although we take a different approach with respect
to the relation between sequential and concurrent programming. The original model was an
attempt at finding the smallest step from the sequential to the concurrent world. We agree
with that approach as far as reasoning about concurrent software is concerned. A human brain
is skilful at sequential reasoning about small portions of code but it cannot deal with a large
number of complex parallel processes. Therefore, we try to make it possible to reason about
concurrent programs in a sequential and modular way. For the semantics, we take the opposite
view: systems are concurrent in general, and sequentiality is just a special case of concurrency.
Following this argument, we look for a unified, generalised semantics of certain object-oriented
mechanisms that is applicable in a concurrent context, and show that sequential programming
relies on a specialised version of that semantics. In a way, we try to find the smallest step from
the concurrent world to the sequential world.

We start with an in-depth analysis of SCOOP 97 to identify its inconsistencies and limita-
tions. We propose adequate solutions to the encountered problems, extend the model, formalise
it, and provide an implementation. A number of steps are followed:

9

10 CHAPTER 2. SUMMARY AND MAIN RESULTS

• Analysing the relationship between object-orientation and concurrency, with a particular
focus on the role of assertions — preconditions, postconditions, invariants, and loop as-
sertions — in the concurrent context. We show that Design by Contract is beneficial for
concurrent systems in that it supports specifying all the required conditions — including
the appropriate synchronisation — for a correct interaction between clients and suppliers.
We generalise the meaning of contracts so that assertions are evaluated asynchronously
whenever possible, while keeping their contractual character. Condition synchronisation
is based entirely on preconditions and postconditions. We demonstrate that the new se-
mantics boils down to the standard sequential semantics when no concurrency is involved.

• Exploring the feasibility of modular reasoning about concurrent software. We propose
a Hoare-style rule which unifies the treatment of synchronous and asynchronous feature
calls, and enables modular and sequential-like reasoning about them.

• Refining the consistency rules and integrating them with Eiffel’s type system. The en-
riched type system captures the concurrency-related properties of entities: their locality
and detachability; carefully designed type rules eliminate potential atomicity violations
without restricting the expressiveness of the model.

• Refining the semantics of feature application and argument passing mechanisms to sup-
port selective locking and lock passing which increase the expressiveness of the model
and optimise the use of computational resources.

• Providing a full support for the advanced object-oriented mechanisms: genericity, poly-
morphism and dynamic binding, agents, and once features.

• Implementing the model and the supporting tools: the core (SCOOPLI) library and the
(scoop2scoopli) compiler which type-checks SCOOP code and translates it into pure Eif-
fel code with embedded library calls to SCOOPLI. The supporting CONCURRENCY
library provides advanced facilities: asynchronous agent calls, asynchronous handling of
events, parallel waiting for multiple results, etc.

• Providing the teaching material for SCOOP: lecture slides, exercises, and examples. The
material is tested in two iterations of a graduate course on concurrent programming.

The theoretical and practical results of our research help simplify the construction of concur-
rent systems by bringing the O-O programming method for such software to a higher level of
abstraction and convenience, and making it easy to understand, learn, and apply.

2.2 Topics not covered in this dissertation

This dissertation focusses on the basic object-oriented concurrency mechanism of SCOOP, its
type system, the support for advanced O-O techniques, and the implementation. A number of
theoretical and practical topics fall beyond the scope of this work:

• User-defined mapping of abstract concurrency resources to physical resources
SCOOP 97 proposes the CCF (Concurrency Control File [94]) as a means to decide what

2.2. TOPICS NOT COVERED IN THIS DISSERTATION 11

physical resources (machines, CPUs, processes) each abstract thread of control (proces-
sor) should be mapped to. For the purpose of our study, we assume a single machine en-
vironment; our implementation maps each processor to a single thread (POSIX or .NET);
the number of available threads is not bounded (see section 11.2).

• Exception handling
Exception handling raises some particular problems in SCOOP due to the presence of
asynchronous feature calls: an exception may be raised when a faulty client has already
left the context where the corresponding call occurred, so that the exception cannot be
propagated properly. We do not consider exceptions in our formal model. An extension
of Eiffel’s exception mechanism has been recently described by Arslan et al. [11]; the
proposal tackles the issue of asynchrony. An earlier study [107] suggested a wait on
rescue semantics to reduce asynchronous exceptions to synchronous ones.

• Real-time programming
Real-time programming with SCOOP is a topic of another PhD project in our group [9];
that project also considers the duel mechanism proposed as part of SCOOP 97. Our
recent article [10] describes the combination of SCOOP and event-driven programming
for modelling real-time applications.

• Distributed implementation
One of the goals of a general concurrency mechanism is to make the physical distribution
of objects transparent to the programmer. In SCOOP, a number of mechanisms which
facilitate distributed programming are provided, e.g. the creation of objects on a specified
processor (see section 6.6) and the object import operations (see section 6.8). Neverthe-
less, our implementation only targets a single machine; a feasibility study of a distributed
implementation is the topic of a separate project [121].

• Proofs of deadlock-freedom
This dissertation develops the topic of modular proofs of safety properties; some liveness
properties, such as loop termination, are also considered. We study the relation between
deadlocks and contract violations (see chapter 8), and devise techniques that reduce the
potential for deadlock (see chapter 7), but we do not provide any method for proving the
absence of deadlock. We expect, however, that the model proposed here can be extended
to cover deadlock prevention. A run-time mechanism for deadlock detection has been
devised and implemented as an extension of the SCOOPLI library by Moser [100].

• Operational semantics of SCOOP
We discuss properties of the type system proposed in this dissertation (see section 6.12)
but do not provide a formal justification of its soundness. A formal study of SCOOP,
including the development of a full operational semantics and a proof of type soundness,
would constitute a rich PhD topic in itself. A variant of fair transition systems [88] could
be used as basis for the operational semantics. Ostroff et al. [114] propose such a model
for a subset of SCOOP 97, to support reasoning about program properties beyond con-
tracts.

12 CHAPTER 2. SUMMARY AND MAIN RESULTS

2.3 Organisation of the dissertation

This dissertation may be read sequentially from cover to cover, or selectively. Here is a brief
description to facilitate the navigation:

• The rest of the current chapter presents the main contributions of this dissertation.

• Chapter 3 discusses related work on object-oriented concurrency models and languages,
concurrency in Eiffel, and other work relevant to our research.

• Chapter 4 presents the original SCOOP 97 model proposed in [93, 94]. It includes a
historical overview of its development and discusses the subsequent work on the model
by other authors.

• Chapter 5 is a critique of the original model. It serves as a roadmap for the development
of the current framework; all the identified issues are addressed in chapters 6 – 10.

• Chapter 6 discusses the computational model of SCOOP and introduces an enriched type
system for safe concurrency.

• Chapter 7 presents a refined access control policy: relaxed locking rules and a lock-
passing mechanism.

• Chapter 8 proposes a generalised semantics of contracts and a proof technique for asyn-
chronous and synchronous feature calls.

• Chapter 9 discusses the support for advanced O-O mechanisms: multiple inheritance,
polymorphism and dynamic binding, genericity, agents, and once features.

• Chapter 10 discusses the practical applications of SCOOP; several examples illustrate the
discussion.

• Chapter 11 describes the implementation and the supporting tools; various implementa-
tion issues are discussed.

• Chapter 12 discusses the experience with a SCOOP-based graduate course on concur-
rency.

• Chapter 13 assesses the work presented in this dissertation, describes its limitations, and
points out possible directions for future research and development.

2.4 Main results and contributions

SCOOP model and language

We start with a description and a detailed critique of the existing SCOOP 97 model, and con-
tinue with a development of current SCOOP. The computational model and the language exten-
sion described below are derived from SCOOP 97 but we refine them to eliminate the identified
inconsistencies and limitations.

2.4. MAIN RESULTS AND CONTRIBUTIONS 13

Computational model

Concurrency in SCOOP relies on the basic mechanism of object-oriented computation: the
feature call. Each object is handled by a processor — a conceptual thread of control 1 —
referred to as the object’s handler. All features of a given object are executed by its handler, i.e.
only one processor is allowed to access the object. Several objects may have the same handler;
the mapping between an object and its handler does not change over time. If the client and
supplier objects are handled by the same processor, a feature call is synchronous; if they have
different handlers, the call becomes asynchronous, i.e. the computation on the client’s handler
can move ahead without waiting. Objects handled by different processors are called separate;
objects handled by the same processor are non-separate. A processor, together with the object
structure it handles, forms a sequential system. Therefore, every concurrent system may be seen
as a collection of interacting sequential systems; conversely, a sequential system may be seen
as a particular case of a concurrent system (with only one processor).

Since each object may be manipulated only by its handler, there is no object sharing between
different threads of execution (no shared memory). Given the sequential nature of processors,
this results in the absence of intra-object concurrency, i.e. there is never more than one action
performed on a given object. Therefore, programs are data-race-free by construction. We use
locking to eliminate atomicity violations, i.e. illegal interleaving of calls from different clients.

For a feature call to be valid, it must appear in a context where the client’s processor holds
a lock on the supplier’s processor (i.e. the supplier is controlled by the client; see section
6.5). Locking is achieved through the refined mechanism of feature application: the processor
executing a routine with attached formal arguments blocks until the processors handling these
arguments have been locked (atomically) for its exclusive use; the routine serves as critical
section. Since a processor may be locked and used by at most one other processor at a time,
and all feature calls on a given supplier are executed in a FIFO order, no harmful interleaving
occurs. Condition synchronisation relies on preconditions: a non-satisfied precondition causes
waiting. Clients resynchronise with their suppliers if and when necessary, thanks to wait by
necessity [38]: clients wait only on queries (function or attribute calls); commands (procedure
calls) do not require any waiting because they do not yield results that clients would need to
wait for.

Language extension

The language extension supporting the model is minimal; SCOOP only needs to enrich Eiffel
with type annotations which express the relative locality of objects represented by entities and
expressions. An entity may be declared as one of:

• x : X
Objects attached to x are handled by the same processor as the current object. We say that
x is non-separate with respect to Current.

• x : separate X
Objects attached to x may be handled by any processor; this processor may (but does not

1See section 4.2.1 for a formal definition. A processor is an abstract concept: it does not have to be asso-
ciated with a physical CPU; it may also be implemented by a process of the operating system, or a thread in a
multithreading environment. Here, we assume the latter implementation.

14 CHAPTER 2. SUMMARY AND MAIN RESULTS

have to) be different from the one handling the current object. We say that x is separate
from Current.

• x : separate <p> X
Objects attached to x are handled by a processor known under the name ‘p’. The processor
tag ‘p’ may have an unqualified form and be explicitly declared as p: PROCESSOR, or
have a qualified form derived from the name of another entity, e.g. ‘y .handler’ (in which
case y must be an attached read-only entity, e.g. a formal argument). We say that x is
separate from Current, and handled by ‘p’.

The first two options were already present in SCOOP 97; the third one is new. Additionally, a
type annotation may include the ‘?’ sign, e.g. x : ?separate X; this marks a detachable type
[96], i.e. the decorated entity may be void (not attached to any object) at run time. Entities not
decorated with ‘?’ are attached, i.e. not void.

Improvements on the previous model

Our model improves on SCOOP 97 in a number of ways. The main contributions are:

• Precise semantics of the feature call mechanism
We introduce a distinction between the feature call and the feature application mecha-
nisms, to define clearly the duties of clients and suppliers in the object-oriented compu-
tation (see section 6.1). These mechanisms were incorrectly amalgamated in the earlier
model; this complicated the validity and consistency rules, and hindered the understand-
ing of other essential mechanisms, e.g. argument passing and contracts. The new seman-
tics of feature calls simplifies the validity rules and the synchronisation mechanism of
SCOOP; the generalised semantics of contracts (see section 2.4) relies on the introduced
distinction.

• Clarification of the separate semantics
SCOOP 97 uses two different semantics for the separate keyword. Some rules follow
the strict semantics whereby separate entities denote objects handled by a processor that
is necessarily different from the one handling Current; other rules allow a non-strict
interpretation whereby separate entities denote potentially separate objects. We apply
the non-strict semantics uniformly across all the rules and mechanisms of the language.
Consequently, the declaration of separate classes, i.e. classes whose instances are separate
with respect to to all other objects, is prohibited; this eliminates a source of inconsistency
(see the Separate Current paradox in section 5.1) and greatly simplifies the type system.

• Integration of validity rules with the type system
We enrich Eiffel’s type system with processor tags which precisely capture the relative
separateness of objects (see section 6.2). The separate keyword loses its special status; it
becomes a mere type annotation. SCOOP 97’s consistency rules turn out to be superflu-
ous: after the necessary refinement — to make them sound yet less prohibitive — they are
subsumed by our type rules. The integration of informal rules into the formal type system
largely simplifies the model. SCOOP unifies the treatment of separate and non-separate
calls: all the rules of the model apply to both kinds of calls.

2.4. MAIN RESULTS AND CONTRIBUTIONS 15

• Precise reasoning about object locality
While SCOOP 97 only supports specifying the separateness of an object with respect
to Current, SCOOP’s enriched types permit a precise reasoning about object locality.
Processor tags are used to assert that several objects are non-separate with respect to each
other (even if they are separate from Current); this allows safe attachments and feature
calls between these objects without the need for additional locking. It is also possible to
create objects on a chosen processor.

• Increased expressiveness of the model
SCOOP offers more flexibility in the use of separate calls (see section 4.2.4). Syntactic
restrictions on the targets of separate calls disappear; a new call validity rule enables calls
on separate targets other than formal arguments. As a result, it is now possible to build
multi-dot expressions involving separate entities, and use attributes and local variables as
targets. Additionally, all restrictions on the use of expanded types go away. The increased
expressiveness is due to the enriched type system and the new semantics of contracts (see
section 2.4).

• Flexible locking
We optimise the locking policy so that only the necessary locks are acquired. Type-based
locking rules using the new semantics of attached types make it possible to decide which
formal arguments of a routine should be locked. (SCOOP 97 requires all arguments to
be locked, whether it is necessary or not.) A lock passing mechanism permits clients to
pass their locks to a supplier for the duration of a single call. The proposed mechanism
makes concurrent programs less deadlock-prone and allows the implementation of inter-
esting synchronisation scenarios, e.g. separate callbacks and cross-client locking, without
violating the atomicity guarantees (see chapter 7 for details).

• Support for full asynchrony
SCOOP 97 supports asynchronous calls but any sequence of such calls appearing in a
routine body has to be preceded by a synchronisation event caused by the call to that
routine and the resulting locking. Our framework enables fully asynchronous calls (see
section 9.3.4). A client issuing such a call immediately continues its activity; the call will
be executed on the client’s behalf at some point in the future. There is no assumption on
the execution delays, but consecutive calls on the same target are guaranteed to be applied
in the FIFO order. This mechanism solves, among others, the problem of parallel wait
(referred to as “waiting faster” by Tony Hoare [66]); a client is now able to spawn several
computations in parallel and wait for the first result (see section 10.2.2).

New semantics of contracts

A major contribution of this dissertation is the generalisation of Design by Contract to concur-
rency, to take advantage of the modelling power of DbC and to make a full use of assertions
in the proofs of asynchronous calls (see chapter 8). We analyse the impact of concurrency on
each type of assertion and propose a generalised semantics that applies to both the concurrent
and the sequential context. We demonstrate the interplay of the new semantics with other O-O
techniques and mechanisms; we also show that the standard correctness semantics used in the
sequential Eiffel is a refinement of the new one.

16 CHAPTER 2. SUMMARY AND MAIN RESULTS

The original SCOOP 97 model uses two different semantics for preconditions, depending on
whether they involve separate calls: separate preconditions have wait semantics, i.e. a violated
precondition causes the client to wait, whereas non-separate ones are correctness conditions, i.e.
a non-satisfied precondition is a contract violation and results in an exception. This is confusing
because the same syntactic construct — the require clause — is used for two different purposes.
No attempt has been made at exploring the potential of other assertions; they simply keep
their sequential semantics. Separate postconditions are particularly problematic: they cause
waiting, thus minimising the potential for parallelism and increasing the danger of deadlock.
Additionally, separate assertions are completely excluded from proof rules (see section 5.7),
which complicates the formal reasoning about software.

The new semantics of assertions proposed in SCOOP solves these problems. No distinction
is made between separate and non-separate assertions; all of them preserve their contractual
character and they may be used for reasoning about concurrent programs, provided that they
are controlled, i.e. only involve calls on targets which are already locked by the client in the
context of the call. The unified semantics provides a sound support for polymorphism, feature
redefinition, and dynamic binding.

• All preconditions now have the wait semantics: before executing a routine, the executing
processor waits until the precondition is satisfied. In the case of a violated controlled pre-
condition, however, waiting is only conceptual: since the client controls all the involved
objects, it can be immediately blamed for not establishing the precondition.

• Postconditions keep their usual meaning — they describe the result of a feature appli-
cation — but each postcondition clause is evaluated individually and asynchronously; a
client does not wait unless its handler is involved in a given clause. This increases the
amount of concurrency without compromising the guarantees given to the client.

• Loop assertions and check instructions follow a similar pattern as postconditions: they are
evaluated without forcing the client to wait, while still delivering the required guarantees.
On the other hand, the individual evaluation of subclauses does not apply; the whole
assertion has to hold at the same time even if it involves multiple handlers.

• Class invariants keep their usual semantics because asynchronous calls are prohibited in
invariants. This is not imposed by any explicit rule for separate assertions but follows
from the refined call validity rule.

We demonstrate that the new semantics is indeed a generalisation: in the absence of separate
calls it simply reduces to the usual Eiffel semantics. The proposed extension of DbC clarifies
the model and eliminates the overloading of several concepts and language constructs. It con-
tributes largely to the better understanding and support of other O-O mechanisms, e.g. feature
call, polymorphism, and dynamic binding. It also facilitates the sequential-to-concurrent and
concurrent-to-sequential code reuse because contracts have the same unambiguous meaning in
both contexts (see chapter 8). Most importantly, all assertions can now be used for modular
reasoning about programs; we remove the syntactic restrictions from the proof rule for feature
calls (see section 2.4).

2.4. MAIN RESULTS AND CONTRIBUTIONS 17

Type system

SCOOP 97 has a number of consistency rules to prevent the occurrence of traitors, i.e. non-
separate entities that represent separate objects. A traitor may cause atomicity violations be-
cause its clients are able to perform separate calls without respecting the mutual exclusion pol-
icy. The existing rules are too weak to eliminate all potential traitors; at the same time, they are
too prohibitive: many useful (and safe) programs are rejected (see section 5.4). In particular, it
is impossible to perform calls on multi-dot expressions that involve separate entities. Further-
more, the use of expanded types is restricted: non-fully-expanded objects cannot be passed as
actual arguments or results of separate calls.

The analysis of the informal rules reveals that they simply try to capture a conformance
relation between separate and non-separate entities, and to prohibit operations that do not re-
spect the conformance relation, e.g. assignments from a separate to a non-separate entity should
be prohibited, whereas assignments in the opposite direction are permitted. In SCOOP, we take
this effort one step further by refining the intended conformance rules to ensure their soundness,
relaxing the unnecessary restrictions, and integrating the rules with an enriched type system.

Enriched types

We extend Eiffel’s type system with processor tags which specify the relative locality of objects.
A SCOOP type T is represented as a triple (γ, α, C) with the following components:

• Detachable tag γ ∈ {!, ?}
A type is either attached (γ = !) or detachable (γ = ?), in the standard Eiffel sense:
entities of an attached type are guaranteed to be non-void at run time; detachable entities
may be void [96, 53].

• Processor tag α ∈ {•,>, p,⊥}
The processor tag captures the locality of objects represented by an entity of type T ,
i.e. their separateness or non-separateness with respect to other objects. ‘⊥’ denotes no
processor; it is used to type Void. If there is an object, it is one of: non-separate, i.e.
handled by current processor (‘•’); potentially separate, i.e. handled by some processor
(‘>’); handled by the processor p (‘p’).

• Class type C
This is the traditional Eiffel type, based on a simple class, e.g. X, or its generic derivation,
e.g. LIST [X].

In the program text, types are specified using the extended syntax outlined in section 2.4. For
example, an entity declared as

x : X

has the type (!, •, X); a declaration

x : separate X

yields the type (!,>, X), and a declaration

x : ?separate <py> X

yields the type (?, py, X).

18 CHAPTER 2. SUMMARY AND MAIN RESULTS

Subtyping

The subtyping relation is based on the conformance relations of the three type components.
The conformance of class types is based on inheritance (with additional rules for expanded
types and generic classes) just like in sequential Eiffel. Attached (‘!’) conforms to detachable
(‘?’). Processor tags are ordered in a lattice, with the top element ‘>’ and the bottom element
‘⊥’; other tags conform to ‘>’ but not to each other. For example, a type T2 = (!, •, Y) is
a subtype of T1 = (?,>, X), provided that Y inherits from X; similarly, T3 = (!,>, X) is a
subtype of T1. The validity rules for assignment, feature call, object creation, etc. follow this
subtyping relation. For example, the assignments from an entity of type T2 or T3 to an entity
of type T1 are valid, whereas the assignments in the opposite direction are invalid because the
types do not conform.

Thanks to the enriched type system, all potential atomicity violations are detected and elim-
inated at compile time. The type system is sound and much more flexible than SCOOP 97
rules; it gives programmers more freedom in expressing interesting synchronisation scenarios.
Since static types are always an approximation of run-time types, we also extend the object test
mechanism to support safe downcasts between types with different processor tags (see section
6.7).

Attached types

Attached types — proposed in [96] and later adopted in the Eiffel standard [53] — are an
essential tool for eliminating calls on void targets. Our type system takes the detachability of
entities into account but does not eradicate such calls. The formal rules introduced in section
6.11 ensure that a correctly initialised attached entity remains attached and never gives raise
to a void target call; the initialisation rules, however, are not formalised. We use attached
types to refine the semantics of argument passing and locking so that routines only lock their
attached formal arguments. A new call validity rule relies on this refinement; it eliminates
calls on unlocked targets. In figure 2.1, the attached type of the formal argument x indicates
that the routine acquires x’s handler before executing the body; the handlers of y and z are not
locked because both entities are declared as detachable. Calls on x are permitted in the body
of r, whereas calls on y and z are not. (But nothing prevents the use of y or z as sources of
attachments: argument passing or assignment.)

r (x : separate X; y , z : ?separate Y)
do

x . f
my y := y
x .g (z)

end

Figure 2.1: Selective locking based on attached types

Programmers can use attached types to indicate which formal arguments should be locked;
this results in an optimal control of resources and minimises the danger of deadlock. The
refined semantics of argument passing enables passing the locks from clients to their suppliers

2.4. MAIN RESULTS AND CONTRIBUTIONS 19

for the duration of a single call (see section 7.2). This mechanism is necessary to enable several
useful synchronisation scenarios, e.g. cross-client locking and separate callbacks, that could
not be implemented in SCOOP 97. Not only does the lock passing mechanism increase the
expressiveness of SCOOP while preserving all its safety guarantees, it is actually necessary for
sound reasoning about asynchronous calls (see section 8.2).

Expanded types

Expanded types are used to express an ownership relation between objects (e.g. a car engine
belongs to a given car), and to emulate unique references. An expanded entity, that is an entity
whose type is based on an expanded class, represents an object rather than a reference to an
object; expanded objects are always passed by copy. SCOOP 97 only allows fully expanded
objects as arguments of separate calls. A fully expanded object must not carry any non-separate
references; in practice, this restricts the choice of expanded classes to BOOLEAN, INTEGER,
REAL, DOUBLE, and CHARACTER. We refine the type system of SCOOP to accommodate
arbitrary expanded types — in particular user-defined ones — without breaking the safety guar-
antees (see section 6.10).

Support for advanced object-oriented mechanisms

Important O-O concepts, e.g. genericity, polymorphism, and agents, have not been studied
in SCOOP 97; other mechanisms, e.g. once functions, are only partially supported there. The
development of our framework has been driven by the need to provide a full support for the O-O
methodology, including its advanced concepts. Multiple inheritance, genericity, polymorphism,
feature redefinition, precursor calls, once features, and agents are seamlessly integrated into
SCOOP (see chapter 9).

• Genericity
Enriched type annotations may appear in actual and formal generic parameters; their use
is only limited by the type conformance rules. For example, it is now possible to declare
a list of potentially separate objects

l : LINKED LIST [separate BOOK]

There is no limit to the nesting of separate generic parameters; enriched type annotations
may appear in arbitrarily nested generic types, e.g.

nested gen : A [separate <px> B [C, separate D [separate E [...]]]]

Constrained genericity also makes use of the enriched type system; new type annotations
may appear in constraints, e.g.

class MY CONTAINER [G −> separate ELEMENT]

The strengthened conformance rule 9.2.3 for generically derived class types, which allows
for limited covariant subtying — B [U] is a subtype of A [T] if and only if B conforms to
A, U conforms to T, and U is either detachable or identical with T — closes a loophole in
Eiffel’s type system.

20 CHAPTER 2. SUMMARY AND MAIN RESULTS

• Polymorphism, dynamic binding, feature redefinition
A client must not be cheated upon in the presence of polymorphism and dynamic binding,
i.e. the actual version of a feature chosen at run time must abide by the original contract
known to the client at compile time. The usual DbC rules for assertion redefinition,
which enable precondition weakening as well as postcondition and invariant strengthen-
ing, satisfy this requirement in the concurrent context. A weaker precondition results in
(potentially) less waiting; a client never waits longer than with the original contract. A
strengthened postcondition gives stronger guarantees but does not imply any additional
waiting on the client’s side. Invariants cause no waiting so their strengthening does not
influence it.

The rules for argument and result types of features need to take into account the enriched
notion of type, while remaining compatible with the standard Eiffel rules. Detachable
tags may be redefined from ‘?’ to ‘!’ in result types, and from ‘!‘ to ‘?‘ in argument types.
Given the locking semantics of attached types, a redefined version of a feature may lock at
most as many arguments as the original one. In other words, a client may expect at most
as much locking as specified by the original signature. Similarly, processor tags may be
redefined from the most general ‘>’ to something more specific in result types, and in
the opposite direction (from more specific to ‘>’) in argument types. The combined rules
for processor tags and detachable tags satisfy Liskov’s substitution principle [84]. Nev-
ertheless, the argument redefinition rules raise one issue: the inherited precondition and
postcondition clauses that involve calls on the redefined formal arguments may become
invalid. Therefore, we disallow the redefinition of a formal argument from attached to
detachable if the inherited postcondition involves calls on that formal argument. (This
effectively eliminates the problem of potential postcondition weakening, not considered
in the Eiffel standard [53].) No such restrictions are put on arguments involved in precon-
ditions: if an inherited precondition clause involves a call on a detachable argument, it is
considered to hold vacuously; this weakens the precondition, which is compatible with
the rules of DbC.

• Agents
Agents are integrated into our model and type system in a straightforward manner. We
place an agent on the same processor as its target; consequently, the processor tags of
the agent and its target are identical. This ensures the safe use of agents without any
special rules; agents are treated just like any other object. A call on an agent — which is
effectively a call on its target — is only allowed in a context where the agent’s handler is
locked; since it is also the target’s handler, no atomicity violation occurs.

The refined agent mechanism provides a convenient way to represent partially or com-
pletely specified asynchronous computations as first-class citizens of the object-oriented
world. A number of advanced facilities rely on agents:

– Fully asynchronous calls.

– Parallel waiting (“waiting faster”) on several activities.

– Elimination of burdensome dummy routines used for wrapping single separate calls.
A generic enclosing routine may be used instead.

All these mechanisms are implemented as part of the CONCURRENCY library delivered
with SCOOP.

2.4. MAIN RESULTS AND CONTRIBUTIONS 21

• Once functions
We clarify the semantics of once functions to allow their safe use in a concurrent context.
A once function of a separate type has once per system semantics, i.e. its result is shared
by all the instances of the declaring class, no matter what processors they are handled by.
A once function of a non-separate type has once per processor semantics, i.e. its result is
shared by all instances of the class handled by the same processor.

Reasoning about concurrent programs

We propose the Hoare-style rule 2.4.1 for reasoning about synchronous and asynchronous fea-
ture calls; it can be used for proving safety properties of programs but it is also strong enough
to prove certain liveness properties, e.g. loop termination. We do not attempt to develop a full
proof system for SCOOP; nevertheless, our effort may be seen as a first step in that direction.

{INV ∧ Prer} bodyr {INV ∧ Postr}
{Prectr

r [a/f]} x.r(a) {Postctrr [a/f]}
(2.4.1)

The proof technique, described in section 8.2, is derived from the sequential technique
but based on the new contract semantics. It unifies the treatment of synchronous and asyn-
chronous calls. Preconditions and postconditions involving separate calls are not discarded (as
in SCOOP 97), provided that the involved entities are controlled, i.e. attached and locked in
the context of the call under scrutiny. Such assertions are referred to as controlled clauses (see
definition 8.1.2); hence the superscript ctr decorating them in the conclusion of the proof rule.

Our approach is novel in that it eliminates the need for a special treatment of asynchrony.
Sequences of asynchronous calls — or interleaved synchronous and asynchronous calls — may
be reasoned about using only the preconditions and the postconditions, without the need for
temporal operators. (Our earlier approach [113] relied on temporal logic, which resulted in
more complex rules.) Thanks to their asynchronous semantics, postconditions may be projected
in the future, i.e. assumed immediately after the call even though they will only be established
eventually. Other assertions — class invariants, checks, loop variants and invariants — are
used in the same way as in a sequential context; they are assumed to hold immediately even if
their evaluation may be delayed through the involved asynchronous calls. Combined with the
new asynchronous semantics, it opens new opportunities for exploring the potential parallelism
without sacrificing the safety guarantees. For example, loops involving asynchronous calls can
be proved correct: loop assertions are simply registered to be evaluated asynchronously in a
correct order; a client does not need to wait but it gets the safety guarantees stated in the loop
invariant and the termination guarantee ensured by the variant (see section 8.1.4).

Our technique is limited to reasoning about the properties of controlled entities. The absence
of deadlocks caused by indefinite waiting on uncontrolled preconditions or a non-available ac-
tual argument cannot be proved; non-modular reasoning using temporal logic is necessary in
such situations, to take into account the interference of other clients (see section 8.2).

Code reuse

Popular languages which support multithreading, e.g. Java and C], allow a limited reuse of
sequential code in concurrent programs. A naive reuse of library classes that have not been

22 CHAPTER 2. SUMMARY AND MAIN RESULTS

designed for concurrency often leads to data races and atomicity violations. The supplier-side
(server-side) synchronisation policy applied in these languages requires the classes used in a
concurrent application to be written “with concurrency in mind”, i.e. any feature that may
potentially be accessed simultaneously by several threads needs to implement an appropriate
synchronisation mechanism, usually in the form of a

while (someCondition) wait () ;

loop. It is difficult to guess all the future contexts in which a class may be used; therefore,
programmers often implement libraries in a defensive style, providing additional safety mecha-
nisms just in case. This results in heavy, entangled code which is difficult to extend and reuse.

SCOOP eases the reuse of sequential libraries. The mutual exclusion guarantees offered
by the model make it possible to assume a correct synchronisation of clients’ calls and focus
on solving the problem without bothering about the exact context in which a class will be used.
This leads to a clearer code which can be reused and extended through inheritance. A sequential
class may be taken and used in a concurrent application with no need for modifications. For ex-
ample, the class QUEUE [G] may represent a shared buffer; it suffices to declare an appropriate
entity, e.g.

buffer : separate QUEUE [INTEGER]

There is no need to provide a specialised version of the class equipped with additional synchro-
nisation code.

Unlike many other approaches, including the multithreaded models of Java and C], SCOOP
supports a concurrent-to-sequential reuse, i.e. the code written for a concurrent application can
be safely used in a sequential context. This may seem obvious at first — according to the thesis
established in this dissertation, sequentiality is just a special case of concurrency — but it is
not a trivial problem, in particular in the presence of condition synchronisation. For example, a
Java class implementing a shared buffer may not work properly in a sequential context because
a thread performing the operation put may be blocked if the buffer is full, and wait for other
threads to wake it up; it will deadlock if no other thread ever accesses the buffer. In SCOOP,
the same class BUFFER may be used in both context, although it has been written primarily
for a concurrent application. If the buffer is only used by one (non-separate) client — just like
in the Java example with a single thread — the precondition semantics nicely reduces to the
correctness semantics. As a result, an attempt at storing an element in the full buffer violates
the contract; the client is given the opportunity to handle the erroneous situation rather than
deadlocking. Concurrent code, when used in a sequential context, behaves just like sequential
code; this is the essence of concurrent-to-sequential reuse achieved in SCOOP.

Implementation

The implementation of SCOOP is a major contribution of this work. It is essential for validat-
ing the model and demonstrating its practicality. In fact, our work began with an attempt at
implementing SCOOP 97. This effort has driven the research and revealed several limitations
and inconsistencies within SCOOP 97, prompting us to redesign the model and finally leading
to the development of the current SCOOP framework. Most theoretical and practical issues
discussed in this dissertation have been uncovered during the implementation work.

We provide three tools:

2.4. MAIN RESULTS AND CONTRIBUTIONS 23

• SCOOPLI
A library which implements the basic model: processors, separate calls, new semantics
of assertions, wait by necessity, atomic locking, and scheduling.

• scoop2scoopli
A compiler which type-checks SCOOP code and translates it into pure Eiffel with em-
bedded calls to SCOOPLI.

• CONCURRENCY
A library which implements advanced concurrency features: generic enclosing routines,
fully asynchronous calls, parallel wait for several concurrent activities, asynchronous
event handling.

SCOOP has been implemented as an Eiffel library rather than a compiler extension. We fo-
cussed on concurrency issues right from the beginning, without getting bogged down in the
intricacies of existing compilers. Also, at the outset of this study, no satisfactory open-source
Eiffel compiler was available 2. SCOOPLI targets multi-threaded platforms: POSIX and Mi-
crosoft .NET; it is compatible with all Eiffel compilers that support the EiffelThread library.
The scheduling policy ensures strong fairness guarantees: the FIFO ordering of calls on the
same target, and the absence of starvation. SCOOPLI relies heavily on the agent mechanism:
each separate call is wrapped in an agent and passed to the supplier’s handler; assertions are
also represented as agents.

SCOOPLI provides all the basic concurrency mechanisms but its manual use would be bur-
densome because the necessary agent wrapping and explicit calls to the scheduler obscure the
syntax. Therefore, the scoop2scoopli tool translates SCOOP programs into pure Eiffel with em-
bedded calls to SCOOPLI features, so that programmers do not need to deal directly with the
library. The tool was first conceived as a pre-processor but later a full type-checker was added;
therefore, we view it as a full SCOOP-to-Eiffel compiler. It may be used as a command-line
tool or be integrated with existing IDEs (so far, it has been integrated with EiffelStudio [105]).

The CONCURRENCY library provides a set of utility classes supporting advanced concur-
rency features; programmers may use these classes directly in their code, e.g. through inheri-
tance. An agent-based mechanism for fully asynchronous calls is implemented. A parallel wait
facility lets clients wait for one out of several computations spawned in parallel; a similar mech-
anism permits resource pooling, i.e. using one of several available resources. Furthermore, a
generic enclosing routine is provided to eliminate the need for wrapping single separate calls in
dedicated routines. Finally, the library extends the EV ENT TY PE class for event-driven pro-
gramming [12] with concurrency facilities, supporting an asynchronous publication of events
and an independent notification of multiple subscribed objects.

Several concurrent applications — ranging from the basic scenarios described in the OOSC2
book to GUI applications to controllers for a physical model of a double-shaft lift and a Lego
MINDSTORMSTMrobot that sorts production items according to their colour — have been
developed using our tools. See chapter 10 for details.

2The ISE Eiffel compiler became open-source in April 2006; see http://eiffelsoftware.origo.ethz.ch/.

24 CHAPTER 2. SUMMARY AND MAIN RESULTS

Teaching

SCOOP comes with an extensive teaching material in the form of lecture slides, exercise sheets,
and a rich library of examples. To test the practicality of our framework, we taught SCOOP in
two iterations of a graduate course at ETH Zurich (Concurrent Object-Oriented Programming,
a.k.a. Concurrent Programming II, course number 251-0268-00, summer semester 2005 and
2006). Since the course participants had different backgrounds in terms of industrial experience
and previous use of other concurrency mechanisms, but none of them had used SCOOP before,
the course was a good testbed for the framework. The course encompassed a historical overview
of O-O concurrency, the basics of SCOOP, the use of O-O techniques and DbC in a concurrent
context, advanced mechanisms (agents, real-time facilities), and a comparison of SCOOP with
other models (multithreading, Ada tasking, active objects). The exercise sessions and the final
project let students get acquainted with the practice of concurrent programming and use our
framework to solve challenging concurrency problems.

See chapter 12 for a discussion of the course and the students’ feedback. All lecture slides
and exercise sheets are available on the course page

http://se.ethz.ch/teaching/ss2006/0268

Programming examples described in chapter 10 and many more can be found on the SCOOP
project page

http://se.ethz.ch/research/scoop

3
Previous work

EXISTING object-oriented concurrency models and languages constitute the rich soil on which
SCOOP has grown and matured. This chapter reviews previous work; several models are dis-
cussed and compared with SCOOP. We take a closer look at different techniques for the elimina-
tion of synchronisation defects, and discuss other important developments that have influenced
our research. Finally, existing concurrent extensions of Eiffel are presented and compared with
our model.

The discussion is limited to object-oriented concurrency; traditional approaches to concur-
rency have been described in many other articles and books. Basic concepts of concurrent and
distributed programming are presented in an excellent book by Andrews [8]. Ben-Ari [22] gives
a concise introduction to concurrency problems, enhanced with an overview of concurrent fea-
tures in several programming languages. A general discussion of object technology falls outside
the scope of this chapter. An in-depth study of O-O principles and Design by Contract can be
found in the OOSC2 book [94]. The book contains numerous references to previous work; you
may also browse the proceedings of related conferences, e.g. OOPSLA 1 and ECOOP 2.

3.1 Object-oriented concurrency models

Object-oriented approaches model things that exist concurrently in the real world; they should
help programmers in thinking about programs which involve concurrent activities. The central
problem here is to retain the advantages of conventional object-oriented programming while
providing an efficient and flexible control over parallelism [131]. Object-oriented concurrency
has been a dynamic field of research for the past two decades. This has resulted in a proliferation
of different models and languages. Several surveys of concurrent object-oriented languages
(COOLs) are available [118, 146, 122, 131, 123]. The thesis of Papathomas [118] gives a
first precise classification of COOLs, focussing on the methods for combining objects with
concurrency. Philippsen [123] provides an extensive survey of COOLs, covering more than
100 languages. He also considers low-level details — mapping of concurrency abstractions to
the underlying hardware, object migration, scheduling of activities — which were omitted in
Papathomas’s work. Agha et al. [4] is a collection of papers describing main research directions
in object-oriented concurrency.

1ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(http://www.acm.org/oopsla)

2European Conference on Object-Oriented Programming (http://www.ecoop.org)

25

26 CHAPTER 3. PREVIOUS WORK

Object paradigm

Briot et al. [30] elaborate on different ways in which the object paradigm is used in concur-
rent and distributed contexts. Three basic approaches are presented: integrative, library-based,
and reflective. The integrative approach aims at integrating concurrency concepts into the ob-
ject paradigm and offering the programmer a unified model. This is in contrast to the library
approach which treats the object-orientation and the concurrency aspects as orthogonal. An
example of library-based approach is the Concurrency Class for Eiffel [76] where messages are
manipulated explicitly, using a set of mechanisms for asynchronous and remote communication.
A more integrative approach, such as Eiffel// [37] blends message passing into a sequential lan-
guage and hides the low-level details behind better abstractions. Reflective approaches rely on
powerful reflection mechanisms to access and modify the meta-model of a concurrent system,
e.g. the treatment of messages, scheduling, preemption, etc. SCOOP clearly follows the in-
tegrative approach: concurrency and object-orientation are fully blended. However, reflective
mechanisms for various extensions, e.g. optimised scheduling, may be provided as part of the
CONCURRENCY library described in section 11.4.

Briot et al. also define four object concurrency levels:

1. Serial (atomic): at most one feature is executed on a given object at a time. POOL-I,
POOL-T [5], and Eiffel// [38] are among the languages implementing this strategy.

2. Quasi-concurrent: several feature activations may coexist but at most one is not sus-
pended at any given time. This corresponds to a monitor-style synchronisation with con-
dition variables [65]. Languages that implement this strategy include ABCL/1 [148],
Concurrent Smalltalk [147], Java (with monitors and synchronised methods) [79], and C]
[54, 46].

3. Concurrent: true intra-object concurrency is supported but some restrictions apply, e.g.
the number of features executed in parallel is limited, only non-conflicting features are
executed in parallel, etc. Most Actor-based languages [4], e.g. ACT++ [75], implement
this strategy. CEiffel [86] also belongs to this category (see section 3.3).

4. Fully concurrent: concurrency within an object is not restricted. Usually, such objects
are functional, i.e. they do not have volatile state. Several Actor languages support such
concurrency through the use of so-called unserialised objects.

Our model belongs to the serial category: since each object may only be manipulated by its
handling processor, and processors are sequential, concurrency is limited to at most one fea-
ture per object. (A refinement of the access control policy proposed in [110] supports safe
interleaving of several features at the object structure level; this would place SCOOP in the
quasi-concurrent category. However, the proposed extension has not been retained here due to
its insufficient support for polymorphism.)

Classification of COOLs

Philippsen [123] provides the most complete COOL survey up to date (more than 100 lan-
guages). The paper discusses proposed designs of COOLs and classifies them according to
several criteria:

3.1. OBJECT-ORIENTED CONCURRENCY MODELS 27

• Initiating concurrency, i.e. how concurrent activities are created. There are five categories
here: automatic parallelisation, fork–join, cobegin, forall and aggregates, autonomous
code.
Fork–join, cobegin, forall, and aggregates initialise parallel activities at arbitrary points
of an otherwise sequential program. These mechanisms are targeted towards fine-grained
parallelism. Autonomous-style initialisation, such as process declarations, active objects’
bodies, and autonomous routines, make parallelism explicit. They are targeted towards
coarse-grained parallelism with a few explicit activities. Our model belongs to the latter
category, even though it does not support explicitly the notion of a parallel activity.

• Coordinating concurrency, i.e. the way in which parallel activities synchronise the access
to shared resources. Existing languages may be split into two categories:

– Activity-centred coordination, also known as client-side synchronisation.
The burden of properly synchronising the access to a supplier object is put on the
client. Various synchronisation mechanisms may be applied here, e.g. Conditional
Critical Regions (CCRs), locks, semaphores, etc. The advantage of activity-centred
coordination is its immunity to inheritance anomalies [90]. The obvious disadvan-
tage is that the synchronisation code for the same supplier is spread over several
places in the program. It is therefore difficult to enforce a proper synchronisation
policy. If some client does not synchronise correctly, it may break the consistency
of the supplier and invalidate other clients’ actions.

– Boundary coordination, also known as supplier-side (or server-side) coordination.
The supplier object is responsible for ensuring the proper synchronisation of clients’
accesses. Typical techniques used here include monitors, delay queues, method
guards, enable sets, and accept statements in active objects’ bodies. The Actor
model [3] also falls into this category.

Philippsen puts SCOOP 97 (referred to as “Meyer’s proposal”) in the boundary coordina-
tion category because he understands wait-conditions as method guards (which they are
not: wait-conditions are specified on the client side and suppliers cannot enforce any ad-
ditional waiting). SCOOP could be considered as an activity-centred coordination model
because locking requirements and wait-conditions are specified in clients’ code. Nev-
ertheless, the mutual exclusion is enforced by the processor that handles the supplier,
rather than by the clients themselves. Therefore, the boundary coordination style is also
used. This subtle point has often been brought up in discussions with the multithread-
ing community: one cannot simply say that SCOOP follows either the client-side or the
server-side synchronisation strategy. We regard SCOOP 97 and SCOOP as hybrid ap-
proaches, with the mutual exclusion being enforced on the supplier’s side, and atomicity
and condition synchronisation specified on the client’s side.

• Locality, i.e. mapping of objects and activities to computational resources (memory,
CPUs). This aspect is particularly important in languages that target distributed execution
platforms. Several approaches exist:

– Meta-level locality
Distribution is completely transparent. i.e. it is not possible to decide statically
whether an object should be stored locally or on a remote processor. When a new

28 CHAPTER 3. PREVIOUS WORK

object is created, a meta-object assigned to the object’s base class is consulted first.
The meta-object processes all feature calls before passing them on to the actual
supplier object. Therefore, it is possible to delegate all locality-relevant operations
to the meta-object. The programmer is in charge of implementing an appropriate
meta-class. Concurrency Class for Eiffel [76] is a good example (see section 3.3) .

– External locality
Distribution of objects is beyond the scope of the language. The programmer is in
charge of placing objects on different computing nodes and registering them with
a name server, as well as retrieving references to these objects via the name server.
Distribution is transparent but object migration is not supported. Java RMI [134]
follows this approach.

– Internal locality
Programmer can specify a node that should be used for the creation of a given object.
If there is no explicit specification of the node, a standard distribution policy will
apply. Distribution is transparent, except for a special syntax for object creation.
Object migration may be supported with additional syntactic constructs. A default
placement policy may be applied to the whole application except for parts of code
that have to be tuned manually for a particular reason (efficiency, load-balancing,
etc.). Several COOLs follow this approach: POOL [7], ABCL/1 [148], Guide [17].

– Virtual topology/scope locality
Programmers use an abstract model of the computing system. Objects and activities
are mapped to this model first; the abstract model is then mapped onto the physical
topology. Three common techniques are used here: abstract processor numbers,
computational grid, and spaces. Several languages follow this approach, e.g. Par-
allel C++ [26] and Distributed Eiffel [62]. Most languages in this category do not
provide object migration facilities. Also, dynamic virtual topologies are rarely sup-
ported.

– Group locality
The programmer explicitly forms clusters of objects that belong together. The run-
time maps these clusters to the available physical resources. Object migration is
transparent and can be used by the runtime to enhance performance, e.g. through
load balancing. Distribution is fully transparent. An example of language with
group locality is Emerald [73].

SCOOP processors may be viewed as a variant of scopes, where objects belonging to
the same scope may call each other using synchronous calls, whereas objects in differ-
ent scopes need asynchronous calls for communication. The proposal of a distributed
SCOOP implementation [121] enables a direct specification of object placement through
an appropriate library call. Such specifications work at two levels: programmers can
specify a target processor for an object creation, and the physical location (machine) for
the processor; there is no possibility to bind directly objects to machines. The imple-
mentation described in chapter 11 of this dissertation assumes a single machine with an
unbounded number of threads; each processor is mapped to an individual thread.

Philippsen discusses other pertinent issues: parallel performance, broken encapsulation, inheri-
tance anomalies, and expressivity of coordination constraints. He also summarises the pros and

3.1. OBJECT-ORIENTED CONCURRENCY MODELS 29

cons of a full integration of concurrency with an object-oriented language vs. a library-based
extension of an existing language. The conclusion of his survey is that key characteristics of
object-oriented methodology or key performance factors of concurrency have to be sacrificed
due to the difficulty of merging both paradigms. We do not agree with Philippsen; it is the lack
of proper abstractions that causes the trouble.

Actors, active objects, inheritance anomalies

The actor model was introduced by Hewitt [64]. Initially, an actor was defined as an au-
tonomous agent with intentions, resources, message monitors, and a scheduler. Later on, Hewitt
proposed a more abstract model of concurrency based on causal relations between asynchronous
events — sending or receiving a message — in different actors. The actor model was further
developed by Agha [4]. An actor system consists of a set of concurrently executing actors and
a set of messages in transit. Each actor has a unique name, which may be seen as an e-mail ad-
dress, and an associated behaviour. Actors communicate using asynchronous messages. Actors
are reactive, i.e. they only respond to received messages. An actor’s behaviour is determinis-
tic; the response to a message is uniquely determined by the message contents. An actor may
perform three basic actions when receiving a message: (1) create a finite number of new actors
(with fresh names), (2) send a finite number of messages, (3) switch to a different behaviour.
Actors exhibit a maximum amount of concurrency in that all actions performed on receiving a
message are done in parallel; no order is imposed. The actor model has spawned a large family
of concurrent object-oriented languages [148, 75, 119, 120]. It also prompted the development
of the active object paradigm. Active objects are very similar to actors but they are proactive,
i.e. they have an internal schedule of actions. This schedule is expressed in the form of a body:
a special feature (usually an infinite loop) which specifies the object’s own behaviour and the
order in which requests from other active objects should be processed.

America [5, 7, 6] introduces the POOL family of concurrent languages based on active ob-
jects. The problems encountered during the design of POOL-T [5] and POOL-I [7] are typical
of all languages based on active objects. POOL-I is a strongly-typed language with genericity
and dynamic binding. The concepts of inheritance and subtyping are clearly separated. Sub-
type relationship is based on a contravariant rule for feature parameters and a covariant rule for
feature result. POOL-I does not have a built-in support for Design by Contract; all behavioural
properties of types are expressed by property identifiers. Since it is impossible to check them
automatically, the responsibility to respect the specification is on the programmer’s side. This
is a weak point of POOL-I. Additionally, there are no rules for subtyping and inheritance of the
body of an active object. In the active object approach, the body is an essential feature deter-
mining the behaviour of objects. In general, the type of an object depends on its body. But since
a formal description of this dependence would be intractable for a compiler, the programmer
has the responsibility to implement the behaviour according to the specified properties. Further-
more, there is no natural and fully automatic way to make an inherited body work correctly with
newly introduced features, or to combine several bodies into a new one. Therefore, in POOL-I
bodies are not inherited; every class must be given a body of its own. The author claims that,
since most classes only have the default body (one that accepts calls as they arrive), this does
not lead to much extra work. In cases where a non-standard body is necessary, “it is well worth
the trouble of paying extra attention to it”. The interaction between inheritance and parallelism
is limited to the obligation for the programmer to provide a body. Because subtyping and inher-

30 CHAPTER 3. PREVIOUS WORK

itance are not combined, the new body does not need to be compatible with the bodies of the
ancestor classes [7]. The object-oriented aspects of POOL-I are further developed in [6]. The
paper focuses on subtyping and genericity (including constrained genericity). America claims

If we add a new method to a carefully designed set of variables and methods, it is
quite possible that the new method invalidates an invariant on which the functioning
of the old methods was based. In this way the old methods may start to behave very
differently, so that we have code sharing, but no specialisation in behaviour. On the
other hand, it is well known that it is often possible to obtain the same functionality
by very different representations.

This comment certainly applies to languages with no support for Design by Contract. Design
by Contract imposes a set of restrictions on feature redefinition to prevent inheritance anomalies
mentioned in [6]. An interesting observation by the author of POOL-I is that the best way to
specify formally the type of an object is “not to reason about the sequence of messages that
are sent to this object, but to introduce an abstract state for each object: a mathematical entity
that represents the object at a specific point during its life. Then every method can be specified
by expressing its effect on that abstract state by pre- and postconditions.” A similar reasoning
is applied in SCOOP, although abstract states are expressed in terms of boolean predicates
rather that using explicit names. Despite a limited support for inheritance, POOL-I is a major
improvement on POOL-T where inheritance was completely prohibited in order to avoid the
clashes with concurrency specifications.

Conflicts between synchronisation and inheritance have been tackled by many other re-
searchers [31, 74, 117, 139]. In most O-O concurrency models they are caused by a high
interdependence between the attributes of a class and the coordination constraints of different
routines. Concurrency coordination and functional code are usually interwoven; as a result, fea-
tures cannot be redefined in subclasses without affecting other features. Very often, the affected
features must be redefined in the descendant and the ancestor, which degrades the maintain-
ability and prevents the reuse of code. Even if the coordination code is isolated from the func-
tional code, it is sometimes necessary to redefine it completely for all inherited features instead
of having local extensions of its parts. These and other difficulties in combining inheritance
with concurrency are referred to as inheritance anomaly; the seminal paper by Matsuoka and
Yonezawa [90] formalises this notion and proposes a taxonomy of anomalies. Thanks to the
new feature redefinition rules and a generalised semantics of contracts, SCOOP is immune to
most anomalies (see section 10.5).

3.2 Multithreading

Multithreading with shared memory has established itself as a common model for concurrent
programming. Its successful adoption by the software industry is largely due to the popularity
and widespread use of programming languages such as Java, C++, and C]. A thread represents
an activity that may be run in parallel with other activities. Threads communicate by reading
and writing shared memory locations. Multithreading is attractive because it allows fine-grained
parallelism which often results in an increased performance of computations. It is commonly
used for modelling and structuring individual tasks within a software system, although it is not
well-suited for that role; the continuous discussions about how multithreading breaks the Java
Memory Model [125, 89] are typical symptoms of this situation.

3.2. MULTITHREADING 31

Java and its base libraries use locks for mutual exclusion and communication between
threads [79]. Locking is fine-grained: locks protect single objects; a lock is implicitly asso-
ciated with each object at its creation. Methods may be qualified as synchronised, in which case
their invocation is mutually exclusive with other synchronised methods of the same object. If
a method is not synchronised, it may be executed without mutual exclusion. This also applies
to attributes which cannot be declared as synchronised. As a result, several threads may be
active within one object at the same time, reading and updating its state; this leads to potential
synchronisation defects.

The explicit specification and control of low-level parallelism creates new sources of pro-
gramming errors: data races, atomicity violations, and deadlocks. Compared to the multi-
threading models, SCOOP shields programmers from the first two sources of errors. Locking
is applied at the level of processors, i.e. a lock protects the whole object structure handled
by a given processor. This, together with the sequential nature of processors, guarantees that
SCOOP programs are data-race-free by construction. Similarly, a sequence of accesses reading
or updating the state of an object structure, placed within the body of a routine that locks the
processor handling the object structure, is guaranteed to execute atomically, thus avoiding un-
intended interference with operations of other processors. The price for safety is the increased
granularity of parallelism: a routine body represents the smallest critical section; as a result, it is
impossible to parallelise a computation beyond the level of a single feature call. Nevertheless,
this drawback is more than compensated by the advantages in terms of safety, modularity, and
convenience.

Prevention and detection of data races in multithreaded programs has been a rich research
topic over the past decade. Most approaches target existing programs, typically written in Java
or C++; very few propose a methodology or at least a set of rules to guide the construction
of race-free programs. Race conditions can be avoided by careful programming discipline:
protecting each data structure with a lock and acquiring that lock before manipulating the data
structure. As observed by Flanagan [56], current programming tools provide little support for
this discipline. It is easy to write a program that, by mistake, neglects to perform certain crucial
synchronisation operations. Synchronisation errors cannot be detected by traditional compile-
time checks. Furthermore, the resulting race conditions are scheduler-dependent, hence they
are difficult to catch by testing.

Many run-time detection algorithms for data races have been proposed. Their key advantage
is the precision of results: they report few or no false positives; this usually comes at the cost
of a high run-time overhead. Eraser [130] detects data races in unannotated ANSI C programs.
Working with unannotated code is a big advantage when dealing with legacy systems, e.g. for
parallel scientific computations. Such tools report data races observed in a single execution;
only a subset of all potential thread interleavings is considered. Therefore, certain races are not
reported. Choi et al. [42] propose a methodology for Java programs that combines static data
race analysis, code instrumentation, and run-time detection. They achieve good precision and
efficiency. Von Praun and Gross [144] propose another approach to run-time race detection in
Java programs. A conflict checker, implemented in an ahead-of-time compiler, tracks access
information at the level of objects rather than individual variables. This coarser granularity op-
timises the analysis by restricting dynamic checks to objects identified by escape analysis as
potentially shared. The algorithm largely improves on Eraser’s performance by using pointer
escape analysis to filter out statements that do not lead to data races. However, the coarse gran-
ularity of detection leads to the reporting of many spurious data races, e.g. when two methods

32 CHAPTER 3. PREVIOUS WORK

are called concurrently on an object (because every method call is viewed as a write operation).
In his PhD thesis [143], von Praun further develops the approach and proposes an analysis
technique that operates on an abstract model of threads and data, and simulates the execution
of a parallel program on these abstract domains. This symbolic execution provides a general
platform to analyse properties of concurrent programs. The approach is geared towards the
detection of data races, atomicity violations of routine bodies, and deadlocks. Although it is
limited by aliasing and the resulting difficulty to disambiguate dynamically allocated objects
and locks, the achieved approximation yields useful practical results; overreporting may occur,
however at a rate that is amenable to manual inspection. The approach is not sound; true defects
may be overlooked but underreporting is limited to cases rarely occurring in practice. Two alter-
native software mechanisms are also developed to assess concurrency and locking at run time:
an object race detection algorithm checks if every access to shared objects follows a locking
discipline; an object consistency check guarantees that threads’ accesses to individual objects
are serialisable. Both mechanisms are implemented as a sparse program instrumentation.

Currently, a shift from run-time to compile-time approaches may be observed. Programmers
become more aware of the need to apply systematic construction methods to multithreaded
programs, and they are more likely to accept the burden of annotating their software to enable
static analysis. Several tools, e.g. Warlock [133], use such annotations to detect potential data
races. ESC/Java [47, 82] uses an underlying theorem prover to check the absence of data races
and deadlocks. More and more proposals are based on type systems [15, 56, 59, 58]. The
interest in using Design by Contract in a concurrent context is also growing. Rodriguez et al.
[128] present an extension of JML which covers mutithreading. New constructs introduced to
JML rely on method atomicity which supports reasoning about non-interference properties of
features. Hoare-style reasoning about concurrent programs is supported; annotated programs
may be verified using model checking. The authors observe that “existing specification and
checking tools for multithreaded software typically focus on atomicity properties such as mutual
exclusion but they ignore strong functional properties and complex invariants”. This is due to
the difficulty of dealing with thread interference. Standard Hoare-style reasoning using pre- and
postconditions does not apply because other threads may invalidate the assumptions made by
the thread executing a given feature. When reasoning about semantics of features, it would be
necessary to consider all possible interleavings to account for the interference between threads.
This is much more expensive than reasoning in terms of pre- and postconditions. On top of that,
such approach is not modular, i.e. it is impossible to analyse classes individually. A similar
observation provided part of the impetus for our work: we wanted to find a generalised rule
for reasoning about the correctness of feature calls, that would be applicable in the concurrent
and the sequential contexts and boil down to the standard sequential rule when no concurrency
is involved (see chapter 8 for details). Two kinds of interference between threads are tackled
in [128]. Internal interference arises when another thread modifies the data that the current
thread relies upon. For example, the current thread evaluates the precondition of feature f and
then starts to execute its body; another thread modifies the state of some objects in such a
way that the precondition of f does not hold anymore. The current thread still works on the
assumption that the precondition holds; as a result, it may fail to satisfy the postcondition of
f . External interference arises when another thread makes observable state updates between a
feature call and the feature entry, i.e. the point at which the feature body is executed by the
supplier object. Similar interference may occur between the moment when the execution of a
body terminates and the moment when the client object resumes the execution of its feature.

3.2. MULTITHREADING 33

Internal interference makes it impossible to use Hoare rules for reasoning about correctness of
feature bodies; external interference invalidates reasoning about feature calls. The approach
assumes a sequential consistent memory model which is stronger than the actual Java memory
model known for certain low-level data races [125]. Therefore, only race-free programs are
considered; race-freedom is assumed to be dealt with using other techniques, e.g. PRFJ [56].
The verification methodology has been implemented using the Bogor model checker [127]. The
tool is able to check the atomicity of features that exhibit a behaviour compatible with Lipton’s
theory [83]. Some other types of atomicity can be checked by Atomizer [57]. Nevertheless,
atomicity of features that use more complex synchronisation patterns cannot be verified by
these tools.

Flanagan and Freund [56] present a static race detection analysis for multithreaded programs
written in ConcurrentJava which is a small subset of Java with an additional fork construct. The
analysis is based on a formal type system capable of capturing many common synchronisation
patterns, such as classes with internal synchronisation, client-side synchronisation, and thread-
local objects. A class definition may contain a sequence of formal parameters or ghost variables
that decorate types of entities. Ghost variables are used by the type checker to verify that the
program is data-race free. Ghost variables do not affect the run-time behaviour of programs;
they may only appear in type annotations and not in regular code. They are similar to processor
tags in our type system (see section 6.2.2); however, processor tags offer much more flexibil-
ity, in particular in the context of (multiple) inheritance and polymorphism. ConcurrentJava
provides mechanisms for escaping the type system in places where it proves too restrictive, or
where a particular data race is considered benign.

Boyapati and Rinard [29] propose a type system for multithreaded programs. Their type sys-
tem makes it possible to associate with each object an appropriate synchronisation mechanism
ensuring the absence of data races. The synchronisation mechanism is specified through the type
of variables that reference the object. In general, an object can be safely accessed by a thread if
that thread has acquired a lock associated with the object. A thread is also allowed to access an
object without acquiring a lock if either (1) the object is immutable (read-only), (2) the variable
is a unique reference to the object, or (3) the object is thread-local, i.e. only accessible to one
thread. The type-checker uses type specifications to verify that all accesses to objects comply
with the declared synchronisation policies. The supported language, Parametrised Race-Free
Java (PRFJ), is an extension of ConcurrentJava. The syntax is enriched to enable specification
of object ownership and locking requirements. In PRFJ, every object has an owner: the object
itself, another object, or thisThread. If an object is owned by thisThread (directly or indi-
rectly), it is local to the corresponding thread and it cannot be accessed by other threads. The
ownership is fixed, i.e. objects cannot change their owners. The ownership relation forms a
forest of rooted trees; self-loops in roots are allowed. To gain an exclusive access to an object,
a thread has to acquire the lock on the root of the ownership tree that contains the object. The
locking requirements of a method can be specified using the requires clause. A method may
require callers to hold one or more locks before calling it. To specify ownership, classes may
be parametrised with one or more owner parameters. The first one always denotes the owner of
the current object (this). Each owner parameter must be instantiated when the given class is
used to declare the type of an entity. Possible instantiations for an owner parameter are: self
(in which case the object is owned by itself), thisThread, a final field, a final variable, or a
formal owner parameter of the enclosing class. The latter supports propagating the ownership
information, so that a whole data structure may be guarded by a single lock. Since fields and

34 CHAPTER 3. PREVIOUS WORK

variables used to instantiate owner parameters must be final, i.e. they cannot be modified after
creation and initialisation, the owner of an object does not change over time. Requiring that
these fields and variables be already initialised gives an additional guarantee that every new ob-
ject is owned by an already existing object, by itself, or by thisThread. These requirements are
very similar to the requirements put on qualified processor tags in our framework (see section
6.2.2). PRFJ handles read-only objects and unique pointers using additional type annotations
!w and !e. Types of formal arguments and local variables may be augmented with !e to mark
them as non-escaping. Unique pointers can only be assigned to non-escaping entities. Similarly,
a read-only object may be passed as argument to a feature call only if the feature declares the
corresponding formal argument as read-only (!w). This solution is heavy and it is not clear how
well polymorphism is supported. The expanded types mechanism provides a simpler solution
for unique pointers (see section 6.10). To minimise memory usage and run-time overhead, PRFJ
does not preserve ownership-related information at run time. As a result, downcasts cannot be
properly verified. In our framework, the locality information is preserved at run time; every
object (of a reference type) carries an implicit reference to its handler. Therefore, we are able
to handle downcasts using the refined object test mechanism (see section 6.7).

Boyapati et al. [28] enrich PRFJ with type annotations for deadlock-prevention. Program-
mers have to partition all locks into equivalence classes (called lock levels) and specify a partial
order between these classes. The type checker makes sure that there is no cycle in the partial
order relation, and that every thread acquires locks in a descending order of lock levels. Ad-
ditionally, locks within a single lock level may be ordered using a recursive tree-based data
structure. For example, one can specify that nodes in a tree have to be locked in a tree order
(first parent node, then children nodes). The type system also allows modifications of the partial
order at run time, provided that they do not introduce cycles. Except for that last feature, the
type system is very restrictive. In particular, the requirement that all potential locks be par-
titioned into a constant number of lock levels makes it very difficult to write reusable code;
when writing a library class, it is usually impossible to anticipate all the potential uses of the
class. A partial solution of this problem is provided in the form of classes parametrised with
lock levels. The use of condition variables (with wait and notify) is restricted: a thread may
only wait on a condition variable e if it holds a lock on e and no other locks. This solves the
nested monitor problem, i.e. a situation when a thread is suspended without releasing all its
locks. Since the thread releases its lock on e when it suspends itself, and no other locks are held
by the suspended thread, deadlocks cannot happen. Nevertheless, SCOOP-style combination of
condition synchronisation and atomic locking of several objects cannot be implemented.

Jacobs et al. [69] introduce a methodology for protecting object structures from inconsis-
tencies due to race conditions. The proposed approach is an extension of the Boogie method
[19] which enables modular verification of object invariants that depend on mutable state of
other objects. The dynamic ownership model is extended to allow threads as owners. The se-
mantics of pack and unpack statements is refined to permit ownership transfer from a thread
to an object structure and vice-versa. Moreover, new statements acquire and release permit
the acquisition and release of ownership on consistent object structures. The proof method-
ology is based on sequential reasoning about field accesses. To support sequential reasoning,
interference between threads must be controlled, i.e. a thread must have exclusive access to
all the relevant fields during the execution of a program fragment under scrutiny. A thread is
required to own (transitively) an object whenever it reads or writes one of its fields. Owner
uniqueness imposed by the Boogie method guarantees mutual exclusion. The rules for own-

3.3. CONCURRENCY IN EIFFEL 35

ership are extended as follows. A newly created object is mutable and owned by the creating
thread. A thread may attempt to acquire ownership on an object; the acquire operation blocks
until the object is free. When it succeeds, the object may be assumed to be in a consistent state
(i.e. its invariant holds). A thread can relinquish ownership by executing release . An unpack
operation on a consistent aggregate object transfers the ownership on the representation objects
from the aggregate object to the executing thread. This ownership can be transferred back to the
aggregate object by performing a pack operation. The methodology supports client-side and
supplier-side synchronisation. Client-side synchronisation avoids the problem of internal inter-
ference, thus enabling reasoning with pre- and postconditions. Assertions on methods accessed
following this synchronisation style are similar to SCOOP’s controlled assertions (see section
8.2). Supplier-side synchronisation with acquire and release is similar to SCOOP’s argument-
based locking (see section 6.1.3) but limited to a single object at a time (atomic locking is not
supported).

3.3 Concurrency in Eiffel

Eiffel//

Denis Caromel proposes a concurrent extension of Eiffel that relies on the notion of process:
an active object that executes a prescribed behaviour (body) [38]. Processes are instances of a
predefined class PROCESS. Not all objects are processes; passive objects, for example, have
no associated behaviour. The body of a process is implemented by the feature live . By default,
the body just loops forever, accepting all incoming requests and servicing them in a FIFO order.
It may be redefined in descendants to implement a particular behaviour. The body of an active
object may access directly its request queue.

In Eiffel//, feature calls on a different active object are always asynchronous. If a feature
returns a result, lazy synchronisation takes place, i.e. the call returns immediately even if its
result has not been evaluated yet; a client object only needs to wait if it tries to access the value
of the result. This approach, known as wait by necessity, enables more asynchrony that the
mechanism used in SCOOP (and also referred to as wait by necessity). In SCOOP, the client
object always waits for the result of a query call, even if it only uses that result much later. An
optimisation similar to Caromel’s original mechanism was described by Meyer [94] but it has
never been implemented in any SCOOP system. Wait by necessity is related to the concept
of futures found in languages such as ABCL/1 [148], ABCL/f [138], and ConcurrentSmalltalk
[147]. Futures allow more asynchrony but they require special syntactic constructs, as opposed
to the wait by necessity which is fully automatic and transparent to the programmer.

Eiffel// prohibits sharing of data between processes. A non-process (passive) object is only
accessible to one process object; the passive object belongs the context of that process object. If
a feature call is between two process objects, actual arguments are passed by deep copy. Only
the arguments representing process objects are passed by reference. This solution eliminates
concurrent accesses to passive objects. In our framework, where all objects may be seen as
passive, a different technique is used: every object belongs to its handling processor and no
sharing of objects between processors is permitted, even though feature arguments are passed by
reference (except for expanded types, for which we propose an adequate solution in chapter 9).

Rather than just introducing a new language, Caromel describes a full methodology for the

36 CHAPTER 3. PREVIOUS WORK

development of concurrent object-oriented programs. The methodology comprises four basic
steps: (1) sequential design and implementation, (2) process identification, (3) process pro-
gramming, and (4) adaptation to constraints. The first step corresponds to the design of a purely
sequential object-oriented system where concurrency is not taken into account. Steps 2 and 3
correspond to the parallelisation of that sequential system. The last step is the “fine-tuning” of
the system according to the particular requirements such as real-time constraints, the underlying
execution platform, etc. An interesting feature of Eiffel// which directly supports that design
methodology is the conformance between non-process and process types. An entity declared
as x : REGULAR CLASS might become attached at run time to a process object, provided that
this object’s base class inherits from REGULAR CLASS. As a result, an implicit change of call
semantics might occur — communication with the (polymorphically) active object becomes
asynchronous, and transmission of feature parameters is done by copy. Caromel claims that, al-
though it changes the local semantics of calls, “this is often a desired change when parallelising
and, in many cases, does not affect the global semantics of the application” [14]. Furthermore,
he states that such use of polymorphism brings real benefits regarding code reusability and de-
sign methodology for concurrent systems. He summarises his approach as follows: “Think of a
concurrent system as a sequential one — writing or reusing self-contained classes.”

The desirability of implicit parallelisation is debatable; the global semantics of an applica-
tion is changed in most cases and the clients lose the possibility to reason sequentially about
feature calls. In our approach, the conformance relation on types allows for subtyping of a
separate type by a non-separate one. Although there is no one-to-one correspondence between
separate objects and Eiffel// processes on one hand, and non-separate objects and Eiffel// passive
objects on the other hand, our use of polymorphism goes in the opposite direction to Caromel’s.
So does our philosophy: “Think of a sequential system as a particular case of a concurrent
system.”

CEiffel

Löhr [85, 86] proposes another concurrent extension of Eiffel. There are five kinds of annota-
tions:

• concurrency: −−||−−

• compatibility: −−||...−−

• delay: −−@−−

• autonomy: −−v−−

• asynchrony: −−>−−

In CEiffel, classes may be sequential (atomic), concurrent, or semiconcurrent. A class that does
not allow any overlapping of feature calls is called atomic. Strict atomicity can be relaxed to
support overlapping of compatible features. A class that permits arbitrary overlapping is called
concurrent. A class that permits certain overlappings but prohibits others is called semiconcur-
rent.

3.3. CONCURRENCY IN EIFFEL 37

In a concurrent class, features may be declared as compatible with respect to other features.
For example, if the class X is declared as class X −−||−−, then its feature r declared as r
(...) : T is −−|| s, t −− is compatible with the features s and t . If the feature r is declared

as r (...) : T is −−||−−, without an explicit list of names, then r is compatible with all the
features of X, including r itself. Compatibility is a symmetric relation, i.e. it is not necessary
to list r in the compatibility clauses of s and t . Compatibility is usually not transitive and it
does not have to be reflexive. Compatibility annotations only matter for invoked features, i.e.
features called on a controlled object. They do not apply to local (sequential) calls. Mutual
exclusion of incompatible operations is ensured through a locking mechanism: a request that is
incompatible with ongoing operations will be held on wait until they terminate.

In CEiffel, preconditions on non-controlled (sequential) objects keep the usual correctness
semantics. Preconditions on controlled objects are split into a checker and a guard. A vio-
lated checker raises an exception; a violated guard causes the request to wait until the guard is
satisfied (and no incompatible operation is being executed). The delay annotation −−@−−
separates the two parts of a precondition, e.g.

enqueue (item : T) is
require

item /= Void −− checker, correctness semantics
−−@−−
length < size −− guard, wait semantics

do
...

end

Delay annotations are simply ignored in a sequential setting and guards are treated as usual
preconditions. An interesting feature of CEiffel is the possibility of inserting a delay annotation
in a postcondition; such postconditions cause a delay until they are satisfied. This seems to go
in a similar direction as our framework, although the client is forced to wait; see section 8.1.2
for a discussion of postconditions in SCOOP.

Routines may also be annotated with the autonomy tag −−>−−. A class that has at least
one autonomous routine is also called autonomous; so are its instances. When an autonomous
object is created, all its autonomous routines are implicitly invoked. When an autonomous
routine terminates, an immediate implicit invocation of the same routine follows. Preconditions
of autonomous routines may contain guards but no checkers are allowed (since there are no
clients to satisfy those). Naturally, autonomous routines take no arguments. Explicit invocations
of autonomous routines are allowed, although such routines are usually not exported.

An exported routine decorated with a tag −−v−− is called asynchronous. A class that has
at least one asynchronous routine is also called asynchronous; so are all its instances. (Note that
a class may be both asynchronous and autonomous.) A client calling an asynchronous routine
continues the execution right after the evaluation of the checker, without waiting for the supplier
to process the request. The asynchrony annotation does not apply to local calls. Invocations of
asynchronous functions use wait by necessity for synchronising with the supplier object.

The control annotation −−!−− attached to the type declaration of an entity indicates that
the object represented by the entity is controlled.

Since concurrency annotations are sprinkled all over the client and the supplier code, it is
difficult to apply modular reasoning to CEiffel programs. Control annotations embedded in

38 CHAPTER 3. PREVIOUS WORK

clients make it impossible to reason about the semantics of a supplier without inspecting the
client code. Conversely, it is necessary to analyse the code of suppliers to understand the se-
mantics of a client because asynchrony annotations used in the suppliers influence the client.
Furthermore, the atomicity of call composition involving asynchronous invocations is not guar-
anteed.

Concurrency class

Karaorman and Bruno [76] propose a concurrency library for Eiffel. Concurrency is achieved
through parallel execution and interplay of several active objects. Objects are active if their
base class inherits from a special class CONCURRENCY. The body of an active object is
implemented by the feature scheduler . The CONCURRENCY class implements asynchronous,
non-blocking invocation mechanism. Clients issue requests using remote invoke . This feature
sends a request to a supplier and returns a request id without waiting. The request id may be
used later on to claim the result of the invoked feature. This is done by calling claim result ,
which blocks until a result is available. A non-blocking test for result availability, result ready ,
is also provided. Explicit invocation of claim result may be eliminated through the use of the
FUTURE type. Synchronisation becomes then similar to wait by necessity in Eiffel//.

Scheduling of requests depends on the body of a given active object. The body has an
unrestricted access to the request queue (through the feature request queue); it can retrieve
names and parameters of all requests stored in the queue. This enables fine tuning of scheduling
policies. For example, the body may choose to wait until a request of a certain type is in the
queue. It is also possible to check for the presence of any requests (this is a non-blocking
operation) or accept the next available request (this is a blocking operation if the queue is
empty). Sending the result of a request to the client is performed explicitly using the feature
send result .

Distributed Eiffel

Distributed Eiffel [62], designed as language support for the distributed operating system
Clouds [44], offers the possibility to qualify features as readers or writers, using the correspond-
ing annotations ACCESSES and MODIFIES. If a reader feature is called, a read lock is acquired
on the target object before the feature is executed. Similarly, calling a writer feature requires
a write lock. If a feature is not qualified as reader or writer, no locks are necessary. There-
fore, Distributed Eiffel supports unrestricted intra-object concurrency. An additional WHEN
construct is used for declaring feature guards; guards are specified as predicates on the state of
the supplier object. Three parameter-passing modes are used: copy (standard pass-by-value),
copy out - copy in (pass-by-value in both directions), and PIN (pass-by-reference). The passing
mode is specified on the client side.

Distributed Eiffel does not provide any special mechanism for resynchronising clients and
suppliers; programmers have to implement the resynchronisation explicitly.

3.3. CONCURRENCY IN EIFFEL 39

CSS/CEE

In her PhD dissertation [70], Ghinwa Jalloul proposes CSS: a conceptual model for object-
oriented concurrency where objects are structured into sequential subsystems. A concurrency
layer consisting of concurrent objects (one per subsystem) is responsible for communication,
synchronisation, internal concurrency control, remote reference passing, and resolution of re-
mote dynamic binding. Although the general structure of a CSS system resembles the SCOOP
processor model, there are some important differences:

• In CSS, concurrent objects may be referenced by any object in the system but sequential
objects may only be referenced by other objects within the same subsystem. SCOOP has
no “concurrent” and “sequential” objects; every objects can be referenced by any other
object in the system.

• CSS supports intra-object concurrency based on the reader–writer scheme. Interestingly,
calls issued by a concurrent object to itself are also handled asynchronously. SCOOP
processors are sequential; no intra-object concurrency is permitted.

Jalloul also introduces CEE: a concurrent extension of Eiffel which supports the CSS model.
Atomic locking and condition synchronisation on the client side are achieved through an ex-
plicit CCR-like construct holdif . Supplier-side synchronisation is specified as part of routine
contracts but an explicit notation guard exp is used to distinguish guards from regular precon-
ditions. CSS allows keeping or strengthening the guards in redefined features. This is one of
the major differences with respect to our approach where synchronisation conditions specified
as precondition clauses may only be kept or weakened in descendants.

CSS and CEE permit more asynchrony than SCOOP but they do not support contract-based
reasoning about concurrent programs.

