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Abstract We define a novel static analysis for Java bytecode, called definite expression
aliasing. It infers, for each variable v at each program point p, a set of expressions whose
value at p is equal to the value of v at p, for every possible execution of the program. Namely,
it determines which expressions must be aliased to local variables and stack elements of the
Java Virtual Machine. This must aliasing or must equality is a useful piece of information for
an inter-procedural static analyzer, such as Julia, since it can be used to refine other analyses
at conditional statements or assignments. We formalize and implement a constraint-based
analysis, based on and proved correct in the abstract interpretation framework. Moreover, we
show the benefits of our definite expression aliasing analysis for nullness and termination
analyses with Julia.

Keywords Definite aliasing expressions · Must aliasing · Static analysis · Abstract
interpretation · Java bytecode

1 Introduction

Static analyses infer properties of computer programs and prove the absence of some classes
of bugs inside those programs. Modern programming languages are, however, very complex.
Static analysis must cope with that complexity and remain precise enough to be of practical
interest. This is particularly true for low-level languages such as Java bytecode [23], whose
instructions operate on stack and local variables, which are typically aliased to expressions.
Consider, for instance, the method onOptionsItemSelected in Fig. 1, taken from the
Google’s HoneycombGallery Android application. The statement if (mCamera!=null)
at line 4 is compiled into the following bytecode instructions:

aload_0
getfield mCamera:Landroid/hardware/Camera;
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Chair of Software Engineering, ETH Zurich
E-mail: durica.nikolic@inf.ethz.ch

F. Spoto
Dipartimento di Informatica, University of Verona
E-mail: fausto.spoto@univr.it



2

1 public boolean onOptionsItemSelected (MenuItem item ) {
2 switch ( item . getItemId ( ) ) {
3 case R. id . menu switch cam :
4 i f (mCamera != null ) {
5 mCamera . stopPreview ( ) ;
6 mPreview . setCamera ( null ) ;
7 mCamera . r e l e a s e ( ) ;
8 mCamera = null ;
9 }

10 mCurrentCamera = (mCameraCurrentlyLocked+1)%mNumberOfCameras ;
11 mCamera = Camera . open (mCurrentCamera ) ;
12 mCameraCurrentlyLocked = mCurrentCamera ;
13 mCamera . s ta r tPrev i ew ( ) ;
14 return true ;
15 case . . . .
16 . . . .
17 }

Fig. 1 A method of the CameraFragment class by Google

ifnull [go to the else branch]
[then branch]

Bytecode ifnull checks whether the topmost variable of the stack, top, is null and passes
control to the opportune branch. A static analysis that infers non-null variables can, there-
fore, conclude that top is non-null at the [then branch]. But this information is irrele-
vant: top gets consumed by the ifnull and disappears from the stack. It is, instead, much
more important to know that top was a definite alias of the field mCamera of local 0, i.e.,
of this.mCamera, because of the previous two bytecodes (local 0 stands for this). That
observation is important at the subsequent call to mCamera.stopPreview() at line 5, since
it allows us to conclude that this.mCamera is still non-null there: line 5 is part of the
then branch starting at line 4 and we proved that top (definitely aliased to this.mCamera)
is non-null at that point. Note that here the source of complexity is not the presence of the
operand stack: it is rather the fact the field of a variable (local variable or stack element, this
is irrelevant) is first checked for non-nullness and then used for subsequent computations.
A code transformation into three-address code or similar would not change anything in this
case.

As another example of the importance of definite aliasing for static analysis, suppose
that we statically determined that the value returned by the method open and written in
this.mCamera at line 11 is non-null. The compilation of that assignment is:
aload_0
aload_0
getfield mCurrentCamera:I
invokestatic android/hardware/Camera.open:(I)Landroid/hardware/Camera;
putfield mCamera:Landroid/hardware/Camera;

and the putfield bytecode writes the top of the stack (open’s returned value) into the field
mCamera of the underlying stack element s . Hence s .mCamera becomes non-null, but this
information is irrelevant, since s disappears from the stack after the putfield is executed.
The actual useful piece of information at this point is that s was a definite alias of expression
this (local variable 0) at the putfield, which is guaranteed by the first aload_0 bytecode.
Hence, this.mCamera becomes non-null there, which is much more interesting for the
analysis of the subsequent statements.

The previous examples show the importance of definite expression aliasing analysis for
nullness analysis. However, the former is useful for other analyses as well. For instance,
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consider the termination analysis of a loop whose upper bound is the return value of a
function call:

for (i = 0; i < max(a, b); i++)
body

In order to prove its termination, a static analyzer needs to prove that the upper bound
max(a, b) remains constant during the loop. However, in Java bytecode, that upper bound
is just a stack element and the static analyzer must rather know that the latter is a definite
alias of the return value of the call max(a, b).

These examples show that it is important to know which expressions are definitely
aliased to stack and local variables of the Java Virtual Machine (JVM) at a given program
point. In this article, we introduce a static analysis called definite expression aliasing anal-
ysis, which provides, for each program point p and each variable v , a set of expressions E

such that the values of E and v at point p coincide, for every possible execution path. We
call these expressions definite expression aliasing information. In general, we want to deal
with relatively complex expressions (e.g., a field of a field of a variable, the return value of a
method call, possibly non-pure, and so on), dealing with values in the heap memory, hence
shared or affected by methods side-effects and field updates. We show, experimentally, that
our aliasing analysis supports nullness and termination analyses of our tool Julia, but this
paper is only concerned with the expression aliasing analysis itself. Moreover, we prove our
analysis sound.

We analyze Java bytecode directly, without relying on any intermediate representation.
This avoids the definition of the translation from Java bytecode (with all its intricacies) into
the intermediate language and the proof of correctness for this translation. When a warning
is issued by the analyzer, it can be immediately reported to the user in terms of the original
code. Moreover, the theoretical analysis matches its implementation, that is the Julia ana-
lyzer for Java bytecode. That analyzer is the result of more than ten years of development
and we want to provide new analyses for it instead of developing analyses for a different
framework. It is true however that an intermediate representation, in terms for instance of
three-address code, would remove the stack variables and simplify the formalization. How-
ever, the complexity that we faced for this analysis and is reflected in our proofs of cor-
rectness and in the implementation is related to the fact that we define a static analysis for
properties dealing with the heap memory and hence with all kinds of side-effects. An inter-
mediate representation that makes stack variables disappear would not change anything at
that.

We opt for a semantical analysis rather than simple syntactical checks. For instance,
in Fig. 1, the result of the analysis must not change if we introduce a temporary variable
temp = this.mCamera and then check whether temp != null: it is still the value of
this.mCamera that is compared to null there. Moreover, since we analyze Java bytecode,
a semantical approach is important in order to be independent from the specific compila-
tion style of high-level expressions and be able to analyze obfuscated code (for instance,
malware) or code not decompilable into Java (for instance, not organized into scopes).

1.1 Overview of our Static Analysis

In the following sections, we give a detailed description of our analysis. Here, we only
provide a short overview of how the analysis works, in order to give a preliminary global
picture of the technique.
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Our analysis starts by the translation of the Java bytecode from its compiled form, usu-
ally contained in a set of jar files, into a graph of basic blocks, where each method or con-
structor gives rise to a subgraph. This is the control-flow graph of the program, from which
an abstract graph is built. Nodes of the latter do not contain any bytecode instruction, but on
the other hand, its arcs are decorated with propagation rules, expressing how the aliasing
information at a program point flows into the aliasing information at each subsequent pro-
gram point, on the basis of the bytecode instructions that occurred in the control-flow graph.
These propagation rules have been derived and proved correct through abstract interpreta-
tion [12]. Hence, the aliasing information is propagated, by applying the propagation rules,
until a fixpoint is reached. Since we want a definite analysis, the information at a program
point is the intersection of the information that reaches that point along all possible incom-
ing arcs. When the fixpoint is reached, the approximation at each program point is the result
of the static analysis.

The generation of the control-flow graph is done through the traditional construction of
the graph of basic blocks [3] adapted to Java bytecode, so we do not explain it in detail.
On the other hand, the heart of our technique is the definition of the propagation rules,
in particular of those dealing with bytecode instructions that might have side-effects on
the heap, namely, field update and method calls. The fixpoint of the abstract graph can be
computed with any technique. We use an iterative propagation algorithm.

1.2 Related Work

Alias analysis belongs to the large group of pointer analyses [19], and its task is to deter-
mine whether a memory location can be accessed in more than one way. There exist two
types of alias analyses: possible (may) and definite (must). The former detects those pairs
of variables that might point to the same memory location. There are very few tools per-
forming this analysis on Java programs (e.g., WALA [2], soot [1], JAAT [30]). The later
under-approximates the actual aliasing information and, to the best of our knowledge, the
analysis introduced in this article is the first of this type dealing with Java bytecode pro-
grams and providing expressions aliased to variables. Similarly to our approach, the authors
of [15] deal with definite aliasing, but their must-aliasing information is used for other goals
and they do not deal with aliasing expressions.

The idea of abstract interpretation-based static analysis is not new, and since the pa-
per introducing that technique [12] a lot of static analyses for both numerical and heap-
related properties as well as a lot of static analysis tools based on abstract interpretation
have been presented. Constraint-based approaches have been widely used for different types
of program analyses. For instance, Gulwani et al. [18] introduce a constraint-based approach
for discovering invariants involving linear inequalities, and generate weakest preconditions
and strongest postconditions over the abstraction of linear arithmetic. Their constraints are
Boolean combinations of quadratic inequalities over integer variables, and therefore their
approach (although constraint-based) and goals are completely different from ours. Some
other constraint-based techniques, successfully applied to the problem of discovering linear
arithmetic invariants or inductive loop invariants for the verification of assertions, are for
example [11,36,10].

Another very frequent application of constraints is for the problem of type inference [31,
5,9,42]. Usually, these techniques assume programs completely untyped, and then extract
the constraints from the program text, represent them in the form of a directed graph, which
is then solved by different algorithms similar to transitive closure. The abstract constraint
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graphs introduced in this article are similar to the trace graphs introduced by Palsberg and
Schwartzbach in [31].

Nielson et al. [27, Chapter 3] presents a technique for constraint-based analysis of a sim-
ple functional language. Namely, the authors define a control flow analysis by developing
a syntax directed specification of the problem followed by its constraint-based formulation
and finally they show how these constraints can be solved. An overview of constraint-based
program analyses is provided by Aiken in [4]. He underlines that this kind of analyses can
be divided in two phases: constraint generation and constraint resolution. The former ex-
tracts from the program text a set of constraints related to the relevant information, while
the latter solves these constraints. The author introduces set constraints, a widely used type
of constraints, and shows how some classical problems such as standard dataflow equations,
simple type inference and monomorphic closure analysis can be represented as particular
instances of set constraint problems. Nevertheless, he does not consider any particular pro-
gramming language. Moreover, the main goal of [4] is to propose different ways of solving
the constraints. This article follows a similar direction, since the process of designing novel
static analyses is divided in two phases : construction of the abstract constraint graph and
its solution. For Java and Java bytecode, a similar approach has been used in [39,29]. How-
ever, the abstract domains and the propagation rules used there are completely different from
those introduced in this paper.

A static analysis that over-approximates the set of fields that might be null at some
point has been introduced in [38]. However, more complex expressions than just fields are
not considered there. Our analysis is also related to the well-known available expression
analysis [3] where, however, only variables of primitive type are considered. Hence, it is
much easier to deal with side-effects there. Fields can be sometimes transformed into local
variables before a static analysis is performed [6], but this requires a preliminary modifica-
tion of the code and we want to deal with more general expressions than just fields.

The analysis introduced in this paper can also be related to the well-known technique
of global value numbering [8,34,20,35,16,17], which is a classic analysis for finding must-
equalities in programs, heavily used by compilers for many optimizations. It determines
equivalent computations inside a program and then eliminates repetitions. Checking equiv-
alence of program expressions is an undecidable problem, and the tools dealing with this
problem just try to under-approximate the actual sets of equivalent expressions by consid-
ering equivalent operands connected by equal operations. This form of equivalence, where
the operators are treated as uninterpreted functions, is also called Herbrand equivalence [35,
25,26], and global value numbering helps discovering it. There exist two main approaches
in global value numbering. The first one discovers all possible Herbrand equivalences [20,
17], while the second one discovers only those Herbrand equivalences created from program
sub-expressions [8]. We infer, for each program point p, and each variable v available at p a
set of expressions among all possible expressions available at p whose value be equal to v ,
for any possible program execution. This is similar to the first approach mentioned above.
On the other hand, our technique is applied to a complex programming language, Java byte-
code, and is an inter-procedural static analysis, while the papers mentioned above deal with
an imperative while language and are intra-procedural. Bytecode instructions of our target
language might have side-effects on the heap, which affect the must-equalities and must be
taken into account for correctness. This is not the case in the articles mentioned above.

Our analysis can be applied to support code motion techniques that exploit the avail-
ability of must-equality information. In particular, partial redundancy elimination [24,21]
moves instructions in order to perform optimizations, such as for instance strength reduc-
tion of loops. Those analyses have been defined for integer variables only, so the complexity
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of side-effects on the heap is not considered. Exceptional flows are not considered either.
Our definite aliasing analysis can provide the must-equalities that might support code mo-
tion also in the case of expressions that reference objects in the heap rather than just integers.
Moreover, it can support code motion in Java bytecode, also when exceptional paths must
be taken into account for the correctness of the code motion.

1.3 Organization of the Paper

The present work is an extended version of an already published conference paper [28]. The
main differences are:

– we provide syntax and formal semantics of our target Java bytecode-like language which
includes also arrays;

– we formally define our constraint-based approach, explain how the constraints are con-
structed and solved and discuss existence and uniqueness of their solution;

– we provide a full proof of correctness of our approach, including all necessary technical
lemmas;

– we illustrate our definitions and lemmas with more detailed examples;
– we discuss the implementation of our analysis, as well as its complexity;
– we provide larger experiments.

The rest of the paper is organized as follows. Section 2 introduces the syntax and the
operational semantics of the Java bytecode-like language that we consider in this article.
Section 3 defines the notion of alias expressions, their non-standard evaluation and specifies
which bytecode instructions might modify the value of these expressions. Section 4 intro-
duces our abstract interpretation-based static analysis and proves it correct. Section 5 shows
the application of our analysis to many real-life examples, its precision and the way it affects
the other analyses performed by our static analyzer Julia. Section 6 concludes.

2 Operational Semantics

This section presents a formal operational semantics for Java bytecode, inspired by its stan-
dard informal semantics in [22]. This is the same semantics used in [39]. A similar formal-
ization, but in denotational form, has been used in [32,37,40]. Another approach using a
similar representation of bytecode, in an operational setting, is [7], although, there, Prolog
clauses encode the graph, while we work directly on it.

There exist some other formal semantics for Java bytecode. Our choice has been dictated
by the desire of a semantics suitable for abstract interpretation: we want a single concrete
domain to abstract (the domain of states) and we want the bytecode instructions to be state
transformers, always, also in the case of the conditional bytecode instructions and of those
dealing with dynamic dispatch and exception handling. This is exactly the purpose of the
semantics in [39] whose form highly simplifies the definition of the abstract interpretation
and its proof of soundness.

Java bytecode is the form of instructions executed by the Java Virtual Machine (JVM).
Although it is a low-level language, it does support high-level concepts such as objects,
dynamic dispatching, and garbage collection. Our formalization is at Java bytecode level
for several reasons. First, it is much simpler than Java: there is a relatively small number of
bytecode instructions, compared to varieties of source statements, and bytecode instructions
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public class L i s t {
public Event head ;
public L i s t t a i l ;

public L i s t ( ){
head = t a i l = null ;

}

public L i s t ( Event head ,
L i s t t a i l ){

this . head = head ;
this . t a i l = t a i l ;

}

public Event g e tF i r s t ( ){
return head ;

}

public Event removeFirst ( ){
Event r e s u l t = head ;
i f ( t a i l != null ) {

head = t a i l . head ;
t a i l = t a i l . t a i l ;

} else {
head = null ;

}
return r e s u l t ;

}
}

a)

public class Event{
public int hr , min ;
. . .
public int delayMinBy ( int o f f s e t ){

return (min + o f f s e t )%60;
}

public int setDelay ( int o f f s e t ){
min = (min + o f f s e t )%60;
return min ;

}
}

b)

load 0 Event

getfield Event.min : int

load 1 int

add int

const 60

rem

return int

catch

throw java.lang.Throwable

c)

Fig. 2 Our running example: a), b) - two simple classes List and Event; c) - our representation (CFG) of
method delayMinBy of class Event

lack complexities like inner classes. Second, our implementation of reachability analysis
is at bytecode level, bringing formalism, implementation and proofs closer. We require a
formalization, since one of our goals is to prove our analysis sound.

2.1 Types

For simplicity, we assume that the only primitive type is int and that reference types are
classes, containing instance fields and instance methods, and arrays of another type. Our
implementation handles all Java primitive and reference types, e.g., classes with static fields
and methods that, for simplicity, we do not consider in the present paper, as well as all the
bytecode instructions except those dealing with multi-threading or reflection. For simplicity,
our formalization considers only one primitive type (int), since all other primitive types may
be handled in an analogous way. Interfaces are also missing from our formalization. We
observe, however, that they are relevant at compilation time in Java while they have little
to do with the dynamic semantics, which is what we are going to abstract. In particular,
interfaces do not provide method implementations in Java bytecode and hence the method
lookup rule only considers the superclass chain in that language. The fact that we do not
consider static fields is consequence of the formal complexity that they would introduce,
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since static fields are always in scope, at every program point. Static method calls would
complicate the semantics, by duplicating the rules for method call, one for instance methods
and one for static methods, and the way the callee is found by dynamic lookup (from the
dynamic type of an object, in the first case; from a fixed starting class, in the second case).
We think that our concrete and abstract semantics would become too complex if static fields
and methods were presented in formal terms in this article.

Definition 1 (Types) Let K be the set the set of classes of a program. Every class has at
most one direct superclass and an arbitrary number of direct subclasses. Let A be the set of
all the array types of the program. A type is an element of T = {int} ∪ K ∪ A. Given two
types t and t′ we say that t′ is a subtype of t, and we denote it by t′ ≤ t, if one of the following
conditions holds:

– t = t′ or
– t, t′ ∈ K and t′ is a subclass of t or
– t = t1[ ], t′ = t′1[ ] ∈ A, and t1 ≤ t′1.

A class κ ∈ K has instance fields κ.f : t (a field f of type t ∈ T defined in κ), where κ and t
are often omitted. We let F(κ) = {κ′.f : t′ | κ ≤ κ′} denote the fields defined in κ or in any
of its superclasses. A class κ ∈ K has instance methods κ.m(~t): t (a method m, defined in κ,
with parameters of type~t, returning a value of type t ∈ T∪ {void}), where κ,~t, and t are often
omitted. Constructors are methods with the special name init, which return void. Elements
of an array type α = t[ ] are of type t′, such that t′ ≤ t.

We analyze bytecode instructions preprocessed into a control flow graph (CFG), i.e., a
directed graph of basic blocks, with no jumps inside the blocks. We graphically write

ins@p
rest

→
→

b1· · ·
bm

to denote a block of code starting with a bytecode instruction ins at a program point p,
possibly followed by more bytecode instructions rest and linked to m subsequent blocks
b1, . . . , bm . The program point p is often irrelevant, so we write just ins instead of ins@p.

Example 1 Consider the Java method delayMinBy and its corresponding graph of basic
blocks of bytecode instructions given in Fig.2 b) and c). The latter contains a branch since
the getfield min bytecode might throw a NullPointerException which would be tem-
porarily caught and then re-thrown to the caller of the method. Otherwise, the execution
continues with a block that reads the other parameter (load 1), adds it to the value read from
the field min and returns the result modulo 60. Each bytecode instruction except return and
throw always has one or more immediate successors. On the other hand, return and throw
are placed at the end of a method or constructor and have no successors. �

An exception handler starts with a catch bytecode. A virtual method call (i.e., the typ-
ical object-oriented method call, where the method signature is identified at compile-time
but its implementation is only resolved dynamically at run-time), or a selection of an ex-
ception handler is translated into a block linked to many subsequent blocks. Each of these
subsequent blocks starts with a filtering bytecode, such as exception_is K for exceptional
handlers.

Bytecode instructions operate on variables, which encompass both stack elements allo-
cated in the operand stack (S = {s0, . . .}) and local variables allocated in the array of local
variables (L = {l0, . . .}). At any point of execution, we know the exact length of both array
of local variables and operand stack. Moreover, a standard algorithm [22] infers their static
types. These static types are provided by the type environment map.
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Definition 2 (Type environment) Each program point is enriched with a type environment
τ i.e., a map from all the variables available at that point (dom(τ)) to their static types.
We distinguish between local variables L = {l0, . . .} and stack elements S = {s0, . . .} i.e.,
dom(τ) = L ∪ S .

Type environments specify the variables in scope at a given program point. Hence they
do not provide static type information for the fields of the objects in memory. This is be-
cause variables change number and type from a program point to another, while the fields
of the objects have fixed, static types specified by the definition of the class where they are
declared, as we will formalize in Definition 4.

2.2 States

Our semantics keeps a state that maps program variables to values. An activation stack of
states models the method call mechanism, exactly as in the actual implementation of the
JVM [22].

Definition 3 (Values) The set of all possible values that our formalization supports is Z ∪
L ∪ {null}, where for simplicity we use Z instead of 32-bit two’s-complement integers as
in the actual Java virtual machine (this choice is irrelevant in this paper) and where L is
an infinite set of memory locations. The default value of a variable whose static type is int
(respectively a reference type) is 0 (respectively null).

Objects are particular instances of classes. The way we represent them in this paper is
explained by the following definition.

Definition 4 (Object representation) Given an object o, its type is maintained inside o in
a special field o.κ and we say that o is an instance of o.κ. Each object o contains its internal
environment o.φ that maps every field κ′.f : t′ ∈F(o.κ) into its value as provided in the object,
denoted by (o.φ)(κ′.f : t′). Hence, the domain of o.φ is dom(o.φ) = F(o.κ) and its range
rng(o.φ) is the set of the values of the fields of o.

Arrays are instances of array types. The way we represent them in this paper is explained
by the following definition.

Definition 5 (Array representation) Given an array a, its type is maintained inside a in
a special field a.κ and we say that a is an instance of a.κ. The length of a is kept inside a
special field a.length. Each array a contains an internal environment a.φ that maps each
index 0 ≤ i < a.length into the value (a.φ)(i) of the element at that index. Hence, the
domain of a.φ is dom(a.φ) = {0, . . . , a.length − 1} and its range rng(a.φ) is the set of the
elements of a.

We want to analyze the possible states of the JVM at each point of the program under
analysis.

Definition 6 (State) A state σ over a type environment τ ∈ T is a pair 〈〈l ‖ s〉, µ〉 where l is
an array of values, one for each local variable of dom(τ), s is a stack of values, one for each
stack element in dom(τ), which grows leftwards, and µ is a memory that binds locations to
objects and arrays. The empty stack is denoted by ε. We often use another representation of
states: 〈ρ, µ〉, where an environment ρ maps each lk ∈L to its value l[k ] and each sk ∈S to its
value s[k ]. The set of states is Ξ. We write Ξτ when we want to fix the type environment τ.
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Fig. 3 A JVM state σ = 〈ρ, µ〉
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Fig. 4 A JVM state σ1 = 〈ρ, µ1〉

We assume that variables hold values consistent with their static types i.e., that states
are well-typed.

Definition 7 (Consistent state) We say that a value v is consistent with a type t in 〈ρ, µ〉
and we denote it by v v〈ρ,µ〉 t if one of the following conditions holds:

– v ∈ Z and t = int or
– v = null and t ∈ K ∪ A or
– v ∈ L, t ∈ K ∪ A and µ(v ).κ ≤ t.

We write v *〈ρ,µ〉 t to denote that v is not consistent with t in 〈ρ, µ〉. In a state 〈ρ, µ〉 over τ,
we require that ρ(v ) is consistent with the type τ(v ) for any variable v ∈ dom(τ) available
at that point; that for every object o ∈ rng(µ) available in the memory and every field
κ′.f : t′ ∈ F(o.κ) available in that object, the value held in that field, (o.φ)(κ′.f : t′), is consistent
with its static type t′; and that for every array a ∈ rng(µ) available in the memory such as
a.κ = t′[ ], the values in rng(a.φ) are consistent with t′.

The Java Virtual Machine (JVM), as well as our formalization, supports exceptions.
Therefore, we distinguish normal states Ξ arising during the normal execution of a piece of
code, from exceptional states Ξ arising just after a bytecode that throws an exception. The
operand stack of the states in Ξ has always exactly one variable holding a location bound
to the thrown exception object. When we denote a state by σ, we do not specify if it is
normal or exceptional. If we want to stress that fact, we write 〈〈l ‖ s〉, µ〉 for a normal state
and 〈〈l ‖ s〉, µ〉 for an exceptional state.

Definition 8 (Java virtual machine state) The set of Java virtual machine states (from
now on just states) in a type environment τ ∈ T is Στ = Ξτ ∪ Ξτ′ , where τ′ is τ with the
operand stack containing only one variable (s0) whose static type is a subclass of Throwable
i.e., τ′(s0) ≤ Throwable.

Example 2 Consider a type environment τ= [l1 7→ List; l2 7→ int; l3 7→ Event; l4 7→ List], where
List and Event are classes defined in Fig. 2. In Fig. 3 we show a state σ = 〈ρ, µ〉 ∈ Στ.
The environment ρ maps local variables l1, l2, l3 and l4 to values `2 ∈ L, 20 ∈ Z, `3 ∈ L
and `4 ∈ L, respectively. The memory µ maps locations `2 and `4 to objects o2 and o4 of
class List, and locations `1 and `3 to the objects o1 and o3 of class Event. Objects are
represented as boxes with a class tag and an internal environment mapping fields to values.
For instance, fields head and tail of object o4 contain locations `3 and `2, respectively. �
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2.3 Semantics of Bytecode Instructions

The semantics of a bytecode instruction ins is a partial map ins : Στ → Στ′ from initial to
final states. The number and type of the local variables and of the variables on the operand
stack at each program point are statically known and specified by τ [22]. We assume that
we are analyzing a type-checked program, so that for instance field and method resolution
always succeed. In the following, we silently assume that bytecode instructions are run in a
program point with type environment τ ∈T such that dom(τ) = L ∪ S , where L and S are
local variables and stack elements, and let i and j be the cardinalities of these sets. Moreover,
we suppose that the semantics is undefined for input states of wrong sizes or types, as is
required in [22]. Fig. 5 defines the semantics of bytecode instructions. We discuss it below.

Load and Store Instructions. The load and store instructions transfer values between the
local variables and the operand stack of a state: load k t loads the local variable lk whose
static type is t onto the operand stack; storek t stores the topmost value of the operand stack,
whose static type is t, into the local variable lk ; const v loads an integer constant or null
onto the operand stack.

Arithmetic Instructions. The arithmetic bytecode instructions pop the topmost two integer
values from the operand stack, apply the corresponding arithmetic operation on them, and
push back the result on the operand stack. They are: add (addition), sub (subtraction), mul
(multiplication), div (division), rem (remainder). There is also inc k x , that increments by x

the value of lk .

Object Creation and Manipulation Instructions. These bytecode instructions create or
access objects in memory: new κ creates a new instance of class κ whose fields hold the
default values corresponding to their static types; getfield κ.f : t (respectively putfield κ.f : t)
reads (respectively writes) a value from (respectively to) the field f belonging to the class
κ and whose static type is t. Note that the creation of a new object initializes its fields to
default values, that can be replaced programmatically, later, by the code of a constructor that
gets called on the object just being created. That code will likely do extensive use of the
putfield κ.f : t bytecode.

Array Creation and Manipulation Instructions. These bytecode instructions create or
access arrays: arraynew t[ ] creates a new array of type t[ ] whose length is the value popped
from the operand stack, initialize its elements to the default value for t and puts a reference
to this new array onto the top of the operand stack; arraylength α pops the topmost value
from the operand stack, that must be a reference to an array of type α, and pushes back onto
the operand stack the length of the corresponding array; arrayload α pops from the operand
stack an integer value k and a reference to an array of type α and puts back onto the operand
stack its k -th element; arraystore α pops from the operand stack a value of type α, an integer
k and a reference to an array of type α and writes the value into the k -th element of the array.

Operand Stack Management Instructions. The only operand stack management instruc-
tion supported by our formalization is dupt, that duplicates the topmost value of the operand
stack.

Control Transfer Instructions. In our formalization, conditional bytecodes are used in
complementary pairs (such as ifne t and ifeq t), at the beginning of the two conditional
branches. The semantics of a conditional bytecode is undefined when its condition is false.
For instance, ifeq t checks whether the top of the stack, of type t, is 0 when t = int, or is null
otherwise; the undefined case means that the JVM does not continue the execution of that
branch of the code if the condition is false.
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const x = λ〈〈l ‖ s〉, µ〉 . 〈〈l ‖ x :: s〉, µ〉
load k t = λ〈〈l ‖ s〉, µ〉 . 〈〈l ‖ l[k ] :: s〉, µ〉
store k t = λ〈〈l ‖ t :: s〉, µ〉 . 〈〈l[k 7→ t] ‖ s〉, µ〉

add = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 . 〈〈l ‖ t1 + t2 :: s〉, µ〉
sub = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 . 〈〈l ‖ t2 − t1 :: s〉, µ〉
mul = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 . 〈〈l ‖ t2 ∗ t1 :: s〉, µ〉
div = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 .

{ 〈〈l ‖ t2/t1〉, µ〉 if t1 , 0
〈〈l ‖ `〉, µ[` 7→ ae]〉 otherwise

rem = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 .
{ 〈〈l ‖ t2%t1〉, µ〉 if t1 , 0
〈〈l ‖ `〉, µ[` 7→ ae]〉 otherwise

inc k x = λ〈〈l ‖ s〉, µ〉 . 〈〈l[k 7→ l[k ] + x ] ‖ s〉, µ〉
new κ = λ〈〈l ‖ s〉, µ〉 .

{ 〈〈l ‖ ` :: s〉, µ[` 7→ o]〉 if enough memory
〈〈l ‖ `〉, µ[` 7→ oome]〉 otherwise

getfield κ.f : t = λ〈〈l ‖ r :: s〉, µ〉 .
{ 〈〈l ‖ (µ(r ).φ)(f ) :: s〉, µ〉 if r , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

putfield κ.f : t = λ〈〈l ‖ t :: r :: s〉, µ〉 .
{ 〈〈l ‖ s〉, µ[(µ(r ).φ)(f ) 7→ t]〉 if r , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

arraynew α = λ〈〈l ‖ n :: s〉, µ〉 .
{ 〈〈l ‖ ` :: s〉, µ[` 7→ a]〉 if n ≥ 0
〈〈l ‖ `〉, µ[` 7→ nase]〉 otherwise

arraylength α = λ〈〈l ‖ r :: s〉, µ〉 .
{ 〈〈l ‖ µ(r ).length :: s〉, µ〉 if r , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

arrayload α = λ〈〈l ‖ k :: r :: s〉, µ〉 .


〈〈l ‖ `〉, µ[` 7→ npe]〉 if r = null

〈〈l ‖ `〉, µ[` 7→ obe]〉 if k ≥µ(r ).length or k < 0
〈〈l ‖ (µ(r ).φ)(k ) :: s〉, µ〉 otherwise

arraystore α = λ〈〈l ‖ v :: k :: r :: s〉, µ〉 .


〈〈l ‖ `〉, µ[` 7→ npe]〉 if r = null

〈〈l ‖ `〉, µ[` 7→ obe]〉 if k ≥µ(r ).length or k < 0
〈〈l ‖ `〉, µ[` 7→ ase]〉 if v ∈ L and µ(v ).κ[] 6≤ µ(r ).κ
〈〈l ‖ s〉, µ[(µ(r ).φ)(k ) 7→ v ]〉 otherwise

dup t = λ〈〈l ‖ t :: s〉, µ〉 . 〈〈l ‖ t :: t :: s〉, µ〉
ifeq t = λ〈〈l ‖ t :: s〉, µ〉 .

{ 〈〈l ‖ s〉, µ〉 if t ∈ {0, null}
undefined otherwise

ifne t = λ〈〈l ‖ t :: s〉, µ〉 .
{ 〈〈l ‖ s〉, µ〉 if t < {0, null}

undefined otherwise
return void = λ〈〈l ‖ s〉, µ〉 . 〈〈l ‖ ε〉, µ〉

return t = λ〈〈l ‖ t :: s〉, µ〉 . 〈〈l ‖ t〉, µ〉, where t , void

throw κ = λ〈〈l ‖ t :: s〉, µ〉 .

 〈〈l ‖ t〉, µ〉 if t , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

catch = λ〈〈l ‖ t〉, µ〉 . 〈〈l ‖ t〉, µ〉
exception_is K = λ〈〈l ‖ t〉, µ〉 .

{ 〈〈l ‖ t〉, µ〉 if t ∈ L and µ(t).κ ∈ K
undefined otherwise

Fig. 5 The semantics of the bytecode instructions maps states to states. ` ∈ L is a fresh location, o and
a are, respectively, a new object of class κ (with fields holding a default value) and a new array of type α
(with elements holding a default value). Exceptions ae, oome , npe , nase, obe and ase are, respectively,
new instances of the following: ArithmeticException, OutOfMemoryError, NullPointerException,
NegativeArraySizeException, ArrayIndexOutOfBoundsException and ArrayStoreException

Exception Handling Instructions. An exception is thrown programmatically by using
the throw κ bytecode instruction. Exceptions can also be thrown by various other bytecode
instructions if they detect an abnormal condition. In actual Java bytecode, exception handlers
are specified by a table that routes each exception type thrown inside a given program portion
to a given exception handler. We have a different representation in this article, since we
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public stat ic int get ( int [ ] a , int k ) {
try {
return a [ k ] ;

} catch ( Nul lPo interExcept ion e1 ) {
return −1;

} catch ( IndexOutOfBoundsException e2 ) {
return −2;

}
}

a)

load 0 int[ ]

load 1 int

arrayload int[ ]

return int

catch

exception is {NPE}
store 2 NPE

const − 1

return int

exception is {IOOBE}
store 2 IOOBE

const − 2

return int

b)

Fig. 6 a) A simple Java method get handling two exceptions; b) Our representation of get, where NPE and
IOOBE represent classes NullPointerException and IndexOutOfBoundsException respectively

only want instructions that behave as state transformers, also for exception handling. This
simplifies the definition of the abstract interpretation. Hence, there is no exception table
but the latter gets compiled into our graph of basic blocks. Namely, each program point
where an exception might be raised gets linked to the exception handlers that might catch
that exception. The catch bytecode starts an exception handler; it takes an exceptional state
and transforms it into a normal one, subsequently used by the handler. After catch, bytecode
exception_isK can be used to select an appropriate handler depending on the run-time class
of the top of the stack, that is, of the exception that is raised: it filters those states whose top
of the stack is an instance of a class in K ⊆ K.

Example 3 In Fig. 6 a) we show a simple Java method get whose parameters are an array
a of type int[ ] and an integer k , and which returns a[k ] if no exception occurs. This method
handles two possible exceptions: NullPointerException (NPE for short) when a is null
and IndexOutOfBoundsException (IOOBE for short) when k is greater or equal to a’s
length. These two exceptions are not subclasses one of another, i.e., neither NPE ≤ IOOBE
nor NPE ≤ IOOBE holds. In Fig. 6 b) we show our representation of the get method. There
are two separate blocks handling the two exceptions: one starting with exception_is NPE
handling the case of NPE and the other starting with exception_is IOOBE handling the case
of IOOBE. �

Method calls and return. When a caller transfers control to a callee κ.m(~t) : t, the JVM
runs an operation makescope κ.m(~t): t that copies the topmost stack elements, holding the
actual arguments of the call, to local variables that correspond to the formal parameters of
the callee, and clears the stack. We only consider instance methods, where this is a special
argument held in local variable l0 of the callee. More precisely, the i-th local variable of the
callee is a copy of the (π−1)−i-th topmost element of the operand stack of the caller.

Definition 9 (makescope) Let κ.m(~t): t be a method and π the number of stack elements
holding its actual parameters, including the implicit parameter this. We define a function
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(makescope κ.m(~t): t) : Σ → Σ as

λ〈〈l ‖ vπ−1 :: · · · :: v1 :: rec :: s〉, µ〉.〈〈[rec, v1, . . . , vπ−1] ‖ ε〉, µ〉
provided rec , null and the look-up of m(~t): t from the class µ(rec).κ leads to κ.m(~t): t. We
let it be undefined otherwise.

Bytecode call κ1.m . . . κn .m calls one of the callee in the enumeration. These are possi-
ble targets of a virtual call, since a method call in Java bytecode, which is an object-oriented
language, can in general lead to many method implementations. The over-approximation
of the possible targets is not explicit in actual Java bytecode, but we assume that it is pro-
vided in our simplified bytecode. In particular, that over-approximation can be computed by
any class analysis [31]. The exact implementation of the method is later selected through
a makescope instruction, that uses the method lookup rule of the programming language,
as we will show soon with Fig. 7. If we assume that this lookup rule is deterministic, as in
Java bytecode and Java, then only one of this targets will be selected at run-time, while for
the others the makescope instruction at their beginning will be undefined. Bytecode return t
terminates a method and clears its operand stack, leaving only the returned value when
t , void. This is later moved on top of the stack of the caller of the callee, as Fig. 7 will
show.

2.4 The Transition Rules

We now define the operational semantics of our language. It uses a stack of activation records
to model method and constructor calls.

Definition 10 (Configuration) A configuration is a pair 〈b ‖ σ〉 of a block b and a state σ
representing the fact that the JVM is about to execute b in state σ. An activation stack is a
stack c1 :: c2 :: · · · :: cn of configurations, where c1 is the active configuration.

The operational semantics of a Java bytecode program is a relation between activation
stacks. It models the transformation of the activation stack induced by the execution of
each single bytecode.

Definition 11 (Operational Semantics) The (small step) operational semantics of a Java
bytecode program P is a relation a ′ ⇒P a ′′ (P is usually omitted) providing the immediate
successor activation stack a ′′ of an activation stack a ′. It is defined by the rules in Fig. 7.

Rule (1) runs the first instruction ins of a block, different from call, by using its semantics
ins. Then it moves forward to run the remaining instructions.

Rules (2) and (3) are for method calls. If a call occurs on a null receiver, no actual
call happens in this case and rule (3) creates a new state whose operand stack contains only
a reference to a NullPointerException. On the other hand, rule (2) calls a method on
a non-null receiver: the call instructions are decorated with an over-approximation of the
set of their possible run-time target methods. The dynamic semantics of call implements
the virtual method resolution of object-oriented languages, by looking for the implemen-
tation κi .m(~t) : t of the callee, that is executed, through the dynamic look-up rules of the
language, codified inside the makescope function. The latter is only defined when that im-
plementation is selected at run-time; in that case, makescope yields the initial state σ′ that
the semantics uses to create a new current configuration containing the first block of the se-
lected implementation and σ′. It pops the actual arguments from the previous configuration
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ins is not a call, ins(σ) is defined

� ins
rest
→→

b1· · ·
bm
�σ� :: a ⇒ � rest→→

b1· · ·
bm
� ins(σ)� :: a

(1)

π is the number of parameters of the target method, including this
σ = ��l � vπ−1 :: · · · ::v1 ::rec :: s�, µ�, rec � null

1 ≤ w ≤ n , σ� = (makescope mw )(σ) is defined
f = first(mw ), the block where the implementation starts

� callm1 . . .mn

rest
→→

b1· · ·
bm
�σ� :: a ⇒ �f �σ�� :: � rest→→

b1· · ·
bm
���l � s�, µ�� :: a

(2)

π is the number of parameters of the target method, including this
σ = ��l � vπ−1 :: · · · ::v1 ::null :: s�, µ�

� ∈ L is fresh and npe is a new instance of NullPointerException

� callm1 . . .mn

rest
→→

b1· · ·
bm
�σ� :: a ⇒ � rest→→

b1· · ·
bm
� ��l � ��, µ[� �→ npe]�� :: a

(3)

� ���l � top�, µ�� :: �b ���l� � s��, µ��� :: a ⇒ � b ���l� � top :: s��, µ�� :: a
(4)

� � ��l � e�, µ�� :: �b ���l� � s��, µ��� :: a ⇒ � b � ��l� � e�, µ�� :: a
(5)

1 ≤ w ≤ m

� →→
b1· · ·
bm
�σ� :: a ⇒ �bw �σ� :: a

(6)

Fig. 7 The transition rules of our semantics

and the call from the instructions to be executed at return time. Although this rule seems
non-deterministic, only one thread of execution continues, since we assume that the look-up
rules are deterministic, as in Java bytecode.

Control returns to the caller by rules (4) and (5). If the callee ends in a normal state,
rule (4) rehabilitates the caller configuration but keeps the memory at the end of the execu-
tion of the callee and, if s , ε, it also pushes the return value on the operand stack of the
caller. If the callee ends in an exceptional state, rule (5) propagates the exception back to the
caller.

Rule (6) applies when all instructions inside a block have been executed; it runs one
of its immediate successors, if any. In our formalization, this rule is always deterministic:
if a block has two or more immediate successors then they start with mutually exclusive
conditional instructions and only one thread of control is actually followed.

In the notation⇒, we often specify the rule in Fig. 7 used; for instance, we write (1)⇒ for
a derivation step through rule (1).

3 Alias Expressions

In this section, we define our expressions of interest (Definition 12), their non-standard
evaluation (Definition 14), which might modify the content of some memory locations and
we introduce the notion of alias expression (Definition 15). Moreover, we specify in which
cases a bytecode instruction might affect the value of an expression (Definition 16), and
when the evaluation of an expression might modify a field (Definition 17).
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Definition 12 (Expressions) Given τ ∈ T , let Fτ and Mτ respectively denote the sets of
the names of all possible fields and methods of all the objects available in Στ. We define the
set of expressions over dom(τ):

Eτ 3 E ::= n constants
| v variables
| E ⊕ E arithmetical operations
| E.f field accesses
| E.length array lengths
| E[E] array elements
| E.m(E, . . .) results of method invocations,

where n ∈ Z, v ∈ dom(τ), ⊕ ∈ {+,−,×, div,%}, f ∈ Fτ and m ∈ Mτ.

Every expression has some important properties that can be determined statically. We
formally define the notions of sub-expression, depth, variables occurring in an expression
and fields that an expression might read.

Definition 13 For every type environment τ ∈ T , we define the following maps:

– subExp : Eτ → ℘(Eτ) yielding the set of sub-expressions appearing in an expression;
– depth : Eτ → N mapping expressions to their depths;
– variables : Eτ → ℘(dom(τ)) yielding the set of variables occurring in an expression;
– fields : Eτ → ℘(Fτ) yielding the fields that might be read through a method call executed

during the evaluations of an expression.

These maps are defined inductively in Fig. 8.

Note that the definition of fields requires a preliminary computation of the fields possibly
read by a method m, which might just be a transitive closure of the fields f for which a
getfield occurs in m or in at least one method invoked by m. There exist some more precise
approximations of this useful piece of information, e.g., that determined by our Julia tool.
Anyway, in the absence of this approximation, we can always assume the least precise sound
hypothesis: every method can read every field.