4
Original SCOOP 97 model

IN the quest for a convenient method of concurrent programming, we have soon realised that
the original SCOOP 97 model [94] is a good starting point and an important first step towards
providing a coherent framework for concurrency. It relies on the implicit concurrency present in
the feature call mechanism; it also makes smart use of argument passing, preconditions, and the
command-query distinction to provide the necessary synchronisation. At first, the model seems
to “hijack” these mechanisms; a closer inspection, however, reveals a deeper reason behind the
apparent semantic overloading. To grasp this deeper reason and uncover the precise semantics
of O-O mechanisms — thus opening the way to a better understanding of object technology in
general — it is necessary to analyse the model in detail, find its inconsistencies and limitations,
clarify its rules, and extend it to cover the full spectrum of object-oriented techniques.

SCOOP 97 has undergone several reviews since its initial publication [91]; therefore, we
start with a short historical overview of its development. A detailed presentation of the model
follows; it is based on the description found in [94]. We wrap up with a discussion of related
work by other authors. The critique in chapter 5 points out the inconsistencies and limitations
of the model; it serves as a roadmap for the development of the current SCOOP framework
presented in chapters 6 – 10.

4.1 Development

SCOOP 90: TOOLS

The first informal description can be found in a TOOLS’90 article by Bertrand Meyer [91].
The article suggests the use of implicit concurrency present in the feature call mechanism, and
introduces the basic computational model: processors, separate objects, and wait-conditions.
The proposal was originally known as PEiffel.

SCOOP 93: CACM

The 1993 CACM article “Systematic Concurrent Object-Oriented Programming” [93] presents
the model as a minimal extension of sequential Eiffel to support concurrency and distribution.
To address such requirements of concurrent programming as mutual exclusion and condition
synchronisation, new semantics is given to well-known constructs, e.g. preconditions, where
the standard sequential semantics cannot be applied.

41

42 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

SCOOP 97: OOSC2

Meyer’s OOSC2 book [94] (chapter 30), published in 1997, gives a detailed description of
the model; it is essentially SCOOP 93 enriched with two advanced mechanisms: duels and
CCF. The exception-based duel mechanism enables priority scheduling: an impatient client
may request immediate service which results in an exception raised in the current holder (if the
request is granted) or in the requesting client (if the request is refused). The CCF mechanism
(Concurrency Control File) maps processors to physical resources: programmers can specify
on which physical resources (machines, CPUs, processes) a newly created processor will be
placed.

The book gives the rationale for the application of O-O mechanisms in a concurrent con-
text, discusses thoroughly the practical use of the model, and presents several programming
examples. Since we take the description from OOSC2 to be the starting point of our study, all
discussions concerning the original model refer to SCOOP 97; so does the rest of this chapter.

4.2 SCOOP 97 in detail

4.2.1 Processors and separate objects

In the O-O world, to perform a computation is to use certain processors to apply certain ac-
tions to certain objects [94]. Actions are represented by features. A feature call x . f (a) has
the following semantics: the client object applies feature f on the supplier object attached to x,
with argument a. So, it mentions actions and objects; what about processors? In a sequential
setting, there is only one processor, i.e. one thread of control; therefore, it remains implicit.
In a concurrent context, there are two or more processors; this is the essential distinction be-
tween concurrency and sequentiality. SCOOP 97 achieves concurrency through the interplay
of several processors.

Definition 4.2.1 (Processor) A processor is an autonomous thread of control capable of sup-
porting the sequential execution of instructions on one or more objects.

Every object has a handler: a processor in charge of executing feature calls on that object;
no processor other than the handler is allowed to manipulate the object. Several objects may
have the same handler; the mapping between an object and its handler does not change over
time. Objects handled by different processors are called separate; objects handled by the same
processor are non-separate. References between separate objects are called separate references;
such references cross the boundaries of processors. The semantics of a feature call depends on
whether the supplier object is separate from the client object. Consider a situation where the
client object o1 performs calls

x . f
next call

with entity x attached to the supplier object o2. If the supplier object is non-separate from the
client object, like in figure 4.1, then the call x . f is synchronous, just like in a sequential context;
o1 must wait for o2 to finish the execution of f because there is only one processor to handle
both objects. If the objects are separate, like in figure 4.2, the call becomes asynchronous, i.e.

4.2. SCOOP 97 IN DETAIL 43

Figure 4.1: Non-separate objects

the computation on o1 can move ahead to next call without waiting for x . f to terminate; this
is because two different processors — P1 and P2 — handle the involved objects.

Figure 4.2: Separate objects

A processor, together with the object structure it handles, forms a sequential system. (We use
the term processor to refer to such a system; other authors [43, 60, 34] use the term subsystem,
while processor only denotes the associated thread of control.) Therefore, every concurrent
system may be seen as a collection of interacting sequential systems; conversely, a sequential
system may be seen as a particular case of a concurrent system (with only one processor).
Figure 4.3 shows a typical SCOOP 97 system.

Viewed by the software, a processor is an abstract concept; the same concurrent application
may be executed on very different architectures without any change to its source text. A pro-
cessor does not have to be associated with a physical CPU; it may also be implemented by a
process of the operating system, or a thread in a multithreading environment [111]. In the .NET
framework, processors can be mapped to application domains [112].

4.2.2 Separate entities, classes, and calls

Since the effect of a call depends on whether the client and the supplier objects are handled
by the same processor or by different ones, the software text must distinguish unambiguously
between these two cases. For declarations of variables or functions, normally appearing as

x : X

a new form is now possible:

x : separate X

44 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

Figure 4.3: Concurrent system composed of several processors

Keyword separate indicates that x is a separate entity, i.e. it may become attached to objects
handled by a different processor. The separate declaration does not specify which processor to
use for handling the object. What matters is that the processor is different from the processor
handling the current object. Rather than making an individual entity separate, it is also possible
to declare a class as separate1, as in

separate class SOME CLASS
...

end

Any entity of the corresponding type, e.g. y : SOME CLASS, is implicitly separate.
SOME CLASS is called a separate class and all its instances are separate from all other ob-
jects.

The value of a separate entity is a separate reference; if not void, it is attached to an object
handled by another processor — a separate object. If x is a separate entity, any creation instruc-
tion create x .make (...) will associate a fresh processor with the newly created object. Calls
on separate entities are asynchronous; they are referred to as separate calls.

4.2.3 Synchronisation

SCOOP 97 caters for the synchronisation and communication needs of concurrent program-
ming, such as mutual exclusion and condition synchronisation, by relying on preconditions and
argument passing. Since each object may only be manipulated by its handler, there is no object

1The separate annotation in classes cannot be combined with expanded or deferred.

4.2. SCOOP 97 IN DETAIL 45

sharing between different threads of execution, i.e. no shared memory. The sequential na-
ture of processors and the resulting absence of intra-object concurrency mean that programs are
data-race-free by construction. Nevertheless, an additional mechanism is necessary to eliminate
atomicity violations, i.e. illegal interleaving of calls from different clients, and high-level data
races, i.e. unordered accesses to data structures [143, 13].

Mutual exclusion, atomicity

Two basic rules ensure the mutual exclusion and atomicity properties:

Definition 4.2.2 (Separate Call rule) The target of a separate call must be a formal argument
of the routine in which the call appears.

Definition 4.2.3 ((Partial) Wait rule) A routine call with separate arguments will execute
when all processors handling these arguments are available to the client; the client will hold
the processors for the duration of the routine.

The call my x. f in figure 4.4 is invalid because its target is not a formal argument. On the other
hand, calls x . f and x .g are valid. The client calling r (my x) blocks until the processor handling
my x is available; the client will retain exclusive control over that processor (through locking)
until the execution of r terminates. Therefore, all calls on x within r are executed in mutual
exclusion with respect to other clients; additionally, no other client is allowed to access x’s
processor between the two calls. Rules 4.2.2 and 4.2.3 enforce the basic synchronisation policy

r (x : separate X)
do

...
x . f
...

x .g
...

end

my x: separate X
...

r (my x)
my x. f −− Invalid!

Figure 4.4: Mutual exclusion

that guarantees atomicity of features involving separate calls; a routine body represents a critical
section with respect to to its separate formal arguments. This prevents a common mistake in
concurrent programming that consists in assuming that, when making two successive calls on a
separate object, e.g.

my stack .push (some value)
...

x := my stack . top −− x = some value?

46 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

nothing may happen to the object represented by my stack between the two calls. In the example
above, we would expect that the object assigned to x is indeed the object denoted by some value
that we just pushed on my stack. Unfortunately, such “sequential” thinking does not apply in
a concurrent setting because other clients may interfere with my stack between the two calls.
This is a typical atomicity violation we want to avoid.

If a routine takes several separate arguments, all of them are locked atomically before the
routine is executed. For example, the execution of

eat (left fork , right fork)

blocks until both arguments have been locked. There is no limit on the number of formal
arguments in routines, hence no limit on the number of locks that may be acquired atomically.

Condition synchronisation

In sequential programs, a precondition is a correctness criterion that the client object must fulfil
before calling a given routine on the supplier object. If the precondition is not met, the client
has broken the contract; for example, it has tried to store a value into a full buffer. Since the
execution is sequential, the state of the buffer cannot change — no other client may access the
buffer in the meantime. In a concurrent context, this does not apply any more. Consider the
feature store in figure 4.5. Its precondition requires that buffer not be full and i be positive. A
non-satisfied precondition clause not buffer . is full which involves a separate call does not
break the contract; instead, it forces the client to wait until it is satisfied. (As a result of other
clients’ activity, the state of buffer may eventually change in a way that satisfies the precondi-
tion.) On the other hand, the precondition clause i > 0 preserves its correctness semantics; if
violated, it raises an exception.

store (buffer : separate BUFFER [INTEGER]; i: INTEGER)
−− Store i in buffer .

require
not buffer . is full
i > 0

do
buffer . put (i)

end

my buffer : separate BUFFER [INTEGER]
...
store (my buffer , 10)

Figure 4.5: Preconditions vs. wait conditions

The application of the standard correctness semantics to separate preconditions, i.e. pre-
condition clauses that involve separate calls, would lead to the Separate Precondition paradox:
suppliers cannot do their work without the guarantee that the precondition holds; but the clients
are unable to ensure these preconditions for separate arguments. Even if the client in figure 4.5
performed a test on my buffer before calling store , e.g.

4.2. SCOOP 97 IN DETAIL 47

if not my buffer . is full then
store (my buffer , 10)

end

the state of my buffer might have changed between the test and the moment of the call; as a
result, the precondition might be violated. Therefore, the wait semantics must apply to separate
preconditions; correctness semantics applies to other preconditions.

The wait semantics makes it possible to define precisely the behaviour of feature calls with
separate arguments, thus completing the wait rule.

Definition 4.2.4 (Wait rule) A routine call with separate arguments will execute when all pro-
cessors handling these arguments are available to the client and the separate preconditions are
satisfied; the client will hold the processors for the duration of the routine.

Wait by necessity

Due to the asynchronous semantics of separate calls, a client executing them is not blocked;
it can proceed with the rest of its computation. Later on, however, it may need to resynchro-
nise with the supplier, for example to retrieve some results. Rather than introducing a specific
language mechanism for this purpose, SCOOP 97 relies on the wait by necessity principle.

Definition 4.2.5 (Wait by necessity) If a client has started one or more calls on a certain sep-
arate object, and it executes on that object a call to a query, that call will only proceed after all
the earlier ones have been completed, and any further client operations will wait for the query
call to terminate.

Figure 4.6 illustrates the concept: the client waits on the query call x .some query, whereas pro-
cedure calls x . f , x .g (a), and y . f do not cause waiting. SCOOP 97 applies a restricted version

r (x : separate X)
do

x . f −− No waiting here
x .g (a) −− No waiting here
y . f −− No waiting here
...
value := x .some query −− Wait here for result
...

end

Figure 4.6: Wait by necessity

of wait by necessity. The original mechanism, first introduced in Eiffel// [38], permits even
more asynchrony: a query call returns immediately even if its result has not been evaluated yet;
a client object only needs to wait when it tries to access the value of the result. An optimisation
in the spirit of the original principle is described in OOSC2 but it has never been implemented.

48 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

4.2.4 Consistency rules

Since the semantics of separate and non-separate calls is different, it is essential to guarantee
that a non-separate entity, e.g. x : X (where class X is not separate), never becomes attached
to a separate object. Otherwise, calls on x would be wrongly processed as synchronous calls,
without respecting rules 4.2.2 and 4.2.4, i.e. the client would be able to use x without locking the
corresponding processor beforehand. Entities declared as non-separate but pointing to separate
objects are called traitors. SCOOP 97 provides four separateness consistency rules to eliminate
traitors.

Definition 4.2.6 (Separateness consistency rule SC1) If the source of an attachment (assign-
ment instruction or argument passing) is separate, its target entity must be separate too.

Rule SC1 eliminates the risk of introducing a traitor through assignment or argument pass-
ing. For example, the assignment my y := my x in figure 4.7 is invalid because its source is
separate but its target is not. Similarly, the call r (my x) is invalid because the actual argument
my x is separate while the corresponding formal x is not. If the call was valid, then x would be-
come a traitor; the call x . f would be executed without locking x’s handler, potentially violating
the atomicity of other clients’ operations involving that object.

Note that there is no rule prohibiting attachments in the opposite direction — from non-
separate to separate entities. Meyer [94] states: “permitting an attachment of a non-separate
source to a separate target is harmless — although usually not very useful.”

r (x : X)
do

x . f
end

my x: separate X
my y: X
...

my y := my x −− Invalid
r (my x) −− Invalid

Figure 4.7: Application of rule SC1

Definition 4.2.7 (Separateness consistency rule SC2) If an actual argument of a separate
call is of a reference type, the corresponding formal argument must be declared as separate.

Rule SC2 takes care of the situation where a reference to a non-separate object is passed — as
actual argument of a separate call — across the boundary of a processor. Such a reference must
be seen as separate outside that boundary; to ensure this, the corresponding formal argument
must be declared as separate. Figure 4.8 illustrates this scenario. The client is not allowed to
use its non-separate attribute a as actual argument of x . f because the feature f in class X takes
a non-separate formal argument; if this was permitted, that formal argument would become a
traitor. On the other hand, the call x .g (a) is valid because g takes a separate formal argument.

4.2. SCOOP 97 IN DETAIL 49

−− in class C
a: A

r (x : separate X)
do

x . f (a) −− Invalid
x .g (a) −− Valid
...

end

−− in class X
f (a: A)

do
...

end

g (a: separate A)
do

...
end

Figure 4.8: Application of rule SC2

Definition 4.2.8 (Separateness consistency rule SC3) If the source of an attachment is the re-
sult of a separate call to a function returning a reference type, the target must be declared as
separate.

A non-separate reference may also be passed across a processor’s boundary as a result of a
separate call to a function. Rule SC3 takes care of that problem, as illustrated in figure 4.9.
The assignment to a is invalid because x . f is a separate function call but a is non-separate. The
assignment to b is valid because b is separate. In a sense, rule SC3 “mirrors” SC2.

The problems handled by the rules SC2 and SC3 only concern reference types; they do not
apply to expanded objects because such objects are always passed by copy, so there is no danger
of creating a traitor which looks like a non-separate object but “sits” on a different processor.
Nevertheless, non-separate references carried by expanded objects may constitute a danger;
therefore, the use of expanded types is restricted by the rule SC4.

Definition 4.2.9 (Separateness consistency rule SC4) If an actual argument or result of a
separate call is of an expanded type, its base class may not include, directly or indirectly, any
non-separate attribute of a reference type.

Figure 4.10 illustrates the problem. Class EA is expanded, i.e. all its instances are expanded.
Without the rule SC4, the assignment a := x . f in the client’s code would be valid. But then the
client would be able to call a .b. f which is obviously invalid because a.b — although declared
as non-separate — denotes a separate object; a.b is a traitor. The problem stems from the fact
that the source of the assignment a := x . f is passed by copy; it also carries a copy of its non-
separate reference b which immediately becomes a traitor when it crosses the boundary of x’s

50 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

−− in class C
a: A
b: separate A

r (x : separate X)
do

a := x . f −− Invalid
b := x . f −− Valid

end

−− in class X
f : A do ... end

Figure 4.9: Application of rule SC3

processor. There would be no problem here if class EA did not have any non-separate attributes,
i.e. if it was “fully-expanded”. Therefore, SC4 only allows instances of fully-expanded classes
as actual arguments or results of separate calls. Several library classes, such as BOOLEAN,
INTEGER, REAL, and CHARACTER are fully-expanded; they may be used freely in separate
calls.

4.2.5 Additional rules and mechanisms

Business Card principle

Rule SC2 allows a non-separate reference as actual argument of a separate call, provided that
the corresponding formal argument is declared as separate. Consider the call x .g (a) in figure
4.8. If the body of g does not perform any calls on the formal argument a but only uses it as a
source of an assignment, e.g.

g (a: separate A)
local

my a: separate A
do

my a := a
end

then g may simply execute without locking the client’s processor — recall that a is non-separate
from the client, hence handled by its processor — and the client is not hindered in its execution.
If the body of g does perform some call on a, e.g.

g (a: separate A)
do

...
a. f
...

end

4.2. SCOOP 97 IN DETAIL 51

expanded class EA
feature

...
b: B −− B is a reference type
...

end

−− in class C
a: EA −− a is expanded

r (x : separate X)
do

a := x . f −− Invalid
a.b. f −− a.b is a traitor

end

−− in class X
f : EA

do
...

end

Figure 4.10: Application of rule SC4

then the execution of g must obey the wait rule (4.2.4); it will block until a’s processor becomes
available. This is likely to produce a deadlock: the client may be busy due to wait by necessity,
e.g. executing a query call on x. In that case, x would wait for the client, and the client would
wait for x — a classic deadlock. Therefore, SCOOP 97 introduces the Business Card principle
which prevents such situations.

Definition 4.2.10 (Business Card principle) If a separate call uses a non-separate actual ar-
gument of a reference type, the routine should only use the corresponding formal as source of
assignments.

Assertion Argument rule

To avert deadlock situations caused by blocking calls in preconditions, e.g.

a: separate A
r (x : X)

require
some property (a) −− Potentially blocking due to the wait rule

do ... end

separate entities other than formal arguments may not appear as arguments in assertions. This
is enforced by the following rule.

52 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

Definition 4.2.11 (Assertion Argument rule) If an assertion contains a function call, any ac-
tual argument of that call must, if separate, be a formal argument of the enclosing routine.

One of the consequences of rule 4.2.11 is that assertions appearing in class invariants may not
use separate arguments. (There is no enclosing routine for a class invariant.)

Importing object structures

Function clone from ANY cannot be used to obtain copies of separate objects; since it is declared
as

clone (other : ANY): like other

an attempt at using it with a separate actual argument would violates the rule SC1. SCOOP 97
provides another function for cloning separate object structures without producing traitors:

deep import (other : separate ANY): ANY

The result is a non-separate object structure, recursively duplicated from the separate structure
starting at other. In a way, deep import corresponds to the deep clone operation (see [94],
p. 247) but the result is placed on the client’s processor. Since all the object copies are non-
separate, there are no traitors.

4.2.6 Proof rule for feature calls

The sequential character of processors and the FIFO scheduling of separate calls targeting the
same supplier object — or indeed different objects but handled by the same processor — permits
the derivation of a proof rule based on the sequential proof technique.

Definition 4.2.12 (Sequential proof technique) Consider the call x.f (a). If we can prove that
the body of f, started in a state satisfying the precondition, terminates in a state satisfying the
postcondition, then we can deduce the same property for the above call, with actual arguments
a substituted for the corresponding formal arguments, and every non-qualified call in the as-
sertions (of the form some property) replaced by the corresponding property on x (of the form
x.some property).

The proof rule for feature calls (4.2.1) is an adaptation of Hoare’s proof rule for procedures;
however, only the non-separate preconditions and postconditions are used in its conclusion.

{INV ∧ Prer} bodyr {INV ∧ Postr}
{Prenonsep

r [a/f]} x.r(a) {Postnonsep
r [a/f]}

(4.2.1)

To prove a routine correct, the same conditions must be demonstrated as in the sequential case,
but the consequences on the properties of the call are different; the client has fewer properties
to ensure before the call (just the non-separate preconditions) but it obtains fewer guarantees
in return (just the non-separate postconditions). The former difference may be viewed as good
news for the client, the latter as bad news.

4.3. RELATED WORK 53

4.2.7 Advanced features

To complete the description of SCOOP 97, we present two advanced mechanisms introduced
in OOSC2 but not considered in our concurrency framework.

Duel mechanism

To provide support for ABCl/1-style express messages [148], SCOOP 97 lets an impatient client
snatch a shared object — more precisely, the processor that handles the object — from its
current holder. If a client is holding a lock on a supplier’s handler for too long, at the detriment
of another client judged more important, the latter may interrupt the current holder through
a call to the library routine demand. A successful call will cause an exception in the current
holder, which must have accepted the possibility in advance; the holder releases the lock and
handles the exception (usually by trying again later on). If the interrupt fails — because the
holder has not agreed to yield — the exception will happen in the challenger object; the holder
retains its lock. This duel mechanism provides added flexibility without violating the other
rules of SCOOP 97 or the requirements of Design by Contract. It enables the implementation
of real-time facilities, e.g. a watchdog (see examples in [94], p. 1019).

The duel mechanism is beyond the scope of this dissertation; we do not discuss it in the
critique part below. Real-time programming with SCOOP is a topic of another PhD project in
our group [9]; that project also refines the duel mechanism to make it more flexible, e.g. by
introducing multiple priority levels and timeouts on duels.

Mapping of processors to physical resources

Since processors are abstract and the program text does not specify what physical resources they
should be mapped to, this specification must appear elsewhere. SCOOP 97 uses a Concurrency
Control File (CCF) which describes the available computing resources — CPUs, servers, etc.
— and specifies the mapping between processors and physical resources. CCF files are separate
(in the usual sense of the word) from the software. An application may be compiled without
any reference to a specific hardware or network architecture; at run time, each component of the
application will use a CCF to find out about the available local and remote computing resources.

The customised mapping of processors to physical resources is beyond the scope of this
dissertation; so is the use of distributed architectures. (Distributed programming with SCOOP
is a topic of other projects in our group; see the discussion of future work in chapter 13.) Our
implementation (see chapter 11) uses a single machine where a single thread represents each
processor; we assume that there is no limit on the available number of threads.

4.3 Related work

This section presents related work by other authors and reports on the previous implementation
attempts.

54 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

Compton’s runtime

Compton [43] describes a runtime for SCOOP 97, based on the SmartEiffel 2 compiler (called
SmallEiffel at that time). A semi-formal semantic description, based on a similar model for Eif-
fel// [14], is also proposed. The author performs an interesting analysis of the model and points
out several inconsistencies. Nevertheless, to preserve the basic model, only minor corrections
are carried out. The rules for expanded types are more stringent: if the result of a separate call
is expanded, then its base class must not declare any once functions or non-separate attributes.
(SCOOP 97 only requires that the base class must not contain any non-separate attributes.) To
eliminate an inconsistency in the treatment of separate calls, the author suggests to modify the
separate call rule 4.2.2 so that the target of a separate call, except a creation call, must be a
formal argument of the routine in which the call appears. The treatment of once features is also
restricted to ensure the absence of traitors: all once features have the once per processor seman-
tics, i.e. their result is shared by all instances of the same class handled by the same processor.
This causes several problems, e.g. it is impossible to properly type the entity io which denotes
the standard input-output console; io is non-separate although it is shared by all objects in a
system. Our approach supports an unconstrained use of once functions (see section 9.4): the
once per processor semantics is applied to functions that return a non-separate result; the once
per system semantics applies to functions that return a separate result, i.e. their result is shared
by all instances of a given class within the system. Also, we do not impose any restrictions on
expanded types (see section 6.10).

Compton describes SCOOP 97 synchronisation as an instance of the mutual exclusion prob-
lem [78, 22]. A processor’s execution cycles through four stages: entry, critical, exit, and re-
mainder. The entry stage corresponds to lock acquisition and wait condition checking. The
critical stage is the execution of a routine’s body. The exit is the lock release operation. (Post-
conditions are ignored; in our framework, the exit stage would also include postcondition check-
ing.) The remainder are all non-separate calls before and after the call to an enclosing routine.

The locking algorithm lets a processor overtake another one that is suspended on the wait
queue of a resource. The author justifies this choice with a reduced potential for deadlock. We
agree that the approach may reduce the number of deadlocks but it also violates the fairness
guarantees of SCOOP 97, in particular the FIFO policy for servicing clients’ requests. As a
result, starvation may occur. A common point of Compton’s lock manager and our scheduler
(see section 11.2) is that they do not permit concurrent locking of non-intersecting sets of re-
sources requested by different processors. While recursive locking is used in his model, i.e. a
processor that holds a lock on another processor may request and get another (redundant) lock,
we use no recursive locking in SCOOP; if the requested processor has already been locked by
the requesting processor, no additional lock requests are issued.

An interesting point is the detection of a system’s exit condition; it has not been considered
in SCOOP 97 at all. The system should exit when all processors enter a dormant state. Since
there is no way of detecting whether all processors are dormant — because there is no “supervi-
sor” thread in Compton’s runtime system — each processor that wants to enter a dormant state
has to check whether all the others are dormant; if yes, the whole system exits. We propose a
different solution, based on the supervision by the scheduler (see section 11.2). Whenever the
scheduler suspects quiescence, i.e. a state where all processors are dormant, it checks whether
all processor are indeed idle; if yes, it asks them to terminate and it terminates itself, which

2http://www.smarteiffel.org

4.3. RELATED WORK 55

results in the system’s exit. Checking the state of all processors is a costly operation, so the
scheduler only performs it when there are no pending requests and no requests are currently
being serviced. As a result, practically no run time overhead is incurred.

Compton’s work is a first attempt at implementing SCOOP 97. Because of several restric-
tions, the lack of support for several advanced features, and the incompatibility of the applied
locking mechanism with SCOOP 97, it may be viewed as a partial implementation only. Nev-
ertheless, the semantics description has clarified several fuzzy points of the original model.

SECG

The SCOOP-to-Eiffel-Generator (SECG) Fuks et al. [60] translates SCOOP 97 code into pure
Eiffel code with embedded calls to the EiffelThread library. SECG does not require any changes
to the EiffelStudio compiler or runtime, and all Eiffel programming constructs can be used; this
is a big advantage over Compton’s system. Mutexes and buffers are added to separate classes
in order to keep track of pending call requests made by clients. Similar changes are made to
separate entities and separate arguments to introduce mutexes, allowing synchronisation and
mutually exclusive access. Each separate class, when translated, inherits from the library class
THREAD and is provided with a buffer containing pending feature call requests. The root class
of the system executes all threads; each thread, indefinitely, retrieves a pending request from the
queue and executes the corresponding feature. SECG translates SCOOP 97 programs following
the schema below.

• Class EXCEPTIONS becomes the ancestor of all the user-defined classes in the system.

• Class THREAD CONTROL becomes the ancestor of the root class. THREAD CONTROL
provides the basic features for controlling the execution of threads. The root class is

enriched with the feature request pending which acts as a resource monitor for the root
object, and request pending mutex which synchronises the accesses to the monitor. The
root class is further extended with the features is request pending and rescue SCOOP.
The latter provides a handler for concurrency-related exceptions.

• Each separate class becomes a thread; it inherits from the library class THREAD. A
separate class is then enriched with additional features implementing a request buffer and
its synchronisation policy.

• Every declaration of the form x : X, where X is a separate class, is replaced with

x : X
x mutex: MUTEX

MUTEX is a class from EiffelThread. A similar substitution is performed on the declara-
tions of formal arguments.

• Since new attributes are introduced in several classes — separate ones and those that use
separate attributes — creation procedures have to be extended accordingly. In particular,
request buffers and mutexes have to be created.

• Separate calls and calls that take separate arguments are translated into calls which regis-
ter corresponding feature requests, e.g. x . f (a), where x and a are separate, becomes

56 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

x . set feature to do ([p, ’’F STRING’’, a, a .mutex])

The first element of the tuple represents the target of the call; the second is a string
representing the requested feature; the last two elements represent the actual argument of
the feature call, and the mutex used for synchronising accesses to it.

The translation is straightforward. Nevertheless, since every object represented by a separate
entity has its own handling thread, mutex, and a request buffer, SECG is only applicable to
programs where each processor has a “main” object which communicates with the main objects
of other processors, very much in the style of CEE [70]. It is not possible to reference different
separate objects located on the same processor. Furthermore, although separate entities may
become attached to non-separate objects, all calls on such entities are treated as strictly separate.
For example, the following source code

x : separate X
non separate x : X
...
create non separate x
x := non separate x
x . f
non separate x .g

is translated in such a way that x . f is treated as a separate call, hence executed asynchronously.
(It results in x’s request queue being extended with a request to execute f .) The subsequent call
to non separate x .g, targeting the same object, is synchronous and will be executed before x . f ;
this may violate the assumed execution order.

Separate local variables are not supported. The justification is that “an entity declared as
separate is intended to be shared by multiple threads; thus it seems that declarations of local
and separate are incompatible.” The SCOOP framework presented in this dissertation permits
the use of separate local variables. They may be used for the creation of new separate objects
or for the temporary storage of separate references; the lifetime of a local entity corresponds to
that of its routine but the object represented by the entity often outlives the routine.

There are no further limitations with SECG: any valid Eiffel constructs, including once
routines and expanded types can be used. Postconditions are checked before releasing the
locks acquired by the routine. Therefore, SECG allows separate calls in postconditions, and
it applies the sequential (blocking) semantics to such assertions. This simplifies the treatment
of contracts and exceptions but it also increases the likelihood of deadlock and limits the amount
of parallelism (see section 5.6). Surprisingly, separate calls are also allowed in class invariants;
however, the rationale for such invariants remains unclear.

The work on SECG has raised many interesting questions which have fuelled our research;
in particular, it has prompted us to clarify the semantics of separate annotations and the treat-
ment of assertions.

SCOOP for SmartEiffel

Adrian [2] describes an attempt at implementing SCOOP 97 in SmartEiffel. Despite its incom-
pleteness — large parts of the draft are missing and it is not clear how much of the planned

4.3. RELATED WORK 57

implementation has been done — the document provides a few interesting insights. Starting
from Compton’s description [43], the author proposes solutions to several problems, e.g. once
queries, conformance of separate and non-separate entities, and exceptions.

Adrian clarifies the relation between separate and non-separate entities in the following
manner: A conforms to separate A; furthermore, if B conforms to A, then

• separate B conforms to separate A.

• B conforms to separate A (by transitivity).

This corresponds to the non-strict semantics of separate annotations (see section 5.1). Our type
system captures the conformance relation more precisely (see section 6.3).

The treatment of once functions is different from Compton’s: a once per system semantics
is preferred here, as it purportedly leads to a separate evaluation, whether the function is really
separate or not. The author claims it to be the only sound and practical solution. (Which brings
the number of “the only sound solutions” to two, if you believe both Compton and Adrian.) In
section 9.4, we show an alternative solution which combines both approaches.

To handle exceptions in a concurrent context, Adrian suggests that an exception reaching
the boundary of a processor should mark that processor as “dirty”, i.e. unable to serve any
request. If a client is waiting for the dirty processor because of wait by necessity, an exception
is propagated to the client; furthermore, any subsequent call on an object handled by a dirty
processor immediately raises an exception in the client. A recent proposal by Arslan [11] and
Meyer follows a similar approach.

Bailly’s semantics and proof system

Bailly [16] proposes an operational semantics for a subset of SCOOP 97, and a set of rules
for the inference of safety properties of concurrent programs. The author assumes a different
semantics of separate preconditions — they are merely guards of conditional critical regions
(CCRs) represented by routine bodies. Guards are excluded from contracts and treated sepa-
rately from traditional (correctness) preconditions. The approach does not support inheritance,
therefore problems caused by guard strengthening vs. precondition weakening are not dis-
cussed. The treatment of postconditions is identical in sequential and concurrent contexts. Fol-
lowing the CCR semantics, the unlocking of separate objects locked by a routine is performed
atomically. As a result, it is impossible to reason about features that involve separate callbacks.
Additionally, query calls may only appear at the end of a routine’s body.

Bailly discusses the infeasibility of formal reasoning with the proof rule 4.2.1; a non-
compositional proof method is sketched along the lines of the proof system for concurrent Java
programs [1]. As opposed to Java, no additional class invariants (in Owicki-Gries style [115])
are necessary to ensure the interference-freedom because intra-object concurrency is prohib-
ited. Nevertheless, the presence of asynchronous calls increases the complexity of proofs; each
asynchronous call requires three cooperation tests, whereas a synchronous call only requires
two. The author views the CCR-like synchronisation as an extension of Java’s synchronized
blocks: in Java, only one object may be locked using a single synchronized block; SCOOP 97
offers the possibility to lock several objects at once. Modular reasoning about the proposed
CCR primitive is difficult because locking and unlocking typically involves the information

58 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

about the environment of the concerned objects. This makes the use of a global CCR invariant
unavoidable; no such invariant is necessary for Java programs.

The treatment of routine calls as implicit CCRs falsifies the intended semantics of contracts
and increases the complexity of the proposed proof system. Our proposal (see chapter 8) makes
a full use of preconditions and postconditions instead of excluding them from the framework;
this results in simpler proofs.

CSP semantics

Brooke et al. [34] propose a CSP semantics for SCOOP 97. The main goal is to obtain a better
understanding of the model and to draw out the complexities and the unclear elements. The CSP
model (Communicating Sequential Processes) [129] provides much of the infrastructure needed
to capture concurrency and synchronisation mechanisms; also, powerful tools for analysing
CSP specifications, i.e. FDR [87], already exist. The following elements of SCOOP 97 com-
putation are targeted:

• object reservations: what happens when client c reserves y, then c calls x which itself
reserves y?

• preconditions,

• lazy evaluation, i.e. wait by necessity,

• exception propagation: what happens if the caller has already finished?

• underlying communications and scheduler structure.

In addition to objects and processors (referred to as subsystems), the formal model includes
partitions which represent physical computational resources: CPUs, POSIX processes, or indi-
vidual threads. Each partition is responsible for zero or more processors. This approach follows
the Ada 95 model of distributed processing [137]. There is no object migration between pro-
cessors and no processor migration between partitions. An implementation of partitions must
ensure that no processor is starved; essentially, each partition must provide cooperative multi-
tasking.

Separate preconditions are translated directly into CSP guards; since the study does not con-
sider inheritance and the related problem of precondition weakening vs. guard strengthening,
this mapping does not cause any particular problems.

When locking separate arguments a, an atomic test-and-set routine is necessary: if all the
elements of a are available, they are reserved atomically. Because the different elements of a
might be on different partitions, the authors suggest a “big lock” approach, where each reser-
vation request acquires a lock on the entire system before checking the availability of the re-
quested resources. Although not good for performance, this is the semantics that the overall
system should exhibit; it is suggested that practical implementations may use a different ap-
proach provided that it preserves this semantics. (SECG [60] indeed uses the big lock approach;
YO SCOOPLI [111] does not have an explicit global lock but the global queue of requests pro-
vides a similar guarantee; Compton’s scheduler [43] uses a weaker semantics that does not
ensure fairness.)

4.3. RELATED WORK 59

Brooke et al. provide a solution for asynchronous exceptions: whenever an exception needs
to be propagated to a separate client, the next caller that queues a separate call on the “dirty”
object (the object that executed the faulty routine) should receive an exception of a special type

separate routine failure . The implication of this proposal is that queueing a call on a request
queue of a processor is synchronous.

The need for lock passing is identified. Locking is transitive by default, i.e. if a client
object c holds locks on supplier objects x and y, and x requests a lock on y, x acquires that lock,
independently of whether c allows it or not. (Our approach, described in section 7.2, lets the
client decide whether a lock should be passed.) Furthermore, no synchronisation between the
calls on y issued by c and those issued by x takes place, i.e. it is possible that they are interleaved.
This offers more potential parallelism than our solution but reasoning about programs becomes
intractable because one has to account for all potential interleavings. Additionally, it is possible
for client c to unlock y before x revokes its lock on y. Our mechanism prohibits such behaviour
in order to guarantee atomicity; locks that have been passed to a supplier must be revoked before
the client proceeds. The formal model proposed by Brooke et al. may be extended to account
for the differences mentioned above (see section 7.3).

The CSP formalisation and the ensuing discussion — in particular on the mapping of objects
to processors, and the lock passing mechanism — have been invaluable for the development of
our framework.

Atomic features

Vaucouleur and Eugster [142] propose an alternative approach to synchronisation, based on the
concept of transactions [61]. Features may be declared as atomic; such features have the “all-or-
nothing” semantics, i.e. they either execute to completion, or do not execute at all. If the body of
an atomic feature cannot be executed completely, the transaction is rolled back or compensated.
Since atomic features operate on a copy of the object structure — different atomic features use
different copies — no locking is necessary; the rule 4.2.4 of SCOOP 97 does not apply.

This approach seems to be particularly suited for short transactions with little potential for
conflicting accesses; modelling longer operations, in particular those involving several coop-
erating processors, cannot be efficiently represented in that way. It is not clear whether the
transactional approach may be combined with locking to cater for the needs of both conflicting
and cooperative concurrency; the most problematic point is the treatment of separate assertions.

A recent feasibility study [101] demonstrates that atomic features can be used in small
systems running on a single machine but the approach has not been tested on large applications.
Also, no distributed implementation exists yet.

Inheritance-based implementation

Since no satisfactory implementation of SCOOP 97 was available at the outset of this work, we
started by implementing the model. Our initial implementation [111] — YO SCOOPLI (where
YO stands for “Ye Olde”) — used multiple inheritance to implement the separate semantics of
objects and classes. The criteria for the library design were to make it as simple and easy to use
as possible, and to maintain a clear correspondence with the original SCOOP 97 syntax.

YO SCOOPLI implements the basic SCOOP 97 mechanisms: separate calls, wait by neces-

60 CHAPTER 4. ORIGINAL SCOOP 97 MODEL

sity, locking through argument passing, and wait conditions. Nevertheless, it is only possible to
pass separate or expanded objects across processors’ boundaries; non-separate references can-
not be used as arguments or results of separate calls. Also, no attachments from non-separate
to separate entities are possible. These two problems are due to the reliance on inheritance to
implement separateness; conceptually, separate S is a supertype of S but the inheritance re-
lation between the class SEPARATE S (that simulates separate S) and S goes in the opposite
direction. (This also enforces the strict semantics of separate.) The library does not support
separate calls on queries implemented as attributes. The necessity to declare a dedicated feature
for each expanded type is a serious limitation of the library; such features are provided for the
most commonly used types — BOOLEAN, INTEGER, CHARACTER, REAL, and DOUBLE —
but there is no support for user-defined expanded classes.

Although YO SCOOPLI only provides a limited support for SCOOP 97 constructs, it is
worth mentioning as our first practical attempt at understanding the internal workings of the
model. Many mechanisms present in the current implementation, such as the communica-
tion between processors, the scheduler providing the strong fairness guarantees, and the use of
agents to represent feature requests, have been adopted from this library (see section 11.2 for
details). YO SCOOPLI has also demonstrated that the conformance relation between separate
and non-separate types cannot be simulated and implemented using inheritance; this impossi-
bility result has prompted us to look closer at the problem of separate semantics and suggested
a relation between separate annotations and the type system.

5
Beyond SCOOP 97: critique

and roadmap

DUE to its simplicity and the integration of concurrency with O-O concepts, SCOOP 97 is an
important first step towards a practical method of concurrent programming. Nevertheless, the
impact of concurrency on the semantics of O-O mechanisms, in particular contracts, has not
been studied in enough detail; it is a source of inconsistencies and limitations. Advanced mech-
anisms — polymorphism, dynamic binding, genericity, and agents — have not been tackled at
all. Several validity rules are too restrictive; they need rethinking. So does the semantics of
contracts; it has to be refined to make DbC usable in a concurrent context, both as a basis for
proofs and as a design tool.

This section discusses the problems found in SCOOP 97 and points out the limitations of
the model. It constitutes a roadmap for the development of the current SCOOP model described
in chapters 6 – 10; each identified problem is solved there to provide a consistent, expressive,
and usable concurrency framework.

5.1 Semantics of separate annotations

Entities decorated with the keyword separate denote objects handled by a different processor
than the current object. But it is not possible to ensure this property statically; since SCOOP 97
does not prohibit direct attachments from non-separate to separate entities, the assignment

my x: separate X
x : X
...

my x := x

immediately results in my x being attached to a non-separate object. Even if we introduced
a rule to prohibit such assignments, it would be possible to violate the semantics of separate
annotations. Consider the example in figure 5.1. After the creation instruction create my x, the
new object attached to my x is indeed separate, i.e. it is placed on a fresh processor (different
from the current one). The assignment my y := my x preserves the semantics of separate; the
object represented by my y is now handled by a different processor than Current. On the other
hand, the call r (my x) violates the intended semantics: through the call x . set y (my y), the
expression my x.my y now denotes a non-separate object (my x itself) although my y is declared
as separate in class X. (Note that no attachment from non-separate to separate has been used
here.)

61

62 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

−− in class C
my x, my y: separate X
r (x : separate X)

do
x . set y (my y)

end
...
create my x
my y := my x
r (my x)

−− in class X
my y: separate X
set y (y : separate X)

do
my y := y

end

Figure 5.1: Problems with the semantics of separate

There is a clear mismatch between the strict semantics of separate requiring that the objects
referenced by separate entities must be handled by a different processor, and the intuitive non-
strict semantics that allows such possibility but does not enforce it, i.e. separate entities may
represent separate objects or, expressed differently, separate entities denote potentially separate
objects. The separate class annotations, the separate call rule (4.2.2), and the wait semantics
of separate preconditions clauses follow the strict semantics, whereas the consistency rules
SC1–SC4 (4.2.6 –4.2.9) follow the non-strict one; this leads to numerous complications and
inconsistencies.

It is necessary to apply the same semantics in all rules and mechanisms of the model; we opt
for the non-strict semantics because it is the only practical solution: it is enforceable statically
and compatible with the modularity requirements. Also, it removes the inconsistencies and
simplifies the type system (see chapter 6). Most related work on SCOOP 97 assumes the strict
semantics [60, 34, 16]; Compton [43] and Adrian [2] are notable exceptions.

Separate Current paradox

SCOOP 97 permits the use of the separate keyword to decorate class headers. Every instance
of a separate class C is separate from all other objects in the system. But it is impossible
to ensure such a property statically; this is a sufficient reason to abolish the separate class
annotations. Nevertheless, there exists an even more fundamental reason for eliminating these
annotations: they lead to a logical inconsistency we call the separate Current paradox. In a
separate class, is Current separate or non-separate? According to the separate class semantics,
Current is separate; but Current denotes the current object, so it cannot be separate! Figure 5.2
illustrates the problem. If Current is separate then, following the separate call rule (4.2.2), the
call to Current.f is invalid because its target is not a formal argument on the enclosing routine.
Similarly, the call to f , although appearing in an unqualified form, implicitly targets Current;

5.2. SEPARATE CALL RULE 63

separate class C
feature

r (c : C)
do

c . f
end

f do ... end

...
Current.f −− Invalid?
f −− Invalid?

...
end

Figure 5.2: Separate Current paradox

therefore, it is invalid. One could think of a special rule for Current, or at least for unqualified
calls, but this would further complicate the model. Since the separate class annotations do not
bring any real benefit in terms of expressiveness and convenience, the introduction of such a
rule is not justified.

The use of separate classes also complicates the support for inheritance and polymorphism.
If a separate class C inherits from a non-separate class B, should it conform to B, i.e. should
clients be able to perform polymorphic attachments from C to B? Such attachments would
introduce potential traitors, so they must be prohibited. This would add yet another special rule
to the model, unnecessarily complicating the conformance relation among classes. Therefore,
the use of separate annotations on classes should be prohibited.

5.2 Separate call rule

Rule 4.2.2 enforces a strict access control policy: only formal arguments may be used as targets
of separate calls. The rule is simple — both for the programmer and the compiler — because
it uses a syntactic distinction between valid and invalid targets. Nevertheless, the policy is
too stringent: several interesting synchronisation scenarios are rejected even though they do not
violate the mutual exclusion requirement. Consider the example in figure 5.3. The local variable
y may not serve as target of separate calls because it is not a formal argument; but y denotes
the same object as x, and calls on x are permitted! Even more disturbing is the impossibility of
using a separate expression as target of a call, e.g. the call x .g . f is prohibited because x .g is not
a formal argument of r; this call is obviously safe because the object denoted by x .g is handled
by the same processor as x (g returns a non-separate result). Using the local variable z to store
the value of x . f — thus getting rid of the multidot form — does not help: the call z . f is invalid
for the same reasons as y . f .

The syntactic distinction between formal arguments and other entities fails to capture pre-
cisely the intended semantic requirement: what only want to allow calls on objects handled by
processors currently held (locked) by the client. Formal arguments are just a subset of all safe

64 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

r (x : separate X; a: A)
local

y , z : separate X
do

x . f −− Valid
y := x
y . f −− Invalid although safe
x .g. f −− Invalid although safe
z := x .g
z . f −− Invalid although safe
a. f −− Valid
s −− Valid

end

s do ... end

−− in class X
g: X do ... end

Figure 5.3: Limitations of the separate call rule

targets; other safe targets, such as multidot expressions and local variables that reference ob-
jects handled by locked processors, should also be permitted. The expressive power of separate
annotations is not sufficient to capture all properties required by such a rule. We need some way
to assert that two entities represent objects handled by the same processor, so that calls y . f and
z . f in figure 5.3 can be recognised as safe by the compiler. Section 5.5 discusses this topic in
detail, and proposes a type-based solution.

If we push this line of thinking to the extreme and focus solely on the semantic requirement
rather than syntactic distinctions of any kind, it turns out that a separate call rule may not
be necessary at all; it could be integrated into a general call rule applicable to separate and
non-separate calls. This is because there is no good reason to differentiate between separate
and non-separate entities: the real difference is between entities handled by processors under
our control and those beyond our control. Non-separate entities denote objects handled by
the current processor; this processor is under the client’s control in any context. From the
correctness point of view, there is no difference between the call to x .g and the calls a. f and s
in figure 5.3; all of them target entities handled by a processor locked in the current context. A
generalised call rule could be based on this locking requirement; it needs to be combined with
the requirement of non-voidness of targets (rule 8.23.14 /VUTA/ in [53]).

5.3 Feature call vs. feature application

The wait rule (definition 4.2.4) enforces the synchronisation through argument passing and
separate preconditions at the time of the call, and requires arguments to be reserved by the
client’s handler. It is easy to see that this rule is flawed: in the following code excerpt

5.3. FEATURE CALL VS. FEATURE APPLICATION 65

my a: separate A

r (x : separate X)
do

x . f (my a)
next instruction

end

−− in class X
f (a: separate A)

require
a.some property

do
a.r
...

end

the call x . f (my a) forces the client to wait because my a has to be reserved on its behalf
and the separate precondition of f must hold at the moment of the call. The client’s handler
cannot move to next instruction before f has terminated; this results in an unintended syn-
chronous semantics of the call. Additionally, my a is reserved for the client, although the calls
on the corresponding formal argument a in the body of f are performed by the supplier x.
This is clearly not what we want; the client should proceed immediately with the execution of
next instruction because f is a command; the reservation and the establishment of the pre-

condition should happen on the supplier’s side at the moment of the feature application; my a’s
handler should be locked on behalf of x.

The confusion is probably due to the fact that all the examples discussed in [94] and other
articles involved only two forms of feature calls: a non-separate call of the form r (a) where a
is separate, and a simple separate call x . f where f either takes no argument or its arguments are
expanded (thus require no locking). No attempt was made at defining the semantics of x . f (a)
where both x and a are separate. This led to the incorrect amalgamation of the feature call and
the feature application mechanisms.

These two fundamental concepts should be clearly distinguished, even in the case of non-
separate calls; the only particularity of a non-separate call is that the feature call and the feature
application are performed by the same processor. Hence the synchronous semantics of such
calls: the feature request is immediately followed by the feature application; the client cannot
proceed before the feature has terminated even if the feature is a command. Nevertheless, non-
separate calls should be seen as a particular case of the general asynchronous call mechanism.
This clarifies and simplifies several language rules; it also constitutes a convenient basis for
the unification of the contract semantics discussed in chapter 8. See section 6.1 for a precise
definition of the feature call and the feature application semantics and a detailed discussion of
the related topics.

66 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

5.4 Consistency rules

The four separate consistency rules SC1–SC4 (4.2.6 –4.2.9) should eliminate potential traitors.
The rules are easy to understand and apply. But are they sound, i.e. do they really prohibit
the introduction of traitors? On the other hand, do they not introduce unnecessary constraints
limiting the expressive power of the language? Let’s have a closer look at each rule.

SC1 eliminates the most obvious source of traitors: a direct attachment from a separate to a
non-separate entity. At the same time, it does not prohibit attachments in the opposite direction.
Therefore, it captures the intuitive conformance between T and its separate counterpart separate
T. It seems to be sound; it does not impose unnecessary constraints.

SC2 requires the formal argument of a routine to be declared as separate if the correspond-
ing actual is separate. The rule is sound but overly restrictive: even if an actual argument is
shown to be handled by the same processor as the target of the call, the call is invalid unless
the formal argument is separate. Figure 5.4 illustrates this situation: the call l . extend (s) is
invalid although s is non-separate from l . This is a very common scenario, in particular when
reusing a “sequential” library class, such as LIST, in a concurrent context (see section 5.12.3
for the discussion of code reuse). Even worse: the call l .merge (l) is invalid too, although l
is certainly non-separate from itself! One could argue that it is sufficient to mark formal argu-
ments of all routines as separate to satisfy the rule. Unfortunately, most routines are meant to
take non-separate arguments; they would be meaningless with separate formals. Therefore, rule
SC2 needs to be relaxed.

r (l : separate LIST [STRING])
require

not l . is empty
local

s : separate STRING
do

s := l . i th (1)
l . extend (s) −− Invalid
l .merge (l) −− Invalid
l .append (l . i th (1)) −− Invalid

end

Figure 5.4: Limitations of rules SC2 and SC3

SC3 mirrors SC2: it requires that the target of an attachment be separate if its source is a
result of a separate call to a function returning a reference type. The unnecessary restrictions
imposed by SC3 are similar to those of SC2; consider the call l .append (l . i th (1)) that
should be allowed because l . i th (1) is certainly non-separate from l . A minor mistake in
SC3 — the fact that it only mentions functions but not attributes — is a source of unsoundness.

Rule SC4 takes care of separate objects being passed across processors’ boundaries: such
objects must be instances of fully-expanded classes, i.e. classes without non-separate attributes
of a reference type. It seems that non-separate functions should also be considered here but
it is not necessary: the only way for them to produce a result is to create a fresh object or
to get it by applying a query to a non-separate attribute; in both cases, no traitor is created.

5.5. REASONING ABOUT OBJECT LOCALITY 67

So, the rule is sound. Nevertheless, the full-expandedness requirement is too restrictive be-
cause fully-expanded types are rare. In practice, only the basic classes BOOLEAN, INTEGER,
CHARACTER, REAL, and DOUBLE may be used; user-defined expanded classes are unusable
because they usually contain non-separate attributes. Rule SC4 must be relaxed to support
unconstrained use of all expanded types.

The consistency rules have been designed in an ad-hoc manner: a new rule is added when-
ever a source of traitors is identified that has not been eliminated by previous rules. That is why
rule SC1 is the most general and it captures most traitors, whereas rule SC4 covers the most
specific (and rare) scenario involving expanded objects. The obvious danger of this approach
is that some sources of traitors may be omitted, simply because the rule designer has not con-
sidered a particular scenario. A closer look at the consistency rules reveals that, even though
SCOOP 97 does not view separateness as a type property, the rules try to capture a conformance
relation between non-separate and separate types. Therefore, we should aim at integrating the
separateness property into the type system, so that informal rules written in a natural language
be replaced by precise formal type rules whose soundness can be demonstrated, and which can
be readily used by a compiler. An enriched type system for SCOOP is presented in chapter 6.

5.5 Reasoning about object locality

Programmers should be able to assert that the object represented by a given entity are separate
or non-separate from the object represented by another entity. But separate annotations are
not sufficient: one can only assert the locality of an entity with respect to Current; the relative
locality of two entities cannot be asserted and reasoned about. The critique of separateness
consistency rules SC2 and SC3 in section 5.4 has pointed out the weaknesses of the type system
that limit the expressiveness of the model; the problem is caused precisely by the insufficient
expressive power of separate annotations. Let’s have look at figure 5.4 again: it is impossible
to assert that s is handled by the same processor as l , hence the call l . extend (s) is invalid.
Similarly, the reasoning about the locality of l . i th (1) is imprecise: the compiler only knows
that it is separate from Current but the knowledge about its non-separateness from l is lost; as
a result, the call l . extend (l . i th (1)) is invalid.

We should be able to assert the property “s is separate from Current but non-separate from
l”. Also, the compiler should make use of the obvious fact that each non-writable entity, such as
the formal argument l , is non-separate from itself; so are results of non-separate queries applied
to such entities, e.g. l . i th (1). The enriched type annotations proposed in this dissertation
express the relative locality of objects in a compact way (see section 6.2.2).

Separate to non-separate downcasts

When a separate entity becomes attached to a non-separate object, the information about the
object locality is lost; even though we know that an entity denotes a non-separate object at run
time, we cannot assume it at compile time. SCOOP 97 provides no mechanism to perform
an appropriate run-time check. Eiffel’s object test mechanism may be extended to account for
separateness; this would provide a convenient way to downcast separate entities to non-separate
ones (see section 6.7).

68 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

5.6 Semantics of contracts

Preconditions

SCOOP 97 uses two different semantics for preconditions, depending on whether they involve
separate calls. Preconditions involving separate calls have wait-semantics, i.e. they cause the
client to wait if they are not satisfied, whereas non-separate preconditions preserve their correct-
ness semantics, i.e. an exception is raised in a precondition is violated. This may be confusing
because the same syntactic construct (the require clause) is used for two different purposes
[27].

Since we claim that sequentiality is a particular case of concurrency, each sequential O-
O mechanism should be simply a refinement of a more general concurrent mechanism. This
principle also applies to preconditions: the wait semantics should be the general one, with
the correctness semantics being its refinement. It sounds surprising at first but we may simply
assume that every violated precondition causes the client to wait. If the precondition is separate,
then the client may eventually be unblocked; if the precondition is non-separate, then the client
will be blocked forever. But such a “deadlock” can be detected by the runtime (which would
simply raise an exception). Therefore, all preconditions are conceptually the same, i.e. they are
wait conditions. See chapter 8.1.1 for a detailed discussion of this topic. Such a generalisation
of the precondition semantics solves many problems, e.g. the conformance of non-separate
actual arguments to separate formals, and the use of polymorphism and dynamic binding (see
section 5.10). It also facilitates the reuse of code (see section 5.12.3).

Postconditions

The sequential semantics is particularly problematic in the case of separate postconditions: they
cause waiting, thus minimising potential concurrency and increasing the danger of deadlock, as
illustrated in figure 5.5. The client wants to spawn some job at york and then continue its

spawn two activities (l : separate LOCATION)
do

l . do job
ensure

l . is ready
end

york : separate LOCATION
...

spawn job (york)
do local stuff

Figure 5.5: Problems with postconditions

own work represented by do local stuff . The client wants the guarantee that the job will
eventually terminate; the most natural place to express such a guarantee is the postcondition
of spawn job. Unfortunately, since the postcondition clause is a query, its evaluation obeys

5.6. SEMANTICS OF CONTRACTS 69

the wait by necessity principle; as a result, the client has to wait for the postcondition rather
than moving immediately to local stuff . This is a serious limitation; in fact, the benefits of
parallelism are completely lost here. Now, assume that feature do job needs the access to the
client’s processor. It requests a lock and blocks until the lock is granted; at the same time, the
client is blocked waiting for the postcondition of spawn job. This results in a deadlock.

In addition to the separate precondition paradox, Meyer [94] also mentions an interesting
separate postcondition paradox: on return from a separate call, the client cannot be sure that
the postcondition clauses still hold, even though they are guaranteed to hold when the call
terminates. This is because the processor handling the involved supplier may become free in
the meantime and other clients may have jump in and modify the state of the supplier, thus
invalidating the postcondition. (The same problem is identified by Rodriguez et al. [128] as
external interference; see section 3.2.) Applied to our example, this means that the client cannot
make any use of york . is ready , except for knowing that this property became true just before
unlocking york’s processor. But this guarantee is given whether the client waits or not, so
why should it wait? It may as well proceed with the execution of local stuff as soon as
the body of spawn job has terminated. This suggests a different semantics of postconditions
whereby the client does not have to wait but the supplier guarantees the postcondition when the
features scheduled in the body of the routine have terminated. Naturally, this semantics must
boil down to the standard correctness semantics when no concurrency is involved. We develop
a postcondition semantics along these lines in section 8.1.2.

Checks and loop assertions

In SCOOP 97, loop assertions and check instructions obey the wait by necessity principle,
i.e. their evaluation is blocking. The disadvantage of this solution is similar as in the case of
postconditions: the potential for parallelism is limited, without any strengthening of provided
guarantees. For example, a client executing the sequence of separate calls in figure 5.6 has to
wait after x . f for the evaluation of x . some property; this is probably not what the client really
wants.

r (x : separate X)
do

...
x . f
check x . some property end
x .g
...

end

Figure 5.6: Synchronous check instruction

Section 8.1.4 proposes an asynchronous semantics of check instructions, which lets the
client proceed immediately with the execution of x .g while asserting that x . some property must
hold after x . f ; the property is evaluated after x . f but before x .g, as expected. Loop assertions
can be treated similarly.

70 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

5.7 Proof rules

Separate assertions are excluded from the formal reasoning framework: the conclusion of the
proof rule (4.2.1) omits them altogether. Therefore, a client has fewer properties to ensure
before the call (just the non-separate preconditions) but it obtains fewer guarantees in return
(just the non-separate postconditions). The former difference may be viewed as good news for
the client, the latter as bad news. From the point of view of the programmer, the exclusion of
separate assertions can only be viewed as bad news because it hinders formal reasoning about
software, in particular if most (or all) assertions are separate, as it is often the case. Figure

−− in class BUFFER [G]
put (v : G)

−− Store v.
require

not is full
ensure

count = old count + 1
end

−− in class C
store two (buffer : separate BUFFER [INTEGER]; i, j: INTEGER)

−− Store i and j in buffer .
require

buffer .count <= buffer . size − 2
do

−− {buffer . count <= buffer . size − 2}
buffer . put (i)
−− {True}
buffer . put (j)
−− {True}

ensure
buffer .count = old buffer .count + 2

end

my buffer : separate BUFFER [INTEGER]
...
−− {True}
store two (my buffer , 5, 10)
−− {True}

Figure 5.7: Infeasible proofs

5.7 illustrates the problem: since the precondition and the postcondition of store two involve
separate calls, they are excluded from the proof, i.e. the client has nothing to prove before
the call store two (my buffer , 5, 10) but it also cannot assume anything after the call. One
could argue that this occurs because my buffer is not under the client’s control (i.e. locked by
the client) before and after the call; however, the same problem occurs in a context where the

5.8. LOCKING POLICY 71

concerned separate object is under the client’s control, e.g. buffer in the body of store two .
The precondition of store two may be assumed before the call buffer . put (i) — although it
is not necessary because the proof rule does not require us to satisfy the precondition of put —
but the postcondition of put is ignored (because it is separate, just like its target). Therefore,
the client cannot assume anything after the first call to put. Similarly, the postcondition of
buffer . put (j) is ignored. As a result, we are unable to prove the correctness of store two : its
postcondition is not implied by the property assumed after the second call to put. If the rule
4.2.1 considered these separate assertions, the properties inferred by both calls to put would be
strong enough to imply the postcondition of store two ; the routine would be proved correct.

The proof rule for concurrent programs must be adapted to account for separate assertions;
otherwise, Design by Contract will not be fully usable as a modelling and reasoning tool. Sec-
tion 8.2 introduces a stronger proof rule which takes into account separate assertions and sup-
ports modular reasoning about concurrent software.

5.8 Locking policy

5.8.1 Eager locking

SCOOP 97 requires all separate arguments of a routine call to be locked before the call can
proceed. This policy is unnecessarily restrictive and it increases the likelihood of deadlock.
Consider the feature r in Figure 5.8. The handlers of x, y, and z must be locked by the client

r (x : separate X; y : separate Y; z : separate Z)
require

some precondition
local

my y: separate Y
my z: separate Z

do
x . f −− separate call
my y := y
x .g −− separate call
my z := z
s (z)

end

Figure 5.8: Feature locking all its arguments

object before the body of r is executed. But is it really necessary to lock all of them? Let’s see:
the body of r contains two calls on x, therefore x needs to be locked. There is no way around
it: to ensure atomicity we must guarantee that no other client is currently using x. On the other
hand, y only appears on the right-hand side of an assignment; no calls on y are made. Similarly,
z only appears as source of an assignment and as actual argument of a feature call. It seems that
we only need to lock the processor that handles x; it is not necessary for y and z because the
body of r does not involve any calls on them. So, there is too much locking than necessary.

72 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

Not only does the eager locking introduce more run-time overhead due to unnecessary wait-
ing and resource acquisition, it might also be very dangerous as it often leads to deadlocks —
the more resources a client requires, the more likely it is to get in a deadlock situation. There
is also a practical point here: programmers do not have any control over what should and what
should not be locked, so they cannot express all their design choices. The locking policy needs
to be relaxed, so that only the necessary locks are acquired; we need to provide an adequate
language mechanism to capture programmers’ choices. Section 7.1 proposes a refinement of
the locking policy along these lines.

5.8.2 Cross-client locking and separate callbacks

The client performing a call to a routine that locks separate objects holds exclusive locks on
these objects for the duration of the call. As pointed out in section 4.2.3, this policy ensures that
no other client can jump in and modify the state of a supplier object between two consecutive
calls. While such a guarantee is convenient for reasoning about concurrent software, it unnec-
essarily limits the expressiveness of SCOOP 97 and leads to deadlocks. Figure 5.9 illustrates
the problem. Calls x . f , x .g, and y . f are asynchronous (f and g are commands); the client does

r (x : separate X; y : separate Y)
do

x . f
x .g (y) −− x waits for y to become available .
y . f
...

z := x .some query −− Current waits for x.
−− DEADLOCK!

end

Figure 5.9: Deadlock caused by cross-client locking

not wait for their completion. Following the wait by necessity principle (see section 4.2.3), the
client has to wait for the result of the query call x .some query. Because of the FIFO scheduling
policy of separate calls on the same target, x’s handler is not able to evaluate some query before
finishing all the previously requested calls on x. Unfortunately, this causes a deadlock because
x’s handler cannot execute x .g (y) until it acquires a lock on y’s handler; the latter is still locked
by the client and it can only be unlocked once the execution of r’s body is finished, but this may
only happen after the call to some query has terminated. So, we have a deadlock here: the client
is waiting for x’s processor and vice-versa; none of them will ever make any progress.

In fact, getting into a deadlock situation is even simpler. A client only needs to pass itself as
actual argument to a separate query call, as in figure 5.10. Since feature g called on x needs to
lock the processor that handles Current, it blocks until that processor is unlocked. But it will
never be unlocked because it is waiting for the completion of the call to g. Again, we have a
deadlock.

In the above examples, a deadlock occurs when the client waits for one of its suppliers.
Since the client is waiting, it does not perform any operations on its suppliers; therefore, it
makes no use of the locks it holds. If the client could temporarily pass these unused locks (the

5.8. LOCKING POLICY 73

−− in class C
s (x : separate X)

do
z := x .g (Current) −− x waits for Current ; Current waits for x.

−− DEADLOCK!
end

−− in class X
g (c : separate C): INTEGER

do
...

end

Figure 5.10: Deadlock caused by a separate callback

lock on y in Figure 5.9, and the lock on Current in Figure 5.10) to its supplier x, the supplier
would be able to execute the requested feature and return a result; we would avoid deadlock. We
use that observation to develop a mechanism which solves the problems of cross-client locking
and separate callbacks (see section 7.2).

5.8.3 Void separate arguments

Void arguments seem to be a minor problem at first but they wreak havoc in any attempt at
implementing SCOOP 97. What happens if a separate formal argument is void? The wait
rule 4.2.4 does not take this possibility into account; the model is underspecified here. Two
straightforward solutions are applicable:

• Prohibit passing a void actual argument if the corresponding formal is separate. This
needs to be monitored at run time; if an argument is void, an appropriate exception is
raised (before any attempt to acquire locks). As a result, the routine does not execute
at all, even if no actual calls would be performed on the void argument. YO SCOOPLI
[111] uses this approach.

• Ignore void arguments, i.e. only lock the processors that handle non-void separate argu-
ments (if any). No special monitoring is required at run time: if a routine performs a call
on the void argument, a standard “call on void target” exception is raised; if there are no
calls on the argument, its voidness goes unnoticed. Compton [43] uses this technique.

The first solution is cleaner because it detects a potential problem closer to its source: a void
separate reference is detected as soon as it is passed as argument. Nevertheless, this approach
restricts the use of separate arguments as sources of attachments. The second approach gives
more flexibility but problems are often detected far from their source: a reference may be passed
as argument several times before a call is applied to it; this complicates debugging. No solution
seems to cater for all the needs.

The recent introduction of attached types into Eiffel [53] suggests a better way to solve
the problem. Attached types may be used to detect statically whether an argument is void or

74 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

not, and give an appropriate locking semantics in both cases. The advantages of both previous
solutions — clarity and flexibility — may be combined (see chapter 7).

5.9 Quasi-asynchrony

A sequence of separate procedure calls, e.g. the three calls on x in figure 5.11, may be executed
asynchronously; the client does not need to wait for their termination. Nevertheless, we cannot
achieve full asynchrony here because at least one synchronisation event is required before that
sequence of calls: it is the call r (my x). This call blocks until the processor handling my x has
been locked for the exclusive use of the client’s processor, as required by the wait rule 4.2.4.
Therefore, one may only speak about quasi-asynchrony. This synchronisation overhead may

r (x : separate X)
do

x . f
x .g
x .h

end

my x: separate X
...

r (my x) −− Synchronisation point
...

Figure 5.11: Quasi-asynchrony in SCOOP 97

seem benign — the client needs to synchronise just once and then it is free to spawn as many
asynchronous calls as it likes — but it is often necessary (or more convenient) to perform calls
without any waiting whatsoever. Logging and mailing operations are good examples: if I want
to notify my supervisor that I have finished a chapter of my dissertation, I just send him an
e-mail (see figure 5.12). Similarly, logging the results of the latest football games should be
done asynchronously. We are not interested in the exact timing of these operations; it does not
matter whether they are performed immediately or delayed; the only important thing is that they
should should not block the client and they should be done at some point. (We might want some
additional guarantees, e.g. that two asynchronous calls on the same target be processed in the
FIFO order.) Unfortunately, the calls to send message and log event are potentially blocking;
the client waits for mailer and log to become available if they are currently used by other clients.
This results in a quasi-asynchronous execution; there is no way to avoid it in SCOOP 97.

To increase the expressiveness of the model and make it practical, we need a mechanism for
scheduling such calls with no waiting on the client’s side. An obvious solution is to introduce
a keyword decorating fully asynchronous calls, e.g. asynch, and associate a special semantics
with it, as proposed by Brooke et al. [32]; but this complicates both the model and the language.
Since we want to avoid complexity, we devise an agent-based mechanism which provides the
required facility without changing the underlying model; see section 9.3.4.

5.10. POLYMORPHISM AND DYNAMIC BINDING 75

log event (l : separate LOG; s: STRING)
do

l . write (s)
end

send message (m: separate MAILER; address, message: STRING)
do

m.send (address , message)
end

log : separate LOG
mailer : separate MAILER
...

send message (mailer , ’’bm@supervisor.org’’, ’’ Finished chapter 5.’’)
log event (log , ’’ Switzerland vs . France 0:0’’)
log event (log , ’’Germany vs. Poland 2:0’’)
...

Figure 5.12: Quasi-asynchronous logging and mailing

5.10 Polymorphism and dynamic binding

A complete O-O model should support polymorphism, i.e. entities of type A should be able to
represent objects of any type B that conforms to A. SCOOP 97 relies on the subtyping rules
of Eiffel but it does not define precisely the conformance relation between separate and non-
separate entities. Consistency rules SC1–SC4 seem to capture the following relation: if B is a
subtype of A, i.e. B inherits from A, then

A −−−→ separateAx x
B −−−→ separateB

(5.10.1)

Can standard Eiffel rules for feature redefinition be used, given this extended notion of con-
formance? Obviously, clients must not be cheated on in the presence of polymorphism and
dynamic binding, i.e. the actual version of the feature chosen at run time must abide by the orig-
inal contract known at compile-time. Let’s see: Eiffel allows a covariant redefinition of result
types of queries; therefore, taking into account the relation 5.10.1, an attribute x : separate X
may be redefined into x : X. This is sound; no traitors may be introduced by such a redefinition.
Nevertheless, “unseparating” an entity may cause some problems, as illustrated in figure 5.13.
Routine r takes a separate formal argument x and uses it in a precondition; thus, the precon-
dition has the wait semantics. The client using the routine passes a separate actual argument
a.x; the contract is clear: if a.x . some property is not satisfied, the client has to wait. After the
polymorphic assignment a := b, however, the client is convinced that the actual argument of the
subsequent call r (a.x) is separate but it is not. The wait semantics will be applied nonetheless,
which results in a deadlock if a.x . some property does not hold. Here, the problem is caused by
a wrong application of the wait semantics rather than an inappropriate conformance rule.

76 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

class A
feature

x : separate X
...

end

class B
inherit A redefine x end
feature

x : X
...

end

−− in class C
r (x : separate X)

require
x . some property −− Wait condition

do
...

end
a: A
b: B
...

r (a.x) −− Valid
a := b −− Polymorphic assignment
r (a.x) −− Valid but leads to a deadlock

Figure 5.13: Problems with covariant attribute redefinition

Formal arguments may also be redefined covariantly in Eiffel; following the conformance
relation 5.10.1, separate formals could be redefined into non-separate ones. Figure 5.14 illus-
trates it: routine r in class A takes a separate formal argument; its redefined version in class B
takes a non-separate one. But this is problematic: clients of A rely on the original signature of r
which lets them use a separate actual argument; due to polymorphism and dynamic binding, the
redefined version of r may be used that does not perform any locking, which turns its formal
argument x into a traitor. Furthermore, the inherited precondition x . some property becomes
a correctness condition; this is not what the client expects when calling a.r (my x) in a state
where my x.some property does not hold. Clearly, the covariant redefinition policy is inappro-
priate here. The strengthened signature conformance rule (8.14.4 /VNCS/) introduced in the
Eiffel standard does not solve this problem either.

A straightforward application of Eiffel rules for feature redefinition leads to unsoundness
and deadlocks. A more precise definition of the conformance relation between types is neces-
sary; the rules for feature redefinition and the semantics of contracts need to be refined too. The
type system proposed in this dissertation (see chapter 6) provides sound rules; the use of poly-
morphism in combination with other techniques such as precursor calls, contract redefinition,
and attached types is discussed in section 9.1.

5.11. GENERICITY 77

class A
feature

r (x : separate X)
require

x . some property −− Wait condition
do ... end

end

class B
inherit A redefine r end
feature

r (x : X)
do

x . f −− x may become a traitor
end

end

−− in class C
a: A
b: B
my x: separate X
...

a.r (my x) −− Valid
a := b −− Polymorphic assignment
a.r (my x) −− Valid but creates a traitor

Figure 5.14: Problems with routine redefinition

5.11 Genericity

The impact of concurrency on genericity has not been studied in SCOOP 97. It seems that
genericity should not cause any problems in a concurrent context; nevertheless, the absence of
consistency rules for generic parameters (similar to rules SC1–SC4 for entities and expressions)
leads to potential atomicity violations. A number of issues, in particular related to the combi-
nation of genericity and polymorphism, are not addressed by the validity rules of the model:

• Separateness of formal generic parameters
Should separate formal generic parameters be allowed? If yes, how are they specified?
Do we need to use constrained genericity, e.g.

class A [G −> separate C]

or are unconstrained parameters separate by default, i.e. the declaration class B [G] is
equivalent to class B [G −> separate ANY]?

• Conformance of formal generic parameters in the context of inheritance
Should the specialisation of a separate parameter into a non-separate be allowed, i.e.

78 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

class A [G −> separate C] ... end

class B [G −> C]
inherit A [G]
...

end

or the other way round, i.e.

class A [G −> C] ... end

class B [G −> separate C]
inherit A [G]
...

end

• Conformance of actual and formal generic parameters
Is it safe to use a separate actual generic parameter where the corresponding formal pa-
rameter is non-separate, and vice-versa?

• Conformance of generic types
Is A [X] a subtype of A [separate X] or vice-versa?

All these topics are discussed in section 9.2; an appropriate extension of the type system is
proposed to eliminate the danger of traitors.

5.12 Practical considerations

The theoretical inconsistencies pointed out in the previous sections are sources of unsoundness;
they also badly influence the practicality of the model, limiting its expressiveness and making
it less convenient to use. This section presents several problems that do not compromise the
soundness of SCOOP 97 but nonetheless complicate the practice of concurrent programming.

5.12.1 Enclosing routines

The most common complaint about SCOOP 97 concerns the requirement to wrap all separate
calls in a routine that takes their targets as arguments [33, 32, 27]. Enclosing routines are
justified if we want to specify some wait conditions or perform a sequence of separate calls in
mutual exclusion. On the other hand, wrapping calls in routines may become tedious if we only
want to perform a single separate call and we do not need wait conditions: we are still forced
to write an additional routine for each call, just for the sake of proper synchronisation through
argument passing, as illustrated in figure 5.15. The programmer is interested in calling three
features on my x without insisting on the atomicity, i.e. other clients are allowed to interfere
between the calls. Three auxiliary routines r, s, and t are necessary to wrap the calls; this puts
additional burden on the programmer and makes the code unwieldy.

To solve this problem, Brooke and Paige [32] suggest a “lazy lock” mechanism whereby
a single separate call appearing in a context where its target is not locked acquires an implicit
lock on the target, so that the programmer may simply write

5.12. PRACTICAL CONSIDERATIONS 79

my x: separate X
...

r (my x)
s (my x, ’’ Hello world !’’)
t (my x, 5)
...

r (x : separate X)
do

x . f
end

s (x : separate X; s : STRING)
do

x .g (s)
end

t (x : separate X; i : INTEGER)
do

x .h (i)
end

Figure 5.15: Burdensome enclosing routines

my x. f ; my x.g (’’ Hello world !’’) ; my x.h (5)

The call my x. f is implicitly converted to r (x) with the enclosing routine r generated auto-
matically by the compiler, and similarly for other calls. Unfortunately, this solution eliminates
the syntactic distinction between a single separate call and a call that is part of a longer atomic
sequence; this leads to incorrect assumptions about atomicity (see section 4.2.3). Therefore, we
need another approach which distinguishes syntactically between the two cases but minimises
the annotation burden while preserving the intended semantics and atomicity guarantees. We
present our solution in section 9.3.4.

5.12.2 Deferred classes

SCOOP 97 prohibits the use of more than one keyword among separate, expanded, and
deferred for decorating entities or class headers; other authors [43, 60, 34] accept this limi-
tation. Indeed, the use of expanded and separate together does not make much sense if we
consider that an expanded entity denotes an object that “sits” inside another object, rather than
a reference; hence there is no reference to cross the boundary of a processor (see section 6.10
for a thorough discussion). On the other hand, there is no good reason to prohibit separate en-
tities of a deferred type. Deferred classes are an important tool of object-oriented design — in
particular for class taxonomies and constrained genericity — so their use must not be restricted
in a concurrent context. Declarations of the form x : separate X, where X is deferred, should
be permitted.

80 CHAPTER 5. BEYOND SCOOP 97: CRITIQUE AND ROADMAP

r (s : separate STRING)
require

not s . is empty
local

s2 : separate STRING
do

s2 := s . twin
s .append (s2) −− Invalid call
s .append (s) −− Invalid call

end

Figure 5.16: Problems with sequential-to-concurrent reuse

5.12.3 Software reuse

The reuse of sequential libraries is easier in SCOOP 97 than in other popular programming lan-
guages, e.g. multithreaded Java and C]. The code may be easily reused and extended through
inheritance; a sequential class can be used in a concurrent application with no need for mod-
ifications. For example, the class BOUNDED QUEUE [G] may represent a shared bounded
buffer:

buffer : separate BOUNDED QUEUE [INTEGER]

There is no need to provide a specialised version of the class equipped with additional syn-
chronisation code. Unfortunately, such reuse is hindered by the limitations of the type system.
Figure 5.16 illustrates the problem: class STRING from the standard EiffelBase library can-
not be simply used in the context of routine r because it is not “concurrency-aware”. Feature
append in class STRING takes a non-separate argument of type STRING, whereas the actual
argument of the call s .append (s2) is separate. Following the consistency rule SC3 (4.2.8), the
program is rejected although it is perfectly safe: s and s2 are non-separate from each other (s2
is a clone of s). Even more surprisingly, the call s .append (s) is rejected too. To satisfy the
consistency rules, we would need to provide a modified version of STRING with a redefined
feature append. The need to provide a specialised version of a class for each particular use
contradicts the very principle of reuse.