E depth(E) subExp(E)

n
0 {E}

v
E1 ⊕ E2 1 + maxi∈{1,2}{depth(Ei)} {E} ∪

i=2�
i=1

subExp(Ei)E1[E2]
E.f

1 + depth(E) {E} ∪ subExp(E)
E.length

E0.m(E1, . . . , Eπ) 1 + max0≤i≤π{depth(Ei)} {E} ∪
π�

i=0

subExp(Ei)

E variables(E) fields(E)

n ∅ ∅
v {v}

E1 ⊕ E2
i=2�
i=1

variables(Ei)
i=2�
i=1

fields(Ei)E1[E2]
E.f

variables(E) fields(E)
E.length

E0.m(E1, . . . , Eπ)
π�

i=0

variables(Ei)
π�

i=0

fields(Ei) ∪ {f | m might read f }

Fig. 8 Auxiliary maps concerning expressions
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Example 4 Consider the class Event introduced in Fig. 2 and let us assume that the static
type of the local variable l2 is Event. Then expression E = l2.delayMinBy(15) satisfies the
following equalities:

– depth(l2.delayMinBy(15)) = 1 + max{depth(l2), depth(15)} = 1 + max{0, 0} = 1;
– variables(l2.delayMinBy(15)) = variables(l2) ∪ variables(15) = {l2};
– fields(l2.delayMinBy(15)) = fields(l2) ∪ fields(15) ∪ {f | delayMinBy might read f } =

{min}.
The latter follows from the fact that delayMinBy contains only one getfield concerning the
field min and no call invocations (Fig. 2). �

In the following we show how the expressions introduced in Definition 12 are evaluated
in an arbitrary state 〈ρ, µ〉. It is worth noting that some of these expressions represent the
result of a method invocation. Their evaluation, in general, might modify the initial memory
µ, so we must be aware of the side-effects of the methods appearing in these expressions.
We define the non-standard evaluation of an expression e in a state 〈ρ, µ〉 as a pair 〈w , µ′〉,
where w is the computed value of e, while µ′ is the updated memory obtained from µ after
the evaluation of e.

Definition 14 (Non-standard evaluation of expressions) A non-standard evaluation of
expressions in a state σ = 〈ρ, µ〉 ∈ Στ is a partial map ~·�∗ : Eτ → Στ → V ×M defined as:

1. for every n ∈ Z, ~n�∗σ = 〈n, µ〉;
2. for every v ∈ dom(τ), ~v�∗σ = 〈ρ(v ), µ〉;
3. ~E1 ⊕ E2�∗σ is defined only if

– ~E1�∗σ = 〈n1, µ1〉,
– ~E2�∗〈ρ, µ1〉 = 〈n2, µ2〉 and
– n1, n2 ∈ Z.

In that case ~E1 ⊕ E2�∗σ = 〈n1 ⊕ n2, µ2〉, otherwise it is undefined;
4. ~E.f �∗σ is defined only if

– ~E�∗σ = 〈`, µ1〉,
– ` ∈ L,
– µ1(`).κ ∈ K and
– f ∈ F(µ1(`).κ).

In that case ~E.f �∗σ = 〈(µ1(`).φ)(f ), µ1〉, otherwise it is undefined;
5. ~E.length�∗σ is defined only if

– ~E�∗σ = 〈`, µ1〉,
– ` ∈ L and
– µ1(`).κ ∈ A.

In that case ~E.length�∗σ = 〈µ1(`).length, µ1〉, otherwise it is undefined;
6. ~E1[E2]�∗σ is defined only if

– ~E1�∗σ = 〈`, µ1〉,
– ~E2�∗〈ρ, µ1〉 = 〈n, µ2〉,
– ` ∈ L,
– µ2(`).κ ∈ A,
– n ∈ Z and
– 0 ≤ n < µ2(`).length.

In that case ~E1[E2]�∗σ = 〈(µ2(`).φ)(n), µ2〉, otherwise it is undefined;
7. in order to compute ~E0.m(E1, . . . ,Eπ)�∗σ, we determine ~E0�∗〈ρ, µ〉 = 〈w0, µ0〉, and

for each 1 ≤ i < π, we evaluate Ei+1 in the state 〈ρ, µi 〉: ~Ei+1�∗〈ρ, µi 〉 = 〈wi+1, µi+1〉.
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If w0 ∈ L and µπ(w0).κ ∈ K, we run the method m on the object µπ(w0) with parameters
w1, . . . ,wπ and if it terminates with no exception, the result of the evaluation is the pair
composed of m’s return value w and the memory µ′ obtained from µπ as a side-effect of
m.

We write ~E�σ do denote the actual value of E in σ, without the updated memory.

The following example illustrates the non-standard evaluation of some simple expres-
sions.

Example 5 Consider the state σ = 〈ρ, µ〉 given in Fig. 3, where Event and List are
the classes introduced in Fig. 2. Let us evaluate the following expressions in σ: l3.min,
l4.head.min, l3.delayMinBy(15) and l4.removeFirst().setDelay(15).

~l3.min�∗σ: By Definition 14 (case 2), we have ~l3�∗〈ρ, µ〉 = 〈ρ(l3), µ〉 = 〈`3, µ〉, where
`3 ∈ L. Moreover, µ(`3).κ = Event ∈ K and min ∈ F(Event). Hence, the conditions
imposed by case 4 are satisfied and

~l3.min�∗〈ρ, µ〉 = 〈(µ(`3).φ)(min), µ〉 = 〈20, µ〉,
while ~l3.min�〈ρ, µ〉 = 20.

~l4.head.min�∗σ: By Definition 14 (case 2), we have ~l4�∗〈ρ, µ〉 = 〈ρ(l4), µ〉 = 〈`4, µ〉,
where `4 ∈ L. Moreover, µ(`4).κ = List ∈ K and head ∈ F(List). Hence, the condi-
tions imposed by case 4 are satisfied and

~l4.head�∗〈ρ, µ〉 = 〈(µ(`4).φ)(head), µ〉 = 〈`3, µ〉,
while ~l4.head�〈ρ, µ〉 = `3. Similarly, µ(`3).κ = Event ∈ K and min ∈ F(Event), hence:

~l4.head.min�∗〈ρ, µ〉 = 〈(µ(`3).φ)(min), µ〉 = 〈20, µ〉.
while ~l4.head.min�〈ρ, µ〉 = 20.

~l3.delayMinBy(15)�∗σ: We have already shown that ~l3�∗〈ρ, µ〉 = 〈`3, µ〉, where `3 ∈ L
and µ(`3).κ ∈ K. By Definition 14 (case 1), we have ~15�∗〈ρ, µ〉 = 〈15, µ〉. Since the
resulting memory did not change, we run the method delayMinBy on the object µ(`3) =

o3 with parameter 15 (case 5 of Definition 14). This method has no side effects (Fig. 2 )
and returns ((o3.φ)(min) + 15)%60 = 20 + 15 = 35. Therefore,

~l3.delayMinBy(15)�∗〈ρ, µ〉 = 〈35, µ〉,
while ~l3.delayMinBy(15)�〈ρ, µ〉 = 35.

~l4.removeFirst().setDelay(15)�∗σ: We first determine ~l4.removeFirst()�∗σ. Simi-
larly to the previous two cases, we have ~l4�∗〈ρ, µ〉 = 〈ρ(l4), µ〉 = 〈`4, µ〉, where `4 ∈ L
and µ(`4).κ = List ∈ K. Then we run the method removeFirst on the object µ(`4) =

o4, which returns the value of its field head, i.e., (o4.φ)(head) = `3 ∈ L, which is then
removed from the list. Therefore, ~l4.removeFirst()�∗〈ρ, µ〉 = 〈`3, µ1〉, where µ1 is
the updated memory depicted in Fig. 4. Since ~l3�∗〈ρ, µ1〉 = 〈ρ(l3), µ1〉 = 〈`3, µ1〉, with
`3 ∈ L, µ1(`3).κ = Event ∈ K and ~15�∗〈ρ, µ1〉 = 〈15, µ〉, we can run method setDelay
on the object µ1(`3) = o3, which updates the value of the field min of the latter and
returns that updated value, i.e., ((o3.φ)(min) + 15)%60 = 20 + 15 = 35. Thus, we obtain

~l4.removeFirst().setDelay(15)�∗〈ρ, µ〉 = 〈35, µ1[(µ(`3).φ)(min) 7→ 35]〉,
while ~l4.removeFirst().setDelay(15)�〈ρ, µ〉 = 35.
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�

Finally, we define the notion of alias expression.

Definition 15 (Alias Expression) We say that an expression E ∈ Eτ is an alias expression
of a variable v ∈ dom(τ) in a state σ = 〈ρ, µ〉 ∈ Στ if and only if ~E�σ = ρ(v ).

Example 6 Consider again the state 〈ρ, µ〉 given in Fig. 3. The value of the local variable 2
in that state is ρ(l2) = 20. Moreover, in Example 5 we showed that ~l3.min�〈ρ, µ〉 = 20 and
~l4.head.min�〈ρ, µ〉 = 20. Thus,

~l3.min�〈ρ, µ〉 = ~l4.head.min�〈ρ, µ〉 = ρ(l2) = 20

and, by Definition 15, we can state that both l3.min and l4.head.min are alias expressions of
l2 in 〈ρ, µ〉. Similarly,

~l4.head�〈ρ, µ〉 = ρ(l3) = `3,

and we can state that l4.head is an alias expression of l3 in 〈ρ, µ〉. �

We specify when an execution of a bytecode instruction might affect the value of an ex-
pression. The following definition requires additional information about the fields that might
be updated and about the static types of the arrays that might be updated by an execution
of a method. These pieces of information can be computed statically, for example, by the
side-effects analysis of Julia. It is worth noting that when this information is not available,
our analysis is still sound, although less precise: we may assume that every field and every
array of any array type might be updated.

Definition 16 (canBeAffected) Let τ and τ′ be the static type information at and immedi-
ately after a bytecode instruction ins. Suppose that dom(τ) contains i local variables and j

stack elements. In Fig. 9, we define a map canBeAffected(·, ins) : Eτ → {true, false} which,
for every expression E ∈ Eτ, determines whether E might be affected by an execution of ins.

That is, instructions that remove some variables from the stack (store, add, sub, mul, div,
rem, putfield, arrayload, arraystore, ifeq, ifne, return and throw) affect the evaluation of
all the expressions in which these variables appear. For instance, the execution of ifne t
modifies the value of all the expressions containing the topmost stack element sj−1. Instruc-
tions that write into a variable (store, add, sub, mul, div, rem, inc, getfield, arraylength
and arrayload) might affect the evaluation of the expressions containing that variable. For
instance, the execution of store k t might modify the value of all the expressions containing
the local variable lk , since this instruction writes a new value into that variable. Instruction
putfield f might modify the evaluation of all the expressions that might read f . Instruction
arraystore t[ ] might modify the evaluation of all the expressions that might read an array
element whose type is compatible with t. Finally, call m1 . . .mk might modify the evaluation
of all the expressions that might read a field f possibly modified by an mw and of all the
expressions which might read an element of an array of type t′[ ] if there exists a dynamic
target mw that writes into an array of type t[ ], where t′ and t are compatible types. For
example, putfield min and call setDelaymight modify the value of the expressions that we
evaluated in Example 5: l3.min, l3.delayMinBy(15) and l4.removeFirst().setDelay(15).

On the other hand, the evaluation of an expression in a state might update the memory
component of that state by modifying the value of some fields. In the following we specify
whether any evaluation of an expression might modify some fields of interest.
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ins canBeAffected(E, ins) = true if and only if
const v neverload k t
store k t variables(E) ∩ {lk , sj−1} , ∅
add

variables(E) ∩ {sj−1, sj−2} , ∅
sub
mul
div
rem
inc k x lk ∈ variables(E)

new κ never
getfield κ.f : t sj−1 ∈ variables(E)
putfield κ.f : t variables(E) ∩ {sj−1, sj−2} , ∅ ∨ κ.f : t ∈ fields(E)

arraynew t[ ] sj−1 ∈ variables(E)
arraylength t[ ] sj−1 ∈ variables(E)
arrayload t[ ] variables(E) ∩ {sj−1, sj−2} , ∅

arraystore t[ ]
variables(E) ∩ {sj−1, sj−2, sj−3} , ∅ ∨

[there exists an evaluation of E which might read
an element of an array of type t′[ ], where t′ ∈ compatible(t)]

dup t never

ifeq t
sj−1 ∈ variables(E)ifne t

return t
variables(E) ∩ S , ∅return void

throw κ
catch neverexception_is K

call m1, . . . ,mn

there exists an execution of a dynamic target mw , where 1≤w ≤n ,
1. [which might modify a field from fields(E)] or
2. [which might write into an element of an array of type t[ ] and

there exists an evaluation of E which might read an element of
an array of type t′[ ], where t′ ∈ compatible(t)]

Fig. 9 Definition of a map canBeAffected(·, ins) : Eτ → {true, false}

Definition 17 (mightMdf) Function mightMdf specifies whether a field belonging to a set of
fields F ⊆ Fτ might be modified during the evaluation of an expression E:

mightModify(n,F ) =false

mightModify(v ,F ) =false

mightModify(E1 ⊕ E2,F ) =mightModify(E1,F ) ∨ mightModify(E2,F )

mightModify(E.f ,F ) =mightModify(E,F )

mightModify(E.length,F ) =mightModify(E,F )

mightModify(E1[E2],F ) =mightModify(E1,F ) ∨ mightModify(E2,F )

mightModify(E0.m(E1, . . . ,Eπ),F ) =

π∨
i=0

mightModify(Ei ,F ) ∨ [an execution of m

might modify a field from F ],

where n ∈ Z, v ∈ dom(τ), f ∈ Fτ and m ∈ Mτ.
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Namely, evaluations of constants and variables do not modify any field. Evaluations of
E1⊕E2 and E1[E2] modify a field from F if there exists an evaluation of E1 or E2 modifying
a field from F . Similarly, evaluations of E.f and E.length modify a field from F if there
exists an evaluation of E modifying a field from F . Evaluations of E0.m(E1, . . . ,Eπ) might
modify a field from F if there is an evaluation of any of Ei s modifying a field from F or if
the execution of m might modify a field from F .

Example 7 Consider one more time the class Event introduced in Fig. 2. Since the method
setDelay() writes into the field min of class Event, we have

mightModify(l4.removeFirst().setDelay(15), {Event.min: int}) = true.

�

4 Definite Expression Aliasing Analysis

In this section we define our definite expression aliasing analysis and prove its soundness.
Namely, we introduce a static analysis which determines for every variable at each program
point a set of expressions that are definitely aliased to that variable, for every possible ex-
ecution of the program of interest. Our analysis deals with the exceptional flows inside the
program under analysis and the side-effects induced by calls to non-pure methods. Our anal-
ysis is based on the construction of a graph whose arcs are decorated with propagation rules
for aliasing information. The use of a graph for static analysis is not novel at all. The impor-
tant point, here, is the use of this traditional technique for the definition of propagation rules
that deal with the side-effects of methods and of field updates, as well as the exceptional
paths of execution.

The crucial notion for the operational semantics of the target language introduced in
Section 2 is the notion of state, representing a system configuration. The set of all possible
states that might be related to a given program point is called the concrete domain, and it is
denoted by C. Let P be a program under analysis, composed of a set of .class files, and
let L be the set of libraries that P uses. Suppose that P’s classes as well as libraries in L are
archived in a .jar file, representing the input of our analysis. The actions performed by our
approach are listed below.

– This analysis is abstract interpretation-based [12,13]. More precisely, we extract from
the concrete states (Definition 6) only those pieces of information representing the actual
aliasing information contained in those states, i.e., we define the abstract domain Alias,
whose elements, abstract states, are simpler than their concrete counterparts and easier
to deal with (Definition 18). Then we show how our abstract and concrete states are
related by defining a concretization map (Definition 19). The latter explains the actual
meaning of the abstract states.

– From the .jar archive, an extended control flow graph (eCFG) is extracted. It contains
a node for each bytecode instruction available in P and L, some special nodes which
deal with the side-effects of non-pure methods, as well as with exceptional and non-
exceptional method ends, and different types of arcs which connect those nodes. There
are some simple arcs connecting one source node with one sink node, but there are
also some special arcs, composed of two source nodes and one sink node: their main
purpose is to handle the side-effects of the methods in both their exceptional and their
non-exceptional executions; they represent one of the contributions of the present paper.
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Section 4.2 explains different parts of these graphs. It is worth noting that this step
does not depend on any particular property of interest: the same graph can be reused as
underlying structure for the definition of other static analyses dealing with some other
properties of interest.

– For each arc present in the eCFG, we define a propagation rule Π : Alias→ Alias rep-
resenting the behavior of the bytecode instruction corresponding to the source node of
the arc with respect to the abstract domain A, and therefore with respect to our property
of interest. This step is property-dependent, i.e., different properties of interest give rise
to different propagation rules. These propagation rules are introduced by Definitions 21-
30. Our approach annotates each eCFG’s arc with the corresponding propagation rule,
obtaining the abstract constraints graph (ACG).

– From the annotated graph a system of constraints is extracted, representing the actual
definition of our constraint-based static analysis. Its solution is the approximation pro-
vided by that static analysis. The extraction of constraints from the ACG is explained in
Section 4.3.

In Section 4.4 we show different properties that the propagation rules mentioned above
have. These properties allow us to show one of the main contributions of the present paper,
the soundness of our definite expression aliasing analysis.

4.1 Concrete and Abstract Domains

In Section 3 we explained when an expression E is aliased to a variable v in a state σ.
This notion strictly depends on the state σ. We want to determine that property statically,
and the most natural way for representing the fact that a variable must be aliased to some
expressions is to assign to each variable available at a program point, a set of expressions
that always have the same value as that variable itself. We followed this idea and formally
defined the abstract domain Alias.

Definition 18 (Concrete and Abstract Domain) The concrete and abstract domains over
τ ∈ T are Cτ = 〈℘(Στ),⊆,∪,∩, Στ,∅〉 and Aliasτ = 〈Aτ,v,t,u,>τ,⊥τ〉, where

– Aτ = (℘(Eτ))|τ|;
– for every A1 = 〈A1

0, . . . ,A
1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 v A2 ⇔ ∀0 ≤ i < |τ|,A1
i ⊇A2

i ;

– for every A1 = 〈A1
0, . . . ,A

1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 t A2 = 〈A1
0 ∩ A2

0, . . . ,A
1
|τ|−1 ∩ A2

|τ|−1〉;

– for every A1 = 〈A1
0, . . . ,A

1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 u A2 = 〈A1
0 ∪ A2

0, . . . ,A
1
|τ|−1 ∪ A2

|τ|−1〉;

– >τ = ∅|τ|;
– ⊥τ = (Eτ)|τ|.
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For a fixed number d ∈ N, we write Aliasdτ to denote a restriction of Aliasτ, where the depth
of the expressions is at most d , i.e.,

〈A0, . . . ,A|τ|−1〉 ∈ Aliasdτ ⇔ ∀0 ≤ i < |τ|.∀E ∈ Ai .depth(E) ≤ d .

Aliasdτ ’s top and bottom elements are denoted by >d
τ and ⊥d

τ respectively.

It is worth noting that, for every τ, Aliasτ is infinite, while for a fixed d ∈ N, Aliasdτ
is finite. Concrete states σ corresponding to an abstract element 〈A0, . . . ,A|τ|−1〉 must satisfy
the aliasing information represented by the latter, i.e., for each 0 ≤ r < |τ|, the value of all the
expressions from the set Ar in σ must coincide with the value of vr in σ (definite aliasing).
Our concretization map formalizes this intuition.

Definition 19 (Concretization map) Consider a type environment τ ∈ T and an abstract
state A = 〈A0, . . . ,A|τ|−1〉 ∈ Aliasτ. We define γτ : Aliasτ → Cτ, the concretization map of
our abstract domain Aliasτ as follows:

γ(A) = {〈ρ, µ〉 ∈ Στ | ∀0 ≤ r < |τ|.∀E ∈ Ar .~E�〈ρ, µ〉 = ρ(vr )}.
Example 8 Consider a type environment τ ∈ T with dom(τ) = {l1, . . . , l4} and the state
σ = 〈ρ, µ〉 ∈ Στ given in Fig. 3. We define the following abstract states from Aliasτ:

A1 = 〈
l1︷︸︸︷
∅ ,

l2︷  ︸︸  ︷
{l3.min} ,

l3︷    ︸︸    ︷
{l4.head} ,

l4︷︸︸︷
∅ 〉 ∈ Alias1τ

A2 = 〈 ∅ , {l3.min, l4.head.min} , {l4.head} , ∅ 〉 ∈ Alias2τ
A3 = 〈 {l3} , {l3.min, l4.head.min} , ∅ , ∅ 〉 ∈ Alias2τ.

By Definition 18, we can state that the aliasing information contained in A2 is more precise
than that in A1, since A2 v A1. On the other hand, we cannot compare A1 and A3, since the
approximation of the aliasing information related to l2 of A1 is less precise than that of A3,
but the approximation of the aliasing information related to l3 of A1 is more precise than
that of A3.

State σ satisfies the aliasing information contained in both A1 and A2: in Example 6 we
have shown that in σ variable l2 is aliased to l3.min and l4.head.min, while variable l3 is
aliased to l4.head. Hence, σ ∈ γτ(A2) ⊆ γτ(A1). According to A3, l1 is aliased to l3, which
is not the case in σ: (ρ(l1) = `2 , `3 = ρ(l3), which entails σ < γτ(A3). �

We recall some well-known notions from lattice theory. A sequence { ~Ai }i∈N of elements
in Aτ is an ascending chain if n ≤m ⇒ An v Am . That sequence eventually stabilizes iff
∃n0 ∈ N.∀n ∈ N.n ≥ n0 ⇒ An = An0 . The following lemma concerning Aliasdτ guaran-
tees the computability of the unique least solution of our static analysis by a finite Kleene
iteration. For the detailed proof see Appendix B.1.1. It is worth noting that Aliasτ does not
satisfy that property.

Lemma 1 Given a type environment τ ∈ T and an integer d ∈ N, every ascending chain of
elements in Aliasdτ eventually stabilizes.