The conflict between the wait semantics of separate preconditions and the correctness se-
mantics of other preconditions hinders the reuse of concurrent code in a sequential context.
Consider figure 5.17. Feature store has a separate precondition; hence, this precondition is a
wait condition. If the client calls store with a separate actual argument some buffer , the se-
mantics is applied correctly, i.e. the client waits until the precondition is satisfied. On the other
hand, if the actual argument is non-separate (recall that SCOOP 97 does not prohibit attach-
ments from non-separate to separate) and the precondition does not hold, the wait semantics
still applies, resulting in an immediate deadlock; the state of my buffer will never change be-
cause my buffer is handled by the client’s processor, and that processor is waiting. As a result,
concurrent-to-sequential code reuse may lead to deadlocks.

An expressive type system and a clarified semantics of assertions should enable an uncon-
strained sequential-to-concurrent and concurrent-to-sequential reuse. See section 10.4 for a
detailed discussion of these issues in the proposed framework.

5.13. DISCUSSION 81

store (buffer : separate BUFFER [INTEGER]; v: INTEGER)
require

not buffer . is full
do

buffer . put (v)
end

some buffer : separate BUFFER [INTEGER]
my buffer : BUFFER [INTEGER]
...
store (some buffer , 7)
store (my buffer , 3) −− Potential deadlock

Figure 5.17: Problems with concurrent-to-sequential reuse

5.13 Discussion

We have pointed out several inconsistencies and limitations of the original model. Although
they manifest themselves in many different ways, most problems are a combination of two
main issues:

• An incomplete integration of the separate mechanism with the rest of the language.

• An unclear semantics of contracts.

Chapters 6 – 10 address all the identified problems, and take the above critique as roadmap
for the development of the current SCOOP framework. Chapter 6 clarifies several elements
of the computational model, and introduces a type system for safe concurrency. Chapter 7
optimises the access control policy to increase the expressiveness of the model and increase
the amount of potential parallelism. Chapter 8 discusses the application of Design by Contract
to concurrency: a new generalised semantics of assertions is proposed to take advantage of
the modelling power of DbC and to use contracts in correctness proofs of concurrent software.
Chapter 9 shows how several advanced object-oriented mechanisms are supported in SCOOP;
polymorphism, dynamic binding, feature redefinition, inheritance anomalies, genericity, agents,
and once functions are discussed in detail. Finally, chapter 10 comments on the practical aspects
of the proposed framework and illustrates its use with a number of examples.

6
Type system for SCOOP

THIS chapter presents an enriched type system for safe synchronisation. A number of issues
identified in the previous chapter are addressed here. First, we clarify the semantics of the fea-
ture call and the feature application mechanisms, and define the synchronisation rules. Second,
we introduce a richer notion of type which supports precise reasoning about object locality. A
unified call validity rule is proposed; the type rules are further refined to deal with detachable
and expanded types. A new import mechanism for object structures is introduced, and the se-
mantics of object test is refined to support safe downcasts between separate and non-separate
types. Finally, we formalise the type system and argue informally its soundness, in the sense
that correctly typed programs do not introduce traitors.

6.1 Computational model

Concurrency in SCOOP relies on the basic mechanism of object-oriented computation: the
feature call. Each object is handled by a processor — a conceptual thread of control — referred
to as the object’s handler. (Throughout the rest of the discussion, we will use these two terms
interchangeably.) All features of a given object are executed by its handler. Several objects
may have the same handler. The mapping between an object and its handler does not change
over time; we do not consider object migration. Objects handled by different processors are
called separate; objects handled by the same processor are non-separate. We take the processor
model “as is” from SCOOP 97 (a detailed discussion of processors can be found in section
4.2.1); other elements of the computational model — feature call, mutual exclusion, condition
synchronisation — need to be refined. Let us first define the notions of separate and non-
separate call; we will often use them in other definitions and rules.

Definition 6.1.1 (Separate call) A feature call is separate if and only if its target is handled by
a different processor than the client object.

Definition 6.1.2 (Non-separate call) A feature call is non-separate if and only if its target is
handled by the same processor as the client object.

In contrast to SCOOP 97, the separateness of a call is a dynamic property, i.e. it depends on
the relative locality of the client object supplier objects at run time, and not on the annotations
decorating the entities that represent the objects. A call on a separate entity is not necessarily
separate: an entity declared as separate might represent a non-separate object at run time (see
section 6.2.1).

83

84 CHAPTER 6. TYPE SYSTEM FOR SCOOP

To capture precisely the semantics of the feature call mechanism, it is necessary to distin-
guish between a feature call and a feature application. A feature call is the sequence of actions
performed by the client’s handler; a feature application is performed by the supplier’s handler.
We rely on this distinction to define the rules for other essential mechanisms in the following
sections and chapters. Definitions 6.1.3 and 6.1.4 below establish the roles and the responsibil-
ities of clients and suppliers. A client’s handler is in charge of argument passing, scheduling
the feature, and (possibly) waiting for a result; a supplier’s handler is in charge of applying the
feature after ensuring a proper synchronisation.

Every processor has a call stack and a request queue. The call stack is used for handling
non-separate calls in exactly the same way as in a sequential system. The request queue keeps
feature calls that target objects handled by the current processor but have been issued by another
processor. These requests are serviced in the order of their arrival; hence the FIFO scheduling
of feature calls within a processor. A processor may be in one of two states: locked or unlocked.
The locked state means that the processor is under the control of another processor and is ready
to receive feature call requests from that processor. The unlocked state means that the processor
is not ready to receive any requests. Each processor performs repeatedly the following actions:

• Request processing: if there is an item on the call stack, pop the item from the stack and
process it, i.e.

– (Feature application) if the item is a feature request, apply the feature;

– (Unlocking) if the item is an unlock operation, set your state to unlocked.

• Request scheduling: if the call stack is empty but the request queue is not empty, dequeue
an item and push it onto the stack.

• Idle wait: if both the stack and the queue are empty, wait for new requests to be enqueued.

Throughout the rest of this chapter, we will represent the request queues as sequences (read
from left to right) of feature calls wrapped in square brackets, e.g.

Px : [x.f][y.g][x.h(5)][unlock]

means that the processor Px has three feature calls and an unlocking operation in its queue; they
will be serviced in the order: x . f , then y .g, then x .h (5), then unlock. (Note that no requests
may appear in the queue after an [unlock].) An empty request queue is represented as

Px : −

6.1.1 Feature call

What happens when the feature call x . f (a) is performed? First, argument passing takes place,
i.e. the formal arguments of f are bound to the corresponding actual arguments a. Second,
the target’s handler is asked to execute f . There are two possibilities here: if the call is non-
separate, the feature is scheduled for an immediate execution. (This is achieved just like in a
sequential setting, i.e. the current execution state is saved in a stack frame and pushed on top of
the current processors’s execution stack, and the control is passed to the called feature.) If the
call is separate, the feature is scheduled to execute as soon as all the previous calls on the target’s

6.1. COMPUTATIONAL MODEL 85

handler have terminated. (This is achieved by appending a feature request to the request queue
of the target processor.) Finally, if the feature f is a command, the call is already complete; if it
is a query, the client’s handler waits for its result (wait by necessity applies).

Definition 6.1.3 (Feature call semantics) Call x . f (a) results in the following sequence of ac-
tions performed by the client’s handler Pc:

1. Argument passing: bind the arguments of f to the corresponding actual arguments a.

2. Feature request: ask x’s handler Px to apply f to x. There are two cases here:

(a) If the feature call is non-separate, i.e. Pc = Px, f is scheduled for an immediate
execution.

(b) If the feature call is separate, i.e. Pc 6= Px, f is scheduled to execute after the
previous calls on Px.

3. Wait by necessity: if f is a query, wait for its result.

In the following example that illustrates the possible combinations of separate and non-separate
calls with and without wait by necessity, the client object (Current) is handled by the processor
Pc, and the object attached to x is handled by Px.

my x: X
i : INTEGER

r (x : separate X)
do

my x. f (5) −− non−separate, no wait by necessity
i := my x.g −− non−separate, wait by necessity
x . f (10) −− separate, no wait by necessity
i := x .g −− separate, wait by necessity

end

Assuming that the request queue of Pc is empty when the execution of r starts (the request
queue of Px must be empty), the following states of the request queues may be observed:

• (Command call my x. f (5)) The call is non-separate because my x is handled by Pc;
the current execution state is saved on Pc’s call stack, and my x. f (5) is executed syn-
chronously. (Only after the execution of my x. f (5) will Pc proceed to the next instruc-
tion in the body of r.) The request queues are not involved in this operation, hence
Pc : − Px : −

• (Query call my x.g) Similar to the previous call. Wait by necessity is “transparent” here
because the call is synchronous anyway. The request queues are not involved in this
operation, hence
Pc : − Px : −

• (Command call x . f (10)) The call is separate because x is handled by Px and Px 6= Pc.
A feature request [x.f(10)] is added to Px’s queue. The call is asynchronous because wait
by necessity does not apply; Pc moves immediately to the next operation.
Pc : − Px : [x.f(10)]

86 CHAPTER 6. TYPE SYSTEM FOR SCOOP

• (Query call x .g) Similar to the previous call but wait by necessity applies, i.e. Pc waits
until x .g has terminated and returned a result. This gives an impression of synchrony. If
Px has not dequeued the previous request yet, the queues look like this:
Pc : − Px : [x.f(10)][x.g]
If Px has already dequeued the previous request, the queues look like that:
Pc : − Px : [x.g]

It is important to notice that request queues are only involved in handling the requests issued
by other processors. That is why Pc’s queue in the above example remains empty throughout
the execution of the whole routine body, even when non-separate calls (where Pc is also the
supplier’s handler) are performed.

6.1.2 Feature application

The application of a feature is performed by the supplier’s handler. The application of f on
x requires a correct synchronisation: f may only be executed when its formal arguments are
reserved on behalf of the supplier, i.e. their handlers are locked for the exclusive use of x’s
handler, and the precondition of f holds. If either of these two conditions does not hold, the
supplier’s handler blocks until both conditions are satisfied.

Definition 6.1.4 (Feature application semantics) The application of feature f on target x, re-
quested by client c, results in the following sequence of actions performed by the supplier’s
handler Px:

1. Synchronisation: wait until the formal arguments of f are reserved, i.e. their handlers are
locked on behalf of Px, and the precondition of f holds.

2. Execution: if f is a routine, execute its body; if f is an attribute, evaluate the correspond-
ing field.

3. Result: if f is a query, return its result to c.

4. Release: ask each handler locked in the synchronisation step to unlock itself when it
terminates.

The phrasing of the last step is very important. The release of locks is asynchronous, i.e. the
processor executing f does not wait for all the processors locked by f to terminate the execution
of features requested in f’s body. Instead, it appends an [unlock] request to the request queue of
each locked processor. As a result, different processors may become unlocked at different times.
The executor of f does not wait for the unlocking; it continues its execution. For example, if
the body of f contains the following sequence of calls on targets x and y handled by processors
Px and Py locked in the first step:

f (x , y : separate X)
do

x .g
x .h
y .g
x .h

end

6.1. COMPUTATIONAL MODEL 87

then, after the release step, the request queues of Px and Py will look like this:

Px : [x.g][x.h][x.h][unlock] Py : [y.g][unlock]

provided that Px and Py have not dequeued any requests in the meantime. This approach enables
more parallelism than the CCR-like synchronisation mechanism in SCOOP 97 (whereby both
the locking and the unlocking operations are atomic). Ultimately, it permits safe realisation of
certain synchronisation scenarios that lead to deadlocks in SCOOP 97.

6.1.3 Synchronisation

SCOOP supports two kinds of synchronisation: mutual exclusion and condition synchronisa-
tion. Both of them are ensured by the feature application mechanism described above, combined
with the call validity rule 6.5.3 defined later in this chapter. We do not distinguish between sep-
arate and non-separate arguments, nor between separate and non-separate preconditions. If an
argument is non-separate then it is trivially reserved; all precondition clauses have the wait-
semantics. The following rule captures both synchronisation requirements at the time of feature
application.

Definition 6.1.5 (Feature application rule) Before a feature is applied, its formal arguments
must be reserved by the supplier’s handler, and its precondition must hold.

Contrary to SCOOP 97, the traditional semantics of argument passing — understood as the
binding of formal arguments to the provided actual arguments, performed by the client’s handler
— is preserved in SCOOP. Although the synchronisation relies on the information about the
formal arguments, it is enforced on the supplier’s side and does not alter the meaning of the
argument passing itself.

The FIFO scheduling implied by the feature call semantics and the atomicity guarantees
provided by the feature application mechanism are essential for reasoning about concurrent
programs. Coupled with the refined call validity rule, they guarantee that a sequence of calls

...
x . f
x .g (a)
x .h
...

is executed atomically in the order of their appearance in the program text; no other client may
access x in the meantime. Section 6.5 discusses this topic in more detail.

Besides ensuring the atomicity of routine bodies, the feature application mechanism pro-
vides a simple and convenient way to lock several resources at once: a routine taking several
arguments locks atomically all the processors handling the arguments. For example, the execu-
tion of

eat (left fork , right fork)

blocks until both arguments have been locked. There is no limit on the number of formal ar-
guments, hence no limit on the number of locks acquired atomically. The scheduler performs

88 CHAPTER 6. TYPE SYSTEM FOR SCOOP

locking in such a way that requests with overlapping sets of requested processors do not dead-
lock. Also, fairness is guaranteed: no request can be overtaken by another request with the
same (or larger) set of requested processors; this means that “equal” requests are scheduled in
a FIFO order. (Remarkably, the above call to eat expresses all the synchronisation necessary to
solve the dining philosophers problem in SCOOP [94]; this is the simplest symmetric solution
in the literature.)

Similarly to SCOOP 97, wait by necessity maximises the amount of asynchrony: clients
only need to wait for the result of query calls (function or argument evaluation); commands
(procedures) are executed asynchronously (see definition 6.1.3). In SCOOP, however, wait by
necessity does not apply to assertions; postconditions, check instructions, and loop assertions
are evaluated asynchronously (see chapter 8).

The presented synchronisation mechanism is refined in chapter 7: section 7.1 relaxes the
feature application rule 6.1.5 to account for detachable and attached types of formal arguments;
the semantics of argument passing is refined in section 7.2 to enable lock passing between a
client and a supplier. Chapter 8 discusses the interplay of feature calls, synchronisation, and
DbC.

6.2 From consistency rules to a type system

The rest of this chapter extends Eiffel’s type system to capture precisely the object locality,
i.e. the relative separateness of objects, and to provide type rules which clarify, refine, and
formalise the validity and consistency rules of the model. SCOOP 97 attempted to capture the
conformance relation between non-separate and separate entities using a set of informal rules;
these rules proved insufficient to ensure the intended atomicity and safety guarantees. Addi-
tionally, they were too imprecise, which limited the expressiveness of the model (see section
5.4). We take a different approach and rely on formal type rules to ensure the required safety
properties. Our type system is backward-compatible with Eiffel’s, i.e. correct Eiffel programs
do type-check in SCOOP as well.

The type system is fully formalised in section 6.11 but individual rules appear earlier in
the chapter to illustrate the discussed topics. If some technical details of a rule, e.g. auxiliary
functions, are not clear when it first appears in the text, please consult the formalisation section.

6.2.1 SCOOP types

As pointed out in section 5.1, there is a mismatch between the strict semantics of separate
annotations requiring that the objects referenced by separate entities be handled by a different
processor, and the intuitive non-strict semantics that allows such possibility but does not en-
force it, i.e. separate entities may represent separate objects or, expressed differently, separate
entities denote potentially separate objects. This mismatch led to numerous complications and
inconsistencies in SCOOP 97: some rules and definitions followed the strict semantics; the oth-
ers used the non-strict one. We opt for the non-strict semantics of separate in our framework
because it is the only sound and practical solution; it is enforceable statically and compatible
with the modularity requirements.

The separate keyword, even with a clear semantics, is not sufficient because it only ex-
presses the separateness of an entity from Current; the relative locality of an entity with respect

6.2. FROM CONSISTENCY RULES TO A TYPE SYSTEM 89

to another one cannot be captured and reasoned about. Such properties should be expressible
in types, in a similar way as object ownership is captured by ownership types. (A rich literature
on ownership types demonstrates the practicability of the approach; the type system described
here was directly inspired by the work of Dietl et al. [49].) Eiffel’s type system, based on class
types, is too weak; hence the need to introduce a second type component — processor tag —
which captures the locality of objects. Anticipating the need to accommodate another important
mechanism — attached types — we add a third type component. Therefore, SCOOP types are
represented as triples

T = (γ, α, C)

with the following components:

• Detachable tag γ ∈ {!, ?}
A type is either attached (γ = !) or detachable (γ = ?), in the standard Eiffel sense: entities
of an attached type are statically guaranteed to be non-void at run time; detachable entities
may be void [96, 53].

• Processor tag α ∈ {•,>, p,⊥}
The processor tag captures the locality of objects represented by an entity of type T ,
i.e. their separateness or non-separateness with respect to other objects. An entity is
either non-separate (handled by the current processor, α = •), separate (handled by some
processor, α = >), or handled by processor p (α = p). ‘⊥’ denotes no processor; it is
used to type Void.

• Class type C
This is the “traditional” Eiffel class type. We ignore genericity here; section 9.2 extends
the type system with the support for generically derived types.

Since the semantics of a feature call depends on the type of its target — in particular on its
processor tag — the software text must indicate it unambiguously. An entity may now be
declared as one of:

• x : X
x has the type (!, •, X), i.e. objects attached to x are non-separate from Current.

• x : separate X
x has the type (!,>, X), i.e. objects attached to x are potentially separate from Current.

• x : separate <p> X
x has the type (!, p, X), i.e. objects attached to x are handled by the processor known as p;
they are potentially separate from Current but non-separate from other objects handled
by p.

A type annotation may also include the ‘?’ sign, e.g. x : ?separate X, which sets the detachable
tag to ‘?’. Entities not decorated with ‘?’ are attached, i.e. their detachable tag is ‘!’.

This syntax minimises the annotation burden (in practice, most entities are non-separate
and attached thus require no additional annotations) and ensures the backward-compatibility
with sequential Eiffel. This is an important property, given the number of existing libraries.
SCOOP syntax may be seen as a straightforward extension of SCOOP 97’s notation; the key-
word separate, however, loses its special status and becomes a mere type annotation.

90 CHAPTER 6. TYPE SYSTEM FOR SCOOP

6.2.2 Processor tags

As pointed above, the distinction between separate and non-separate entities is not sufficient in
practice because the relative locality of two separate objects cannot be captured and reasoned
about. Explicit processor tags overcome this limitation and support precise reasoning about
object locality. Entities declared with the same processor tag, e.g.

x : separate <px> X
y : separate <px> Y
z : ?separate <px> Z

represent objects handled by the same processor known as px. These objects may or may not be
separate from the current object; the exact identity of px is not known at compile-time, hence
the use of the separate keyword. But they are certainly not separate from each other. The
type system takes advantage of this information to support safe attachments and feature calls
between x, y, and z without the need for locking (see section 6.3). The tag px must be declared
in the class where it is used, or inherited from an ancestor; an attribute-like form

px: PROCESSOR

is used. PROCESSOR is a reserved class name; it may only appear in tag declarations. Processor
tags must be unique: no other tag, entity, or feature may be called px within the same class. The
use of px is limited to type annotations. For different objects (also different instances of the
same class) px may denote a different processor.

In addition to unqualified processor tags like px, a qualified form may be used; such tags
are derived from the names of other entities using the call-like notation “.handler”:

r (x : separate X)
local

y : separate <x.handler> Y
do ... end

Entity y is declared as handled by x’s processor. Qualified tags are subject to the same syntactic
restrictions as unqualified tags. Additionally, they must not be based on an entity whose object
may change or become undefined; otherwise, the type rules would be unsound. Therefore, such
tags may only be defined on attached non-writable entities. To prevent chains of unqualified
tags, e.g. y deriving its processor tag from x, z from y and so on, qualified tags may only
be based on entities without an explicit qualified tag. This restriction also eliminates circular
dependencies of tags. Rules 6.2.1 and 6.2.2 summarise the validity requirements for processor
tags.

Definition 6.2.1 (Valid unqualified processor tag) An unqualified processor tag p is valid in
class C if and only if p is declared as

p: PROCESSOR

in C or in one of its ancestors.

Definition 6.2.2 (Valid qualified processor tag) A qualified processor tag e.handler is valid
if and only if e is a non-writable entity — a formal argument of the enclosing routine, a constant,
or a once function — of an attached type, and e itself has no explicit qualified processor tag.

6.2. FROM CONSISTENCY RULES TO A TYPE SYSTEM 91

Eiffel users may spot a similarity between qualified processor tags and the anchored decla-
ration mechanism [53], whereby an entity declared as

z : like x

takes x’s class type; x must be the final name of a feature in the enclosing class. An anchored
declaration does not influence the detachability or the separateness of the decorated entity. A
qualified processor tag, on the other hand, influences the separateness but not the detachability
or the class type of the entity.

6.2.3 Implicit types

A non-writable attached entity e may itself be viewed as having an implicitly declared qualified
processor tag e .handler. For example, the entities in the following code excerpt

r (x : separate X; y : ?Y)
local

z : separate Z
do

...
end

s : STRING = ’’I’m a constant ’’

u: separate U once ... end

have the following types:

• x has the declared type (!,>, X) and an implicit type (!, x.handler, X)

• s has the declared type (!, •, STRING) and an implicit type (!, s.handler, STRING)

• u has the declared type (!,>, U) and an implicit type (!, u.handler, U)

• y has the declared type (?, •, Y)

• z has the declared type (!,>, Z)

Entities y and z do not have an implicit type: y .handler makes no sense because y is detachable
and may be void; z is writable, so z .handler may vary between two consecutive evaluations of
z.

Definition 6.2.3 (Implicit type rule) An attached non-writable entity e of type Te = (!, α, C)
also has an implicit type Teimp

= (!, e.handler, C).

The corresponding formal rule T-Implicit appears in our type system (see section 6.11).

Γ ` e : (!, α, C), Γ ` ¬isWritable(e)

Γ ` e : (!, e.handler, C)
(T-Implicit)

Implicit types of non-writable entities are useful for several purposes; most importantly, they
simplify the call validity rules (see section 6.5) and support a seamless reuse of sequential
libraries (see section 10.4).

92 CHAPTER 6. TYPE SYSTEM FOR SCOOP

A note on Current

The entity Current is always attached and non-separate. These properties are captured by the
following rule.

Definition 6.2.4 (Type of Current) In the context of class C, Current has the type (!, •, C).

There is no axiom for Current among the formal type rules; its type is always carried in the
typing environment Γ, just like the types of local variables and formal arguments. Rules 6.2.2,
6.2.3, and 6.2.4 clarify the meaning of the processor tag ‘•’ and type annotations like

x : X

Since Current is both attached and non-writable, Current.handler is a valid processor tag;
therefore, a non-separate entity may also be declared as

x : separate <Current.handler> X

By definition 6.2.4, the processor tag of Current is ‘•’. Therefore, ‘•’ and Current.handler
are equivalent, so that the two declarations above have exactly the same meaning and may be
used interchangeably. In practice, it is easier to use the shorter form x : X which is immediately
understandable and less burdensome.

A note on Void

Void denotes a detached reference, i.e. a reference pointing to no object. Therefore, Void must
have a detachable type. Its class type, just like in sequential Eiffel, is NONE. Furthermore,
since it represents no object, it has no handler. These properties are captured by the following
rule.

Definition 6.2.5 (Type of Void) Void has the type (?,⊥, NONE) in all contexts.

This is expressed more formally by the following axiom of the type system.

Γ ` Void : (?,⊥, NONE)
(T-Void)

6.3 Subtyping

The subtype relation on SCOOP types is based on the conformance of individual type compo-
nents. The conformance of class types is based on subclassing: a class D conforms to C, i.e.
D v C, if and only if D is a descendant of C. In particular, we have C v C, C v ANY ,
NONE v C, and E v D ∧ D v C =⇒ E v C. Precise rules for subclassing are given
in figure 6.17. Processor tags are ordered in a lattice, with the top element ‘>’ and the bottom
element ‘⊥’; other tags conform to ‘>’ but not to each other, as illustrated in figure 6.1. Finally,
the detachable tag ‘!’ conforms to itself and ‘?’; the latter only conforms to itself. The resulting
subtype relation is captured by a set of rules in figure 6.2.

6.3. SUBTYPING 93

>
↗ ↑ ↖
• p1 ... pn

↖ ↑ ↗
⊥

Figure 6.1: Conformance of processor tags

Γ ` C v C ′

Γ ` (γ, α, C) � (γ, α, C ′)
(S-Subclass)

Γ ` C v C ′

Γ ` (γ, α, C) � (γ,>, C ′)
(S-Top)

Γ ` C v C ′

Γ ` (γ,⊥, C) � (γ, α, C ′)
(S-Bottom)

Γ ` (?, α, C) � (?, β, C ′)

Γ ` (!, α, C) � (?, β, C ′)
(S-Attached)

Figure 6.2: Subtyping rules

Let’s see how subtyping works in practice. Assuming that class Y inherits from X, i.e.
Y v X , the type T2 = (!, •, Y) is a subtype of T1 = (?,>, X) because one can construct a
derivation using the rules S-Attached and S-Top:

Γ ` Y v X

Γ ` (?, •, Y) � (?,>, X) (S-Top)

Γ ` (!, •, Y) � (?,>, X) (S-Attached)

Similarly, T3 = (!,>, X) is a subtype of T1; the derivation uses S-Attached and S-Subclass:

Γ ` X v X

Γ ` (?,>, X) � (?,>, X) (S-Subclass)

Γ ` (!,>, X) � (?,>, X) (S-Attached)

The type rules for assignment, feature call, and object creation use the subtyping relation to
ensure the the soundness of attachments. All the rules are given in figures 6.22 and 6.23 but we
will be introducing individual rules in the rest of this section as the discussion progresses. (If
some technical details of a rule, e.g. auxiliary functions, are not clear when it first appears in
the text, please consult the formalisation section 6.11.) We start with assignments. Consider the
following code excerpt.

94 CHAPTER 6. TYPE SYSTEM FOR SCOOP

x : ?separate X
y : Y
z : separate X
my z: X
...

x := y
x := z
y := x −− Invalid
z := x −− Invalid
my z := z −− Invalid

We use the standard type rule for assignments, which requires the source to conform to the
target. The assignments x := y and x := z are valid because x has the type T1, y has the
type T2, z has the type T3, and the above derivations show the conformance of T2 and T3

to T1. The assignments y := x, z := x, and my z := z are invalid because the types do not
conform. In the case of y := x class types are not compatible; z := x assigns from detachable
to attached. Finally, my y := z is an assignment from separate to non-separate. Note that
the latter is prohibited in SCOOP 97 by an explicit consistency rule SC1 (4.2.6); our type
system eliminates the need for such special rules. The formal type rule T-Assign given below
states that an assignment is valid if and only if its target is writable, and the type of the source
conforms to the type of the target.

Γ ` isWritable(x), Γ ` x : Tx, Γ ` e : Te, Γ ` Te � Tx

Γ ` x := e �
(T-Assign)

The actual arguments of a feature call must conform to the corresponding formal arguments
of the called routine. Consider the following example:

a: separate X
b: X
c : ?X
f (x , y : separate X) do ... end
g (x : X) do ... end
h (x : ?X): separate <p> X do ... end
...
f (a, b)
f (a, c) −− Invalid
g (a) −− Invalid
a := h (b)
a := h (a) −− Invalid

The call f (a, b) is valid because the actual arguments a and b conform to the corresponding
formals x and y: (!,>, X) � (!,>, X), and (!, •, X) � (!,>, X). The call f (a , c) is invalid
because c does not conform to the corresponding formal: (?, •, X) � (!,>, X). Similarly, the
call g (a) is invalid because (!,>, X) � (!, •, X). (Here too, SCOOP 97 required an explicit
rule SC1 to prohibit such attachments.) The statement a := h (b) is valid because b conforms
to the formal argument of h, i.e. (!, •, X) � (!, •, X), and because the assignment satisfies the
rule T-Assign. On the other hand, a does not conform to the formal argument of h, hence the

6.4. TYPE COMBINATORS 95

statement a := h (a) is invalid.

Rules T-CCallUnqual, T-QACallUnqual, and T-QFCallUnqual capture the correctness
of unqualified calls. (The auxiliary function FeatureType yields the type of a feature in a given
class; see section 6.11 for details.) Both of them require the conformance of actual argu-
ment types to the corresponding formal argument types; additionally, T-QACallUnqual and
T-QFCallUnqual say that the result of the call has the same type as the result type of the called
feature.

Γ ` Current : (!, •, C)

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ ∅ n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Ti

Γ ` f(ā) �
(T-CCallUnqual)

Γ ` Current : (!, •, C), Γ ` FeatureType(C, f) = T

Γ ` f : T
(T-QACallUnqual)

Γ ` Current : (!, •, C)

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ T n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Ti

Γ ` f(ā) : T
(T-QFCallUnqual)

The above rules are not strong enough to handle qualified calls. The next section intro-
duces two type combinators required for the type-checking of qualified calls, and defines the
corresponding type rules.

6.4 Type combinators

Processor tags are always relative to the current object. An entity declared as non-separate, e.g.
a: A, is seen as such by the current object (and by its non-separate clients). Separate clients,
however, should see a as separate, because from their point of view it is handled by a different
processor. Figure 6.3 illustrates this problem. For o1, the field a has the type (!, •, A); it is
attached to o2 which is indeed a non-separate object. The field b of o2 also has a non-separate
type (?, •, B) and it represents a non-separate object o3. The three objects are non-separate from
each other; therefore, o1 should see o3 as non-separate, i.e. a .b should have the type (?, •, B).
For o4, however, both o2 and o3 are separate; the corresponding references must be separate
too. That is why a is declared as separate in o4; the expressions x .a and x .a.b evaluated in the
context of o4 have the types (!,>, A) and (?,>, B) respectively. Similarly, the expression y .b
should be of type (!,>, B).

Intuitively, following a non-separate reference preserves the locality of a type (its processor
tag); following a separate reference turns the type into a separate one. We use these informal
rules to derive the type combinator ‘?’ for result types (see figure 6.4). It is used to calculate the
type Te of a query call x . f (...) from the type Ttarget of the target x and the result type Tresult

of f :
Te = Ttarget ? Tresult

96 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Figure 6.3: Relative separateness of objects

(Result type) ? : Type× Type −→ Type

(γ, α, C) ? (λ, β, D) =

{
(λ, α, D) if β ∈ {•,Current.handler}
(λ,>, D) otherwise

(Argument type) ⊗ : Type× Type −→ Type

(γ, α, C)⊗ (λ, β, D) =

(λ, α, D) if β ∈ {•,Current.handler} ∧ α 6= >
(λ,>, D) if β = >
(λ,⊥, D) otherwise

Figure 6.4: Type combinators

Type combination with ‘?’ should be understood as follows. The resulting type takes the de-
tachable tag and the class type from the second type. If both combined types are non-separate,
then the resulting type is non-separate as well (‘•’). If the second type is non-separate then the
resulting type has the processor tag of the first type. Otherwise, the resulting type is separate
(‘>’).

For example, the expression x .a evaluated by o4 in figure 6.3 has the type (!,>, A) because
x has the type (!,>, X), a has the type (!, •, A), and (!,>, X) ? (!, •, A) = (!,>, A). The
expression a .b evaluated by o1 has the type (?, •, B) because a has the type (!, •, A), b has the
type (?, •, B), and (!, •, A) ? (?, •, B) = (?, •, B). The expression x .y . z in the following code
excerpt

−− in class C −− in class X
r (x : separate <px> X) y : Y

do
my x := x .y . z −− in class Y

end z : ?Z

6.4. TYPE COMBINATORS 97

has the type (?, px, Z); the reference x is separate but the precise information about its locality
captured by the processor tag px is preserved by the type combination:

(!, px, X) ? (!, •, Y) ? (?, •, Z) = (!, px, Y) ? (?, •, Z) = (?, px, Z)

A similar combinator is needed for the types of formal arguments because they are also defined
with respect to the current object; other clients may see them differently. In the following
scenario:

−− in class X
a: A
f (fa : ?A) do ... end

−− in class C
a: A
my x: X
r (x : separate X)

do
x . f (a) −− Invalid

end
...

my x. f (a)

the routine f in class X expects a non-separate argument. The call my x. f (a) is valid because
the type of the actual argument a conforms to the type of the formal fa, i.e. (!, •, A) � (?, •, A).
However, this is also true of the call x . f (a) which should be prohibited because it turns fa
into a traitor! The fact that the target of this call is separate should be reflected in the type of
fa seen by the client, so that the latter must provide an actual argument that is non-separate
from the target, and not from the client itself. This is enforced by the type combinator ‘⊗’ for
argument types (see figure 6.4). The type Tactual, to which the actual argument a of the call
x . f (a) must conform, is derived from the type Ttarget of the target x and the type Tformal of
the formal argument of f :

Tactual = Ttarget ⊗ Tformal

‘⊗’ follows a pattern similar to ‘?’; however, it may only preserve a type or restrict it, i.e. set
the processor tag to ‘⊥’. In the above example, the type of actual argument expected by the
call to x . f is (?, x.handler, A), because (by the rule 6.2.3) x has the type (!, x.handler, X),
and (!, x.handler, X) ⊗ (?, •, A) = (?, x.handler, A). Therefore, the call x . f (a) is invalid
because (!, •, A) � (?, x.handler, A). In SCOOP 97, this call would be invalid because of the
consistency rule SC2 (4.2.7); in fact, the rule SC2 would prohibit any calls to x . f because f
takes a non-separate argument. This is clearly too restrictive, e.g. a call x . f (x .a) should be
valid because we know that x .a is non-separate from x. Unlike SCOOP 97, our type system
supports such calls, as long as the actual argument conforms to the expected type; x .a does:

(!, x.handler, X) ? (!, •, A) � (!, x.handler, X)⊗ (?, •, A)

(!, x.handler, A) � (?, x.handler, A)

Alternatively, the client may use an explicit processor tag to capture the non-separateness of
some entity with respect to x. An unqualified tag may be used, e.g.

98 CHAPTER 6. TYPE SYSTEM FOR SCOOP

−− in class C
px: PROCESSOR
b: separate <px> A
r (x : separate <px> X)

do
x . f (b)

end

Here, the expected type of the argument is (?, px, A) because (!, px,X)⊗(?, •, A) = (?, px, A).
The actual argument b has a conforming type (!, px, A), therefore the call is valid. Of course,
declaring the formal argument of r with an explicit processor tag px forces all the calls to r to
use an actual argument handled by px. A solution based on a qualified processor tag does not
suffer from this limitation:

−− in class C
r (x : separate X)

local
b: separate <x.handler> A

do
b := ...
x . f (b)

end

Here, the expected argument type is (?, x.handler, A) because (!, x.handler, X)⊗(?, •, A) =
(?, x.handler, A). The actual argument b has the conforming type (!, x.handler, A), hence
the call x . f (b) is valid. The use of a qualified processor tag is allowed because x is attached
and non-writable, as required by the rule 6.2.2.

The type rules T-CCallQual, T-QACallQual, and T-QFCallQual below use both type
combinators ‘?’ and ‘⊗’ to ensure the soundness of qualified calls. They require the confor-
mance of actual argument types to the corresponding formal argument types combined, using
‘⊗’, with the target type; additionally, T-QACallQual and T-QFCallQual say that the result of
a call has the same type as the result type of the called feature, combined with the target type
using ‘?’.

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = C

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ ∅ n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Te ⊗ Ti

Γ ` e.f(ā) �
(T-CCallQual)

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = C

Γ ` FeatureType(C, f) = T

Γ ` e.f : Te ? T
(T-QACallQual)

6.4. TYPE COMBINATORS 99

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = C

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ T n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Te ⊗ Ti

Γ ` e.f(ā) : Te ? T
(T-QFCallQual)

Discussion

As will be shown in subsequent sections, the type rules discussed so far ensure the absence
of traitors. Due to the required type conformance between the source and the target of an
attachment (assignment or argument passing) there is no possibility of attaching an entity to
an object handled by a different processor than the declared processor of the entity. This is
essential for the safety of concurrent computations. Remarkably, we use traditional type rules
to check the correctness of assignments and feature calls; there is nothing “concurrent” about
them. The only noticeable modification is the presence of type combinators and an auxiliary
function isControlled. The next section addresses the controllability issue and completes the
discussion of call validity.

−− in class C
r (x : separate X)

do
x . f (x .y .a)
x .y . z . f (x .a)
x .y . f (x .y . z .y . z .a)
...

end

−− in class X
y , z : X
a: A
f (b: ?A) do ... end

Figure 6.5: Multi-dot separate expressions

Our enriched type system eliminates the need for explicit consistency rules SC1, SC2, and
SC3 of SCOOP 97 which, as demonstrated in section 5.4, are unsound and too restrictive. There
are multiple benefits: on one hand, the treatment of separate and non-separate entities is uni-
fied, which simplifies the programming practice; on the other hand many convenient constructs
— such as multi-dot expressions on separate targets, or separate calls to features taking non-
separate arguments — are now freely usable. The example in figure 6.5 is valid in SCOOP but
not in SCOOP 97 because the latter does not permit any multi-dot expressions on x and calls
to f in the body of r, although they can be perfectly safe. If one considers the class X to be a
“sequential” library class, the reuse of X in a concurrent context is now possible; this was not
the case before (see section 5.12.3). Section 10.4 discusses this issue in more detail and shows
that the enriched type system is necessary to achieve an effective sequential-to-concurrent code
reuse.

100 CHAPTER 6. TYPE SYSTEM FOR SCOOP

6.5 Valid targets

Let’s now turn to the problem of enforcing the atomicity of feature calls. The feature application
semantics described in section 6.1.2 implies that the processor executing a routine r enjoys an
exclusive access to the handlers of r’s formal arguments. To ensure this property, we have to
prevent other clients from using these handlers in the meantime. Starting from SCOOP 97’s
solution of the problem, we define a set of criteria for valid targets and propose a generalised
call validity rule which applies both to separate and non-separate calls. The new rule also
eliminates the problem of void calls.

The separate call rule 4.2.2 of SCOOP 97 requires the target of a separate call to appear
as formal argument of the enclosing routine. The rule is more restrictive than necessary: it
prohibits separate calls on targets that do not appear as formal arguments but are handled by a
processor that is locked in the context of the routine. Figure 6.6 illustrates this scenario. Only
the call x . f is valid because its target is a formal argument of r. All the other calls are invalid:
x . twin . f and y . f are rejected by the compiler because their targets do not appear as formal
arguments of r. But these calls are perfectly safe because x . twin and y are not traitors: feature
twin returns a clone of its target, handled by the same processor as x; that processor is already
locked by r.

−− in class C
my x, my y: separate X

r (x : separate X)
local

y : separate X
do

x . f −− Valid
x . twin . f −− Invalid although safe
y := x . twin
y . f −− Invalid although safe

end

s (x : separate X)
do

my y. f −− Invalid
...

end
...

r (my x)
s (my x)

Figure 6.6: Limitations of the separate call rule in SCOOP 97

The separate call rule is clearly too restrictive. This is because it relies on a syntactic distinc-
tion between formal arguments and other entities, rather than capturing the essential semantic
requirement: feature calls should only be permitted on targets whose handlers are locked in the

6.5. VALID TARGETS 101

current context. This condition is trivially satisfied by all non-separate calls because their tar-
gets are handled by the current processor. The case of separate calls is a bit more complicated;
there are several possibilities here. If the target of a call appears as formal argument of the
enclosing routine, then the call is valid (this case is covered by the original rule). If the target is
not a formal argument, the call may still be valid if one can statically demonstrate that the target
is handled by the same processor as one of the formal arguments. The enriched type system
comes in handy here: unqualified or qualified processor tags may be used to express the relative
non-separateness of an entity with respect to a formal argument.

Let’s relax the call validity rule to allow more flexibility in the treatment of feature calls
without losing the atomicity guarantees. The following informal definition captures the refined
requirements on targets.

Definition 6.5.1 (Valid target) An expression exp may be used as target of a feature call in
the context of routine r if and only if exp is attached and satisfies at least one of the following
conditions:

1. exp is non-separate.

2. exp appears as formal argument of r.

3. exp has a qualified processor tag farg .handler, and farg is an attached formal argument
of r.

4. exp has an unqualified processor tag p, and some attached formal argument of r has
processor tag p.

Conditions 1 and 2 mirror the two possibilities already present in SCOOP 97. Conditions 3
and 4 are new; these two cases increase the expressiveness of the model by accepting more
separate calls. Note the requirement put on farg : it has to be attached. This permits to avoid
SCOOP 97’s inconsistency related to the locking of void arguments (see section 5.8.3); another,
more fundamental reason behind it — the refined semantics of detachable and attached types
— is discussed in section 7.1. Thanks to the implicit type rule 6.2.3, conditions 2 and 3 may be
merged into one because the former implies the latter.

Figure 6.7 illustrates the applications of the refined rule. The call y . f in the body of r
is now correct because y is declared with the processor tag x.handler so that it is statically
known to be handled by the same processor as x. Similarly, we know that x . twin is handled
by x’s processor (we can show it formally using the rule 6.2.3 and the type combinator ‘?’)
so the call x . twin . f is valid. The formal argument x of s has an unqualified processor tag px.
Therefore, all calls to s expect an actual argument with the same processor tag px. The attribute
my x satisfies this requirement, therefore the call s (my x) is correct. Within the body of s,
any entity with the processor tag px may be safely used as target of a call because s locks the
corresponding processor. Therefore, my y. f is valid although my y is not a formal argument.

Definition 6.5.2 formalises the notion of a controlled expression, based on the informal rules
discussed above.

Definition 6.5.2 (Controlled expression) An expression exp of type Texp = (γ, α, C) is con-
trolled if and only if exp is attached and satisfies one of the following conditions:

102 CHAPTER 6. TYPE SYSTEM FOR SCOOP

−− in class C
px: PROCESSOR −− unqualified processor tag
my x, my y: separate <px> X

r (x : separate X)
local

y : separate <x.handler> X −− y is handled by x’s processor
do

x . f −− Valid
x . twin . f −− Valid
y := x . twin
y . f −− Valid

end

s (x : separate <px> X)
do

my y. f −− Valid
...

end
...

r (my x)
s (my x)

Figure 6.7: Application of the refined call validity rule

1. exp is non-separate, i.e. α = •.

2. exp appears in a routine r that has an attached formal argument farg
and α = farg .handler.

Rule 6.5.3 replaces the separate call rule (4.2.2) of SCOOP 97 and the validity rule 8.23.9
/VUNO/ of standard Eiffel ([53], p. 119), thus unifying the treatment of separate and non-
separate calls, and prohibiting void targets. (A full eradication of void calls requires additional
rules ensuring that all entities of attached types are properly initialised befor being used. This
topic is not covered here.)

Definition 6.5.3 (Call validity rule) Call exp. f (ā) appearing in class C is valid if and only
if the following conditions hold:

1. exp is controlled.

2. exp’s base class has a feature f exported to C, and the actual arguments ā conform in
number and type to the formal arguments of f .

The rule is translated into the formal rules T-CCallUnqual, T-QACallUnqual, T-
QFCallUnqual, T-CCallQual, T-QACallQual, and T-QFCallQual. Now it becomes clear
why the rules for unqualified calls are stripped-down versions of T-CCallQual, T-QACallQual,

6.6. OBJECT CREATION 103

and T-QFCallQual: the controllability requirement is not listed among their premises because
the implicit target of unqualified calls, Current, is trivially controlled in any context. (Fur-
thermore, no type combinators are necessary because the client and the supplier are the same,
therefore the actual and the expected types are evaluated in the same context.)

The new rule brings more flexibility by allowing more separate calls while preserving mu-
tual exclusion and atomicity. The rule is not complete in that some safe calls are rejected. To
deal with such cases, the object test mechanism described in section 6.7 can be used.

6.6 Object creation

A creation call on an entity results in creating a new object, placing it on a fresh processor —
unless the entity’s processor already exists — and attaching the entity to the object. No fresh
processor needs to be created if the entity is non-separate, i.e. handled by the current processor
(which obviously exists already), or if the entity has an explicit processor tag p and the corre-
sponding processor has already been created (usually through an earlier creation instruction on
another entity handled by p, or by an assignment to that entity). Figure 6.8 illustrates the dif-
ferent possibilities. Fresh processors only need to be created for x and y; z and my x are placed

py: PROCESSOR −− declaration of processor tag py
x : separate X
my x: X
y , z : separate <py> Y
...
create x −− Fresh processor is created for x.
create my x −− my x is placed on the current processor .
create y .make −− Fresh processor py is created for y.
create z .make −− Processor py already exists . z is placed on py.

Figure 6.8: Object creation

on existing processors. Note that y and z are placed on the same processor, in accordance with
their declared type.

Type annotations enable the choice of a processor where the newly created object will be
placed. This brings additional flexibility: without the enriched types, a factory object would be
needed on each processor; instead of creating new separate objects, one would ask a factory to
create them. The latter solution is much heavier and requires the knowledge of an appropriate
factory in any context where an object is created. Our approach supports the object creation
mechanism in its simple and natural form. However, the semantics of object creation is differ-
ent than in sequential Eiffel because the call to a creation procedure may be separate; it must
not interfere with calls on the target processor that may be executed in the meantime on be-
half of another client. Therefore, an object creation requires the exclusive access to the target
processor; it follows the semantics captured by rule 6.6.1.

Definition 6.6.1 (Object creation semantics)
A creation call create x.cp (...) on the target x of type (γ, α, X) results in the following
sequence of actions performed by the client’s handler Pc:

104 CHAPTER 6. TYPE SYSTEM FOR SCOOP

1. Processor creation:

• If x is separate, i.e. α = >, create a fresh processor Px.

• If x has explicit processor tag p, i.e. α = p, then

– if the corresponding processor Pp has already been created, take Px = Pp.
– if the corresponding processor has not been created yet, create a fresh proces-

sor Px and set p to Px.

• If x is non-separate, i.e. α = •, take Px = Pc.

2. Reservation: lock Px.

3. Object creation: ask Px to create a fresh instance of X using the creation procedure cp;
attach x to the newly created object.

4. Release: release the lock on Px acquired in the reservation step.

Since the target processor Px is locked for the exclusive use of the client during the creation
of a fresh object and the execution of the creation procedure, there is no risk of interference
by other clients. Step 3 needs some clarification: x is attached to the freshly created object
as soon as the object is created but without waiting for the creation procedure to execute and
terminate. As a result, the creation call is asynchronous (unless the target is non-separate); x
points to a potentially inconsistent object before the creation procedure terminates but this is
not harmful because the object cannot be accessed before its handler is released. This, in turn,
cannot happen before cp terminates; the object is consistent at that point.

6.7 Handling false traitors

The enriched type system permits precise reasoning about the locality of objects. Nevertheless,
static typing has its limitations: the exact run-time type of the object represented by an entity is
often unknown at compile time. Modern programming languages deal with the incompleteness
of their type systems by providing a run-time facility for type casting. Eiffel uses the object test
mechanism for that purpose. An object test provides scoped binding of a fresh non-writable
entity to the source expression; if the dynamic type of the source conforms to the declared type
of the target entity, the test evaluates to True; it evaluates to False otherwise (the downcast
fails). Figure 6.9 illustrates the use of an object test. Through the assignment x := z, the entity
x becomes attached to an object of type Z. Nevertheless, the subsequent assignment y := x
is rejected by the compiler even though the dynamic type of x conforms to the type of y. An
object test helps to solve the problem: by downcasting x to aux y (of type Y), we can use the
object attached to aux y as source of assignment to y. The use of aux y is only valid in the
then part of the conditional; aux y is undefined in the else part. Note that aux y is treated like
a formal argument: it is only visible in the scope of the object test, and it is not writable, i.e.
it cannot be used as target of assignments or creation instructions. An object test may also be
used to perform assignments from detachable to attached entities. It is illegal to directly assign
detachable dz to attached z; an object test using an auxiliary variable aux z solves this problem.
Both aspects of casting (non-voidness and conformance of class types) can be combined in a
single object test, e.g. the type (?, •, X) can be cast to (!, •, Z).

6.7. HANDLING FALSE TRAITORS 105

−− in class C
x : X
y : Y −− Y conforms to X
z : Z −− Z conforms to Y and X
dz : ?Z
...
create z
x := z −− Valid assignment
y := x −− Invalid assignment

if {aux y: Y} x then
y := aux y −− Valid assignment

else
... −− aux y cannot be used here

end

z := dz −− Invalid assignment

if (aux z : Z) dz then
z := aux z −− Valid assignment

end

Figure 6.9: Object test

When a separate entity becomes attached to a non-separate object, the information about the
object locality is lost: even though we know that the entity denotes a non-separate object at run
time, we cannot assume it at compile time. Figure 6.10 and the corresponding code excerpt in
figure 6.11 illustrate a typical scenario. Objects o1 and o2 are handled by the same processor
P1; object o3 is handled by processor P2. o2 is known to o3 as y; o3 is known to o1 as my x,
or x in the body of routine r when my x is passed as actual argument. Since x is a separate
entity, the result of x .y is separate because (!,>, X) ? (!,>, Y) = (!,>, Y), even though the
object denoted by x .y is o2 which is non-separate from o1 (its dynamic type is (!, •, Y)). An
assignment from separate to non-separate, e.g. my y := x .y, is invalid. If we allowed this
assignment, my y would become a traitor. In this particular scenario, it would be a false traitor
because the object attached to it is non-separate. This information, however, is not available at
compile time; therefore, we must prohibit such assignments to ensure type soundness.

To “detraitorise” a false traitor, we need to use the type information available at run time.
We refine the semantics of object test to take into account the locality of its source. An object
test succeeds if the run-time type of its source conforms in detachability, locality, and class type
to the type of its target; it fails otherwise. This allows downcasting a separate entity to a non-
separate one, provided that the entity represents a non-separate object at run time. Downcasts
between types with different processor tags are possible, e.g. ‘>’ to ‘•’, ‘>’ to ‘p’, ‘•’ to
‘x.handler’, etc. Feature s in figure 6.11 is a corrected version of r; it uses an object test
to perform the necessary downcast. Since x .y has a dynamic type (!, •, Y), the object test is
successful; aux y is attached to o2 and the assignment my y := aux y is valid. As a result, my y
is not a traitor, even though it holds a reference obtained initially through a separate query call.

106 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Figure 6.10: False traitor

Discussion

Meyer [96] suggests a locking semantics for object tests: a successful object test on a separate
entity x blocks until the processor that handles x is acquired by the current processor. This se-
mantic overloading supports the execution of separate calls without the need for an enclosing
routine. (In fact, this can be achieved in a simpler way, described in section 9.3.4.) Unfor-
tunately, besides compromising the primary role of the object test as a run-time conformance
check, the blocking semantics severely limits the use of detachable and attached types: it is
impossible to downcast a detachable separate entity to an attached type without performing any
locking. Certain common scenarios, e.g. storing a detachable separate formal argument in an
attribute for a later use, cannot be implemented. Additionally, object tests can only be per-
formed on one entity at a time; atomic locking of several objects using a single object test is not
supported.

The object test has replaced the assignment attempt mechanism which is still supported by
existing Eiffel compilers. Essentially, an assignment attempt ‘?=’ is like a standard assignment
‘:=’ if the run-time type of its source conforms to the static type of its target; otherwise it
assigns Void to the target. Since no compiler supports the object test mechanism yet, our
implementation relies on the assignment attempt instead (see section 11.2).

6.8 Object import

The deep import operation used in SCOOP 97 is a safe way to obtain a non-separate copy of an
object structure. It yields a deep copy of the whole object structure, i.e. it copies recursively all
substructures by following references and expanded attributes. As pointed out in section 4.2.5,
using a shallow copy would introduce potential traitors.

But is it really necessary to copy the whole structure? Traitors may be introduced only if
a non-separate reference is not followed. Separate references are not dangerous: the corre-
sponding objects need not be copied because the type combination rules (see section 6.4) make
sure that such objects are seen as separate. Therefore, a lightweight operation import, which
only follows non-separate references and expanded attributes, is sufficient. (Applied to a non-

6.8. OBJECT IMPORT 107

−− in class X
y : separate Y

−− in class C
my x: separate X
my y: Y

r (x : separate X)
do

my y := x .y −− Invalid assignment
my y. f

end

s (x : separate X)
do

if {aux y: Y} x .y then
my y := aux y −− Valid assignment
my y. f

end
end

...
r (my x)
s (my x)

Figure 6.11: Handling false traitors

separate object, import yields the same result as twin, i.e. it does not follow any references.)
Figure 6.12 illustrates the effect of import. Assuming that the client o1 executes the assignment
y := x . import1, where x is separate and y is not, all objects reachable from x via non-separate
references, i.e. o2 itself, o3, and o4, are copied onto processor P1; y now references the object
structure starting at o2’. Object o5 is not copied because it is only reachable through a separate
reference; this reference cannot become a traitor.

The import operation is a very convenient tool for “unseparating” an object structure. Nev-
ertheless, in certain situations the imported structure does not sufficiently mirror the original
structure. For example, field x of o5 references object o2; as a result, x .a.x = x .a holds but
y .a.x = y .a does not, although y is a copy of x. If the client wants to achieve a deep equal-
ity relation between the structures, it needs a different operation. But there are at least three
possible semantics for such an operation:

• The relative separateness of objects is preserved; copies are placed on the same processors
as their originals, e.g. a copy of o5 would be placed on P3. This operation is called
deep import.

• The whole object structure is placed on the client’s processor; we may call it flat import
. In our example, flat import would place the copy of o5 on P1. (Note that the

1We follow the style recommended in the Eiffel standard [53] and turn import into a query (like twin); the
feature name should be understood as a noun.

108 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Figure 6.12: Importing an object structure

deep import operation of SCOOP 97 has the same semantics.)

• The relative separateness of objects is preserved but copies are placed on fresh processors.
In our example, a new processor P4 would be created for the copy of o5. We may call this
operation independent import because the original object structure does not share pro-
cessors with the copy. This property is interesting for independent parallel computations
involving both structures.

We assume that deep import will be used most often: it is the least expensive of the three, and
it is closely related to deep twin. The slightly heavier flat import may prove useful in a dis-
tributed context where clients are interested in working on a local copy of data. The heaviest
operation independent import makes it possible to obtain structures that may be used concur-
rently without the risk of interlocking. These three features, together with the shallow import,
seem to provide sufficient support for manipulating object structures in a concurrent context;
however, we have not gathered enough practical experience to formulate a more precise claim.

6.9 Object equality

Assume that x is the root object of the original structure and y is its copy. If the copy has
been obtained through the twin operation, equal (x ,y) is true; if deep twin has been used then
deep equal (x , y) holds. Let’s see how the four import operations introduced in the previous
section influence the equality relation between object structures, and how they relate to twin and
deep twin operations. One possibility is to ignore the relative separateness of objects and use
only the reference equality, i.e. to preserve the standard “sequential” notion of equality [53].
The advantage of this solution is its simplicity. It seems, however, that the relative separateness
of objects should be taken into account. Intuitively, a structure obtained through deep import
is not the same as a structure obtained through flat import : identical operations applied to

6.10. EXPANDED TYPES 109

each structure will have potentially different outcomes. Following this line of thought, i.e.
accounting for the relative locality of objects, one may conclude the following: if y has been
obtained through an import operation, then equal (x , y) might not hold; in fact, it will only
hold if x is attached to a non-separate object (in which case the import is just like twin) or
if x has no references to non-separate objects (in which case it is the only imported object).
On the other hand, the deep import operation preserves the relative locality of objects, so it
will satisfy deep equal (x , y). In general, neither flat import nor independent import satisfy
deep equal (x , y).

This enriched notion of equality between object structures is more complex than the stan-
dard one. Nevertheless, the close relation between equal, twin, and import on one hand, and
deep equal, deep twin, and deep import on the other hand suggests that the proposed approach
is appropriate. This remains to be demonstrated in practice.

6.10 Expanded types

Expanded types may be used for expressing ownership relations between objects (e.g. a car
engine belongs to a given car), and for emulating unique references. An expanded entity, that is
an entity whose type is based on a class declared as

expanded class E
...

end

represents an object rather than a reference to an object. Expanded classes have copy semantics,
i.e. their instances are always passed by copy. As a result, it is impossible to obtain multiple
references to the same expanded object.

SCOOP 97 only accepts fully expanded objects as arguments or results of separate calls;
a fully expanded object must not carry any non-separate references; see the consistency rule
SC4 (4.2.9). Indeed, such references would become potential traitors if a copy of the object
was placed on a different processor. Since most expanded classes (with a notable exception
of INTEGER, REAL, DOUBLE, BOOLEAN, and CHARACTER) carry non-separate references,
they become unusable in a concurrent context. We need to relax the consistency rules to accom-
modate arbitrary expanded types while preserving the safety guarantees.

Consider the three components of an expanded type (γ, α, E): the detachability tag, the
processor tag, and the class type. E has to be an expanded class, otherwise the required copy
semantics will not apply. An expanded object may be viewed as “sitting” inside the object that
declares it; therefore, it must be handled by the same processor, i.e. α = •. Can an expanded
entity be detachable? No, because it would then accept Void as possible value; hence γ = !.
Rule 6.10.1 captures these requirements.

Definition 6.10.1 (Expanded type rule) A type TE based on an expanded class E is valid iff it
is attached and non-separate, i.e. TE = (!, •, E). TE is then called an expanded type.

Syntactically, the rule prohibits the use of separate annotations and the detachable tag ‘?’ with
expanded class types; no “detachable expanded” or “separate expanded” entities may be de-
clared. But what happens if the result of a separate query call is expanded, or if a client passes

110 CHAPTER 6. TYPE SYSTEM FOR SCOOP

an expanded actual argument to a separate feature call? Can certain expressions involving sepa-
rate calls be seen as separate and expanded at the same time? Consider figure 6.13. Expression
x .b is expanded because feature b in class X is of type (!, •, BOOLEAN); at the same time,
it should also be separate because it is a result of a separate call: a naive calculation of its type
using the type combinator ‘?’ yields (!,>, BOOLEAN). But the if ... then construct needs
a non-separate boolean; furthermore, the rule 6.10.1 requires all expanded types to be non-
separate. We need some way to “unseparate” such expressions. The simplest way is to apply
implicitly the import operation described in section 6.8. Since import is applied implicitly, the
expressions x .b and x .e are seen as non-separate by the client; the statement if x .b then e :=
x .e end is now correctly typed, and the assignment to e is valid. Similarly, the call x . f (i)

is valid because the expanded actual argument i is seen by the supplier x as non-separate: x
receives a non-separate copy of i .

−− in class C
r (x : separate X; i : INTEGER)

local
e : E −− E is (non−fully) expanded

do
if x .b then −− x.b is non−separate

e := x .e −− x.e is non−separate
end
x . f (i) −− i is seen as non−separate by x

end

−− in class X
b: BOOLEAN
e : E
f (i : INTEGER)

do
...

end

Figure 6.13: Use of expanded types

The use of import prevents the creation of potential traitors when manipulating instances
of arbitrary expanded classes; both fully-expanded and non-fully-expanded classes are treated
correctly. Thus, the safety guarantees of SCOOP are preserved without the need to restrict the
use of expanded types; the rule SC4 (4.2.9) is not necessary.

The type system must reflect the special status of expanded types. The rule S-Subclass is
refined following the Eiffel conformance rule for expanded classes: an expanded type has no
subtypes other than itself (see figure 6.20). It is also necessary to refine the type combinators
‘?’ and ‘⊗’ so that expanded types be invariant under both operators, i.e. for an arbitrary type
T and an expanded class type E, T ? (!, •, E) = (!, •, E) and T ⊗ (!, •, E) = (!, •, E); see
figure 6.14. The refined rules use an auxiliary function isExpanded : Class(Γ) −→ Bool
which tells whether a class is expanded.

6.11. FORMALISATION OF THE TYPE SYSTEM 111

(Result type) ? : Type× Type −→ Type

(γ, α, C) ? (λ, β, D) =

(λ, β, D) if isExpanded(D)

(λ, α, D) if ¬isExpanded(D) ∧ β ∈ {•,Current.handler}
(λ,>, D) otherwise

(TC-?)
(Argument type) ⊗ : Type× Type −→ Type

(γ, α, C)⊗ (λ, β, D) =

(λ, β, D) if isExpanded(D)

(λ, α, D) if ¬isExpanded(D) ∧ α 6= >
∧ β ∈ {•,Current.handler}

(λ,>, D) if ¬isExpanded(D) ∧ β = >
(λ,⊥, D) otherwise

(TC-⊗)

Figure 6.14: Refined type combinators

6.11 Formalisation of the type system

In this section, we formalise the compile-time aspects of SCOOP’s type system. We define
the syntax of the programming language, typing environments, well-formedness conditions,
subtyping, and the type rules for statements, expressions, features, classes, and programs.

6.11.1 SCOOPC programs

SCOOPC (where C stands for “core”) is a subset of SCOOP that includes the following con-
structs: classes, expanded classes, features, contracts, single inheritance, polymorphism, fea-
ture redefinition (with invariant typing of arguments and result), attached and detachable types,
object creation, feature calls, assignments, conditionals, object tests, and loops. Multiple in-
heritance, genericity, deferred classes, covariant and contravariant typing of redefined features,
agents, and once features are excluded for the sake of simplicity; chapter 9 demonstrates these
mechanisms are dealt with.

Figure 6.15 summarises the syntax. We follow the convention that SCOOPC keywords
appear as keyword, identifiers as identifier, and non-terminals as NonTerminal. Identifiers
with the suffix id, e.g. classid, indicate newly defined constructs; identifiers with the suffix
name, e.g. classname, indicate previously declared constructs.

A program (sort Program) contains class declarations and a root creation instruction com-
posed of a root class name and a creation procedure in a call-like dot notation.

A class declaration (ClassDecl) contains the name of the class, the name of its direct
ancestor (it may be the predefined class ANY), names of creation procedures and unqualified
processor tags, feature declarations (attributes and routines), and an invariant.

A routine declaration (RoutineDecl) is composed of a signature (name, formal argument
declarations, result type), a precondition, local variable declarations, a body (composed of state-
ments), and a postcondition. We assume that all assertions are fully specified, i.e. every routine

112 CHAPTER 6. TYPE SYSTEM FOR SCOOP

lists a precondition and a postcondition, and every class has an explicit invariant; they may be
trivially True.

An attribute declaration consists of a name and a type; so do local variable and formal
argument declarations.

A type (Type) consists of a detachable tag, a processor tag, and a class type.

The set of expressions (Expr) includes the literals Current, Void, True, False, and
Result, as well as integers, local variables, formal arguments, unqualified and qualified query
calls, object test, and expressions built using the predefined operators ‘not’, ‘and’, ‘or’,
‘implies’, and ‘=’.

The set of statements (Stmt) includes assignments, procedure calls, object creation, condi-
tionals, and loops.

We assume that all identifiers in a program are unique, except for identifiers and formal
parameters of redefined features, and local variables of different features. The disambiguation
may be achieved by preceding each identifier with the name of the class or the feature where it
is declared. For simplicity, we omit the prefixes in the examples.

6.11.2 Typing environments

Type checking of a program p is performed in a type environment Γ which contains the class
hierarchy derived from p, enriched with ANY and NONE, and the type definitions of all fea-
tures; the local variables and the formal arguments of the enclosing routine to their types. To
formalise typing environments, we follow the approach proposed by Drossopoulou and Eisen-
bach [52].

The formal syntax for environments is given in figure 6.16. StandardEnv includes the
predefined classes ANY and NONE which list no ancestors and have no features. A class dec-
laration introduces a new class as a subclass of another class. Feature types appear in class
declarations. Assertions and feature bodies are excluded; they are found in the program rather
than the environment. Local variable declarations introduce variables of a given type; Result is
treated as an implicit local variable of every function. Formal argument declarations introduce
formal arguments of a given type. Current is treated as implicit formal argument; therefore, it
is always included in the typing environment (in class C, the type of Current is (!, •, C)). Fresh
variables introduced by object tests are treated as formal arguments and carried in the typing
environment (see rule T-ObjectTest in figure 6.23).

Subclassing

The inference rules in figure 6.17 define the conformance relation v on class types in an envi-
ronment Γ. The conformance relation is often referred to as subclassing. An assertion

Γ = Γ′, class C inherit C ′ ... end, Γ′′

should be understood as “Γ contains a declaration of class C as a subclass of C ′”. Every class
in Γ is its own subclass, as indicated by the assertion Γ ` C v C in rule C-Class. Every class
is also a subclass of its immediate superclass (rule C-Subclass). Subclassing is transitive (rule
C-Trans); as a result, all class types conform to ANY. Conversely, NONE conforms to every
class type (rule C-SubNone).

6.11. FORMALISATION OF THE TYPE SYSTEM 113

Program ::= ClassDecl∗ RootCreation

RootCreation ::= classname . routname

ClassDecl ::= [expanded] class classid inherit classname create routname∗

feature tagid∗ FeatureDecl∗ invariant Expr end

FeatureDecl ::= AttributeDecl | RoutineDecl

AttributeDecl ::= V arDecl

RoutineDecl ::= routid [(ArgDecl+)] [: Type]

require Expr [local V arDecl+] do Stmts ensure Expr end

ArgDecl ::= argid : Type

V arDecl ::= varid : Type

Stmts ::= ε | Stmts ; Stmt

Stmt ::= V ar := Expr | Expr.routname [(Expr+)]
| create V ar.routname [(Expr+)]
| if Expr then Stmts else Stmts end

| from Stmts until Expr loop Stmts end

Expr ::= V alue | V ar | Expr.attrname | Expr.routname [(Expr+)]
| not Expr | Expr and Expr | Expr or Expr

| Expr implies Expr | Expr = Expr | {ArgDecl } Expr

V ar ::= varname | Result

V alue ::= argname | Current | Void | True | False

| i (i ∈ Z) | c (c ∈ Character)

ProcTag ::= • | > | tagname | argname.handler

DetachTag ::= ! | ?

Type ::= (DetachTag, ProcTag, classname)

Figure 6.15: SCOOPC programs

114 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Env ::= StandardEnv | Env ; Decl

StandardEnv ::= class ANY end, class NONE end

Decl ::= class classid inherit classname create routname∗

feature tagid∗ (attrid : Type)∗ (routid : RoutType)∗

end

| varid : Type

| argid : Type

ClassType ::= classname | ANY

DetachTag ::= ! | ?

ProcTag ::= • | > | tagname | argname.handler

Type ::= (DetachTag, ProcTag, ClassType)

RoutType ::= ArgType −→ Type | ArgType −→ ∅
ArgType ::= Type (× Type)∗ | ∅

Figure 6.16: SCOOPC environments

6.11.3 Valid types

Figure 6.18 gives the well-formedness rules for types. Class types and processor tags are re-
quired in type declarations; routine types are required in routine declarations. The assertion
Γ ` C �ClassType means that C is a valid class type. The assertion Γ ` pt �ProcTag means that pt
is a valid processor tag. The assertion Γ ` T �Type means that T is a valid type. The assertion
Γ ` RT �RoutType means that RT is a valid routine type. Figure 6.19 defines the auxiliary
functions used in the well-formedness rules.

6.11.4 Subtyping

Section 6.3 discussed the conformance relation between SCOOP types. Recall that a type U
is a subtype of T , expressed as U � T , if and only if the three components of U — detach-
able tag, processor tag, and class type — conform to the corresponding components of T . The
conformance of class types has been defined in the previous section; the conformance of pro-
cessor tags is captured in figure 6.1. Detachable tag ‘!’ conforms to ‘?’. The four rules in figure
6.20 capture the subtype relation in a formal manner. Rule S-Subclass says that a type may be
viewed as based on a superclass of its class type, with all the other components unchanged; one
may also deduce T � T . The rule prohibits subtyping of an expanded type by another type,
i.e. an expanded type is a unique subtype of itself. Rule S-Top enables the generalisation of the
processor tag to ‘>’; conversely, S-Bottom captures the conformance of ‘⊥’ to any processor
tag. Rule S-Attached formalises the conformance between attached and detachable types.

Note the absence of subsumption and transitivity rules; we avoid them here to make type-

6.11. FORMALISATION OF THE TYPE SYSTEM 115

Γ = Γ′, class C inherit C ′ ... end, Γ′′

Γ ` C v C
(C-Class)

Γ = Γ′, class C inherit C ′ ... end, Γ′′

Γ ` C v C ′ (C-Subclass)

Γ ` C v C ′

Γ ` C ′ v C ′′

Γ ` C v C ′′ (C-Trans)

` ANY v ANY
(C-Any)

` NONE v C
(C-None)

Figure 6.17: Class conformance

checking rules deterministic. We achieve the necessary reflexivity and transitivity by relying on
subclassing which is itself reflexive and transitive.

It is easy to see that the most general type is (?,>, ANY); all other types conform to it.
There is no type that conforms to all other types. Observe the compatibility of rules S-Subclass
and S-Attached with the standard Eiffel rules [53].

6.11.5 Well-formed environments

The relations v and � are computable in any environment. Figure 6.21 describes the require-
ments for the well-formedness of variable and class declarations. The judgement Γ ` Γ′ �
says that all the declarations in the environment Γ′ are well-formed given the environment Γ;
the latter, potentially larger, is needed because of forward declarations, i.e. the use of types
based on classes declared later in the program. To check Γ ` Γ′ �, relations v and � have to
be established for Γ, and their acyclicity demonstrated; secondly, the well-formedness of each
declaration in Γ′ must be demonstrated. The ultimate goal is to establish Γ ` Γ � where Γ
includes all class declarations. An empty environment is well-formed (rule WF-EmptyEnv).
Rule WF-VarArgEnv states that a local variable or a formal argument must have a valid type
and be declared at most once. A definition lookup function Γ(id) which returns the definition
of the identifier id in Γ is necessary for reasoning about the well-formedness of declarations.
For an environment Γ with unique definitions for every identifier, we define Γ(id) as follows:

• Γ(x) = T if and only if Γ = Γ′, x : T, Γ′′

• Γ(C) = class C inherit C ′ create cr1, ..., crk feature pt1, ..., ptl,
a1 : T1, ..., am : Tm, r1 : RT1, ..., rn : RTn end

if and only if

116 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γ ` C v C

Γ ` C �ClassType

(WF-ClassType)

Γ ` • �ProcTag

(WF-BulletPTag)

Γ ` > �ProcTag

(WF-TopPTag)

Γ = Γ′, class C ... feature ..., pt, ... end, Γ′′

Γ ` pt �ProcTag

(WF-UnqualifiedPTag)

Γ ` Current.handler �ProcTag

(WF-CurrentPTag)

Γ = Γ′, x : T, Γ′′

Γ ` ¬isWritable(x), Γ ` isAttached(T)

Γ ` x.handler �ProcTag

(WF-QualifiedPTag)

γ ∈ {!, ?}, Γ ` α �ProcTag

Γ ` C �ClassType, Γ ` ¬isExpanded(C)

Γ ` (γ, α, C) �Type

(WF-ReferenceType)

Γ ` C �ClassType, Γ ` isExpanded(C)

Γ ` (!, •, C) �Type

(WF-ExpandedType)

Γ ` Ti �Type i ∈ {1..n}, n ≥ 0

Γ ` T1 × ...× Tn −→ ∅ �RoutType

(WF-ProcedureType)

Γ ` T �Type

Γ ` Ti �Type i ∈ {1..n}, n ≥ 0

Γ ` T1 × ...× Tn −→ T �RoutType

(WF-FunctionType)

Figure 6.18: Well-formedness of types

6.11. FORMALISATION OF THE TYPE SYSTEM 117

Γ ` isAttached((!, α, C))
(A-isAttached)

Γ ` ClassType(γ, α, C) = C (A-ClassType)

Γ ` isExpanded(C) ⇐⇒ p = p′, expanded class C ... end, p′′ (A-isExpanded)

Γ ` isFormalArgument(x) ⇐⇒ x = Current ∨
(Γ = Γ′, x : T, Γ′′ ∧ p = p′, ...class C ... feature ..., f(..., x : T, ...)..., ... end, p′′)

(A-isFormalArgument)

Γ ` isWritable(x) ⇐⇒ Γ = Γ′, x : T, Γ′′ ∧ Γ ` ¬isFormalArgument(x)
(A-isWritable)

Γ ` farg : (!, αfarg, Cfarg), Γ ` isFormalArgument(farg)

Γ ` C �ClassType

Γ ` isControlled((!, farg.handler, C))
(A-isControlled)

Figure 6.19: Auxiliary functions

Γ ` C v C ′, Γ ` isExpanded(C ′) =⇒ C = C ′

Γ ` (γ, α, C) � (γ, α, C ′)
(S-Subclass)

Γ ` C v C ′

Γ ` (γ, α, C) � (γ,>, C ′)
(S-Top)

Γ ` C v C ′

Γ ` (γ,⊥, C) � (γ, α, C ′)
(S-Bottom)

Γ ` (?, α, C) � (?, β, C ′)

Γ ` (!, α, C) � (?, β, C ′)
(S-Attached)

Figure 6.20: Subtyping

118 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γ ` ε �
(WF-EmptyEnv)

Γ ` Γ′ �
Γ ` T �Type

x 6∈ dom(Γ′)

Γ ` Γ′, x : T �
(WF-VarArgEnv)

Γ ` Γ′ �, C 6∈ dom(Γ′)

Γ ` C ′ v C ′, Γ ` C ′ 6v C

Γ ` ∀j ∈ {1..m}. Tj �Type, Γ ` ∀j ∈ {1..n}. RTj �RoutType

ai = aj =⇒ i = j i, j ∈ {1..m}
ai = aj =⇒ i = j i, j ∈ {1..n}
Γ ` ∀j ∈ {1..m}. (FeatureType(C ′, aj) = Tj ∨ FeatureType(C ′, aj) = undef)

Γ ` ∀j ∈ {1..n}. (FeatureType(C ′, rj) = RTj ∨ FeatureType(C ′, rj) = undef)

Γ ` ∀j ∈ {1..l}. crj ∈ Procedure(C)

Γ ` Γ′, class C inherit C ′ create cr1, ..., crk feature pt1, ..., ptl,

a1 : T1, ..., am : Tm, r1 : RT1, ..., rn : RTn end �
(WF-ClassEnv)

Figure 6.21: Well-formed environments

Γ = Γ′, class C inherit C ′ create cr1, ..., crk feature pt1, ..., ptl,
a1 : T1, ..., am : Tm, r1 : RT1, ..., rn : RTn end, Γ′′

• Γ(id) = undef otherwise

Rule WF-ClassEnv says that a declaration of class C as subclass of C ′ is well-formed if and
only if the following conditions are satisfied:

• C has not been previously declared.

• The declaration does not introduce a cycle in the subclassing relation.

• All types and routine types occurring in the declaration are valid.

• All feature names are unique. (Feature overloading is prohibited.)

• The types of all redefined features in C are identical with the types of the corresponding
features in C ′. (This enforces the invariance of argument and result types.)

• Each creation procedure is defined in C or one of its ancestors.

To check this, we need a few auxiliary functions. Let Class(Γ) represent the set of all classes
defined within the environment Γ. C ∈ Class(Γ) if and only if Γ ` C v C. For an environment
Γ with a class declaration for C, i.e.

Γ = Γ′, class C inherit C ′ create cr1, ..., crk feature a1 : T1, ..., al : Tl, r1 : RT1, ..., rm : RTm end, Γ′′

6.11. FORMALISATION OF THE TYPE SYSTEM 119

the feature lookup function FeatureType : Class(Γ) × Feature −→ Type ∪ RoutType is
defined as

• FeatureType(ANY, f) = undef for any f

• FeatureType(NONE, f) = undef for any f

• FeatureType(C, f) = Tj iff f = aj

• FeatureType(C, f) = RTj iff f = rj

• FeatureType(C, f) = FeatureType(C ′, f) otherwise

the set of procedure names Procedure : Class(Γ) −→ Id as

• Procedure(C) = {r1, ..., rm} ∪ Procedure(C ′)

and the set of creation procedure names Creator : Class(Γ) −→ Id as

• Creator(C) = {cr1, ..., crk}

The following properties of well-formed environments are easy to demonstrate:

• Subtyping and subclassing relations are reflexive, transitive, and antisymmetric.

• The class hierarchy forms a complete lattice with the top element ANY and the bottom
element NONE.

• The type hierarchy does not form a lattice; there is a top element (?,>, ANY) but no
bottom element.

• If two types are in the subtype relation, them their class types are in the subclass relation,
i.e. U � T ⇔ ClassType(U) v ClassType(T).

From now on, all environments are implicitly assumed to be well-formed.

6.11.6 Type rules

Figures 6.22 – 6.24 list the type rules for SCOOPC . The rules with a conclusion of the form
Γ ` s � should be understood as “s is well-typed in Γ”; rules with a conclusion Γ ` e : T
should be understood as “e is well-typed in Γ and has the type T ”.

Figure 6.22 describes the types for expressions: primitive values, variables, expressions
built on predefined operators, and query calls. The predefined values True and False have the
boolean type. Integer literals have the integer type, and character literals have the character
type. Void has the type (?,⊥, NONE). Local variables and formal arguments of the current
feature (including Current) have the type declared in the environment (rule T-Var). Rule T-
Implicit gives a non-writable attached entity a type based on an implicit qualified processor tag;
it has been discussed in detail in section 6.2.2. Expressions based on the predefined operators
‘not’, ‘and’, ‘or’, ‘implies’, and ‘=’ have the boolean type. Rules T-QACallUnqual and

120 CHAPTER 6. TYPE SYSTEM FOR SCOOP

T-QFCallUnqual say that an unqualified query call is well-typed if and only if the given query
is defined for the current class, and the actual arguments of the call conform in number and
type to the expected formals; the call expression has the same type as the result type of the
query. Rules T-QACallQual and T-QFCallQual for qualified query calls require the target to
be controlled (see section 6.5 and the auxiliary function isControlled in figure 6.19), the query
to be defined for the target’s base class, and the actual arguments to conform in number and
type to the expected formals; the types of the latter are combined with the target’s type using
the type combinator ‘⊗’. The type of the call expression is calculated by combining the result
type of the query with the target’s type using the combinator ‘?’.

Figure 6.23 describes the types for statements: sequences, conditionals, loops, assignments,
command calls, creation instructions. A sequence of statements is well-typed if its components
are (rule T-Seq). A conditional statement is well-typed if the condition has the boolean type and
both then and else parts are well-typed (rule T-If). We also provide the rule T-ObjectTest for
conditionals that use an object test; such conditionals are well-typed if the target of the object
test is a fresh variable of a valid type, both the source of the object test and the else part of the
conditional are well-typed, and the then part is well-typed in the environment enriched with the
target2. A loop is well-typed if the exit condition has the boolean type, and both the from part
and the body are well-typed (rule T-Loop). An assignment is well-typed if its target is writable,
i.e. an attribute or a local variable (see the auxiliary function isWritable in figure 6.19), and the
type of the source conforms to the type of the target (rule T-Assign). Rules T-CCallUnqual and
T-QCallUnqual are similar to the corresponding rules T-QFCallUnqual and T-QFCallQual
for queries but do not involve result types. The rule for creation instructions T-Create requires
the target to be writable, the creation procedure to be defined for the target’s base class and
marked as a creator, and the actual arguments to conform in number and type to the expected
formals; the types of the latter are combined with the target’s type using the type combinator
‘⊗’.

The well-formedness rules for routines, class declarations, and programs are given in figure
6.24. Rule T-Procedure states that a procedure declaration is well-typed and if and only if the
formal arguments and the local variables have valid types, its precondition and postcondition
have the boolean type in the environment enriched with the formal arguments, and the body is
well-typed in the environment enriched with the formal arguments and the local variables. The
type of the procedure is the cartesian product of the formal arguments’ types. Similarly, the
rule T-Function states that a function declaration is well-typed and if and only if the formal
arguments and the local variables have valid types, the result type is valid, the precondition has
the boolean type in the environment enriched with the formal arguments, the postcondition has
the boolean type in the environment enriched with the formal arguments and the local variable
Result, and the body is well-typed in the environment enriched with the formal arguments, the
local variables, and Result.

A class is well-formed if all its attributes have valid types, all its routine declarations are
well-formed and have valid types, and the invariant has the boolean type in the environment
enriched with the declaration of Current.

Finally, a program is well-formed and complete, i.e. Γ ` p �, if it provides a class declara-
tion for each class in Class(Γ) \ {ANY, NONE}, it contains at most one class declaration for

2Rules for other CAPs (Certified Attachment Patterns) involving object tests may be built following a similar
schema; we omit them here for conciseness.

6.12. PROPERTIES OF THE TYPE SYSTEM 121

the same class name, all classes are well-formed, and the root creation clause consists of a valid
root class name and a root creation procedure that is listed among the creators of the root class.

6.12 Properties of the type system

This section demonstrates the use of our type system. An example SCOOPC program is type-
checked; we argue informally the soundness of the type system, in the sense that the execution
of a correctly typed program will not introduce traitors. We also prove two important lemmas:

• Monotonicity of separate references
An expression e of the form f0.f1. · · · .fn, n ≥ 0, is separate if some fi is separate and
no fj is expanded, for all j ≥ i.

• Correct wrapping of separate calls
If an expression e is separate, i.e. Γ ` e : (γ, α, C) ∧ α 6∈ {•,Current.handler}, then
a feature call on e may occur only in the precondition, the postcondition, or the body of a
routine r which takes an attached formal argument farg such that e and is non-separate
from farg.

The first lemma helps proving the absence of traitors; the second one helps proving that separate
calls are only possible on locked targets. No formal proof of soundness is provided, however,
due to the lack of an operational semantics for SCOOPC .

Note that soundness means the absence of traitors but not the absence of void calls. As
pointed out in section 6.5, our type rules are strong enough to ensure that entities of attached
types remain non-void once they have been properly initialised; but we provide no formalisation
of the initialisation rules. A full treatment of the topic is beyond the scope of this work. For
simplicity, we may assume that a compiler performs additional checks, e.g. requires that every
routine initialise its attached local variables before using them, and that every creation procedure
initialise the attached attributes of its class before issuing any calls. Entities of expanded types
can be viewed as self-initialising. (A similar solution is used in the Eiffel standard [53].)

6.12.1 Example

We use a client–buffer scenario where the client object creates a separate buffer, stores an ele-
ment in the buffer, then retrieves an element. This simple program, including classes CLIENT ,
BUFFER, and BOOLEAN , demonstrates type-checking of several SCOOP constructs: cre-
ation of separate objects, feature calls on separate and non-separate targets, assignments, as-
sertions, qualified processor tags. The corresponding SCOOPC program p is given in figures
6.25–6.26. Of particular interest is the qualified processor tag used in the routine store , which
is necessary to demonstrate the correctness of the separate call a buffer . put(b). Routine put in
class BUFFER takes a non-separate formal argument, whereas the actual argument of the call
is separate; the enriched type of the latter, together with an application of the type combina-
tor ‘⊗’ permits concluding the relative non-separateness of the target and the actual argument.
The type combinator ‘?’ is used to evaluate types of separate feature call results from the point
of view of the client. Furthermore, the example involves separate calls in preconditions and
postconditions.

122 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γ ` True : (!, •, BOOLEAN)
(T-True)

Γ ` False : (!, •, BOOLEAN)
(T-False)

Γ ` Void : (?,⊥, NONE)
(T-Void)

i ∈ Z
Γ ` i : (!, •, INTEGER)

(T-Int)

x ∈ dom(Γ)

Γ ` x : Γ(x)
(T-Var)

Γ ` e : (!, α, C), Γ ` ¬isWritable(e)

Γ ` e : (!, e.handler, C)
(T-Implicit)

Γ ` e1 : T, Γ ` e2 : T

Γ ` e1 = e2 : (!, •, BOOLEAN)
(T-Equal)

Γ ` e : (!, •, BOOLEAN)

Γ ` not e : (!, •, BOOLEAN)
(T-Not)

Γ ` e1 : (!, •, BOOLEAN), Γ ` e2 : (!, •, BOOLEAN)

Γ ` e1 and e2 : (!, •, BOOLEAN)
(T-And)

Γ ` e1 : (!, •, BOOLEAN), Γ ` e2 : (!, •, BOOLEAN)

Γ ` e1 or e2 : (!, •, BOOLEAN)
(T-Or)

Γ ` e1 : (!, •, BOOLEAN), Γ ` e2 : (!, •, BOOLEAN)

Γ ` e1 implies e2 : (!, •, BOOLEAN)
(T-Implies)

Γ ` Current : (!, •, C), Γ ` FeatureType(C, f) = T

Γ ` f : T
(T-QACallUnqual)

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = C

Γ ` FeatureType(C, f) = T

Γ ` e.f : Te ? T
(T-QACallQual)

Γ ` Current : (!, •, C)

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ T n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Ti

Γ ` f(ā) : T
(T-QFCallUnqual)

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = C

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ T n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Te ⊗ Ti

Γ ` e.f(ā) : Te ? T
(T-QFCallQual)

Figure 6.22: Types for expressions

6.12. PROPERTIES OF THE TYPE SYSTEM 123

Γ ` stmts �, Γ ` stmt �
Γ ` stmts; stmt �

(T-Seq)

Γ ` e : (!, •, BOOLEAN), Γ ` stmts �, Γ ` stmts′ �
Γ ` if e then stmts else stmts′ end �

(T-If)

Γ ` T �Type, x 6∈ Γ, Γ, x : T ` stmts �
Γ ` e : Te, Γ ` stmts′ �

Γ ` if {x : T} e then stmts else stmts′ end �
(T-ObjectTest)

Γ ` e : (!, •, BOOLEAN), Γ ` stmts �, Γ ` stmts′ �
Γ ` from stmts until e loop stmts′ end �

(T-Loop)

Γ ` isWritable(x), Γ ` x : Tx, Γ ` e : Te, Γ ` Te � Tx

Γ ` x := e �
(T-Assign)

Γ ` Current : (!, •, C)

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ ∅ n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Ti

Γ ` f(ā) �
(T-CCallUnqual)

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = C

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ ∅ n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Te ⊗ Ti

Γ ` e.f(ā) �
(T-CCallQual)

Γ ` isWritable(x)

Γ ` x : Tx, Γ ` ClassType(Tx) = C, Γ ` f ∈ Creator(C)

Γ ` FeatureType(C, f) = T1 × ...× Tn −→ ∅ n ≥ 0

Γ ` ai : T ′
i i ∈ 1..n, ā = a1..an, Γ ` ∀i∈1..n T ′

i � Te ⊗ Ti

Γ ` create x.f(ā) �
(T-Create)

Figure 6.23: Types for statements

124 CHAPTER 6. TYPE SYSTEM FOR SCOOP

rDecl = r (x1 : T1, ..., xk : Tk)

require pre local l1 : T l1, ..., ll : T ll do stmts ensure post end

Γ ` ∀j ∈ {1..k}. Tj �Type, Γ ` ∀j ∈ {1..l}. T lj �Type

Γ′ = Γ, x1 : T1, ..., xk : Tk

Γ′ ` pre : (!, •, BOOLEAN), Γ′ ` post : (!, •, BOOLEAN)

Γ′, l1 : T l1, ..., ll : T ll ` stmts �
Γ ` rDecl : T1 × ...× Tk −→ ∅

(WF-Procedure)

rDecl = r (x1 : T1, ..., xk : Tk) : Tres

require pre local l1 : T l1, ..., ll : T ll do stmts ensure post end

Γ ` ∀j ∈ {1..k}. Tj �Type, Γ ` ∀j ∈ {1..l}. T lj �Type, Γ ` Tres � Type

Γ′ = Γ, x1 : T1, ..., xk : Tk

Γ′ ` pre : (!, •, BOOLEAN), Γ′,Result : Tres ` post : (!, •, BOOLEAN)

Γ′, l1 : T l1, ..., ll : T ll,Result : Tres ` stmts �
Γ ` rDecl : T1 × ...× Tk −→ Tres

(WF-Function)

k, l, m, n ≥ 0, Γ ` Γ �
Γ(C) = class C inherit C ′ create cr1, ..., crk

feature pt1, ..., ptl, a1 : T1, ..., am : Tm, r1 : RT1, ..., rn : RTn end

cDecl = ...class C inherit C ′ create cr1, ..., crk

feature pt1, ..., ptl, a1 : T1, ..., am : Tm, rDecl1, ..., rDecln

invariant inv end

Γ,Current : (!, •, C) ` inv : (!, •, BOOLEAN)

Γ,Current : (!, •, C) ` ∀j ∈ {1..m}.Tj �Type

Γ,Current : (!, •, C) ` ∀j ∈ {1..n}. rDeclj : RTj

Γ ` cDecl �
(WF-Class)

n ≥ 0, p = cDecl1, ..., cDecln, RC.r

∀i, j ∈ {1..n}. cDecli = ...class C inherit... ∧ cDeclj = ...class C inherit... =⇒ i = j

Γ ` ∀j ∈ {1..n}. cDeclj�
Class(Γ) = Class(p) ∪ {ANY, NONE}
Γ ` RC ∈ Class(Γ), Γ ` r ∈ Creator(RC)

Γ ` p �
(WF-Program)

Figure 6.24: Well-formedness of routines, classes, and programs

6.12. PROPERTIES OF THE TYPE SYSTEM 125

p =

class CLIENT inherit ANY create make

feature

buffer : (!,>, BUFFER)

make

require True

do

create buffer.make empty

store (buffer)

consume (buffer)

ensure True

end

store (a buffer : (!,>, BUFFER))

require True

local b : (?, < a buffer.handler >,BUFFER)

do

create b.make empty

a buffer.put (b)

ensure not a buffer.is empty

end

consume (a buffer : (!,>, BUFFER))

require not a buffer.is empty

local a : (?,>, ANY)

do

a := a buffer.item

ensure True

end

invariant True

end

...

Figure 6.25: Client–buffer program

126 CHAPTER 6. TYPE SYSTEM FOR SCOOP

...

class BUFFER inherit ANY create make empty, put

feature

item : (?, •, ANY)

is empty : (!, •, BOOLEAN)

make empty

require True

do

is empty := True

ensure True

end

put (an item : (?, •, ANY))

require True

do

item := an item

is empty := False

ensure True

end

invariant True

end

expanded class BOOLEAN inherit ANY invariant True end

{CLIENT}.make

Figure 6.26: Client–buffer program (cont.)

6.12. PROPERTIES OF THE TYPE SYSTEM 127

Γp =

class ANY end,

class NONE end,

class CLIENT inherit ANY create make

feature

buffer : (!,>, BUFFER), make : ∅ −→ ∅,

store : (!,>, BUFFER) −→ ∅, consume : (!,>, BUFFER) −→ ∅
end,

class BUFFER inherit ANY create make empty, put

feature

item : (?, •, ANY), is empty : (!, •, BOOLEAN),

make empty : ∅ −→ ∅, put : (?, •, ANY) −→ ∅
end,

class BOOLEAN inherit ANY end

Figure 6.27: Typing environment Γp

For program p, we construct the typing environment Γp given in figure 6.27; we establish

Class(p) = {BOOLEAN, BUFFER, CLIENT} (6.12.1)
Class(Γp) = {ANY, BOOLEAN, BUFFER, CLIENT, NONE} (6.12.2)

It is easy to demonstrate the well-formedness of Γp, i.e.

Γp ` Γp � (6.12.3)

by establishing v and � for Γp, showing their acyclicity, and using WF-EmptyEnv then WF-
ClassEnv for each class in Class(Γp), taking Γ = Γp.

To demonstrate that p is correct, we derive Γp ` p � using WF-Program; this requires
proving the uniqueness and the well-formedness of class declarations in p, the completeness of
p, i.e. that p provides declarations for all classes in Class(Γp) except ANY and NONE, and
the well-definedness of root class and root creation procedure.

128 CHAPTER 6. TYPE SYSTEM FOR SCOOP

∀C, C ′ ∈ {BOOLEAN, BUFFER, CLIENT}.
cDeclC = ...class C inherit... ∧ cDeclC′ = ...class C ′ inherit... =⇒ C = C ′

Class(Γp) = Class(p) ∪ {ANY, NONE}
Γp ` class BOOLEAN inherit ANY invariant True end �
Γp ` class BUFFER inherit ANY ... invariant True end �
Γp ` class CLIENT inherit ANY ... invariant True end �
Γp ` CLIENT ∈ Class(Γp)

Γp ` make ∈ Creator(CLIENT)

Γp ` p �
(WF-Class)

To simplify the proof, we will use the following lemma:

Lemma 6.1 (Reflexivity of �) Relation � defined for Γp is reflexive, i.e. Γp ` T � T for all
T such that Γp ` T �Type.

Proof: Straightforward, by S-Subclass followed by C-Class, C-Any, or C-None, depending
on ClassType(T). We omit the details here.

We establish now the antecedents of WF-Program:

Uniqueness of class declarations

∀C, C ′ ∈ {BOOLEAN, BUFFER, CLIENT}.
cDeclC = ...class C inherit... ∧ cDeclC′ = ...class C ′ inherit... =⇒ C = C ′

/ immediate from the definition of p /

Completeness

Class(Γp) = Class(p) ∪ {ANY, NONE}
/ from (6.12.2) and (6.12.1) /

Well-definedness of root class

Γp ` CLIENT ∈ Class(Γp)
/ from (6.12.2) /

Well-definedness of root creation procedure

Γp ` make ∈ Creator(CLIENT)
/ from the definition of p and the definition of Creator /

6.12. PROPERTIES OF THE TYPE SYSTEM 129

Well-formedness of class BOOLEAN

Γp ` class BOOLEAN inherit ANY invariant True end �
/ from WF-Class, T-True, and (6.12.3) /

Γp ` Γp �, Γp,Current : (!, •, BOOLEAN) ` True : (!, •, BOOLEAN) (T-True)

Γp ` class BOOLEAN inherit ANY invariant True end � (WF-Class)

Well-formedness of class BUFFER

Γp ` class BUFFER inherit ANY ... invariant True end �
/ from WF-Class /
Let Γb = Γp,Current : (!, •, BUFFER)

Γb ` True : (!, •, BOOLEAN)

Γb ` (?, •, ANY) �Type

Γb ` (!, •, BOOLEAN) �Type

Γb ` make empty ... end : ∅ −→ ∅
Γb ` put(an item : (?, •, ANY)) ... end : (?, •, ANY) −→ ∅

Γp ` class BUFFER inherit ANY ... invariant True end �
(WF-Class)

We establish the antecedents of WF-Class:

• Well-definedness of invariant:
Γb ` True : (!, •, BOOLEAN)
/ from T-True /

Γb ` True : (!, •, BOOLEAN) (T-True)

• Well-definedness of attribute item:
Γb ` (?, •, ANY) �Type

/ from WF-ReferenceType, A-isExpanded, WF-BulletPTag, WF-ClassType, C-Any /

Γb ` • �ProcTag (WF-BulletPTag)

Γb ` ANY v ANY (C-Any)

Γb ` ANY �ClassType (WF-ClassType)

130 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γb ` ¬isExpanded(ANY) (A-isExpanded)

? ∈ {!, ?}, Γb ` • �ProcTag

Γb ` ANY �ClassType, Γb ` ¬isExpanded(ANY)

Γb ` (?, •, ANY) �Type (WF-ReferenceType)

• Well-definedness of attribute is empty:
Γb ` (!, •, BOOLEAN) �Type

/ from WF-ExpandedType, A-isExpanded, WF-ClassType, C-Class /

Γb = Γ′, class BOOLEAN inherit ANY ... end, Γ′′ (definition of Γb)

Γb ` BOOLEAN v BOOLEAN (C-Class)

Γb ` BOOLEAN �ClassType (WF-ClassType)

Γb ` isExpanded(BOOLEAN) (A-isExpanded)

Γb ` BOOLEAN �ClassType, Γb ` isExpanded(BOOLEAN)

Γb ` (!, •, BOOLEAN) �Type (WF-ExpandedType)

• Well-definedness of routine make empty:
Γb ` make empty ... end : ∅ −→ ∅
/ from WF-Procedure, T-True, A-isWritable, T-Assign, T-QACallUnqual /

precondition of make empty:

Γb ` True : (!, •, BOOLEAN) (T-True)

postcondition of make empty: idem

body of make empty:

6.12. PROPERTIES OF THE TYPE SYSTEM 131

Γb ` isWritable(is empty) (A-isWritable)

Γb ` True : (!, •, BOOLEAN) (T-True)

Γb ` (!, •, BOOLEAN) � (!, •, BOOLEAN) (lemma 6.1)

Γb(Current) = (!, •, BUFFER)

Γb ` Current : (!, •, BUFFER)
(T-Var)

Γb ` FeatureType(BUFFER, is empty) = (!, •, BOOLEAN) (def. of FeatureType)

Γb ` Current : (!, •, BUFFER)

Γb ` FeatureType(BUFFER, is empty) = (!, •, BOOLEAN)

Γb ` is empty : (!, •, BOOLEAN)
(T-QACallUnqual)

Γb ` isWritable(is empty), Γb ` is empty : (!, •, BOOLEAN)

Γb ` True : (!, •, BOOLEAN)

Γb ` (!, •, BOOLEAN) � (!, •, BOOLEAN)

Γb ` is empty := True �
(T-Assign)

declaration of make empty:

Γb ` True : (!, •, BOOLEAN), Γb ` True : (!, •, BOOLEAN)

Γb ` is empty := True �
Γb ` make empty require True do is empty := True ensure True end : ∅ −→ ∅

(WF-Procedure)

• Well-definedness of routine put:
Γb ` put(an item : (?, •, ANY)) ... end : (?, •, ANY) −→ ∅
/ from WF-Procedure, T-True, T-Seq, T-Assign /
Let Γbp = Γb, an item : (?, •, ANY)

precondition of put:

132 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γbp ` True : (!, •, BOOLEAN) (T-True)

postcondition of put:

Γbp ` True : (!, •, BOOLEAN) (T-True)

body of put:

Γbp ` isWritable(item) (A-isWritable)

Γbp(Current) = (!, •, BUFFER)

Γbp ` Current : (!, •, BUFFER)
(T-Var)

Γbp ` FeatureType(BUFFER, item) = (?, •, ANY) (def. of FeatureType)

Γbp ` Current : (!, •, BUFFER)

Γbp ` FeatureType(BUFFER, item) = (?, •, ANY)

Γbp ` item : (?, •, ANY)
(T-QACallUnqual)

Γbp(an item) = (?, •, ANY)

Γbp ` an item : (?, •, ANY)
(T-Var)

Γbp ` (?, •, ANY) � (?, •, ANY) (lemma 6.1)

Γbp ` isWritable(item), Γbp ` item : (?, •, ANY)

Γbp ` an item : (?, •, ANY)

Γbp ` (?, •, ANY) � (?, •, ANY)

Γbp ` item := an item �
(T-Assign)

Γbp ` isWritable(is empty) (A-isWritable)

6.12. PROPERTIES OF THE TYPE SYSTEM 133

Γbp ` False : (!, •, BOOLEAN) (T-False)

Γbp ` (!, •, BOOLEAN) � (!, •, BOOLEAN) (lemma 6.1)

Γbp ` FeatureType(BUFFER, is empty) = (!, •, BOOLEAN) (def. of FeatureType)

Γbp ` Current : (!, •, BUFFER)

Γbp ` FeatureType(BUFFER, is empty) = (!, •, BOOLEAN)

Γbp ` is empty : (!, •, BOOLEAN)
(T-QACallUnqual)

Γbp ` isWritable(is empty), Γbp ` is empty : (!, •, BOOLEAN)

Γbp ` False : (!, •, BOOLEAN)

Γbp ` (!, •, BOOLEAN) � (!, •, BOOLEAN)

Γbp ` is empty := False �
(T-Assign)

Γbp ` item := an item �, Γbp ` is empty := False �
Γbp ` item := an item; is empty := False �

(T-Seq)

declaration of put:

Γb ` True : (!, •, BOOLEAN), Γb ` True : (!, •, BOOLEAN)

Γbp ` item := an item; is empty := False �
Γb ` put (an item : (?, •, ANY)) require True

do item := an item; is empty := False

ensure True end : (?, •, ANY) −→ ∅

(WF-Procedure)

Well-formedness of class CLIENT

Γp ` class CLIENT inherit ANY ... invariant True end �
/ from WF-Class /

134 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Let Γc = Γp,Current : (!, •, CLIENT)

Γc ` True : (!, •, BOOLEAN)

Γc ` (!,>, BUFFER) �Type

Γc ` make ... end : ∅ −→ ∅
Γc ` store(a buffer : (!,>, BUFFER)) ... end : (!,>, BUFFER) −→ ∅
Γc ` consume(a buffer : (!,>, BUFFER)) ... end : (!,>, BUFFER) −→ ∅

Γp ` class CLIENT inherit ANY ... invariant True end �
(WF-Class)

We establish the antecedents of WF-Class:

• Well-definedness of invariant:
Γc ` True : (!, •, BOOLEAN)
/ from T-True /

Γc ` True : (!, •, BOOLEAN) (T-True)

• Well-definedness of attribute buffer:
Γc ` (!,>, BUFFER) �Type

/ from WF-ReferenceType, A-isExpanded, WF-ClassType, C-Class, WF-TopPTag /

Γc ` > �ProcTag (WF-TopPTag)

Γc = Γ′, class BUFFER inherit ANY ...end, Γ′′ (definition of Γc)

Γc ` BUFFER v BUFFER (C-Class)

Γc ` BUFFER �ClassType (WF-ClassType)

Γc ` ¬isExpanded(BUFFER) (A-isExpanded)

! ∈ {!, ?}, Γc ` > �ProcTag

Γc ` BUFFER �ClassType, Γc ` ¬isExpanded(BUFFER)

Γc ` (!,>, BUFFER) �Type (WF-ReferenceType)

6.12. PROPERTIES OF THE TYPE SYSTEM 135

• Well-definedness of routine make:
Γc ` make ... end : ∅ −→ ∅
/ from WF-Procedure, T-True, T-Seq, T-Create, T-CCallUnqual /

precondition of make:

Γc ` True : (!, •, BOOLEAN) (T-True)

postcondition of make: idem

body of make:

Γc(Current) = (!, •, CLIENT)

Γc ` Current : (!, •, CLIENT)
(T-Var)

Γc ` (!,>, BUFFER) � (!,>, BUFFER) (lemma 6.1)

Γc ` FeatureType(CLIENT, store) = (!,>, BUFFER) −→ ∅ (def. of FeatureType)

Γc ` FeatureType(CLIENT, consume) = (!,>, BUFFER) −→ ∅ (def. of FeatureType)

Γc ` FeatureType(BUFFER,make empty) = ∅ −→ ∅ (def. of FeatureType)

Γc ` FeatureType(CLIENT, buffer) = (!,>, BUFFER) −→ ∅ (def. of FeatureType)

Γc ` Current : (!, •, CLIENT)

Γc ` FeatureType(CLIENT, buffer) = (!,>, BUFFER)

Γc ` buffer : (!,>, BUFFER)
(T-QACallUnqual)

Γc ` ClassType((!,>, BUFFER)) = BUFFER (A-ClassType)

Γc ` make empty ∈ Creator(BUFFER) (definition of Creator)

136 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γc ` isWritable(buffer) (A-isWritable)

Γc ` isWritable(buffer), Γc ` buffer : (!,>, BUFFER)

Γc ` ClassType((!,>, BUFFER)) = BUFFER

Γc ` make empty ∈ Creator(BUFFER)

Γc ` FeatureType(BUFFER,make empty) = ∅ −→ ∅
Γc ` create buffer.make empty �

(T-Create)

Γc ` Current : (!, •, CLIENT)

Γc ` FeatureType(CLIENT, store) = (!,>, BUFFER)

Γc ` buffer : (!,>, BUFFER), Γc ` (!,>, BUFFER) � (!,>, BUFFER)

Γc ` store(buffer) �
(T-CCallUnqual)

Γc ` Current : (!, •, CLIENT)

Γc ` FeatureType(CLIENT, consume) = (!,>, BUFFER)

Γc ` buffer : (!,>, BUFFER), Γc ` (!,>, BUFFER) � (!,>, BUFFER)

Γc ` consume(buffer) �
(T-CCallUnqual)

Γc ` create buffer.make empty �, Γc ` store(buffer) �
Γc ` create buffer.make empty; store(buffer) �

(T-Seq)

Γc ` create buffer.make empty; store(buffer) �
Γc ` consume(buffer) �

Γc ` create buffer.make empty; store(buffer); consume(buffer) �
(T-Seq)

declaration of make:

Γc ` True : (!, •, BOOLEAN), Γc ` True : (!, •, BOOLEAN)

Γc ` create buffer.make empty; store(buffer); consume(buffer) �
Γc ` make require True

do create buffer.make empty; store(buffer); consume(buffer)

ensure True end : ∅ −→ ∅
(WF-Procedure)

6.12. PROPERTIES OF THE TYPE SYSTEM 137

• Well-definedness of routine store:
Γc ` store(a buffer : (!,>, BUFFER)) ... end : (!,>, BUFFER) −→ ∅
/ from WF-Procedure, T-True, T-Seq, T-Create, T-CCallQual /
Let Γcs = Γc, a buffer : (!,>, BUFFER)
Let Γcsb = Γcs, b : (!, < a buffer.handler >,BUFFER)

precondition of store:

Γcs ` True : (!, •, BOOLEAN) (T-True)

postcondition of store:

Γcs(a buffer) = (!,>, BUFFER)

Γcs ` a buffer : (!,>, BUFFER)
(T-Var)

Γcs ` ¬isWritable(a buffer) (A-isWritable)

Γcs ` a buffer : (!,>, BUFFER), Γcs ` ¬isWritable(a buffer)

Γcs ` a buffer : (!, < a buffer.handler >,BUFFER)
(T-Implicit)

Γcs ` FeatureType(BUFFER, is empty) = (!, •, BOOLEAN) (def. of FeatureType)

Γcs ` a buffer : (!, < a buffer.handler >,BUFFER)

Γcs ` isControlled(a buffer)

Γcs ` ClassType((!, < a buffer.handler >,BUFFER)) = BUFFER

Γcs ` FeatureType(BUFFER, is empty) = (!, •, BOOLEAN)

Γcs ` a buffer.is empty : (!, < a buffer.handler >,BUFFER) ? (!, •, BOOLEAN)
(T-QACallQual)

Γcs ` (!, < a buffer.handler >,BUFFER) ? (!, •, BOOLEAN) =

(!, •, BOOLEAN) (TC-?)

Γcs ` a buffer.is empty : (!, •, BOOLEAN)

Γcs ` not a buffer.is empty : (!, •, BOOLEAN)
(T-Not)

138 CHAPTER 6. TYPE SYSTEM FOR SCOOP

body of store:

Γcsb(b) = (!, < a buffer.handler >,BUFFER)

Γcsb ` b : (!, < a buffer.handler >,BUFFER)
(T-Var)

Γcsb ` isWritable(b) (A-isWritable)

Γcsb ` ClassType((!, < a buffer.handler >,BUFFER)) = BUFFER (A-ClassType)

Γcsb ` make empty ∈ Creator(BUFFER) (definition of Creator)

Γcsb ` FeatureType(BUFFER,make empty) = ∅ −→ ∅ (def. of FeatureType)

Γcsb ` isWritable(b), Γcsb ` b : (!, < a buffer.handler >,BUFFER)

Γc ` ClassType((!, < a buffer.handler >,BUFFER)) = BUFFER

Γc ` make empty ∈ Creator(BUFFER)

Γcsb ` FeatureType(BUFFER, make empty) = ∅ −→ ∅
Γcsb ` create b.make empty �

(T-Create)

Γcsb(a buffer) = (!,>, BUFFER)

Γcsb ` a buffer : (!,>, BUFFER)
(T-Var)

Γcsb ` ¬isWritable(a buffer) (A-isWritable)

Γcsb ` a buffer : (!,>, BUFFER), Γcsb ` ¬isWritable(a buffer)

Γcsb ` a buffer : (!, < a buffer.handler >,BUFFER)
(T-Implicit)

Γcsb ` isControlled(a buffer) (A-isControlled)

Γcsb ` FeatureType(BUFFER, put) = (?, •, ANY) −→ ∅ (def. of FeatureType)

6.12. PROPERTIES OF THE TYPE SYSTEM 139

Γcsb = Γ′, class BUFFER inherit ANY ... end, Γ′′ (definition of Γcsb)

Γcsb ` BUFFER v ANY (C-Subclass)

Γcsb ` (?, < a buffer.handler >,BUFFER) �
(?, < a buffer.handler >,ANY)

(S-Subclass)

Γcsb ` (!, < a buffer.handler >,BUFFER) �
(?, < a buffer.handler >,ANY)

(S-Attached)

Γcsb ` (!, < a buffer.handler >,BUFFER)⊗ (?, •, ANY)) =

(?, < a buffer.handler >,ANY) (TC-⊗)

Γcsb ` a buffer : (!, < a buffer.handler >,BUFFER)

Γcsb ` isControlled(a buffer)

Γcsb ` ClassType((!, < a buffer.handler >,BUFFER)) = BUFFER

Γcsb ` FeatureType(BUFFER, put) = (?, •, ANY) −→ ∅
Γcsb ` b : (!, < a buffer.handler >,BUFFER)

Γcsb ` (!, < a buffer.handler >,BUFFER) �
(!, < a buffer.handler >,BUFFER)⊗ (?, •, ANY))

Γcsb ` a buffer.put (b) �
(T-CCallQual)

Γcsb ` create b.make empty �, Γcsb ` a buffer.put (b) �
Γcsb ` create b.make empty; a buffer.put (b) �

(T-Seq)

declaration of store:

Γcs ` ¬isAttached((!,>, BUFFER)) (A-isAttached)

Γcs = Γc, a buffer : (!,>, BUFFER)

Γcs¬isWritable(a buffer), Γcs ` isAttached((!,>, BUFFER))

Γcs `< a buffer.handler > diamondProcTag

(WF-QualifiedPTag)

! ∈ {?, !}, Γcs `< a buffer.handler > diamondProcTag

Γcs ` BUFFER �ClassType, Γcs ` ¬isExpanded(BUFFER)

Γcs ` (!, < a buffer.handler >,BUFFER) �Type

(WF-ReferenceType)

140 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γcs ` (!, < a buffer.handler >,BUFFER) �Type

Γcs ` True : (!, •, BOOLEAN)

Γcs ` not a buffer.is empty : (!, •, BOOLEAN)

Γcsb ` create b.make empty; a buffer.put (b) �
Γc ` store require True local b : (!, < a buffer.handler >,BUFFER)

do create b.make empty; a buffer.put (b)

ensure not a buffer.is empty end : (!,>, BUFFER) −→ ∅
(WF-Procedure)

• Well-definedness of routine consume:
Γc ` consume(a buffer : (!,>, BUFFER)) ... end : (!,>, BUFFER) −→ ∅
/ from WF-Procedure, T-True, T-Seq, T-Create, T-CCallQual /
Let Γcs = Γc, a buffer : (!,>, BUFFER)
Let Γcsb = Γcs, a : (?,>, ANY)

precondition of consume: proof as for the postcondition of store

postcondition of consume: proof as for the precondition of store

body of consume:

Γcsb(a) = (?,>, ANY)

Γcsb ` a : (?,>, ANY)
(T-Var)

Γcsb ` isWritable(a) (A-isWritable)

Γcsb ` FeatureType(BUFFER, item) = (?, •, ANY) (def. of FeatureType)

Γcsb(a buffer) = (!,>, BUFFER)

Γcsb ` a buffer : (!,>, BUFFER)
(T-Var)

Γcsb ` isControlled(a buffer) (A-isControlled)

6.12. PROPERTIES OF THE TYPE SYSTEM 141

Γcsb ` a buffer : (!, < a buffer.handler >,BUFFER)

Γcsb ` isControlled(a buffer)

Γcsb ` ClassType((!, < a buffer.handler >,BUFFER)) = BUFFER

Γcsb ` FeatureType(BUFFER, item) = (?, •, ANY)

Γcsb ` a buffer.item : (!, < a buffer.handler >,BUFFER) ? (?, •, ANY)
(T-QACallQual)

Γcsb ` (!, < a buffer.handler >,BUFFER) ? (?, •, ANY)

= (?, < a buffer.handler >,ANY) (TC-?)

Γcsb ` ANY v ANY (C-Any)

Γcsb ` (?, < a buffer.handler >,ANY) � (?,>, ANY) (S-Top)

Γcsb ` a : (?,>, ANY), Γcsb ` isWritable(a)

Γcsb ` a buffer.item : (?, < a buffer.handler >,ANY)

Γcsb ` (?, < a buffer.handler >,ANY) � (?,>, ANY)

Γcsb ` a := a buffer.item �
(T-Assign)

declaration of consume:

Γcs ` > �ProcTag (WF-TopPTag)

Γcs ` ANY v ANY (C-Any)

Γcs ` ANY �ClassType (WF-ClassType)

Γcs ` ¬isExpanded(ANY) (A-isExpanded)

? ∈ {?, !}, Γcs ` > �ProcTag

Γcs ` ANY �ClassType, Γcs ` ¬isExpanded(ANY)

Γcs ` (?,>, ANY) �Type

(WF-ReferenceType)

142 CHAPTER 6. TYPE SYSTEM FOR SCOOP

Γcs ` (?,>, ANY) �Type

Γcs ` not a buffer.is empty : (!, •, BOOLEAN)

Γcs ` True : (!, •, BOOLEAN)

Γcsb ` a := a buffer.item �
Γc ` consume require not a buffer.is empty local a : (?,>, ANY)

do a := a buffer.item ensure True end : (!,>, BUFFER) −→ ∅
(WF-Procedure)

Well-formedness and completeness of p

Γp ` p �
/ straightforward application of WF-Class, having proved all the antecedents /

∀C, C ′ ∈ {BOOLEAN, BUFFER, CLIENT}.
cDeclC = ...class C inherit... ∧ cDeclC′ = ...class C ′ inherit... =⇒ C = C ′

Class(Γp) = Class(p) ∪ {ANY, NONE}
Γp ` class BOOLEAN inherit ANY invariant True end �
Γp ` class BUFFER inherit ANY ... invariant True end �
Γp ` class CLIENT inherit ANY ... invariant True end �
Γp ` CLIENT ∈ Class(Γp)

Γp ` make ∈ Creator(CLIENT)

Γp ` p �
(WF-Class)

This completes the proof of program p. �

6.12.2 Lemmas

This section discusses two important properties ensured by our type system: correct wrapping
of separate calls, and monotonicity of separate references. We prove the corresponding lemmas
which may be used in a proof of soundness.

Monotonicity of separate references

Multidot expressions involving separate calls must be themselves separate, unless all separate
calls are followed by a call to a feature returning an expanded result. This property is essential
in proving the absence of traitors, i.e. non-separate expressions that represent separate objects.
We formalise it as follows.

6.12. PROPERTIES OF THE TYPE SYSTEM 143

Lemma 6.2 (Monotonicity of separate references)
An expression en of the form f0.f1. · · · .fn, n ≥ 0, is separate, i.e.

Γ ` en : (γn, αn, Cn) ∧ αn 6∈ {•,Current.handler}

if ∃i ∈ 0..n. (fi is separate ∧ ∀j ≥ i. fj is not expanded).

Proof: By induction on the shape of en.

Induction basis: We take i ∈ {0..n} such that

Γ `fi : (γ, α, C) ∧ α 6∈ {•,Current.handler}
∧ ∀j ≥ i.(fj : (γ′, α′, C ′) ∧ ¬isExpanded(C ′) ∧ α′ ∈ {•,Current.handler})

• Case i = 0
ei = f0, hence Γ ` ei : (γ, α, C) ∧ α 6∈ {•,Current.handler}.

• Case i > 0
ei = ei−1.fi, where ei−1 = f0. · · · .fi−1 ∧ Γ ` ei−1 : (γi−1, αi−1, Ci−1)
The type of ei can be derived only from C-QACallQual or C-QFCallQual; in both cases
we have

Γ ` ei : (γi−1, αi−1, Ci−1) ? (γ, α, C)

From TC-? and α 6∈ {•,Current.handler}, we obtain

(γi−1, αi−1, Ci−1) ? (γ, α, C) = (γ,>, C)

Therefore Γ ` ei : (γ,>, C).

Induction step: ej+1 = ej.fj+1, Γ ` ej : (γj, αj, Cj) ∧ αj 6∈ {•,Current.handler}, and
Γ ` fj+1 : (γ, α, C) ∧ α ∈ {•,Current.handler}.

The type of ej + 1 can be derived only from C-QACallQual or C-QFCallQual; in both
cases we have

Γ ` ej+1 : (γj, αj, Cj) ? (γ, α, C)

From TC-? and the assumptions αj 6∈ {•,Current.handler}
and α ∈ {•,Current.handler}, we obtain

(γj, αj, Cj) ? (γ, α, C) = (γ, αj, C)

Therefore Γ ` ej+1 : (γ, αj, C) ∧ αj 6∈ {•,Current.handler}.
�

Correct wrapping of separate calls

According to the call validity rule 6.5.3, the target of a feature call must be controlled. The
definition of controllability (6.5.2) states that an expression e is controlled if and only if e is
attached and either non-separate or having the same explicit processor tag as some attached
formal arguments of the enclosing routine. The attachability requirement eliminates calls on a

144 CHAPTER 6. TYPE SYSTEM FOR SCOOP

void target; the additional conditions ensure a correct locking of the target: the target must be
handled either by the current processor (in which case it is trivially locked by the client) or by
a processor handling one of the locked arguments (in which case it is locked as well). The type
rules given in section 6.11 have been devised in a way that ensures controllability of call targets.
We prove the following lemma concerning the controllability of separate targets.

Lemma 6.3 (Correct wrapping of separate calls)
If an expression e is separate, i.e. Γ ` e : (γ, α, C) ∧ α 6∈ {•,Current.handler}, then a
feature call on e may occur only in the precondition, the postcondition, or the body of a routine
r which takes an attached formal argument farg such that e and is non-separate from farg.

Proof: On the derivation of e.f .
There are three rules whose conclusions match e.f : T-CCallQual (Γ ` e.f(...) �),
T-QACallQual (Γ ` e.f : T), and T-QFCallQual (Γ ` e.f(...) : T).

• Case T-CCallQual
T-CCallQual has an antecedent isControlled((γ, α, C)). Only one rule allows the
derivation of isControlled((γ, α, C)):

Γ ` farg : (!, αfarg, Cfarg), Γ ` isFormalArgument(farg)

Γ ` C �ClassType

γ = !, Γ ` α = farg.handler

Γ ` isControlled((γ, α, C))
(A-isControlled)

From A-isFormalArgument we know that either farg = Current or farg is a formal
argument of some routine r.

– Case farg = Current
α = Current.handler contradicts the assumption α 6∈ {•,Current.handler}.

– Case farg 6= Current
farg ∈ dom(Γ) only in the antecedents of WF-Procedure or WF-Function ap-
plied to r, where Γ is obtained by enriching the environment with declarations of all
formal arguments of r. There are three such antecedents: one for the precondition,
one for the postcondition, and one for the body of r. Therefore, e.f(...) must occur
in one of these contexts.

The above derivation using A-isControlled now permits concluding that:

– the call e.f(...) occurs in the precondition, the postcondition, or the body of some
routine r,

– e is non-separate from farg,

– farg is a formal argument of r,

– farg is attached.

• Case T-QACallQual: idem

• Case T-CCallQual: idem

�

7
Flexible locking

THE access control policy of SCOOP, as described so far, provides strong safety guarantees:
the mutual exclusion and the atomicity at the routine level, and the FIFO scheduling of clients’
calls. Unfortunately, these guarantees come at a high price: all arguments of a feature call have
to be locked, even if they are never used by the feature. In most cases, the amount of locking
is higher than necessary; such a pessimistic locking policy increases the danger of deadlocks.
Additionally, a client that holds a lock on a given processor cannot relinquish it temporarily
when the lock is needed by one of its suppliers. As a result, certain scenarios, e.g. separate
callbacks, cannot be implemented.

This chapter presents two refinements of the locking policy: a type-based mechanism to
specify which arguments of a routine call should be locked, and a lock passing mechanism
for safe handling of complex synchronisation scenarios with mutual locking of several sepa-
rate objects. When combined, these two refinements greatly improve the expressive power of
SCOOP, give the programmers more control over the computation, and increase the potential
for parallelism, thus reducing the risk of deadlock.

7.1 Eliminating unnecessary locks

In this section, we present the first refinement of the locking policy: a mechanism for specifying
which formal arguments of a routine should be locked. The selective locking relies on attached
types recently introduced in Eiffel1 [53]; it is fully compatible with other object-oriented con-
cepts such as inheritance, polymorphism, and dynamic binding. The application of attached
types to concurrency is a result of joint work with Bertrand Meyer; the basic idea was described
in [96, 109]. Here, we refine the mechanism, integrate it with the rest of the SCOOP framework,
and study its impact on the advanced language features.

7.1.1 (Too much) locking considered harmful

Recall that SCOOP, as defined so far, requires all formal arguments of a feature to be reserved
before the feature is applied (see the feature application rule 6.1.4). This rule is too restric-
tive. Consider the feature r in Figure 7.1. The handlers of x, y, and z must be locked on
behalf of the executing processor before the body of r is executed. (Rule 6.1.5 also requires
some precondition to hold before executing r. For the moment we will ignore this require-
ment; we will come back to it in section 7.1.3.) Is it really necessary to lock all the arguments?

1Spec] has a similar type mechanism: non-nullable types.

145

146 CHAPTER 7. FLEXIBLE LOCKING

r (x : separate X; y : separate Y; z : separate Z)
require

some precondition
local

my y: separate Y
my z: separate Z

do
x . f
my y := y
x .g
my z := z
s (z)

end

Figure 7.1: Greedy locking

The body of r contains two calls on x, therefore x needs to be locked. There is no way around it:
we must ensure that no other processor is currently using x. On the other hand, y only appears
as source of an assignment; no calls on y are made. Similarly, z only appears as source of an as-
signment and as actual argument of a feature call. It seems that only the processor that handles
x needs to be locked; it is not necessary for y and z because the body of r does not perform any
calls on them.

The eager locking policy has two major drawbacks. First of all, it increases the danger of
deadlocks: the more resources a routine requires, the more likely it is to end up in a dead-
lock. Secondly, references cannot be passed around without locking the corresponding objects;
programmers have no real control over the locks.

7.1.2 Semantics of attached types

We rely on the attached type mechanism [53] to support selective locking of feature arguments.
We require all attached formal arguments to be locked before a feature is applied; no detach-
able formal arguments are locked. The refined rule 7.1.1 captures precisely the necessary and
sufficient conditions for a safe application of features.

Definition 7.1.1 (Feature application rule (refined)) Before a feature is applied, its attached
formal arguments must be reserved by the supplier, and its precondition must hold.

Together with the call validity rule 6.5.3, the feature application rule 7.1.1 ensures atomicity:
a routine represents a critical section with respect to all the processors that handle its attached
formal arguments; as a result, all the calls within the routine are guaranteed to be handled
atomically. But the new semantics of attached and detachable types implied by these rules is
not a mere “hack” to optimise locking. It should be viewed as a generalisation of the sequential
semantics; it turns out to be necessary for other purposes as well:

• A solution of the void separate argument problem.
As pointed out in section 5.8.3, it is unclear what the semantics of locking should be in

7.1. ELIMINATING UNNECESSARY LOCKS 147

the case of void arguments. Rule 7.1.1 solves the issue: detachable arguments are ignored
by the locking mechanism altogether.

• The development of a lock passing mechanism.
The decision whether to pass or not to pass the locks is based on the argument types (see
section 7.2).

• A sound reasoning technique for separate feature calls.
The refined locking policy is essential to ensure the soundness of the sequential-style
proof technique for asynchronous calls, developed in section 8.2.

Let us rewrite the example from figure 7.1 to make use of the new mechanism. Figure 7.2
shows an optimised version of r. Now, following the rule 7.1.1, the handler of x is locked before
r is executed because x is an attached formal argument; the handlers of y and z are not locked
because y and z are detachable.

r (x : separate X; y : ?separate Y; z : ?separate Z)
local

my y: ?separate Y
my z: ?separate Z

do
x . f
my y := y
x .g
my z := z
s (z)

end

Figure 7.2: Selective locking

The new rule for feature application gives programmers an increased control over locking; it
allows a precise specification of resources needed by a routine, and it enables the implementa-
tion of interesting scenarios that used to be impossible (or very difficult) to implement. It is now
possible to pass around a reference without locking the corresponding object; in SCOOP 97 an
inelegant hack was necessary whereby the reference was wrapped in an expanded object; it
only worked for separate references due to the restrictions imposed on expanded types by the
separateness consistency rule SC4 (4.2.9).

One can also observe the increased potential for parallelism: since the handlers of y and z
are not locked, other clients may use them while r is being executed. There is no harmful inter-
ference between these clients and the processor executing r because the latter never performs
any calls on y or z. Therefore, the increased amount of parallelism does not compromise the
safety guarantees.

7.1.3 Support for inheritance and polymorphism

To be usable in practice, the refined locking mechanism must be compatible with inheritance,
polymorphism, and dynamic binding. Clients must not be cheated upon in the presence of poly-
morphic calls, i.e. the safety guarantees should be preserved even if a redefined version of a

148 CHAPTER 7. FLEXIBLE LOCKING

feature is applied instead of the original version assumed by the client. The signature confor-
mance rule of Eiffel (rule 8.14.4 /VNCS/ in [53]) allows a covariant redefinition of argument
types, provided that the redefined arguments are declared as detachable. The rule for result
types is less strict: the redefined type has to conform to the original one but does not need to
be marked as detachable. How well do these rules fit into to the enriched SCOOP type sys-
tem? We will fully address this topic in section 9.1 devoted to polymorphism in SCOOP; here
we only consider one component of a type — the detachable tag — and the conformance be-
tween attached and detachable types. Recall the subtype relation defined in section 6.11: type
U = (δ, β, Y) is a subtype of type T = (γ, α, X) if and only if the three components of U —
the detachable tag δ, the processor tag β, and the class type Y — conform to the corresponding
components of T . The conformance relation on detachable tags says that attached (!) conforms
to detachable (?), e.g. (!, •, X) is a subtype of (?, •, X), and (!,>, X) is a subtype of (?,>, X).

The validity rule should only permit the redefinition of feature arguments and result types in
a way that does not penalise the clients of a given feature. How could a client be penalised? The
first possibility is to redefine a detachable formal argument into an attached one. The second
possibility is to redefine the result type of a query from attached to detachable. In both cases, as a
result of a polymorphic call, an attachment (assignment or argument passing) from a detachable
source to an attached target may occur. This violates the type safety; hence, such redefinitions
should be prohibited. In a concurrent context, the redefinition of formals from detachable to
attached has another unpleasant side effect: the objects represented by the redefined arguments
are locked although the signature of the original routine stipulates no locking. This means more
waiting than the client expects; it is clearly unacceptable.

On the other hand, a redefinition of a result type from detachable to attached does not cause
any problems: the client assumes the result to be detachable, so providing an attached result
simply gives a stronger guarantee. Similarly, a redefinition of a formal argument from attached
to detachable is safe. The client has to use an attached actual argument as required by the
original signature; the redefined feature may choose to expect less and only require a detachable
argument. The argument is not locked — although the signature of the original feature suggests
it — but this causes no harm for the client. On the contrary: the amount of locking is reduced,
so the client needs to wait less than with the original feature. (Strictly speaking, the amount of
locking is not higher than in the original feature.) To satisfy the call validity rule 6.5.3, the new
body must not perform any calls on the redefined arguments. The following rule captures the
intended validity constraints for feature redefinition.

Definition 7.1.2 (Feature redefinition rule (tentative)) The return type of a feature may be
redefined in a descendant from detachable to attached. The type of a formal argument may be
redefined from attached to detachable.

Routine r in figure 7.2 is a valid redefinition of the original routine from figure 7.1: the
original version takes two arguments of type (!,>, Y) and (!,>, Z); the redefined version takes
arguments of type (?,>, Y) and (?,>, Z) respectively. All calls within the redefined body
satisfy the rule 6.5.3.

The feature redefinition rule 7.1.2 seems to capture the necessary requirements for a safe
redefinition of features. There are, however, two outstanding problems:

• The use of precursor calls is not always possible2.
2We are grateful to Bernd Schoeller for pointing out this problem.

7.1. ELIMINATING UNNECESSARY LOCKS 149

• The inherited precondition and postcondition clauses that involve calls on the redefined
arguments may become invalid.

Once again, these problems may arise out of other typing issues but we discuss here only
the problem of detachability. (Section 9.1 addresses the remaining topic: the redefinition
of processor tags in formal argument and result types.) Consider the feature r in figure 7.3
to be a redefined version of r from figure 7.1. The redefined version lists a precondition
new precondition ; this weakens the requirements put on clients: the precondition is understood
as some precondition or else new precondition . The body of r follows a simple pattern: if
new precondition holds, some particular actions are taken; otherwise, the original version is
called through Precursor (x , y , z). But the precursor call is rejected by the compiler because
the types of actual arguments y and z ((?,>, Y) and (?,>, Z)) do not conform to the types of the
corresponding formals ((!,>, Y) and (!,>, Z) respectively) in the original feature. To perform
a call to Precursor, explicit downcasts (object tests) should be applied to y and z, as illustrated
in figure 7.4 (see also section 6.7 for a detailed discussion of the object test mechanism).

r (x : separate X; y : ?separate Y; z : ?separate Z)
require else

new precondition
do

if new precondition then
−− do something here

else
Precursor (x , y , z) −− Invalid!

end
end

Figure 7.3: Problem with Precursor calls

While the problem of invalid precursor calls is easy to detect (it amounts to a simple
type-check) and to deal with, the problem of contract inheritance is trickier. Consider again
the programming pattern used in figure 7.3. The else branch is taken if some precondition
holds (because we know that new precondition is false and some precondition or else

new precondition holds); but this assumption is only valid if some precondition does not in-
volve calls on y or z. What happens if such calls do appear in some precondition? For example,
take some precondition to be x . is empty and y. is empty . What is the meaning of y . is empty
in the context where y becomes detachable? According to the call validity rule 6.5.3, y . is empty
is valid only if the type of y is attached, which obviously is not the case in the redefined version
of r. Nevertheless, in the context of the original routine where y was attached, it was a valid
call. It seems that, due to the redefinition of formal arguments from attached to detachable, it is
possible to invalidate inherited assertions that involve calls on redefined arguments. There are
two alternative ways to prevent it:

1. Assume that all inherited assertions involving calls on detachable formal arguments hold
vacuously. For example, if y is detachable, x . is empty and y. is empty simply reduces
to True.

150 CHAPTER 7. FLEXIBLE LOCKING

2. Prohibit the redefinition of formal arguments appearing as targets of feature calls in pre-
conditions or postconditions.

r (x : separate X; y : ?separate Y; z : ?separate Z)
require else

new precondition
do

if new precondition then
−− do something here

elseif {aux y: separate Y}y and then {aux z : separate Z}z then
Precursor (x , aux y , aux z)

end
end

Figure 7.4: Correct use of Precursor

The first solution is compatible with the DbC rule for preconditions: inherited precondi-
tions may be weakened. Unfortunately, inherited postconditions may be weakened too, which
is clearly against the rules of DbC. The second solution does not suffer from that drawback.
Nevertheless, it forces programmers to preserve the attached type of a formal argument even if
the redefined version of the routine does not rely on any properties of that argument anymore.
It might have no importance in the sequential context but in a concurrent context, where the
detachability of an argument implies less locking, such a restriction is burdensome. Essentially,
once a formal argument has been used in a precondition or a postcondition, it cannot be rede-
fined from attached to detachable in descendants; there is no possibility to reduce the locking
requirements of the routine.

In practice, we may expect that an attached separate formal argument involved in a postcon-
dition will never be redefined into a detachable one, simply because all redefined versions of a
routine have to satisfy at least the original postcondition; there is no way to satisfy that post-
condition without the guarantee that no other clients change the state of the object represented
by the formal argument. Such a guarantee may only be obtained by locking the argument for
the duration of the call, which requires the argument to be declared as attached. On the other
hand, a routine that does not lock the given formal argument and needs no assumptions about
its state, may simply ignore the precondition clauses concerning that argument, i.e. take them
to be trivially true. Therefore, the two solutions presented above can be combined to yield a
sound and practical redefinition rule 7.1.3.

Definition 7.1.3 (Feature redefinition rule (detachable tags)) The return type of a feature
may be redefined from detachable to attached. The type of a formal argument may be redefined
from attached to detachable, provided that no calls on that argument appear in the inherited
postcondition.

This will be part of the update to the general Eiffel feature redefinition rule (see section 9.1.2).
The auxiliary rule 7.1.4 clarifies the meaning of inherited precondition clauses.

Definition 7.1.4 (Inherited precondition rule) Inherited precondition clauses involving calls
on a detachable formal argument hold vacuously.

7.1. ELIMINATING UNNECESSARY LOCKS 151

This rule put a higher burden on the redefiner of a routine: if the inherited precondition involves
calls on an argument that has been redefined into detachable, the new routine body may assume
less but must establish the same (or stronger) postcondition.

Discussion

In addition to the solution based on attached types, we considered two alternative ways of
specifying which formal arguments should be locked. The first option is a compiler optimisation
based on the Business Card principle of SCOOP 97 (see section 5.8.2): if the body of r does
not perform any calls on x, then the processor handling x does not need to be locked before r is
executed. This is decided by the compiler; programmers need no additional type annotations.
Unfortunately, this solution is not acceptable for at least three reasons:

• Programmers have no control over locking; the locking behaviour depends on the actual
version of the routine chosen at run time.

• Without looking at the implementation of the feature, a client cannot see whether a formal
argument is locked or not; the interface is not precise enough to infer all the necessary
information. This violates the principle of information hiding.

• The client might be deceived: a redefined version of the feature may lock an argument
that the original version does not lock.

The second alternative relies on the extensive use of preconditions. To lock the processor
handling a formal argument x, an assertion of the form is reserved (x) or — in a more object-
oriented style — x . is reserved , must appear in the precondition clause of the enclosing routine.

r (x : separate X; y : separate Y; z : separate Z)
require

is reserved (x)
do

...
end

Such assertions force the processor executing r to block until the corresponding formal argu-
ments are reserved on behalf of that processor. This solution is compatible with polymorphism
and dynamic binding: removing is reserved (x) from the redefined precondition eliminates
the lock requirement on x. Nevertheless, the “locking” part of the redefined precondition should
shadow the original one rather than being or-ed with it; this obfuscates the resulting precondi-
tion. Also, this solution is too verbose; it is much easier to read and write crisp code like

s (x , y , z : separate X; a: ?separate A) do ... end

than clumsy code like

s (x , y , z : separate X; a: separate A)
require

is reserved (x) and is reserved (y) and is reserved (z)
do

...
end

152 CHAPTER 7. FLEXIBLE LOCKING

Attached types provide a sound solution which also integrates best with other object-oriented
mechanisms.

7.2 Lock passing

The next step to refine the locking policy is to let clients relinquish their locks temporarily
and pass them on to a supplier. The mechanism presented here relies on the selective locking
introduced in section 7.1: clients use attached and detachable types to decide whether a lock
passing should take place. The proposed mechanism reduces the danger of deadlocks and allows
the implementation of interesting synchronisation scenarios, e.g. separate callbacks, without
compromising the atomicity guarantees. We generalise the semantics of argument passing in
a way that accomodates the lock passing mechanism and ensures the soundness of the proof
technique for asynchronous calls developed in section 8.2.

The need for lock passing was initially identified by Phil Brooke and later reflected in his
CSP semantics of SCOOP 97 [34] in the form of transitive locking, whereby suppliers can
“snatch” a lock from their clients when necessary. Although we use the same name for our
mechanism, we follow a different approach here; the differences between the two solutions are
discussed in section 7.3.

7.2.1 Need for lock passing

In SCOOP 97, a routine holds exclusive locks on its separate suppliers (which have to be formal
arguments of the routine) during the execution of its body. As pointed out in section 4.2.3, this
policy ensures that no other client can jump in and modify the state of a supplier object. While
this atomicity guarantee is convenient for reasoning about concurrent software — we may apply
similar techniques as for sequential programs — it unnecessarily limits the expressiveness of
the model and increases the danger of deadlocks. Figure 7.5 illustrates a typical problem caused
by cross-client locking. Calls to x . f , x .g, and y . f are asynchronous (f and g are commands),

r (x : separate X; y : separate Y)
do

x . f
x .g (y) −− x waits for y to become available .
y . f
...

z := x .some query −− Current waits for some query to finish .
−− DEADLOCK!

end

Figure 7.5: Deadlock caused by cross-client locking

so the client does not wait for their completion. Following the wait by necessity principle, the
client only waits for the result of the query call x .some query. Unfortunately, this causes a
deadlock because x’s handler is not able to evaluate some query before finishing all the previ-
ously requested calls on x; one of these calls, x .g (y), needs a lock on y’s handler, currently

7.2. LOCK PASSING 153

held by the client. But the client cannot unlock y before finishing r’s body. So, the client is
waiting for x’s handler and vice-versa; none of them will ever make any progress.

In fact, getting into a deadlock situation is even simpler; no cross-client locking is necessary.
It suffices to pass Current as actual argument of a separate query call, as illustrated in figure
7.6. Since feature g called on x needs to lock the processor that handles Current, it will block
until that processor can be reserved. But it will never be the case because the client is waiting
for the completion of g; hence the client’s handler is not idle and cannot be reserved. Again, we
have a deadlock; this time, it is caused by a callback (or rather a “lock-back”) of g’s handler on
Current’s handler. The body of g does not even need to perform any real callback in order to
cause a deadlock!

s (x : separate X)
do

z := x .g (Current) −− x waits for Current .
−− Current waits for x to finish . DEADLOCK!

end

Figure 7.6: Deadlock caused by a callback

Meyer [94] suggested to solve the callback problem by applying the Business Card principle
(see section 4.2.5) which stipulates that clients may only pass a reference to Current to features
that do not lock the corresponding formal argument, i.e. whose body does not contain any
calls on that argument. Unfortunately, the principle does not work well with inheritance and
polymorphism (see section 5.8.2). Furthermore, it actually prohibits separate callbacks rather
than accomodating them.

7.2.2 Mechanism

In the two examples above, a deadlock occurs at the moment when the client waits for one of
its suppliers. Since the client is waiting, it does not perform any operations. Therefore, it makes
no use of the locks it holds. If the client could temporarily pass the lock on y (in Figure 7.5)
respectively on Current (in Figure 7.6) to its supplier x, the supplier would be able to execute
the requested feature, return the result, and let the client continue, thus avoiding the deadlock.
This basic idea is simple but, besides solving the problem of cross-client locking and separate
callbacks, a lock passing mechanism has to satisfy further requirements:

• It must not compromise the atomicity guarantees.
A sound reasoning about feature calls is only possible if other clients do not interfere, i.e.
the accesses to a given object are atomic. This immediately rules out a solution whereby
a client passes a lock on an object to a supplier and then continues its own execution: it
would be impossible to decide statically how the client’s and the supplier’s calls on the
locked object are ordered. As a result, neither the client nor the supplier would be able
to ensure the correctness of their calls. Additionally, assertions involving calls on the
concerned object would not be usable.

• Clients must be able to decide to pass or not to pass a lock.
It must be clear from the program text whether a lock passing occurs. The mechanism

154 CHAPTER 7. FLEXIBLE LOCKING

should be controlled by clients, i.e. they should have the choice to pass or not to pass a
lock to a supplier that needs it. Letting a supplier snatch a lock without asking for the
client’s permission is unacceptable; it complicates the reasoning about programs and it
may lead to an arbitrary interleaving of accesses to the locked object, thus compromising
the atomicity.

• The mechanism should increase the expressiveness of the language, not restrict it.
Lock passing should enable the implementation of additional interesting synchronisa-
tion scenarios not supported in the basic model. On the other hand, all scenarios imple-
mentable in the basic model should be expressible in the extended framework as well.

• The solution must be simple and well integrated with other language mechanisms.
The solution must be sound in the presence of polymorphism and dynamic binding; it has
to be compatible with the rules of DbC as well.

We propose the following solution: if a feature call x . f (a1, ..., an) occurs in the context
of the routine r where some actual argument ai is controlled, i.e. ai is attached and locked by
r (see definition 6.5.2), and the corresponding formal argument of f is declared as attached,
the client’s handler (the processor executing r) passes all currently held locks (including the
implicit lock on itself) to the handler of x, and waits until f has terminated. When the execution
of f is complete, the client’s handler resumes the computation.

Let’s see how our mechanism solves the problems of cross-client locking and separate call-
backs. Feature r in figure 7.7 is identical with feature r from figure 7.5 but it does not deadlock,
due to lock passing: the call x .g (y) is executed synchronously, with the client passing on all
its locks to x for the duration of g. No deadlock occurs when the client evaluates x .some query
because the handler of x is not blocked anymore; the execution of x .g (y) has terminated so
x .some query can be applied. Similarly, the routine s in Figure 7.8 does not deadlock any-

−− in class C
r (x : separate X; y : separate Y)

do
x . f
x .g (y) −− Current passes its locks to x

−− and waits until h terminates .
y . f
...

z := x .some query −− No deadlock here
end

−− in class X
g (y : separate Y)

do
...

end

Figure 7.7: Cross-client locking without deadlock

more because x .h (Current) results in the lock passing which lets x’s handler obtain a lock on

7.2. LOCK PASSING 155

Current without waiting. (In this particular case, the client and the actual argument are both
handled by the same processor; we assume that every processor, when non-idle, implicitly holds
a lock on itself.)

That last example raises an interesting issue: if the body of h indeed performs a callback,
i.e. a call on a target handled by the processor that has passed its locks, how should such a
call be treated? Consider the call c . f (...) in figure 7.8; does it have the usual asynchronous
semantics whereby a request to execute f is queued on c’s handler? If yes, then the problem of
deadlock is not really solved but just postponed. To avoid this, c . f (...) should be performed
synchronously, i.e. scheduled it for an immediate execution, so that c’s handler — the one
that has initially passed its locks and is waiting for the termination of x .h (Current) — has a
chance to execute it. So, the call is separate but synchronous; this may seem a bit disturbing.
A closer inspection, however, reveals the underlying reason for applying this semantics: the
target is handled by a processor that holds a lock on the the current processor. This is just like
for non-separate calls, where the target’s handler — which happens to be the current processor
itself — holds a lock on the current processor. Therefore, we can generalise the applicability of
the synchronous call semantics to all the calls whose target’s handler holds a lock on the current
processor. (All such calls may be viewed as separate callbacks.) Note that this rule permits
a nested (or even recursive) lock passing, i.e. any feature call within the body of h, including
c . f (...) , may result in a lock passing whereby the locks obtained at the previous step are
passed further. No limit on the depth of lock passing is imposed; the atomicity guarantees are
preserved because the client always blocks.

−− in class C
s (x : separate X)

do
z := x .h (Current) −− x gets lock on Current .

−− No deadlock here
end

−− in class X
h (c : separate C): Z

do
c . f (...)
...

end

Figure 7.8: Callback without deadlock

One more point needs to be clarified: whenever the lock passing occurs, the client passes
all its locks to the supplier, not only the locks corresponding to the particular arguments that
triggered the mechanism. Such a generous behaviour of clients eliminates more potential dead-
locks than passing just the specified locks. The client does not use any locks anyway while it is
blocked so it does not hurt to pass locks “just in case”; on the contrary, the supplier might make
use of these additional locks in the body of the requested routine that perhaps would deadlock
otherwise.

156 CHAPTER 7. FLEXIBLE LOCKING

Definition 7.2.1 captures the semantics of feature calls, reflecting the refined meaning of
argument passing and the additional synchrony requirement.

Definition 7.2.1 (Feature call semantics (refined)) A feature call x . f (a) results in the fol-
lowing sequence of actions performed by the client’s handler Pc:

1. Argument passing: bind the formal arguments of f to the corresponding actual arguments
a. If any attached formal argument corresponds to a controlled actual argument of a
reference type, pass all the currently held locks (including a lock on Pc) to the supplier’s
handler Px.

2. Feature request: ask Px to apply f to x.

(a) Schedule f for an immediate execution by Px and wait until it terminates, if any of
the following conditions holds:

• The call is non-separate, i.e. Pc = Px.
• The call is a separate callback, i.e. Px already held a lock on Pc at the moment

of the call.

(b) Otherwise, schedule f to execute after the previous calls on Px.

3. Wait by necessity: if f is a query, wait for its result.

4. Lock revocation: if lock passing occurred in step 1, wait for f to terminate, then revoke
the locks from Px.

7.2.3 Lock passing in practice

Figure 7.9 illustrates the possible combinations of separate and non-separate calls with and
without wait by necessity and lock passing. The current object (an instance of C) is handled by
the processor Pc, and x, y, my c, and my z are handled by (different) processors Px, Py, Pmy c,
and Pmy z respectively. The calls appearing in the body of r have the following semantics:

• (Command call my x. f (5)) The call is non-separate because my x is handled by Pc;
the current execution state is saved on Pc’s call stack, and my x. f (5) is executed syn-
chronously. No lock passing occurs because the actual argument is expanded. The re-
quest queues are not involved in this operation, hence they remain empty:
Pc : − Px : −

• (Command call my x.g (x)) Similar to the previous call but lock passing occurs. How-
ever, it is vacuous because both the client and the supplier objects are handled by Pc. The
request queues are not involved in this operation, hence
Pc : − Px : −

• (Query call my x.h (Current)) Similar to the previous call but wait by necessity applies.
Lock passing occurs but is vacuous. The call is non-separate, therefore the request queues
are not involved.
Pc : − Px : −

7.2. LOCK PASSING 157

−− in class C
my x: X
my z: separate Z
my c: separate C
i : INTEGER

r (x : separate X; y : separate Y)
do

my x. f (5) −− non−separate, no wait by necessity , no lock passing
my x.g (x) −− non−separate, no wait by necessity ,

−− lock passing (vacuous)
i := my x.h (Current) −− non−separate, wait by necessity ,

−− lock passing (vacuous)

x . f (10) −− separate, no wait by necessity , no lock passing
x .g (my z) −− separate, no wait by necessity , no lock passing
x .g (y) −− separate, no wait by necessity , lock passing
x .m (y) −− separate, no wait by necessity , no lock passing
i := x .h (my c) −− separate, wait by necessity , no lock passing
i := x .h (Current) −− separate, wait by necessity , lock passing

end

−− in class X
f (i : INTEGER) do ... end

g (a: separate ANY) do ... end

h (c : separate C): Z
do

c . f (...)
...

end

m (a: ?separate ANY) do ... end

Figure 7.9: Lock passing example

• (Command call x . f (10)) The call is separate because Pc 6= Px. No lock passing occurs
because the actual argument is expanded.
Pc : − Px : [x.f(10)]

• (Command call x .g (my z)) Similar to the previous call. No lock passing occurs because
the actual argument my z is not controlled.
Pc : − Px : [x.f(10)][x.g(my z)]

• (Command call x .g (y)) Similar to the previous call but lock passing occurs because the
actual argument y is controlled and the corresponding formal is attached. Pc cannot move

158 CHAPTER 7. FLEXIBLE LOCKING

to the next operation until Px has terminated the application of x .g (y) (after servicing
all the previous calls in its request queue).
Pc : − Px : [x.f(10)][x.g(my z)][x.g(y)] (after the feature request step)
Pc : − Px : − (after the lock revocation step)

• (Command call x .m (y)) No lock passing occurs because the formal argument a is de-
tachable.
Pc : − Px : [x.m(y)]

• (Query call x .h (my c)) Wait by necessity applies. No lock passing occurs because the
actual argument my c is not controlled.
Pc : − Px : [x.m(y)][x.h(my c)] (after the feature request step)
Pc : − Px : − (after the wait by necessity step)

• (Query call x .h (Current)) Similar to the previous call but lock passing occurs because
the actual argument Current is controlled.
Pc : − Px : [x.h(Current)] (after the feature request step)
Pc : − Px : − (after the lock revocation step)

That last call is particularly interesting because it involves a separate callback: during the ap-
plication of x .h (Current), Px performs the call c . f (...) where c corresponds to the actual
argument of the call x .h (Current). The target of the call c . f (...) is handled by Pc, and Pc

holds a lock on the client’s handler Px (note the inversed roles of Pc and Px). Therefore, the
call is handled as a separate callback (according to step 2a in the definition 7.2.1), i.e. Pc im-
mediately executes the feature requested by Px; the latter waits until the feature has terminated.
It is important to notice that the request queue of Pc is not involved in handling this request;
the feature is handled using the call stack, just like a non-separate call. That is why Pc’s queue
remains empty throughout the execution of x .h (Current).

Figure 7.10 recapitulates the possible type combinations of formal and actual arguments,
and the resulting semantics of argument passing (yes stands for “lock passing takes place”, no
stands for “no lock passing”).

formal attached formal detachable
actual (reference type) controlled yes no
actual (reference type) uncontrolled no no
actual expanded no no

Figure 7.10: Lock passing combinations

The lock passing mechanism influences the semantics of feature calls so that certain calls,
e.g. x .g (y) in figure 7.9, have a different meaning in SCOOP than in SCOOP 97. Neverthe-
less, it is possible to emulate the original semantics — at a cost of a few additional lines of code
— as illustrated in figure 7.11. The original feature g from figure 7.9 has been replaced by a pair
of features: g and blocking g . The formal argument of g is now detachable, so the call x .g (y)
does not involve lock passing, even though the actual argument y is controlled. The call to the
auxiliary feature blocking g will later lock y but it does not influence the semantics of x .g (y)
as seen by the client; the call x .g (y) is non-blocking, just as it would be in SCOOP 97. Note
the use of an object test in the body of g for downcasting a detachable type to an attached type.

7.2. LOCK PASSING 159

−− in class C
r (x : separate X; y : separate Y)

do
...

x .g (y) −− No lock passing here .
...

end

−− in class X
g (y : ?separate Y)

local
aux y : separate Y

do
if {aux y: separate Y} y then

blocking g (aux y)
end

end

blocking g (y : separate Y)
do

... −− body of original g
end

Figure 7.11: Emulating SCOOP 97 semantics

Discussion

The proposed mechanism fulfils all the additional requirements discussed at the beginning of
this section. First, it does not compromise the atomicity because locks are passed to the client’s
handler only for the duration of f ; since the client is blocked in the meantime, there is no
danger of harmful interleaving with other clients. Of course, the supplier is free to perform
any sequence of calls on the locked objects but the client knows that all these calls will be
executed before its own subsequent calls; additionally, the postcondition of f stipulates what
the supplier may or may not do with these objects. The reasoning about calls that involve
lock passing is therefore similar to reasoning about sequential calls (see section 8.2). Second,
it is clear from the program text whether a lock passing occurs: the controllability of actual
arguments is immediately deducible from their type; the type of the formal arguments of f
is known from f’s signature. Therefore, a client can decide to pass or not to pass its locks
simply by using controlled or uncontrolled actual arguments; alternatively, it may use a feature
that takes detachable formals. Note the absence of lock passing for actual arguments of an
expanded type (even though they are always controlled). This reflects the copy semantics of
such arguments: the corresponding formals are bound to copies of actuals. Since these copies
are non-separate from the supplier, no lock passing is necessary to give the supplier the control
over them.

Lock passing increases the expressiveness of the programming framework: several scenar-
ios not supported by SCOOP 97 — including the cross-client locking and separate callbacks

160 CHAPTER 7. FLEXIBLE LOCKING

illustrated in figures 7.7 and 7.8 — are now implementable. Section 7.2.3 demonstrates that
the locking policy of SCOOP 97 can be simply emulated in SCOOP; therefore, the backward
compatibility is preserved and the mechanism does not limit the expressive power of our frame-
work. Finally, not only does the lock passing mechanism combine well with polymorphism and
dynamic binding (thanks to the reliance on the attached type semantics), it is instrumental in
providing a sound basis for the proof technique for concurrent software, described in section
8.2.

7.3 Related work

This chapter is based on our previous work on the locking policy for SCOOP, described in an
earlier article [109] and a technical report [110] which discussed the use of detachable types
in SCOOP but did not cover the problems related to inheritance and polymorphism; the lock
passing mechanism was only described shortly, without considering the complex scenarios dis-
cussed here. The report also presented a basic mechanism for shared locking, based on a refined
notion of a pure query and a new semantics for the only clauses (used in the sequential Eiffel
to express the frame properties of features). The shared locking mechanism proved unsound in
the presence of polymorphism, therefore we do not consider it here. We are currently working
on its refinement that provides a full support for inheritance and polymorphism.

Meyer [96] discusses the attached type mechanism, in particular its use for eliminating cat-
calls. He also describes the results of our earlier discussions about the application of attached
types to concurrency. The problem of contract redefinition in a concurrent context is not dis-
cussed but the article prompted us to have a closer look at the contract inheritance mechanism.
Meyer’s rule for argument redefinition requires a covariantly redefined type of a formal argu-
ment to be marked as detachable. (The Eiffel standard has adopted a corresponding signature
conformance rule 8.14.4 /VNCS/.) Inherited assertions involving calls on detachable arguments
are evaluated using an implicit object test. For example, for attached x and detachable y, the
expression

x . is empty and y. is empty

is understood as

x . is empty and ({aux y : Y}y implies aux y . is empty)

hence x . is empty if y is void. Besides being complicated, this solution is inconsistent with
DbC: as demonstrated in section 7.1.3, it may lead to postcondition weakening. Our rules 7.1.3
and 7.1.4 may be combined with the signature conformance rule 8.14.4 /VNCS/ to ensure the
consistency with DbC and to simplify the treatment of inherited contracts (section 9.1 discusses
this topic in detail). Our technique, initially developed to solve a concurrency issue, proves
useful in a sequential context as well.

Brooke et al. [34] propose a different lock passing mechanism as part of their CSP semantics
for SCOOP. The authors apply a transitive locking by default, i.e. if a client object c holds
locks on the supplier objects x and y, and x requests a lock on y, then x “snatches” that lock
from the client object. An advantage with respect to our approach is the increased potential
parallelism: the asynchronous semantics still applies to calls that involve lock passing, whereas
our solution forces such calls to be synchronous. Nevertheless, programmers have no control

7.3. RELATED WORK 161

over the mechanism: lock passing happens whenever possible, even if there is no need for it.
Furthermore, the calls on y issued by c and x may be arbitrarily interleaved; even though c
temporarily loses its lock on y, it is impossible to predict when exactly it happens.