In order to show that Alias is actually an abstract domain in terms of abstract interpreta-
tion, we must show that the concretization map γ that we introduced in Definition 19 gives
rise to a Galois connection. Once we know that we deal with a Galois connection, all results
of abstract interpretation can be used and in particular the definition of soundness of the
abstract operations. The detailed proof of Lemma 2 can be found in Appendix B.1.2.

Lemma 2 Given a type environment τ ∈ T , and the function γτ : Aliasτ → Cτ, there exists
a function ατ : Cτ → Aliasτ such that 〈Cτ, ατ, γτ,Aliasτ〉 is a Galois connection.
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4.2 The Abstract Constraint Graph

We introduce here the notion of extended control flow graph (eCFG), i.e., a control flow
graph extracted from a .jar archive composed of all classes belonging to the program un-
der analysis, as well as of all classes from the auxiliary libraries that the program uses. Sim-
ilarly to the traditional control flow graph (Section 2), eCFG is composed of a set of nodes
corresponding to different bytecode instructions belonging to the program, and a set of arcs
that connect those nodes. Differently from the traditional control flow graph, eCFG contains
some special nodes and special arcs that are not present in the former. This section formally
introduces both traditional and special nodes and arcs. After the eCFG is constructed, its
arcs are annotated by different propagation rules defined in this section, and the resulting
graph is called abstract constraints graph (ACG).

Definition 20 (eCFG) Let P be the program under analysis enriched with all the methods
from the libraries that it uses, already in the form of a CFG of basic blocks for each method
or constructor (Section 2). The extended control flow graph (eCFG) for P is a directed graph
〈V ,E 〉 (nodes, arcs) where:

1. V contains a node ins for each bytecode instruction ins in P ;
2. for each method or constructor m in P , V contains nodes exit@m and exception@m ,

representing the normal and the exceptional ends of m;
3. each node contains an abstract element representing an approximation of the information

related to the property of interest at that point;
4. E contains directed arcs with one (1−1) or two (2−1) sources and always one sink.

Each arc has a propagation rule i.e., a function over the abstract domain, from the ap-
proximation(s) contained in its source(s) to that contained in its sink. We distinguish the
following types of arcs:

– Sequential arcs: if ins is a bytecode instruction in P , distinct from call, immediately
followed by a bytecode instruction ins′, distinct from catch, then a 1−1 sequential
arc is built from ins to ins′ ;

– Final arcs: for each return t and throw κ instructions occurring in a method or a
constructor m of P , there are 1−1 final arcs from return t to exit@m and from
throw κ to exception@m , respectively;

– Exceptional arcs: for each bytecode instruction ins throwing an exception, imme-
diately followed by a catch, an 1−1 exceptional arc is built from ins to catch ;

– Parameter passing arcs: for each call m1 . . .mq occurring in P with π parameters
(including the implicit parameter this) we build, for each 1≤w ≤q , a 1−1 param-
eter passing arc from call m1 . . .mq to the node corresponding to the first bytecode
instruction of the method mw ;

– Return value arcs: for each call insC = call m1 . . .mq to a method with π param-
eters (including the implicit parameter this) returning a value of type t,void, and
each subsequent bytecode instruction insN distinct from catch, we build, for each
1≤w ≤q , a 2−1 return value arc from insC and exit@mw (2 sources, in that order)
to insN ;

– Side-effects arcs: for each call insC = call m1 . . .mq to a method with π parameters
(including the implicit parameter this), and each subsequent bytecode instruction
insN , we build, for each 1≤w ≤ q , a 2−1 side-effects arc from insC and exit@mw

(2 sources, in that order) to insN , if insN is not a catch and a 2 − 1 side-effect arc
from insC and exception@mw (2 sources, in that order) to catch .
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node anode c

catch

node 11
exception@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw java.lang.Throwable

E-�19

PP-�21

SE-�23 SE-�23

RV-�22

S-�2

S-�14 S-�2

S-�4E-�20

S-�1

S-�4

S-�7E-�20

F-�16

F-�17

Fig. 10 The eCFG for the method delayMinBy in Fig. 2

The sequential arcs correspond to the non-exceptional executions of all the bytecode
instructions except call, return and throw. The final arcs connect the nodes corresponding
to the last bytecode instruction of each method or constructor m (i.e., return or throw) to
the special nodes exit@m , in the case of return, and exception@m , in the case of throw.
The exceptional arcs represent the exceptional executions of the bytecode instructions that
might launch an exception, i.e., div, rem, new κ, getfield κ.f : t, putfield κ.f : t, arraynew α,
arraylength α, arrayload α, arraystore α, throw and call, and they connect the nodes cor-
responding to these instructions with that related to the catch instruction at the beginning
of their exceptional handlers. The parameter passing arcs link every node corresponding to
a method call to that corresponding to the first bytecode instruction of the method(s) that
might be called there. There exists a return value arc for each dynamic target m of a call
insC returning a value. These arcs have two sources, insC and exit@mw , and they propa-
gate the approximations present at these nodes to the node corresponding to the bytecode
instruction following insC . Moreover, these arcs might enrich the resulting approximation
with some additional abstract elements due to the returned value of m. The execution of
method m might modify the memory where m is executed and this might affect the ap-
proximation at node insC corresponding to the method call insC . The side-effects arcs deal
with these phenomena, i.e., they are 2−1 arcs connecting insC and exit@m (respectively
exception@m ) with the node corresponding to the bytecode instruction (respectively catch)

which follows insC , for each dynamic target m of the call, and propagate the approximation
at insC modified by the side-effects of m’s execution.
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Example 9 In Fig. 10 we give the eCFG of the method delayMinBy introduced in Fig. 2.
Nodes a, b and c belong to the caller of this method and exemplify the arcs related to the call
and return bytecodes. Each arc is decorated with an abbreviation of the following form: T-
]n, where T denotes arc’s type and may have the following values: S, F, E, PP, RV and SE
representing sequential, final, exceptional, parameter passing, return value and side-effects
arcs, respectively. On the other hand, ]n represents the identification of the corresponding
propagation rule (Definitions 21-30). �

In the following we define different propagation rules which are used for the creation of
the ACGs. These propagation rules represent the abstract semantics of our target language
over the abstract domain Alias. We assume the presence of a side-effects approximation.
Namely, we suppose that, for each method or constructor m available in the program under
analysis, or in any of the libraries that the program may use, there exist the following pieces
of information computed statically:

– a set of fields that might be read during any possible execution of m;
– a set of fields that might be updated during any possible execution of m;
– a set of array types of all possible arrays whose elements might be read during any

possible execution of m and
– a set of array types of all possible arrays whose elements might be updated during any

possible execution of m.

These pieces of information can be computed statically, and our tool Julia is able to
provide them. Our analysis works correctly even when these approximations are not avail-
able: we can always assume that each method or constructor might read and modify every
field and elements of arrays of every possible array type. In that case the definite expression
aliasing information we determine would be less precise, but still sound.

According to Definition 20, we distinguish between simple (1−1) arcs, having one
source and one sink node, and multi (2−1) arcs, which have two source and one sink node.
We assume for all 1−1 arcs that τ and τ′ are the static type information at and immedi-
ately after the execution of a bytecode instruction ins, respectively. Moreover, we assume
that τ contains j stack elements and i local variables. We write noStackElements(E) to denote
that an expression E contains no stack elements, i.e., variables(E)∩ {s0, . . . , sj−1} = ∅. In the
following we define the propagation rules related to the definite expression aliasing analysis.

Definition 21 (Sequential arcs) Each sequential arcs of the eCFG connecting nodes ins

and ins′ is annotated with a propagation rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′|τ′ |−1〉, where, for
each 0 ≤ r < |τ′|, A′r is defined as follows:

Rule #1: If ins = const v , then

A′r =

Ar if r , |τ|
{v } if r = |τ|.

Rule #2: If ins = load k t, then

A′r =


Ar ∪ Ar [sj /lk ] if r < {k , |τ|}
Ak ∪ {sj } if r = k

Ak ∪ {lk } if r = |τ|.
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Rule #3: If ins = store k t, then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , k

{E ∈ A|τ|−1 | ¬canBeAffected(E, ins)} if r = k .

Rule #4: If ins ∈ {add, sub,mul, div, rem}, then

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1⊕E2 | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins) if r = |τ|−2,

where ⊕ is +, −, ×, div, % when ins is add, sub, mul, div, rem respectively.
Rule #5: If ins = inc k x , then

A′r =

{E[lk − x/lk ] | E ∈ Ar } if r , k

{E + x | E ∈ Ar , lk < variables(E)} if r = k .

Rule #6: If ins = new κ, then

A′r =

Ar if r , |τ|
∅ if r = |τ|.

Rule #7: If ins = getfield κ.f : t, then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−1

{E.f | E∈A|τ|−1 ∧ ¬canBeAffected(E, ins) ∧ ¬mightModify(E, {f })} if r = |τ|−1.

Rule #8: If ins = putfield κ.f : t, then

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.
Rule #9: If ins = arraynew t[ ], then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−1
∅ if r = |τ|−1.

Rule #10: If ins = arraylength t[ ], then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−1
{E.length | E∈A|τ|−1 ∧ ¬canBeAffected(E, ins)} if r = |τ|−1.

Rule #11: If ins = arrayload t[ ], then

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1[E2] | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins)∧
[E1 and E2 do not invoke any method]} if r = |τ|−2.

Rule #12: If ins = arraystore t[ ], then

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.
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Rule #13: If ins = dup t, then

A′r =


Ar ∪ Ar [sj /sj−1] if r < |τ|−1
A|τ|−1 ∪ {sj } if r = |τ|−1
A|τ|−1 ∪ {sj−1} if r = |τ|.

Rule #14: If ins ∈ {ifeq t, ifne t, catch, exception_is K }, then

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.
Let us now explain, in more detail, the propagation rules introduced in Definition 21.

The sequential arcs link an instruction ins to its immediate successor ins′ propagating, for
every variable v at ins′, all those expressions E aliased to v at ins that cannot be affected by
ins itself, i.e., such that ¬canBeAffected(E, ins) holds. However, some new alias expressions
might be added to the initial approximation as well. We discuss the rules introduced above:

const v - in this case, a new variable v|τ| = sj is pushed onto the operand stack, and its
value is v , while everything else stays unchanged. Therefore, for each variable available
in dom(τ), we just propagate its current approximation, while the approximation related
to v|τ| is {v }.

load k t - In this case a new variable (sj ) is pushed onto the operand stack and its value is
equal to that of lk . Therefore, for each variable vr ∈ dom(τ), we propagate all the alias
expressions already present in Ar and by using the fact that lk = sj , we also add all
those alias expression from Ar obtained by replacing all the occurrences of lk with sj .
Obviously, sj and lk become alias expressions of sj and lk respectively.

store k t - In this case the topmost variable is popped from the operand stack (sj−1) and its
value is assigned to lk . Therefore, all the alias expressions involving lk and sj−1 in the
initial approximations Ar , for any r , k , should be removed from the final ones (by
Definition 16, canBeAffected(E, store k t) = true if and only if lk or sj−1 occurs in E). On
the other hand, the final approximation related to lk contains all the alias expressions
E ∈ A|τ|−1 belonging to the initial approximation related to sj−1 which are not modified
by the store k t, i.e, such that ¬canBeAffected(E, store k t) holds.

add, sub, mul, div, rem - in this case two topmost stack elements (memorized in sj−1 and
sj−2) of integer type are popped from the operand stack and the result of an opportune
arithmetic operations applied to these two values is pushed back onto the operand stack
(memorized in sj−2). Therefore, for each variable vr from dom(τ′), except sj−2, we
propagate all those alias expressions belonging to their initial approximations which
might not be affected by this bytecode instruction, i.e., the ones not containing any
occurrence of sj−1 and sj−2. On the other hand, the expressions definitely aliased to the
new topmost stack element sj−2 are of form E1 ⊕E2, where ⊕ is the arithmetic operation
corresponding to this bytecode instruction, while E1 and E2 are expressions definitely
aliased to sj−1 and sj−2 before the bytecode instruction is executed and which are not
affected by this bytecode instruction.

inc k x - in this case the value memorized in the local variable lk is incremented by x .
Therefore, the final approximation related to each variable except lk is composed of all
the expressions available in the initial one where all the occurrences of lk are replaced
with lk − x . In the case of lk , we state that it becomes a definite alias of its old aliases
(where lk did not occur) plus x .

new κ - In this case a new object is created and the location it is bound to is pushed onto the
operand stack, in sj . Therefore, for each variable, except sj , its initial approximation is
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kept. On the other hand, since sj holds a fresh location, we soundly assume there is no
expressions aliased to sj .

getfield κ.f : t - In this case the location memorized in the topmost operand stack element
sj−1 is replaced with the value of the field f of the object corresponding to the for-
mer. Therefore, for each variable, except sj−1, its final approximation contains all the
alias expressions from the initial one which are not modified by this bytecode instruc-
tion, i.e., the ones with no occurrence of sj−1 (Definition 16). On the other hand, the
final approximation related to sj−1 contains the expressions E.f where E is aliased to
sj−1 before the bytecode instruction is executed, it cannot be modified by the latter
(¬canBeAffected(E, ins), i.e., E contains no occurrences of sj−1) and no evaluation of
E might modify the field f (¬mightModify(E, {f })).

putfield κ.f : t - In this case the value memorized in the topmost operand stack element sj−1 is
written in the field f of the object corresponding to the location memorized in the second
topmost operand stack element sj−2, and both sj−1 and sj−2 are popped from the operand
stack. Hence, for each variable, we propagate all the alias expressions E belonging to its
initial approximation which cannot be modified by this bytecode instruction, i.e., such
that there is no occurrence of sj−2 and sj−1 in E and such that no evaluation of E might
read the field f (Definition 16).

arraynew α - In this case the topmost operand stack element containing an integer value
is replaced with the fresh location bound to the new created array. The propagation is
similar to the case of new κ.

arraylength α - In this case the topmost operand stack element sj−1 containing a reference
to an array is replaced with the length of that array. Therefore, for each variable, except
sj−1, its final approximation contains all the alias expressions from the initial one which
are not modified by this bytecode instruction, i.e., the ones in which sj−1 does not ap-
pear (Definition 16). On the other hand, the expressions aliased to sj−1 are of the form
E.length, where E is an alias expression of the old topmost stack element, which is not
modified by this bytecode instruction.

arrayload α - In this case the k -th element of the array corresponding to the location memo-
rized in the second topmost operand stack element sj−2, where k is the topmost operand
stack element, is written onto the top of the stack. Previously, both sj−1 and sj−2 are
popped from the stack. The propagation rule and its explanation are analogous to the
case of arithmetic operations.

arraystore α - In this case the value memorized in the topmost operand stack element sj−1

is written in the k -th element of the array corresponding to the location memorized in
the third topmost operand stack element sj−3, where k is the integer value memorized
in the second topmost operand stack element. All sj−1, sj−2 and sj−3 are popped from
the operand stack. The propagation rule and its explanation are analogous to the case of
putfield κ.f : t.

dup t - In this case, the new topmost stack element sj is a copy of the former topmost
stack element sj−1, hence they are trivially aliased to each other, and all the alias ex-
pressions of sj−1 at ins become the alias expressions of sj at ins′. More precisely, we
let A′|τ|−1 = A|τ|−1 ∪ {sj } and A′|τ| = A|τ|−1 ∪ {sj−1}. The approximations of the aliasing ex-
pressions of all other variables are enriched by all the expressions containing sj−1 al-
ready present in those approximations where occurrences of sj−1 are replaced by sj :
A′r = Ar ∪ Ar [sj /sj−1].

otherwise - catch and exception_is K do not modify the initial state, and therefore do not
change the definite expression aliasing information available at that point, while ifne t
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and ifeq t just pop the topmost operand stack element, and therefore do not modify the
aliasing expressions of any other variable which contains no occurrence of sj−1.

Example 10 In Fig. 10 we introduced the ACG of the method delayMinBy from Fig. 2. Its
arcs are decorated by the strings of the following form: T-]n. The meaning of T has already
been explained in Example 9, while ]n are identifications of the propagation rules.

In the following examples for each node x we let τx , ix and jx denote the type en-
vironment, number of local variables and number of stack elements at x respectively. We
let Ax = 〈Ax

0 , . . . ,A
x
(ix +jx−1)〉 denote an approximation of the actual aliasing information at

x , where each Ax
r denotes a set of expressions definitely aliased to the local variable lr if

0 ≤ r < ix or to a stack element sr−ix if 0 ≤ r − ix < jx . Moreover, we assume that ia = 3,
ja = 2 and that the call at node a occurs in a context with

Aa
0 = ∅,Aa

1 = ∅,Aa
2 = {v1.getFirst(), v3},Aa

3 = {v1.getFirst(), v2} and Aa
4 = {15}. (1)

�

The following example illustrates an application of some of the propagation rules intro-
duced by Definition 21.

Example 11 Consider, for instance, nodes 2, 3, 4 and 5 in Fig. 10, and suppose that i2 = 2
and j2 = 1, i.e., at node 2 there are 2 local variables (v0 = l0 and v1 = l1) and 1 operand
stack element (v2 = s0). Moreover, suppose that the variables v0, v1 and v2 are respectively
aliased to the following sets of expressions:

A2
0 = {v2}, A2

1 = ∅ and A2
2 = {v0}.

Nodes 2 and 3 are linked by a sequential arc with propagation rule #7. It can be easily deter-
mined that i3 = 2 and j3 = 1. By Definition 16, at node 2, ¬canBeAffected(E, getfield min) =

v2 < variables(E). Moreover, according to Definition 17, mightModify(v0, {min}) = false. Using
these facts and Definition 21 (Rule #7) we obtain:

A3
0 = {E ∈ A2

0 | ¬canBeAffected(E, getfield min)} = {E ∈ {v2} | v2 < variables(E)} = ∅
A3

1 = {E ∈ A2
1 | ¬canBeAffected(E, getfield min)} = {E ∈ ∅ | v2 < variables(E)} = ∅

A3
2 = {E.min | E ∈ A2

2 ∧ ¬canBeAffected(E, getfield min) ∧ ¬mightModify(E, {min})}
= {E.min | E ∈ {v0} ∧ v2 < variables(E) ∧ ¬mightModify(E, {min})} = {v0.min}.

Thus, Π#7(A2) = 〈∅,∅, {v0.min}〉.
Nodes 3 and 4 are linked by a sequential arc with propagation rule #2, and at node 4 we

have i4 = j4 = 2. If we assume that A3 = Π#7(A2), then, by Definition 21(Rule #2):

A4
0 = A3

0 ∪ A3
0[v3/v1] = ∅

A4
1 = A3

1 ∪ {v3} = ∅ ∪ {v3} = {v3}
A4

2 = A3
2 ∪ A3

2[v3/v1] = {v0.min} ∪ {v0.min}[v3/v1] = {v0.min}
A4

3 = A3
1 ∪ {v1} = ∅ ∪ {v1} = {v1}

Thus, Π#2(A3) = 〈∅, {v3}, {v0.min}, {v1}〉.
Nodes 4 and 5 are linked by a sequential arc with propagation rule #4, and at node 5

we have i5 = 2 and j5 = 1. Note that at node 4, by Definition 16, ¬canBeAffected(E, add) =

variables(E)∩{v2, v3} = ∅. If we assume that A4 = Π#2(A3), then, by Definition 21 (Rule #4),
we have:
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A5
0 = {E ∈ A4

0 | ¬canBeAffected(E, add)} = {E ∈ ∅ | v2, v3 < variables(E)} = ∅

A5
1 = {E ∈ A4

1 | ¬canBeAffected(E, add)} = {E ∈ {v3} | v2, v3 < variables(E)} = ∅

A5
2 = {E1 +E2 | E1 ∈A4

2 ∧ ¬canBeAffected(E1, add) ∧ E2 ∈A4
3 ∧ ¬canBeAffected(E2, add)}

= {E1 +E2 | E1 ∈{v0.min} ∧ E2 ∈{v1} ∧ variables(E1) ∩ {v2, v3}=variables(E2) ∩ { v2, v3}=∅}
= {v0.min + v1}

Thus, A5 = 〈∅,∅, {v0.min + v1}〉. �

Definition 22 (Final arcs) Each final arc in the eCFG connecting nodes ins and ins′ is
annotated with a propagation rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′|τ′ |−1〉, where, for each 0≤ r <
|τ′|, A′r is defined as follows:

Rule #15: If ins = return void, then

A′r = {E ∈ Ar | noStackElements(E)}.

Rule #16: If ins = return t, then

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

{E ∈ A|τ|−1 | noStackElements(E)} if r = i .

Rule #17: If ins = throw κ, then

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

∅ if r = i ,

where noStackElements(E) is true if and only if variables(E) ∩ {s0, . . . , sj−1} = ∅, i.e., if E
contains no operand stack elements.

The final arcs introduced in Definition 22 feed nodes exit@m and exception@m for each
method or constructor m. They propagate, for each local variable lk available at exit@m (re-
spectively exception@m ), all those expressions aliased to lk at a return (respectively throw )
where no stack variable occurs. In the case of return t, with t , void, the alias expressions
of the only stack element at exit@m (i.e., vi = s0) are alias expressions of the topmost stack
element at return t (sj−1) with no stack elements. In the case of throw κ, we conservatively
assume that no expression is aliased to the only stack element at exception@m (vi = s0).

Example 12 Consider nodes 7 and 8 in Fig. 10, which are linked by a final arc with prop-
agation rule #16. It can be easily determined that at node 7, i7 = 2 and j7 = 1, there-
fore, the only stack element there is v2 = s0, and noStackElements(E) holds if and only if
v2 < variables(E). Moreover, at node 8 we have i8 = 2 and j8 = 1. If we assume that
A7 = 〈∅,∅, {(v0.min + v1)%60}〉, then, by Definition 22 (Rule #16), we have:

A8
0 = {E ∈ A5

0 | noStackElements(E)} = {E∈∅ | noStackElements(E)}=∅
A8

1 = {E ∈ A5
1 | noStackElements(E)}= {E∈∅ | noStackElements(E)}=∅

A8
2 = {E ∈ A5

2 | noStackElements(E)}= {E∈A7
2 | v2 <variables(E)}= {(v0.min+v1)%60}

Thus, Π#16(A7) = 〈∅,∅, {(v0.min + v1)%60}〉. �
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Definition 23 (Exceptional arcs) Each exceptional arc in the eCFG connecting nodes ins

and ins′ is annotated with a propagation rule λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′|τ′ |−1〉, where, for
each 0≤r < |τ′|, A′r is defined as follows:

Rule #18: If ins = throw κ, then:

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

∅ if r = i ,

where noStackElements(E) is true if and only if variables(E) ∩ {s0, . . . , sj−1} = ∅, i.e., if E
contains no operand stack elements.