−− in class C
r (x : separate X; y : separate Y)

−− Assume that y = x.my y, so both Current and x
−− use the same separate object .

do
x . f −− Body of f requests a lock on y.

−− Lock passing may occur here
y . f

−− or here
y .g

−− or here
y .h

−− or here
end

−− in class X
my y: separate Y

f
do

...
s (my y) −− Snatch the lock from the client .
...

end

s (y : separate Y) do ... end

Figure 7.12: Problems with transitive locking

Figure 7.12 illustrates the problem: if c executes several calls on y after the call x . f , the
lock passing may occur either before the call to y . f , before the call to y .g, before the call to
y .h, or after that. In fact, it may even not happen at all; if the execution of f by x’s handler is
very slow then the client’s handler may be able to schedule all its calls on y and terminate the
body of r before x attempts to snatch the lock. As a result, one cannot reason about the order
of separate calls on y; the assertional reasoning about concurrent code becomes intractable.
The problem is particularly acute in the context of inheritance and polymorphism: even if the
original version of f in class X does not perform any calls that imply lock passing, a redefined
version in a descendant may do so. The clients of the original class are unaware of that and
do not expect any lock passing. Our solution avoids such problems: the clients make explicit
decisions about lock passing; a redefined version of a routine cannot require more locks than
the original version. Furthermore, Brooke et al. only support passing locks on separate objects;
the lock on the current processor cannot be passed. As a result, the separate callback scenario
depicted in figure 7.6 still leads to a deadlock. Another difference with respect to our solution

162 CHAPTER 7. FLEXIBLE LOCKING

is the fact that only one lock is passed at a time but the subsequent calls can demand additional
locks.

Discussion

The new semantics of attached types supports precise specification of locking requirements
of routines, thus eliminating the unnecessary locking often exhibited in SCOOP 97 programs.
The lock passing mechanism lets clients pass on their locks to their suppliers for the duration
of a single call. Both mechanisms greatly improve the flexibility of the model by allowing an
efficient implementation of many synchronisation scenarios that were difficult (or impossible) to
express before. They also preserve the atomicity guarantees but reduce the danger of deadlocks
by minimising the amount of locking.

Both the scoop2scoopli preprocessor and the SCOOPLI library (see chapter 11) support
the mechanisms introduced here. A run-time deadlock detection facility which supports lock
passing has been devised and integrated with SCOOPLI by Daniel Moser [100].

8
Contracts and concurrency

DESIGN by Contract permits enriching class interfaces with assertions which express the mu-
tual obligations of clients and suppliers. Routine preconditions specify the obligations on the
routine client and the guarantee given to the routine supplier; conversely, routine postconditions
express the obligation on the supplier and the guarantee given to the client. Class invariants
express the correctness criteria of a given class; an instance of a class is consistent if and only if
its invariant holds in every observable state. The modular design fostered by DbC reduces the
complexity of software development: correctness considerations can be confined to the bound-
aries of components (classes) which can be proved and tested separately. Clients can rely on
the interface of a supplier without the need to know its implementation details. We define the
correctness of a routine as follows.

Definition 8.0.1 (Local correctness) Routine r of class C is locally correct if and only if, after
the execution of r’s body, both the class invariant InvC and the postcondition Postr of that
routine hold, provided that both the invariant and the precondition Prer were fulfilled at the
time of the invocation.

The sequential proof technique discussed in section 4.2.6 follows this definition; a proof rule
for feature calls may be derived:

{INV ∧ Prer} bodyr {INV ∧ Postr}
{Prer[a/f]} x.r(a) {Postr[a/f]}

The above rule says that if a feature r is locally correct (according to definition 8.0.1) then
a call to r in a state that satisfies its precondition will terminate in a state that satisfies its
postcondition. Clients simply need to ensure that the precondition holds before the call; they
may assume the postcondition in return. It is tempting to apply the same rule to reasoning
about concurrent programs. Unfortunately, the standard correctness semantics of assertions
breaks down in a concurrent setting (see section 4.2.3). The wait semantics used for separate
preconditions in SCOOP 97 palliates the problem but it does not solve it completely: the clash
between wait conditions and correctness conditions is a source of inconsistencies; the blocking
semantics of postconditions and other assertions reduces the amount of concurrency and may
lead to deadlocks (see section 5.6). Also, the restricted proof rule 4.2.1 is too weak to prove
interesting properties of calls; it ignores the separate assertions although most properties of
interest in a concurrent context are expressed as separate assertions (see section 5.7).

To solve these problems and unleash the full power of contracts, we need to generalise the
principles of DbC so that assertions capture the full contract between a client and a supplier,
including the required synchronisation. Two things are necessary:

163

164 CHAPTER 8. CONTRACTS AND CONCURRENCY

• A clear semantics of contracts
Each kind of assertion should have a uniform semantics applicable in both concurrent and
sequential contexts.

• A modular proof technique
The sequential proof rule has to be “lifted” to the concurrent context. The rule must be
simple but strong enough to prove interesting properties of programs.

We put an emphasis on the generality of the proposed semantics of contracts. It has to apply
in all contexts; furthermore, it should gracefully reduce to the standard correctness semantics
when no concurrency is involved. Similarly, the proof rule for sequential programs should be a
straightforward refinement of the general rule. We take this requirement one step further: since
a human brain is good at sequential reasoning about small portions of code but it cannot deal
with a complex combination of parallel processes, the general proof rule should itself have a
strong sequential flavour.

8.1 Generalised semantics of contracts

Starting from the sequential semantics of contracts [94] and the critique of contracts in
SCOOP 97 (see section 5.6), we analyse the impact of concurrency on each type of asser-
tion and propose a new semantics for it. We demonstrate the influence of the new semantics
on other techniques and mechanisms — locking, wait by necessity, polymorphism — and show
how it reduces to the traditional semantics in a sequential context. We also discuss the practical
implications of our solution.

8.1.1 Preconditions

In a sequential context, a precondition is a correctness condition: the client has to guarantee
that the precondition holds at the moment of the call. The supplier expects the precondition
to hold when the execution of the routine starts. Since all calls are synchronous, the feature
application follows immediately the feature call; no other event may happen in between. There-
fore, any property that holds at the call time also holds at the application time; conversely, any
property that does not hold at the call time does not hold at the application time. Hence the
usual understanding of the client’s obligation: the precondition must hold at the call time.

In a concurrent context, the feature call and the feature application do not usually coincide;
other events may happen in between. Therefore, a supplier cannot assume that a property
satisfied at the call time still holds at the execution time. (This is the source of the separate
precondition paradox described in section 4.2.3.) Conversely, a property that does not hold at
the time of the call may become true later on; the supplier could safely execute the feature at
that time. This suggests that preconditions be viewed as a synchronisation mechanism: a called
feature cannot be executed unless the precondition holds; a violated precondition delays the
execution of the feature. This wait semantics is reflected by the feature application mechanism
(definition 6.1.4) and the feature application rule 6.1.5.

SCOOP 97 uses both semantics, depending on whether a given precondition clause involves
separate calls. The precondition clause i > 0 in figure 8.1 is a correctness condition because

8.1. GENERALISED SEMANTICS OF CONTRACTS 165

it involves no separate calls, whereas not buffer . is full has the wait semantics. This dis-
tinction is somewhat artificial because buffer , although declared as separate, may denote a
non-separate object at run time, e.g. when the client calls store (ns buffer , 10). Should the
wait semantics apply here? If yes, then the client will be blocked forever if ns buffer is full.
One could argue that this can be avoided because the static type of the actual argument is non-
separate; but the same problem may occur even if the actual argument has a separate type, e.g.
in the subsequent call store (my buffer , 79). Clearly, the wait semantics should be replaced
by the correctness semantics here.

store (buffer : separate BUFFER [INTEGER]; i: INTEGER)
−− Store i in buffer .

require
not buffer . is full
i > 0

do
buffer . put (i)

end

my buffer : separate BUFFER [INTEGER]
ns buffer : BUFFER [INTEGER]
...
store (my buffer , 24)
store (ns buffer , 10)
my buffer := ns buffer
store (my buffer , 79)

Figure 8.1: Preconditions

Sometimes, the opposite is required: a correctness condition should be turned into a wait
condition. This happens in the presence of polymorphism and feature redefinition. When re-
defining a feature, the type of a formal argument may be redefined from non-separate to sepa-
rate; such redefinitions are valid because clients of the original class can only use a non-separate
actual argument (see section 9.1.2). What happens to the precondition clauses that involve the
redefined formal argument? They are correctness conditions in the original feature; they be-
come wait conditions in the redefined version.

This necessity for wait conditions to be considered as correctness conditions and vice-versa
suggests that a uniform semantics should be applied to all preconditions. We propose to adopt
the semantics captured by the definition 8.1.1.

Definition 8.1.1 (Semantics of preconditions) A precondition expresses the necessary re-
quirements for a correct application of the feature. The execution of the feature’s body is
delayed until the precondition is satisfied.

The guarantee given to the supplier is exactly the same as with the traditional semantics: the
precondition holds at the entry to the feature’s body. However, the definition does not force the
clients to ensure the precondition before the call. Naturally, a client performing a feature call
has certain obligation but the responsibility for establishing the precondition must be shared

166 CHAPTER 8. CONTRACTS AND CONCURRENCY

−− in class X
ns buffer : BUFFER [INTEGER]
store (buffer : separate BUFFER [INTEGER]; i: INTEGER)

−− Store i in buffer .
require

buffer not full : not buffer . is full
i positive : i > 0

do
buffer . put (i)

end

−− in class C
my buffer : separate BUFFER [INTEGER]
ns buffer : BUFFER [INTEGER]
r (x : separate X; buf : separate BUFFER [INTEGER])

do
x . store (my buffer , 10) −− buffer not full uncontrolled
x . store (ns buffer , 24) −− buffer not full controlled
x . store (buf , 79) −− buffer not full controlled
x . store (x . ns buffer , 19) −− buffer not full controlled

end

Figure 8.2: Controlled clauses

between the client and the environment; the client should be blamed for any contract breaches
that it could have avoided but not for anything else. Meyer [94] suggests that only the non-
separate precondition clauses bind the client. We go one step further: since the client has a
full control over all the controlled entities (see definition 6.5.2) — because no other clients
may access the corresponding objects in the meantime — it should be blamed for breaches in
precondition clauses concerning these entities. Therefore, we extend the client’s responsibilities
onto all controlled clauses.

Definition 8.1.2 (Controlled clause) For a client performing the call x.f(a) in the context of a
routine r, a precondition clause or a postcondition clause of f is controlled if and only if, after
the substitution of the actual arguments a for the formal arguments, it only involves calls on
entities that are controlled in the context of r; otherwise, it is uncontrolled.

We have chosen clauses as units of controllability, although finer-grained specification could
be used instead. Clauses are convenient because they are clearly demarcated in the program
text, thus avoiding the risk of confusion. Also, the representation of inherited and immediate
assertions in redefined features follows this style; as a result, reasoning in terms of clauses is
easier.

Figure 8.2 illustrates the difference between controlled and uncontrolled precondition
clauses. For the client executing the call x . store (my buffer , 10) in the body of r, the first
precondition clause of store is uncontrolled because, after the substitution of actuals for for-
mals, it contains the call my buffer . is full whose target my buffer is not controlled in the

8.1. GENERALISED SEMANTICS OF CONTRACTS 167

context of r. On the other hand, the same precondition clause is controlled in the three re-
maining calls to store because the targets of the involved call to is full are controlled in r:
ns buffer is non-separate; buf is separate but locked by r; x . ns buffer is separate, but it is
non-separate from x and x is controlled, hence x . ns buffer is controlled too (see rule 6.5.2).
The second precondition clause i > 0 is controlled in all the cases because the expected actual
argument must be handled by the same processor as the target x and x is certainly controlled
(otherwise, no calls on x would be allowed in r). In this particular case, the actual argument is
expanded, hence controlled in any context (see rules 6.10.1 and 6.5.2).

Coming back to the client’s responsibilities: each controlled precondition clause must now
be ensured by the client. But the calls on x in figure 8.2 are asynchronous; how can a client
ensure some property if the previously scheduled calls are still being executed and may change
the state of the involved objects? Indeed, the state of x and buf at the moment of the call x . store

(buf , 79) may be different from its state at the moment of the feature application; however, the
client knows that all its calls on x and buf are performed in the FIFO order, therefore sequential
reasoning may be used. That is, the state of x and buf at the moment of the application of
store (buf , 79) is exactly the same as it was when store (ns buffer , 24) terminated. The
client only needs to ensure that the properties established by x . store (ns buffer , 24) imply
the precondition of x . store (buf , 79). It does not matter that the precondition may not hold at
the moment of the call; it will hold when required, i.e. at the moment of the feature application.

The establishment of uncontrolled precondition clauses depends on the emergent behaviour
of the whole system. The client cannot take responsibility for such preconditions; calling a
feature with an uncontrolled precondition clause may result in indefinite waiting.

Although we use the same name for the proposed wait semantics of preconditions, there are
three major differences with respect to SCOOP 97:

• The semantics applies to all preconditions; there is no distinction between separate and
non-separate clauses.

• Waiting happens on the supplier side. For example, the client executing the call x . store
(my buffer , 10) in figure 8.2 is not blocked; it is x’s handler that waits until the precon-
dition is satisfied.

• Clients are responsible for establishing all the controlled precondition clauses, not only
the non-separate ones.

Even though every precondition violation results in waiting, the run-time checking of controlled
clauses is optimised to avoid infinite waiting and to reflect the contractual character of such
assertions. If a controlled precondition clause is violated when it is supposed to hold, i.e.
at the moment of the feature application, waiting is useless because the state of the involved
objects cannot change in the meantime; an exception is raised instead. This is precisely how
the wait semantics boils down to the traditional sequential semantics when no concurrency is
involved: according to definition 8.1.2, all precondition clauses involving only calls on non-
separate targets are controlled; when they are violated, an exception is raised. The call store

(ns buffer , 10) in figure 8.1 can be handled as expected: if the precondition not buffer .
is full is violated, an exception is raised. Similarly, the application of store with a negative

second argument results in an exception because the precondition clause i > 0 is violated.
Since the feature application happens immediately after the corresponding feature call, it looks

168 CHAPTER 8. CONTRACTS AND CONCURRENCY

as if the exception is raised at the moment of the call, just like with the traditional sequential
semantics.

8.1.2 Postconditions

The original design of SCOOP 97 applies the standard correctness semantics to separate post-
conditions; they are evaluated synchronously due to wait by necessity. Meyer [94] also men-
tions the separate postcondition paradox: on return from a separate call, the client cannot be
sure that the postcondition clauses still hold, even though they are guaranteed to hold when the
call terminates. This is because the processor handling the involved supplier may become free
in the meantime and other clients may have jumped in and modified the state of the supplier,
thus invalidating the postcondition. (The same problem is identified by Rodriguez et al. [128]
as external interference; see section 3.2.)

The treatment of postconditions in SCOOP 97 is unsatisfactory for two reasons:

• Separate postconditions are excluded from the proof rule for feature calls (see section
8.2).

• The synchronous evaluation of separate postconditions limits the parallelism and may
lead to deadlocks.

The client executing the call spawn two activities (york , tokyo) in figure 8.3 wants to launch
jobs at two locations and have the guarantee that the jobs will be done. Such guarantees are most
naturally expressed as postconditions of spawn two activities . However, the synchronous se-
mantics of postconditions blocks the client; do local stuff cannot be called until both clauses
post 1 and post 2 have been evaluated. The amount of exhibited parallelism is much lower
than without the postconditions; in the latter case, the client would be able to move on imme-
diately (but there would be no guarantee that the jobs are done). We propose to evaluate the
postconditions asynchronously, i.e. treat them similarly to command calls; wait by necessity
does not apply. The client can now move on with its own activity (do local stuff) without
waiting for the evaluation of post 1 and post 2 ; at the same time, it gets the guarantee that both
clauses will be satisfied eventually. More precisely, they will be satisfied when the execution
of the features called within the body of spawn two activities terminates. Because york and
tokyo are separate, the calls to do job are asynchronous, so post 1 and post 2 do not necessar-
ily hold when the client calls do local stuff ; but this does not matter because york and tokyo
are not used in that feature. The clause post 1 becomes relevant only at the moment of the call
to get result (york); the feature cannot be applied until all the previous calls on york have
terminated and the precondition holds. Therefore, get result cannot be executed until york
terminates the job requested by spawn two activities ; when this happens, the postcondition
post 1 holds, i.e. york . is ready , is true. Assuming that this property implies the precondition
of get result , the latter may be executed. The client is not penalised by the asynchronous
evaluation of postconditions; it gets the same guarantees as with the synchronous semantics
but “projected” into the future. A postcondition may be assumed to hold immediately after
the execution of a feature’s body although it may not hold at that point; it will hold when it
becomes relevant. This semantics can be refined to allow the individual evaluation of postcon-
dition clauses. In the above example, the state of tokyo is irrelevant when get result (york) is
executed (it will only become important later on for get result (tokyo)). For the moment, the

8.1. GENERALISED SEMANTICS OF CONTRACTS 169

client is only interested in the first postcondition clause; if it holds, get result (york) should
proceed without waiting for tokyo. This enables more parallelism, in particular if tokyo is much
slower than york. Once again, the client is not penalised: it gets all the guarantees of interest in
due time. Definition 8.1.3 captures the new semantics of postconditions.

spawn two activities (location 1 , location 2 : separate LOCATION)
do

location 1 . do job
location 2 . do job

ensure
post 1 : location 1 . is ready
post 2 : location 2 . is ready

end

tokyo : separate LOCATION

r (york : separate LOCATION)
do

spawn two activities (york , tokyo)
do local stuff
get result (york)
do local stuff
get result (tokyo)

end

Figure 8.3: Separate postconditions

Definition 8.1.3 (Semantics of postconditions) A postcondition describes the result of a fea-
ture’s application. Postconditions are evaluated asynchronously; wait by necessity does not
apply. Postcondition clauses that do not involve calls on objects handled by the same proces-
sors are evaluated independently.

Following the definition 8.1.2, in the call spawn two activities (york , tokyo), the postcon-
dition clause post 1 is controlled whereas post 2 is uncontrolled. The client may assume the
former (york . is ready) after the call because no other client can invalidate it; on the other hand,
tokyo . is ready cannot be assumed because of the possible interference by other clients. The
situation is symmetric to the treatment of preconditions: a controlled precondition clause con-
stitutes an obligation on the client; a controlled postcondition clause is a guarantee given to the
client. We use this observation to derive a proof rule for feature calls (see section 8.2 below).

Each query call appearing in a postcondition clause is evaluated by its target’s handler; the
results of all the queries must be combined into one boolean value. This operation must be
performed by the current processor (the one that executed the routine’s body) if it is involved;
otherwise, any of the involved processors or some “ghost” processor may be used. (Our imple-
mentation picks the first processor in the order of appearance; see section 11.3). A violation of
a postcondition clause raises an exception in the processor that executed the routine. This gives
rise to the problem of asynchronous exceptions mentioned in section 2.2: that processor might

170 CHAPTER 8. CONTRACTS AND CONCURRENCY

have already left the context of the call, or even become idle in the meantime. This topic is
beyond the scope of our work; we only discuss it shortly in section 13.2. See also the exception
handling mechanisms proposed by Arslan and Meyer [11], Brooke and Paige [33], and Adrian
[2], which tackle the problem.

To wrap up the discussion of postconditions, let’s see how their semantics reduces to the
traditional sequential semantics if no concurrency is involved. Consider the call my x.r (my a)
in the following code excerpt:

−− in class X
r (a: A)

do
...

ensure
post 1 : a.q
post 2 : q
post 3 : p (a)

end

−− in class C
my x: X
my a: A
...

my x.r (my a)
do local stuff

The client, the supplier my x, and the actual argument my a are handled by the same proces-
sor. The client cannot proceed to do local stuff until the postconditions have been evaluated
because the client’s processor is in charge of evaluating them. As a result, either all the post-
condition clauses hold immediately after the call, or an exception is raised. Also, the client can
assume all the postconditions of r because they are controlled. This corresponds exactly to the
sequential semantics.

8.1.3 Invariants

Invariants play an important role in the DbC methodology. They are the primary tool for ensur-
ing the consistence of objects: an instance of class C is consistent if and only if it satisfies the
invariant of C. The invariant must be satisfied in every observable state, i.e. in any state where
the object is accessed by a client.

The standard Eiffel semantics applies to class invariants in SCOOP because all the calls ap-
pearing in invariants must be non-separate. There is no explicit rule prescribing it; however, the
controllability requirement imposed by the call validity rule 6.5.3 can only be satisfied by non-
separate entities because invariants have no enclosing routines. The invariant is checked before
and after the application of a feature (unless the feature has been called using an unqualified
form); an invariant violation raises an exception in the supplier.

8.1. GENERALISED SEMANTICS OF CONTRACTS 171

remove n (list : separate LIST [G]; n: INTEGER)
−− Remove n elements from list .

require
list .count >= n

local
initial , removed: INTEGER

do
from

initial := list .count
removed := 0

until
removed = n

invariant
list .count + removed = initial

variant
list .count − initial + n −− the same as n−removed

do
list .remove
removed := removed + 1

end
ensure

list .count = old list .count − n
end

Figure 8.4: Loop assertions

8.1.4 Loop assertions and check instructions

We apply the asynchronous semantics to loop variants, loop invariants, and check instructions.
Wait by necessity does not apply; as a result, the evaluation of an assertion is blocking only
if the current processor is involved, i.e. the assertion includes non-separate calls. The whole
assertion is evaluated at once because there is no possibility of splitting the assertion into in-
dividual clauses. All loop variant, invariants, and check instructions are controlled because all
the involved entities serving as targets of calls must be controlled; rule 6.5.3 would be violated
otherwise. Therefore, such assertions preserve their contractual character and may be used for
formal reasoning. Similarly to postconditions, their asynchronous evaluation does not influence
the reasoning style; they may be assumed immediately. If a loop assertion or a check fails, an
exception is raised.

Figure 8.4 illustrates the advantages brought by the asynchronous semantics. The assertions
appearing in the body of remove n capture the essence of the loop: at every step, the number of
elements in list is reduced, and the number of remaining elements plus the number of removed
elements corresponds to the initial number of elements. Both the variant and the invariant are
evaluated asynchronously; the processor handling list is asked to evaluate them in due time,
i.e. after the previous features targeting list but before the next application of remove. The
request queue of list ’s handler may look like this:

Plist : ...[list.remove][evalvar][evalinv][list.remove][evalvar][evalinv][list.remove]...

172 CHAPTER 8. CONTRACTS AND CONCURRENCY

The client does not wait; it performs the next iteration of the loop, until the exit condition
becomes true. Therefore, even if the handler of list is very slow, so that the application of
remove or the evaluation of assertions takes a long time, the client may terminate the execution
of remove n knowing that n elements will eventually be removed. (If the call to remove n
happens in a context where the actual argument is controlled then the postcondition is controlled
and the client may assume it immediately after the call.) Even though the assertions involve
separate calls, the correctness and the termination of the loop, as well as the establishment of
the postcondition can be proved using the standard sequential reasoning. The new semantics
maximises the amount of parallelism while preserving the sequential reasoning style.

Check instructions are treated in the same way as loop assertions; they are evaluated asyn-
chronously in due time. For example, the following sequence of calls:

x . f
x . set i (10)
check x . i = 10 end
x .g

results in checking x . i = 10 after the application of x . set i (10) but before the application of
x .g. The request queue of x’s handler looks like that:

Px : ...[x.f][x.set i(10)][evalx.i=10][x.g]...

The client is sure that x . i = 10 before the application of x .g. Note the difference between this
guarantee and the guarantee given by an explicit if statement involving the query, e.g.

if x . i = 10 then x .g else ... end

Here, due to wait by necessity, the client is sure that x . i = 10 holds before calling x .g.

8.2 Towards a proof rule

The new semantics of preconditions discussed in section 8.1.1 indicates that a client’s respon-
sibilities should be limited to establishing the controlled precondition clauses before the call;
the uncontrolled ones may only be established by the environment, i.e. the emergent behaviour
of other processors. Similarly, the semantics of postconditions introduced in section 8.1.2 lets
clients assume the controlled postcondition clauses after the call; the uncontrolled ones hold
when the routine terminates but the client cannot assume them, due to the interference of other
clients. We use this observation to define the mutual obligations of clients and suppliers, thus es-
tablishing the contractual character of assertions and capturing the essence of DbC in a general
(potentially concurrent) context.

Definition 8.2.1 (Mutual obligations of clients and suppliers) The supplier may assume all
the precondition clauses at the the entry to the feature’s body; it must establish all postcondition
clauses when the body terminates. The client must satisfy all the controlled precondition clauses
at the moment of the call; it may assume all the controlled postcondition clauses after the call.

Although applicable to synchronous and asynchronous calls, the above definition does not use
any temporal operators; sequential reasoning applies. This is possible because controlled asser-
tions may be projected in the future, i.e. assumed to hold immediately even if their evaluation

8.2. TOWARDS A PROOF RULE 173

is delayed. From the supplier’s point of view, all the preconditions and postconditions are con-
trolled; therefore, its obligations are the same as in a sequential context. The client, however,
has fewer obligations; conversely, it gets fewer guarantees. We propose the Hoare-style rule
8.2.2 derived from the sequential proof rule for feature calls but based on the definition 8.2.1.
(After a detour through temporal logic [113], it goes back to a style similar to the tentative rule
4.2.1 proposed in OOSC2.) There is no distinction between separate and non-separate asser-
tions; both preserve their contractual character. Only controlled assertion clauses are considered
by the client; hence the superscript ctr decorating them in the conclusion of the rule. From the
point of view of the supplier, all assertions occurring in Prer and Postr are controlled; that
is why all of them appear in the antecedent. The invariant must be fully controlled to avoid
side-effects. Direct calls on separate targets are prohibited by the call validity rule but calls of
the form q (x), where x is separate, must also be prohibited; otherwise, the evaluation of INV
might be blocking, and subsequent evaluations might yield different results.

{INV ∧ Prer} bodyr {INV ∧ Postr}
{Prectr

r [a/f]} x.r(a) {Postctrr [a/f]}
(8.2.2)

The sequential-like proof technique 8.2.3 for synchronous and asynchronous feature calls relies
on the new proof rule.

Definition 8.2.3 (Proof technique for synchronous and asynchronous calls)
Consider a call x.r(a). If we can prove that the body of r, started in a state satisfying the pre-
condition, satisfies the postcondition when it terminates, then we can deduce the same property
for the above call, with actual arguments a substituted for the corresponding formal argu-
ments, every non-qualified call in the assertions (of the form some property) replaced by the
corresponding property on x (of the form x.some property), and ignoring the uncontrolled as-
sertions.

Our approach is novel in that it eliminates the need for a special treatment of asynchrony. Se-
quences of asynchronous calls — or interleaved synchronous and asynchronous calls — may
be reasoned about without using temporal operators. (Our earlier solution [113] relied on tem-
poral logic, which resulted in more complex rules.) For example, the correctness of the feature
store two in figure 8.5 may be easily demonstrated although its body contains a sequence of
separate calls. The precondition of the first call to buffer . put is implied by the precondition
of store two . Its postcondition is assumed to hold immediately after the call; the postcondition
implies the precondition of the second call to buffer . put. The postcondition of the second call
— again assumed immediately after the call — implies the postcondition of store two . The
technique is modular: once we have proved the correctness of store two (which itself requires
a proof of {BUFFER}.put), the same rule may be applied to the calls to store two in clients’
code.

Limitations of the proof technique

Rule 8.2.2 is strong enough to prove partial correctness of programs; certain liveness properties,
e.g. loop termination, can also be proved. Total correctness, however, cannot be proved because
of the potential deadlocks and infinite waiting on non-satisfied uncontrolled preconditions. Re-
call the York–Tokyo example from figure 8.3. The calls spawn two activities (york , tokyo),

174 CHAPTER 8. CONTRACTS AND CONCURRENCY

−− in class C
store two (buffer : separate BUFFER [INTEGER]; i, j: INTEGER)

−− Store two elements in buffer .
require

buffer .count <= buffer . size − 2
do

−− {not buffer . is full }
buffer . put (i)
−− {buffer . count = old buffer . count + 1}
−− ===>
−− {buffer . count = old buffer . count + 1 and not buffer . is full }
buffer . put (j)
−− {buffer . count = old buffer . count + 2}

ensure
buffer .count = old buffer .count + 2

end

−− in class BUFFER [G]
put (v : G)

−− Store v.
require

not is full
ensure

count = old count + 1

Figure 8.5: Proving asynchronous calls

get result (york), and get result (tokyo) happen in a context where york is controlled but
tokyo is not. Therefore, the assertion clauses involving tokyo are uncontrolled and they are
discarded by the proof rule. Assume that the feature get result is defined as

get result (location : separate LOCATION)
require

location . is ready
ensure

location . result retrieved

and the postcondition of do local stuff is empty. The proof sketch for the routine r in figure
8.6 demonstrates that reasoning about york’s properties is not hindered; the client has to estab-
lish the precondition of get result (york) using the postcondition of spawn two actitivies ; it
can also prove the postcondition of r using the postcondition of get result (york). However,
the establishment of the precondition clauses involving tokyo is beyond the client’s control;
it is up to the environment. The client does not need to prove anything but it is not even
sure whether the calls involving tokyo will ever start executing. The first possibility is that
tokyo’s handler is never released by its current client; both calls spawn two activities (york
, tokyo) and get result (tokyo) may block for that reason. The second possibility is that
tokyo becomes available but its state never satisfies the precondition; this may only happen for

8.3. DISCUSSION 175

r (york : separate LOCATION)
do

−− {True}
spawn two activities (york , tokyo)
−− {york.is ready and True}
do local stuff
−− {york.is ready}
−− ===>
−− {york.is ready}
get result (york)
−− {york. result retrieved }
do local stuff
−− {york. result retrieved }
−− ===>
−− {york. result retrieved and True}
get result (tokyo)
−− {york. result retrieved and True}

ensure
york . result retrieved

end

Figure 8.6: Limitations of the proof technique

get result (tokyo) because it has a precondition. As a result, the total correctness of r cannot
be proved without considering the emergent behaviour of the whole system; but this requires
global reasoning and the use of temporal operators to express such properties as “tokyo will
eventually become available in a state satisfying tokyo . is ready ”. A non-modular technique
for proving the properties of concurrent programs beyond contracts has been proposed by Os-
troff et al. [114]. See also the non-modular proof of the producer-consumer example in our
earlier paper [113].

8.3 Discussion

8.3.1 Contract redefinition

The proposed semantics of contracts and the proof technique are sound in the presence of poly-
morphism and dynamic binding; clients are not cheated upon even if contracts are redefined.
The standard DbC rules apply: preconditions may be kept or weakened; postconditions and
invariants may be kept or strengthened. A redefined precondition results in fewer obligations
on the client and (potentially) less waiting at the moment of the feature application; a redefined
postcondition gives the client more guarantees. We have already discussed the topic of contract
soundness in conjunction with the refined locking mechanism in chapter 7. The support for
polymorphism and dynamic binding is discussed in more detail in section 9.1.2.

176 CHAPTER 8. CONTRACTS AND CONCURRENCY

8.3.2 Importance of lock passing

The proposed proof technique would not be sound without the lock passing mechanism intro-
duced in section 7.2. Consider the proof sketch in figure 8.7. The call x . transfer to (y) is
processed synchronously because y is controlled, so a lock passing occurs (see the feature ap-
plication semantics 6.1.4). Any calls on y within the body of transfer to are guaranteed to be
executed before the subsequent call to y .empty issued by the client. Therefore, the postcondition
of transfer to may be assumed before the call y .empty; it is necessary to prove the correctness
of that call (and the whole routine s). If no lock passing occurred, the call y .empty would be
processed before the calls issued by the body of transfer to ; the assumption y . is full would
be false and the call y .empty invalid. In fact, following SCOOP 97 rules, x would be able to
execute transfer to only after the client terminated s and unlocked y; therefore, y . is full
would eventually become true, which contradicts the promise made by s: its postcondition says
that y is empty!

8.3.3 Run-time assertion checking

Meyer [94] mentions the problem of run-time assertion checking in a concurrent context. He
concludes

The assertions are an integral part of the software, whether or not they are enabled
at run time. Because in a correct sequential system the assertions will always hold,
we may turn off assertion checking for efficiency if we think we have removed all
the bugs; but conceptually the assertions are still there. With concurrency the only
difference is that certain assertions — the separate precondition clauses — may be
violated at run time even for a correct system, and serve as wait conditions. So the
assertion monitoring options must not apply to these clauses.

In fact, assertion monitoring may be turned off even for wait conditions. Since the client is
responsible for establishing the controlled precondition clauses, the runtime checks of such
preconditions are not necessary, provided that the calls have been proved correct (or, at least,
we are convinced that they are correct). Uncontrolled precondition clauses must be monitored;
however, even here some optimisations are possible. If an uncontrolled precondition clause
is satisfied whenever the feature is applied — for example the clause is implied by the class
invariant, or maybe it requires some (monotonic) property that has already been established by
an earlier call — then there is no point in re-checking the clause every time; we know that it
holds.

This issue reveals yet another advantage of the new semantics of postconditions, checks, and
loop assertions: the run-time monitoring of assertions has no impact on the semantics of correct
programs (except for the incurred overhead). With the traditional sequential semantics, wait by
necessity forces the client to wait for the evaluation of an assertion if the run-time checking is
turned on but no waiting happens when it is turned off; programs exhibit different behaviour.
Our semantics eliminates such inconsistencies.

8.3. DISCUSSION 177

−− in class C
s (x , y : separate X)

require
x . is empty and y. is empty

do
−− {x.is empty and y. is empty}
x . fill
−− {x. is full and y. is empty}
x . transfer to (y)
−− {y. is full }
y .empty
−− {y.is empty}

ensure
y . is empty

end

−− in class X
fill

−− Fill the container .
require

is empty
ensure

is full

empty
−− Empty the container.

require
is full

ensure
is full

transfer to (y : separate X)
−− Transfer the contents to y.

require
y . is empty

ensure
y . is full

Figure 8.7: Importance of lock passing

178 CHAPTER 8. CONTRACTS AND CONCURRENCY

8.4 Related work

The proof technique described here has been largely influenced by the discussions with Jonathan
Ostroff and Bertrand Meyer during an informal workshop in May 2006. We have also benefited
from the feedback received at the CORDIE’06 conference in York [116].

Ostroff et al. [114] show that contracts provide only a certain measure of correctness but do
not guarantee additional safety and liveness properties without global reasoning. The authors
model SCOOP 97 programs as fair transition systems, and use temporal logic for describing and
proving system properties beyond contractual correctness; their approach is complementary to
ours. An assertion testing methodology using the SpecExplorer tool 1 is also presented.

Bailly [16] assumes a different semantics of separate preconditions: they are merely guards
of conditional critical regions represented by routine bodies. Guards are excluded from con-
tracts and treated separately from the traditional (correctness) preconditions. The approach
does not support inheritance, therefore problems caused by guard strengthening vs. precondi-
tion weakening are not discussed. The treatment of postconditions is identical as in the sequen-
tial context, although the author comments on the infeasibility of formal reasoning with the
sequential proof rule. Other concurrent extensions of Eiffel, such as CEiffel [85, 86], CEE [70],
and Distributed Eiffel [62][17] use guard-based synchronisation. Unlike in SCOOP, guards are
specified using a different syntax than preconditions.

Sutton [136] describes a new strategy for condition-based process execution, based on de-
layed evaluation of preconditions and postconditions. Although preconditions have the guard
semantics, they are evaluated in parallel with the routine (task) bodies; a task might be allowed
to execute even if some of its preconditions have not been evaluated yet. They only have to
hold at a particular point of the task’s execution; otherwise, the task is put on hold or cancelled.
Conversely, the task may terminate even if some of its postconditions have not been estab-
lished. They have to be established eventually; otherwise, the task must be cancelled (rolled
back or compensated). This semantics is similar to ours; postconditions are also “projected” in
the future. The precondition semantics proposed by Sutton may be simulated in our model by
splitting up a routine into smaller subroutines which require their preconditions to hold on entry
to their bodies.

Rodriguez et al. [128] propose a concurrent extension of JML where method guards are
treated in a similar way to Sutton’s preconditions. Guards are specified using the when keyword
and they appear in a feature header, after the preconditions. If a feature is called in a state where
the guard does not hold, the feature should block until the guard is satisfied. Interestingly, the
guard does not need to hold at the beginning of the body but only at a point marked with a
special statement label commit. If no commit point is specified, it is implicitly assumed at
the end of the body. No implicit waiting mechanism is provided; it is up to the programmer
to implement it, e.g. in the form of a busy-waiting loop. Therefore, we can view guards as a
help in the static verification of atomicity properties but they do not facilitate the construction
of concurrent programs — programmers are still forced to write synchronisation code by hand.
This inevitably leads to the occurrence of inheritance anomalies. The generalised semantics of
preconditions that we propose avoids this problem (see section 10.5).

Traditionally, proof methods for concurrent programs are non-compositional, i.e. it is nec-
essary to consider the whole program in order to prove correctness of its parts. In his PhD

1http://research.microsoft.com/SpecExplorer

8.4. RELATED WORK 179

dissertation [71], Cliff Jones describes a compositional approach to proving correctness prop-
erties of concurrent shared-memory programs. He enriches contracts with two additional asser-
tions — rely and guarantee — that represent assumptions on the environment of a process and
commitment to the environment, respectively. Such assertions are used together with the stan-
dard preconditions and postconditions. Rely–guarantee specifications may only be applied to
shared-memory models with no aliasing but similar approaches (assumption–commitment) have
been proposed for message-passing systems [98]. These are more appropriate for SCOOP-like
models that are based on asynchronous feature calls. An interesting survey of research efforts
related to compositional approaches for concurrency is [72]. A fully modular proof system for
SCOOP would require much more expressive contracts: new types of assertions would be nec-
essary to capture the locking behavior of routines (i.e. what additional resources a routine may
request during the execution of its body) and their frame properties. These may be viewed as a
particular case of assumption–commitment specifications.

9
Advanced object-oriented

mechanisms in SCOOP

THE interplay between advanced object-oriented mechanisms and concurrency is of paramount
importance for SCOOP. The basic model presented so far excluded genericity, agents, and once
functions; we omitted these features to keep the formal model as compact as possible and facil-
itate its understanding. Also missing was a detailed discussion of inheritance, polymorphism,
and their relation with other mechanisms. These issues are vital in practice; an appropriate
support is needed for all the above mechanisms.

For each mechanisms, we discuss its interaction with concurrency, point out the specific
problems raised in the context of SCOOP, and propose an appropriate way to integrate the
mechanism with our framework. Where necessary, we provide a set of validity rules which
refine the type system introduced in chapter 6.

9.1 Inheritance and polymorphism

Inheritance (including its multiple and repeated variants) enables a stepwise specialisation and
refinement of abstractions implemented by classes. Polymorphism lets entities of type T repre-
sent objects of any type U that conforms to T . These two mechanisms constitute the backbone
of the object-technology; they foster the modularity, extendibility, and reusability of code, by
providing a convenient support for abstraction (see chapter 1). Abstraction enables stripping
away irrelevant details, e.g. how a given feature is implemented. Usually, an abstract concept is
captured in a base class whose descendants provide different specialisations and implementa-
tions; these concrete implementations may be “plugged in” where necessary, using polymorphic
attachments and dynamic binding.

9.1.1 Multiple inheritance

SCOOP does not alter the inheritance mechanism; all kinds of inheritance — single, multiple,
repeated — are permitted; the standard Eiffel rules apply. The type system relies on class types
and their hierarchy but the concurrency-relevant parts — processor tags — do not interfere
with class types. (We do not distinguish “separate” and “non-separate” classes.) Therefore, no
additional restrictions are placed on class hierarchies; the usual rules for feature introduction,
renaming, join, and undefinition apply (see the Eiffel standard [53]). There is, however, one new
syntactic element which has to be taken care of by the inheritance rules: the unqualified proces-

181

182 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

sor tag. Such processor tags are used in the enriched type system to mark entities representing
objects handled by the same processor, e.g.

x : separate <px> X
y : separate <px> X

The tag px must be declared in the same class; an attribute-like declaration

px: PROCESSOR

is used. Processor tags must be unique: no other tag, entity, or feature within the same class may
be called px. This raises the problem of potential name clashes in the context of inheritance.
We need to extend the rules for renaming and join so that they also apply to processor tags. A
processor tag may now be renamed in a descendant, e.g.

class A
feature

px: PROCESSOR
x , y : separate <px> X
...

end

class B
inherit A rename px as pt end −− Renaming prevents a name clash.
feature

z : separate <pt> Z
px: INTEGER −− A new feature is called px.
...

end

Naturally, the renaming of px influences all the type annotations involving that tag, i.e. the
inherited features x and y in class B have the processor tag pt.

When inheriting from several classes that declare the same processor tag, it is possible to
keep the tags distinct (through renaming) or arrange for a join, e.g.

class A class B
feature feature

px: PROCESSOR px: PROCESSOR
py: PROCESSOR py: PROCESSOR
... ...

end end

class C
inherit

A
B rename py as pt end

...
end

Class C joins both tags px inherited from A and B; processor tags are treated similarly to deferred
features, i.e. the join operation does not require renaming or undefining any of them. Tags py

9.1. INHERITANCE AND POLYMORPHISM 183

are kept distinct by renaming one of them as pt.

Since processor tags serve as type annotations but they are not features, their redefinition or
undefinition is prohibited.

9.1.2 Polymorphism and dynamic binding

The SCOOP framework fully supports polymorphism: the refined validity rules ensure the type
safety of operations on polymorphic entities and dynamically bound features. Clients are not
deceived, i.e. all the redefined versions of a feature abide by the original contract known to the
client. This is achieved through a combination of several elements: the conformance rules for
enriched types, the validity rules for feature redefinition, and the new semantics of contracts.

The subtype relation defined in figure 6.20 stipulates that a type U = (δ, β, Y) is a sub-
type of T = (γ, α, X) if and only if the three components of U — the detachable tag δ, the
processor tag β, and the class type Y — conform to the corresponding components of T . The
conformance relation on detachable tags says that attached (!) conforms to detachable (?), e.g.
(!, •, X) is a subtype of (?, •, X), and (!,>, X) is a subtype of (?,>, X). The conformance
relation on class types is defined by the rules of sequential Eiffel [53]. Essentially, it follows
the inheritance relation: D conforms to C if D inherits from C. Special rules apply to expanded
classes and generic derivations. D conforms to an expanded class EC if and only if D = EC.
The conformance of generic class derivations is discussed in section 9.2 below. Processor tags
form a lattice with the top element ‘>’, the bottom element ‘⊥’, and the other elements — ‘•’,
unqualified tags, and qualified tags — placed between the two, so that they conform to ‘>’ but
not to each other.

The signature conformance rule of Eiffel (rule 8.14.4 /VNCS/ in [53]) permits covariant
redefinition of argument types, provided that the redefined arguments are declared as detach-
able. The rule for result types is less strict: the redefined type simply has to conform to the
original one. In chapter 7 we have introduced a stronger rule (7.1.3) which restricts the redefi-
nition on formal argument types so that only arguments not appearing as targets of calls in the
inherited postconditions may be redefined; the redefinition is covariant for class type (i.e. from
a superclass to a subclass) like in the sequential Eiffel) but goes in the opposite direction in
the detachable tag, i.e. an attached argument may be redefined into a detachable one but not
vice-versa. The rule puts no additional restrictions of the redefinition of result types.

Redefinition of processor tags

Class types and detachable tags are taken care of by the rules /VNCS/ and 7.1.3; we still need
to clarify the rules for processor tags. Figure 9.1 illustrates the effects of result type redefini-
tion. The attribute x is redefined in class B into a non-separate one; its processor tag changes
from ‘>’ to ‘•’. The attribute y is redefined from non-separate into separate, i.e. its processor
tag changes from ‘•’ to ‘>’. After the polymorphic assignment a := b, features r and s are
called with the dynamically bound actual arguments of the redefined type. Feature r expects
an argument of type (!,>, X) but receives an argument of type (!, •, X). The formal argument
x is properly locked following the locking semantics of attached types introduced in chapter 7;
here, locking is trivial because the actual argument is handled by the current processor. Because
the actual argument is non-separate, the precondition x .some requirement is controlled, i.e. a

184 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

contract violation occurs if it does not hold immediately (see section 8.1.1). The call x . f in the
body of r is also valid because x is controlled in that context (see rule 6.5.3). The postcondition
x .some guarantee is evaluated synchronously, like in a sequential context. Therefore, the re-
definition of attributes from less specific to more specific types is sound. (Recall that it was not
the case in SCOOP 97; see section 5.10.) On the other hand, the redefinition of attributes from
more specific to more general types is not sound because it introduces potential traitors. The call
s (a .y) passes a separate actual argument to s which expects a non-separate one. No appropri-
ate locking is performed because y is assumed to be trivially locked; hence y becomes a traitor:
y . f is executed without respecting the atomicity requirements. Furthermore, the semantics of
contracts is applied incorrectly: the precondition y .some requirement and the postcondition y .
some guarantee are assumed to be controlled, which may lead to spurious contract violations.
Therefore, such a redefinition of result types should be prohibited.

Figure 9.2 illustrates the effects of a formal argument redefinition. The original version of r
in class A takes a separate formal argument; the original version of s takes a non-separate one.
Both features are redefined in class B to take a non-separate and a separate argument respec-
tively. After the polymorphic assignment a := b, the dynamically bound versions of r and s
are called with the actual arguments of the type required by the original features. As a result,
the executed version of r expects an argument of type (!, •, X) but receives an argument of type
(!,>, X). The formal argument x becomes a traitor: it is assumed to be handled by the current
processor, so no actual locking occurs; the call x . f is executed without respecting the atomic-
ity requirements. The assignment my y := x is permitted, which results in the introduction of
yet another traitor. Additionally, the inherited precondition x .some requirement is incorrectly
viewed as controlled, thus reduces to a one-off check; similarly, the postcondition is viewed as
controlled and evaluated synchronously, which may cause a deadlock. Therefore, a redefinition
of the processor tag of argument types from less specific to more specific must be prohibited.
On the other hand, a redefinition in the opposite direction does not cause any trouble: the new
version of s gets an actual argument of type (!, •, X) conforming to the expected type (!,>, X).
Consequently, its formal argument x is properly locked (because the actual argument is handled
by the current processor); the precondition and the postcondition correctly reduce to one-off
checks.

The examples above only use two processor tags: ‘>’ and ‘•’. Nevertheless, the results of
our analysis apply to other processor tags as well; any unqualified processor tag may be taken
instead of ‘•’. If the original attribute x : separate X in figure 9.1 was redefined into a more
specific x : separate <px> X, the polymorphic call r (a.x) would not cause any problems. On
the other hand, a redefinition of y : separate <py> Y into a more general y : separate Y would
lead to similar problems as before: the call s (a.y) would result in an atomicity violation, and
the semantics of contracts would be applied incorrectly, leading to the incorrect synchronisation
and a potential deadlock. Similar effects may be observed when using an explicit processor tag
in the formal argument of any routine in figure 9.2. A redefinition of r’s argument from x :
separate X to x : separate <px> X could introduce traitors, e.g. an assignment from x to

another entity of type separate <px> X would be possible although the object represented by
x is not necessarily handled by px. A redefinition of s’s argument from x : separate <px>
X to x : separate X causes no trouble at all. Rule 9.1.1 expresses succinctly the correctness

criteria for the redefinition of processor tags.

Definition 9.1.1 (Feature redefinition rule (processor tags)) A result type may be redefined
from separate (with processor tag ‘>’) to more specific. A formal argument may be redefined

9.1. INHERITANCE AND POLYMORPHISM 185

class A class B inherit A redefine x , y end
feature feature

x : separate X x : X
y : Y y : separate Y
... ...

end end

−− in class C
r (x : separate X)

require
x .some requirement

do
x . f

ensure
x .some guarantee

end

s (y : Y)
require

y .some requirement
do

y . f −− y is a traitor
ensure

y .some guarantee
end

a: A
b: B
...

a := b −− Polymorphic assignment
r (a.x) −− Valid
s (a.y) −− Problematic

Figure 9.1: Redefinition of result types

to separate (with processor tag ‘>’).

Unified feature redefinition rule

The redefinition rules for the individual components of a type are now clarified:

• Class types may be redefined covariantly both in result types and argument types but
the redefinition of a formal argument forces it to become detachable (rule /VNCS/). For
example, assuming that Y conforms to X, an argument x : X may be redefined into x : ?Y
but not x : Y. An attribute may be redefined from my x: X into my x: Y.

• Detachable tags may be redefined from ‘?’ to ‘!’ in result types. They may be changed

186 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

class A class B
feature inherit A redefine r , s end

r (x : separate X) feature
require r (x : X)

x .some requirement do
do x . f −− traitor

x . f my y := x −− traitor
ensure end

x .some guarantee
end s (x : separate X)

do
s (x : X) x . f

require end
x .some requirement end

do
x . f

ensure
x .some guarantee

end
end

−− in class C
a: A
b: B
my sep x: separate X
my x, my y: X
...

a := b −− Polymorphic assignment
a.r (my sep x) −− Problematic
a.s (my x) −− Valid

Figure 9.2: Redefinition of argument types

from ‘!‘ to ‘?‘ in argument types, provided that no call on the redefined argument occurs
in the original postcondition (rule 7.1.3).

• Processor tags may be redefined from ‘>’ to something more specific in result types, and
from more specific to ‘>’ in argument types (rule 9.1.1).

A unified rule should ensure the soundness of feature redefinitions. We understand soundness
as preservation of type safety and compatibility of the synchronisation requirements of the re-
defined feature with those expressed by the original contract. More precisely, a redefinition
must not introduce potential traitors; it must ensure the necessary locking and condition syn-
chronisation without causing any additional waiting on the clients’ side. The rule for result
types is straightforward because all three type components may be redefined from less specific
to more specific. Therefore, we may use directly the subtype relation defined in section 6.11.
The situation is more complex for argument types: two type components may be redefined from

9.1. INHERITANCE AND POLYMORPHISM 187

more specific to more general, whereas the third one may change in the opposite direction. As
a result, no subtype relation can be established between the original and the redefined type: if a
type T is replaced by U , neither U � T nor T � U need to hold.

Definition 9.1.2 (Feature redefinition rule) The result type of a feature may be redefined from
T to U if and only if U � T . The type of a formal argument x may be redefined from
T = (γ, α, X) to U = (δ, β, Y) if and only if the following conditions hold:

1. Y conforms to X.

2. If T is detachable or Y 6= X then U is detachable.

3. If U is detachable then no calls on x occur in the original postcondition.

4. U and T have identical processor tags (β = α); otherwise, U is separate (β = >).

Compatibility with DbC

Thanks to the unified contract semantics and the inherited precondition rule 7.1.4, which says
that all inherited precondition clauses involving calls on a detachable formal argument are triv-
ially true, the feature redefinition rule 9.1.2 is compatible with DbC: preconditions may only
be kept or weakened; postconditions may only be kept or strengthened. Figure 9.3 illustrates
it: routine r is redefined so that the type of its formal argument x changes from (!, •, X) to
(!,>, X), its argument y is redefined from (!, •,) to (?,>, Z), and its result type from (?, •, Z)
to (!, •, Z); we assume that Z inherits from Y. The new signature of r conforms to the original
one as required by the rule 9.1.2. The redefined precondition

(x . is empty and y. is empty) or else x .count = 1

reduces to

(x . is empty and True) or else x .count = 1

following the rule 7.1.4 (y is detachable), hence to

x . is empty or else x .count = 1

It is weaker than the original precondition because

(x . is empty and y. is empty) ===> (x . is empty or else x .count = 1)

So, the client’s obligations are not strengthened. The redefined postcondition

x .p (y) and then (x .count > 5 and Result. is empty)

clearly implies the original postcondition x .p (y). Therefore, the guarantees given to the client
are at least as strong as promised by the original contract. Note that x cannot be redefined into
detachable (clause 3 of 9.1.2) because it occurs as target of a call in the original postcondition;
y can become detachable because there are no calls on y in the original postcondition. In fact, y
must become detachable because its class type has changed covariantly (clause 2 of 9.1.2). The
result type has become attached; consequently, calls on Result may appear in the postcondition
(and the body) of r; such calls would be invalid in the original version of r.

188 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

class A
feature

f (x : X; y : Y): ?Z
require

x . is empty
y . is empty

ensure
x .p (y)

end

class B inherit A redefine r end
feature

r (x : separate X; y : ?separate Z): Z
require else

x .count = 1
ensure then

x .count > 5
Result . is empty

end

Figure 9.3: Redefinition of contracts

Precursor calls

The redefinition of argument types may lead to invalid Precursor calls. This problem has
already been identified (for detachable tags) in section 7.1.3; unfortunately, it may also be
caused by the redefinition of an argument into a separate one, and by a covariant redefinition
of an argument’s class type (because it forces the argument to become detachable). Figure 9.4
illustrates both cases: the redefined version of s takes a separate argument x and a detachable
argument y, and performs a precursor call Precursor (x , y) which is invalid because the actual
argument types — (!,>, X) and (?, •, Z) — do not conform to the expected ones: (!, •, X) and
(!,>, Y) respectively. The object test mechanism (see section 6.7) offers a simple albeit verbose
solution: before performing a call, the actual arguments are downcast to the types required by
the original routine. An object test is required for each problematic argument; hence a cascade
of object tests wrapping the actual precursor call.

9.1.3 Deferred classes

An Eiffel class may be declared as deferred, i.e. not fully implemented. A deferred class
may have zero or more deferred features; such features are specified but not implemented. For
example, the class COMPARABLE in figure 9.5 has one deferred feature <; other features are
effective, i.e. fully implemented (only one of them, <=, is shown here). Deferred classes cannot
be instantiated but their effective descendants can.

Deferred classes are useful for analysis and design because they make it possible to capture
the essential aspects of a system while leaving details to a later stage. They are an important
tool for structuring class hierarchies. Also, generic constraints are often expressed in terms of

9.2. GENERICITY 189

class A
feature

s (x : X; y : separate Y)
do

x . f
end

end

class B inherit A redefine s end
feature

s (x : separate X; ?separate Z) −− Assume Z conforms to Y
do

Precursor (x , y) −− Invalid
if {aux x: X} x and then {aux y: separate Y} y then

Precursor (aux x , aux y) −− Valid
end
...

end
end

Figure 9.4: Problematic Precursor calls

deferred class types. Since the type system clearly separates the notions of locality (expressed
through processor tags) and class types, SCOOP 97’s restrictions on the use of deferred classes
(see section 5.12.2) go away. Deferred classes may now be freely used to construct separate
types, as illustrated in figure 9.5, thus enriching the support for polymorphism and genericity.

9.2 Genericity

So far, the rules of our type system only considered simple class types; we have used generic
types in several examples but have not provided a formal justification for their safety in a concur-
rent context. This section discusses the use of genericity in SCOOP and refines the conformance
and validity rules to accommodate the mechanism.

Genericity gives us a new level of flexibility through type parameterisation. A class may be
defined as generic, e.g. LIST [G], yielding more than one class type: LIST [INTEGER], LIST
[FIGURE] and so on, parameterised by G. (These class types are referred to as generically
derived types, or generic types.) Two forms of genericity are available:

• Unconstrained genericity: G represents an arbitrary type.

• Constrained genericity: one can demand certain properties of the types represented by G,
enabling a more specific use of G in the class text.

SCOOP supports both forms of genericity. Separate annotations may appear in actual and
formal generic parameters, as well as in constraints; their use is only limited by the conformance

190 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

deferred class COMPARABLE
...
feature

infix ’’<’’ (other : like Current): BOOLEAN
−− Is current object less than other?

deferred
ensure then

asymmetric: Result implies not (other < Current)
end

infix ’’<=’’ (other : like Current): BOOLEAN
−− Is current object less than or equal to other?

do
Result := not (other < Current)

ensure then
definition : Result = (Current < other) or is equal (other)

end
...

end

class E [G −> separate COMPARABLE] −− generic constraint
...

end

−− in class C
my d: separate COMPARABLE −− separate and deferred
f (d: separate COMPARABLE) do ... end −− separate and deferred

Figure 9.5: Use of deferred classes

rules of the type system. Additionally, it is possible to construct arbitrarily nested types with
separate actual generic parameters, e.g.

l : separate LIST [HASH TABLE [separate SET [STACK [separate A [...]]]], STRING]

9.2.1 Generic parameters

All actual generic parameters appearing in a type must conform to the corresponding formal
parameters declared in the type’s base class (see the generic derivation rule 8.12.11 /VTGD/
in [53]). The conformance relation on SCOOP types stipulates that a type U is a subtype of
T only if the processor tag of U conforms to the processor tag of T . For example, (!, •, X)
and (!, px,X) conform to (!,>, X) but not the other way round. Consequently, separate actual
generic parameters may only be used if the corresponding formals are themselves separate.

An unconstrained formal generic parameter allows actual parameters of an arbitrary type.
In sequential Eiffel, an arbitrary type conforms to ANY because ANY is the most general type.
(In fact, the most general type is ?ANY but we omit the detachable tag for the moment; its

9.2. GENERICITY 191

use in generic types is discussed in section 9.2.5 below.) In SCOOP, the most general type
(ignoring detachability again) is separate: (!,>, ANY). Therefore, an unconstrained formal
generic parameter is implicitly constrained to that type, i.e. a declaration

class LIST [G] ... end

is equivalent to

class LIST [G −> separate ANY] ... end

The Eiffel rule for constraining types (8.12.7 in [53]) needs to be refined as follows:

Definition 9.2.1 (Constraint, constraining types of a formal generic parameter) The con-
straint of a formal generic parameter is its constraint part if present, and otherwise separate
ANY. Its constraining types are all the types listed in its constraining types if present, and

otherwise just (!,>, ANY).

This refinement has no impact on the clients using a generic type, e.g. the type LIST [X] which
is valid in sequential Eiffel for an arbitrary class X, remains valid in SCOOP as well. On
the other hand, the separateness of a formal generic parameter puts some restrictions on its
use in the class text. For example, the class A [G] in figure 9.6 is valid in Eiffel but not in
SCOOP because the call item . is equal (v) appears in a context where item is not necessarily
controlled. Since item is (potentially) separate but f does not lock its handler, the call is invalid.
In practice, however, the restriction imposed by the new rule is not problematic; for example,
all the generic classes in EiffelBase remain valid. Also, not all the calls on entities of type G
are invalid, e.g. a potentially separate call v . is equal (item) is correct because its target is
controlled: v appears as formal argument of f so its handler is locked by f if necessary.

class A [G]
feature

item : G

f (v : G)
do

if item . is equal (v) then −− Invalid
...

end
if v . is equal (item) then −− Valid

...
end

end
end

Figure 9.6: Incorrect use of unconstrained generic parameter

9.2.2 Constrained genericity

A formal generic parameter may be explicitly constrained, e.g.

192 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

class A [G −> separate X] ... end

or

class B [G −> X] ... end

Since any actual parameter must conform to the formal, only the types conforming to the con-
straining type may be used as actual generic parameters, e.g.

a1: A [separate Y] −− Valid if Y conforms to X
a2: A [X]
a3: A [separate ANY] −− Invalid
b1: B [Y]
b2: B [separate X] −− Invalid

A [separate X] is invalid because the actual parameter type (!,>, ANY) does not conform to
(!,>, X); similarly, B [separate X] is invalid because (!,>, X) does not conform to (!, •, X).
The latter example suggests a way to enforce the non-separateness of actual parameters: it
suffices to constrain the corresponding formal parameter to (!, •, ANY), e.g.

class C [G −> ANY] ... end

A constraint gives additional information on possible actual types represented by G; for exam-
ple, if the base class of the constraining type has feature f then every actual parameter type is
guaranteed to have it as well. This lets the implementer of the generic class apply f to entities
of type G appearing in the class text. A typical example is the constraint based on the class
COMPARABLE, depicted in figure 9.7. COMPARABLE provides a number of comparison op-

class D [G −> separate COMPARABLE]
feature

item : G

r (v : G)
require

v <= item −− Valid
do

if v < item then −− Valid
...

else
...

end
end

end

Figure 9.7: Constrained genericity

erators, e.g. ‘<’, ‘<=’, ‘>’; they may be freely used on entities of type G within the class text
of D. Both the precondition of r and the expression v < item appearing in its body are valid.

The above example also illustrates nicely the interplay of genericity with the new semantics
of attached types and contracts: independently of whether the actual generic parameter G is

9.2. GENERICITY 193

separate or not, the feature r ensures an appropriate synchronisation; if necessary, the execution
of r is delayed until v’s handler is locked and the precondition holds.

9.2.3 Actual result types

The locality of an actual generic parameter is always relative to the instance of the class where
the corresponding formal generic parameter is declared, e.g. l : LIST [separate BOOK] de-
notes a non-separate list of separate books, i.e. the elements of l are separate from it (see figure
9.8). On the other hand, sl : separate LIST [BOOK] is separate from the current object; the
elements of sl are handled by the same processor as sl (see figure 9.9).

Figure 9.8: LIST [separate BOOK]

If the locality of the elements is relative to the container and not to the client using the
container, then what is the type of the elements as seen by the client? (We talk about containers
here but the discussion concerns all generic classes, not only those representing containers.)
The type combinator ‘?’ is used to compute it: the type of the container (as seen by the client)
is combined with the type of the elements (as seen by the container). Applying this technique to
the examples above yields the following results: the elements of l have the type (!,>, BOOK)
because

(!, •, LIST [...]) ? (!,>, BOOK) = (!,>, BOOK)

and the elements of sl have the type (!,>, BOOK) because

(!,>, LIST [...]) ? (!, •, BOOK) = (!,>, BOOK)

The calculated types correspond to those returned by the calls to features of a generic parameter
type, e.g. item and first . (These features are declared as item : G and first : G in the class
LIST [G]; substituting G with with the actual generic parameter and combining the type of the
container with the obtained result type yields (!,>, BOOK).) Therefore, an entity used for
storing an element retrieved from l or sl needs to be declared accordingly:

194 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

Figure 9.9: separate LIST [BOOK]

my book: separate BOOK
...

my book := l . first
my book := sl . item

The combinator ‘?’ may be applied recursively (just like in multi-dot expressions) to nested
generic types, e.g.

ml: LIST [separate ARRAY [STACK [separate BOOK]]]
...

my book := ml. item . item (4) . top

The innermost type in the declaration of ml is seen by the client as (!,>, BOOK) because

(!, •, LIST [...]) ? (!,>, ARRAY [...]) ? (!, •, STACK[...]) ? (!,>, BOOK) =

(!,>, ARRAY [...]) ? (!, •, STACK[...]) ? (!,>, BOOK) =

(!,>, STACK[...]) ? (!,>, BOOK) =

(!,>, BOOK)

Consequently, the expression ml. item . item (4) . top has the type (!,>, BOOK) and the above
assignment to my book is valid if and only if its target is declared as

my book: separate BOOK

or with a supertype of (!,>, BOOK), e.g.

my book: separate ANY

9.2.4 Actual argument types

The type of an actual argument must conform to the type of the corresponding formal in the
called feature, after an appropriate combination (using the operator ‘⊗’) with the type of the

9.2. GENERICITY 195

target on which the feature is called. If the type of the formal argument is a generic parameter,
then the corresponding actual parameter is used in its place. For example, if the feature put in
the class LIST [G] expects an argument of type G, then the actual argument my book of the call

l : LIST [separate BOOK]
...
l . put (my book)

has to conform to the type (!,>, BOOK) because

(!, •, LIST [...])⊗ (!,>, BOOK) = (!,>, BOOK)

It is therefore sufficient to declare it as

my book: separate BOOK

If the generic type is nested, e.g.

nl : separate <px> LIST [ARRAY [STACK [BOOK]]]
...
nl . item . item (3) . put (my book)

we follow the same scheme; here, the actual argument must conform to (!, px,BOOK) because
the target nl . item . item (3) has the type (!, px, STACK[BOOK]) — obtained using the com-
binator ‘?’ — and put takes an argument of type G (a formal generic parameter, hence replaced
by the actual parameter (!, •, BOOK)), and

((!, px, LIST [...]) ? (!, •, ARRAY [...]) ? (!, •, STACK[BOOK]))⊗ (!, •, BOOK) =

(!, px, STACK[BOOK])⊗ (!, •, BOOK) =

(!, px,BOOK)

Now, my book has to be declared as

my book: separate <px> BOOK

or with a subtype of (!, px, BOOK).

9.2.5 Detachable generic parameters

So far, we have focussed on processor tags and class types, and ignored detachable tags. Beyond
their usual meaning — marking entities as potentially void — detachable tags play a particular
role in the genericity mechanism: they impose certain restrictions on type conformance and
ensure the soundness of covariant subtyping, thus eliminating catcalls (see section 9.2.6 below).
The detachable tag ‘?’ decorating a formal generic parameter, e.g.

class A [?G] ... end

turns it into a self-initialising parameter; valid actual generic parameters must be either detach-
able — in this particular case conform to (?,>, ANY) because ?G is equivalent to ?G −>
separate ANY — or be themselves self-initialising, i.e. list default create from class ANY
among their creation procedures (rule 8.12.11 /VTGD/). For example, the following declara-
tions are valid:

196 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

a1: A [?separate BOOK]
a2: A [?ANY]
a3: A [INTEGER]

because the actual parameters satisfy the above requirement: (?,>, BOOK) � (?,>, ANY),
(?, •, ANY) � (?,>, ANY), (!, •, INTEGER) � (?,>, ANY) and INTEGER is self-
initialising. On the other hand, the declaration

a4: A [separate BOOK]

is invalid because the actual parameter (!,>, ANY) is not self-initialising: BOOK does not
list default create as creation procedure. Self-initialising formal generic parameters may be
explicitly constrained, e.g.

class B [?G −> separate X] ... end
class D [?G −> X] ... end

Actual generic parameters must conform to the constraining type and, if attached, be self-
initialising as required by the above rule for detachable tags.

A note on the syntax: rather than splitting the type annotation so that one part (‘?’) appears
before the parameter while the rest comes after it, as in ?G −> separate X, one could write the
whole type in the constraint: G −> ?separate X. Nevertheless, we opt for the former syntax
because we want to preserve the compatibility with the sequential Eiffel which uses the form
?G. Furthermore, this syntax is also more compact: to declare a parameter as self-initialising,
it suffices to write ?G; with the alternative syntax, an explicit constraint is needed: G −> ?
separate ANY.

9.2.6 Type conformance

Now that the basic rules of conformance between actual and formal generic parameters have
been clarified, let’s have a look at their combination with inheritance and polymorphism. There
are two issues of interest:

• Inheritance of generic classes
Should the specialisation of a separate parameter into a non-separate one be allowed, i.e.

class A [G] −− G −> separate ANY
...

end

class B [G −> ANY]
inherit A [G]
...

end

or the other way round

class A [G −> ANY]
...

end

9.2. GENERICITY 197

class B [G] −− G −> separate ANY
inherit A [G]
...

end

• Conformance of generic types
Does A [X] conform to A [separate X] or the other way round?

Inheritance of generic classes

Figure 9.10 shows a problematic scenario involving inheritance and constrained genericity.
Class B inherits from A and strengthens (makes more specific) the constraint on the generic
parameter from (!,>, ANY) to (!, •, ANY). Since the type G is now more specific, one may
do the same things with entities of this type in B as in A, and possibly more. As a result, all the
features inherited from A remain valid in B. Features defined in B may do more sophisticated
things, e.g. r performs a call to item . f that would be incorrect in A; in B, however, item is
guaranteed to be non-separate (and attached), it is therefore controlled and the call is valid. On
the other hand, the same call becomes invalid in class D because D relaxes the constraint on
G; now, item may be separate and its base class does not necessarily conform to Y (or even
to X). Therefore, item . f is doubly invalid: because its target is not controlled, and because
the call is a catcall as f is not necessarily defined for item. The source of the problem is the
non-conformance of the new constraint to the inherited one: (!,>, ANY) � (!, •, Y).

class A [G −> separate X]
feature

item : G
...

end

class B [G −> Y] −− Y inherits from X
inherit A [G]

r do
item . f −− Valid

end
end

class D [G] −− G −> separate ANY
inherit B [G]

−− r is invalid here
end

Figure 9.10: Constrained genericity and inheritance

Since a non-conforming constraint violates the type safety, the inheritance relation between
generic classes must preserve the constraints, i.e. keep or strengthen them, as expressed by the
rule 9.2.2 below.

198 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

Definition 9.2.2 (Inheritance of classes with constrained generic parameters) If a formal
generic parameter G is constrained to a type T in the ancestor class C, then in any class
that inherits from C, G must be constrained to a type U such that U � T . Additionally, if G is
self-initialising in C then it must be self-initialising in all descendants of C.

We rely on the standard definition of type conformance; however, the second part of the rule
reflects the special semantics of detachable tags discussed in section 9.2.5. It is prohibited to
redefine a formal generic parameter from self-initialising to non-self-initialising; figure 9.11 il-
lustrates the reason for this restriction. Class B inherits from A and constrains the formal generic
parameter to (?, •, X), keeping it self-initialising like in the ancestor class. The inherited rou-
tine g is valid because its result (Void) conforms to the constraint: (?,⊥, NONE) � (?, •, X).
In class D, which also inherits from A but constrains G to (!, •, X), thus making it non-
self-initialising, the routine g is invalid because its result does not conform to the constraint:
(?,⊥, NONE) � (!, •, X). Hence the requirement to preserve the self-initialising character of
inherited formal generic parameters.

class A [?G −> separate ANY]
feature

g: G
do

Result := Void
end

end

class B [?G −> X]
inherit A [G] −− Allowed

−− g is correct here
end

class D [G −> X]
inherit A [G] −− Prohibited

−− g is invalid here
end

Figure 9.11: Self-initialising formal generic parameters under inheritance

Conformance of generic types

The general conformance rule of Eiffel (8.14.6 /VNCC/ in [53]) stipulates that a generically de-
rived type B [Y] conforms to A [X] if and only if B conforms to A, and Y to X. The rule seems to
be correct: intuitively, if the base classes and all the actual generic parameters conform, then the
entire types should conform as well. Unfortunately, the rule is unsound, as illustrated in figure
9.12. If the type of a2 conforms to the type of a1, i.e. (!, •, A[(!, •, X)]) � (!, •, A[(!, •, X)]),
then it is possible to perform a polymorphic assignment a1 := a2. But now passing the separate
entity my x as actual argument to a1.r results in a catcall because the expected formal argument
should be non-separate. Although no inheritance and feature redefinition are involved, the

9.2. GENERICITY 199

class A [G −> separate X]
feature

item : G

r (v : G)
do

v . f
end

end

−− in class C
a1: A [separate X]
a2: A [X]
my x: separate X
...

my x := a1. item
a1 := a2
a1.r (my x) −− Catcall!

Figure 9.12: Problems with the covariant conformance rule for generic types

problem is caused by the “redefinition” of the formal argument type: the target has the type
(!, •, A[(!, •, X)]), so its routine r expects an argument conforming to (!, •, X). The actual has
a non-conforming type (!,>, X); hence the catcall. (Redefinition of formal arguments was dis-
cussed in detail in section 9.1.) This problem is not concurrency-specific; it is also present in
sequential languages that allow covariant subtyping of arrays, e.g. Java and C]; there, it is dealt
with by a run-time check.

Given that the problems are similar, can we apply the same solution? Recall that a formal
argument of a routine may be redefined covariantly if and only if it becomes detachable (rule
9.1.2). Transposing it to genericity: an actual generic parameter conforms to another actual
generic parameter if and only if they are identical, or the former is detachable. But this is not
sufficient because now a detachable parameter may conform to an attached one, which raises
another conformance issue, illustrated in figure 9.13. After the polymorphic assignment from
b2 to b1, the assignment my x := b1. item is invalid because its source is possibly void, hence
incompatible with its target. One could claim that this is not dangerous because X must be self-
initialising anyway (as required by the rule 8.12.11 /VTGD/), so my x may be given a default
value if b1. item yields Void. Nevertheless, this is counterintuitive; the source type (?,>, X)
does not conform to the target (!,>, X). On the other hand, no such problem arises when both
types are detachable, e.g. the assignment my y := b2. item is correct: b2. item either yields an
object of type (?, •, X) or Void; both conform to the target type (?,>, X). Rule 9.2.3 captures
the conformance relation on generic types.

Definition 9.2.3 (Conformance of generically derived types) A generically derived class
type CT ′ = B[(γY , αY , Y)] conforms to CT = A[(γX , αX , X)] if and only if B conforms
to A, (γY , αY , Y) � (γX , αX , X), and any of the following conditions holds:

• Both actual generic parameters are detachable, i.e. γX = γY = ?.

200 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

class B [?G]
feature

item : G
end

−− in class C
b1: B [separate X] −− X is self− initialising
b2: B [?separate X]
b3: B [?X]
my x: separate X
my y: ?X
...

b1 := b2
my x := b1. item −− Problematic
b2 := b3
my y := b2. item −− Correct

Figure 9.13: Conformance of detachable and attached actual generic parameters

• Actual generic parameters are identical, i.e. γY = γX , αY = αX , and Y = X .

If CT ′ conforms to CT , then the type U = (δ, β, CT ′) conforms to T = (γ, α, CT), that is
U � T , provided that δ conforms to γ, and β conforms to α.

Let’s apply this rule to a few examples. If LINKED LIST conforms to LIST, Y conforms to X,
and both X and Y are self-initialising (to allow their use in the attached form as well), then

• LINKED LIST [X] conforms to LIST [X]

• LINKED LIST [separate X] conforms to LIST [separate X]

• LINKED LIST [?Y] conforms to LIST [?X]

• LINKED LIST [?X] conforms to LIST [?separate X]

• LINKED LIST [?Y] conforms to LIST [?separate X]

• LINKED LIST [?separate Y] conforms to LIST [?separate X]

but

• LINKED LIST [Y] does not conform to LIST [X]

• LINKED LIST [Y] does not conform to LIST [separate X]

• LINKED LIST [separate Y] does not conform to LIST [separate X]

The usual subtyping rules apply to types built from generically derived class types, as expressed
by the second part of the rule 9.2.3. For example, if LINKED LIST [?Y] conforms to LIST [?X],
then:

9.2. GENERICITY 201

• LINKED LIST [?Y] conforms to ?LIST [?X]

• LINKED LIST [?Y] conforms to separate LIST [?X]

• separate LINKED LIST [?Y] conforms to separate LIST [?X]

• separate LINKED LIST [?Y] conforms to ?separate LIST [?X]

but

• ?LINKED LIST [?Y] does not conform to LIST [?X]

• separate LINKED LIST [?Y] does not conform to LIST [?X]

• ?separate LINKED LIST [?Y] does not conform to separate LIST [?X]

Rule 9.2.3 applies to arbitrarily nested generic types, e.g. it is possible to conclude that

LINKED LIST [?LINKED STACK [?separate LINKED QUEUE [?BUFFER [?Y]]]]

conforms to

separate LIST [?separate STACK [?separate QUEUE [?BUFFER [?separate X]]]]

provided that LINKED LIST conforms to LIST, LINKED STACK to STACK, LINKED QUEUE
to QUEUE, and Y to X.

9.2.7 Discussion

The genericity mechanism is integrated with SCOOP in a straightforward manner. Most valid-
ity and conformance rules need little refinement, with the exception of the generic type con-
formance rule (8.14.6 /VNCC/) whose part concerning generic types must be replaced by the
stronger rule 9.2.3. This rule, however, is not concurrency-specific; it is necessary to close a
loophole in the Eiffel type system permitting the occurrence of catcalls due to the covariant
conformance of actual generic parameters.

A different approach to the detachability of formal generic parameters has been proposed
for Spec] by Fähndrich et al. [55]; covariant subtyping of generic types is prohibited but a more
flexible use of formal generic parameters is allowed. A formal parameter G may be used both
as attached and detachable (nullable in the Spec] jargon) within the same class; it suffices to
decorate it with the appropriate tag, e.g.

public !G get {...} // Here, G is non−nullable
public put (?G v) {...} // Here, G is nullable

This enables safe handling and initialisation of arrays with elements of non-nullable types.

In our type system, the locality of actual generic parameters of a type is relative to the
instance of the generic class which serves as base class for the type (see sections 9.2.3 and
9.2.4). This approach is similar to Ownership Generic Java (OGJ) by Potanin et al. [124],
where the ownership annotations are relative to the generic class whose actual parameter they
decorate. For example, a container typed as “my box of books” in OGJ belongs to the current
object but the ownership of its elements (books) is not specified. In SCOOP, where we are

202 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

concerned with the locality of objects rather than their ownership, this corresponds to a non-
separate container of separate books, e.g. l : LIST [separate BOOK]. As pointed out in section
5.11, one could take a different approach and evaluate the separate annotations with respect to
the client that declares the generic type; in that case, each type annotation would be relative to
the current object. For example, the container l : LIST [separate BOOK] is non-separate from
Current; its elements are (potentially) separate from Current but we make no assumption
about their locality with respect to the container. (Logically, they are also separate from the
container, so the class LIST must accept separate actual parameters.) On the other hand, the
elements of sl : separate LIST [BOOK] are non-separate from Current but the container itself
is. Dietl et al. [48] follow this approach to combine genericity and ownership in their GUT
system. This alternative is indeed more convenient for ownership annotations: it facilitates the
implementation of common data structures such as collections with iterators, or shared buffers.
In the concurrent context, however, passing references across processors’ boundaries is much
simpler with our approach: only the outermost annotation changes; the rest of the type stays
intact, e.g.

LIST [A [separate B [X]]]

becomes

separate LIST [A [separate B [X]]]

With the alternative approach, all actual generic parameters need to be modified due to the view-
point adaptation: since the processor tags are relative to Current, they change when Current
denotes a different object. This would unnecessarily complicate the language and type rules;
some operations may yield invalid types, in particular in the context of constrained genericity.
Therefore, we have decided to follow the approach presented in earlier sections.

9.3 Agents

The agent mechanism provides a convenient way to represent partially or completely specified
computations as first-class citizens of the object-oriented world. The Eiffel standard [53] gives
the following justification for the use of agents:

In the object-oriented world, objects represent information equipped with opera-
tions. These are clearly defined concepts; no one would mistake an operation for
an object. For some applications — graphics, numerical computation, iteration,
reflection (a system’s ability to explore its own properties) — you may find the
operations so interesting that you will want to define objects to represent them,
and pass these objects around to software elements which can use these objects to
execute the operations whenever they want. Because this separates the place of
an operation’s definitions from the place of its execution, the definition can be in-
complete, since you can provide any missing details at the time of any particular
execution.

Syntactically, an agent is of the form agent x . f (...) or agent f (...) with the following pos-
sible variants:

• Any argument may be replaced by a question mark ‘?’, making the argument open.

9.3. AGENTS 203

• The target may be replaced by {T}, where T is the name of a type, making the target open.

• The argument list (...) may be removed altogether, making all arguments open.

Agents combine the expressiveness of higher-order functionals with the safety of a static type
system. They may be used for a number of purposes but they prove particularly useful in
event-driven programming [12, 95]. They enable a loose coupling of software components: an
object may call another object’s feature without becoming its explicit client. Three principal
characteristics of agents turn them into a powerful modelling and implementation tool:

• Mobility
An agent may be created by one object and passed to other objects for a later use.

• Separation of agent construction and agent execution
An agent is constructed once but it may be executed several times, at any convenient time.

• Open operands
Operands required by the computation (including the target object) may be left unspeci-
fied (open) until the call-time; a mix of fixed and open operands may be used.

Agents are well integrated with Eiffel although the mechanism is not completely type-safe in its
current form (some run-time checks are necessary). Extending it to cover concurrency seems to
be straightforward but a closer examination reveals a number of potential difficulties:

• How can we prevent an agent from becoming a traitor?

• Can agents be passed across a processor’s boundary?

• How can we ensure the conformance of the actual arguments to the open operands at
call-time?

• Can we safely use open-target agents in a concurrent context?

This section sketches a solution. First, we discuss the type safety and propose an agent cre-
ation rule which eliminates the danger of traitors. Second, we show how mobility of agents can
be achieved without compromising type safety. We also describe the treatment of open argu-
ments. Third, we propose a validity rule for open-target agents. Finally, we present the practical
advantages brought to SCOOP by the enriched mechanism.

9.3.1 Agents as potential traitors

An agent represents a feature ready to be called. In fixed-target agents, i.e. those declared
with an explicit target, the object to which the feature is applied is known at the time of agent
creation; the static type of the agent is derived from the static type of its target and the types
of formal arguments corresponding to open operands. Consider an expression agent x . f (...)
where x has the type Tx. Let i1, ..., im (m ≥ 0) be its open operand positions, if any, and let
Ti1, ..., T im be the types of f’s formal arguments at positions i1, ..., im (taking Ti1 to be Tx if
i1 = 0). According to the rule 8.27.17 in sequential Eiffel [53], the expression has the type

• PROCEDURE [Tx,TUPLE [Ti1, .., T im]] if f is a procedure.

204 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

• FUNCTION [Tx,TUPLE [Ti1, .., T im], R] if f is a function of result type R other
than BOOLEAN.

• PREDICATE [Tx,TUPLE [Ti1, .., T im]] if f is a function of result type BOOLEAN.

A naive application of this rule in SCOOP leads to the creation of agent objects which are not
separate from their creators, even if they represent a separate call. Consider the following code
excerpt:

my x: separate X
my agent: PROCEDURE [separate X, TUPLE]
...

my agent := agent my x. f
my agent. call ([]) −− Traitor

Assuming that the feature f in class X does not take any arguments and returns no result,
the expression agent my x. f has the type (!, •, PROCEDURE[(!,>, X), (!, •, TUPLE)]));
my agent is typed correspondingly. But this means that my agent is non-separate, thus con-
trolled in any context; calls on my agent do not have to be wrapped in an enclosing routine.
For example, the call my agent. call ([]) is accepted by the compiler. But this is like calling
my x. f without locking my x’s processor! Therefore, my agent is a traitor: it provides an un-
synchronised access to a separate object. Figure 9.14 illustrates this scenario: the agent o3 is
handled by the same processor as the client o1, so the client expects its call to be non-separate;
calling o3, however, results in an illegal separate call on o2.

Figure 9.14: Agent as potential traitor

The semantics of agent calls could be changed so that a lock is acquired on the target before
applying the feature, e.g. the call my agent. call ([]) is translated into a sequence of opera-
tions:

1. Lock the handler of my agent’s target.

2. Perform the asynchronous call represented by my agent.

3. Unlock the target’s handler.

9.3. AGENTS 205

This solves the problem of traitors but other issues remain:

• It is difficult to ensure the atomicity of a sequence of agent calls on the same target
because the lock on the target’s handler is released and acquired again between the sub-
sequent calls.

• If an agent is passed across a processor’s boundary then, like any other reference, it be-
comes separate. To call such an agent, clients first need to lock its handler (which happens
to be its creator’s handler). This locking serves no real purpose; the client is interested in
the target’s handler, not the creator’s. Figure 9.15 illustrates this point. Assume that o1
has constructed the agent o3 and passed it to o4. The agent is separate with respect to o4,
so the latter needs a lock on P1 before calling o3. When o3 is called by o4, it needs to
lock P2 to apply the feature on its target o2. Although the client o4 is handled by the same
processor as the agent’s target — which means that no locking should be necessary —
two lock requests are needed. This may even lead to a deadlock: the lock request issued
by the agent blocks until P2 becomes free, but P2 may never become free if o4 decides to
execute some query call on o1. In that case, P2 is blocked waiting for P1 and vice-versa.

• The locality of open operands is assessed with respect to the agent’s creator rather than its
target. This violates the type safety: an operand that must be non-separate from the target
— as in agent my x.g (?) , provided that g is declared as g (y : Y) do ... end — will
appear as separate in the agent. As a result, an actual argument passed to the agent at the
call time may be handled by any processor, although the expected formal is non-separate;
a traitor may be introduced.

Therefore, changing the semantics of an agent call is not a good solution. A different approach
is needed: the creation rule for agents must be refined to capture correctly the locality of their
target and operands; agent creators should be clearly decoupled from agent users to avoid the
unnecessary locking. The primary concern, however, is the elimination of traitors without mod-
ifying the semantics of the agent call.

Figure 9.15: Problematic agent

206 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

9.3.2 Separate agents

To achieve full decoupling of agent creation and agent execution, we need to ignore the details
concerning the object which creates an agent; this object does not intervene in the interaction
between the agent and its clients, so its type (more precisely: its locality with respect to the
target) should have no impact on the agent’s type. On the other hand, the agent has a strong bond
with its target; the simplest way to express this relationship is to place the agent on its target’s
processor, hence make the agent separate from the creator object if necessary, as illustrated in
figure 9.16. Rule 9.3.1 captures the new semantics of agent creation.

Definition 9.3.1 (Agent creation rule) A newly created agent is placed on its target’s proces-
sor.

The rule eradicates several problems at once:

• Agents cannot become traitors anymore: an agent call is only possible in a context where
the target’s processor is locked.

• A sequence of calls on the same agent, appearing in a routine that locks the agent’s han-
dler, is guaranteed to execute atomically.

• The agent bears no indication of its creator; on the other hand, it is strongly coupled with
its target.

• Open operands are correctly typed because their separateness from the agent implies the
separateness from the target; conversely, their non-separateness from the agent implies
the non-separateness from the target.

Rule 9.3.2 refines the Eiffel rule 8.27.17 [53] to reflect the new creation semantics.

Definition 9.3.2 (Agent expression type) Consider an expression agent x. f (...) where x has
the type Tx = (!, α,X). Let i1, ..., im (m ≥ 0) be its open operand positions, if any, and let
Ti1, ..., T im be the types of f’s formal arguments at positions i1, ..., im (taking Ti1 to be Tx if
i1 = 0). The expression has the type

• (!, α, PROCEDURE [(!, •, X), (!, •, TUPLE [Ti1, .., T im])])
if f is a procedure.

• (!, α, FUNCTION [(!, •, X), (!, •, TUPLE [Ti1, .., T im]), TR])
if f is a function of result type TR other than (!, •, BOOLEAN).

• (!, α, PREDICATE [(!, •, X), (!, •, TUPLE [Ti1, .., T im])])
if f is a function of result type (!, •, BOOLEAN).

All these types conform to (!, α, ROUTINE [(!, •, X), (!, •, TUPLE [Ti1, .., T im])])

The fact that an agent is handled by its target’s processor is reflected in its type: it has the
same processor tag as the target. For example, if the targets my x and my y and the features f
and g are declared as

9.3. AGENTS 207

Figure 9.16: Separate agent

−− in class C
my x: separate <px> X
my y: X
...

a := agent my x. f
b := agent my y. f

−− in class X
f : ?Y
g: separate Y

so that my x has the type (!, px,X) and my y has the type (!, •, X), then the expression
agent my x. f has the type

(!, px, PROCEDURE[(!, •, X), (!, •, TUPLE), (?, •, Y)])

whereas the expression agent my y. f has the type

(!, •, FUNCTION [(!, •, X), (!, •, TUPLE), (!,>, Y)])

The variables a and b used for storing the agents are declared correspondingly:

a: separate <px> FUNCTION [X, TUPLE, ?Y]
b: FUNCTION [X, TUPLE, separate Y]

As you can see, the agents and their targets have the same processor tags: px for a and my x, and
‘•’ for b and my y. The target type is always non-separate with respect to the agent; that is why
it appears here as (!, •, X). The result type — for agents representing a function — corresponds
to the declared result type of the function; it does not matter whether the target is separate or
not. Therefore, the result type is (?, •, Y) for a, and (!,>, Y) for b. The tuple of operands is
always non-separate from the agent; we will come back to this point in section 9.3.2. A direct
call b. call ([]) is valid because b is controlled (see rule 6.5.3). On the other hand, a direct call
a. call ([]) is now invalid because it happens in a context where a is not controlled. The call
must be wrapped in a routine which locks a’s handler, e.g. by taking a as actual argument:

call (an agent : separate ROUTINE [ANY, TUPLE])
−− Execute operation represented by an agent .

208 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

do
an agent . call ([])

end
...
call (a)

The call an agent . call ([]) in the body of call is valid; it has the same effect as a. call ([])
or my x. f but without violating the synchronisation policy. (As a matter of fact, feature call
may be used for wrapping arbitrary agent calls without operands; see section 9.3.4.) But it only
executes a single call; if an atomic sequence of agent calls is needed, an enclosing routine has
to be written for that purpose, e.g.

call three times (an agent : separate ROUTINE [ANY, TUPLE])
−− Execute operation represented by an agent .

do
an agent . call ([])
an agent . call ([])
an agent . call ([])

end
...
call three times (a)

Agents behave now just like any other entity; the same validity rules apply. Therefore, agent
calls may be freely mixed with other feature calls; references to agents may be passed across
processors’ boundaries, etc. Additionally, the semantics of agent calls is exactly the same as
that of usual calls: calling an agent amounts to requesting the application of one of its features;
no hidden synchronisation occurs.

Agent mobility

When a reference to an agent is passed across the boundary of a processor (in a separate fea-
ture call), its type changes due to the type combination rules (see section 6.4). Typically, the
reference is seen as separate on the receiver’s side. With the naive application of the sequential
agent semantics, it would cause the problem depicted in figure 9.15: unnecessary locking and
potential deadlock. No such problems occur with the new semantics captured by the rule 9.3.1;
since the agent is non-separate from its target, the reference becomes separate if and only if the
target does. Consider the following code excerpt:

−− in class C
my agent: separate PROCEDURE [X, TUPLE]
pass my agent (receiver : separate C)

do
receiver . set my agent (my agent)

end

Figure 9.17 illustrates this situation. The current object o1 holds a reference (my agent) to o3,
and passes it to another object o4 by calling receiver . set my agent (my agent). The receiver
o4 sees the reference to o3 as separate, hence no traitor is introduced: o4 may only perform a
call on o3 (thus, implicitly, on o2) in a context where P2 is locked. In this particular example,

9.3. AGENTS 209

the agent was already separate before being passed across the processor’s boundary. But even a
non-separate agent becomes separate when passed to a separate object, just like a non-separate
reference would. On the other hand, passing an agent to a non-separate object preserves its
processor tag. Through the combination of rule 9.3.1 with the rules T-QFCallQual and T-
CCallQual (see section 6.11), the locality of the target is always reflected in the locality of the
agent; therefore, the type safety is preserved.

Figure 9.17: Agent mobility

Result types

Agents may represent commands or queries; the latter have a result that can be retrieved after
an agent call, using the feature last result , e.g.

my agent. call ([])
...
res := my agent. last result

To ensure the type safety, a result must not be retrieved before at least one agent call has been
performed; the precondition of last result enforces it. The type of the result corresponds to
the type of the agent combined with the result type of the routine represented by it. (A direct
call to the feature represented by my agent yields the same type, which is precisely what we
want.) The type combinator ‘?’ is used for calculating the actual type, just like for non-agent
query calls (see the rule T-QCallQual). For example, if my agent is defined as

my agent: separate FUNCTION [X, TUPLE, ?Y]

which means that it represents a separate call to a query, say my x.g, where g returns a result of
type (?, •, Y), then my agent. last result has the type (?,>, Y) because

(!,>, FUNCTION [...]) ? (?, •, Y) = (?,>, Y)

in which case the target of the above assignment has to be declared as

210 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

res : ?separate Y

If my agent is non-writable, e.g. if it is a formal argument, then we can take advantage of the im-
plicit type rule 6.2.3 to give it a more precise type (!, my agent.handler, FUNCTION [...]);
the result type will also be more precise:

(!, my agent.handler, FUNCTION [...]) ? (?, •, Y) = (?, my agent.handler, Y)

Therefore, res may be declared as

res : ?separate <my agent.handler> Y

or, taking advantage of polymorphism, as

res : ?separate Y

Open operands

One of the useful properties of Eiffel’s agent mechanism is the possibility to leave open certain
arguments of the wrapped feature; these arguments have to be supplied at the call time. For
example, if a feature g in classes X and Y is declared as

g (a: ?A; b: separate B) do ... end

then an agent may be declared without fixing the arguments, e.g.

my x: separate X
my agent two open := agent my x.g (?, ?)

or with just one fixed argument, e.g.

my y: separate <py> Y
my agent one open := agent my y.g (?, b)

So far, we have considered agents without open operands. Such agents do not take any actual
arguments at the call time; strictly speaking, there is one actual argument — an empty tuple —
but no “real” arguments. The issue of type safety becomes more complex in the presence of
open operands. We have to make sure that no traitors are introduced as a result of argument
passing at the call time; this is more difficult to capture statically than the separateness of the
target or the result type of an agent. In the above example, the routine g expects one argument
of type (?, •, A) and one of type (!,>, B). Assuming that the call

my agent two open. call ([my a, my b])

happens in a context where my agent two open is controlled, what types should the actual argu-
ments my a and my b have? Ignoring for the moment the tuple wrapping both arguments, rule
T-CCallQual requires that they conform to the type of my agent two open combined (using
the operator ‘⊗’) with the type of the corresponding formal arguments. Therefore, my a should
conform to (?,⊥, A) because (!,>, X) ⊗ (?, •, A) = (?,⊥, A), whereas my b should conform
to (!,>, B) because (!,>, X)⊗ (!,>, B) = (!,>, B). The latter may be declared as

my b: separate X

or

9.3. AGENTS 211

my b: separate <p> X

or even

my b: X

because all these declarations ensure the type conformance. On the other hand, my a has to
conform to (?,⊥, A); but only Void conforms to this type! So the call must appear as

my agent two open. call ([Void, my b])

Does it mean that separate agents expecting non-separate operands are useless? Not at all; we
have already observed a similar problem with actual arguments of separate calls in section 6.4,
and we know how to deal with it. Qualified and unqualified processor tags may be used to
capture the relative non-separateness of the agent and the actual argument, resulting in a more
precise type combination. For example, if my agent two open was an attached formal argument
of the enclosing routine, then it would suffice to declare my a as

my a: separate <my agent two open.handler> A

Thanks to the implicit type rule 6.2.3, my agent two open has the processor tag
my agent to open.handler; as a result of the type combination my a needs to conform to
(?, my agent two open.handler, A). The problem may also be solved using an unqualified
processor tag. Consider the agent my agent one open declared above: it has the processor tag
py (because of its target); therefore, the call

my agent one open. call ([my a])

expects an argument of type (?, py, A) because (!, py, X) ⊗ (?, •, A) = (?, py, A). So, my a
simply has to be declared as

my a: separate <py> A

The type combinator ‘⊗’ is very convenient here: the types of the actual arguments in an
agent call are calculated in a similar way as for other calls. The only difference is that the tuples
wrapping actual and formal arguments must be transparent to the type checker. Therefore, we
enrich the type system with the rules T-ACall and T-ASetOperands which strip down the actual
and the formal arguments to check their conformance. The additional rules are used to type-
check calls to features call and set operands of class ROUTINE and its descendants. Other
feature calls are taken care of by the rules given in chapter 6.

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = ROUTINE [Tt, Targ]

Γ ` Targ = (!, •, TUPLE [T1, ..., Tn]) n ≥ 0

Γ ` a : (!, •, TUPLE [T ′
1, ..., T

′
n]), Γ ` ∀i∈1..n T ′

i � Te ⊗ Ti

Γ ` e.call (a) �
(T-ACall)

Γ ` e : Te, Γ ` isControlled(Te), Γ ` ClassType(Te) = ROUTINE [Tt, Targ]

Γ ` Targ = (!, •, TUPLE [T1, ..., Tn]) n ≥ 0

Γ ` a : (!, •, TUPLE [T ′
1, ..., T

′
n]), Γ ` ∀i∈1..n T ′

i � Te ⊗ Ti

Γ ` e.set operands (a) �
(T-ASetOperands)

212 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

9.3.3 Open targets

Rule 9.3.2 works correctly for fixed-target agents, i.e. agents whose target is supplied at the
construction time. On the other hand, the actual target to which the feature represented by an
open-target agent applies is only known at the call time; all we know at the construction time
is the type to which the target must conform. But this may not be enough, as illustrated in the
following code excerpt:

a: PROCEDURE [X, TUPLE [X]]
b: separate PROCEDURE [X, TUPLE [separate X]]
...

a := agent {X}.f
b := agent {separate X}.f

Performing a call on the non-separate agent a is not a problem because a is controlled, so we
may simply write a. call ([x]) , where x must be of type (!, •, X). But there is no way to
perform a call on b. Since b is separate, a direct call b . call ([my x]) is invalid, even if my x
has the required type (!,>, X); it is necessary to wrap the call into a routine that takes b as
actual argument, e.g.

call open target (an agent : separate PROCEDURE [X, TUPLE [separate X]])
do

an agent . call ([my x])
end

...
call open target (b)

The feature application rule 6.1.5 requires call open target to lock the processor that handles
its formal argument. But what processor should be locked? Since b’s target has not been fixed at
construction time, b’s processor is unknown; the call call open target (b) cannot be executed
correctly. We cannot postpone the synchronisation step until an agent . call ([my x]) because
this would alter the semantics of the agent call, bringing back all the problems discussed at the
beginning of this section. Therefore, we prohibit processor tags other than ‘•’ in the open target
type specification, i.e. an open-target agent may only be of the form

agent {X}.f (...)

but not

agent {separate X}.f (...)

or

agent {separate <p> X}.f (...)

The use of detachable types for open targets, as in agent {?X}.f, leads to similar problems;
therefore, such types are prohibited as well. Rule 9.3.3 summarises the restrictions on the open-
target agents.

Definition 9.3.3 (Open-target agent construction) An open target agent must have an at-
tached and non-separate target type, i.e. it must be of the form agent {X}.f (...) .

9.3. AGENTS 213

The restriction imposed by the above rule does not limit the usefulness of the mechanism.
Calling an open-target agent on a separate target is possible but requires a bit more machinery:
an “envoy” object must be placed on the target’s processor; its task consists of importing the
agent and calling it with the target as argument. Since the envoy is non-separate from the
target and the agent (the agent has been imported), the call is non-separate. Section 10.2.3
demonstrates how this technique is used to implement resource pooling and load balancing.

Discussion

The rules introduced in this section permit the use of agents in a concurrent context. Our so-
lution handles agents with and without open operands, fixed-target and open-target agents, and
inline agents [53]. The modifications of the standard rules have been kept to a bare minimum;
most importantly, the effect of executing an agent conforms to the standard semantics defined
in the Eiffel standard, and captured by the rule 9.3.4 below.

Definition 9.3.4 (Effect of agent execution) Let D0 be an agent object with associated feature
f and open operand positions i1, ..., im(m = 0). The information in D0 enables a call to the
procedure call, executed at any call time posterior to D0′s construction time, with target D0
and (if required) actual arguments ai1, ..., aim, to perform the following:

• Produce the same effect as a call to f, using the closed operands at the closed operand
positions and ai1, ..., aim, evaluated at call time, at the open operand positions.

• In addition, if f is a function, setting the value of the query last result for D0 to the
result returned by such a call.

9.3.4 Applications of separate agents

Besides increasing the expressiveness of our framework by providing a convenient way to repre-
sent asynchronous computations, agents bring a number of immediate benefits to the program-
mer. We discuss here two practical problems identified in chapter 5 — burdensome enclosing
routines and the lack of full asynchrony — and show how separate agents solve them. Fur-
ther benefits of the agent mechanism, e.g. the possibility to “wait faster”, the rendezvous-style
synchronisation, and event-driven programming, are described in chapter 10.

Convenience: universal enclosing routine

SCOOP prohibits calls on uncontrolled expressions (see section 6.5); this forces programmers
to provide an enclosing routine to wrap each call on a separate target. This practice is justified
if we want to specify some precondition or perform an atomic sequence of calls on the same
target. On the other hand, it may become tedious if we only want to perform a single separate
call and need no precondition. We are still forced to write an additional routine for each call,
just for the sake of proper synchronisation via argument passing, as illustrated in figure 9.18.

The agent mechanism comes in handy: the simple feature

214 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

my x: separate X
...

r (my x)
s (my x, ’’ Hello world !’’)
t (my x, 5)
...

r (x : separate X)
do

x . f
end

s (x : separate X; s : STRING)
do

x .g (s)
end

t (x : separate X; i : INTEGER)
do

x .h (i)
end

Figure 9.18: Burdensome enclosing routines

my x: separate X
...
call (agent my x. f)
call (agent my x.g (’’ Hello world !’’))
call (agent my x.h (5))
...
call (a feature : separate ROUTINE [ANY, TUPLE])

−− Universal enclosing routine .
do

a feature . call ([])
end

Figure 9.19: Universal enclosing routine

call (a feature : separate ROUTINE [ANY, TUPLE])
−− Universal enclosing routine .

do
a feature . call ([])

end

acts as universal enclosing routine providing the necessary synchronisation. Figure 9.19 shows
how our previous example can be rewritten in a clear and compact fashion. Additional enclos-
ing routines disappear; each separate call is simply wrapped in an agent and passed as actual
argument to call . One could argue that writing call (agent my x. f) puts less burden on the

9.3. AGENTS 215

programmer than defining a custom enclosing routine but it is still more verbose than my x. f .
We see this little syntactic burden as an advantage: it makes the semantic difference visible. A
sequence of calls

call (agent my x. f)
call (agent my x.g (’’ Hello world !’’))
call (agent my x.h (5))

will never be mistaken for an atomic sequence; on the other hand, a sequence

my x. f
my x.g (’’ Hello world !’’)
my x.h (5)

could.

Expressiveness: full asynchrony

As pointed out in section 5.9, full asynchrony is impossible to achieve in SCOOP 97 because
separate calls are wrapped in enclosing routines; calls to these routines are potentially blocking.
So, at least one synchronisation point is required before performing an asynchronous call; this
means that separate calls are, in reality, quasi-asynchronous. Figure 9.20 illustrates a typical
scenario: although l . write (...) and m.send (...) are procedure calls (i.e. they are asyn-
chronous), the client blocks when executing log event and send message until the necessary
lock is acquired; this introduces synchrony. Obviously, the client would prefer not to wait at all,
in particular for activities such as logging and e-mail communication; it would be much more
convenient for the client to continue its activities knowing that these calls will be taken care
of at some point in the future. The client does not care about the precise timing but it may be
interested in preserving the ordering of calls on the same target, i.e. the event “Switzerland vs.
France 0:0” should be logged before the event “Germany vs. Poland 2:0”.

Agents provide a way to solve this problem in SCOOP: a separate call may be wrapped in
an agent and passed to a routine which takes care of its asynchronous execution, as illustrated in
figure 9.21. Routine asynch takes as formal argument an agent representing a separate call, cre-
ates a separate executor object to handle that call, and launches the executor. Since the formal
argument of asynch is detachable and because the executor is handled by a freshly created pro-
cessor, which is different from the processors handling the client and the agent, feature asynch
is non-blocking. The client immediately proceeds with the execution of the next instruction; the
executor will take care of calling the requested feature as soon as it can get hold of the agent’s
processor. Figure 9.22 illustrates the object structure resulting from the execution of

asynch (agent log . write (’’ Switzerland vs . France 0:0’’))

(Objects depicted in yellow are created implicitly by the mechanism; they are “transparent”
to the client.) Although the client can make no assumptions about the time elapsed before
the actual call is performed, the mechanism preserves the FIFO ordering of calls on the same
processor; asynchronous calls on different processors may execute in any order. In our example,
the call

log . write (’’ Switzerland vs . France 0:0’’)

is guaranteed to execute before

216 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

log : separate LOG
mailer : separate MAILER
...
log event (log , ’’ Switzerland vs . France 0:0’’)
send message (mailer , ’’ all@inf . ethz .ch ’’, ’’Hopp Schwiiz !’’)
log event (log , ’’Germany vs. Poland 2:0’’)
...
log event (l : separate LOG; s: STRING)

do
l . write (s)

end

send message (m: separate MAILER; address, message: STRING)
do

m.send (address , message)
end

Figure 9.20: Partial asynchrony

asynch (agent log . write (’’ Switzerland vs . France 0:0’’))
asynch (agent mailer .send (’’ all@inf . ethz .ch ’’, ’’Hopp Schwiiz !’’))
asynch (agent log . write (’’ Germany vs. Poland 2:0’’))
...

asynch (a feature : ?separate ROUTINE [ANY, TUPLE])
−− Call a feature asynchronously .

local
executor : separate EXECUTOR

do
create executor . execute (a feature)

end

Figure 9.21: Full asynchrony with agents

log . write (’’ Germany vs. Poland 2:0’’)

but the call

mailer .send (’’ all@inf . ethz .ch ’’, ’’Hopp Schwiiz !’’)

may execute before the other calls, between them, after them, or at the same time (overlapping).

The run-time overhead incurred by the mechanism corresponds to creating a fresh processor
and two objects: an executor and an agent object. Requiring a new processor for each asyn-
chronous call may be prohibitively expensive; a smart implementation could reuse processors
that have been created for other asynchronous calls and have already finished their job. In that
case, the overhead is minimal: two object creations per asynchronous call.

Note that asynch is not a new keyword but a library routine provided as part of the
CONCURRENCY library; so is the class EXECUTOR (see section 11.4 and appendix A). Hav-

9.3. AGENTS 217

Figure 9.22: Asynchronous executor

ing implemented this useful mechanism, why not notify our PhD supervisor:

asynch (agent mailer .send (’’ bm@supervisor.org’’, ’’ Full asynchrony solved .’’))

and, knowing his dislike for new keywords, immediately follow with another message:

asynch (agent mailer .send (’’ bm@supervisor.org’’, ’’No additional keywords .’’))

Now, we can go back to work (since no waiting is required) knowing that he will eventually
receive the messages in the correct order.

Asynchronous self-calls

Since a fully synchronous call decouples completely the client and the supplier objects, i.e. the
availability or non-availability of the latter does not influence the actions of the former, nothing
prevents us from using this mechanism with non-separate calls, e.g.

my x: X
...

asynch (agent my x. f (...)) −− Non−separate call
asynch (agent g (...)) −− Self−call
...

The calls to my x. f (...) and g (...) will not be executed until the target handler — which
happens to be the current processor — becomes idle. Of course, it will only become idle after
finishing its current activity and being unlocked by its current holder. At that point, the executor
object taking care of my x. f will have a chance to lock the current processor and perform the
call. When it terminates, another executor taking care of g (...) will take its turn and perform
the call. So, in a way, the current handler will receive its own calls “from the past”.

One may question the utility of this mechanism; in fact, asynchronous self-calls find surpris-
ingly many practical applications. Most importantly, they let a processor sustain its long-term
activity: even if it has to become idle for some time, a self-call performed before going idle

218 CHAPTER 9. ADVANCED OBJECT-ORIENTED MECHANISMS IN SCOOP

will eventually “wake it up” and resume its activity; the rendezvous synchronisation pattern and
active objects may be simulated using this mechanism. Self-calls are also useful in event-driven
programming. All these topics are discussed in section 10.1.

9.4 Once routines

In Eiffel, a routine r may have a once form rather than a usual body; it is then shared by all
the instances (direct or indirect) of the class where it appears, and executed at most once. Once
routines may be procedures or functions. The latter are more common; they may be seen as con-
stants evaluated lazily on first access. Figure 9.23 illustrates their typical use: stock statistics
represents a long-lasting computation that should be avoided unless necessary; shared printer
returns a reference to a global print manager. Both features should be evaluated at most once.

−− in class C
stock statistics : STOCK STATISTICS

−− Stock statistics since quoting started
once

create Result . make since beginning until (date .now)
−− Long−lasting computation

end

print manager : separate PRINT MANAGER
−− Manager for shared network printers

once
create Result .make (fresh ip)

end
...
if not price . is set then

price . set (stock statistics .average) −− Lazy evaluation
end
...
print (print manager , my document)
print (print manager , stock statistics . as text) −− No second evaluation

Figure 9.23: Once functions

Once procedures do not raise any particular problems in the context of SCOOP; the usual
validity and semantic rules apply, e.g. a once procedure taking an attached argument must lock
the corresponding handler when called. Once functions, however, give rise to an interesting
problem: should they be evaluated once for all the instances of a given class in the whole
system, or just within one processor? Compton [43] suggests the once per processor semantics
as the only sound solution; Adrian [2] dismisses this approach and proposes the once per system
semantics. The examples in figure 9.23 show that both authors are partly right and partly wrong.
Function stock statistics cannot have a once per system semantics because it would introduce
a traitor: instances of C handled by different processors would share a non-separate reference.
The once per system semantics is correct here. On the other hand, shared printer cannot have

9.5. DISCUSSION 219

a once per processor semantics; the type safety would not be violated but we would end up with
as many print manager objects as there are processors in the system. This is clearly not what
we want; we need a single print manager shared by all the instances of C. Therefore, the once
per system semantics must apply.

We apply the once per processor semantics to non-separate functions, and the once per sys-
tem semantics to separate ones. This preserves the type safety (unlike Adrian’s approach) while
being more expressive than Compton’s solution. Rule 9.4.1 captures the proposed semantics.

Definition 9.4.1 (Semantics of once routines) Once functions of a separate result type have
the once per system semantics; their result is shared by all the instances of the declaring class,
no matter what processors they are handled by. Once functions of a non-separate result type
have the once per processor semantics; their result is shared by all instances of the class handled
by the same processor. Once procedures have the once per processor semantics.

Mobility issues

Rule 9.4.1 gives an unambiguous semantics to once functions but the object import mechanism
proposed in section 6.8 (and used implicitly on expanded objects passed across processors’
boundaries) complicates the situation a bit. Recall that x . import yields a non-separate copy
of the object structure reachable from x via non-separate references and expanded attributes.
(The other two versions of the operation — deep import and flat import — behave similarly;
the differences are irrelevant here, so we focus on the basic form import.) What happens if an
imported object is based on a class C listing a non-separate once function f? According to the
above rule, f should be evaluated at most once within a given processor, and all the instances
of C handled by that processor should share f’s result. But now a copy of the object is placed
on a different processor, where some instance of C might have already called f and given it a
different value. To preserve the semantics of once functions, the semantics of object import
must be refined so that the value of f in the imported object be set to the value used by other
objects on the target processor. If f has not yet been evaluated on the target processor, then the
value of f carried by the imported object becomes the valid value for all the instances of C on
the target processor.

9.5 Discussion

Unlike most concurrency models claiming a full integration with object technology, SCOOP
goes beyond a restricted subset of an O-O language; we provide a support for all the advanced
mechanisms needed to use the object technology in practice. It is surprising how few modifi-
cations and refinements of the existing language rules are necessary; all we have done here is
trying to understand these mechanisms and their interplay with the enriched type system and
the generalised semantics of feature call, feature application, argument passing, and assertions,
proposed in the previous chapters. The resulting compatibility of the model with the advanced
mechanisms demonstrates that, contrary to the (unfortunately still) popular opinion, concur-
rency and object-orientation are not incompatible and disjoint worlds, but rather the necessary
components of the same programming paradigm.

10
Using SCOOP in practice

SCOOP has been applied to solving many practical problems, ranging from typical synchroni-
sation scenarios (producer-consumer, dining philosophers, Santa Claus) to challenging issues of
resource pooling, parallel wait on several inputs, emulation of rendezvous-style synchronisation
and active objects, to control systems for a physical model of a double-shaft elevator and an arm
robot. This chapter shows how solutions to these concurrency problems can be implemented in
our framework. Code reuse is also discussed.

Several people contributed to the examples presented here. Erol Koç implemented a number
of GUI applications: dining philosophers, producers-consumers (section 10.1), matrix multipli-
cation. Erwin Betschart wrote an EiffelVision GUI for the elevator example (section 10.3.1).
Matthias Humbert built the physical elevator and designed its control software (section 10.3.1).
Volkan Arslan supervised the above student projects; he also co-authored the elevator appli-
cation for .NET (section 10.3.1) and implemented the original EVENT TYPE library [12].
Bertrand Meyer proposed the initial solutions of dining philosophers and elevator in the OOSC2
book [94]. Ganesh Ramanathan built the arm robot and implemented its control software (sec-
tion 10.3.2).

10.1 Classic examples

The classic synchronisation scenarios presented here are an obligatory part of any discussion
on concurrency. We have already used two of them — dining philosophers and producers-
consumers — to illustrate the synchronisation mechanism of SCOOP in previous chapters. The
OOSC2 book [94] described some of these examples; however, they were just paper designs,
whereas the examples described here are fully implemented; some of them have been equipped
with a GUI.

10.1.1 Dining philosophers: atomic locking of multiple resources

Dijkstra’s dining philosophers scenario [50] illustrates the behaviour of multiple processes ac-
quiring and releasing shared resources. A number of philosophers (5 in the original problem)
around a table spend their time eating, thinking, then eating again and so on. To eat, each of
them needs two forks, placed to his left and to his right; each fork is accessible to two philoso-
phers. The main problem is to synchronise the access to the forks so that no deadlock occurs
and no philosopher is starved.

The solution depicted in figures 10.1 – 10.3 is derived from the one proposed in

221

222 CHAPTER 10. USING SCOOP IN PRACTICE

class PHILOSOPHER
inherit

GENERAL PHILOSOPHER
PROCESS

rename setup as sit down undefine sit down end
create

make
feature {NONE} −− Implementation

step
−− Perform basic tasks .

do
think
eat (left fork , right fork)

end

eat (l , r : separate FORK)
−− Eat, having grabbed l and r .

do ... end
end

Figure 10.1: Dining philosopher

deferred class GENERAL PHILOSOPHER
feature −− Initialization

make (l , r : separate FORK)
do

left fork := l
right fork := r

ensure
left fork = l and right fork = r

end

feature {NONE} −− Implementation
think do ... end −− Think

sit down do ... end −− Take your place at the table

left fork , right fork : separate FORK
−− Forks used for eating

end

Figure 10.2: General philosopher

OOSC2. Unlike its predecessor, it does not use separate classes (because they are
now prohibited in SCOOP). Class PHILOSOPHER inherits from two deferred classes:
GENERAL PHILOSOPHER and PROCESS. The former implements basic features of philoso-

10.1. CLASSIC EXAMPLES 223

deferred class PROCESS
feature −− Basic operations

live
−− Main activity

do
from setup until over loop step end
wrapup

end

feature {NONE} −− Implementation
setup −− Prepare to execute process operations (default : do nothing) .

do end

wrapup −− Execute termination operations (default : do nothing) .
do end

step −− Execute basic process operations .
deferred
end

end

Figure 10.3: Process

phers, e.g. thinking. (It has no deferred features but it is marked as deferred to prevent creation
of any direct instances.) The latter provides a general implementation of processes; its feature
live is a (possibly endless) loop performing repetitive actions specified by feature step . Since
step is deferred, it has to be effected in the descendant class PHILOSOPHER. One may ob-
serve the convenient use of multiple inheritance and feature merging: through the renaming of
setup as sit down and it subsequent undefinition, the inherited features {PROCESS}.setup and
{GENERAL PHILOSOPHER}.sit down are merged and replace setup in the body of live .

The remarkable simplicity of the solution — compared to the algorithms found in the liter-
ature [51, 81, 41] — is due to SCOOP’s ability to perform atomic locking of several processors
through a single call. The entire synchronisation is expressed in the call

eat (left fork , right fork)

No additional synchronisation between philosophers, or between a philosopher and his forks, is
necessary. In fact, the class FORK needs no particular features; it is simply declared as

class FORK end

The implementation described here does not deadlock. It is also guaranteed to be fair. Even
if some philosophers conspire to starve the others, the fair scheduling policy of SCOOP (see
section 6.1) ensures that each satisfiable request is eventually serviced. (The actual SCOOPLI
scheduler provides an even stronger guarantee: requests are serviced in a FIFO order, i.e. a sat-
isfiable request is never overtaken by another one; see the details in section 11.2.) Compared to
the typical algorithms for multithreading and active objects found the literature — necessitating
explicit asymmetry in handling philosophers, e.g. by only admitting some philosophers into the

224 CHAPTER 10. USING SCOOP IN PRACTICE

room, or by requiring one philosopher to grab forks in the inverse order — SCOOP offers a
simpler way to solve the problem.

A version of this example equipped with a GUI has been implemented by Erol Koç as part
of his semester thesis [77]. The implementation uses the EiffelVision 2 library to provide the
GUI facilities. Since the scoop2scoopli tool was not available at that time, SCOOPLI had to
be used directly in the source code, i.e. application classes had to inherit explicitly from the li-
brary classes SCOOP SEPARATE CLIENT and SCOOP SEPARATE SUPPLIER to implement
the required synchronisation pattern. The source code and the executable can be found on the
SCOOP project page

http://se.ethz.ch/research/scoop

class PRODUCER [G] inherit PROCESS
create

make
feature {NONE} −− Initialization

make (a buffer : separate BOUNDED QUEUE [G])
do

buffer := a buffer
ensure

buffer = a buffer
end

feature −− Basic operations
store (a buffer : separate BOUNDED QUEUE [G]; e: G)

−− Store e in a buffer .
require

not a buffer . is full
do

a buffer . put (e)
ensure

a buffer .count = old a buffer .count + 1
end

step
−− Produce element and store it in buffer .

local
e : G

do
e := ...
store (buffer , e)

end
feature {NONE} −− Implementation

buffer : separate BOUNDED QUEUE [INTEGER]
end

Figure 10.4: Producer

10.1. CLASSIC EXAMPLES 225

class CONSUMER [G] inherit PROCESS
create

make
feature {NONE} −− Initialization

make (a buffer : separate BOUNDED QUEUE [G])
do

buffer := a buffer
ensure

buffer = a buffer
end

feature −− Basic operations
retrieved (a buffer : separate BOUNDED QUEUE [G]): G

−− Element retrieved from a buffer
require

not a buffer . is empty
do

Result := a buffer . item
a buffer .remove

ensure
a buffer .count = old a buffer .count − 1

end

step
−− Consume element from buffer.

local
e : G

do
e := retrieved (buffer)
...

end
feature {NONE} −− Implementation

buffer : separate BOUNDED QUEUE [INTEGER]
end

Figure 10.5: Consumer

10.1.2 Producers-consumers: condition sychronisation

In the producers-consumers scenario, a number of client objects access a shared buffer; clients
are either producers storing elements in the buffer, or consumers retrieving elements from the
buffer. We used this scenario in earlier chapters to illustrate various mechanisms of SCOOP,
in particular the condition synchronisation and the use of wrapper routines to enclose separate
calls; however, no full-fledged implementation has been discussed yet. Figures 10.4 and 10.5
show the implementation of producers and consumers respectively. A few interesting points
may be highlighted.

• In the examples appearing in previous chapters, a custom-made class BUFFER [G]

226 CHAPTER 10. USING SCOOP IN PRACTICE

was used to implement a shared buffer. We take a different approach here: to illus-
trate the support for code reuse offered by SCOOP, we use an existing library class
BOUNDED QUEUE [G] (see section 10.4 for a detailed discussion of sequential-to-
concurrent code reuse). Its features put, item, and remove provide the required FIFO
buffering facilities.

• Following the new semantics of contracts discussed in chapter 8, the postconditions of
{PRODUCER}.store and {CONSUMER}.retrieved are evaluated asynchronously. This
is particularly important in store because the call a buffer . put (e) is asynchronous and
producers do not want to wait until this operation has terminated. The producer-consumer
scenario in SCOOP 97 [94] excluded these important postconditions to avoid wait by
necessity. In SCOOP, no such restrictions apply; the use of postconditions does not reduce
the amount of parallelism.

• At the very abstract level, producers and consumers are similar to dining philosophers
in that they repeatedly perform a predefined sequence of actions. Therefore, classes
PRODUCER and CONSUMER inherit from PROCESS (see figure 10.3) which provides
the basic machinery for a continuous activity; feature step in both classes is effected to
specify the sequence of actions performed at each iteration.

A GUI version has been implemented by Erol Koç [77]. The source code and the executable
can be found on the SCOOP project page.

10.1.3 Binary search trees: efficient parallelisation

The efficiency of software using shared data structures can often be increased by parallelising
costly operations on the shared data, so that clients incur smaller delays on access. Due to their
shape, lists and tree-like data structures are particularly good candidates for parallelisation.

The binary tree example in OOSC2 ([94], p. 1007) illustrates a simple scheme for concur-
rent evaluation of the number of nodes in a binary tree. Each tree node has two separate subtrees
(possibly void); the computation uses recursive calls on these subtrees. To take full advantage of
the potential concurrency, a single blocking query call is replaced by a non-blocking command
call (to launch the computation on a subnode) followed by a blocking call to retrieve the result.

This parallelisation pattern may be generalised and applied to the more challenging example
— binary search trees (BSTs) — illustrated in figure 10.6. Our implementation exploits to the
maximum the potential parallelism of the insertion operation. Clients using binary search trees
are not blocked when calling put. The non-blocking semantics is achieved through the use of
a detachable formal argument in put; this avoids locking of the stored element at the time of
the call (but the element needs to be locked later on for comparison purposes) as well as the
lock passing between the client and the tree (should a client already hold a lock on the stored
element), respectively the lock passing between the tree and its subtrees in the recursive calls to
put. Moreover, a node on which put has been called becomes free immediately after executing
store , without waiting for the termination of the potential recursive call on a subtree. This
minimises the contention; if several clients are trying to use the tree at the same time, each of
them will only lock the root node for a short moment, and let other clients access the tree as soon
as possible. The initiated insertion operations may proceed in parallel. There is no contention if

10.1. CLASSIC EXAMPLES 227

class BINARY SEARCH TREE [G −> separate COMPARABLE]
create

make
feature {NONE} −− Initialization

make (v : G)
do

item := v
ensure

item = v
end

feature −− Basic operations
item : G

−− Element stored in current node

put (v : ?G)
−− Put v in current tree .

require
v not void : v /= Void

do
if {w: G}v then store (w) end

end

feature {NONE} −− Implementation
store (v : G)

−− Store v.
do

if v < item then
if {l : separate BINARY SEARCH TREE [G]}left then

subtree put (l , v)
else create left .make (v)
end

elseif {r : separate BINARY SEARCH TREE [G]}right then
subtree put (r , v)

else create right .make (v)
end

end

subtree put (a subtree : separate BINARY SEARCH TREE [G]; v: G)
−− Store v in a subtree .

do
a subtree . put (v)

end
end

Figure 10.6: Parallelised binary search tree

228 CHAPTER 10. USING SCOOP IN PRACTICE

−− in class BINARY SEARCH TREE
has (v : G)

−− Does current tree contain v?
do

Result := v . is equal (item)
or else (v < item and then

{l : separate BINARY SEARCH TREE [G]}left and then
subtree has (l , v))

or else ({r : separate BINARY SEARCH TREE [G]}right and then
subtree has (r , v))

end

subtree has (a subtree : separate BINARY SEARCH TREE [G]; v: G): BOOLEAN
−− Does a subtree contain v?

do
Result := a subtree .has (v)

end

Figure 10.7: Implementation of has

they follow different branches; the operations following the same branch are performed in the
FIFO order.

The implementation of membership test (query has in figure 10.7) makes lesser use of par-
allelism. The recursive call a subtree .has (v) is blocking; the current node needs to wait until
the chosen subtree has terminated the evaluation of that query. In the meantime, the client which
called has on the root node is blocked waiting for the result; no other clients may access the
root node in the meantime. Compared to put, the amount of parallelism exhibited by has is mi-
nuscule. But even this implementation enables some concurrency: subtrees rooted at nodes not
involved in the recursive evaluation of has are available for use by other clients. For example, if
the sought element is smaller than the item stored in the root node, the evaluation of has follows
the left subtree; although the root node and one branch of the left subtree remain locked, the
right subtree and the unused branches of the left subtree are not locked and can be accessed by
other clients in the meantime.

The binary search tree example highlights some advanced features of SCOOP.

• The compact implementation is only possible thanks to the full support for generic-
ity. The formal generic parameter G in class BINARY SEARCH TREE is constrained to
(!,>, COMPARABLE). This is necessary for the application of comparison operators
on stored elements, and for storing elements of non-expanded types. (The SCOOP 97
binary tree example from OOSC2 only works for expanded types; the lack of appropriate
rules for genericity results in creation of traitors if actual generic parameters of reference
types are used.)

• The refined semantics of detachable and attached types (see section 7.1.2) offers the
choice between locking and non-locking behaviour of feature application. The operation
has locks its argument; put does not. Despite the use of a detachable formal argument,

10.1. CLASSIC EXAMPLES 229

put does not accept void actual arguments: the precondition v /= Void prohibits such
arguments.

• The object test mechanism is used for casting detachable entities to attached types. As
pointed out in section 6.7, a successful object test with a separate source does not result
in locking the source.

Similar parallelised algorithms may be implemented for linked lists, queues, and other data
structures. We do not discuss them here; see Erol Koç’s semester thesis [77] for a number of
parallelised algorithms for two-dimensional arrays implemented in SCOOP.

10.1.4 Santa Claus: barriers and priority scheduling

The classic scenario proposed by John Trono [140] involves a number of synchronisation pat-
terns; it is a good testbed to demonstrate the flexibility (or lack thereof) of a concurrent pro-
gramming model. We have used this example as part of the final project in the concurrency
course focussed on SCOOP (see chapter 12). Let us recall the (slightly embellished) scenario.

Santa lives in his little house in Jÿëvväskÿølgbrø. He sleeps most of the time,
except for rare moments when a group of elves or a group of reindeer wakes him
up to perform some activity. Ten elves living in the area produce toys. Once in a
while they run out of ideas and need to ask Santa for help. They can only wake
up Santa if they form a group of three individuals. There are also nine reindeer
living in the stable nearby; Santa uses them to deliver toys. When the reindeer want
to work, they need to form a group of nine (that is all the reindeer must join) and
wake up Santa. Santa does the delivery round with the reindeer and then goes back
to sleep; so do the reindeer. In a situation when a group of elves and a group of
reindeer are trying to wake up Santa at the same time, the reindeer get the priority.

Several kinds of synchronisation may be identified here: mutual exclusion (Santa may serve at
most one group at a time), barrier synchronisation (a group must be formed before waking up
Santa), and priority scheduling (reindeer are serviced before elves). Additionally, there are two
potential sources of starvation: on one hand, the reindeer could overtake the elves indefinitely;
on the other hand, some elves could be starved by other elves and never get a chance to see
Santa.

Several solutions have been proposed in the literature [140, 23]; however, they are convo-
luted due to the explicit use of low-level synchronisation primitives such as semaphores. The
SCOOP solution presented here is simpler. We discuss the implementation of the above syn-
chronisation patterns, and skip the unnecessary details; the full code is available on the SCOOP
project page.

The design is highly decentralised, with Santa, elves, and reindeer modelled as separate ob-
jects, each of them placed on a different processor; group objects are also separate. Santa and the
group objects are passive, the execution is driven by the elves and the reindeer; consequently,
classes ELF and REINDEER inherit from PROCESS (via SANTAS HELPER). Figures 10.8,
10.9, and 10.10 show the implementation details. Barrier synchronisation is straightforward:
it amounts to calling join followed by leave, with the appropriate group object as actual argu-
ment. The precondition of join blocks the client if the group has already been formed; the client

230 CHAPTER 10. USING SCOOP IN PRACTICE

deferred class SANTAS HELPER inherit PROCESS
feature {NONE} −− Implementation

step −− Basic activity
do

do your stuff ; join (group) ; leave (group)
end

join (a group: separate GROUP)
−− Join a group.

require
a group. is join phase

do
a group. increase count
if a group. is full then

a group. set is join phase (False) ; wake up (santa)
end

ensure
a group.count = old a group.count + 1

end

leave (a group: separate GROUP)
−− Leave a group.

require
not a group. is join phase

do
a group. decrease count
if a group. is empty then a group. set is join phase (True) end

ensure
a group.count = old a group.count − 1

end

santa : separate SANTA −− Santa
once

create Result
end

do your stuff deferred end −− Do your own stuff.
wake up (a santa : separate SANTA) deferred end −− Wake up a santa.
group: separate GROUP deferred end −− Group to join before accessing Santa

end

Figure 10.8: Santa’s helper

10.1. CLASSIC EXAMPLES 231

class ELF inherit SANTAS HELPER
feature {NONE} −− Implementation

group: separate GROUP
−− Group to join before accessing Santa .

once
create Result .make (3)

end

do your stuff
−− Produce toys.

do
...

end

wake up (a santa : separate SANTA)
−− Wake up a santa.

do
a santa . ask for ideas

end
end

Figure 10.9: Elf

class REINDEER inherit SANTAS HELPER
feature {NONE} −− Implementation

group: separate GROUP
−− Group to join before accessing Santa .

once
create Result .make (9)

end

do your stuff
−− Sleep for a while .

do
sleep (...)

end

wake up (a santa : separate SANTA)
−− Wake up a santa.

do
a santa . deliver toys

end
end

Figure 10.10: Reindeer

232 CHAPTER 10. USING SCOOP IN PRACTICE

must wait until all the members of the current group have left (this is signalled by is join phase
). When the client succeeds, it increases the number of group member and checks whether the
group is full; if yes, Santa is accessed through the call to wake up. The mutual exclusion on
Santa is achieved simply by passing Santa as actual argument of that call; SCOOP’s locking pol-
icy enforces exclusive locking of the corresponding processor. Setting is join phase to False
lets the group members leave the group (until now, they have been blocked by the precondition
of leave). The last member leaving the group sets is join phase to True, thus allowing the
formation of the next group. The clients blocked on the precondition of join start joining, the
last one wakes up Santa, and so on.

This implementation satisfies all the requirements expressed in the problem description:
elves and reindeer perform their actions in the correct order, elves access Santa only in groups
of three individuals, all the reindeer group before accessing Santa, and Santa services at most
one group at a time. Additionally, SCOOP’s FIFO scheduling policy of satisfiable requests
ensures the lack of starvation. An elf cannot overtake another one, i.e. elves trying to form a
new group have the priority over those leaving the current group. If a group of elves is trying to
access Santa when he is busy with the reindeer, the elves are guaranteed to be served next, even
if the reindeer regroup very quickly after being released.

One element of the original problem has not been addressed yet: priority scheduling be-
tween a group of elves and a group of reindeer that try to access Santa concurrently. In the
presented solution, there is no need for prioritisation because Santa is either busy already ser-
vicing one group, or idle and ready to service the next group immediately. In the latter case,
a group requesting his service proceeds immediately, so it is never the case that two groups
try to access Santa at exactly the same time. (One can always decide which group came first.)
Therefore, the priority requirement for the reindeer is satisfied vacuously.

To spice up the example, let’s assume that Santa may be in an additional state, e.g. per-
forming the sleep deeply operation, where his handler is busy so that groups requesting his
services may be blocked for some time. This introduces the possibility of a reindeer group and
an elf group vying for the access to Santa at the same time, and requires an explicit handling
of priorities. The necessary modifications of the SCOOP solution are minimal: one additional
object — a waiting room — is needed; the call to wake up in {ELF}.join must be wrapped in a
call to wake up with low priority that ensures correct prioritisation; the corresponding call in
{REINDEER}.join needs no wrapping but the reindeer must signal their presence in the waiting
room. Figure 10.11 summarises the modifications.

To wrap up the discussion, let’s have a closer look at the convenient use of once functions in
this example. There are three such functions: santa, group, and waiting room. All of them have
a separate result type; consequently, their semantics is once per system, i.e. they are shared by
all instances of the declaring class (see section 9.4). Since santa and waiting room are declared
in SANTAS HELPER, they are shared by the elves and the reindeer. On the other hand, group
is implemented in classes ELF and REINDEER; as a result, all the elves share one group, and
all the reindeer share one, but the elves’ group is different from the reindeer’s.

10.2 Agents and asynchrony

The advantages brought by separate agents (see section 9.3) are exploited here to provide solu-
tions to a number of interesting problems often occurring in practical concurrent applications:

10.2. AGENTS AND ASYNCHRONY 233

−− in class SANTAS HELPER
waiting room: separate WAITING ROOM

−− Waiting room for groups.
once

create Result
end

−− in class ELF
join (a group: separate GROUP)

−− Join a group.
do

a group. increase count
if a group. is full then

a group. set is join phase (False)
wake up with low priority (santa , waiting room)

end
end

wake up with low priority (a santa : separate SANTA;
a waiting room : separate WAITING ROOM)

−− Wake up a santa if there are no reindeer in a waiting room.
require

not a waiting room . reindeer present
do

wake up (a santa)
end

−− in class REINDEER
join (a group: separate GROUP)

−− Join a group.
do

a group. increase count
if a group. is full then

a group. set is join phase (False)
signal presence (waiting room , True)
wake up (santa)
signal presence (waiting room , False)

end
end

signal presence (a waiting room : separate WAITING ROOM; b: BOOLEAN)
−− Signal presence or absence of reindeer in a waiting room.

do
a waiting room . set reindeer present (b)

end

Figure 10.11: Priority scheduling

234 CHAPTER 10. USING SCOOP IN PRACTICE

parallel evaluation of multiple queries, using a pool of resources for load balancing, rendezvous-
style synchronisation and emulation of active objects, and full decoupling of publishers and
subscribers in event-driven architectures.

10.2.1 Rendezvous synchronisation and active objects

Concurrency models based on active objects [5, 7, 6, 119] use the rendezvous mechanism to
synchronise calls between objects. The asynchronous call mechanism introduced in section
9.3.4 may be used to implement rendezvous-style synchronisation. Simulating active objects is
not a goal in itself but rather an interesting exercise to demonstrate the flexibility of our model.
Figure 10.12 illustrates a common scenario where objects act both as clients and servers.
Object o1 is a client of some server o2; at the same time, it acts as a server to clients o3 and
o4. Once in a while, o1 wants to check whether there are any incoming calls, service them, and
then continue its own work. This scenario cannot be implemented in SCOOP 97 because no
calls can be made on an object whose handler is busy; therefore, o1 must terminate its activity
to accept incoming calls. How can one be sure that o1 resumes its activity after servicing some
incoming calls? It may be achieved if all incoming calls re-executed o1’s routine live . But this
is difficult to enforce; some clients might not be aware of this pattern. But even if we manage
to enforce the pattern, what happens if there are no incoming calls at all? o1 will never get back
to life!

Figure 10.12: Clients-servers scenario

The agent-based mechanism for fully asynchronous calls (see section 9.3.4) provides a so-
lution, illustrated in figure 10.13. An instance of class C, e.g. o1 in our example, behaves like
an active object; the routine live represents its body. The body is not an infinite loop like in
traditional active objects; instead, it is a one-off sequence of calls: a call to do work and an
asynchronous call to live . Routine do work implements the “client” part of the active object;
it includes activities such as calling a server (o2 in our example), doing some local work, call-

10.2. AGENTS AND ASYNCHRONY 235

ing the server again, etc. It may contain loops but it must eventually terminate. When live
terminates, the processor P1 handling o1 becomes idle and is unlocked; we may assume that
the client which locked it beforehand has released its lock. One of the clients (if any) wait-
ing for o1 may proceed now: lock P1 and perform its calls on o1. Assuming that o3 and o4
issued a request while o1 was busy, both are serviced one after the other; P1 is released after
servicing each request. This is the “server” part of o1’s activity. Eventually, o1’s own call to
Current. live issued in the previous iteration of live is serviced, “waking up” o1 to resume its
activity. The server phase restarts: o1 can do its own work again, call other servers, etc. Note
that only incoming calls whose wait-conditions are satisfied are serviced; therefore, o1 may
“select” incoming calls. This emulates the

select when => ... accept ...

construct of Ada.

−− in class C

my server : separate SERVER

live is
−− ‘‘Body’’ of active object .

do
do work
asynch (agent live)

end

do work is
−− Active object’s own work.
−− Calling servers , doing local work, etc .

local
in data , out data : DATA

do
in data := fetched from server (my server)
out data := f (in data , ...) −− Local calculations
...

update (my server , out data)
end

Figure 10.13: Active objects in SCOOP

The above pattern has been turned into a reusable class ACTIVE OBJECT, and in-
cluded in the CONCURRENCY library (see section 11.4 and appendix A). Descendants of
ACTIVE OBJECT simply need to effect the deferred feature do work representing the active
object’s body. Note the similarity between this class and the class PROCESS discussed in a
previous section. The main difference is that the latter does not provide any facilities for its
instances to act as servers; process objects are “pure clients”.

236 CHAPTER 10. USING SCOOP IN PRACTICE

10.2.2 Waiting faster

It is possible to optimise the evaluation of query calls on several separate objects by spawning
the computations in parallel and combining the partial results as they arrive, in the spirit of
Tony Hoare’s principle of “waiting faster” [66]. The following code excerpt illustrates a naive
attempt at implementing parallel wait in SCOOP. The scenario involves two boolean queries
whose results should be evaluated concurrently and combined using the operator else .

if parallel or (my x1, my x2) then ... end

parallel or (x1 , x2: separate X): BOOLEAN
do

Result := x1 .q or else x2 .q
end

A client calling parallel or wishes to minimise waiting; however, this implementation is sub-
optimal.

• The client is blocked until both actual arguments my x1 and my x2 are free. Even if my x1
is busy but my x2 is free and my x2.q would evaluate to True so that the result of my x1.q
could be ignored, the client still has no chance to proceed.

• The evaluation of the boolean expression in parallel or is sequential, due to wait by
necessity; x1 .q must be evaluated before x2 .q. This is particularly painful if the former
call takes more time to terminate than the latter; reversing the evaluation order would be
advantageous.

• The or else operator only palliates the problem: the evaluation stops if x1 .q returns
True; the second call is not executed.

To avoid the first problem, the example may be rewritten as

if q (my x1) or else q (my x2) then ... end

q (x : separate X): BOOLEAN
do

Result := x .q
end

but the other issues remain. The problem becomes even more acute if we want to generalise
this scenario to n queries (not necessarily of the same form) applied to a number of targets,
and combined by a user-defined combinator (more complex than the basic operators or, and,
not, etc.). The wait by necessity principle and the locking semantics of argument passing seem
to stand in the way of efficient implementations. This certainly was the case in SCOOP 97;
SCOOP, however, offers a simple solution based on agents. Figure 10.14 illustrates the tech-
nique (objects depicted in yellow are created implicitly by the mechanism; they are invisible to
the client object). Instead of being applied directly by the client, each query is evaluated by an
independent evaluator object placed on a freshly created processor. The evaluations proceed in
parallel; the incoming partial results are combined by a centralised answer collector (also placed

10.2. AGENTS AND ASYNCHRONY 237

Figure 10.14: Parallel evaluation of boolean queries

on its own processor). If the first incoming result is False, the answer collector waits for the
second one. On the other hand, if the first partial result is True, the client receives the answer
immediately, without waiting for the second one. Depending on the availability of my x1 and
my x2 and the evaluation speed of each query, partial results may be reported in any order, e.g.
my x2.q may return before my x1.q. Therefore, the solution is fully symmetric and does not
suffer from the limitations of the naive solution discussed above.

The implementation is sketched in figure 10.15. All the necessary machinery is imple-
mented in the CONCURRENCY library. The client uses the predefined feature parallel or
, passing as argument a list of agents representing the queries my x1.q and my x2.q to be
evaluated; parallel or itself relies on the function evaluated in parallel which supports
parallel evaluation of any number of queries and combination of their results. Feature
evaluated in parallel creates a separate instance of ANSWER COLLECTOR which takes care

of launching the independent evaluation of queries by dedicated instances of EVALUATOR.
Each evaluator tries to evaluate its query (which involves locking the target’s processor, calling
the agent, and retrieving its result) and send the result to the answer collector. The answer col-
lector is idle, so the evaluators can lock it and execute its feature update result which combines
the current answer with the result provided by the calling evaluator. In the meantime, the client
is blocked on the call to answer (answer collector); it will proceed as soon as the answer is
ready, i.e. either all the partial results have been combined, or the answer has a value that lets
the client ignore the remaining results (in our case, the client proceeds as soon as one query
evaluates to True). Note that programmers are shielded from these implementation details; all
the above features come from the library class CONCURRENCY and can be readily used in dif-
ferent applications. Full details of the implementation — including classes CONCURRENCY,
EVALUATOR, and ANSWER COLLECTOR — can be found in appendix A; figure 10.15 only

238 CHAPTER 10. USING SCOOP IN PRACTICE

−− in class C that inherits from CONCURRENCY
l : LINKED LIST [?separate PREDICATE [ANY, TUPLE]]
...
create l .make
l . put (agent my x1.q)
l . put (agent my x2.q)
if parallel or (l) then ... end

−− in class CONCURRENCY
parallel or (l : LIST [?separate PREDICATE [ANY, TUPLE]]): BOOLEAN

do
if {res : BOOLEAN} evaluated in parallel (l , False , True,

agent or else (b1, b2: BOOLEAN): BOOLEAN
do Result := b1 or else b2 end (?, ?))

then Result := res end
end

evaluated in parallel (a queries : LIST [?separate FUNCTION
[ANY, TUPLE, ?separate ANY]];

an initial answer , a ready answer: ?separate ANY;
an operator : FUNCTION

[ANY, TUPLE, ?separate ANY]): ?separate ANY
−− Parallel evaluation of queries combined by an operator

require
a queries .count > 0

local
answer collector : separate ANSWER COLLECTOR

do
create answer collector .make (a queries , an initial answer ,

a ready answer , an operator)
Result := answer (answer collector)

end

answer (an answer collector : separate ANSWER COLLECTOR): ?separate ANY
−− Answer from an answer collector

require
an answer collector . is ready

do
Result := an answer collector .answer

end

Figure 10.15: Parallel or

shows the most important features. The formal arguments of evaluated in parallel need some
explanation:

• a queries is a list of queries to be evaluated. In our scenario, the list contains two agents:

10.2. AGENTS AND ASYNCHRONY 239

−− in class C
my fancy operator (l : LIST [?separate FUNCTION

[ANY, TUPLE, INTEGER]]): INTEGER
−− Some fancy parallel operator .

do
Result := evaluated in parallel (l , ..., ...,

agent fancy (x , y : INTEGER): INTEGER
do

Result := ...
end (?, ?))

end

Figure 10.16: User-defined parallel operator

agent my x1.q and agent my x2.q.

• an initial answer is an initial value for the result. The parallel or operation uses False
as initial value because it is the neutral element for or else (that is, False or else b is
the same as b).

• a ready answer indicates an early termination of the evaluation process; if the current
answer is equal to that value, it may be given back to the answer collector immediately,
without waiting for the remaining partial results. In our case, this value is True (because
True or else b is the same as True).

• an operator is a user-defined binary operator for combining the current answer with each
partial result. In our example, it is the inline agent agent or else (?, ?) which imple-
ments the or else operation. (Inline agents have not been discussed in this dissertation;
however, the rules defined in section 9.3 support their safe handling. See the Eiffel stan-
dard [53] for details concerning inline agents.)

A number of useful parallel operators — parallel or , parallel and , parallel sum — have
been implemented in the class CONCURRENCY (see figure A.2 in appendix A). Enriching the
library of parallel operators is straightforward; should a user-defined operator be needed, it can
be constructed using evaluated in parallel , as shown in figure 10.16.

10.2.3 Resource pooling

Shared resources are often organised in pools to optimise the efficiency through load balancing.
Clients requesting a service want one of the currently available resources but it does not matter
which resource is chosen. For example, an incoming phone call must be despatched to the first
available operator; the caller does not specify the exact phone line. We would like to write it as

pool : LIST [separate PHONE LINE]
free line : separate PHONE LINE
...
free line := pick first available (pool)
connect to (free line)

240 CHAPTER 10. USING SCOOP IN PRACTICE

Figure 10.17: Using resource pool

Unfortunately, this will not work. The basic SCOOP model offers no support for a “lock one
out of n resources” operation represented by pick first available ; there is no “try to lock”
operation which could be used to implement that facility. But even if it existed, the phone line
picked in the first step might become busy before the call to connect to , because the lock is
released in the meantime. For the same reason, more than one incoming call might select the
same phone line.

Here too, the new mechanisms introduced in SCOOP — agents and lock passing — come
to the rescue. The former enables parallel attempts at locking each resource; the latter permits
passing a lock held by one processor to another processor. Figure 10.17 depicts the solution
(only two instances of PHONE LINE are shown but the solution works for any number of
resources). An independent instance of LOCKER is created for each phone line; its task is to
lock the assigned phone line object and pass the lock to the pool manager which applies the
requested feature to the phone line object. Although several lockers may succeed in grabbing
a phone line, only the first one reporting to the pool manager is taken into account; the others
are ignored. In our scenario, line2 was locked first, so the requested feature is applied to it.
All the objects depicted in yellow are “transparent” to the client; they have been created by the
underlying implementation provided as part of the CONCURRENCY library. The client code
and the essential features from the library are shown in figure 10.18; the library classes can be
found in appendix A. The feature call m out of n implements a general mechanism to apply
a feature (represented as an open-target agent) to m elements from a resource pool. In our
example, feature agent {PHONE LINE}.connect(Current) is applied to one out of n phone
lines from pool. Recall that open-target agents cannot be used with separate targets; therefore,
the pool manager places an “envoy” object (an instance of EXECUTOR) chosen phone line’s
processor. (A qualified processor tag is used to indicate that the envoy be handled by that
processor; see figure A.8.) The envoy first obtains a non-separate copy of the agent (using the
import operation discussed in section 6.8) and then applies the agent to the target (which is

10.2. AGENTS AND ASYNCHRONY 241

−− in class C that inherits from CONCURRENCY
pool : LINKED LIST [?separate PHONE LINE]
...
create pool .make
pool . put (line1)
pool . put (line2)
...

call m of n (agent {PHONE LINE}.connect (Current), pool, 1)
−− Call connect on 1 element of pool .

−− in class CONCURRENCY
call m out of n (a feature : ROUTINE [ANY, TUPLE];

a pool : LIST [?separate ANY]];
m: INTEGER)

−− Apply a feature to m elements of a pool .
require

m > 0 and then a pool .count >= m
local

pool manager: separate POOL MANAGER
locker : separate LOCKER

do
create pool manager.make (a feature , m)
from a pool . start until a pool . after loop

create locker . try to lock (a pool . item , pool manager)
a pool . forth

end
end

Figure 10.18: Locking and calling 1 out of n resources

non-separate from the envoy).

The implementation of resource pooling facility highlights the usefulness of several mech-
anisms discussed in this dissertation: separate agents, generic data structures, lock passing, and
safe import of separate objects. It also shows that certain limitations of the agent mechanism
can be overcome by a judicious use of other facilities.

The mechanism presented here can be used for many different purposes: non-deterministic
choice of resources, load balancing, choosing the resource with the shortest response time,
etc. It may be combined with the previously discussed mechanisms such as fully asynchronous
feature calls and “waiting faster”; it may also be used in event-driven applications based on the
facilities described in the next section.

242 CHAPTER 10. USING SCOOP IN PRACTICE

10.2.4 Event-driven programming

Event-driven programming has gained considerable popularity over the past few years, in par-
ticular in GUI applications where it facilitates the separation of concerns: an application layer
(business logic) provides the operations to execute, whereas a GUI layer triggers their execution
in response to users’ actions; the two layers communicate by publishing and receiving event no-
tifications. Objects that publish events are called publishers; objects that receive notifications
are referred to as subscribed objects.

Arslan et al. [12] propose a compact Eiffel library for event-driven programming. The
library consists of a single class EVENT TYPE which provides basic facilities for event publi-
cation, subscribing to an event type, and unsubscribing from it. Any object may become a pub-
lisher simply by calling the corresponding feature publish on a given instance of EVENT TYPE;
multiple objects may act as publishers of the same event type. Subscribed objects are agents
(of type ROUTINE [ANY, TUPLE]). The same agent may be subscribed to many event types;
conversely, multiple agents may be subscribed to the same event type. Every instance of
EVENT TYPE keeps a list of subscribed agents; on event publication, the subscribed agents
are called in sequence. Figure 10.19 shows a typical scenario with one event type, two pub-
lishers, and three subscribed objects. (The subscribed objects are agents; their actual targets,
depicted in yellow, are “transparent” to the event mechanism.) Note that all the objects are
non-separate from each other.

Figure 10.19: Event-driven programming with original Event library

The Event library provides space decoupling, i.e. publishers and subscribed objects need not
know each other’s identity; they do not even know how many publishers and subscribed objects
participate in the interaction. The authors suggest the use of SCOOP to provide flow decoupling,
i.e. ensure that event publication be non-blocking for the publishers, and that subscribed objects
need not actively poll for events but are free to do their own work in the meantime. Neverthe-
less, no SCOOP-compliant implementation has been proposed. Similarly, it is suggested that
SCOOP should enable full time decoupling, whereby the notification of different subscribed
objects may happen at different times. The library clearly fails to address the last issue: if two

10.2. AGENTS AND ASYNCHRONY 243

subscribed objects agent x . f and agent y .g occur in the list one after the other, the latter will
not be applied before the former has terminated.

Figure 10.20: Event-driven programming with SCOOP-enabled Event library

We have reimplemented the Event library to make it compatible with SCOOP and to provide
support for flow decoupling and time decoupling. Figures A.10–A.11 show the modified class
EVENT TYPE. The major changes with respect to the original library are:

• The constraint on the formal generic parameter EVENT DATA is relaxed to
(?,>, TUPLE); the original class imposed a stronger constraint: (!, •, DATA).

• The underlying data structure keeping a list of subscribed objects is now typed as

LINKED LIST [?separate ROUTINE [ANY, EVENT DATA]]

thus allowing subscription of separate agents. Accordingly, features subscribe and
unsubscribe take an argument of that type; its detachability prevents locking when sub-
scribing or unsubscribing an agent.

• Rather than calling all subscribed agents in sequence (thus blocking at every step until the
call has terminated), the body of publish performs a series of fully asynchronous calls,
one for each subscribed object.

from start until after loop
if {action : separate ROUTINE [ANY, EVENT DATA]}item then

asynch (agent action . call (arguments)) end
forth

end

This is achieved through the asynch facility provided by the library class
CONCURRENCY (see section 9.3.4). An object test is necessary to downcast the cur-
rently processed subscribed object to an attached type, in order to build an agent expres-
sion on it. Note the interesting double wrapping of subscribed actions: action is itself

244 CHAPTER 10. USING SCOOP IN PRACTICE

an agent; a call to it is wrapped in another agent and passed to asynch. This is needed
to include the actual arguments arguments; an alternative (more complex but potentially
more efficient) solution would be to extend the CONCURRENCY with a version of asynch
taking two arguments and to provide a corresponding feature in class EXECUTOR (see
appendix A).

Figure 10.20 depicts the previous scenario augmented with SCOOP features. Each participating
object is now handled by a different processor; the asynchronous communication between the
publishers and the event type on one hand, and between the event type and the subscribed
objects on the other hand allows full flow decoupling. Full time decoupling is achieved through
asynch calls on each subscribed objects. As a result, none of the publishers need to wait until the
event type starts the notification process. Similarly, the notification of each subscribed object
proceeds independently; if one of these objects is not available, this has no influence on the
others or on the event type.

To achieve its goals, the proposed extension of EVENT TYPE combines several techniques
proposed in this dissertation: enriched type system (see chapter 6), new semantics of detach-
able types (see chapter 7), support for constrained genericity and agents. It also relies on the
CONCURRENCY library presented in the next chapter.

10.3 Control systems

The growing popularity of O-O techniques in robotics provided part of the impetus for the work
on SCOOP. Right from the beginning, we planned to exploit the modelling power of object
technology and DbC and apply our model to programming control systems. We present here
two such systems written in SCOOP: a highly parallel elevator control system, and an arm
robot which sorts items from a conveyor belt according to their colour and places them in the
corresponding bins.

Figure 10.21: Elevator: class diagram

10.3.1 Elevator

The elevator example ([94], p. 1014) describes software for a multi-elevator system serving
many floors. The proposed algorithm aims at achieving the maximum decentralisation of coop-

10.3. CONTROL SYSTEMS 245

erating objects. In the author’s own words, it is “somewhat fanatically object-oriented” in that
every significant component — even each individual button in an elevator cabin — is modelled
as a separate object with its own handler. Components communicate principally through com-
mand calls to take advantage of the asynchronous character of such communication. The major
benefit of this architecture is the event-driven nature of object interaction; no loops are needed
to poll the status of objects.

Figure 10.22: Elevator: interaction between objects

Figure 10.21 shows the relationships between application classes (excluding the GUI com-
ponents). Figure 10.22 depicts the interaction between a cabin button, the corresponding cabin,
its engine, and the GUI window, in a situation where the cabin button has been pressed. The
four depicted objects are placed on different processors. As a result, command calls (dashed
lines) between the objects are non-blocking, e.g. right after issuing a call to the engine (step
2), the cabin becomes idle and is ready to receive subsequent requests from cabin buttons or
a notification from the engine (step 4). On the other hand, the query call (solid line) from the
engine to the GUI component is blocking, i.e. the engine waits until the execution of gui .
animated (current floor , floor) has terminated, before proceeding to step 4. Although we
omit the implementation details here, figure 10.22 should give a good indication of the general
style of the solution. For more details, see the SCOOP project page or one of the student reports
mentioned below.

The OOSC2 design has been used, with little modifications, in a number of implementa-
tions:

• Elevator.NET application by Arslan and Nienaltowski.
It combines a business logic part written in Eiffel and Y O SCOOPLI (see section 4.3)
with a GUI written in C]/WinForms, and targets the Microsoft .NET 1.1 platform.

No supporting tools were available for SCOOP at that time; therefore, calls to SCOOPLI
features are woven directly into the source code. Currently, SCOOP applications target-

246 CHAPTER 10. USING SCOOP IN PRACTICE

Figure 10.23: Physical model of a double-shaft elevator

ing .NET can be preprocessed using scoop2scoopli; no manual code modifications are
necessary (see section 11.3 for details).

• Elevator application by Erwin Betschart [24], using SCOOPLI and EiffelVision graphical
library.
Here too, SCOOPLI features are used directly in the source code.

• Physical elevator built by Matthias Humbert as part of his Diploma thesis [67].
The physical model consists of two elevator shafts, two cabins with individual engines,
and four floors (see figure 10.23). Each cabin has four buttons inside; floors have “up”
and “down” buttons, except the bottom and the top floor which only have one button. Due
to the presence of directed floor buttons, the despatching algorithm is more sophisticated
than the one described in OOSC2; however, no further optimisations are introduced, i.e.
pressing a floor button may result in sending a request to the cabin which is currently
moving even if the other cabin is idle. (One could think of reimplementing the algorithm
using the resource pooling facilities described in section 10.2.3, to optimise the use of
cabins and minimise waiting time.)