Rule #19: If ins = call m1 . . .mn , see Rule #18.
Rule #20: If ins is one of the following bytecode instructions: div, rem, newκ, getfieldκ.f : t,

putfield κ.f : t, arraynew α, arraylength α, arrayload α or arraystore α, see Rule #18.

The exceptional arcs link every instruction that might throw an exception to the catch
at the beginning of their exception handler(s). They propagate alias expressions of local
variables analogously to the final arcs. For the only stack element (vi = s0), holding the
thrown exception, there is no alias expression (Ai = ∅).

Example 13 Consider nodes 2 and 9 in Fig. 10, which are linked by an exceptional arc with
propagation rule #20. Recall that, at node 2, i5 = 2 and j2 = 1, therefore, the only stack
element there is v2 = s0 and noStackElements(E) holds if and only if v2 < variables(E). By
Definition 23 and the hypotheses about A2

0, A2
1 and A2

2 given in Example 11 we obtain:

A7
0 = {E ∈ A2

0 | noStackElements(E)} = {E ∈ ∅ | noStackElements(E)} = ∅
A7

1 = {E ∈ A2
1 | noStackElements(E)} = {E ∈ ∅ | noStackElements(E)} = ∅

A6
2 = ∅

Thus, Π#20(A2) = 〈∅,∅,∅〉. �

Definition 24 (Parameter passing arcs) For each call m1 . . .mq with π parameters (in-
cluding the implicit parameter this), for each 1≤w ≤q we build an 1−1 parameter passing
arc from call m1 . . .mq to the node corresponding to the first bytecode of mw , with the prop-
agation rule (Rule #21) λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′π−1〉, where, for each 0≤r <π, A′r = ∅.

The above definition states that the approximation at the beginning of a method contains no
aliasing information. This might be improved to introduce the possibility of letting abstract
information flow from callers into callees. Our choice is sound but potentially imprecise. We
have chosen that direction since, in practice, it is highly unlikely that all calls to a method
will always provide the same parameter aliased to an alias expression, always the same for
all possible calls. Moreover, for the analysis of libraries, the starting approximation of public
methods can only be considered empty or the results would be unsound.

In the following we give some auxiliary definitions, that are necessary for the defini-
tion of the propagation rules for return value and side-effects arcs. We start with a map
noParameters(), that specifies whether there exists an actual argument of a method call among
the variables appearing in an expression.

Definition 25 (noParameters) Consider a type environment τ ∈ T related to a program
point with a method call call m1 . . .mn , and suppose that this method has π actual arguments
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(including the implicit parameter this). For every expression E ∈ Eτ, we define a map
noParameters : Eτ → {true, false} as:

noParameters(E) = variables(E) ∩ {v|τ|−π, . . . , v|τ|−1} = ∅

(we recall that variables v|τ|−π, . . . , v|τ|−1 correspond to π topmost operand stack elements).

The following definition specifies when the executions of a method are safe for an alias
expression available at the point where the method is invoked.

Definition 26 (safeExecution) Consider a type environment τ ∈ T related to a program
point with a method call insC = call m1 . . .mn , and suppose that this method has π actual
arguments (including the implicit parameter this). For every expression E ∈ Eτ, we define
a map safeExecution(·, insC ) : Eτ → {true, false} as:

safeExecution(E, insC ) = noParameters(E) ∧ ¬canBeAffected(E, insC ).

Namely, we say that the executions of insC are safe for an expression E, if all possible
executions of all the dynamic targets mi of insC cannot affect E (¬canBeAffected(E, insC )
holds) and if no actual parameter of insC appears in E (i.e., noParameters(E) holds). The for-
mer requires that every field that might be read by E must not be modified by any execution
of any dynamic target mi of insC , and that no execution of any dynamic target mi of insC
might write into an array whose elements might be read by E (Definition 16). The latter is
required since the actual parameters of insC disappear from the operand stack after insC is
executed.

The following definition will be useful soon to find alias expressions R of the return
value of a method call that can be rephrased in the callee as alias expressions E that only
use variables of the callee. For that, we require that the local variables lk0 , . . . , lkw occurring
in R are all formal parameters of the callee and that the corresponding actual parameters of
the caller are aliased to some alias expressions Ek0 , . . . ,Ekw . Moreover, E and the Eki , for
i = 0, . . . ,w , must not be affected by the execution of the call.

Definition 27 (safeAlias) Consider a type environment τ ∈ T related to the program point
of insC = call m1 . . .mn , and suppose that the callees have π actual arguments (includ-
ing the implicit parameter this). Let E ∈ Eτ have the form E = R[Ek0/lk0 , . . . ,Ekw /lkw ]
with ki < π for all i , where such lki are all the local variables occurring in R. For every
approximation A = 〈A0, . . . ,A|τ|−1〉 ∈ Aliasτ, we define a map safeAlias(·,A, insC ) : Eτ →
{true, false} that is false whenever E has not the above form, and is otherwise defined as

safeAlias(E,A, insC ) =
∧w

i=0(Eki ∈ A|τ|−π+ki ) ∧
∧w

i=0 safeExecution(Eki , insC )∧
[no evaluation of E might modify any field from fields(E)

or any array element of type t if E also might read
an array element of type t′ where t′ ≤ t or t ≤ t′].

Finally, we specify when an alias expression of the returned value of a method available
at the non-exceptional end of that method is safe at that point.

Definition 28 (safeReturn) Consider a type environment τ∈T related to a non-exceptional
end of a method m, and suppose that this method has π formal arguments (including the
implicit parameter this). For every expression R ∈ Eτ, we define a map safeReturn(·,m) :
Eτ → {true, false} as:

safeReturn(R,m) = variables(R) ⊆ {l0, . . . , lπ−1} ∧ ∀lk ∈ variables(R), lk is not modified by m

(we recall that the formal arguments of a callee are held in the local variables l0, . . . , lπ−1).
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We say that an alias expression R of a return value at a non-exceptional end of a callee
m is safe at that point (i.e., safeReturn(R,m) holds) if only local variables holding the formal
arguments of m (l0, . . . , lπ−1) appear in R and none of them might be modified by m. The
latter condition requires that for each lk ∈ variables(R), no store k t nor inc k x occurs in m.

We can finally define the propagation rules for the return value and side-effects arcs
of the ACGs for the definite expression aliasing analysis. These arcs have two sources,
since they transfer local information that is not potentially affected by the call over the
call. Namely, they use as source the approximation at the end of the callee, but also the
approximation at the point of call, inside the caller.

Definition 29 (Return value arcs) For each insC = call m1 . . .mq to a method with π
actual arguments (including the implicit parameter this) returning a value of type t,void,
and each subsequent bytecode instruction insN distinct from catch, we build, for each 1≤
w ≤ q , a 2−1 return value arc from insC and exit@mw (2 sources, in that order) to insN .
Suppose that the static type information at insC , exit@mw and insN are τC , τE and τN ,
respectively. Given A = 〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉 ∈ AliasτC and R = 〈R0, . . . ,R|τE |−1〉 ∈
AliasτE , the propagation rule of these arcs is defined as λA,R.〈A′0, . . . ,A′|τC |−π〉, where for
each 0≤r ≤|τC | − π, A′r is defined by the Rule #22:

A′r =


Ar if r , |τC |−π
{E=R[E0, . . . ,Eπ−1/l0, . . . , lπ−1]|R∈R|τE |−1 ∧ safeReturn(R,mw ) ∧ safeAlias(E,A, insC )}
∪ {E=E0.m(E1, . . . ,Eπ−1) | safeAlias(E,A, insC )} if r = |τC |−π.

Definition 30 (Side-effects arcs) For each insC = call m1 . . .mq to a method with π actual
arguments (including the implicit parameter this), and each subsequent bytecode instruc-
tion insN , we build, for each 1≤w ≤ q , a 2−1 side-effects arc from insC and exit@mw (2
sources, in that order) to insN , if insN is not a catch and a 2−1 side-effects arc from insC

and exception@mw (2 sources, in that order) to catch . Suppose that the static type informa-
tion at insC , exit@mw (or exception@mw ) and insN are τC , τE and τN respectively. The
propagation rule of these arcs is defined as:

λ〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉, 〈R0, . . . ,R|τE |−1〉.〈A′0, . . . ,A′|τN |−1〉,

where for each 0≤r < |τN |, A′r is defined by Rule #23:

A′r =

{E ∈ Ar | safeExecution(E, insC )} if r , |τC |−π
EτN if r = |τC |−π.

There exists a return value arc for each dynamic target mw of a call insC returning
a value. Rule #22 considers 〈A0, . . . ,A|τC |−1〉 and 〈R0, . . . ,R|τE |−1〉, approximations at insC

and exit@mw , and builds the alias expressions related to the returned value v|τC |−π = v|τN |−1 at
the node corresponding to the instruction which follows the call, insN . An alias expression
R ∈ R|τE |−1 of the computed value v|τE |−1 at exit@mw can be turned into an alias expression
of v|τC |−π at insN if

1. R is safe at mw and
2. every occurrence of a formal parameter lk in R is replaced by an alias expression Ek ∈

A|τC |−π+k of the corresponding actual parameter v|τC |−π+k at insC , which is safe w.r.t.
insC .
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Moreover, E = E0.mw (E1, . . . ,Eπ−1) can be an alias of v|τC |−π at insN if it is safe w.r.t. insC .
The side-effects arcs consider the alias expressions E of the variables vr different from

the actual parameters (v|τC |−π, . . . , v|τC |−1) of the method at insC and insert them among the
alias expressions of vr also at insN if they are safe w.r.t. insC .

Example 14 Nodes a and 8 are linked to node b through a return value and a side-effects
arc with propagation rules #22 and #23. We recall that ia = 3, ja = π = 2 (Example 10),
i6 = 2, j6 = 1 (Example 12) and the static type of the returned value of delayMinBy is
not void. Therefore, ib and jb have to be 3 and 1 respectively. Let insC denote the call to
delayMinBy at node a and let us first consider the return value arc and let us assume that
Aa = 〈Aa

0,A
a
1,A

a
2,A

a
3,A

a
4〉 (Equation 1) and A8 = Π#16(A7) (Example 12). Application of the

propagation rule #22 (Definition 29), on the pair (Aa,A8) gives: Ab
r = Aa

r for 0 ≤ r ≤ 2 and

Ab
3 = {E=R[E0,E1/l0, l1]|R∈A8

2 ∧ safeReturn(R, delayMinBy) ∧ safeAlias(E,Aa, insC )}
∪ {E = E0.delayMinBy(E1) | safeAlias(E,Aa, insC )}.

(2)
Consider the alias expression R = (v0.min + v1)%60, aliased to v2 at node 8, i.e.,

R ∈ A8
2. (3)

It is clear that only formal parameters of delayMinBy (l0 and l1) appear in R. Moreover,
it is possible to statically determine that delayMinBy does not modify l0 and l1 since that
method contains no store nor inc instructions (Fig. 2). Thus,

safeReturn(R, delayMinBy) = true. (4)

It is worth noting that the formal parameters l0 and l1 (node 1) correspond to the actual
parameters v3 = s0 and v4 = s1 (node a) of delayMinBy. By (2), an alias expression
E of v3 = s0 at node b (holding the returned value of delayMinBy) can be obtained by
substituting all occurrences of l0 and l1 in R by alias expressions E0 and E1 of s0 and
s1 at node a respectively, only if E is safe w.r.t. insC , i.e., if safeAlias(E,Aa, insC ) holds.
By the hypotheses introduced in Example 10, the alias expressions of s0 at a are v2 and
v1.getFirst(), while the only alias expression of s1 at a is 15. These expressions contain
no actual parameter of the call at node a. Let us show that E = R[v1.getFirst(), 15/l0, l1] =

(v1.getFirst().min + 15)%60 is safe w.r.t. insC . First of all we have:

v1.getFirst() ∈ Aa
3 and 15 ∈ Aa

4. (5)

It is clear that no execution of delayMin might modify the evaluation of 15, since the latter
is a constant. Thus,

safeExecution(15, insC ) = true. (6)

On the other hand, delayMinBy does not modify any field (Fig. 2), and therefore, it never
modifies any field that might be read during any evaluation of v1.getFirst(), which implies
that ¬canBeAffected(v1.getFirst(), insC ) holds, and therefore

safeExecution(v1.getFirst(), insC ) = true. (7)

Finally, getFirst reads no array element and, by Definition 17, modifies no fields:

mightModify(v1.getFirst().min + 15, fields(v1.getFirst().min + 15))
= mightModify(v1.getFirst().min,F ) ∨ mightModify(15,F )
= mightModify(v1.getFirst(),F ) ∨ false
= false,

(8)
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where F = {List.head:Object, Event.min:int}. From Equations 6, 7 and 8 we obtain
safeAlias(E,Aa, insC ) = true, which, together with (3) and (4) implies that E is an alias ex-
pression of v3 at node b. We can similarly show that also the alias expression R[v2, 15/l0, l1]
= (v2.min + 15)%60 is an alias expression of v3 at b. It can be easily shown that also
v1.getFirst().delayMinBy(15) and v2.delayMinBy(15) are safe w.r.t. insC . Namely,

– v1.getFirst() ∈ Aa
3 and 15 ∈ Aa

4;
– safeAlias(v1.getFirst(),Aa, insC ) holds (see (7));
– safeAlias(15,Aa, insC ) holds (see (6);
– getFirst reads no array elements and by (3) modifies no fields that might be read by

v1.getFirst() and 15.

Hence, safeAlias(v1.getFirst.delayMinBy(15),Aa, insC ) holds. It can be similarly shown
that also safeAlias(v2.min+ 15,Aa, insC ) holds. Therefore, Rule #22 gives rise to the follow-
ing aliasing information:

Ab′
0 =Ab′

1 = ∅

Ab′
2 ={v3, v1.getFirst()}

Ab′
3 ={(v1.getFirst().min+15)%60, v1.getFirst().delayMinBy(15),

(v2.min+15)%60, v2.delayMinBy(15)}.

Moreover, rule #23 states that an alias expression E of any local variable lk at node b
is an alias expressions of the same variable at node a if E is safe w.r.t. the executions of
delayMinBy (i.e., if safeExecution(E, insC )), while any expression can be an alias of v3 at
node b. It is obvious that insC is not safe for v3 ∈ Aa

2 (since noParameters(v3) = false), while
it is safe for v1.getFirst(), as we have already shown above (see (7)). Therefore, rule #23
gives rise to the following aliasing information:

Ab′′
0 =Ab′′

1 = ∅

Ab′′
2 ={v1.getFirst()}

Ab′′
3 =Eτb

Hence, there are two arcs leading to node b, and bringing aliasing approximations Ab′ and
Ab′′ . By Definition 18 we obtain the aliasing information at node b as:

Ab = Ab′ t Ab′′

= 〈Ab′
0 ∩ Ab′′

0 ,Ab′
1 ∩ Ab′′

1 ,Ab′
2 ∩ Ab′′

2 ,Ab′
3 ∩ Ab′′

3 〉
= 〈∅,∅,Ab′′

2 ,Ab′
3 〉.

�

4.3 Solution of the Constraints

The ACG of the program under analysis introduces, for each of its nodes, a set of constraints:
one constraint for each arc reaching the node. Every correct solution of these constraints is a
possible, not necessarily minimal, result of the static analysis determined by that ACG. The
following definition shows how the constraints are extracted from an ACG.
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Definition 31 (Constraints) Let N be a node of an ACG and AN the approximation of
the information contained in that node. Suppose that there are k arcs whose sink is N and
for each 1 ≤ i ≤ k , let Π i and approx(i) respectively denote the propagation rule and the
approximation of the property of interest at the source(s) of the i th arc. These arcs give rise
to the following constraints:

Π1(approx(1)) v AN , . . . , Π
k (approx(k )) v AN .

In order to reduce the number of constraints, there exists the equivalent form:

k⊔
i=1

Π i (approx(i)) v AN . (9)

Definitions 18 and 31 entail that if k arcs reach the same node n, bringing to it k approx-
imations, i.e., k sets of alias expressions for each variable at n, then the approximation of the
actual aliasing information for each variable v at n should be included (⊆) in the intersection
of the k sets related to v .

Example 15 Fig. 11 shows the constraints extracted from the ACG obtained by annotating
the eCFG introduced in Example 9. These constraints concern the method delayMinBy
only, and not the whole program under analysis. �

Π#21 (Aa) v A1 Π#1
(
A5

)
v A6 Π#20

(
A2

)
t Π#20

(
A6

)
v A9

Π#2
(
A1

)
v A2 Π#4

(
A6

)
v A7 Π#22

(
Aa,A8

)
t Π#23

(
Aa,A8

)
v Ab

Π#7
(
A2

)
v A3 Π#16

(
A7

)
v A8 Π#19 (Aa) t Π#23

(
Aa,A11

)
v Ac

Π#2
(
A3

)
v A4 Π#14

(
A9

)
v A10 >a v Aa

Π#4
(
A4

)
v A5 Π#17

(
A10

)
v A11

Fig. 11 The constraints extracted from the ACG given in Fig. 10

In the following we briefly discuss the existence and uniqueness of the solution of the
system of constraints extracted from the ACG. This section is inspired by [27, Chapter 1.3].

Definition 32 Suppose that there are x nodes in the ACG under analysis, and for each 1 ≤
n ≤ x , let τn and An be the static type information and the approximation concerned with
the n th node and let d ∈ N be a fixed expressions’ depth. We let EAd = (Aliasdτ1

× . . . ×
Aliasdτx ) denote the set of tuples whose n th element represents the approximation contained
in the n th node. Let ~EA = 〈A1, . . . ,Ax 〉 and ~EA′ = 〈A′1, . . . ,A′x 〉 be two arbitrary elements
of EAd . Consider the following ordering:

~EA ~v ~EA′ iff ∀1 ≤ n ≤ x .An v A′n .

This ordering gives rise to the following bottom (~⊥d ) and top (~>d ) elements:

~⊥d = 〈⊥d
τ1
, . . . ,⊥d

τx
〉 ~>d = 〈>d

τ1
, . . . ,>d

τx
〉.

Moreover, the join ~t and the meet ~u operators over EAd are defined as:

~EA ~t ~EA′ = 〈A1 t A′1, . . . ,Ax t A′x 〉 ~EA ~u ~EA′ = 〈A′1 u A′1, . . . ,Ax u A′x 〉.
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Definition 33 Consider a function F operating over EAd :

F : EAd → EAd

F ( ~EA) = 〈F1( ~EA), . . . ,Fx ( ~EA)〉,

where Fn:EAd→Aliasnτn represents the constraint associated to the n th node (Equation 9).

The following theorem shows how the least solution of the equation system F ( ~EA) =
~EA can be computed. Its proof is given in Appendix B.2.1.

Theorem 1 The least solution of the equation system F ( ~EA) = ~EA exists and can be char-
acterized as

lfp(F ) =
~⊔

n
Fn (~⊥),

where given ~EA ∈ EAd , the i th power of F in ~EA is inductively defined as follows:{
F 0( ~EA) = ~EA

F i+1( ~EA) = F (F i ( ~EA)).

Moreover, the constraint system F ( ~EA)~v ~EA and the equation system ~EA = F ( ~EA) have
the same least solution.

Finally, the solutions of the abstract constraint graph, i.e., of its corresponding static
analysis can be characterized.

Definition 34 (Definite Expression Aliasing Analysis) The solution of an ACG is the
least assignment of an abstract element An ∈ Aliasdτn to each node n of the ACG, ~EA =

〈A1, . . . ,Ax 〉 ∈ EAd , that satisfies the constraints extracted from the ACG and an initial con-
straint at the beginning of the program, i.e., such that F ( ~EA) ~v ~EA and A1 = > hold, where
we assume that A1 is the node corresponding to the first statement of the main method of
the program under analysis.

4.4 Soundness of our Approach

In this section we provide a theorem stating that our analysis sound. More precisely, sup-
pose that we statically analyze a program using our Definite Expression Aliasing Analysis,
and then we execute this program with an arbitrary input until one particular instruction.
We show that the program state obtained at that point is included in the concretization of
the abstract aliasing information concerning that point that we computed statically. This
shows that our propagation rules correctly simulate the semantics of programs with respect
to the definite aliasing information. The detailed proof of the theorem can be found in Ap-
pendix B.3.7.