The control software is based on SCOOPLI; it communicates with the physical elements
through a custom-made library of C routines, wrapped in Eiffel’s external features. See
the project report [67] for details.

The software examples (source code and executables) can be found on the SCOOP project page;
a short demo of the physical elevator is also available there.

10.3.2 Arm robot

SCOOPbot is a direct offspring of the concurrency course described in chapter 12. The arm
robot has been developed by Ganesh Ramanathan — one of our students and, at the same time,

10.3. CONTROL SYSTEMS 247

employee of a company specialised in automation of production systems — who decided to
explore SCOOP’s potential in robotics. We describe here SCOOPbot’s capabilities and give an
overview of its control software; more details can be found in the project report [126].

Functionality

The robot, depicted in figure 10.24, searches for items on a conveyor belt, picks them up (one at
a time), and puts them in bins, according to their colour. SCOOPbot is composed of a flexible
arm, a turntable, a claw, three motors for activating these components, and a set of sensors: an
angle sensor for detecting the position of the turntable, two sensors for detecting the position of
the arm and the claw respectively, and a light sensor for item recognition. All these elements
come from the Lego MINDSTORMSTM framework.

A startup sequence consists of three operations performed in parallel:

• initialise turntable
Find start and end positions; define the positions of different bins; place the turntable in
the start position.

• initialise arm
Fully lower then lift the arm; leave it in the top position.

• initialise claw
Close then open the claw; leave it fully opened.

After the initialisation the robot starts seeking objects on the production path by turning the
turntable between the start and the end position. If no objects are found before reaching the
end position, seeking continues in the opposite direction; then, if no objects are found before
reaching the start position, the sequence is restarted. When an object is found, the arm is
lowered, the object is grabbed by the claw and picked up. The object is transported to the
bin corresponding to its colour. The presence of an object and its colour are detected by the
light sensor. The seeking sequence is repeated until a stop is requested; in that case, the object
currently held in the claw is put back on the production path, and all the actuators move to
their start position. If an emergency stop is requested, e.g. due to the blocked turntable, all the
actuators are immobilised immediately after placing the currently held object on the path.

Control software

The mapping between the physical components of the robot and the software objects is straight-
forward; essentially, each component is represented by an object placed on an independent
processor. Figure 10.25 illustrates this architecture; it shows the controller and the actuators
(sensors are omitted). The objects modelling the physical components provide the following
basic services:

• Turntable: initialise , seek object , move to bin, move to start .

• Arm: raise , lower.

• Claw: open, close .

248 CHAPTER 10. USING SCOOP IN PRACTICE

Figure 10.24: SCOOPbot arm robot

Figure 10.25: Software representation of SCOOPbot’s components

10.3. CONTROL SYSTEMS 249

• Motors: run, stop.

• Sensors: get value , clear .

• Controller: run, stop, emergency stop.

Similarly to the elevator example discussed earlier, the design of SCOOPbot is massively par-
allel. The communication between objects is predominantly asynchronous; however, due to
additional requirements, such as prioritisation of requests and acknowledgment of service com-
pletion, command and query calls supported by the basic SCOOP model are not sufficient; a
richer mechanism is needed. In the current control software for SCOOPbot, explicit messaging
is used; the necessary facilities are provided by classes MESSAGE and SERVICE PROVIDER.
All the objects representing physical components are instances of SERVICE PROVIDER. They
keep a queue of incoming requests and process them according to their priorities. Requesting
a service requires the creation of a message (an instance of MESSAGE) and putting it into the
target’s request queue. If an acknowledgment of service termination is required, it is also sent
as an explicit message.

We are currently migrating the communication infrastructure to agent-based implicit
messaging. Thanks to an asynch-like mechanism enriched with callbacks and priorities,
explicit messages and request queues are not necessary; objects can now communicate directly
using feature calls. For example, the controller may ask the turntable to move to a bin in the
following manner

request with ack (agent turntable . move to bin , −− service
Urgency normal, −− priority
agent notify turntable reached bin , −− ack callback
agent turntable . stop) −− emergency operation

Interfacing with physical components

All physical sensors and actuators communicate with the control software via the MIND-
STORMS RCX controller. A COM wrapper provides an interface between the controller and
the SCOOP application. The application runs on the Microsoft .NET platform; this is possible
thanks to the support for .NET offered by scoop2scoopli (see section 11.3). Version 5.6 of the
ISE Eiffel compiler, which was used for compiling the control software, did not have direct sup-
port for COM; hence the use of .NET. With the arrival of EiffelStudio 5.7 and the EiffelCOM
library, the control software can be run directly on native Windows.

Discussion

The SCOOPbot project explores O-O modelling of physical components, with a particular focus
on the distribution of interacting objects across multiple processors, and the use of contracts for
synchronisation. The first version of the control software uses explicit messaging to achieve
asynchronous communication with callbacks; the next version will rely on implicit messaging
based on an extension of the asynch mechanism that provides callback facilities and priorities.
SCOOPwash, the next robotics project led by the same author, aims at exploiting the advanced

250 CHAPTER 10. USING SCOOP IN PRACTICE

O-O techniques offered by SCOOP to implement more complex adaptive control algorithms
used in automated car wash systems. Another important goal is to achieve a high amount of
software reuse between the SCOOPbot and SCOOPwash, and discover further patterns which,
like the implicit messaging facility in SCOOPbot, may be turned into reusable components.

10.4 Code reuse

Object technology fosters reuse; in many COOLs, however, it is hindered by the apparent clash
between synchronisation and O-O mechanisms, in particular inheritance.

Multithreading models of popular languages such as Java and C] offer limited support for
sequential code reuse. A direct reuse of library classes that have not been designed for con-
currency often leads to data races and atomicity violations. The supplier-side (server-side) syn-
chronisation policy used in these models requires the classes used in a concurrent application
to be written “with concurrency in mind”. Any feature that may be accessed simultaneously by
several threads needs to implement an appropriate synchronisation mechanism, usually in the
form of a

while (someCondition) wait () ;

loop. Since it is difficult to cater for all the future contexts in which a class may be used, pro-
grammers often implement libraries in a defensive style, providing additional synchronisation
“just in case”. This results in heavy, entangled code which is difficult to extend and reuse.

SCOOP simplifies the reuse of existing libraries, be they written for sequential or concurrent
systems in the first place. Most importantly, all classes available in standard libraries can be used
in concurrent programs without any modifications. The mutual exclusion guarantees offered by
the model, coupled with the new semantics of contracts, ensure a correct synchronisation of
clients’ calls, thus letting programmers focus on the important part of their work rather than
bothering about potential atomicity violations. This leads to clearer code which can be easily
reused and extended through inheritance. A sequential class, e.g. BOUNDED QUEUE[G], can
be taken and used directly in a concurrent application

my buffer : separate BOUNDED QUEUE [INTEGER]

Declaring my buffer as separate suffices to turn the bounded queue into a bounded buffer; no
modifications of the base class BOUNDED QUEUE are necessary.

The sequential-to-concurrent code reuse discussed above was already supported by
SCOOP 97 (except for the use of genericity); however, a number of limitations existed (see
section 5.12.3). In SCOOP, these limitations do not apply, thanks to the unified contract seman-
tics and the enriched type system. For example, the initially problematic reuse of class STRING
in a concurrent context (see figure 5.16) is not hindered any more: precise type annotations
with qualified processor tags permit safe handling of this and similar scenarios. Figure 10.26
illustrates the approach. Since s and s2 are statically known to be non-separate from each other,
the call s .append (s2) is valid. The implicit type rule 6.2.3 permits correct type-checking of the
second call s .append (s). Class STRING is not an exception; this may be just a toy example but
it illustrates well the general technique of accommodating library classes whose features take
non-separate formal arguments but are used on separate targets.

Unlike many other approaches, including the multithreaded models of Java and C], SCOOP

10.4. CODE REUSE 251

r (s : separate STRING)
require

not s . is empty
local

s2 : separate <s.handler> STRING
do

s2 := s . twin
s .append (s2)
s .append (s)

end

Figure 10.26: Sequential-to-concurrent reuse

also supports a straightforward concurrent-to-sequential reuse, i.e. the code written for a con-
current application can be safely used in a sequential context. This may seem obvious at first
but is not a trivial problem, in particular in the presence of condition synchronisation. For ex-
ample, a Java class implementing a shared buffer may not work properly in a sequential context
because the (unique) thread performing the operation put is blocked if the buffer is full; it waits
for other threads to wake it up but no other thread ever accesses the buffer.

// Buffer <G>
public synchronized void put (G value) {

while (isFull ()) wait () ;
queue.addLast(value) ;
count++;
notifyAll () ;

}

To avoid this problem, we need to use a different version of class Buffer that implements non-
shared buffers, or at least a different version of feature put. In SCOOP, the same class BUFFER
and feature store may be safely used in both context, although they are primarily destined for
concurrent applications. The contract of put captures the conditions of correct use:

−− in class BUFFER [G]
put (v : G)

require
not is full

ensure
count = old count + 1
last item = v

Clients using the buffer must respect this contract. They may achieve it by using an appropriate
wrapping routine, e.g.

−− in class CLIENT
store (buffer : separate BUFFER [INTEGER]; v: INTEGER)

require
not buffer . is full

do

252 CHAPTER 10. USING SCOOP IN PRACTICE

buffer . put (v)
end

The precondition of store ensures the necessary condition synchronisation; the client is blocked
until the buffer becomes non-full. Even though my buffer is not separate from the client —
which is precisely the same situation as in the Java example with a single thread — the call to
store (my buffer , 3) will not deadlock. The generalised semantics of preconditions reduces
to the correctness semantics here, so a call on a full buffer gives raise to a precondition violation,
thus giving the client a chance to handle the situation rather than blocking forever. Concurrent
code, when used in a sequential context, behaves just like sequential code; this is the essence of
concurrent-to-sequential reuse in SCOOP.

10.5 Inheritance anomalies

Problems arising from the combination of inheritance and concurrency have been observed
since the early eighties. In most O-O concurrency models they are caused by a high interde-
pendence between the attributes of a class and the coordination constraints of different routines.
Concurrency coordination and functional code are usually interwoven; as a result, features can-
not be redefined in subclasses without affecting other features. Very often, the affected features
must be redefined in the descendant and the ancestor, which degrades the maintainability and
prevents the reuse of code. Even if the coordination code is isolated from the functional code, it
is sometimes necessary to redefine it completely for all inherited features instead of having local
extensions of its parts. These and other difficulties in combining inheritance with concurrency
are referred to as inheritance anomaly [90].

Thanks to the synchronisation policy based on the new semantics of contracts developed in
chapter 8, most inheritance anomalies do not occur in SCOOP; the remaining ones are due to the
limitations of the assertion language rather than the chosen synchronisation mechanism. Below,
we discuss three inheritance anomalies that most COOLs suffer from: partitioning of acceptable
states, modification of acceptable states, and history-only sensitiveness of acceptable states; we
show how our framework deals with them. We borrow the examples from the seminal paper by
Matsuoka and Yonezawa [90] and a recent survey by Milicia and Sassone [97].

Class BUFFER [G] in figure 10.27 serves as basis for our discussion. Clients use its features
put and get to store and retrieve elements. (To simplify the comparison with other concurrency
approaches, we keep the naming convention used in the above articles; if we followed the strict
Eiffel style, get would be replaced by a pair of features: item and remove.) The call validity
rule 6.5.3 and the principles of DbC discussed in chapter 8 enforce the proper synchronisation
on the client’s side. A client may only call a feature of the buffer declared as

my buffer : separate BUFFER [INTEGER]

in a context where my buffer is locked on the client’s behalf; the client must ensure that the
precondition will hold when the feature is applied. This may be achieved by wrapping the calls
in routines taking my buffer as actual argument and establishing the required precondition, as
illustrated in figure 10.28.

10.5. INHERITANCE ANOMALIES 253

class BUFFER [G]
feature

put (v : G)
−− Store v.

require
not is full

do
...

ensure
not is empty

end

get : G
−− Remove oldest element and return it .

require
not is empty

do
...

ensure
not is full

end
...

end

Figure 10.27: Basic buffer

−− in class C
store (buffer : separate BUFFER [INTEGER]; i: INTEGER)

require
not buffer . is full

do
buffer . put (i)

ensure
not buffer . is empty

end

Figure 10.28: Buffer’s client

Partitioning of acceptable states

The first common inheritance anomaly is caused by partitioning the states of an object into
a number of sets, and enabling the features according to these sets. For instance, the origi-
nal class BUFFER [G] has three sets of states identified as is empty , is full , and is partial
(neither full nor empty). Assume that we want to introduce a new class BUFFER2 [G] that
inherits from BUFFER [G] and adds a new feature get two which consumes two elements
from the buffer (see figure 10.29). Obviously, get two may only be applied when the buffer

254 CHAPTER 10. USING SCOOP IN PRACTICE

holds at least two elements; the set is partial is partitioned into exactly one element and
at least two elements .

class BUFFER2 [G] inherit BUFFER [G]
feature

get two : TUPLE [G, G]
−− Remove two oldest elements and return them.

require
at least two elements

do
Result := [get , get]

ensure
not is full

end
...

end

Figure 10.29: BUFFER2

In many languages with state-based synchronisation, the new partitioning required by
get two forces the redefinition of the inherited features put and get so that they capture correctly
the possible state transitions; hence the inheritance anomaly. SCOOP, which uses state-based
synchronisation, would also be prone to this anomaly if preconditions only allowed the use of
boolean attributes but not functions or expressions. In that case, the state of a buffer would be
captured by attributes is empty and is full ; the bodies of put and get would perform assign-
ments to these attributes. The introduction of get two would require an addition of the attribute
at least two elements ; consequently, the inherited put and get would need to be redefined to

set correctly the new attribute. Fortunately, SCOOP supports boolean expressions and func-
tions in preconditions; is empty and is full may be conveniently implemented as functions
which do not need updating in routine bodies (see figure 10.30). As a result, the introduction of
get two has no impact on the inherited features, i.e. the inheritance anomaly is avoided.

Interestingly, unlike most COOLs, our model enables a straightforward implementation of
get two’s functionality without using inheritance at all. It is sufficient for a client to wrap two
consecutive calls to get in a feature which takes the buffer as argument and lists an appropriate
precondition, as ilustrated in figure 10.31. Of course, count in class BUFFER [G] must be
exported to C in that case.

Modification of acceptable states

The second kind of anomaly arises in the context of multiple inheritance, where a class is
“mixed” into another class to enrich its behaviour by adding a feature that influences the accep-
tance states of the original features. A typical example is the class LOCKABLE BUFFER [G] in
figure 10.32, obtained through the inheritance from LOCKABLE and BUFFER [G]. One would
like the instances of the resulting class to behave just like instances of BUFFER [G] if is locked
is false, but not to accept calls other than unlock if is locked is true. In most COOLs, the orig-
inal version of put and get would need a redefinition to account for the strengthened synchro-

10.5. INHERITANCE ANOMALIES 255

−− in class BUFFER [G]
is full : BOOLEAN

do
Result := count = size

ensure
count = size

end

is empty : BOOLEAN
do

Result := count = 0
ensure

count = 0
end

count : INTEGER
−− Number of elements

size : INTEGER
−− Buffer capacity

−− in class BUFFER2 [G]
at least two elements : BOOLEAN

do
Result := count >= 2

end

Figure 10.30: Functions used in preconditions

−− in class C
get two (buffer : separate BUFFER [INTEGER]): TUPLE [INTEGER, INTEGER]

−− Retrieve two elements from buffer .
require

buffer .count >= 2
do

Result := [buffer . get , buffer . get]
end

Figure 10.31: Implementation of get two without inheritance

nisation requirement. SCOOP is immune to this anomaly: put and get are kept intact; only the
functions is full and is empty need to be redefined. Now, put and get may only be executed
if is locked is false because ¬is full =⇒ ¬is locked and ¬is empty =⇒ ¬is locked.

Class LOCKABLE BUFFER [G] does not, however, conform to BUFFER [G]. This is nec-
essary for preserving the compatibility with the rules of DbC. The proposed redefinition of
is full and is empty effectively weakens their postconditions and strengthens the precondi-

256 CHAPTER 10. USING SCOOP IN PRACTICE

deferred class LOCKABLE
feature

lock require not is locked do is locked := True end
unlock do is locked := False end
is locked : BOOLEAN

end

class LOCKABLE BUFFER [G]
inherit {NONE} −− Non−conforming inheritance

LOCKABLE
BUFFER [G] redefine is empty, is full end

feature
is full : BOOLEAN

do
Result := is locked or count = size

end

is empty : BOOLEAN
do

Result := is locked or count = 0
end

end

Figure 10.32: Lockable buffer

tions of put and get; this is at odds with DbC because clients could be cheated on in the pres-
ence of polymorphic calls. Therefore, the non-conforming inheritance mechanism [53] must
be used for inheriting the features of BUFFER [G]. (That is why inherit {NONE} is used
instead of the standard inherit form.) It breaks the subtyping relation; no polymorphic attach-
ments between the entities of both types are allowed, so there is no risk of incorrect calls. An
arbitrary redefinition of contracts is permitted here; if, on the contrary, we used the standard
inheritance mechanism, the new versions of is full and is empty could violate their inherited
postconditions.

History-only sensitiveness of acceptable states

The third kind of anomaly occurs when the application of a particular feature is enabled or
disabled depending on the execution history rather than the current state of the object. Consider
the class HISTORY BUFFER [G] in figure 10.33; its feature gget may only be executed if the
previous operation on the buffer was a call to get. SCOOP, like many other approaches, does not
support history variables; they have to be emulated using “ghost” attributes. This leads to the
anomaly: the inherited features need to be redefined to set or reset the corresponding attributes.
Here, the new versions of put and get may rely on their original bodies through the use of
Precursor calls but this only palliates the problem; we would like to avoid their redefinition
altogether.

The anomaly occurs in our model but the problem is not concurrency-specific; it happens in

10.6. DISCUSSION 257

class HISTORY BUFFER [G]
inherit

BUFFER [G] redefine put, get end
feature

put (v : G)
−− Store v.

do
Precursor (v)
after get := False

end

get : G
do

Result := Precursor
after get := True

end

gget : G
−− Like get but follows another call to get .

require
after get

not is empty
do

Result := get
after get := False

end

after get : BOOLEAN
−− History variable

end

Figure 10.33: Buffer with history variables

a sequential context as well because the assertion language of Eiffel is not expressive enough
to specify a required sequencing of feature calls. Auxiliary attributes used for emulating his-
tory variables are themselves prone to the partitioning of acceptable states anomaly mentioned
earlier.

10.6 Discussion

A number of practical applications of SCOOP have been presented. Several techniques dis-
cussed in previous chapters prove essential for achieving compact solutions. Of particular
interest are: atomic locking of multiple processors, detachable and attached types, contract-
based synchronisation, inheritance, genericity, and asynchronous agent calls (in many different
flavours). We have also shown how SCOOP leverages the powerful O-O techniques to provide

258 CHAPTER 10. USING SCOOP IN PRACTICE

extensive support for reuse. Classes written for a sequential application may be readily used in a
concurrent one and vice-versa. The model is immune to common inheritance anomalies because
contracts allow a clean reuse of synchronisation code: since every inherited feature must respect
the original contract, and the synchronisation requirements are part of the contract, the redefined
synchronisation code is guaranteed to be compatible with the original. This immediately rules
out inheritance patterns that are not compatible with the principles of DbC, as illustrated by
the lockable buffer example above. The assertion language is flexible enough to eliminate the
anomalies related to the partitioning and the modification of acceptable states. Nevertheless,
history-related anomalies persist. They could be eradicated by enriching the contract language
but the required extensions are non-trivial.

11
Implementation: issues and

solutions

GENTLEMEN never propose things that cannot be implemented. The implementation of SCOOP
is a major contribution of this dissertation. It is essential for validating the model and demon-
strating its practicality. Our work began with an attempt at implementing SCOOP 97; that
initial effort revealed several limitations and inconsistencies of the model, prompting us to re-
design it, and ultimately leading to the development of the current SCOOP framework. Several
theoretical and practical issues discussed in this dissertation have been uncovered during the
implementation work.

SCOOP is supported by three complementary tools:

• SCOOPLI library which implements the basic computational model: processors, atomic
locking, scheduling, wait by necessity, and the new contract semantics.

• scoop2scoopli compiler which type-checks SCOOP code following the rules introduced
in chapter 6 and translates it into pure Eiffel code with embedded calls to SCOOPLI.

• CONCURRENCY library with a number of utility classes implementing advanced
concurrency mechanisms not supported in the basic model. CONCURRENCY classes
are written in SCOOP and can be readily used in various applications, e.g. through in-
heritance, as demonstrated in chapter 10. The library is open; future extensions and
modifications, e.g. new facilities for distributed and real-time programming (see section
13.2), are welcome.

Right from the beginning, we decided in favour of a library-based implementation of the basic
mechanism. This let us focus on concurrency issues without getting bogged down in the intri-
cacies of existing compilers. Besides, at the outset of this study, no satisfactory open-source
Eiffel compiler was available.

Our implementation follows the ECMA/ISO language standard [53, 68] and it is compatible
with existing Eiffel tools. Code produced by scoop2scoopli is compliant with the EiffelStudio
(versions 5.5–5.7) and Gobo compilers; the tool itself has been implemented on top of the
Gobo compiler framework [25]. Scoop2scoopli is a command-line tool but it has been recently
integrated with EiffelStudio by Yann Müller [105]. As a result, SCOOP projects can now be
created, edited, compiled, and run in a similar way as sequential Eiffel projects; the only notable
exception being the lack of debugger support for inspecting individual processors.

259

260 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

11.1 Supported mechanisms

The ultimate goal of the implementation effort is to cover all the mechanisms and techniques
supported by the model. Some mechanisms proposed in this dissertation, however, have not
been fully implemented. This is due to several reasons, primarily to the fact that some Eiffel ex-
tensions introduced in the ECMA/ISO standard have no implementation yet; SCOOP’s reliance
on this standard has had an impact on the extent of our implementation. This section reviews
basic and advanced elements of SCOOP discussed in previous chapters, and comments on the
completeness of their implementation.

• Feature calls
Separate and non-separate calls are fully supported. The separateness of a call is de-
termined at run time, following the new semantics of the feature call mechanism (rule
7.2.1).

• Atomic locking
SCOOPLI provides a locking mechanism based on the refined semantics of the feature
call mechanism (rule 7.2.1). There is no limit to the number of processors locked atomi-
cally.

• Lock passing
The lock passing mechanism introduced in chapter 7 is fully implemented.

• Fair scheduling
The scheduler provided as part of SCOOPLI ensures strong fairness: satisfiable requests
are serviced in a FIFO order. This policy is stricter than required by SCOOP; see section
11.2.4.

• Preconditions, postconditions, and invariants
The new semantics of preconditions and postconditions introduced in chapter 8 is fully
implemented. Controllability of assertions is detected in two steps: (1) scoop2scoopli
performs a static check to filter out all clauses that do not involve separate calls (such
clauses are controllable by definition), and (2) controllability or the remaining clauses is
checked at run time. Invariant checking is also supported. Contracts are implemented in
a way that enables switching on and off run-time assertion monitoring.

• Loop assertions and check instructions
The implementation does not follow the new semantics outlined in section 8.1.4; these
constructs are treated as in sequential Eiffel, i.e. wait by necessity applies. However,
there is no technical obstacle to implementing the new semantics.

• Attached types
The ECMA/ISO specification of attached types has not been implemented in existing
Eiffel compilers. Scoop2scoopli supports attached types as far as they influence SCOOP
mechanisms, e.g. locking and type checking. Other considerations, e.g. Certified Attach-
ment Patterns and initialisation of attached attributes by creation procedures, are ignored
because they fall beyond the scope of this work.

11.1. SUPPORTED MECHANISMS 261

• Object test
Assignment attempts ‘?=’ are used instead of object tests, due to the lack of support for
the latter in existing Eiffel compilers.

• Object comparison
Object comparison takes into account the locality of compared objects. This is achieved
through an additional comparison of processor identities in feature is equal .

• Object import
The four proposed versions of import operation (see section 6.7) are not implemented. A
full implementation of import operations would require support from the runtime. Feature
deep import is provided in class ANY but it may yield incorrect results for non-separate
objects reachable from an imported root object via separate references.

• Separate actual generic parameters are fully supported, but non-separate parameters may
behave incorrectly when applied to separate types. Declarations of the form

l1 : LIST [X]
l2 : LIST [separate X]
l3 : separate LIST [separate X]

are handled correctly, whereas

l4 : separate LIST [X]

may lead to inconsistencies because the type of its elements is seen by clients as (!, •, X)
rather than the expected (!,>, X) yielded by the type combinator ‘?’ (see section 9.2).

• Type rules
The type checker of scoop2scoopli uses type rules introduced in chapter 6 to eliminate
traitors. Additional conformance rules for generically derived types (rule 9.2.3) have not
been implemented yet. At the moment, standard Eiffel type rules apply, e.g. allowing co-
variant subtyping among actual generic parameters; as a result, it is possible to introduce
traitors through an incorrect manipulation of generic types.

• Enriched type annotations
The extended SCOOP syntax is fully supported. Besides the usual ‘<>’ notation for
processor tags, an alternative comment-based notation ‘−−<>’ is supported; it allows
the use of SCOOP within Eiffel editors which are not (yet) aware of the full SCOOP
syntax. For example, type annotations

y : separate <x.handler> Y

can be rewritten as

y : separate Y −−<x.handler>

Separate annotations may also appear in formal generic parameters, including generic
constraints.

• Agents
Agents are supported by SCOOPLI. At the moment, however, scoop2scoopli is un-
able to produce fully operational code for creation of separate agents. The necessary

262 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

manual modifications of generated code are straightforward; we are currently extending
scoop2scoopli to eliminate the need for manipulation of produced code.

• Garbage collection
Unused objects are collected automatically using the standard mechanism provided by the
Eiffel runtime. Automatic garbage collection of processors has not been implemented.
This may pose a problem in applications where a large number of processors are created
and used for a short period of time, e.g. with fully asynchronous calls or event-based pro-
gramming. Manual cleanup is possible; an appropriate feature is provided by SCOOPLI
(see section 11.2.7).

The extent to which SCOOP has been implemented is sufficient to demonstrate the feasibility
of the approach and apply it in practice. We have found no major technical obstacles that would
indicate the infeasibility of a full implementation. On the contrary: the increasing support for
new mechanisms and rules of ECMA/ISO Eiffel standard provided by EiffelStudio and Gobo
compilers means that a complete implementation of SCOOP is just a matter of time.

11.2 SCOOPLI library

SCOOPLI implements the basic SCOOP abstraction: processors. It also provides support for
such essential mechanisms as separate calls, atomic locking of multiple resources, wait seman-
tics of preconditions, wait by necessity, and fair scheduling.

The library is compatible with the EiffelStudio 5.5–5.7 and Gobo compilers. It relies on
EiffelBase and EiffelThread libraries, and targets POSIX and NET threading. It can be used on
native Windows and .NET 1.1; simple examples have been compiled and tested on Linux but
we claim no compatibility with that platform.

SCOOPLI is very compact. It consists of 5 classes representing basic abstractions:

• SCOOP PROCESSOR

• SCOOP SCHEDULER

• SCOOP SEPARATE TYPE

• SCOOP SEPARATE CLIENT

• SCOOP SEPARATE PROXY

and 8 supporting classes; in total, they represent 130 features and 2100 lines of code. Figure
11.1 shows the relations between the most important classes. In the remainder of this section,
we show how the essential SCOOP mechanisms are implemented using these classes; we point
out the encountered problems, and describe our solutions.

11.2.1 Processors

Processors are instances of SCOOP PROCESSOR. Each processor has an associated thread
whose task is to service its action queue where feature calls issued by separate clients are stored.

11.2. SCOOPLI LIBRARY 263

Figure 11.1: SCOOPLI library: basic classes

These requests are executed in the FIFO order. The access to the action queue is protected by
a mutex to avoid data races between a client processor extending the queue and the processor
handling it. Wait by necessity is implemented at the level of the action queue: a client processor
adding a query request is blocked until the request has been processed, i.e. the queue has
become empty and the query has been executed. 1.

A processor may be locked by another processor, or free. A reference to the lock owner is
provided by the query locked by . The lock owner has the right to access the processor’s action
queue; other processors cannot do it, unless they received the lock as a result of lock passing
(see section 11.2.5 below).

Each processor has a reference to the centralised scheduler; on creation, the processor regis-
ters with the scheduler by putting itself into the scheduler’s list processor list . Processors do
not keep references to objects they handle; it is the objects that keep a reference to their handler.
This is necessary to support efficient garbage collection (see section 11.2.7).

11.2.2 Separate objects

In a separate call, an object may act as separate client or as separate supplier. A
separate client must know its own processor and have access to the centralised sched-
uler, so that it can issue lock requests associated with routines taking separate argu-
ments. Class SCOOP SEPARATE CLIENT provides these facilities in the form of features
processor and separate execute procedure ; application classes that declare separate enti-
ties and uses calls to routines with separate arguments must inherit from that class. Class
SCOOP SEPARATE PROXY represents separate suppliers, more precisely proxies to such sup-

1A busy wait loop (used initially in YO SCOOPLI) has now been replaced by a more sophisticated signalling
policy based on wait handles implemented by the SCOOPLI class SCOOP AUTO RESET EVENT

264 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

pliers. The actual supplier objects need not be aware that they participate in separate calls;
proxies must take care of the necessary synchronisation, and delegate calls to the actual sup-
plier objects. Therefore, declarations of separate entities, e.g.

my x: separate X
my Y: separate Y
r (y : separate Y) do ... end

must be rewritten as

my x: SCOOP SEPARATE X
my y: SCOOP SEPARATE Y
r (y : SCOOP SEPARATE Y) do ... end

where SCOOP SEPARATE X and SCOOP SEPARATE Y are proxies for classes X and Y re-
spectively. (Proxy classes may be given different names; the above example uses the standard
naming scheme applied by scoop2scoopli.)

11.2.3 Separate calls

Calls to routines taking separate formal arguments must be wrapped in agents and passed to the
centralised scheduler where a corresponding locking request is created and serviced (see section
11.2.4 below), e.g.

r (my y)

becomes

scoop separate execute ([my y. processor], agent r(my y), agent r wait condition ,
agent r separate post , agent r non separate post)

This call results in waiting until a lock on my y’s handler is acquired on behalf of the client’s
processor, and r’s uncontrolled preconditions hold (they must be extracted into a wrapper query
r wait condition), then executing r’s body and checking its postconditions. The postcondi-

tions are extracted into two wrapper queries r separate post and r non separate post . The
distinction between separate and non-separate postcondition clauses in necessary for imple-
menting their new semantics; see section 11.3.4.

Each separate command call of the form y . f (...) must be wrapped in a call to
scoop asynchronous execute , e.g.

y . f (...)

becomes

scoop asynchronous execute (Current, agent y . f (...))

where the first actual argument indicates the separate client and the second denotes the re-
quested feature call. Similarly, each query call y .q (...) must be wrapped in a call to
scoop synchronous execute ; additionally, the result of the query must be retrieved.

Auxiliary features scoop asynchronous execute and scoop synchronous execute are pro-
vided in class SCOOP SEPARATE PROXY, so that wrapping can be conveniently done in the
proxy class; with this approach, the original calls y . f (...) and y .q (..) need no modifica-
tions. (Scoop2scoopli uses this technique, see section 11.3.1 for details.)

11.2. SCOOPLI LIBRARY 265

11.2.4 Scheduling, locking, and wait conditions

A centralised scheduler, implemented by class SCOOP SCHEDULER, processes locking re-
quests and checks wait conditions. The scheduler manages a global routine request queue where
locking requests are stored; a dedicated scheduler thread is used to service the requests. The
execution of separate execute by a processor Pr, which corresponds to calling an enclosing
routine r (my x, my y, ...) in the original code, results in creation of a routine request (an in-
stance of SCOOP ROUTINE REQUEST) and its addition to the global request queue, provided
that Pr does not already hold all the necessary locks (in which case it can proceed immediately).
The routine request contains four pieces of information:

• The identity of Pr.

• A tuple of processors to be locked: [Pmy x, Pmy y, ...].

• An agent representing the wait condition.

• An agent representing the enclosing routine r.

After adding its request to the queue, Pc is blocked until the request is satisfied. To avoid star-
vation, routine requests are considered in a FIFO order; this policy ensures that every satisfiable
request is serviced before requests issued later. A request might be in one of three states:

• idle, i.e. it is waiting to be serviced.

• active, i.e. locking and wait condition checking have been successful; the corresponding
enclosing routine r is being executed by the requesting processor Pr.

• finished, i.e. Pr has terminated the execution of r and is ready to relinquish the locks.

If the scheduler comes across an idle request, it tries to acquire locks on the requested processors
on behalf of the client processor; if locks are acquired, a wait condition check follows. If either
operation fails, the scheduler moves to the next request, leaving the current one idle. If both
locking and wait condition checking are successful, the request is marked as active to give the
client processor a permission to execute the body of the associated routine; the client processor
will change the state of the request to finished as soon as it terminates the routine. The scheduler
moves to the next request, and so on. If a request is marked as finished, the scheduler unlocks all
processors locked by that request, removes it from the queue, and restarts servicing the queue
from the head. The latter step is necessary to ensure that no earlier requests which now have
become satisfiable (due to the last unlocking operation) are omitted.

This scheduling policy is stricter than required for implementing the fairness guarantees of
SCOOP. We have decided to use it because of its simplicity and low run-time overhead: only
one scheduler thread is necessary. In some situations, however, this solution is suboptimal. For
example, two requests with disjoint sets of requested processors are serviced one after the other,
although they could be taken care of in parallel. On the other hand, our scheduler is immune to
starvation, unlike Compton’s lock manager (see section 4.3).

266 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

11.2.5 Lock passing

For simple locking, as in SCOOP 97, a single query locked by in class SCOOP PROCESSOR
would suffice. To support lock passing, however, every processor must additionally keep track
of all the processors it has locked. The scheduler makes use of this information to check whether
a client processor Pc requesting a lock on a supplier processor Px already owns this lock as a
result of (a chain of) lock passing operations. Conversely, every processor must know the set of
all processors that (indirectly) hold a lock on it (locked by only denotes a direct lock holder).
This information is needed by the client processor Pc when issuing a separate call on the sup-
plier processor Px. Pc must check whether Px holds a lock on Pc, which would indicate that the
call is a separate callback and should be processed synchronously rather than being added to the
action queue of Px, as implied by the rule 7.2.1. Class SCOOP PROCESSOR has been there-
fore extended with features locked processors and synchronous processors . Both of them
represent stacks of processors and always contain at least one element: the current processor
itself. Before a feature call involving lock passing the client processor pushes the contents of
its locked processors stack on the supplier processor’s; the same operation is performed for
synchronous processors . After the feature application (lock passing implies waiting, see rule
7.2.1) the supplier processor’s stacks are chopped off to their previous size. (Scoop2scoopli
automatically inserts the appropriate calls before and after the feature application.) The stack-
based implementation of processor sets permits correct handling of recursive lock passing and
separate callbacks. The run-time deadlock detection mechanism for SCOOPLI implemented by
Daniel Moser [100] also makes use of locked processors stacks.

11.2.6 Quiescence and termination

The scheduler performs a quiescence detection step every time the request queue becomes
empty and no processors have reported activity. The quiescence detection consists in checking
that all processors are indeed idle (processors only report activity when an action terminates,
so it is possible that some processor are busy handling their action queues). If yes, the whole
system is terminated: the scheduler asks processors to exit their action loops and remove them-
selves from processor list ; as soon as the list is empty, the scheduler terminates its loop. This
marks the end of the execution.

Quiescence detection introduces little run-time overhead because it is only performed when
the scheduler thread has other activity, i.e. no requests to service.

11.2.7 Garbage collection

If an object is not referenced by other objects on the same processor (a direct reference) or
on another processor (through a proxy), it can be garbage-collected. As soon as a proxy is
not referenced by any other object, it can be garbage-collected too. Processors do not keep
references to the object structures they handle, so the standard garbage collection mechanism is
sufficient.

Processor objects, however, are not collected automatically. Even if no application object
in the system references a given processor, the single reference kept by the scheduler (in the
processor list) prevents the garbage collector from doing its work. In most applications with
a bounded number of processors it poses no particular problems. The advanced agent-based

11.3. SCOOP2SCOOPLI TOOL 267

mechanisms implemented in the CONCURRENCY library, however, often create a large num-
ber of auxiliary processors which are only used for single calls and then left idle. For example,
every application of asynch creates an additional processor; every use of parallel or with n
targets creates n+1 processors, and so on. To avoid multiplication of idle processors, manual
garbage collection is possible in such cases. Class SCOOP SCHEDULER provides a feature
remove processor which deletes the entry for a given processor from the list of processors kept
in the scheduler. As soon as that last reference disappears, the automatic garbage collector can
kick in and dispose of the processor.

Discussion

SCOOPLI maps SCOOP concepts to the underlying multithreading platform in a straightfor-
ward and faithful way: all actions on a given object are executed by a thread representing the
object’s handler. Furthermore, the scheduler thread does not apply any features on behalf of
a client; it only notifies the client that the enclosing routine associated with a request can be
executed; the execution of the routine is performed by the client’s processor. Separate calls are
handled exactly as prescribed by the feature call semantics (rule 7.2.1), i.e. instead of executing
a given feature directly, the client’s processor asks the supplier’s processor to execute it. Lock
passing obeys the same basic rule: features are always executed by a thread representing the
supplier’s processor, never by the client’s own thread.

Our implementation uses threads very sparingly: there is one thread per processor, plus
one scheduler thread; in total n+1 threads for a system composed of n processors. Despite the
relatively high run-time overhead due to agent wrapping of separate calls, we have chosen this
implementation approach for three important reasons:

• The run-time model is very close to the abstract operational semantics; this facilitates the
understanding of the practical impact of formal rules introduced in the model.

• Keeping the basic mechanisms at a high level of abstraction should facilitate future im-
plementations. Large parts of the library can be reused without modification in imple-
mentations targeting other platforms, e.g. for distributed computing. SCOOPLI relies on
threading but this binding is weak; other execution facility can easily replace threads.

• The main purpose of this implementation effort is to demonstrate the feasibility and prac-
ticality of the SCOOP model; efficiency is considered but it is less important.

11.3 Scoop2scoopli tool

SCOOPLI provides all the basic concurrency mechanisms but its direct use would be burden-
some because the necessary wrapping of separate calls, creation of proxies, and explicit calls
to the scheduler obscure the syntax; manual manipulation of synchronisation features is error-
prone. Therefore, we have implemented the scoop2scoopli tool which translates SCOOP pro-
grams into Eiffel code with embedded calls to SCOOPLI features, so that programmers need
not deal directly with the library. The tool was first conceived as a pre-processor but later a
type-checker was added; therefore, we view it as a SCOOP-to-Eiffel “compiler”.

268 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

Figure 11.2: Example class hierarchy generated by scoop2scoopli

Compilation of SCOOP projects

SCOOP projects can be compiled from the command line be executing the command

scoop2scoopli filename.ace

where filename.ace is the name of a project configuration file in the ACE format sup-
ported by Eiffel compilers. The configuration file must specify a system name, a root class and
a root creation procedure, and a list of clusters with SCOOP classes.

Scoop2scoopli type-checks the program and creates a subdirectory scoop build where a new
project configuration file (the name of the configuration file corresponds to the specified system
name) and generated Eiffel classes are placed. The generated classes are organised in directo-
ries following the original cluster hierarchy. The configuration file produced by scoop2scoopli
can now be submitted to the EiffelStudio compiler to obtain an executable from the generated
classes.

Optional compilation switches \nolockpassing and \seqpost may be used with
scoop2scoopli to simulate SCOOP 97 semantics: \nolockpassing turns off the lock passing
mechanism; \seqpost enforces the sequential semantics of postconditions.

11.3.1 Code generation

Two classes are generated for each SCOOP class C: an original class called C and a proxy class
called SCOOP SEPARATE C. Figure 11.2 shows the class hierarchy for the dining philoso-
phers example described in section 10.1.1. (The figure only includes the relevant classes; li-
braries are omitted.) The original classes (the left-hand side of the diagram) correspond to
those of the compiled SCOOP system; SCOOP code, however, has been replaced by pure Eiffel
code with embedded calls to SCOOPLI. The proxy classes (the right-hand side of the diagram)
are proxies to the original classes; their hierarchy mirrors the original one.

11.3. SCOOP2SCOOPLI TOOL 269

Generated classes are put into two subdirectories of scoop build . Additionally, root class
SCOOP STARTER is generated and put in scoop build . The new project configuration file
specifies {SCOOP STARTER}.execute as root creation procedure of the produced Eiffel sys-
tem. See section 11.3.2 for details concerning SCOOP STARTER and bootstrapping of SCOOP
applications.

Original classes

Each SCOOP class in the compiled system is transformed into an Eiffel class. SCOOP con-
structs are replaced with appropriate calls to SCOOPLI features; a few more modifications are
necessary.

• Every class inherits from SCOOP SEPARATE CLIENT (see section 11.2.3); inheritance
links are automatically inserted by scoop2scoopli.

• Each declaration of a separate entity is turned into a declaration using the corresponding
proxy class, e.g.

x : separate X

becomes

x : SCOOP SEPARATE X

• Separate calls take one additional argument ‘Current’, e.g.

x . f (5, ’’ Hello World !’’)

becomes

x . f (Current, 5, ’’ Hello World !’’)

• Since separate calls now take one more argument, infix features on separate targets can-
not be used. Calls to infix features are replaced with appropriate calls to their non-infix
synonyms

if x > y then ... end

becomes

if x . non infix gt (Current, y) then ... end

• Every routine taking separate formal arguments is split into three routines — one issuing
a locking request to the scheduler through separate execute routine , one wrapping the
body, and one wrapping the wait conditions — following the technique outlined in section
11.2.3.

• Creation of separate objects is split in two steps: (1) creation of a proxy with an associated
processor, and (2) calling the creation procedure, e.g.

create x .make

becomes

270 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

create x . set processor (scoop scheduler . new processor)
separate execute procedure ([x], agent x .make (Current), Void)

• Each assignment attempt is followed by an additional if ... then ... else statement
checking the conformance of processors between the source and the target.

The rest of the code is left unchanged; as a result, the generated classes are very similar to the
original ones. In particular, the original inheritance hierarchy is preserved (except for adding a
link to SCOOP SEPARATE CLIENT).

Proxy classes

Proxy classes implement separate types. Their hierarchy follows that of the original classes,
e.g. if class C inherits from A and B then the proxy SCOOP SEPARATE C inherits from
SCOOP SEPARATE A and SCOOP SEPARATE B; feature renaming, redefinition, and merg-
ing is taken into account. No inheritance relation exists between SCOOP SEPARATE C and
C; their conformance is enforced through conversion; an appropriate procedure is introduced in
the proxy class. Proxies use delegation to access features of original classes. For that purpose,
SCOOP SEPARATE C declares an attribute

implementation : C

representing the actual object to which feature calls are redirected. To cater for various mech-
anisms of SCOOP — separate calls, locking, lock passing, and object creation — redirected
calls must be wrapped in calls to appropriate SCOOPLI features.

• For each command f (...) from class C, SCOOP SEPARATE CLIENT lists a routine

f (a caller : SCOOP SEPARATE CLIENT; ...)
do

... −− Check each argument of proxy type represents actual object ;
−− if not , use Void in the actual call .

separate execute (a caller , agent implementation . f (...)
−− Actual call

end
end

• A similar routine is provided for each query q (...) : X but it additionally retrieves the
result of the actual call.

q (a caller : SCOOP SEPARATE TYPE; ...): SCOOP SEPARATE X
local

a function to evaluate : FUNCTION [ANY, TUPLE, X]
do

a function to evaluate := agent implementation .q (...)
scoop synchronous execute (a caller , a function to evaluate)
Result := a function to evaluate . last result

end

11.3. SCOOP2SCOOPLI TOOL 271

• Since agent creation on attributes, constants, and once functions is not supported by the
EiffelStudio compiler, wrappers are created for such features; these wrappers are used in
calls to scoop separate execute .

• For each creation procedure make (...) three features are generated in the proxy class

make (a caller : SCOOP SEPARATE CLIENT; ...)
do

separate execute (a caller , agent implementation .make (...))
end

make scoop separate c (a caller : SCOOP SEPARATE CLIENT; ...)
do

separate execute (a caller , agent
effective make scoop separate c (n))

end

effective make scoop separate c (...)
do

create implementation .make (n)
end

The first feature is used in non-creation calls to make; the latter two in creation calls.
This is necessary to cater for the changing creation status of make along the inheritance
hierarchy, and for a correct handling of dynamic binding in the presence of redefinition
and renaming (note that the two wrapper features are suffixed with the class name).

• Routines taking separate arguments check whether lock passing should occur before
delegating the call to the actual object. If lock passing is needed, a transfer of
locked processors and synchronous processors between the caller’s processor and the
actual object’s processor takes place. The actual call is then scheduled and the the proxy
blocks until it has terminated. Finally, locks are revoked.

All proxy classes inherit from SCOOP SEPARATE PROXY which provides such essential fea-
tures as references to the handling processor and the centralised scheduler, and the routine
scoop separate execute .

11.3.2 Bootstrapping

The bootstrapping process SCOOP applications is slightly more complicated than for sequential
programs. This is due to the necessity of locking the processor that executes the original root
creation procedure. Otherwise, the root creation procedure would be executed without its han-
dler being locked. This could result in a violation of mutual exclusion if a reference to Current
or another non-separate object was passed to a separate supplier; that supplier would be able to
acquire a lock on the root processor and perform a callback without waiting for the root creation
procedure to terminate.

In the dining philosopher application depicted in figure 11.2, the original system specifies
{ROOT CLASS}.make as root creation procedure. The code generated by scoop2scoopli, how-
ever, starts off the scheduler before creating an instance of ROOT CLASS and calling make on

272 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

it. That instance of ROOT CLASS must have an associated handler; following SCOOP rules,
calling make requires a lock on that handler. This is achieved by specifying SCOOP STARTER
as root class of the final system. Class SCOOP STARTER is automatically generated by

scoop2scoopli; it declares an attribute of type separate ROOT CLASS, creates a corresponding
object, and issues a call to its feature make. The latter call obeys the usual rules, i.e. an en-
closing routine is used. This ensures correct locking of the actual root object and prevents other
processors from locking its processor before make has terminated.

11.3.3 Invariant checking

Spurious invariant violations could when using a creation procedure that takes separate formal
arguments. This is due to the implementation of such routines: they do not execute the body
of the original creation routine but only call separate execute routine , passing to it an agent
representing the actual body. A call on that agent, performed by the current processor after
acquiring the necessary locks and checking the preconditions, catches Current in a state where
the invariant may not hold. Of course, the invariant should be checked after the execution of
the creation routine’s body, not before; therefore, invariants are disabled temporarily and re-
enabled at the end of the creation routine. This requires a transformation of invariant clauses
into implications, e.g.

invariant
left fork /= Void
right fork /= Void

becomes

invariant
(not invariant disabled) implies (left fork /= Void)
(not invariant disabled) implies (right fork /= Void)

and inserting the appropriate assignments to invariant disabled in all concerned creation pro-
cedures, e.g.

make (a left fork , a right fork : SCOOP SEPARATE FORK)
require

forks exist : a left fork /= Void and then a right fork /= Void
do

invariant disabled := True −− disable invariants
separate execute routine (...)
invariant disabled := False −− enable invariants

end

11.3.4 Postcondition checking

To support the new semantics of postconditions (see section 8.1.2), routines taking separate
formal arguments must be transformed so that all postcondition clauses that not involving non-
separate calls are extracted and placed in an auxiliary routine to be evaluated asynchronously.
For example, an original routine

11.4. CONCURRENCY LIBRARY 273

spawn two activities (l1 , l2 : separate LOCATION)
−− Spawn jobs at l1 and l2 .

do
...

ensure
post 1 : l1 .ready
post 2 : l2 .ready
post 3 : non separate property and then l1 . some property

end

only keeps its last postcondition clause

post 3 : non separate property and then l1 . some property

whereas the other clauses are put into individual wrapper routines which are passed as agents
to the processors involved in the evaluation of the clauses. In the above example, post 1 is
passed to l1’s processor, whereas post 2 is passed to l2’s processor. In cases where several
processors are involved in the same clause, the processor handling the first target (in the order
of appearance in the formal argument list) is asked to evaluate the clause; it takes care of asking
the other processor to evaluate their subclauses. This algorithm avoids cross-locking of the
involved processors and is therefore deadlock-free.

An interesting point of this solution is that the evaluation of individual wrappers is itself
placed in a postcondition of an auxiliary routine, so that run-time postcondition monitoring can
be switched off like in sequential systems.

Discussion

Yann Müller has integrated the tool with EiffelStudio 5.7 as part of his MSc project [105].
The additional machinery needed to implement concurrency is hidden from EiffelStudio users.
Programmers manipulate SCOOP source code using the built-in editor but preprocessed code
is run when an application is launched. Compiling a SCOOP application involves full type-
checking and Eiffel code generation with scoop2scoopli, followed by a standard compilation
process of the generated code (including SCOOPLI and EiffelThread libraries). The Melting
Ice technology of EiffelStudio is supported: scoop2scoopli only updates classes that have been
modified, so that recompilation is incremental.

Müller’s work brings SCOOP programming experience to a new level: projects can now be
created, edited, compiled, and run in a similar way as with sequential Eiffel. Unfortunately, the
lack of debugger support for inspecting individual processors complicates this task.

11.4 CONCURRENCY library

The CONCURRENCY library provides a set of utility classes supporting advanced concurrency
features; programmers may use these classes directly in their code, e.g. through inheritance.
The following mechanisms are implemented:

• call: universal enclosing routine.

274 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

• asynch: fully asynchronous calls.

• waiting faster: parallel wait on multiple queries.

• resource pooling: calling m out of n separate targets.

• SCOOP-enabled event types: asynchronous publication of events and independent notifi-
cation of multiple subscribed objects.

Several examples in section 10.2 illustrate the use of these facilities. This section reviews the
library classes and their essential features. Appendix A includes the full code of all provided
classes.

11.4.1 CONCURRENCY

The deferred class CONCURRENCY provides an interface for the above library facilities. To use
these facilities, application classes must inherit from CONCURRENCY. The essential features
are

• call (a feature : separate ROUTINE [ANY, TUPLE])
A universal enclosing routine which can be used for wrapping single separate calls. It
takes an agent as argument, e.g.

call (agent x . f (...))

See section 9.3.4 for more details.

• asynch (a feature : ?separate ROUTINE [ANY, TUPLE])
Performs a fully asynchronous call to the agent passed as argument, e.g.

asynch (agent x . f (...))

Relies on class EXECUTOR. See section 9.3.4 for a detailed discussion and examples.

• evaluated in parallel (a queries : LIST [?separate FUNCTION
[ANY, TUPLE, ?separate ANY]];

an initial answer , a ready answer: ?separate ANY;
an operator : FUNCTION

[ANY, TUPLE, ?separate ANY]): ?separate ANY

Evaluates in parallel a set of separate queries and returns a result as soon as possible.
Relies on class ANSWER COLLECTOR. Results of individual queries are combined us-
ing an operator. Three operators are defined in class CONCURRENCY: parallel or ,
parallel and , and parallel sum .

• call m out of n (a feature : ROUTINE [ANY, TUPLE];
a pool : LIST [?separate ANY]];
m: INTEGER)

Applies a feature to m targets from a pool. Relies on classes POOL MANAGER and
LOCKER.

11.4. CONCURRENCY LIBRARY 275

11.4.2 EXECUTOR

Class EXECUTOR is used by asynch and resource pooling mechanisms; it also serves as an-
cestor for EVALUATOR used in parallel wait and for LOCKER used in call m out of n . The
essential features are

• execute (a feature : ?separate ROUTINE [ANY, TUPLE])
Applies a feature after locking its target. Used by {CONCURRENCY}.asynch.

• apply to target (a feature : separate ROUTINE [ANY, TUPLE];
a target : ANY)

Applies an imported copy of a feature to a target . Used by POOL MANAGER.

11.4.3 ANSWER COLLECTOR

Class ANSWER COLLECTOR is used by the parallel wait mechanism; it gathers individual
results and combines them into a final answer given to a client. The essential features are

• answer: ?separate ANY
Current answer. Becomes a valid answer, i.e. can be given to the client, if is ready holds.

• update answer (a result : ?separate ANY)
Updates answer with the individual result a result submitted by an instance of
EVALUATOR.

• combinator: FUNCTION [ANY, TUPLE, ?separate ANY]
Used by update answer to combine individual results.

• ready answer: ?separate ANY
Value of combined result that allows ignoring any further individual results. For example,
parallel or sets it to True because a disjunction of boolean expressions is true as soon

as one of individual expressions is true.

• is ready : BOOLEAN
Indicates whether answer is valid. Set to True if answer = ready aswer or if all evaluators
have submitted individual results.

11.4.4 EVALUATOR

Class EVALUATOR implements asynchronous evaluation of individual queries and their re-
porting to ANSWER COLLECTOR. It is used by the parallel wait mechanism. The essential
features are

• evaluate and report (a query : separate FUNCTION
[ANY, TUPLE, ?separate ANY])

Evaluates a query and reports its result using notify answer collector .

276 CHAPTER 11. IMPLEMENTATION: ISSUES AND SOLUTIONS

• notify answer collector (an answer collector : separate ANSWER COLLECTOR;
a result : ?separate ANY)

Reports an individual result a result to an answer collector .

11.4.5 POOL MANAGER

Class POOL MANAGER supports the resource pooling mechanism accessible through
call m out of n in class CONCURRENCY. The essential features are

• try to apply feature (a target : separate ANY)
Applies feature to apply to a target if less than m targets have been already used; it
does nothing otherwise.

• feature to apply : ROUTINE [ANY, TUPLE]
Feature to be applied on m targets.

• m: INTEGER
Number of requested resources.

11.4.6 LOCKER

Class LOCKER is used by the resource pooling mechanism call m out of n . One instance of
LOCKER is created for each element of the resource pool. The essential features are

• lock target and report (a target : separate ANY)
Locks a target and reports it to pool manager using report .

report (a pool manager: separate POOL MANAGER;
a target : separate ANY)

Passes locks on a target to a pool manager and asks the latter to apply the requested
feature (through try to apply feature).

• pool manager: separate POOL MANAGER
Manager of the resource pool.

11.4.7 SCOOP-enabled EVENT TYPE

This is a SCOOP-enabled version of EVENT TYPE. The original class, proposed by Arslan et
al. [12], provided synchronous event publication and notification of subscribed objects. The
new version supports fully asynchronous semantics of both operations; see section 10.2.4 for a
detailed discussion and examples. The essential features of EVENT TYPE are

• subscribe (an action : ?separate ROUTINE [ANY, EVENT DATA])
Add an action to the subscription list.

• unsubscribe (an action : ?separate ROUTINE [ANY, EVENT DATA])
Remove an action from the subscription list.

11.4. CONCURRENCY LIBRARY 277

• publish (arguments: EVENT DATA)
Notify all actions in the subscription list.

There is no additional feature to represent the subscription list because each instance of
EVENT TYPE is itself a list; this is achieved by inheriting from LINKED LIST.

Discussion

The main purpose of the library is to provide a repository of useful mechanisms that are not
directly supported by the basic SCOOP model. The library is open: the existing facilities can
be easily extended, e.g. by introducing new parallel operators in the class CONCURRENCY, or
by adding new classes and features to implement advanced mechanisms for real-time program-
ming, as suggested in section 13.2. An exception handling mechanism for SCOOP could also
rely (at least partly) on library classes.

12
Teaching SCOOP

THE practicality of a programming method depends, in the first place, on its simplicity; tool
support is important but even the best tools cannot help if the method is difficult to learn. We
taught SCOOP in two iterations of a graduate course at the ETH Zurich. No structured study
of students’ performance was conducted, but the course participants were asked to provide
feedback on SCOOP and its tools, which allowed an informal assessment of SCOOP’s usability
and ease of learning. This chapter reports shortly on this experience: we discuss topics covered
in the course, final project development, and students’ feedback.

SCOOP was taught as part of the Concurrent Programming II course1, henceforth referred
to as COOP (Concurrent Object-Oriented Programming). The course participants had various
backgrounds in terms of industrial experience and previous use of concurrency mechanisms but
none of them was familiar with SCOOP. There was an important gap between the participants
in terms of DbC and Eiffel experience: the 2005 group had no previous experience whereas the
2006 group had already learnt Eiffel in their first semester of study at the ETH. An introduction
to DbC and Eiffel was necessary for the first group, which reduced the number of lectures and
exercise sessions dedicated to SCOOP. In 2006, on the other hand, we were able to cover most
aspects of the model. Additionally, students were asked for targeted feedback on SCOOP. For
these reasons, the rest of the chapter refers to the second iteration of the course. There were
30 participants in that iteration: 22 students (between the 6th and the 9th semester of their CS
studies) and 8 industry participants.

The teaching material developed for the course — lecture slides, exercise sheets, and exam-
ples — is available online on the course page

http://se.ethz.ch/teaching/ss2006/0268

12.1 Topics

The official name of the course is a bit misleading: it suggests that students are required to
have taken Concurrent Programming I; that course, however, is not a prerequisite. Therefore,
COOP included an introductory part with a historical overview of concurrency including classi-
cal and O-O techniques, from semaphores and monitors to active objects to multithreading with
Java and C]. The main part of the course was dedicated to SCOOP. We taught the basics of
SCOOP, the application of DbC to concurrent systems, and the use of advanced mechanisms:
lock passing, object tests, genericity, and agents. SCOOP was compared with other models:

1course number 251-0268-00

279

280 CHAPTER 12. TEACHING SCOOP

Java multithreading, Ada tasking, and active objects. The accompanying exercises proved es-
sential in letting students get acquainted with the practice of concurrent programming, using
our framework to solve several concurrency problems before tackling a more challenging final
project, and assessing SCOOP with respect to other approaches. The following topics were
covered:

• Foundations of concurrency: parallelism, distribution, tasks, threads, preemption,
scheduling.

• Classical approaches: mutex, semaphore, monitor, conditional critical region.

• Classical approaches: rendezvous, Ada tasking.

• Classical approaches: actors, active objects, inheritance anomaly.

• SCOOP: processors, separate calls, synchronisation.

• SCOOP: traitors, validity rules, type system.

• SCOOP: Design by Contract in a concurrent setting.

• SCOOP: object import, lock passing.

• Advanced SCOOP techniques: towards real-time programming, events.

• Advanced SCOOP techniques: inheritance, polymorphism, once functions.

• Advanced SCOOP techniques: genericity, agents.

12.2 Assessment

Students were assessed based on a final project and a written exam. The project accounted
for 65% of the final mark; the exam represented 35%. We decided to separate the topics: the
exam only included non-SCOOP topics, whereas the final project was entirely SCOOP-based.
It consisted of two parts:

• Implementation of the classical Santa Claus scenario [140]. The main purpose of this
part was to use the basic SCOOP mechanisms to provide a variety of synchronisation pat-
tern present in the example: mutual exclusion, barrier synchronisation, priority schedul-
ing. (We have discussed this example in detail and provided a model solution in section
10.1.4.)

• Implementation of a modified Santa Claus scenario based on active objects (see the
project sheet on the course web page for the exact specification of the problem). The
purpose of this part was to discover the limitations of SCOOP and emulate synchronisa-
tion patterns not supported directly by the basic model. The asynch mechanism, which
enables fully asynchronous calls and enables simple simulation of active objects as out-
lined in section 10.2.1, was not implemented yet; students had to come up with their own
patterns for representing active objects in SCOOP.

12.3. STUDENTS’ FEEDBACK 281

12.3 Students’ feedback

The overall quality of the course and the exercise sessions was assessed on the basis of a stan-
dard ETH questionnaire. The results of that survey (in German) are available on the course
website. Additionally, we asked four questions targeting specifically the SCOOP model and its
tools:

• As a programmer, what is your feeling about SCOOP? Does it allow you to program
efficiently and express what you want to express?

• How would you compare SCOOP with other mechanisms (say Java multithreading with
monitors) in terms of expressivity, usability and “programmer-friendliness”?

• Can you think of additional mechanisms or abstractions that SCOOP should offer?

• What is your opinion on scoop2scoopli? How would you improve the tool?

Overall, students’ answers indicated that SCOOP’s reliance on O-O principles and Design
by Contract facilitated its understanding and practical use. The simplicity of the necessary
language extension was also appreciated, as it directly translated into ease of use. Grasping
the basic concepts was simple but their application proved more difficult. As pointed out by
one of the students, “it takes some time to start thinking the SCOOP way”. This effect was
more common among the industry participants and students with considerable experience in
multithreading; certain reluctance to high-level synchronisation mechanism based on argument
passing and contracts could be observed. Students with little or no concurrent programming
experience found it easier to adopt the technique.

Most problems experienced during the course and the development of the project were re-
lated to the tools. We have to note, however, that the tools were not integrated with EiffelStudio
at that time; scoop2scoopli had to be used from the command line, in a combination with the
final compiler. In practice, students worked with two instances of EiffelStudio: one for editing
the original code, and one for compiling and executing the preprocessed code. This clearly in-
creased the programming burden. Furthermore, the version of scoop2scoopli used in the course
did not support full type checking.

Below are the collected answers (quoted directly; each number corresponds to a different
project team).

1. SCOOP model

• In our opinion an important aspect of SCOOP, in comparison with other mecha-
nism (Java threading, ...) is that it forces programmers to think more in an object-
oriented way. In effect with Java most of the time the concurrent programming style
is more low-level, or it is mostly based on procedure that on objects themselves.
With SCOOP instead one has always to deal with objects that are the very unit of
concurrency. Also debugging is more object-oriented because if something doesn’t
works as expected you have to reason about which object is waiting for which object,
making also debugging more intuitive. Another important aspect is that SCOOP al-
low to use the full power of Object-Oriented programming and Design by Contract.
For example we can use inheritance and polymorphism as we usually do for non-
concurrent applications.

282 CHAPTER 12. TEACHING SCOOP

• The fact that locking only applies to arguments of routines sometimes decreases
the readability of the code since there can be the need of locking an object just to
perform a query or a command on it. So we have to introduce a new routine that
takes as arguments the objects to lock and maybe just executes one line of code (the
call of the command or query on the locked object). This can be gladly accepted if
one wants lock the object but if one wants to make a query on one object for which
one doesn’t need a lock (suppose we want to ask the name of a creature and we
know that this name cannot be changed) it can be a little frustrating to always write
a new routine with the target of the separate call as argument.

• Locking is sometimes needed at different levels: in our example we sometimes
need to lock the rendezvous and sometimes the requests in the rendezvous. Since
SCOOP allows us to lock easily at different levels we can ignore the locking of the
rendezvous when we only wait for a request to be processed, since we can wait on
the request. In this way other rendezvous user can access the rendezvous and submit
or process requests.

Additional mechanisms or abstractions that SCOOP should offer

• One possible improvement of SCOOP could be based on the following observation:
there is no way in which wait conditions can be “broken” and the processor can
execute another routine on the same objects bypassing the block imposed by the
preconditions. In SCOOP a processor could be blocked for a big amount of time
waiting that a condition becomes true. By taking the example of Ada, we could
have a set of open alternatives, try to have them accepted, or eventually have a delay

t statement that, in case of no request in time t , goes on with other tasks. In this
way we avoid letting a processor waiting for a resource (it only checks later if it is
become available) and allow it to do some other work in the meantime.

Tools

• Scoop2scoopli is a really simple tool, however having to open two “different”
projects in order to test the code with the use of scoop is a bit tedious. The simplicity
of creating concurrent programs using scoop which only requires an additional key-
word to Eiffel, namely separate, is very comfortable for the programmer. However
when we look at the interpreted code with all SCOOP calls we see the well hidden
complexity behind it. This results sometimes in difficult debugging, and unclear
error reports.

2. SCOOP model

• Working with SCOOP was an experience, and an enjoyable one. For programmers
used to threads and the classic synchronisation tools: mutexes, semaphores, moni-
tors, condition variables, signals, and so on, the change of paradigm is a challenge.
But after some practical experience, one gets the grasp on separate entities, proces-
sors and lock passing, and from then on, working with SCOOP is a pleasure.

12.3. STUDENTS’ FEEDBACK 283

3. SCOOP model

• A lot of the mechanism, like the locking of separate arguments, is implicit. This
hides a lot of complexity. It is also quite powerful, because it allows locking of mul-
tiple objects “atomically”. In comparison with other mechanisms, it often seems to
necessitate additional separate communication objects, that explicitly model struc-
tures which would have been implicit or passive data structures in other approaches.
At first this can be confusing and frustrating, but it seems to lead to relatively nice
and elegant solutions. In the frequent, simple case that we need to call a single fea-
ture on a separate object, it seems tedious to explicitly have to write a feature that
takes the object as an argument and calls the feature. We assume using agents solves
this issue nicely.

• We have found it quite straightforward to reuse code by implementing a lot of
common functionality in some base classes that we can inherit from to implement
specific behaviour. Even though the mechanisms of SCOOP are quite simple,
programming with it has turned out to be more complex than one might think at the
beginning.

Tools

• Additional mechanisms should be implemented:

– Support for simplified calling of a single feature on a separate object:
call (agent a. f).

– Support for creating separate objects on a specified processor.

4. SCOOP model

• Efficiency of programming
One big advantage of programming in SCOOP, is that the programmer doesn’t need
to remember merely one keyword, separate. A drawback, which gets very annoying
in time, is the external pre-processor and the recompilation to C every now and then.
Especially when tweaking the code, optimizing or debugging it, its a real nuisance
to wait for several minutes until you can test your changes. Another disadvantage is
the Call Rule, which forces the designers to write tons of wrappers, that let the code
quickly explode.

• Expressive power
This is great about SCOOP. The Call Rule in combination with wait conditions
turns synchronization issues into a piece of cake (slightly exaggerated, but you get
the point). So this ruling isn’t all negative. Also a big plus is the possibility not to
only attach the separate keyword to classes but to each instance on its own. This
lets the programmer feel much more powerful, if he knows “what’s running where”.
This hopefully gets even better, when the SCOOP type system is going to be fully
integrated.

• Comparison with Java
As usual, Java lets you just code what you want, without thoroughly thinking about
it. This is clearly forbidden in SCOOP (or Eiffel in general), where you are forced

284 CHAPTER 12. TEACHING SCOOP

by the language to apply certain patterns, e.g. the Call Rule as mentioned before.
This can be a pro or a con, depending on the point of view. In Java, you have to
decide if a class is going to act concurrently or not. In Eiffel, this is solved much
more elegantly by letting the programmer attach the separate keyword to every
single object.

5. SCOOP model

• I did not try all SCOOP features, especially not those being discussed late in the
lecture.

• I’m more experienced with .NET multithreading and know little about signals and
events one has to introduce for concurrency problems. This seems way easier with
SCOOP.

• The integration with O-O seems way more natural than introducing threads and wait
handles.

• Experts in concurrent programming might like though a deeper control when dealing
with the concurrency primitives directly.

Tools

• I missed, or maybe I did not explore enough, an overview of what is implemented
in scoop2scoopli and what is still missing.

• The current implementation with code generation makes it more difficult to [under-
stand] what is going on.

• After all it is very impressive how little one has to care about concurrency; it just
works (after some struggling)!

• Some sort of one-step compile would be convenient, a simple integration of Eiffel-
Studio and the command line.

6. SCOOP model

• The initial learning curve for SCOOP is comparatively steeper.

• The idea of using features as enclosures of critical sections is a bit disturbing and
makes the code somewhat unreadable. Although academically sound in principle, it
is convenient to see something like: lock (santa) {Santa.doSomething}

• Use of separateness in the software should start from design and should not just
be an implementation option. A design that is done with threads in mind would
not necessarily be the optimal template to implement SCOOP. Say for example, the
common Model–View–Controller architectural pattern. Here it is taken for granted
that the View can start off multiple threads of task on the Controller. Sometimes in
the object design, we may need to have multiple threads of action. Say a Database
object with a Query method. It is usual that more than one client, tries to execute
concurrent queries. If this object is made separate, it results in sequential execution.

• It would be good to have a nice debugger and profiler for SCOOP. This is presum-
ably easier to achieve as compared to debugger for multi-threaded code. Debugging
should be based on the original code and not the pre-compiled one.

12.3. STUDENTS’ FEEDBACK 285

• Finally, to be more widely usable SCOOP should progress towards other program-
ming languages like Java or C].

Tools

• The performance of scoop2scoopli seems impressive, considering what it does in
the background.

• It is a pity that it is not integrated in the Eiffel studio compiler invocation.

• In real-life, scoop2scoopli should remain hidden from the user (not just its invoca-
tion, but also the programmer should not be required to deal with its output).

7. SCOOP model

• I like the simple Action-Object-Processor model of SCOOP. But it took me some
work to finish the two tasks including proper cleanup.

• I had big problems to comprehend the consequences that a processor can’t unlock
itself (while it is executing one action). I needed some hours of debugging to find
out the reason, why two active objects can’t communicate with each other without
an intermediate object (PROCESS CONTROLLER in my solution).

• I don’t like that separate objects must be passed as arguments to lock them. This
leads to countless enclosing routines and additional indirections just to lock some
objects. This forced me to design my primitives in three layers.

• An approach that forces me to use three layers to model one idea is quite a low-
level approach. It reminds me of the early days when we had just pointers and no
references and no smart pointers or garbage collectors (depending on the language).

Tools

• A concurrency library based on SCOOP should include primitives like the ones
used here and find a way to generate and/or hide the boiler-plate code needed. The
universal enclosing agent is surely a step in the right direction.

8. SCOOP model

• SCOOP is a high-level abstract concept for concurrency, it is well defined with
several rules, and it needs only one keyword separate to make the whole thing work.
Often, the more compact the rule, the more variants we can achieve. I think the
three properties – mutual exclusion, condition synchronization and wait by necessity
– make SCOOP a powerful tool for most concurrent tasks. Compared with Java
multithreading — which requires low-level synchronization code for monitors like
while (...) wait () ; ... notify () ; — SCOOP integrates the concept of Design
by Contracts and condition synchronization into one, preconditions become wait
conditions, this is done in a very natural and seamless way. On the other hand, like
other mechanisms, SCOOP also suffers from inheritance anomaly problems.

• The main problem is to get used to the concept of SCOOP and to apply the “SCOOP
way” of thinking. SCOOP is rather a new concept and to master it surely requires
more exercises.

286 CHAPTER 12. TEACHING SCOOP

Additional mechanisms or abstractions that SCOOP should offer

• An additional mechanisms that would have been nice to have for this project is the
possibility to suspend an object for at least a certain amount of time. The feature
suspend should take as an argument an INTEGER that specifies the minimum wait
time in milliseconds for example. This feature would be useful for objects that are
waiting for some event to arrive but do not want to block until the event arrives
because they want to do another activity (like sleeping in the case of Santa) if there
is no event ready. This other activity may not take very long so the object doesn’t
want to check for an arriving event immediately. Instead it wants to wait for the rest
of the polling time.

Tools

• Scoop2scoopli is a nice pre-processor tool. It would be better if it could be integrated
into the compiler so that the user does not need to compile the project twice.

9. SCOOP model

• We have mixed feelings. On the one hand, it’s a fairly nice and clean concept fitting
into the object oriented paradigm and thus allows using concurrency very naturally.
On the other hand, simplicity often comes with the cost of flexibility. And this is
what I think happens with SCOOP. For example mutual exclusion can only be done
for the whole method and the programmer has no way to bypass this restriction.
Having a simple standard behaviour is a good thing of course and therefore it might
be a big plus to give the experienced and advanced developers the tools to be more
flexible — even if the price to pay is as high as an additional keyword ;)

Additional mechanisms and abstractions that SCOOP should offer

• With respect to the problems we had because we often forgot to properly wrap the
asynchronous calls, it might be a nice thing to do the wrapping by default. It should
also support agents and tuples. This would have us allowed to come up with a
cleaner and more type safe solution for the active object implementation.

Tools

• It seems to be a really nice tool. For example, the error messages were pretty useful,
event though a warning in case of improperly wrapped calls on separate objects
would have saved us a few hours of debugging. Of course it will be even nicer once
it’s directly integrated in the compiler.

12.4 Discussion

The course turned out to be an invaluable source of suggestions coming from people who are
“fresh” to the approach presented in this dissertation. Several problems pointed out by the
students have already been solved; comments concerning the tools have also been taken into
account.

12.4. DISCUSSION 287

• The agent mechanism now supports fully asynchronous calls. This permits emulation of
rendezvous synchronisation.

• Single separate calls do not require individual wrapping routines; a universal wrapper is
provided.

• The type-checking mechanism ensures correct wrapping of separate calls.

• The integration of scoop2scoopli with EiffelStudio [105] should simplify the development
of SCOOP applications.

In the future iterations of the course, we are planning to avoid overlapping with topics taught
in other concurrency courses, and focus solely on SCOOP. This will permit covering a larger
number of topics, including the practical use of the advanced mechanisms recently introduced
in the model: fully asynchronous calls, parallel wait, resource pools, event-driven programming
(see section 10.2).

We would like to thank Patrick Eugster and Volkan Arslan for their contributions. Patrick
prepared the teaching material — lecture slides and exercise sheets — for the non-SCOOP
topics and taught that part in 2005; some of his material was reused in 2006. Volkan gave a
lecture on event-driven and real-time programming.

13
Critique and conclusions

STARTING from the initial SCOOP 97 design, we have developed a practical framework for
object-oriented concurrency, based on the principles of Design by Contract. A number of steps
have been necessary to achieve this goal:

• Our study of the relationship between object-orientation and concurrency, with a partic-
ular focus on the role of assertions, has shown that Design by Contract is beneficial for
concurrent systems in that it supports specifying all the required conditions — including
synchronisation — for a correct interaction between clients and suppliers. Taking the
viewpoint that programs are concurrent in general, and sequentiality is just a special case
of concurrency, we have proposed a generalised semantics of object-oriented mechanisms
and contracts, applicable in both concurrent and sequential contexts. We have argued that
the traditional sequential semantics is simply a specialised version of the generalised se-
mantics.

• We have enriched Eiffel’s type system to capture concurrency-related properties of objects
and entities: their locality and detachability. Carefully designed type rules (see chapter
6) eliminate potential atomicity violations without restricting the expressiveness of the
model.

• The semantics of feature call and feature application mechanisms have been refined to
support selective locking and lock passing. Both refinements have increased the expres-
siveness of the model; lock passing turns out to be necessary for sound reasoning about
separate feature calls.

• SCOOP has been brought to a full compatibility with advanced object-oriented mecha-
nisms: genericity, polymorphism, dynamic binding, agents, and once features. We have
discussed the impact of these mechanisms on SCOOP and vice-versa, and proposed re-
fined type and semantic rules to accommodate them. The agent mechanism is particularly
beneficial to SCOOP because it permits fully asynchronous calls (see section 9.3.4) which
were not possible in the original model. Furthermore, agents enable the implementation
of other useful mechanisms, e.g. generic enclosing routines (see section 9.3.4), resource
pools, parallel waiting for multiple results, and rendezvous-style synchronisation (see
section 10.2).

• We have explored the feasibility of modular reasoning about concurrent software using
the proposed contract semantics. The Hoare-style rule 8.2.2, which unifies the treat-
ment of synchronous and asynchronous feature calls and enables modular and sequential-
like reasoning, has been introduced. The new rule is stronger than the original rule of

289

290 CHAPTER 13. CRITIQUE AND CONCLUSIONS

SCOOP 97 in that it permits reasoning about preconditions and postconditions involving
separate calls on controlled entities (see section 8.2).

• We have implemented the model as an Eiffel library SCOOPLI (see section 11.2). The
scoop2scoopli compiler, which type-checks SCOOP code and translates it into pure Eif-
fel, has also been implemented. The supporting CONCURRENCY library provides such
advanced facilities as: fully asynchronous calls, asynchronous handling of events, and
parallel wait.

• The SCOOP approach has been taught in two iterations of a graduate course on concurrent
programming at the ETH Zurich. We have devised teaching material for the course:
lecture slides, exercises, and examples. The SCOOPLI library and the supporting tools
have been used in the course.

The theoretical and practical results of our research help simplify the construction of concur-
rent systems by bringing the O-O programming method for such software to a higher level of
abstraction and convenience, and making it easy to understand, learn, and apply. We view the
new semantics of contracts, the enriched type system, the integration with advanced O-O mech-
anisms, and the support for agents and full asynchrony as the most important outcome of this
work.

SCOOP is a promising approach to building high-quality concurrent systems. Unlike most
existing COOLs, it is a full-blown language supporting multiple inheritance, polymorphism,
dynamic binding, and genericity. A number of issues, however, remain unsolved. This chapter
takes a critical look at the proposed framework, discusses its applicability to languages other
than Eiffel, points out its limitations, and gives an overview of future research topics.

13.1 Applicability to other languages

SCOOP has a strong Eiffel flavour. Right at the beginning of this dissertation, however, we
argued that the results of our work could be directly applied to other languages that support
Design by Contract, in particular JML/Java [80] and Spec] [20]. This section takes a look at
this issue from the point of view of a language designer who wants to integrate the proposed
technique with one of these languages. Several language features and their compatibility with
SCOOP are discussed; we point out the necessary restrictions or modifications of the target
languages.

JML/Java and Spec] are good candidates for such an exercise because they satisfy three
essential requirements:

• Object-oriented programming model
Both languages are (almost) purely object-oriented. Computation is based on feature
calls; polymorphism and dynamic binding are supported; the latest versions of the under-
lying languages (Java for JML, C] for Spec]) also include generics.

• Static typing
Strong typing ensures type safety, i.e. the absence of certain kinds of run-time errors, in
a sequential context. This is essential for providing additional safety and fairness guaran-
tees when introducing concurrency.

13.1. APPLICABILITY TO OTHER LANGUAGES 291

• Support for Design by Contract
Both languages permit the use of routine preconditions and postconditions, as well as
class invariants. The syntax and the semantics of annotations differ somewhat from those
of Eiffel but the support for DbC is sufficient to introduce SCOOP.

We also considered SPARK — a subset of Ada equipped with contracts and annotations for data
flow and information flow analysis [18] — as a potential host language; however, the limited
support for O-O techniques, e.g. the absence of genericity and dynamic binding, makes it less
adequate for the purpose. Nevertheless, SPARK remains an interesting target (and a possible
topic of further research) because of its practical applications in mission-critical software.

Type annotations

Additional type annotations required by SCOOP are straightforward to introduce in both target
languages. The distinction between attached and detachable types (called non-nullable and
nullable respectively) is already supported by Spec] and JML. By default, Spec]’s types are
nullable unless decorated with ‘!’; a compiler switch, however, changes this policy so that all
types all non-nullable unless decorated with ‘?’, in line with the SCOOP convention (except that
‘?’ appears after the class type in a declaration). In JML, any entity (other than a local variable)
of a reference type is implicitly declared as non-nullable; it can be explicitly made nullable by
annotating it with the nullable modifier. A declaration is implicitly declared nullable when the
(outermost) class or interface containing the declaration is adorned by the class-level modifier
nullable by default ; implicit nullability may be overridden by decorating a given entity with

the modifier non null .

Processor tags require an extension of Spec]’s and JML’s syntax. In Spec], this could be
avoided by using attributes (not to be confused with Eiffel’s attributes which are referred to as
fields in Spec]) to decorate methods and arguments. However, attributes can be applied to fields,
method arguments and method results, but not to other constructs of interest, e.g. type casts.
Therefore, an extension of the syntax is necessary to provide a full support for SCOOP. A point
of style: since angle brackets are used in JML and C] for specifying actual generic parameters,
SCOOP annotations for processor tags may be a bit confusing in the presence of generically
derived types, e.g.

separate <x.handler> List<string>

To avoid the confusion and increase code readability, square brackets may be used for processor
tags, i.e.

separate [x .handler] List <string>

This problem is less acute in JML because additional type annotations are wrapped in special
comments, thus syntactically distinct from Java code, e.g.

/∗@ separate <x.handler> @∗/ List<string>

Figure 13.1 shows an example routine with SCOOP annotations expressed in Eiffel, Spec]
(with the convention that types not decorated with ‘?’ are non-nullable), and JML.

292 CHAPTER 13. CRITIQUE AND CONCLUSIONS

−− Eiffel
my buffer : separate <px> BOUNDED QUEUE [INTEGER]

store (a buffer : separate BOUNDED QUEUE [INTEGER]; i: INTEGER)
−− Store i in a buffer .

require
not a buffer . is full

do
a buffer . put (i)

ensure
a buffer .count = old a buffer .count + 1

end

// Spec#
public separate [px] BoundedQueue<int> myBuffer;

public store (separate BoundedQueue<int> aBuffer, int i)
requires ! aBuffer . isFull ;
ensures aBuffer .count == old(aBuffer .count)+1;

{
aBuffer . put(i) ;

}

// JML
public /∗@ separate <px> @∗/ BoundedQueue<int> myBuffer;

/∗@ requires ! aBuffer . isFull ;
@ ensures aBuffer .count == \old(aBuffer .count)+1;
@∗/

public store (/∗@ final separate @∗/ BoundedQueue<int> aBuffer, int i) {
aBuffer . put(i) ;

}

Figure 13.1: SCOOP annotations in Spec] and JML/Java

Static features

The refined semantics of feature call and feature application (definitions 6.1.3 and 6.1.4 respec-
tively) can be applied directly, with the exception of static methods and fields supported by
both JML and Spec] (the latter also supports static properties) but prohibited in Eiffel. Static
features belong to the declaring class rather than an instance; as a result, they are shared by all
the instances of the given class. A class object handles all the static features of a given class;
using a static feature requires the access to the corresponding class object. This raises a prob-
lem in a concurrent context: if client objects handled by different processors are calling static
methods or assigning to static fields of the same class simultaneously, the mutual exclusion

13.1. APPLICABILITY TO OTHER LANGUAGES 293

guarantees are broken. To avoid this, one could simply prohibit static calls; however, two less
radical alternatives exist:

• System-wide class objects; implicit locking.
Use a dedicated processor for handling the class object. Mutual exclusion is enforced
through implicit locking of that processor on each access to a static field or call to a
static method. This solution is simple and preserves the original syntax of static calls but,
besides introducing some run-time overhead, the implicit locking increases the danger of
deadlock and is difficult to control and analyse.

• Processor-wide class objects; no locking.
The same class object is shared by all instances of a given class handled by the same pro-
cessor. Since the class object is non-separate from these instances, no additional locking
is necessary to ensure mutual exclusion. The solution preserves the original syntax of
static calls but static fields lose their singleton status. The amount of used memory space
may be higher than in the previous solution: for each class, there may be as many class
objects as processors. The absence of implicit locking, however, means that there is no
run-time overhead.

The latter solution seems more suitable because it avoids implicit locking. It also has a familiar
flavour: once functions of non-separate types are handled in a similar manner (see section 9.4).

Assignment to formal arguments

The synchronisation mechanism of SCOOP relies on the fact that formal arguments are non-
writable. This is true in Eiffel; C] and Java, however, allow for assignments to formal argu-
ments. The following example in JML, if accepted, may introduce traitors.

// JML
public badStore (/∗@ separate @∗/ BoundedQueue<int> aBuffer, int i) {

aBuffer = new /∗@ separate @∗/ BoundedQueue<int>;
aBuffer . put(i) ; // traitor

}

The assignment to aBuffer turns it into a traitor: the formal argument now denotes a fresh buffer
object located on a different processor than the original argument’s handler. The subsequent call
aBuffer . put(i), although valid according to the call validity rule 6.5.3, targets an uncontrolled
entity. To ensure the soundness of the call validity rule, formal arguments must be non-writable.
In JML, this can be achieved by requiring every formal argument to be declared as final ; in
Spec] the type rules must exclude formal arguments as targets of assignments.

Strictly speaking, only formal arguments of reference types need to be considered. Argu-
ments of value types are not a problem because they are always seen as non-separate (see the
explanation below) thus cannot become traitors. Nevertheless, to preserve full compatibility
with SCOOP as defined for Eiffel, we suggest that all formal arguments be non-writable.

Value types

Value types such as int , bool, float , double, char, and string are treated like expanded types,
i.e. they are always passed by copy and viewed as non-separate in any context. Rule 6.10.1

294 CHAPTER 13. CRITIQUE AND CONCLUSIONS

should apply to value types (for example prohibiting the declaration of separate entities of a
value type); type combinators ‘?’ and ‘⊗’ (see figure 6.14) need to be adapted accordingly to
ensure the invariance of value types under combination.

Assignment to attributes

Direct assignment to attributes of another object, of the form x .a = a, is supported in JML
and Spec]. Such assignments complicate static reasoning about object state, in particular the
preservation of invariants; therefore they are prohibited in Eiffel. Nevertheless, the more flexible
techniques for proofs of invariants used in JML (e.g. ownership and visibility methods by
Müller et al. [102]) and Spec] (the Boogie methodology Barnett et al. [19]) allow safe handling
of direct assignments to attributes.

Spec]’s properties mechanism permits the use of the familiar attribute assignment as short-
hand for a call to an appropriate setter feature, e.g.

// Spec#
public r(separate X x) {

x .a = a; // it really means x.setA(a)
x .b = b; // it really means x.setB(b)

}

JML does not provide this facility.

Direct assignments to attributes can be easily supported in SCOOP by viewing them —
for the purpose of type-checking — as calls to implicit setter features which take one formal
argument of the target attribute’s type. Two important conditions must be satisfied to use this
construct safely in a SCOOP-enabled context.

• Assignments to an attribute of x are permitted only if x is controlled. This follows from
the call validity rule 6.5.3.

• The type of the target expression must be evaluated using the combinator ‘⊗’ rather than
‘?’ because it denotes the type of the implicit setter’s formal argument as seen by the
client object, and not the type of the attribute. For example, if the attribute a in class X
has the type (?, •, A), i.e. it is non-separate, then the source of the assignment x .a = a
must conform to (?, x.handler, A) because

(!, x.handler, X)⊗ (?, •, A) = (?, x.handler, A)

A calculation using ‘?’ — thus yielding (?,>, A) — might lead to an unsound assign-
ment, and introduce a traitor.

Casts

The semantics of type casts differs somewhat from that of an object test as defined in section
6.7. Their treatment of detachable and processor tags, however, is identical: casts should take
into account the voidness of the source entity, and the identity of the processor handling the
object represented by that entity. A cast should succeed only if the source object’s handler
conforms to the processor tag of the target type. Expressions of the form e instanceof T in

13.1. APPLICABILITY TO OTHER LANGUAGES 295

JML and e is T in Spec] yield true if the value of e is not void and the corresponding cast
would succeed.

Contracts

The new semantics of contracts, described in chapter 8, can be readily used in JML and Spec].
As a result, preconditions have the wait semantics whereas postconditions, loop assertions,
and checks are evaluated asynchronously if possible; the distinction between controlled and
uncontrolled clauses applies. No additional rules, beyond those introduced in this dissertation,
are necessary.

One mechanism of JML, however, needs a closer inspection. JML permits the specifica-
tion of multiple precondition-postcondition pairs for the same feature, as shown in figure 13.2.
Feature storeIfPositive stores the integer argument i in the buffer if i is positive; the be-

/∗@ requires i>0 && !(aBuffer. isFull) ;
@ ensures aBuffer .count == \old(aBuffer .count) && aBuffer.item == i ;
@ also
@ requires i<=0;
@ ensures true;
@∗/

storeIfPositive (/∗@ final separate @∗/ BoundedQueue<int> aBuffer, int i) {
...

}

Figure 13.2: Multiple precondition-postcondition pairs in JML

haviour of the feature is undefined otherwise. The first requires clause may be uncontrolled
(depending on whether the actual argument corresponding to aBuffer is controlled or not); the
second one is always controlled. If the routine is called in a context where i is positive, then
the second clause i<=0 does not hold; the processor applying storeIfPositive will block wait-
ing for the first clause to become true. Such multiple precondition-postcondition pairs open up
an interesting possibility: routines may specify a range of requirement levels through different
precondition clauses. When a routine is applied, its executing processor waits until one of the
preconditions is satisfied. The strongest satisfiable clause is chosen; if it does not hold, the
next strongest is checked, and so on. This introduces an additional level of routine adaptability:
properties established by a routine can now be adapted to the current state of the accessed re-
source. From the point of view of the proof technique outlined in section 8.2, the obligations on
a client of the routine are weakened: it has to satisfy the disjunction of controlled precondition
clauses coming from different precondition-postcondition pairs. The guarantees given to the
client, however, are also weaker: only the disjunction of the controlled postcondition clauses
from different pairs can be assumed.

It should be noted that Spec] insists on the use of side-effect free expressions in contracts
to avoid any influence of contract checking on the semantics of correct programs. Procedural
abstraction is allowed as long as any function occurring in a contract is pure. A syntactic notion
of purity is overly restrictive, so different notions of behavioural purity are being explored
[21, 106]. In the context of SCOOP, function calls with uncontrolled arguments may cause

296 CHAPTER 13. CRITIQUE AND CONCLUSIONS

waiting thus violate the purity requirement; one could prohibit such calls in assertions occurring
in Spec] programs.

Polymorphism

Redefined methods inherit the original preconditions and postconditions. JML applies the
same policy as Eiffel: preconditions may be kept or weakened; postconditions may be kept
or strengthened. Spec] allows postcondition strengthening but precondition weakening is not
supported. (To avoid weakening preconditions, Spec] only allows multiple inheritance from
interfaces where all the inherited preconditions for a method are the same.)

The redefinition policy for attributes and routine arguments in JML and Spec] simplifies the
treatment of polymorphism and dynamic binding in a concurrent context. Redefined features
and entities preserve their original types. Problems discussed in section 9.1 — invalid precur-
sor calls and inherited preconditions — disappear if detachable and processor tags obey the
invariant redefinition policy; rules for feature redefinition in both host languages need not be
modified.

Genericity

Genericity has been recently introduced in Spec] and Java. The mechanism in supported in
Spec] but it may undergo some modifications, in particular with respect to detachable and at-
tached types [55]. The current subtyping rules for generically derived types in Java allow co-
variance on the type but require identical generic parameters, e.g. D<T> conforms to C<T>
if D conforms to C; but D<U> only conforms to C<T> if D conforms to C, and U and T are
identical. (SCOOP would also allow U � T if both U and T are detachable; see rule 9.2.3.)
Applying the same policy to detachable and processor tags preserves type safety but restricts
the flexibility of the mechanism. We are not aware of any work on genericity for JML that takes
into account detachable and attached types. It seems, however, that refined conformance rules
for generically derived types, in line with the rule 9.2.3 proposed in this dissertation but disal-
lowing class type covariance of formal generic parameters, could relax the above restrictions
while preserving soundness.

Agents

SCOOP owes much of its expressive power to the support for agents. Spec] provides a similar
mechanism for representing features ready to be called: delegates. Delegates are less flexible
than agents: they do not offer the possibility to choose whether an actual argument is provided
at creation or call time; only the target of a delegate may be left open. But the mechanisms is
powerful enough to support fully asynchronous calls (see section 9.3.4) and the derived mech-
anisms described in section 10.2. Recent work by Müller and Ruskiewicz [104] demonstrates
that delegates can provide more static type safety than agents. (Recall that the SCOOP’s agents
are only safe up to the safety offered by the mechanism in sequential Eiffel; see section 9.3.)

JML does not offer any similar mechanism. Full asynchrony can still be achieved there by
implementing manually the pattern used in the feature asynch in class CONCURRENCY (see
figure A.1). Unfortunately, without an agent-like mechanism, it is impossible to implement this

13.1. APPLICABILITY TO OTHER LANGUAGES 297

and the derived mechanisms as reusable components.

Modular invariants

The classical specification and verification method for class invariants used in Eiffel supports
verification of object invariants that depend only on the attributes of the current object and
non-mutable state of other objects (e.g. constants and once functions). Since SCOOP’s call
validity rule 6.5.3 prohibits separate calls in invariants, the approach classical approach remains
unchanged in the presence of concurrency.

But the classical approach has its limitations, e.g. it does not allow layering of objects where
the invariant of an object depends on the mutable state of other objects. Spec] and JML provide
more flexible techniques for the verification of invariants that support object layering. Müller et
al. [102] propose two approaches:

• Static ownership technique
The hierarchical structure enforced by a static ownership model, e.g. the Universe Types
[103] already supported by JML, relaxes the classical restriction on invariants; an invari-
ant can now depend on the mutable state of all the objects owned by the current object
(including that object itself). This technique is a proper generalisation of the classical
approach; in addition to all the cases handled by the classical approach, it permits ex-
pressing invariants of non-trivial layered object structures, e.g. lists, hash tables, trees,
provided these structures are properly encapsulated in an ownership universe.

• Visibility technique
This technique is more permissive in that it allows dependencies between objects located
in the same universe, i.e. the invariant of object o1 may depend on the mutable state of
another object o2 if both objects reside in the same universe (they are peers in the Universe
Types terminology); o1 does not have to own o2. Additionally, recursive dependencies
between objects are permitted.

The Boogie methodology proposed by Barnett et al. [19] and used in Spec] [20] relies on
dynamic ownership. An object’s invariant may depend on the mutable state of all objects it
owns (transitively). Modifications of the object’s state are only possible after performing an
unpack operation. The object’s invariant does not need to hold after that, so that assignments
to attributes are safe. On putting the object in the immutable state — by performing a pack
operation — its invariant must hold, and all the objects it depends on must be in a consistent
state, i.e. packed.

The introduction of SCOOP into JML and Spec] does not impose additional restrictions on
invariants. On the contrary: the support for modular invariant specification enables relaxing
these restrictions. Calls of the form q (x), where x is separate, could be allowed provided that
x is owned by the current object, because the ownership of x allows assuming that no other
clients may change its state between two consecutive evaluations of the invariant. (Recall that
the proof rule 8.2.2 assumes the absence of such call.) Implicit locking and waiting involved
in the evaluation of such invariants may lead to deadlocks but the problem may be solved by
imposing a stricter ownership hierarchy. This topic needs further study but the static ownership
technique seems to be the most appropriate for that purpose.

298 CHAPTER 13. CRITIQUE AND CONCLUSIONS

Run-time overhead

The cost of SCOOP support in JML and Spec] is similar as in Eiffel, i.e. every object needs an
additional field to store a reference to its processor. This is required both for synchronisation
purposes and for run-time type casts. Objects of value types do not need that field because they
are non-separate, i.e. handled by the current processor, in every context.

Discussion

It seems that SCOOP can be integrated with JML/Java and Spec] in a straightforward manner.
The similarity of object models and contract mechanisms to Eiffel’s simplifies the task; syntac-
tic differences are a minor issue. Spec] already has all the necessary facilities to support the
advanced SCOOP mechanisms; JML/Java only lacks agents. Few restrictions on the host lan-
guages are necessary: essentially, assignments to formal arguments must be prohibited, and the
semantics of static fields must change so that they are processor-wide rather than system-wide
singletons.

Beyond illustrating the generality of the concurrency model proposed in this dissertation,
the integration of SCOOP with JML and Spec] may bring more benefits, particularly in terms
of tool support and language operability.

Static verification

A number of tools have been developed for static verification of JML programs. ESC/Java and
ESC/Java2 [47, 40] can detect certain common errors and check simple assertions. JACK [36]
offers similar functionality to ESC/Java; it is used for proving the correctness of Java Applets.
CHASE [39] automatically checks frame conditions. LOOP [141] translates code annotated
with JML specifications to proof obligations which are then submitted to the theorem prover
PVS. LOOP handles more complex specifications and code than the above automatic checkers.

Spec]s static program verifier Boogie constructs a program in its own intermediate language,
BoogiePL [45]. From the BoogiePL program, Boogie infers loop invariants and generates veri-
fication conditions that it passes to an automatic theorem prover. Counterexamples reported by
the theorem prover are translated back into error messages about the source code.

At the moment, these tools are unable to handle asynchrony, although ESC/Java2 has some
support for multithreading. The introduction of SCOOP would require their extension, so that
separateness of types is taken into account, and controlled contract clauses be treated as usual
contracts without separate calls, with uncontrolled ones being ignored. The complexity of such
extensions is difficult to assess; one may expect, however, that it should be simpler than the
treatment of multithreading [128, 69].

Language interoperability

Both Spec] and Eiffel target the .NET platform; this permits mixing these languages in the same
application. The interoperability is not limited to using classes and features implemented in dif-
ferent language; Spec] classes should be able to inherit from Eiffel classes and vice-versa. This

13.2. LIMITATIONS AND FUTURE WORK 299

does not pose any bigger problems in a sequential context. The interesting question, however,
is how to make the SCOOP-based concurrent extensions of both languages work together.

The Elevator.NET application described in section 10.3.1 uses a mix of SCOOP/Eiffel and
C] code; the latter implements the GUI. In that case, however, C] code is not aware of SCOOP;
it does not perform use any separate entities or perform any separate calls. In a way, the effects
of C] code are limited to the boundaries of a single processor.

The real challenge is to make SCOOP-enabled code written in Eiffel and Spec] work seam-
lessly together. Can the differences between the two languages be accommodated in a concur-
rent context?

13.2 Limitations and future work

Although SCOOP is a full-fledged O-O framework supporting several advanced mechanisms
and techniques, it has a number of limitations. This section discusses topics that fall beyond the
scope of this dissertation but are essential for a general approach to concurrency.

Operational semantics

We have discussed the properties of the type system for SCOOP (see section 6.12) but provided
no formal justification of its soundness. A formal study of SCOOP, including the development
of a full operational semantics and a proof of type soundness, would constitute a rich PhD
topic in itself. The formalisation of SCOOP 97 in CSP, proposed by Brooke et al. [34], covers
a small subset of the model; it is insufficient for that purpose. We are currently working on
modelling SCOOP programs with fair transition systems [88]. Ostroff et al. [114] use such a
model for reasoning about properties beyond contracts in SCOOP 97 programs; their approach
may be extended to cover a large subset of SCOOP. For the moment it is unclear how advanced
mechanisms, e.g. agents and genericity, can be supported in that model.

Deadlock-freedom

This dissertation focuses on safety properties; some liveness properties, e.g. loop termination,
have also been considered. The relation between deadlocks and contract violations has been
studied in chapter 8; techniques which reduce the potential for deadlocks have been introduced
in chapter 7. A run-time mechanism for deadlock detection has been devised and implemented
as an extension of the SCOOPLI library by Moser [100]. Nevertheless, our type system allows
for deadlocks; no method for preventing deadlocks or proving their absence has been proposed.
An earlier attempt at solving this issue is described in [108]; however, that technique has been
discarded due to its complexity and lack of modularity.

An extension of the contract mechanism is necessary to permit a specification of resources
that a given feature may use. This work should be kept in synch with the ongoing development
of techniques for effect specifications, e.g. Dynamic Contract Frames by Schoeller and Ostroff
[132]. The main challenge remains the modularity of the anti-deadlock technique.

300 CHAPTER 13. CRITIQUE AND CONCLUSIONS

Exception handling

We have not discussed the interplay between concurrency and the exception mechanism of
Eiffel. Within the context of a single processor, exceptions may be handled like in sequential
Eiffel, i.e. the rescue clause of a routine should clean up the state of the current object (by
establishing its invariant) and retry the execution or propagate the exception up the call chain.
A problem arises at the processor’s boundary: if the exception is not handled before that level,
where and how should it be propagated? If the separate client is still in the context of the routine
that locked the target processor, it can receive the exception and handle it as usual. Due to the
presence of asynchrony, however, a faulty client might have already left the context, so that the
exception cannot be propagated. A number of solutions are possible:

• The object where the exception occurred is marked as “dirty”; any subsequent access to
that object causes the propagation of the pending exception. Other objects located on the
target processor remain available as usual.

• The whole processor is marked as “dirty”; any subsequent accesses to that processor fail,
with the pending exception being propagated to the client which performs the access.

• The processor is only accessible to the guilty client object; all the other objects view the
processor as busy. On next access to the processor, the guilty client gets the pending
exception.

• The processor is only accessible to the objects located on the same processor as the guilty
client; other processors view it as busy. The propagation of the pending exception is like
in the previous solution.

• The pending exception is sent to a global exception handler which grabs the guilty client
as soon as it becomes available, and propagates the exception.

All these approaches have some advantages and disadvantages. The solution where the target
processor is viewed as busy by the non-guilty processors combines best with the rest of the
SCOOP mechanism. An extension of Eiffel’s exception mechanism recently proposed by Ar-
slan and Meyer [11] goes in that direction. An earlier study by Nenning [107] suggested a wait
on rescue semantics to reduce asynchronous exceptions to synchronous ones; that approach,
however, entailed a massive reduction of parallelism hence was not retained.

Real-time programming

Real-time programming with SCOOP is a topic of another PhD project in our group [9]. Our re-
cent article [10] describes the combination of SCOOP and event-driven programming for mod-
elling real-time applications; that approach relies partly on the extension of class EVENT TYPE
described in this dissertation (see sections 10.2.4, 11.4.7, and figure A.10). A number of facili-
ties seem necessary for real-time programming:

• Timeouts
Clients should be able to specify the maximum waiting time for separate resources. Pre-
conditions may include assertions of the form timeout (t) where t is the maximum wait-
ing time expressed in milliseconds. A call to a routine including such a precondition

13.2. LIMITATIONS AND FUTURE WORK 301

clause succeeds if, within the specified deadline, the arguments are available and the
precondition holds; otherwise, the call fails. This mechanism may be extended so that
timeout (0) means “available immediately”. In a way, timeouts are guarantees for the
client, so placing their specifications in preconditions may not be the best choice. All the
ramifications of this mechanism should be analysed, in particular its soundness in the con-
text of inheritance and polymorphism which allow precondition weakening. Alternative
mechanisms for timeouts may be considered.

• Worst-case execution time (WCET)
Clients should be able to assess the worst-case execution time of a feature call. The worst-
case execution time of a call may be calculated from the maximum waiting time (see the
above bullet point) and the execution time of the routine’s body. The latter may be speci-
fied using a postcondition clause of the form wcet (t). Here too, the exact placement of
specifications needs to be justified; postcondition-based specifications seem appropriate
but it is not clear yet how well they combine with the rest of SCOOP. Another open ques-
tion is the specification of worst-case execution times in the presence of recursion and
separate callbacks.

• Priorities
The fair scheduling policy applied in SCOOP and implemented by SCOOPLI is too re-
strictive: it does not permit overtaking a request by another one. In real-time systems,
however, requests with a higher priority should be allowed to overtake those with a lower
priority. To satisfy this requirement, a more flexible policy (or a set of such policies) has
to be implemented. This means sacrificing the fairness of SCOOP but is necessary to
provide practical support for real-time computation.

Prioritisation at the level of CPU time sharing between processors is also important. The
current implementation leaves the management of the CPU time to the operating system’s
scheduler and, besides fairness, makes no further assumptions about its algorithm. In a
real-time context, the application should retain control over low-level scheduling; this
usually requires the use of a custom-made scheduler. Andreas Compeer’s Master thesis
tackles this issue.

• Preemption
The basic SCOOP model does not support preemption, i.e. a client cannot be forced to
relinquish a resource it currently holds. The absence of such a facility would be dangerous
in a real-time application because a single badly-behaved client could break the whole
computation — making other clients miss their deadlines — by keeping a resource for
too long. A new mechanism is needed to enable preemption. SCOOP 97’s duels (see
section 4.2.7 and [94]) provide this facility; but the mechanism is too limited and it does
not combine well with other necessary techniques, in particular timeouts and priorities.

Many of the above mechanisms rely on an appropriate exception handling, discussed in the
previous section.

Requirements for a real-time programming framework differ considerably from those iden-
tified for the general SCOOP model. For example, fair scheduling is usually not required, as
long as all requests meet their deadlines. Similarly, modularity is not a paramount issue in real-
time systems; such systems are usually composed of a fixed number of elements and one can

302 CHAPTER 13. CRITIQUE AND CONCLUSIONS

assume the knowledge about the whole program. By sacrificing modularity, several difficult
issues can be solved: deadlocks are easier to tackle using a type system, reasoning about execu-
tion time also becomes easier. Nevertheless, the integration of additional mechanisms needed in
a real-time context with advanced O-O techniques is a real challenge. SCOOP seems to provide
a good basis for such efforts but the feasibility of real-time programming with SCOOP remains
to be demonstrated.

Distributed programming

One of the goals of SCOOP is to bring distributed programming to a higher level of abstraction
and convenience, for example by hiding the details of physical object distribution. Processor
tags in SCOOP types identify abstract processors handling objects represented by entities. The
physical location of an object’s handler is transparent to the programmer; there is no difference
between calls to processors located on a local machine, another machine in a local network, or
a remote machine accessible via the Internet.

A number of mechanisms for distributed programming have been introduced in this disser-
tation. For example, explicit processor tags make it is possible to create objects on a speci-
fied processor without using a specialised remote factory object (see section 6.6). The opera-
tions import, deep import, flat import , and independent import permit copying remote object
structures and handling them as local ones (see section 6.8). Nevertheless, our implementation
only targets single machines; the practical use of SCOOP in a distributed context remains an
open issue. A successful feasibility study of a distributed implementation was done by Petrovay
[121]; however, it was limited to subset of SCOOP 97 and excluded advanced mechanisms sup-
ported by SCOOP.

Distributed programming in SCOOP is the most important topic of further research. Dis-
tributed computation raises a number of challenging issues. Of particular interest are:

• User-defined mapping of processors to physical resources
Transparent distribution of processors is convenient because it supports portability of
SCOOP programs. In many situations, however, it is important to make full use of the
available resources, e.g. multiple CPUs, clusters of machines, or local networks, by defin-
ing a precise mapping of abstract processors to the physical computation nodes. Custom
mapping of resources is particularly important for heavy computations where load bal-
ancing is essential.

SCOOP 97 proposed the Concurrency Control File (CCF) mechanism for that purpose
(see section 4.2.7). CCF files are separated from the program code; an application is
compiled without any reference to a specific hardware or network architecture. At run
time each component of the application uses a CCF to find the available local and remote
computing resources.

The CCF mechanism permits load balancing but is limited in that programmers have
no direct control over resources; therefore, we have discarded it in SCOOP. The physical
distribution should be specified directly in the program code, e.g. using specialised library
calls. An additional layer of abstraction in the form of a CCF-like file or a naming service
advocated by Petrovay [121] may be used but it should only complement the code-based
control.

13.2. LIMITATIONS AND FUTURE WORK 303

• Distributed scheduling
In our implementation, all locking requests are handled by a centralised scheduler which
applies a fair policy: satisfiable requests are handled in the FIFO order (see section
11.2.4). In a distributed context, centralised scheduling may be very inefficient due to
the communication latency: a client sends a request to the scheduler and waits; the sched-
uler sends a notification to the client when the request has been handled. In between,
when checking the availability of resources, the scheduler performs additional messag-
ing. All these message round-trips, possibly over slow long-distance links, introduce large
overhead; particularly if the client processor and the requested processors run within the
same local area network while the scheduler resides elsewhere. In that situation, a local
scheduler handling accesses to processors within the local network would be much more
efficient. The existence of many local schedulers within one SCOOP system, however,
raises the question of consistency and fairness. How to handle requests for several pro-
cessors located in different networks? How to prevent starvation of requests targeting a
processor located in a different network?

• SCOOP runtime support
Creating a new processor on a remote machine requires the existence of a SCOOP runtime
that can take care of handling the processor, finding the nearest scheduler, etc. A SCOOP
“daemon” could be required on target machines. It is not clear how SCOOP runtimes on
different operating systems can work together

Shared access to resources

SCOOP enforces strict mutual exclusion: only one client processor may access the same target
processor at any time. The lack of intra-object concurrency simplifies the model and formal
reasoning about programs but certain synchronisation patterns, e.g. readers-writers, cannot be
directly implemented in SCOOP.

The locking policy introduced in chapter 7 is derived from our earlier work on locking in
SCOOP [110]. That work includes a basic mechanism for shared locking, based on a refined
notion of a pure query and a new semantics for only clauses appearing in routine postconditions.
Such clauses are used in sequential Eiffel to express the frame properties of features; we extend
them to include processor tags, to permit support specification of purity with respect to a given
processor. A query is pure with respect to a processor only if it does not modify the data
structure handled by this processor. Simultaneous execution of pure queries on targets handled
by the same processor is allowed; deep down, their application is serialised, so the sequential
character of processors is preserved (there is no intra-object concurrency). Calls to features
other than pure queries obey the standard mutual exclusion policy. Shared locks are necessary
to support the proposed extension. A shared lock the application of one or more pure queries on
the locked processor. Execution of non-pure features is prohibited when a shared lock is used.
A client object can obtain a shared lock even if another client object is already holding a shared
lock on the same resource. If a client object holds an exclusive lock on a resource, no other
clients can obtain locks on that resource.

The extension proposed in [110] preserves the safety guarantees offered by SCOOP. But
it does not support polymorphism; furthermore, the proof technique outlined in section 8.2 is
not applicable. Therefore, we have excluded the mechanism from the framework described in

304 CHAPTER 13. CRITIQUE AND CONCLUSIONS

this dissertation. Nevertheless, we are planning to refine the shared locking technique so that
it is fully compatible with other mechanisms supported by SCOOP. We expect the resulting
approach to overlap with the future technique for deadlock prevention (see sections above).

13.3 Final remarks

In no way is the SCOOP framework a panacea for all the problems of concurrent programming.
But we did not aim at it; the goal was to explore the possibilities offered by the well-established
O-O techniques and Design by Contract. A number of important issues have been solved, bring-
ing concurrent programming to a higher level of abstraction and convenience, and challenging
many misconceptions prevailing in the industrial and academic world:

• Development of concurrent software is difficult.
We have argued that the apparent difficulty is due to the insufficient adaptation and use of
well-founded techniques, such as object technology and Design by Contract, and the lack
of supporting tools.

• Concurrency and O-O techniques do not combine well.
SCOOP indicates that there is no clash between concurrency and object technology; in
fact, the full power of object technology can only be unleashed in a concurrent context.
Both concurrency and object orientation are necessary components of a practical software
development method.

• Concurrent systems cannot be built and analysed in a modular fashion.
Our approach makes it possible to construct software elements which can be used as
building bricks for larger systems. DbC enables specifying clear interfaces of software
components; all interaction between the components is based on these interfaces. Ab-
straction and encapsulation shield each component from harmful interference. They also
facilitate modular reasoning about software.

• Existing software, in particular “sequential” libraries, cannot be easily reused in a con-
current context.
We have shown that existing library classes can be used as building blocks for many
concurrent systems, independently of whether they have been written for such use. The
contract-based synchronisation policy of SCOOP reduces the programming burden by
providing the necessary safety and fairness guarantees; programmers can focus on writ-
ing algorithms without guessing all the possible contexts (number of clients, sequential
or concurrent accesses, etc.) in which a given class will be used. As a result, the amount
of reuse achieved in concurrent systems may match that of sequential ones.

It is believed that a PhD thesis should spawn more interesting research problems than it
solves. I hope that my dissertation satisfies this requirement and constitutes a solid basis for
further efforts aiming at a deeper understanding of object-oriented concurrency, to foster ab-
straction, simplicity, and modularity.

My research journey ends here, although many more places are to be visited yet. During
this work I have discovered the beauty of object technology, its strengths and limitations, and
the richness of its applications. But most importantly, I have learnt one essential thing that will
guide my future research efforts: Simplicity Can Often Obviate Problems.

A
CONCURRENCY library

305

306 APPENDIX A. CONCURRENCY LIBRARY

deferred class CONCURRENCY
feature −− Basic operations

call (a feature : separate ROUTINE [ANY, TUPLE])
−− Universal enclosing routine

do
a feature . call ([])

end

asynch (a feature : ?separate ROUTINE [ANY, TUPLE])
−− Execute a feature fully asynchronously .

require
a feature exists : a feature /= Void

local
executor : separate EXECUTOR

do
create executor . execute (a feature)

end

sleep (a time : INTEGER)
−− Suspend activity for a time milliseconds .

require
a time non negative : a time >= 0

do
−− Implementation provided by scoop2scoopli

end

feature −− Waiting faster
evaluated in parallel (a queries : LIST [?separate FUNCTION

[ANY, TUPLE, ?separate ANY]];
an initial answer , a ready answer: ?separate ANY;
an operator : FUNCTION

[ANY, TUPLE, ?separate ANY]): ?separate ANY
−− Parallel evaluation of queries combined by an operator

require
a queries .count > 0

local
answer collector : separate ANSWER COLLECTOR

do
create answer collector .make (a queries , an initial answer ,

a ready answer , an operator)
Result := answer (answer collector)

end
...

Figure A.1: CONCURRENCY

307

...
answer (an answer collector : separate ANSWER COLLECTOR): ?separate ANY

−− Answer from an answer collector
require

an answer collector . is ready
do

Result := an answer collector .answer
end

feature −− Predefined parallel operators
parallel or (l : LIST [?separate PREDICATE [ANY, TUPLE]]): BOOLEAN

do
if {res : BOOLEAN} evaluated in parallel (l , False , True,

agent or else (b1, b2: BOOLEAN): BOOLEAN
do Result := b1 or else b2 end (?, ?))

then Result := res end
end

parallel and (l : LIST [?separate PREDICATE [ANY, TUPLE]]): BOOLEAN
do

if {res : BOOLEAN} evaluated in parallel (l , True, False ,
agent and then (b1, b2: BOOLEAN): BOOLEAN

do Result := b1 and then b2 end (?, ?))
then Result := res end

end

parallel sum (l : LIST [?separate FUNCTION [ANY, TUPLE, INTEGER]]):
INTEGER
do

if {res : INTEGER} evaluated in parallel (l , 0,
{INTEGER}.min value,
agent sum (i , j : INTEGER): INTEGER

do Result := i + j end (?, ?))
then Result := res end

end
...

Figure A.2: CONCURRENCY (continued)

308 APPENDIX A. CONCURRENCY LIBRARY

...
feature −− Resource pooling

call m out of n (a feature : ROUTINE [ANY, TUPLE];
a pool : LIST [?separate ANY]]; m: INTEGER)

−− Apply a feature to m elements of a pool .
require

m > 0 and then a pool .count >= m
local

pool manager: separate POOL MANAGER
locker : separate LOCKER

do
create pool manager.make (a feature , m)
from a pool . start until a pool . after loop

create locker . try to lock (a pool . item , pool manager)
a pool . forth

end
end

end

Figure A.3: CONCURRENCY (continued)

class EXECUTOR inherit CONCURRENCY
create execute , apply to target
feature {NONE} −− Initialization

execute (a feature : ?separate ROUTINE [ANY, TUPLE])
−− Execute a feature .

require
a feature /= Void

do
if {f : separate ROUTINE [ANY, TUPLE]}a feature then

call (f)
end

end

apply to target (a feature : separate ROUTINE [ANY, TUPLE];
a target : ANY)

−− Apply a feature to a target (synchronously) .
do

a feature . import . call ([a target])
end

end

Figure A.4: EXECUTOR

309

class ANSWER COLLECTOR inherit CONCURRENCY
create make
feature {NONE} −− Initialization

make (a queries : separate LIST [?separate FUNCTION
[ANY, TUPLE, ?separate ANY]];

an initial answer , a ready answer: ?separate ANY;
a combinator: separate FUNCTION [ANY, TUPLE, ?separate ANY])
−− Creation procedure.

require
a queries .count > 0

local
evaluator : separate EVALUATOR

do
answer := an initial answer ; ready answer := a ready answer
count := a queries .count
combinator := a combinator.deep import −− Non−separate copy
from a queries . start until a queries . after loop

create evaluator .make (a queries . item , Current)
launch executor (evaluator)
a queries . forth

end
ensure

answer = an initial answer
ready answer = a ready answer
count = a queries .count

end

feature {CONCURRENCY} −− Answer retrieval
answer: ?separate ANY

−− Answer

is ready : BOOLEAN
−− Is answer ready?

...

Figure A.5: ANSWER COLLECTOR

310 APPENDIX A. CONCURRENCY LIBRARY

...
feature {EVALUATOR} −− Answer update

update answer (a result : ?separate ANY)
−− Update answer with a result .

do
count := count − 1
if not is ready then

combinator. call ([answer, a result])
answer := combinator. last result

end
if count = 0 or else equal(answer, ready answer) then

is ready := True
end

ensure
count = 0 implies is ready

end

feature {NONE} −− Implementation
combinator: FUNCTION [ANY, TUPLE, ?separate ANY]

−− Combinator for results

ready answer: ?separate ANY
−− Answer that allows ignoring further results

count : INTEGER
−− Number of partial results to come

end

Figure A.6: ANSWER COLLECTOR (continued)

311

class EVALUATOR inherit EXECUTOR
create evaluate
feature {NONE} −− Initialization

evaluate (a query : ?separate FUNCTION [ANY, TUPLE, ANY];
an answer collector : ?separate ANSWER COLLECTOR)

−− Creation procedure.
require

a query /= Void
an answer collector /= Void

do
if {a: separate ANSWER COLLECTOR}an answer collector then

answer collector := a
end
if {q: separate FUNCTION [ANY, TUPLE, ?separate ANY}a query then

evaluate and report (q)
end

end

feature {NONE} −− Implementation
evaluate and report (a query : separate FUNCTION

[ANY, TUPLE, ?separate ANY])
−− Evaluate a query and report result to answer collector .

do
a query . call ([])
notify answer collector (answer collector , a query . last result)

end

notify answer collector
(an answer collector : separate ANSWER COLLECTOR;

a result : ?separate ANY)
−− Report a result to an answer collector .

do
an answer collector .update answer (a result)

end

answer collector : separate ANSWER COLLECTOR
−− Answer collector

end

Figure A.7: EVALUATOR

312 APPENDIX A. CONCURRENCY LIBRARY

class POOL MANAGER inherit CONCURRENCY
create make
feature {NONE} −− Initialization

make (a feature : separate ROUTINE [ANY, TUPLE]; i: INTEGER)
−− Creation procedure.

require
i > 0

do
feature to apply := a feature . import −− Non−separate copy

m := i
ensure

m = i
count = 0

end

feature {LOCKER} −− Feature application
try to apply feature (a target : separate ANY)

−− Apply feature to apply to a target .
−− Do nothing if already applied the required number of times .

local
envoy: separate <a target .handler> EXECUTOR

−− Non−separate from a target. Needed because open−target
−− agents cannot be applied to separate targets .

do
if count < m then

create envoy . apply to target (feature to apply , a target)
count := count + 1

end
end

feature {NONE} −− Implementation
feature to apply : ROUTINE [ANY, TUPLE]

−− Feature to apply

m: INTEGER
−− Requested number of executions

count : INTEGER
−− Number of executions already performed

invariant
m > 0
count >= 0 and then count <= m

end

Figure A.8: POOL MANAGER

313

class LOCKER inherit EXECUTOR
create try to lock
feature {NONE} −− Initialization

lock target (a target : ?separate ANY;
a pool manager: ?separate POOL MANAGER)

−− Creation procedure.
require

a target /= Void
a pool manager /= Void

do
if {p: separate POOL MANAGER}a pool manager then

pool manager := p
end
if {t : separate ANY}a target then

lock target and report (t)
end

end

feature {NONE} −− Implementation
lock target and report (a target : separate ANY)

−− Lock a target and report to pool manager.
do

report (pool manager, a target)
end

report (a pool manager: separate POOL MANAGER;
a target : separate ANY)
−− Ask a pool manager to apply requested feature to a target .

do
a pool manager. try to apply feature (a target)
−− Lock passing occurs here .

end

pool manager: separate POOL MANAGER
−− Resource pool manager

end

Figure A.9: LOCKER

314 APPENDIX A. CONCURRENCY LIBRARY

−− Notion of event type ; extended to provide SCOOP support
−− Original class by Volkan Arslan; SCOOP extensions by Piotr Nienaltowski

class EVENT TYPE [?EVENT DATA −> separate TUPLE create default create end]
inherit

LINKED LIST [?separate ROUTINE [ANY, EVENT DATA]]
redefine default create end

CONCURRENCY

feature {NONE} −− Initialization
default create

do
make
compare objects

end

feature −− Element change
subscribe (an action : ?separate ROUTINE [ANY, EVENT DATA])

−− Add an action to subscription list .
require

an action not void : an action /= Void
an action not yet subscribed : not has (an action)

do
extend (an action)

ensure
an action subscribed : count = old count + 1 and has (an action)
index at same position : index = old index

end

unsubscribe (an action : ?separate ROUTINE [ANY, EVENT DATA])
−− Remove an action from subscription list .

require
an action not void : an action /= Void
an action subscribed : has (an action)

local
pos: INTEGER

do
pos := index
start
search (an action)
remove
go i th (pos)

ensure
an action unsubscribed : count = old count−1 and not has (an action)
index has not moved : index = old index

end
...

Figure A.10: SCOOP-enabled EVENT TYPE

315

...
feature −− Event publication

publish (arguments: EVENT DATA)
−− Notify all actions from subscription list .

require
arguments not void : arguments /= Void

do
if not is suspended then

from start until after loop
if {action : separate ROUTINE [ANY, EVENT DATA]}item then

asynch (agent action . call (arguments))
−− Full asynchrony; no waiting here

end
forth

end
end

end

feature −− Status report
is suspended : BOOLEAN

−− Is publication of all actions suspended? (Default : no .)

feature −− Status change
suspend subscription

−− Ignore actions in subscription list
−− until restore subscription is called .

do
is suspended := True

ensure
subscription suspended : is suspended

end

restore subscription
−− Consider again actions from subscription list
−− until suspend subscription is called .

do
is suspended := False

ensure
subscription not suspended : not is suspended

end
end

Figure A.11: SCOOP-enabled EVENT TYPE (continued)

B
Glossary

Actual argument
Expression e passed to a feature call f (..., e ,...) or x . f (..., e ,...) .
Java counterpart: actual parameter

Attribute
A query whose result is stored in memory.
Java counterpart: field

Client
A class that uses features of another class (its supplier).

Command
A feature that may change the state of the target but does not return a result.
Commands are implemented as procedures.

Contract
A set of conditions which govern relations between clients and suppliers.

Creation procedure
A procedure that initialises an object, used for object creation.
Java counterpart: constructor

Current
The target of unqualified calls.
Java counterpart: this

Entity
An attribute, a local variable, or a formal argument.

Feature
An operation applicable to instances of a given class.

Formal argument
Entity e in a routine r (...; e : T ;...) .
Java counterpart: formal parameter

317

318 APPENDIX B. GLOSSARY

Function
A routine that returns a result.

Non-separate call
A feature call whose target is a non-separate object.

Non-separate object
An object handled by the same processor as the current object.

Procedure
A routine that does not return a result.

Processor
An autonomous thread of control capable of supporting sequential execution
of instructions on one or more objects.

Qualified call
A feature call of the form x . f or x . f (...) .

Query
A feature that returns a result but should not modify the state of the target.
Queries are implemented as attributes or functions.

Root class
A class whose instance is used as root object.

Root creation procedure
A creation procedure applied to the root object when a software system is executed.
Java counterpart: main method

Root object
The first object created by a software system; an instance of the root class.

Routine
A feature that performs some computation.
Java counterpart: method

Separate call
A feature call whose target is a separate object.

Separate object
An object handled by a different processor than the current object.

Supplier
A class whose features are used by other classes (its clients).

319

Target
The object on which a feature is applied.
Java counterpart: receiver object

Unqualified call
A feature call of the form f or f (...) . It targets the current object.

Bibliography

[1] Erika Abraham, Frank S. de Boer, Martin Steffen, and Willem-Paul de Roever. A Hoare
logic for monitors in Java. Technical Report TR-ST-03-1, Christian-Albrechts-University
Kiel, April 2003.

[2] Cyril Adrian. SCOOP for SmallEiffel. draft, available online at
http://www.chez.com/cadrian/eiffel/scoop.html, June 2002.

[3] Gul Agha. Concurrent object-oriented programming. Communications of the ACM,
33(9):125–141, 1990.

[4] Gul Agha, Peter Wegner, and Akinori Yonezawa, editors. Research directions in con-
current object-oriented programming. MIT Press, Cambridge, Massachussetts, USA,
1993.

[5] Pierre America. Pool-t: A parallel object-oriented language. In Akinori Yonezawa and
Mario Tokoro, editors, Object-Oriented Concurrent Programming, pages 199–220. MIT
Press, 1987.

[6] Pierre America. Designing an object-oriented language with behavioural subtyping.
In Foundations of Object-Oriented Languages, REX School/Workshop, number 498 in
LNCS. J. W. de Bakker, W. P. de Roever, and G. Rozenberg, May-June 1990.

[7] Pierre America. A parallel object-oriented language with inheritance and subtyping.
SIGPLAN Notices, 25(10):161–168, October 1990.

[8] Gregory R. Andrews. Foundations of multithreaded, parallel, and distributed program-
ming. Addison-Wesley, 2000.

[9] Volkan Arslan. Application of SCOOP to real-time systems. PhD proposal, August 2005.
available at http://se.inf.ethz.ch/people/arslan.

[10] Volkan Arslan, Patrick Eugster, and Piotr Nienaltowski. Modelling embedded real-time
applications with objects and events. In IEEE RTAS, San Jose, USA, April 2006.

[11] Volkan Arslan and Bertrand Meyer. Asynchronous exceptions in concurrent object-
oriented programming. In International Symposium on Concurrency, Real-Time, and
Distribution in Eiffel-like Languages (CORDIE), San Jose, USA, April 2006.

[12] Volkan Arslan, Piotr Nienaltowski, and Karine Arnout. Event library: an object-oriented
library for event-driven design. In Joint Modular Languages Conference (JMLC), Kla-
genfurt, Austria, September 2003.

321

322 BIBLIOGRAPHY

[13] Cyrille Artho. Combining static and dynamic analysis to find multi-threading faults
beyond data races. PhD thesis, ETH Zurich, 2005.

[14] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. Formal properties of the Eiffel//
model. In Parallel and Distributed Objects. Hermes Science Publications, 1999.

[15] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A dialect of Java without data races.
In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Minneapolis, USA, October 2000.

[16] Arnaud Bailly. Formal semantics and proof system for SCOOP. White paper, October
2004.

[17] R. Balter, J. Bernadat, D. Decouchant, A Duda, A. Freyssinet, S Krakowiak, M Meysem-
bourg, P. Le Dot, H. Van Nguyen, M. Riveill, C. Roisin, X. Rousset de Pina, R. Scioville,
and G Vandôme. Architecture and implementation of Guide. Computing Systems,
4(1):31–67, 1991.

[18] John Barnes. High integrity software: the SPARK approach to safety and security.
Addison-Wesley, 2003.

[19] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram
Schulte. Verification of object-oriented programs with invariants. Journal of Object
Technology (JOT), 3(6):27–56, 2004.

[20] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec] programming sys-
tem: an overview. In CASSIS, volume 3362 of LNCS. Springer Verlag, 2004.

[21] Mike Barnett, David A. Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure: use-
ful abstractions in specifications. In 6th workshop on Formal Techniques for Java-like
Programs (FTfJP), June 2004.

[22] Mordechai Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice
Hall, 1990.

[23] Mordechai Ben-Ari. How to solve the Santa Claus problem. Concurrency: Practice and
Experience, 10(6):485–496, 1998.

[24] Erwin Betschart. Reimplementation of the elevator control application using EiffelVi-
sion. Semester thesis, ETH Zurich, Departement Informatik, 2005.

[25] Eric Bezault et al. The Gobo Eiffel library. http://www.gobosoft.com.

[26] F. Bodin, P. Beckman, D.Cannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr. Imple-
menting a parallel C++ runtime system for scalable parallel systems. In Proceedings of
the 1993 Supercomputing Conference, 1993.

[27] Emmanuel Bouyer and Gordon James. Eiflex: why we didn’t use SCOOP. In Interna-
tional Symposium on Concurrency, Real-Time, and Distribution in Eiffel-like Languages
(CORDIE), pages 50–55, York, U.K., July 2006.

BIBLIOGRAPHY 323

[28] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-
gramming: preventing data races and deadlocks. In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), Seattle, USA, November 2002.

[29] Chandrasekhar Boyapati and Martin Rinard. A parametrized type system for race-free
Java programs. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), October 2001.

[30] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Löhr. Concurrency and distribution
in object-oriented programming. ACM Computing Surveys, 30(3):291–329, September
1998.

[31] Jean-Pierre Briot and Akinori Yonezawa. Inheritance and synchronization in concurrent
OOP. In European Conference on Object-Oriented Programming (ECOOP), volume 276
of LNCS, pages 33–40, 1987.

[32] Phillip J. Brooke and Richard F. Paige. An alternative model of concurrency for Eiffel.
In CORDIE, pages 141–161, July 2006.

[33] Phillip J. Brooke and Richard F. Paige. A critique of SCOOP. In CORDIE, pages 56–61,
July 2006.

[34] Phillip J. Brooke, Richard F. Paige, and Jeremy L. Jacob. A CSP model of Eiffel’s
SCOOP. submitted for publication, November 2005.

[35] Martin Büchi. Safe Language Mechanisms for Modularization and Concurrency.
PhD thesis, Turku Centre for Computer Science, May 2000. available online at
http://www.abo.fi/˜mbuechi/publications/Thesis.html.

[36] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a developer-oriented
approach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, FME 2003: Formal Methods:
International Symposium of Formal Methods Europe, volume 2805 of Lecture Notes in
Computer Science, pages 422–439. Springer-Verlag, 2003.

[37] Denis Caromel. Service, asynchrony, and wait-by-necessity. Journal of Object-Oriented
Programming, 2(4):12–18, 1989.

[38] Denis Caromel. Towards a method of object-oriented concurrent programming. Com-
munications of the ACM, 36(9):90–102, September 1993.

[39] Néstor Catano and Marieke Huisman. Chase: a static checker for JML’s assignable
clause. In VMCAI 2003: Proceedings of the 4th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation, pages 26–40, London, UK, 2003.
Springer-Verlag.

[40] Patrice Chalin, Joe Kiniry, Gary T. Leavens, and Erik Poll. Beyond assertions: advanced
specification and verification with JML and ESC/Java2. In Formal Methods for Compo-
nents and Objects (FMCO), 2005.

[41] K. Mani Chandy and Jayadev Misra. The drinking philosophers problem. ACM Trans-
actions on Programming Languages and Systems, 6(4):632–646, 1984.

324 BIBLIOGRAPHY

[42] J. Choi, K. Lee, A. Loginov, R. OCallahan, V. Sarkar, and M. Sridharan. Efficient and
precise data race detection for multithreaded object-oriented programs. In Programming
Languages Design and Implementation (PLDI), June 2002.

[43] Michael James Compton. SCOOP: An investigation of concurrency in Eiffel. MSc thesis,
Department of Computer Science, The Australian National University, December 2000.

[44] P. Dasgupta, R. Ananthanarayanan, S. Menon, A. Mohindra, and M. Pearson. Lan-
guage and operating system support for distributed programming in Clouds. In Proceed-
ings of the 2nd Symposium on Experiences with Distributed and Multiprocessor Systems
(SEDMS), March 1991.

[45] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical report, Microsoft Research, 2005.

[46] Alan L. Dennis. .NET Multithreading. Manning, Greenwich, USA, 2003.

[47] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, December 1998.

[48] Werner Dietl, Peter Müller, and Sohia Drossopoulou. Generic Universe Types. In
FOOL/WOODS, 2007.

[49] Werner Dietl, Peter Müller, and Arnd Poetzsch-Heffter. A type system for checking
applet isolation in JavaCard. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean, editors, Construction and Analysis of Safe, Secure and Interoperable Smart
devices (CASSIS), volume 3362 of Lecture Notes in Computer Science, pages 129–150.
Springer-Verlag, 2004.

[50] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informaticae,
1(2):115–138, June 1971.

[51] Edsger W. Dijkstra. Two starvation-free solutions of a general exclusion problem.
EWD625, 1977.

[52] Sophia Drossopoulou and Susan Eisenbach. Describing the semantics of Java an proving
its type soundness. In Jim Alves-Foss, editor, Formal syntax and semantics of Java,
volume LNCS 1523, pages 41–80. Springer-Verlag, 1999.

[53] ECMA. Eiffel analysis, design, and programming language. ECMA Standard 367, June
2005.

[54] ECMA. C] language specification. ECMA Standard 334, fourth edition, June 2006.

[55] Manuel Fändrich. Non-nullable types and genericity in Spec]. private communication,
September 2006.

[56] Cormac Flanagan and Stephen Freund. Type-based race detection for Java. In Program-
ming Language Design and Implementation (PLDI), June 2000.

[57] Cormac Flanagan and Stephen Freund. Atomizer: a dynamic atomicity checker for mul-
tithreaded programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 256–267, 2004.

BIBLIOGRAPHY 325

[58] Cormac Flanagan and Shaz Quadeer. A type and effect system for atomicity. In Pro-
graming Language Design and Implementation (PLDI), pages 338–349, 2003.

[59] Cormac Flanagan and Shaz Quadeer. Types for atomicity. In SIGPLAN International
Workshop on Types in Language Design and Implementation, pages 1–12, 2003.

[60] Nati Fuks, Jonathan S. Ostroff, and Richard Paige. SCOOP to Eiffel code generator.
Journal of Object Technology (JOT), 3(10):143–160, November–December 2004.

[61] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The
Complete Book. Prentice Hall, 2002.

[62] L. Gunaseelan and R.J. LeBlanc. Distributed Eiffel: A language for programming multi-
granular objects. In 4th International Conference on Computer Languages, San Fran-
cisco, USA, 1992.

[63] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
memory transactions. In ACM Conference on Principles and Practice of Parallel Pro-
gramming (PPoPP), Chicago, USA, June 2005.

[64] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for
artificial intelligence. In International Joint Conference on Artificial Intelligence, pages
235–245, 1973.

[65] C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of
the ACM, 17(10):549–557, October 1974.

[66] C.A.R. Hoare. Concurrent programs wait faster. Technical Report, MSR Cambridge,
July 2001. available online at http://research.microsoft.com/ thoare/.

[67] Matthias Humbert. Programming in SCOOP. Diploma thesis, ETH Zurich, Departement
Informatik, 2004.

[68] ISO. Eiffel analysis, design, and programming language. ISO/IEC DIS 25436, June
2006.

[69] Bart Jacobs, Rustan Leino, Frank Piessens, and Wolfram Schulte. Safe concurrency for
aggregate objects with invariants. In Proceedings of SEFM, 2004.

[70] Ghinwa Jalloul. Concurrent object-oriented systems: a disciplined approach. PhD thesis,
University of Technology, Sydney, Australia, June 1994.

[71] Clifford B. Jones. Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University, June 1981.

[72] Clifford B. Jones. Wanted: a compositional approach to concurrency, chapter 1, pages
1–15. Springer-Verlag, 2003.

[73] Eric Jul and Bjarne Steensgaard. Implementation of distributed objects in Emerald. In
Proceedings of the International Workshop on Object Orientation in Operating Systems,
pages 130–132, Palo Alto, CA, USA, October 1991.

326 BIBLIOGRAPHY

[74] D. G. Kafura and K. H. Lee. Inheritance in actor-based concurrent object-oriented lan-
guages. In European Conference on Object-Oriented Programming, July 1989.

[75] D. G. Kafura and K. H. Lee. ACT++: Building a concurrent C++ with Actors. Journal
of Object-Oriented Programming (JOOP), 3(1):25–37, 1990.

[76] Murat Karaorman and John Bruno. Introduction of concurrency to a sequential language.
Communications of the ACM, 37(9):103–116, September 1993.

[77] Erol Koç. Concurrent examples in SCOOP. semester thesis, ETH Zurich, Departement
Informatik, 2004.

[78] Leslie Lamport. Specifying concurrent program modules. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 5(2):190–222, 1983.

[79] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison-
Wesley, second edition, 1999.

[80] Gary T. Leavens, Erik Poll, C. Clifton, Yonsik Cheon, C. Ruby, D. R. Cok, and Joseph
Kiniry. JML reference manual. Iowa State University, Department of Computer Science,
2005.

[81] D. J. Lehmann and O. M. Rabin. On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Principles of Programming
Languages (POPL), pages 133–138, 1981.

[82] Rustan Leino, J. B. Saxe, and Raymie Stata. Checking Java programs via guarded com-
mands. Research Report 002, Compaq Research Systems Center, 1999.

[83] R.J. Lipton. Reduction: a method of proving properties of parallel programs. Communi-
cations of the ACM, 18:717–721, 1975.

[84] Barbara Liskov and Jeannette M. Wing. A behavioural notion of subtyping. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, Novem-
ber 1994.

[85] K.-P. Löhr. Concurrency annotations. ACM SIGPLAN Notices, 27(10):327–340, 1992.

[86] K.-P. Löhr. Concurrency annotations for reusable software. Communications of the ACM,
36(9):81–89, 1993.

[87] Formal Methods Europe Ltd. Failures-divergence refinement: FDR2. available online at
http://www.formal.demon.co.uk, November–December 2004.

[88] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety.
Springer-Verlag, New York, USA, 1995.

[89] Jeremy Manson, William Pugh, and Sarita Adve. The Java memory model. In Principles
of Programming Languages (POPL), volume 40 of SIGPLAN Notices, pages 378–391,
January 2005.

BIBLIOGRAPHY 327

[90] Satoshi Matsuoka and Akinori Yonezawa. Research Directions in Concurrent Object-
Oriented Programming, chapter Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages, pages 107–150. MIT Press, Cambridge (Mass.),
USA, 1993.

[91] Bertrand Meyer. Sequential and concurrent object-oriented programming. In Technology
of Object-Oriented Languages and Systems (TOOLS), pages 17–28, Paris, France, June
1990.

[92] Bertrand Meyer. Eiffel: The Language. Prentice Hall, Englewood Cliffs (NJ), USA,
March 1992.

[93] Bertrand Meyer. Systematic concurrent object-oriented programming. Communications
of the ACM, 36(9):56–80, September 1993.

[94] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,
1997.

[95] Bertrand Meyer. The power of abstraction, reuse and simplicity: an object-oriented
library for event-driven design. In Tom Lyche Olaf Owe, Stein Krogdahl, editor, From
Object-Orientation to Formal Methods: Essays in Memory of Ole-Johan Dahl. Springer
Verlag, 2004.

[96] Bertrand Meyer. Attached types and their application to three open problems of object-
oriented programming. In European Conference on Object-Oriented Programming,
pages 1–32, July 2005.

[97] Giuseppe Milicia and Vladimiro Sassone. The inhritance anomaly: ten years later. In
SAC’04, Nicosia, Cyprus, March 2004.

[98] Jayadev Misra and K. Many Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, 7(4):417–426, 1981.

[99] Richard Mitchell and James McKim. Design by Contract, by example. Addison-Wesley,
2001.

[100] Daniel Moser. Design and implementation of a run-time mechanism for dead-
lock detection in SCOOP. ETH semester project, August 2005. available at
http://se.inf.ethz.ch/projects/daniel moser.

[101] Daniel Moser. Transactions in SCOOP. Master thesis, ETH Zurich, June 2006. available
at http://se.inf.ethz.ch/projects/daniel moser.

[102] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object
structures. volume 62, pages 253–286, 2006.

[103] Peter Müller. Modular Specification and Verification of Object-Oriented Programs.
Springer Verlag, 2002.

[104] Peter Müller and Joseph N. Ruskiewicz. A modular verification methodology for C#
delegates. In Uwe Glässer and Jean-Raymond Abrial, editors, Rigorous Methods for
Software Construction and Analysis, 2007. Submitted.

328 BIBLIOGRAPHY

[105] Yann Walter Müller. Integrated SCOOP tools. MSc thesis, ETH Zurich, Departement
Informatik, February 2007. available at http://se.ethz.ch/research/scoop.

[106] David A. Naumann. Observational purity and encapsulation. In 8th International Con-
ference on Fundamental Approaches to Software Engineering (FASE), volume 3442 of
Lecture Notes in Computer Science, pages 190–204, April 2005.

[107] Christopher Nenning. Exception handling in SCOOP. Diplomarbeit, ETH Zurich, March
2004.

[108] Piotr Nienaltowski. Efficient data race and deadlock prevention in concurrent object-
oriented programs. In OOPSLA’04 Companion, pages 56–57, 2004.

[109] Piotr Nienaltowski. Flexible locking in SCOOP. In International Symposium on Con-
currency, Real-Time, and Distribution in Eiffel-like Languages (CORDIE), pages 71–90,
York, United Kingdom, July 2006.

[110] Piotr Nienaltowski. Refined access control policy for SCOOP. Technical Report 511,
Computer Science Department, ETH Zurich, February 2006.

[111] Piotr Nienaltowski and Volkan Arslan. SCOOPLI: a library for concurrent object-
oriented programming on .NET. In 1st International Workshop on Csharp and .NET
Technologies, Pilsen, Czech Republic, 2003.

[112] Piotr Nienaltowski, Volkan Arslan, and Bertrand Meyer. Concurrent object-oriented pro-
gramming on .NET. IEE Proceedings Software, special issue on ROTOR, 150(8):308–
314, October 2003.

[113] Piotr Nienaltowski and Bertrand Meyer. Contracts for concurrency. In Interna-
tional Symposium on Concurrency, Real-Time, and Distribution in Eiffel-like Languages
(CORDIE), pages 27–49, York, United Kingdom, July 2006.

[114] Jonathan Ostroff, Faraz Ahmadi Torshizi, and Hai Feng Huang. Verifying properties
beyond contracts of SCOOP programs. In International Symposium on Concurrency,
Real-Time, and Distribution in Eiffel-like Languages (CORDIE), pages 4–26, York, UK,
July 2006.

[115] Susan Owicki and David Gries. Verifying properties of parallel programs: An axiomatic
approach. Communications of the ACM, 19(5):279–285, May 1976.

[116] Richard F. Paige and Phillip J. Brooke, editors. Symposium on Concurrency, Real-Time,
and Distribution in Eiffel-like Languages (CORDIE), number YCS 405. University of
York, UK, July 2006.

[117] Michael Papathomas. Concurrency issues in object-oriented programming languages.
In Denis Tsichritzis, editor, Object-Oriented Development, chapter 12, pages 207–245.
University of Geneva, 1989.

[118] Michael Papathomas. Language design rationale and semantic framework for concurrent
object-oriented programming. Phd thesis, University of Geneva, Switzerland, 1992.

BIBLIOGRAPHY 329

[119] Claude Petitpierre. Synchronous C++, a language for interactive applications. IEEE
Computer, 31(9):65–72, 1998.

[120] Claude Petitpierre. Synchronous active objects introduce CSP’s primitive in Java. In
CAP, Reading, UK, September 2002.

[121] Gabriel Petrovay. Distributed SCOOP. Master’s thesis, University of Cluj-Napoca, Ro-
mania, September 2005.

[122] Michael Philippsen. Imperative concurrent object-oriented lanuages: an annotated
bibliography. Technical Report TR-95-049, International Computer Science Institute,
UCBerkeley, August 1995.

[123] Michael Philippsen. A survey of concurrent object-oriented languages. Concurrency:
Practice and Experience, 12:917–980, 2000.

[124] Alex Potanin, James Noble, Dave Clarke, and Rober Biddle. Generic Ownership for
Generic Java. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Portland, Oregon, USA, October 2006.

[125] William Pugh. Fixing the Java memory model. In Java Grande Conference, pages 89–98,
New York, USA, 1999.

[126] Ganesh Ramanathan. Application of SCOOP to control systems. Project report, ETH
Zurich, 2007. in preparation.

[127] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: An extensible and highly-modular
model checking framework. In Proceedings of the Fourth Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2003.

[128] Edwin Rodriguez, Matthew Dwyer, Cormac Flanagan, John Hatcliff, Gary T. Leavens,
and Robby. Extending JML for modular specification and verification of multi-threaded
programs. In European Conference on Object-Oriented Programming (ECOOP), pages
551–576, July 2005.

[129] Bill Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[130] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
data race detector for multi-threaded programs. In the Symposium on Operating Systems
Principles (SOSP), October 1997.

[131] N. R. Scaife. A survey of concurrent object-oriented programming languages. Technical
Report RM/96/4, Dept. of Computing and Electrical Engineering, Heriot-Watt Univer-
sity, Edinburgh, February 1996.

[132] Bernd Schoeller and Jonathan Ostroff. Dynamic Contract Frames. Formal Aspects of
Computer Science, 2007. submitted.

[133] N. Sterling. Warlock: A static data race analysis tool. In USENIX Winter Technical
Conference, January 1993.

330 BIBLIOGRAPHY

[134] Sun Microsystems. Java Remote Method Invocation (Java RMI). available from
http://java.sun.com/products/jdk/rmi/.

[135] Herb Sutter and James Larus. Software and the concurrency revolution. ACM Queue,
3(7), September 2005.

[136] Stanley M. Sutton. Preconditions, postconditions, and provisional execution in software
processes. Technical Report UM-CS-1995-077, University of Massachusetts, Amherst,
MA, USA, 1995.

[137] S. Tucker Taft, Robert A. Duff, Randall L. Bruckardt, and Erhard Ploederer. Consoli-
dated Ada reference manual. LNCS 2219, Springer-Verlag, Berlin, 2000.

[138] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. ABCL/f: a future-based poly-
morphic typed concurrent object-oriented language — its design and implementation.
In G. Blelloch, M. Chandy, and S. Jagannathan, editors, Proceedings of the DIMACS
workshop on Specification of Parallel Algorithms, 1994.

[139] Chris Tomlinson and Vineet Singh. Inheritance and synchronization with enabled-sets.
In Object-Oriented Programming, Languages and Systems (OOPSLA), volume 24 of
103–112, October 1989.

[140] John A. Trono. A new exercise in concurrency. SIGCSE Bull., 26(3):8–10, 1994.

[141] Jaco van den Berg and Bart Jacobs. The LOOP compiler for Java and JML. In T. Margaria
and W. Yi, editors, Tools and Algorithms for the Construction and Analysis of Software
(TACAS), number 2031 in Lecture Notes in Computer Science, pages 299–312, 2001.

[142] Sebastien Vaucouleur and Patrick Eugster. Atomic features. In Synchronization and
Concurrency in Object-Oriented Languages (SCOOL), San Diego, CA, USA, October
2005.

[143] Christoph von Praun. Detecting Synchronization Defects in Multi-Threaded Object-
Oriented Programs. PhD dissertation, ETH Zurich, July 2004.

[144] Christoph von Praun and Thomas Gross. Object-race detection. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Tampa Bay, USA, Oc-
tober 2001.

[145] Kim Waldén and Jean-Marc Nerson. Seamless Object-Oriented Software Architecture.
Prentice-Hall, 1995.

[146] Barbara Wyatt, Krishna Kavi, and Steve Hufnagel. Parallelism in object-oriented lan-
guages: a survey. IEEE Computer, 11(6):56–66, 1992.

[147] Yasuhiko Yokote and Mario Tokoro. The design and implementation of concurrent
Smalltalk. In ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 331–340, 1986.

[148] Akinori Yonezawa. ABCL, an Object-Oriented Concurrent System: Theory, Language,
Programming, Implementation, and Application. MIT Press, 1990.

List of Figures

2.1 Selective locking based on attached types . 18

4.1 Non-separate objects . 43

4.2 Separate objects . 43

4.3 Concurrent system composed of several processors 44

4.4 Mutual exclusion . 45

4.5 Preconditions vs. wait conditions . 46

4.6 Wait by necessity . 47

4.7 Application of rule SC1 . 48

4.8 Application of rule SC2 . 49

4.9 Application of rule SC3 . 50

4.10 Application of rule SC4 . 51

5.1 Problems with the semantics of separate . 62

5.2 Separate Current paradox . 63

5.3 Limitations of the separate call rule . 64

5.4 Limitations of rules SC2 and SC3 . 66

5.5 Problems with postconditions . 68

5.6 Synchronous check instruction . 69

5.7 Infeasible proofs . 70

5.8 Feature locking all its arguments . 71

5.9 Deadlock caused by cross-client locking . 72

5.10 Deadlock caused by a separate callback . 73

5.11 Quasi-asynchrony in SCOOP 97 . 74

5.12 Quasi-asynchronous logging and mailing . 75

5.13 Problems with covariant attribute redefinition 76

5.14 Problems with routine redefinition . 77

5.15 Burdensome enclosing routines . 79

5.16 Problems with sequential-to-concurrent reuse 80

331

332 LIST OF FIGURES

5.17 Problems with concurrent-to-sequential reuse 81

6.1 Conformance of processor tags . 93

6.2 Subtyping rules . 93

6.3 Relative separateness of objects . 96

6.4 Type combinators . 96

6.5 Multi-dot separate expressions . 99

6.6 Limitations of the separate call rule in SCOOP 97 100

6.7 Application of the refined call validity rule . 102

6.8 Object creation . 103

6.9 Object test . 105

6.10 False traitor . 106

6.11 Handling false traitors . 107

6.12 Importing an object structure . 108

6.13 Use of expanded types . 110

6.14 Refined type combinators . 111

6.15 SCOOPC programs . 113

6.16 SCOOPC environments . 114

6.17 Class conformance . 115

6.18 Well-formedness of types . 116

6.19 Auxiliary functions . 117

6.20 Subtyping . 117

6.21 Well-formed environments . 118

6.22 Types for expressions . 122

6.23 Types for statements . 123

6.24 Well-formedness of routines, classes, and programs 124

6.25 Client–buffer program . 125

6.26 Client–buffer program (cont.) . 126

6.27 Typing environment Γp . 127

7.1 Greedy locking . 146

7.2 Selective locking . 147

7.3 Problem with Precursor calls . 149

7.4 Correct use of Precursor . 150

7.5 Deadlock caused by cross-client locking . 152

7.6 Deadlock caused by a callback . 153

7.7 Cross-client locking without deadlock . 154

7.8 Callback without deadlock . 155

LIST OF FIGURES 333

7.9 Lock passing example . 157

7.10 Lock passing combinations . 158

7.11 Emulating SCOOP 97 semantics . 159

7.12 Problems with transitive locking . 161

8.1 Preconditions . 165

8.2 Controlled clauses . 166

8.3 Separate postconditions . 169

8.4 Loop assertions . 171

8.5 Proving asynchronous calls . 174

8.6 Limitations of the proof technique . 175

8.7 Importance of lock passing . 177

9.1 Redefinition of result types . 185

9.2 Redefinition of argument types . 186

9.3 Redefinition of contracts . 188

9.4 Problematic Precursor calls . 189

9.5 Use of deferred classes . 190

9.6 Incorrect use of unconstrained generic parameter 191

9.7 Constrained genericity . 192

9.8 LIST [separate BOOK] . 193

9.9 separate LIST [BOOK] . 194

9.10 Constrained genericity and inheritance . 197

9.11 Self-initialising formal generic parameters under inheritance 198

9.12 Problems with the covariant conformance rule for generic types 199

9.13 Conformance of detachable and attached actual generic parameters 200

9.14 Agent as potential traitor . 204

9.15 Problematic agent . 205

9.16 Separate agent . 207

9.17 Agent mobility . 209

9.18 Burdensome enclosing routines . 214

9.19 Universal enclosing routine . 214

9.20 Partial asynchrony . 216

9.21 Full asynchrony with agents . 216

9.22 Asynchronous executor . 217

9.23 Once functions . 218

10.1 Dining philosopher . 222

334 LIST OF FIGURES

10.2 General philosopher . 222

10.3 Process . 223

10.4 Producer . 224

10.5 Consumer . 225

10.6 Parallelised binary search tree . 227

10.7 Implementation of has . 228

10.8 Santa’s helper . 230

10.9 Elf . 231

10.10Reindeer . 231

10.11Priority scheduling . 233

10.12Clients-servers scenario . 234

10.13Active objects in SCOOP . 235

10.14Parallel evaluation of boolean queries . 237

10.15Parallel or . 238

10.16User-defined parallel operator . 239

10.17Using resource pool . 240

10.18Locking and calling 1 out of n resources . 241

10.19Event-driven programming with original Event library 242

10.20Event-driven programming with SCOOP-enabled Event library 243

10.21Elevator: class diagram . 244

10.22Elevator: interaction between objects . 245

10.23Physical model of a double-shaft elevator . 246

10.24SCOOPbot arm robot . 248

10.25Software representation of SCOOPbot’s components 248

10.26Sequential-to-concurrent reuse . 251

10.27Basic buffer . 253

10.28Buffer’s client . 253

10.29BUFFER2 . 254

10.30Functions used in preconditions . 255

10.31Implementation of get two without inheritance 255

10.32Lockable buffer . 256

10.33Buffer with history variables . 257

11.1 SCOOPLI library: basic classes . 263

11.2 Example class hierarchy generated by scoop2scoopli 268

13.1 SCOOP annotations in Spec] and JML/Java 292

13.2 Multiple precondition-postcondition pairs in JML 295

LIST OF FIGURES 335

A.1 CONCURRENCY . 306

A.2 CONCURRENCY (continued) . 307

A.3 CONCURRENCY (continued) . 308

A.4 EXECUTOR . 308

A.5 ANSWER COLLECTOR . 309

A.6 ANSWER COLLECTOR (continued) . 310

A.7 EVALUATOR . 311

A.8 POOL MANAGER . 312

A.9 LOCKER . 313

A.10 SCOOP-enabled EVENT TYPE . 314

A.11 SCOOP-enabled EVENT TYPE (continued) 315

Curriculum Vitae

Piotr Nienaltowski

30 June 1976 Born in Bialystok, Poland

1983 – 1991 Primary school, Czarna Bialostocka, Poland

1991 – 1995 Technical secondary school, Bialystok, Poland

1995 Matura (A-levels) cum laude, Diploma in Automatics and Micromechanics

1995 – 1999 Computer Science studies, Bialystok University of Technology, Poland

1999 – 2000 Computer Science studies, Université Joseph Fourier/INPG Grenoble, France

2000 DEA (MSc) Informatique et Communications, UJF/INPG

2000 – 2002 Research and Teaching Assistant
Laboratoire de Téléinformatique, EPFL Lausanne, Switzerland

2002 – 2007 Research and Teaching Assistant
Chair of Software Engineering, ETH Zurich, Switzerland

337