Theorem 2 Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest
→
→

b1· · ·
bm
‖ σ〉 :: a be an execution of our oper-

ational semantics, from the block bfirst(main) starting with the first bytecode instruction of
method main, ins0, and an initial state ξ ∈ Στ0 , to a bytecode instruction ins and assume
that this execution leads to a state σ ∈ Στ, where τ0 and τ are the static type information
at ins0 and ins, respectively. Let A ∈ Aliasτ be the reachability approximation at ins, as
computed by our reachability analysis starting from A0. Then, σ ∈ γτ(A) holds.
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5 Implementation

We have implemented our definite expression aliasing analysis inside the Julia analyzer for
Java bytecode (http://www.juliasoft.com) and we have analyzed some real-life bench-
mark programs. These benchmarks are reported in Fig. 12. Some are Android applications,
that we analyze after being exported in Java bytecode format from the Eclipse IDE used for
development. Hence we do not currently analyze their Dalvik bytecode. The benchmarks
are analyzed together with most of the libraries that they use. In particular, in table 12 we
report the libraries included in the analysis of each benchmark. Of course, the standard Java
library (java.*) and the Android library (android.*, for Android benchmarks only) are
always included and we do not report it in the figure. The fact that a library is included
does not mean that all its code is analyzed: only the portion that is actually used by the
benchmark is analyzed, and this is extracted through a traditional class analysis for object-
oriented code [31]. The Android benchmarks are Mileage, OpenSudoku, Solitaire and Tilt-
Mazes1; ChimeTimer, Dazzle, OnWatch and Tricorder2; TxWthr3; VoiceRecognition, Cube-
LiveWallpaper, AccelerometerPlayActivity, SkeletonApp, AbdTest, Snake, BackupRestore,
SoftKeyboard, MultiResolution, LunarLander, TestAppv2, TicTacToe, Spinner, TippyTip-
per, JetBoy, SampleSyncAdapter, NotePad, HoneycombGallery, Real3D, GestureBuilder,
BluetoothChat, SearchableDictionary, ContactManager, Home and Wiktionary, that are all
sample programs from the Android 3.1 distribution by Google4. The Java programs are
JFlex, a lexical analyzers generator5; Plume, a library by Michael D. Ernst6; Nti, a non-
termination analyzer by Étienne Payet7; Lisimplex, a numerical simplex implementation
by Ricardo Gobbo8; avrora, an AVR simulation and analysis framework9; luindex, an in-
dexer of documents, h2, a database benchmark, and sunflow, a ray tracer, from the DaCapo
benchmark suite10; hadoop-common, a software for distributed computing11; and our julia
analyzer itself12.

Experiments have been performed on a Linux quad-core Intel Xeon machine running at
3.10GHz, with 12 gigabytes of RAM.

5.1 Results w.r.t. the expression aliasing analysis

By only considering the analysis introduced in this article, Fig. 12 shows that it is quite fast
and scales to large software with a cost in time that has never exploded in our experiments.
All analyses could be completed with less than one gigabyte of RAM. In the same figure,
the last column on the right reports the average size of the set of expression aliases for each
variable. We do not consider the tautological and trivial alias of a variable with itself. That

1 http://f-droid.org/repository/browse/
2 http://moonblink.googlecode.com/svn/trunk/
3 http://typoweather.googlecode.com/svn/trunk/
4 http://developer.android.com/tools/samples/index.html
5 http://jflex.de
6 http://code.google.com/p/plume-lib
7 http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
8 http://sourceforge.net/projects/lisimplex
9 http://compilers.cs.ucla.edu/avrora/

10 http://www.dacapobench.org
11 http://hadoop.apache.org
12 http://www.juliasoft.com
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id name libraries lines methods runtime size
1 nti 13915 1653 0.51 0.17
2 lisimplex 25564 2729 1.28 0.15
3 avrora 38165 5006 3.29 0.12
4 JFlex 41365 4286 1.96 0.28
5 plume 44028 4646 2.63 0.12
6 VoiceRecognition 44974 5094 2.40 0.03
7 CubeLiveWallpaper 45891 5197 2.22 0.27
8 AccelerometerPlayActivity 47913 5394 2.34 0.19
9 SkeletonApp 57399 6371 3.49 0.32
10 AbdTest 58020 6402 6.14 0.14
11 Snake 58606 6473 3.11 0.26
12 BackupRestore 58706 6471 3.23 0.24
13 SoftKeyboard 58819 6535 4.31 0.35
14 MultiResolution 58917 6542 3.03 0.86
15 LunarLander 59122 6519 3.15 0.2
16 TestAppv2 59889 6587 3.14 0.35
17 TicTacToe 59943 6657 3.13 0.37
18 Spinner 61912 6759 3.32 0.42
19 luindex lucene-core, lucene-demos 62050 6409 3.18 0.18
20 Solitaire 63507 6988 3.46 0.32
21 TippyTipper 65310 7322 3.36 0.89
22 JetBoy 65874 7189 3.73 0.22
23 SampleSyncAdapter 66646 7348 3.47 0.08
24 NotePad 67066 7372 3.56 0.28
25 sunflow janino 72061 9130 6.18 0.18
26 HoneycombGallery 72352 7879 5.31 0.32
27 Real3D 75001 8179 4.37 0.15
28 TxWthr 75434 8232 43.45 0.35
29 Dazzle hermitandroid 78344 8681 40.34 0.28
30 GestureBuilder 85213 9093 5.06 0.51
31 BluetoothChat 85290 9119 5.07 0.45
32 SearchableDictionary 88034 9392 5.24 0.24
33 ContactManager 88110 9465 5.35 0.48
34 Home 88256 9489 5.22 0.3
35 TiltMazes 90419 9641 5.35 0.39
36 ChimeTimer hermitandroid 90465 9743 6.09 0.26
37 Mileage 104647 11188 6.07 0.16
38 Tricorder hermitandroid 105475 11140 6.57 0.34
39 julia bcel 106117 12495 15.42 0.29
40 Wiktionary 109140 11762 7.54 0.27
41 OnWatch hermitandroid 114391 11928 7.01 0.26

42 hadoop-common
org.w3c.*, javax.security.*

118706 14812 5.91 0.21
guava, protobuf-java, jets3t

43 OpenSudoku 120164 13002 6.59 0.22
44 h2 junit3, derbyTesting, tpcc 183398 17276 14.99 0.17

1Fig. 12 The benchmarks that we have analyzed and the cost and precision of their expression aliasing anal-
ysis. For each benchmark we report the name, the number of non-comment non-blank source code lines that
get analyzed, the number of methods that get analyzed, the time (in seconds) required for our expression
aliasing analysis and the average size of the approximation of each variable (number of alias expressions per
variables). The latter does not include the tautological aliasing of a variable with itself, which is trivial and
irrelevant.

column shows that that size is small, which possibly accounts for the lack of computational
explosion during the analysis. This is important, since a formal study of the worst-case
complexity of our analysis leads to an exponential cost, in theory, as shown below.
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5.2 Theoretical Computational Complexity

A worst-case complexity for our definite aliasing analysis can be estimated as follows. The
number N of alias expressions (Definition 12) over a maximal number v of variables in
scope, a number n of constants (those used in the program text), a number f of field names
and a number m of method names is finite as soon as we fix a maximal depth k for the alias
expressions themselves (Definition 18). More precisely, N is polynomial in v , n, f and m for
a fixed k and exponential in k : N ∈ O(v ·n ·f ·m ·2k ). Note that we consider here the maximal
number v of variables in scope at each given program point, which is usually small, and not
the total number of program variables, that can be very large instead. The approximation of
each program variable is a set of alias expressions; hence that set can only decrease N times,
for each variable, during the analysis. There are at most v such sets at each program point,
one for each variable in scope there. Hence, the chain of possible approximations at a given
program point is long at most v · N . If l is the length of the program, that is, the number of
its program points, the number of iterations is consequently bounded from above by l ·v ·N .
That is, our expression aliasing analysis requires O(l ·v ·N ) iterations until stabilization and
its computational cost is, hence, polynomial in v , n, f and m for a fixed k and exponential
in k : O(v · n · f ·m · 2k ). In our implementation, we have fixed k = 4.

It is interesting to observe that, in practice, very few iterations are needed to converge to
a fixpoint. This is because many alias expressions cannot be generated because they would
not type-check. Moreover, on average, each variable is approximated by very small alias sets
(Fig. 12): in most cases, those sets are empty or singletons. For this reason, the theoretical
computational result that we have just shown is a very pessimistic bound of the actual cost
of the analysis.

5.3 Implementation Optimizations

An abstract Java class Alias is used to represent the alias expressions of Definition 12.
Constants and variables are concrete and non-recursive subclasses of Alias. Other alias ex-
pressions are concrete and recursive subclasses of Alias; for instance, the alias expression
E.f is represented by a subclass FieldOf of Alias that refers to the field f and to another
alias expression, that is E. The reduction of the memory footprint of this representation for
alias expressions is possible and important, since identical or at least similar alias expres-
sions are often used at different program points. Namely, our representation of alias expres-
sions is interned, that is, we never generate two Java objects that stand for the same alias
expression. This allows a maximal sharing of data structures and reduces the memory cost
of our representation (compositum pattern). We achieve this internment through a map that
binds each alias expression e to the unique representative of all alias expressions equal to e.
Since Julia is a parallel analyzer, race conditions must be avoided in the access to that map.
To that purpose, we use a java.util.concurrent.ConcurrentHashMap and its handy
putIfAbsent() method for checking the presence and putting new alias expressions in the
table, atomically. Beyond the reduction of the memory cost, internment has the advantage
that equality of alias expressions can be tested by faster == tests rather than equals() calls.

Sets of alias expressions are hence sets of unique objects. There are many such sets
during the analysis, for each variable in scope at each given program point. Also in this case,
a compact representation is needed. We have achieved this by using bitsets, represented
through arrays of longs (each long contains 64 bits). A fixed enumeration of the alias
expressions relates a given bit position to the expression that it represents. The enumeration
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is built on demand as soon as new alias expressions are created by the analysis. For each bit
set to 1, the alias expression in that enumeration position is assumed to belong to the bitset.

5.4 Benefits for other analyses

Section 5.1 has shown that the aliasing expression analysis can be computed in a few seconds
also for large applications. It remains to show that its results are useful for other, subsequent
analyses, that exploit the availability of definite aliasing information. To that purpose, we
have used our analysis to support Julia’s nullness and termination analyses. In particular,
we use our analysis at the then branch of each comparison if (v!=null) to infer that
the definite aliases of v are non-null there, and at each assignment w.f=exp to infer that
expressions E.f are non-null when exp is non-null and when E is a definite alias of w
whose evaluation does not read nor write f. Moreover, we use it to infer symbolic upper or
lower bounds of variables whenever we have a comparison such as x<y: all definite alias
expressions of y (respectively x) are upper (respectively lower) bounds for x (respectively
y). This is important for the termination analysis of Julia.

Note that our nullness and termination analyses are sound, that is, there are no false
negatives (as long as reflection is not used or only used in a limited way: for instance,
inflation of XML views in Android is supported in Julia [33]); but there are false positives
of course. We have identified actual bugs in the benchmarks, among the places where Julia
signals a possible warning. However, we cannot check by hand hundreds of warnings, on
third-party code. Nevertheless, the nullness analysis of Julia is currently the most precise
available on the market [38] and scales to very large software, as our experiments here
show. The termination analysis of Julia scales almost in the same way, as shown below,
and we have never seen any other report of a termination analysis that scales to that size of
programs. Nevertheless, this article is not about nullness nor termination nor their precision.
We use those analyses only to support the thesis that definite aliasing analysis is useful to
support other analyses.

Fig. 13 reports the times for nullness and termination analysis. These are total times, that
is, they include everything: from the parsing of the .jar files, to ours and other supporting
analyses, to the presentation of the warnings to the user. In that figure, we have copied the
times for the expression aliasing analysis alone, to highlight the fact that they are only a
small fraction of the total times for nullness and termination analysis. When the expression
aliasing analysis is turned off, times are in general smaller, also because there is fewer infor-
mation to exploit for nullness and termination proofs. For instance, when that information is
missing, it is sometimes the case that a symbolic upper bound for a loop variable is missed,
which results in the immediate failure of the termination proof but in coarser results. The
termination proof for h2 went into out of memory, so we do not report times for it in the
figure.

Figures 14 and 15 report the precision of the same nullness and termination analyses.
They show how fewer warnings are issued by Julia after those analyses, if our aliasing
expression analysis is turned on. Fig. 14 shows that the number of warnings for nullness
analysis is in general halved; sometimes, there are no more warnings, thanks to the support
of the expression aliasing analysis (as for benchmarks 6, 14 and 17); only in three cases there
are no benefits (benchmarks 9, 11 and 16). The situation is similar for termination analysis
(Fig. 15), but the gain in precision is less evident here.
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id
exp nullness termination

aliasing with without with without
1 0.51 12.64 11.73 19.66 13.96
2 1.28 27.81 24.81 17.13 15.37
3 3.29 78.50 62.93 115.21 93.90
4 1.96 54.83 48.75 79.61 63.34
5 2.63 74.98 78.15 86.21 73.63
6 2.40 50.88 45.61 27.60 24.92
7 2.22 51.21 47.25 29.76 26.86
8 2.34 57.95 54.69 31.61 31.82
9 3.49 73.89 68.12 47.01 40.88
10 6.14 138.66 119.75 52.81 76.14
11 3.11 87.92 86.48 51.80 42.70
12 3.23 77.11 72.82 49.51 45.76
13 4.31 71.08 66.16 42.05 37.72
14 3.03 78.25 71.93 47.67 43.65
15 3.15 94.59 83.16 51.00 47.77
16 3.14 75.35 70.58 49.91 45.71
17 3.13 80.64 72.09 50.52 46.76
18 3.32 91.22 85.76 49.58 48.84
19 3.18 125.16 112.97 354.19 248.65
20 3.46 107.98 100.43 96.55 89.63
21 3.36 96.42 91.39 54.63 53.76
22 3.73 99.40 92.58 56.91 51.60
23 3.47 98.28 92.58 62.96 55.58
24 3.56 98.20 92.88 56.94 51.24
25 6.18 296.79 269.18 816.06 904.79
26 5.31 109.28 105.20 61.11 59.40
27 4.37 121.69 113.95 72.17 61.36
28 43.45 166.83 109.68 95.87 65.18
29 40.34 188.86 130.80 105.50 69.22
30 5.06 155.79 138.68 80.66 76.33
31 5.07 183.82 161.70 82.77 74.16
32 5.24 167.97 146.02 85.87 76.55
33 5.35 182.31 178.20 86.33 78.64
34 5.22 191.19 170.41 87.26 75.08
35 5.35 167.06 163.04 88.13 79.55
36 6.09 188.15 173.07 88.42 84.29
37 6.07 254.84 257.70 136.21 121.86
38 6.57 247.31 233.59 132.87 114.89
39 15.42 617.00 600.70 1090.51 1630.15
40 7.54 258.14 242.33 126.09 104.66
41 7.01 307.38 277.47 151.55 136.46
42 5.91 623.97 638.86 638.47 561.45
43 6.59 341.38 322.75 164.98 148.97
44 14.99 1017.42 1007.89 N.A. N.A.

1Fig. 13 Total time (in seconds) for the nullness and termination analysis of our benchmarks, each computed
in two versions: with our expression aliasing analysis and without our expression aliasing analysis. We also
report the cost of just the expression aliasing analysis, for comparison. The cost of nullness and termination
includes everything: from the parsing of the jar files to the presentation of the warnings to the user. Hence
they also include the times of the expression aliasing analysis. The termination analysis of benchmark 44
(h2) could not be completed because of an out of memory during the termination proof (while our expression
aliasing analysis could be completed in 14.99 seconds and less than one gigabyte of RAM).
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Fig. 14 The gain in precision due to our expression aliasing analysis, for the nullness analyses. For each
benchmark, it shows how much is gained by the use of the expression aliasing information. For instance, the
number of warnings for benchmark 1 (nti), using the aliasing information, is only 61% of the number of
warnings for the same benchmark when no aliasing information is used.
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Fig. 15 The gain in precision due to our expression aliasing analysis, for the termination analyses. For each
benchmark, it shows how much is gained by the use of the expression aliasing information. For instance, the
number of warnings for benchmark 4 (JFlex), using the aliasing information, is only 82% of the number of
warnings for the same benchmark when no aliasing information is used.
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6 Conclusion

We have introduced a static analysis called definite expression aliasing analysis, which pro-
vides, for each program point p and each variable v , a set of expressions E such that the
values of E and v at point p coincide, for every possible execution path. Our static analysis
is based on abstract interpretation, that we use to formally prove its correctness. The imple-
mentation of our inter-procedural analysis inside the Julia static analyzer handles full Java
bytecode with exceptions, but not multithreading nor reflection. We performed an experi-
mental evaluation on some real-life benchmarks, that showed the scalability of our analysis
and the benefits that it brings for subsequent nullness and termination analysis.

Our definite expression aliasing analysis is an instance of a more general constraint-
based static analysis for Java bytecode, that we have already applied to infer a safe over-
approximation of the program variables, fields, or array elements that, at run time, might
hold partially initialized (raw) objects [39] and a safe over-approximation of the pairs of
program variables of reference type 〈a, b〉 such that, at runtime, the location bound to a

might reach the location bound to b [29]. The use of a constraint is similar to [39] and rather
traditional in static analysis. But the difference and real complexity of this analysis lays in
the propagation rules for the arcs of the constraint graph, that must take into account the side-
effects on the heap. Moreover, this is the first example of a definite analysis and shows that
the same graph-based technique can be used for possible as well as definite static analysis.
In particular, to the best of our knowledge, this is the first definite aliasing analysis dealing
with Java bytecode programs and with expressions (not only program variables) aliased to
program variables.
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A Alias Expressions

In the following we enunciate and prove some technical lemmas. Lemma 3 states that if two environments
ρ and ρ′ coincide on all the variables appearing in an arbitrary expression E but a given variable a , and if,
for a given constant n , ρ′(a) ⊕ n = ρ(a) holds, then, for an arbitrary memory µ, the evaluation of E in 〈ρ, µ〉
coincides with the evaluation of E where all occurrences of a are replaced by a ⊕ n in 〈ρ′, µ〉.

Lemma 3 Consider a type environment τ ∈ T , a variable a ∈ dom(τ), a constant n ∈ Z and two envi-
ronments ρ and ρ′ such that ρ′(a) ⊕ n = ρ(a). Let E ∈ Eτ be an arbitrary expression. If for every variable
v ∈ variables(E) r {a}, ρ′(v ) = ρ(v ) holds, then for every memory µ,

~E[(a ⊕ n)/a]�∗〈ρ′, µ〉 = ~E�∗〈ρ, µ〉,

where E[(a ⊕ n)/a] denotes the expression E with all the occurrences of a replaced with a ⊕ n .

Proof. We proof this lemma by induction on the depth of E.
Base case: Let µ be an arbitrary memory. If depth(E) = 0, then E = x ∈ V or E = v ∈ dom(τ). In the former
case, by Definition 14,

~x�∗〈ρ, µ〉 = 〈x , µ〉 = ~x�∗〈ρ′, µ〉 = ~x [(a ⊕ n)/a]�∗〈ρ′, µ〉.

In the latter case, if v , a then, by Definition 14,

~v�∗〈ρ, µ〉 = 〈ρ(v ), µ〉 = 〈ρ′(v ), µ〉 = ~v�∗〈ρ′, µ〉 = ~v [(a ⊕ n)/a]�∗〈ρ′, µ〉.

If v = a , by hypothesis, ρ(a) = ρ′(a) ⊕ n and by Definition 14, we obtain

~a�∗〈ρ, µ〉 = 〈ρ(a), µ〉 = 〈ρ′(a) ⊕ n , µ〉 = ~(a ⊕ n)�∗〈ρ′, µ〉 = ~a[(a ⊕ n)/a]�∗〈ρ′, µ〉.

Induction: Suppose that for every expression E′ of depth at most k hypothesis holds, i.e., if for every variable
v ∈ variables(E′) r {a}, ρ′(v ) = ρ(v ) holds, then for every memory µ, ~E[(a ⊕ n)/a]�〈ρ′, µ〉 = ~E�〈ρ, µ〉
holds. Let E be an expression such that depth(E) = k + 1. If there exists a variable v ∈ variables(E) r {a}
such that ρ(v ) , ρ(v ′), then the result trivially holds. Otherwise, ∀v ∈ variables(E) r {a}.ρ′(v ) = ρ(v ) holds
and we distinguish different possible forms of E:

– If E = E1 ⊕ E2, we have k + 1 = depth(E) = 1 + max{depth(E1), depth(E2)} (Definition 13), which
entails depth(E1), depth(E2) ≤ k . Since variables(E) = variables(E1) ∪ variables(E2), and for every
v ∈ variables(E) r {a}, ρ′(v ) = ρ(v ), we conclude that ρ and ρ′ also agree on the values of all the
variables different from a which appear in E1 and E2. Let µ be an arbitrary memory, then by inductive
hypothesis on E1 and E2 we have:

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈w1, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈w2, µ2〉,

where w1,w2 ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1 ⊕ E2�∗〈ρ, µ〉
= 〈w1 ⊕ w2, µ2〉 [By Definition 14]
= ~E1[(a ⊕ n)/a] ⊕ E2[(a ⊕ n)/a]�∗〈ρ′, µ〉 [By hypothesis and Def. 14]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.

– If E = E1.f , then k + 1 = depth(E) = 1 + depth(E1) (Definition 13), which entails depth(E1) = k .
Since variables(E) = variables(E1), we have that for every v ∈ variables(E1) r {a}, ρ′(v ) = ρ(v )
and, by inductive hypothesis on E1, ~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉, where ` ∈ L and
µ1(`).κ ∈ K. Therefore:

~E�∗〈ρ, µ〉 = ~E1.f �∗〈ρ, µ〉
= 〈(µ1(`).φ)(f ), µ1〉 [By Definition 14]
= ~E1[(a ⊕ n)/a].f �∗〈ρ′, µ〉 [By hypothesis and Definition 14]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.



50

– If E = E1.length, then k+1 = depth(E) = 1+depth(E1) (Definition 13), which entails depth(E1) = k .
Since variables(E) = variables(E1), we have that for every v ∈ variables(E1) r {a}, ρ′(v ) = ρ(v )
and, by inductive hypothesis on E1, ~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉, where ` ∈ L and
µ1(`).κ ∈ A. Therefore:

~E�∗〈ρ, µ〉 = ~E1.length�∗〈ρ, µ〉
= 〈µ1(`).length, µ1〉 [By Definition 14]
= ~E1[(a ⊕ n)/a].length�∗〈ρ′, µ〉 [By hypothesis and Definition 14]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.

– If E = E1[E2], we have k + 1 = depth(E) = 1 + max{depth(E1), depth(E2)} (Definition 13), which
entails depth(E1), depth(E2) ≤ k . Since variables(E) = variables(E1) ∪ variables(E2), and for every
v ∈ variables(E) r {a}, ρ′(v ) = ρ(v ), we conclude that ρ and ρ′ also agree on the values of all the
variables different from a which appear in E1 and E2. Let µ be an arbitrary memory, then by inductive
hypothesis on E1 and E2 we have:

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈k , µ2〉,

where ` ∈ L, µ2(`).κ ∈ A and k ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1[E2]�∗〈ρ, µ〉
= 〈(µ2(`).φ)(k ), µ2〉 [By Definition 14]
= ~E1[(a ⊕ n)/a][E2[(a ⊕ n)/a]]�∗〈ρ′, µ〉 [By hypothesis and Def. 14]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.

– If E = E0.m(E1, . . . ,Eπ), we have k + 1 = depth(E) = 1 + max0≤i≤π{depth(Ei )}, hence depth(Ei ) ≤ k ,
for each 0 ≤ i ≤ π. Since variables(E) =

⋃π
i=0 variables(Ei ), and for every v ∈ variables(E) r {a},

ρ′(v ) = ρ(v ), we conclude that ρ and ρ′ agree on the values of all the variables different from a which
appear in each Ei . Let µ be an arbitrary memory, then by inductive hypothesis on E1 and E2 we have:

~E0�∗〈ρ, µ〉 = ~E0[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈w0, µ0〉
~E1�∗〈ρ, µ0〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ0〉 = 〈w1, µ1〉

· · ·
~Eπ�∗〈ρ, µπ−1〉 = ~Eπ[(a ⊕ n)/a]�∗〈ρ′, µπ−1〉 = 〈wπ, µπ〉

Hence, for each 1 ≤ i ≤ π, evaluations of both Ei and Ei [(a ⊕ n)/a] in 〈ρ, µi−1〉 and 〈ρ′, µi−1〉 respec-
tively give equal results 〈wi , µi 〉 and, by Definition 14, it implies that evaluations of both E in 〈ρ, µ〉 and
E[(a ⊕ n)/a] in 〈ρ′, µ〉 are equal and correspond to the value returned by the method m . Namely, in
both cases, the execution of m is deterministic since we fixed the actual parameters (receiver µπ(w0) and
parameters w1, . . . ,wπ) and the memory (µπ), hence in both cases it will produce the same return value.
This value is enriched with the resulting memory µ′ obtained from µπ as a side-effect of m’s execution.

ut

One particular case of Lemma 3 is when the constant n is 0. Namely, when ρ and ρ′ coincide on all the
variables appearing in E then the evaluations of the latter in 〈ρ, µ〉 and 〈ρ′, µ〉 coincide too.

Corollary 1 Consider a type environment τ ∈ T and two environments ρ and ρ′. Let E ∈ Eτ be an arbitrary
expression. If for every variable v ∈ variables(E), ρ′(v ) = ρ(v ) holds, then for every memory µ,

~E�∗〈ρ′, µ〉 = ~E�∗〈ρ, µ〉.

Similarly, we prove another important result. Lemma 4 states that if a state assigns the same values to
two fixed variables a and b, then the evaluation of an arbitrary expression in that state does not change if we
replace all the occurrences of a with b.

Lemma 4 Consider a type environment τ ∈ T , variables a , b ∈ dom(τ) and an environment ρ such that
ρ(a) = ρ(b). Let E ∈ Eτ be an arbitrary expression. Then, for every memory µ,

~E�∗〈ρ, µ〉 = ~E[b/a]�∗〈ρ, µ〉,

where E[b/a] denotes the expression E with all the occurrences of a replaced with b.
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Proof. We proof this lemma by induction on the depth of E.
Base case: Let µ be an arbitrary memory. If depth(E) = 0, then E = n ∈ V or E = v ∈ dom(τ). In the former
case, by Definition 14,

~n�∗〈ρ, µ〉 = 〈n , µ〉 = ~n[b/a]�∗〈ρ, µ〉.
In the latter case, if v , a then, by Definition 14,

~v�∗〈ρ, µ〉 = 〈ρ(v ), µ〉 = 〈ρ′(v ), µ〉 = ~v [b/a]�∗〈ρ, µ〉.
If v = a , by hypothesis, ρ(a) = ρ(b) and by Definition 14, we obtain

~a�∗〈ρ, µ〉 = 〈ρ(a), µ〉 = 〈ρ(b), µ〉 = ~b�∗〈ρ, µ〉 = ~a[b/a]�∗〈ρ, µ〉.
Induction: Suppose that for every expression E′ of depth at most k hypothesis holds, i.e., ~E′�∗〈ρ, µ〉 =

~E′[b/a]�∗〈ρ, µ〉, for every memory µ. Let E be an expression such that depth(E) = k + 1. We show that
~E�∗σ = ~E[b/a]�∗σ. We distinguish different possible forms of E:

– If E = E1 ⊕ E2, we have k + 1 = depth(E) = 1 + max{depth(E1), depth(E2)} (Definition 13), which
entails depth(E1), depth(E2) ≤ k . Therefore, inductive hypothesis holds on both E1 and E2. More pre-
cisely, inductive hypothesis entails

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈w1, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈w2, µ2〉,

where w1,w2 ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1 ⊕ E2�∗〈ρ, µ〉
= 〈w1 ⊕ w2, µ2〉 [By Definition 14]
= ~E1[b/a] ⊕ E2[b/a]�∗〈ρ, µ〉 [By hypothesis and Definition 14]
= ~E[b/a]�∗〈ρ, µ〉.

– If E = E1.f , we have k + 1 = depth(E) = 1 + depth(E1), which entails depth(E1) = k , and therefore,
hypothesis holds on it, i.e.,

~E1�∗〈ρ, µ〉 = ~E1[b/a]�∗〈ρ, µ〉 = 〈`, µ1〉,
where ` ∈ L and µ1(`).κ ∈ K. We have

~E�∗〈ρ, µ〉 = ~E1.f �∗〈ρ, µ〉
= 〈(µ1(`).φ)(f ), µ1〉 [By Definition 14]
= ~E1[b/a].f �∗〈ρ′, µ〉 [By hypothesis and Definition 14]
= ~E[b/a]�∗〈ρ′, µ〉.

– If E = E1.length, we have k + 1 = depth(E) = 1 + depth(E1), which entails depth(E1) = k , and
therefore, hypothesis holds on it, i.e.,

~E1�∗〈ρ, µ〉 = ~E1[b/a]�∗〈ρ, µ〉 = 〈`, µ1〉,
where ` ∈ L and µ1(`).κ ∈ A. We have

~E�∗〈ρ, µ〉 = ~E1.length�∗〈ρ, µ〉
= 〈µ1(`).length, µ1〉 [By Definition 14]
= ~E1[b/a].length�∗〈ρ′, µ〉 [By hypothesis and Definition 14]
= ~E[b/a]�∗〈ρ′, µ〉.

– If E = E1[E2], we have k+1 = depth(E) = 1+max{depth(E1), depth(E2)} (Definition 13), which entails
depth(E1), depth(E2) ≤ k . Therefore, inductive hypothesis holds on both E1 and E2. More precisely,
inductive hypothesis entails

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈k , µ2〉,

where ` ∈ L, µ2(`).κ ∈ A and k ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1[E2]�∗〈ρ, µ〉
= 〈(µ2(`).φ)(k ), µ2〉 [By Definition 14]
= ~E1[b/a][E2[b/a]]�∗〈ρ, µ〉 [By hypothesis and Definition 14]
= ~E[b/a]�∗〈ρ, µ〉.
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– If E = E0.m(E1, . . . ,Eπ), we have k + 1 = depth(E) = 1 + max0≤i≤π{depth(Ei )}, hence depth(Ei ) ≤ k ,
for each 0 ≤ i ≤ π. Thus, hypothesis holds on each Ei , which entails:

~E0�∗〈ρ, µ〉 = ~E0[b/a]�∗〈ρ, µ〉 = 〈w0, µ0〉
~E1�∗〈ρ, µ0〉 = ~E1[b/a]�∗〈ρ, µ0〉 = 〈w1, µ1〉

· · ·
~Eπ�∗〈ρ, µπ−1〉 = ~Eπ[b/a]�∗〈ρ, µπ−1〉 = 〈wπ, µπ〉.

Hence, for each 1 ≤ i ≤ π, evaluation of both Ei and Ei [b/a] in 〈ρ, µi−1〉 and 〈ρ′, µi−1〉 respectively
gives equal result 〈wi , µi 〉 and, by Definition 14, it implies that evaluations of both E and E[b/a] in 〈ρ, µ〉
are equal and correspond to the value returned by the method m . Namely, in both cases, the execution
of m is deterministic since we fixed the actual parameters (receiver µπ(w0) and parameters w1, . . . ,wπ)
and the memory (µπ), hence in both cases it will produce the same return value. This value is enriched
with the resulting memory µ′ obtained from µπ as a side-effect of m’s execution.

ut

B Definite Expression Aliasing Analysis

B.1 Concrete and Abstract Domains

B.1.1 Lemma 1 from Section 4.1

Given a type environment τ ∈ T and an integer d ∈ N, every ascending chain of elements in Aliasdτ eventually
stabilizes.

Proof. By Definition 18, ⊥d
τ , i.e., the bottom element of Aliasdτ is finite since it might contain only expres-

sions whose depth is at most d , and variables in dom(τ), field and method names are finite. Moreover, when
A1 v A2, it means that for each variable vr ∈ dom(τ), A2

r (the approximation A2 assigns to vr ) is included
in A1

r (the approximation A1 assigns to vr ), i.e., A2
r ⊆ A1

r . It means that greater elements in an ascending
chain assign less alias expressions to each variable. It is worth noting that the least and the greatest elements
an ascending chain might have are respectively ⊥d

τ (which is finite) and >d
τ = ∅|τ|, which implies that this

ascending chain eventually stabilizes, i.e., Aliasdτ satisfies the ACC condition. ut
Lemma 5 For any type environment τ ∈ T , the function γτ is co-additive, i.e.,

γτ(
�
i≥0

Ai ) =
⋂
i≥0

γτ(Ai ).

Proof. Consider a family of abstract elements {〈Ai
0, . . . ,A

i
n−1〉}i , where n = |τ|. Then,

γτ(
�

i 〈Ai
0, . . . ,A

i
n−1〉) = γτ(〈⋃i Ai

0, . . .
⋃

i A1
n−1〉)

= {σ ∈ Στ | ∀0 ≤ r <n .∀E ∈ ⋃
i Ai

r .~E�σ = ρ(vr )}
= {σ ∈ Στ | ∀0 ≤ r <n .∀i .∀E ∈ Ai

r .~E�σ = ρ(vr )}
= {σ ∈ Στ | ∀i .∀0 ≤ r <n .∀E ∈ Ai

r .~E�σ = ρ(vr )}
=

⋂
i {σ ∈ Στ | ∀0 ≤ r <n .∀E ∈ Ai

r .~E�σ = ρ(vr )}
=

⋂
i γτ(〈Ai

0 . . .A
i
n−1〉).

ut

B.1.2 Lemma 2 from Section 4.1

Given a type environment τ ∈ T , and the function γτ : Aliasτ → Cτ, there exists a function ατ : Cτ → Aliasτ
such that 〈Cτ, ατ, γτ,Aliasτ〉 is a Galois connection.

Proof. Both Cτ and Aliasτ are complete lattices. Moreover, Lemma 5 shows that γτ is co-additive. Therefore,
there exists the unique map ατ, determined as:

∀C ∈ Cτ.α(C ) =
⋂
{A ∈ Aliasτ |C ⊆ γτ(A)},

such that 〈Cτ, ατ, γτ,Aliasτ〉 is a Galois connection [12]. Hence, Aliasτ is actually an abstract domain, in the
sense of abstract interpretation. ut
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B.2 Solution of the Constraints

Lemma 6 〈EAd , ~v, ~t, ~u, ~>d , ~⊥d 〉 is a complete lattice.

Proof. Follows directly from the fact that, for each n , Aliasdτn is a complete lattice. ut

Lemma 7 Every ascending chain of elements in EAd eventually stabilizes.

Proof. By Lemma 1, given a type environment τ, every ascending chain of elements in Aliasdτ eventually
stabilizes. Moreover, every ascending chain of elements in EAd represents a Cartesian product of x ascending
chains of elements in Aliasdτ1

, . . . ,Aliasdτx which eventually stabilize, and x is a finite number. ut

Lemma 8 F is a monotonic function w.r.t. ~v.

Proof. The propagation rules defined in Section 4.2 are monotonic w.r.t. v, and this entails the monotonicity
of the constraints defined by Equation 9. Consequently, F is a monotonic function w.r.t. ~v. ut

B.2.1 Theorem 1 from Section 4.3

The least solution of the equation system F ( ~EA) = ~EA exists and can be characterized as

lfp(F ) =
~⊔

n
Fn (~⊥),

where given ~EA ∈ EAd , the i th power of F in ~EA is inductively defined as follows:

{
F 0( ~EA) = ~EA

F i+1( ~EA) = F (F i ( ~EA)).

Moreover, the equation system F ( ~EA)~v ~EA and the constraint system ~EA = F ( ~EA) have the same least
solution.

Proof. It is well-known that any monotonic function f over a partially ordered set satisfying the Ascending
Chain Condition is also continuous [14]. By Lemma 8, F is monotonic, and by Lemma 7, EAd satisfies the
Ascending Chain Condition, hence F is continuous.

On the other hand, by Knaster-Tarski’s fixpoint theorem [41], in a complete lattice 〈L,4,g,f, >̃, ⊥̃〉,
for any continuous function f : L → L, the least fixpoint of f , lfp(f ), is equal to

b
n f n (⊥̃). Since

〈EAd , ~v, ~t, ~u, ~>, ~⊥〉 is a complete lattice (Lemma 6) and F is continuous, its least fixpont can be computer
as lfp(F ) = ~⊔

nF
n (~⊥).

Suppose now that ~EA is a solution of the constraint system, i.e., F ( ~EA) = ~EA. Then, starting from
~⊥~v ~EA, by the monotonicity of F and mathematical induction, it can be shown that Fn (~⊥)~v ~EA. Since
Fn (~⊥) is a solution of the constraint system, this shows that it is also the least solution of the constraint
system. ut

B.3 Soundness of our Approach

B.3.1 Soundness of Sequential Arcs

We show that in the case of the propagation rules of the sequential arcs, only non-exceptional concrete states
belonging to the concretization of a correct approximation of the property of interest before a bytecode
instruction is executed, are correctly propagated by the corresponding rule. That is because the sequential arcs
simulate only those bytecode instructions that are defined on non-exceptional concrete states, and undefined
on the exceptional ones. Lemma 9 shows that this property actually holds. As usual in abstract interpretation,
this correctness result is proved by using the extension of the semantics ins of each bytecode to sets of states.
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Lemma 9 The propagation rules Rule #1 - Rule #14 introduced by Definition 21 are sound. More precisely,
let us consider a sequential arc from a bytecode ins and its propagation rule Π . Assume that ins has static
type information τ at its beginning and τ′ immediately after its non-exceptional execution. Then, for every
A ∈ Aliasτ we have:

ins(γτ(A)) ∩ Ξτ′ ⊆ γτ′ (Π(A))

(we recall that ins is the semantics of ins, see Fig. 5).

Proof. Let dom(τ)=L∪S contains i local variables L= {l0, . . . , li−1} and j stack elements S = {s0, . . . , sj−1}.
For ease of representation, we let dom(τ) = {v0, . . . , vn−1}, where n = |τ|, vr = lr for 0≤ r < i and vr = sr−i
for i ≤ r < n , like we did in Definition 2. Moreover, let dom(τ′) = L′ ∪ S ′, where L′ and S ′ are the local
variables and stack elements of dom(τ′), and let n ′= |τ′ |.

We choose an arbitrary abstract element A = 〈A0, . . . ,An−1〉 ∈ Aliasτ, an arbitrary state σ′ = 〈ρ′, µ′〉 ∈
ins(γτ(A)) ∩ Ξτ′ , and we show that σ′ ∈ γτ′ (Π(A)), i.e., (Definition 19) that

for each 0≤r <n ′ and every E∈Ar , ~E�σ′ = ρ′(vr ). (10)

Note that, by the choice of σ′, there exists σ = 〈ρ, µ〉 ∈ γτ(A) such that σ′ = ins(σ) and such that, for each
0≤r <n and every E∈Ar , ~E�σ=ρ(vr ).
ins = const v . We have L′ = L, S ′ = S ∪ {sj }. Moreover, for every v ∈ dom(τ′)r{sj }, ρ′(v ) = ρ(v ), while
ρ′(sj ) = x and µ′ = µ. According to Rule #1 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where
A′r = Ar for r , n and A′n = {x }. Consider an expression E ∈ A′r . We distinguish the following cases:

– if 0≤r <n , then A′r = Ar , and therefore E ∈ Ar . By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

In this case, sj < variables(E), and therefore, for each v ∈ variables(E), ρ′(v ) = ρ(v ). Finally, by
Corollary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).
– if r = n , then A′n = {x } and E = x . Therefore, ~E�〈ρ′, µ′〉 = x = ρ′(vn ).

ins = load k t. We have L′ = L, S ′ = S ∪ {sj }, µ′ = µ and for every v ∈ dom(τ′)r {sj }, ρ′(v ) = ρ(v ),
while ρ′(sj ) = ρ(lk ). According to Rule #2 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where
A′r = Ar ∪Ar [sj /lk ] for r < {k ,n}, A′

k
= Ak ∪ {sj } and An = Ak ∪ {lk }. Consider an expression E ∈ A′r . We

distinguish the following cases:
– if r < {k ,n}, then A′r = Ar ∪ Ar [sj /lk ]. If E ∈ Ar , then, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

In this case, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, if E ∈ Ar [sj /lk ], then there exists E1 ∈ Ar such that E = E1[sj /lk ]. Note that, by hypothesis,

~E1�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Since ρ′(sj ) = ρ′(lk ), we have, by Lemma 4:

~E�〈ρ′, µ′〉 = ~E1[sj /lk ]�〈ρ′, µ′〉 = ~E1�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉.
On the other hand, E1 ∈ Ar entails sj < variables(E1), and therefore for every v ∈ variables(E1),
ρ′(v ) = ρ(v ). By Corollary 1 we have:

~E1�〈ρ′, µ〉 = ~E1�〈ρ, µ〉 = ρ′(vr ).

Thus, ~E�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉 = ρ′(vr ).
– if r = k , then vk = lk and A′

k
= Ak ∪ {sj }. If E ∈ Ak , then by hypothesis,

~E�〈ρ, µ〉 = ρ(vk ) = ρ(lk ) = ρ′(sj ) = ρ′(vk ).

Moreover, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vk ).

Otherwise, E = sj , and we have

~E�〈ρ′, µ′〉 = ρ′(sj ) = ρ′(lk ) = ρ′(vk ).
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– if r = n , then vn = sj and A′n = Ak ∪ {lk }. If E ∈ Ak , then by hypothesis,

~E�〈ρ, µ〉 = ρ(vk ) = ρ′(vn ).

Moreover,sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vn ).
Otherwise, E = lk , and we have

~E�〈ρ′, µ′〉 = ρ′(lk ) = ρ′(sj ) = ρ′(vn ).

ins = store k t. We have L′ = L, S ′ = S r{sj−1}, µ′ = µ, and for every v ∈ dom(τ′)r{lk }, ρ′(v ) = ρ(v ),
while ρ′(lk ) = ρ(sj−1). According to Rule #5 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−2〉, where
A′r = {E ∈ Ar | ¬canBeAffected(E, ins)} for r , k and A′

k
= {E ∈ Ak | ¬canBeAffected(E, ins)}. According

to Definition 16, for every E ∈ Eτ, ¬canBeAffected(E, ins) holds if lk , sj−1 < variables(E). Consider an
expression E ∈ A′r . We distinguish the following cases:

– if r , k , then A′r = {E ∈ Ar | lk , sj−1 < variables(E)}⊆Ar . Since E ∈ A′r ⊆ Ar we have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, lk , sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corol-
lary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).
– if r = k , then A′

k
= {E ∈ An−1 | lk , sj−1 < variables(E)} ⊆An−1. Since E ∈ A′n−1 ⊆An−1 we have, by

hypothesis,
~E�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1) = ρ′(lk ) = ρ′(vk ).

Moreover, lk , sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corol-
lary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vk ).
ins ∈ {add, sub,mul, div, rem}. We have L′ = L, S ′ = Sr{sj−1}, µ′ = µ, and for every v ∈ dom(τ′)r{sj−2},
ρ′(v ) = ρ(v ), while ρ′(sj−2) = ρ(sj−2) ⊕ ρ(sj−1), where ⊕ is the arithmetic operation corresponding to ins.
According to Rule #4 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−2〉, where

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1⊕E2 | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins) if r = |τ|−2,

According to Definition 16, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−2, sj−1 <
variables(E). Consider an expression E ∈ A′r . We distinguish the following cases:

– if r < n−2, then A′r = {E ∈ Ar | sj−2, sj−1 < variables(E)} ⊆ Ar . Since E ∈ A′r ⊆ Ar we have, by
hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).
Moreover, sj−2, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corol-
lary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).
– if r = n−2, then E = E1 ⊕E2, where E1 ∈ An−2, E2 ∈ An−1, sj−2, sj−1 < variables(E1) and sj−2, sj−1 <

variables(E2)}. Since E1 ∈ An−2 and E2 ∈ An−1 we have, by hypothesis,

~E1�〈ρ, µ〉 = ρ(vn−2) = ρ(sj−2)
~E2�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

Moreover, for h ∈ {1, 2}, sj−2, sj−1 < variables(Eh ), and therefore, for every v ∈ variables(Eh ), ρ′(v ) =

ρ(v ). Hence, by Corollary 1,

~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−2), µ1〉
and

~E2�∗〈ρ′, µ1〉 = ~E2�∗〈ρ, µ1〉 = 〈ρ(sj−1), µ2〉.
Hence,

~E�∗〈ρ′, µ′〉 = ~E1 ⊕ E2�∗〈ρ′, µ′〉 = ~E1 ⊕ E2�∗〈ρ′, µ〉 = 〈ρ(sj−2) ⊕ ρ(sj−1), µ2〉,
i.e.,

~E�〈ρ′, µ′〉 = ρ(sj−2) ⊕ ρ(sj−1) = ρ′(sj−2) = ρ′(vn−2).
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ins = inc k x . We have L′ = L, S ′ = S , µ′ = µ and for every v ∈ dom(τ′)r {lk }, ρ′(v ) = ρ(v ), while
ρ′(lk ) = ρ(lk ) + x . According to Rule #5 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−1〉, where
A′r = {E[lk −x/lk ] | E ∈ Ar } for r , k , and A′

k
= ∅. Consider an expression E ∈ A′r . We distinguish the

following cases:

– if r , k , then A′r = {E[lk −x/lk ] | E ∈ Ar }. If lk < variables(E), then, E[lk −x/lk ] = E ∈ Ar and, by
hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, for every v ∈ variables(E), ρ′(v ) = ρ(v ) and, by Corollary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, lk ∈ variables(E), and we have that for any v ∈ variables(E) r {lk }, ρ′(v ) = ρ(v ). Hence, by
Lemma 3,

~E[lk −x/lk ]�〈ρ′, µ〉 = ~E�〈ρ, µ〉.
By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ),

and therefore
~E[lk −x/lk ]�〈ρ′, µ′〉 = ~E[lk −x/lk ]�〈ρ′, µ〉 = ρ′(vr ).

– if r = k , then A′
k

= {E+x | E ∈ Ak }. Consider an arbitrary expression E1 ∈ A′
k

. It has the following form:
E1 = E + x , where E ∈ Ak . The latter implies that lk < variables(E), hence for any v ∈ variables(E),
ρ′(v ) = ρ(v ) and, by Corollary 1, we have:

~E�∗〈ρ′, µ′〉 = ~E�∗〈ρ′, µ〉 = ~E�∗〈ρ, µ〉 = 〈ρ(vk ), µ′′〉 = 〈ρ(lk ), µ′′〉,

where µ′′ is the memory µ potentially updated by E’s evaluation. Moreover, by Definition 14 we have
~x�∗〈ρ′, µ′′〉 = 〈x , µ′′〉 and therefore

~E1�∗〈ρ′, µ′〉 = ~E + x�∗〈ρ′, µ′〉 = 〈ρ(lk ) + x , µ′′〉.

Thus, we obtain ~E1�〈ρ′, µ′〉 = ρ(lk ) + x = ρ′(lk ).

ins = new κ. We have L′ = L, S ′ = S ∪{sj }. For every v ∈ dom(τ′)r{sj }, ρ′(v ) = ρ(v ), while ρ′(sj ) = ` ∈ L,
where ` is a fresh location, i.e., a location not reachable from any other location and which does not reach
any other location. Moreover, µ′ = µ[` 7→ o], where o is a new object of class κ. It is worth noting that, under
these circumstances,

∀E ∈ Eτ′ .~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. (11)

According to Rule #6 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where A′r = Ar for r , n , while
A′n = ∅. Consider an expression E ∈ A′r . We distinguish the following cases:

– if 0≤r <n , then A′r = Ar , and therefore E ∈ Ar . By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

In this case, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Hence, the latter and ( 11) entail

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

– if r = n , then A′n = ∅, and therefore ∀E ∈ A′n .~E�〈ρ′, µ′〉 = ρ′(vn ) trivially holds.

ins = getfield κ.f : t. We have L′ = L, S ′ = S , µ′ = µ, and for every v ∈ dom(τ′)r{sj−1}, ρ′(v ) = ρ(v ), while
ρ′(sj−1) = (µρ(sj−1).φ)(f ). According to Rule #7 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−1〉,
where for any r , n − 1,

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)},
while

A′n−1 = {E.f | E ∈ An−1 ∧ ¬canBeAffected(E, ins) ∧ ¬mightModify(E, {κ.f : t})}.
According to Definition 16, for any E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−1 < variables(E). Consider
an expression E ∈ A′r . We distinguish the following cases:
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– if r , n−1, then E ∈ A′r ⊆Ar and we have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

– if r = n−1, then since E ∈ A′n−1, there exists E1 ∈ An−1 such that E = E1.f . By hypothesis,

~E1�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

In addition, sj−1 < variables(E1), and therefore, for every v ∈ variables(E1), ρ′(v ) = ρ(v ). Hence, by
Corollary 1, we have:

~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−1), µ1〉.
Hence,

~E1�∗〈ρ′, µ′〉 = ~E1�∗〈ρ′, µ〉 = 〈ρ(sj−1), µ1〉.
Moreover, ¬mightModify(E1, {f }) guarantees that no evaluation of E1 might modify the field f . In par-
ticular, evaluation of E1 in 〈ρ, µ〉 does not modify f , and therefore its value before E1’s evaluation,
(µρ(sj−1).φ)(f ), is equal to its value after E1’s evaluation, (µ1ρ(sj−1).φ)(f ). Hence,

~E�∗〈ρ′, µ′〉 = ~E1.f �∗〈ρ′, µ′〉
= 〈(µ1ρ(sj−1).φ)(f ), µ1〉
= 〈(µρ(sj−1).φ)(f ), µ1〉
= 〈ρ′(sj−1), µ1〉,

which implies ~E�〈ρ′, µ′〉 = ρ′(sj−1) = ρ′(vr ).

ins = putfield κ.f : t. We have L′ = L, S ′ = S r {sj−2, sj−1}, µ′ = µ[(µρ(sj−2).φ)(f ) 7→ ρ(sj−1)] and ρ′ = ρ.
According to Rule #8 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−3〉, where for each 0≤r <n−2,

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.

According to Definition 16, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−2, sj−1 <
variables(E) and if no evaluation of E might read a field f . Consider an expression E ∈ A′r ⊆ Ar , for an
arbitrary 0≤r <n−2. By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ).

Moreover, sj−2, sj−1 < variables(E), hence for every v ∈ variables(E), ρ(v ) = ρ′(v ) and, by Corollary 1:

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Since no evaluation of E, and in particular its evaluation in 〈ρ′, µ〉, might read any field f , E’s value ~E�〈ρ′, µ〉
does not depend on a value of any field f in that state. In particular, ~E�〈ρ′, µ〉 does not depend on the value
of the field f of the object memorized in location ρ(sj−1), (µρ(sj−1).φ)(f ). Since µ′ = µ[(µρ(sj−2).φ)(f ) 7→
ρ(sj−1)], i.e., the only difference between memories µ and µ′ is exactly the value of the field mentioned above,
we conclude that E’s values in 〈ρ′, µ′〉 and in 〈ρ′, µ〉 are equal, i.e.,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

ins = arraynew α. We have L′ = L, S ′ = S . For every v ∈ dom(τ′)r{sj−1}, ρ′(v ) = ρ(v ), while ρ′(sj−1) =

` ∈ L, where ` is a fresh location, i.e., a location not reachable from any other location and which does not
reach any other location. Moreover, µ′ = µ[` 7→ a], where o is a new aray of array type α. It is worth noting
that, under these circumstances,

∀E ∈ Eτ′ .~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. (12)

According to Rule #9 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where for each r , n−1, A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)}, while A′n−1 = ∅. According to Definition 16, for every expresion E ∈ Eτ,
¬canBeAffected(E, ins) holds if sj−1 < variables(E). Consider an expression E ∈ A′r . We distinguish the
following cases:
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– if 0≤r <n , then A′r = {E ∈ Ar | sj−1 < variables(E)} ⊆ Ar . Since E ∈ A′r ⊆ Ar we have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By (12 and
Corollary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

– if r = n−1, then A′n = ∅, and therefore ∀E ∈ A′n .~E�〈ρ′, µ′〉 = ρ′(vn ) trivially holds.

ins = arraylength α. We have L′ = L, S ′ = S , µ′ = µ, and for every v ∈ dom(τ′)r{sj−1}, ρ′(v ) = ρ(v ), while
ρ′(sj−1) = µρ(sj−1).length. According to Rule #10 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−1〉,
where for any r , n − 1,

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)},
while

A′n−1 = {E.length | E ∈ An−1 ∧ ¬canBeAffected(E, ins)}.
According to Definition 16, for any E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−1 < variables(E). Consider
an expression E ∈ A′r . We distinguish the following cases:

– if r , n−1, then E ∈ A′r ⊆Ar and we have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

– if r = n−1, then since E ∈ A′n−1, there exists E1 ∈ An−1 such that E = E1.length. By hypothesis,

~E1�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

In addition, sj−1 < variables(E1), and therefore, for every v ∈ variables(E1), ρ′(v ) = ρ(v ). Hence, by
Corollary 1, we have:

~E1�∗〈ρ′, µ′〉 = ~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−1), µ1〉.
Moreover, no evaluation of any expression might modify the length of already existing array, i.e., the
length of the array µρ(sj−1) is equal before and after E1’s evaluation in 〈ρ, µ〉: µρ(sj−1).length =

µ1ρ(sj−1).length. Hence,
~E�∗〈ρ′, µ′〉 = ~E1.length�∗〈ρ′, µ′〉

= 〈µ1ρ(sj−1).length, µ1〉
= 〈µρ(sj−1).length, µ1〉
= 〈ρ′(sj−1), µ1〉,

which implies ~E�〈ρ′, µ′〉 = ρ′(sj−1) = ρ′(vr ).

ins = arrayload α. We have L′ = L, S ′ = S r {sj−1}, µ′ = µ, and for every v ∈ dom(τ′)r {sj−2}, ρ′(v ) =

ρ(v ), while ρ′(sj−2) = (µρ(sj−2).φ)(ρ(sj−1)). According to Rule #11 of Definition 21, Π(〈A0, . . . ,An−1〉) =

〈A′0, . . . ,A′n−2〉, where

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1[E2] | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins)∧
[E1 and E2 do not invoke any method] if r = |τ|−2.

According to Definition 16, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−2, sj−1 <
variables(E). Consider an expression E ∈ A′r . We distinguish the following cases:

– if r < n−2, then A′r = {E ∈ Ar | sj−2, sj−1 < variables(E)} ⊆ Ar . Since E ∈ A′r ⊆ Ar we have, by
hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−2, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corol-
lary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).
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– if r = n−2, then E = E1[E2], where E1 ∈ An−2, E2 ∈ An−1, sj−2, sj−1 < variables(E1), sj−2, sj−1 <
variables(E2)} and E1 and E2 do not invoke any method. Since E1 ∈ An−2 and E2 ∈ An−1 we have, by
hypothesis,

~E1�〈ρ, µ〉 = ρ(vn−2) = ρ(sj−2)
~E2�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

Since sj−2, sj−1 < variables(E1), for every v ∈ variables(E1), ρ′(v ) = ρ(v ), and, by Corollary 1, we
have:

~E1�∗〈ρ′, µ′〉 = ~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−2), µ〉. (13)

Similarly, since sj−2, sj−1 < variables(E2), for every v ∈ variables(E2), ρ′(v ) = ρ(v ), and, by Corol-
lary 1, we have:

~E2�∗〈ρ′, µ′〉 = ~E2�∗〈ρ′, µ〉 = ~E2�∗〈ρ, µ〉 = 〈ρ(sj−1), µ〉. (14)

It is worth noting that since both E1 and E2 do not invoke any method, their evaluation in any state
〈ρ1, µ1〉 do not modify the memory µ1, hence the resulting memory when E1 and E2 are evaluated in
〈ρ, µ〉 is µ (Equations 13 and 14). Hence, Equations 13 and 14 entail

~E�∗〈ρ′, µ′〉 = ~E1[E2]�∗〈ρ′, µ′〉 = 〈(µρ(sj−2).φ)(ρ(sj−1)), µ〉 = 〈ρ′(sj−2), µ〉,
i.e.,

~E�〈ρ′, µ′〉 = ρ′(sj−2) = ρ′(vn−2).

ins = arraystore t[ ]. We have L′ = L, S ′ = S r {sj−3, sj−2, sj−1}, ρ′ = ρ and

µ′ = µ[(µρ(sj−3).φ)(ρ(sj−2)) 7→ ρ(sj−1)].

According to Rule #12 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−4〉, where for each 0≤r <n−3,

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.
According to Definition 16, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−3, sj−2, sj−1 <
variables(E) and if there is no evaluation of E which might read an element of an array of type t′[ ] where
t′ ∈ compatible(t). Consider an expression E ∈ A′r ⊆ Ar , for an arbitrary 0≤r <n−3. By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−3, sj−2, sj−1 < variables(E), hence for every v ∈ variables(E), ρ(v ) = ρ′(v ) and, by Corol-
lary 1:

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ). (15)

No evaluation of E might read an element of an array of type t′[ ], where t′ ∈ compatible(t). Therefore,
E’s value in any state definitely does not depend on any array element whose type is compatible with t and,
consequentially, arraystore t[ ] never affects its value. Hence,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. (16)

Hence, Equations 15 and 16 entail:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

ins = dup t. We have L′ = L, S ′ = S ∪ {sj }, µ′ = µ and for every v ∈ dom(τ′)r {sj }, ρ′(v ) = ρ(v ),
while ρ′(sj ) = ρ(sj−1). According to Rule #13 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where
A′r = Ar ∪ Ar [sj /sj−1] for r <n−1, A′n−1 = An−1 ∪ {sj } and An = An−1 ∪ {sj−1}. Consider an expression
E ∈ A′r . We distinguish the following cases:

– if 0≤r <n−1, then A′r = Ar ∪ Ar [sj /sj−1]. If E ∈ Ar , then, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

In this case, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, if E ∈ Ar [sj /sj−1], then there exists E1 ∈ Ar such that E = E1[sj /sj−1]. Note that, by
hypothesis,

~E1�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).
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Since ρ′(sj ) = ρ′(sj−1), we have, by Lemma 4,

~E�〈ρ′, µ′〉 = ~E1[sj /sj−1]�〈ρ′, µ′〉 = ~E1�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉.

On the other hand, E1 ∈ Ar entails sj < variables(E1), and therefore for every v ∈ variables(E1),
ρ′(v ) = ρ(v ). By Corollary 1 we have

~E1�〈ρ′, µ〉 = ~E1�〈ρ, µ〉 = ρ′(vr ).

Thus, ~E�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉 = ρ′(vr ).
– if r = n−1, then vr = sj−1 and A′r = An−1 ∪ {sj }. If E ∈ An−1, then by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1,
we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, E = sj , and we have ~E�〈ρ′, µ′〉 = ρ′(sj ) = ρ′(sj−1) = ρ′(vr ).
– if r = n , then vr = sj and A′r = An−1 ∪ {sj−1}. If E ∈ An−1, then by hypothesis,

~E�〈ρ, µ〉 = ρ(vn−1) = ρ′(vn ).

Moreover,sj <variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By Corollary 1, we
have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vn ).

Otherwise, E = sj−1, and ~E�〈ρ′, µ′〉 = ρ′(sj−1) = ρ′(sj ) = ρ′(vn ).

ins ∈ {ifne t, ifeq t, catch, exception_is K }. We have L′ = L, S ′ = S when ins ∈ {catch, exception_is K },
and S ′ = S r {sj−2, sj−1} otherwise. Moreover, µ′ = µ and for every v ∈ dom(τ′), ρ′(v ) = ρ(v ). Ac-
cording to Rule #14 of Definition 21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n′−1〉, where A′r = {E ∈ Ar |
¬canBeAffected(E, ins)} for each 0≤r <n ′. According to Definition 16, for any E ∈ Eτ,¬canBeAffected(E, ins)
always holds when ins ∈ {catch, exception_is K }, while ¬canBeAffected(E, ins) holds if sj−2, sj−1 <
variables(E) when ins ∈ {ifne t, ifeq t}. Consider an expression E ∈ A′r ⊆ Ar for an arbitrary 0 ≤ r < n ′.
By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, ¬canBeAffected(E, ins) entails variables(E) ⊆ dom(τ′), and therefore for every v ∈ variables(E),
ρ′(v ) = ρ(v ). Then, by Corollary 1,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

ut

B.3.2 Soundness of Final Arcs

We show that, in the case of the propagation rules of the final arcs, both exceptional and non-exceptional
concrete states belonging to the concretization of a correct approximation of the property of interest before
a bytecode instruction is executed, are correctly propagated by the corresponding rule. It means that the
propagation rules of the final arcs must soundly approximate the concrete behavior of each final bytecode
instruction (return t, return void, throw κ) of a method or a constructor belonging to the program under
analysis. Lemma 10 shows that this property actually holds.

Lemma 10 The propagation rules Rule #15 - Rule #17 introduced by Definition 22 are sound. More pre-
cisely, let us consider a final arc from a bytecode ins and its propagation rule Π . Assume that ins has static
type information τ at its beginning and τ′ immediately after its execution (its non-exceptional execution if ins
is a return, its exceptional execution if ins is a throw κ). Then, for every A ∈ Aliasτ we have:

ins(γτ(A)) ⊆ γτ′ (Π(A))

(we recall that ins is the semantics of ins, see Fig. 5).
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Proof. Let dom(τ) = L∪S contains i local variables L= {l0, . . . , li−1} and j stack elements S = {s0, . . . , sj−1}.
For ease of representation, we let dom(τ) = {v0, . . . , vn−1}, where n = |τ|, vr = lr for 0≤r < i and vr = sr−i
for i ≤r <n , like we did in Definition 2. Moreover, let dom(τ′) = L′ ∪ S ′, where L′ and S ′ are the local and
stack variables of dom(τ′), and let n ′ = |τ′ |.

We choose an arbitrary abstract element A = 〈A0, . . . ,An−1〉 ∈ Aliasτ, an arbitrary state σ′ = 〈ρ′, µ′〉 ∈
ins(γτ(A)), and we show that σ′ ∈ γτ′ (Π(A)), i.e., (Definition 19) that

for each 0≤r <n ′ and every E ∈ Ar , ~E�σ′ = ~vr�σ′.

Note that, by the choice of σ′, there exists σ = 〈ρ, µ〉 ∈ γτ(A) such that σ′ = ins(σ) and such that, for each
0≤r <n and every E ∈ Ar , ~E�σ = ~vr�σ = ρ(vr ).
ins = return void. We have L′ = L, S ′ = ∅, µ′ = µ and for every v ∈ dom(τ′), ρ′(v ) = ρ(v ). According to
Rule #15 of Definition 22, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′i−1〉, where for each 0 ≤ r < i , A′r = {E ∈ Ar |
noStackElements(E)}. Consider an expression E ∈ A′r ⊆ Ar for an arbitrary 0≤r < i . By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, noStackElements(E) entails variables(E) ⊆ dom(τ′), and therefore for every v ∈ variables(E),
ρ′(v ) = ρ(v ). Therefore, by Corollary 1, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

ins = return t. We have L′ = L, S ′ = {s0}, µ′ = µ and for every v ∈ dom(τ′)r {s0}, ρ′(v ) = ρ(v ), while
ρ′(s0) = ρ(sj−1). According to Rule #16 of Definition 22, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′i 〉, where A′r =

{E ∈ Ar | noStackElements(E)} for r , i and A′r = {E ∈ An−1 | noStackElements(E)} for r = i . Note
that for any E ∈ Eτ, noStackElements(E) entails variables(E) ⊆ dom(τ′), thus for every v ∈ variables(E),
ρ′(v ) = ρ(v ). Then, by Corollary 1,

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉. (17)

Consider an expression E ∈ A′r . We distinguish the following cases:

– If r , i then E ∈ Ar and, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

By (17), we have
~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

– If r = i then E ∈ An−1 and, by hypothesis,

~E�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1) = ρ′(s0) = ρ′(vi ).

By (17), we have
~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vi ).

ins = throw κ. We have L′ = L, S ′ = {s0} and for every v ∈ L′, ρ′(v ) = ρ(v ). If ρ(sj−1) , null,
ρ′(s0) = ρ(sj−1) and µ′ = µ. Otherwise, ρ′(s0) = ` where ` is fresh and µ′ = µ[` 7→ npe], where npe is
a new object of class NullPointerException containing only fresh locations. It is worth noting that, under
these circumstances, for every E ∈ Eτ′ , ~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. According to Rule #17 of Definition 22,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′i 〉, where A′r = {E ∈ Ar | noStackElements(E)} for r , i and A′r = ∅ for
r = i . Consider an expression E ∈ Ar . For r , i , the proof is analogous to the proof of the corresponding
case for return t. If r = i , then A′i = ∅, and ∀E ∈ A′i .~E�〈ρ′, µ′〉 = ρ′(vi ) trivially holds. ut

B.3.3 Soundness of Exceptional Arcs

We show that, in the case of the propagation rules of the exceptional arcs, the exceptional concrete states
belonging to the concretization of a correct approximation of the property of interest before a bytecode
instruction is executed, are correctly propagated by the corresponding rule. It means that the propagation
rules of the exceptional arcs simulating the exceptional executions of the bytecode instructions that can throw
an exception are sound. Lemma 11 shows that this property actually holds.
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Lemma 11 The propagation rules Rule #18 and Rule #20 introduced by Definition 23 are sound. More
precisely, let us consider an exceptional arc from a bytecode ins distinct from call and its propagation rule
Π . Assume that ins has static type information τ at its beginning and τ′ immediately after its exceptional
execution. Then, for every A ∈ Aliasτ we have:

ins(γτ(A)) ∩ Ξτ′ ⊆ γτ′ (Π(A))

(we recall that ins is the semantics of ins, see Fig. 5).

Proof. The proof is analogous to the proof of Lemma 10 when ins = throw κ. ut

The situation is a bit different when a method is invoked on a null receiver. In that case we require that
the exceptional states launched by the method are included in the approximation of the property of interest
after the call to that method. Lemma 12 shows that this property actually holds. Its proof can be found in
Appendix B.

Lemma 12 The propagation rule Rule #19 introduced by Definition 23 is sound. More precisely, con-
sider an exceptional arc from a method invocation insC = call m1 . . .mn and its propagation rule Π ,
and let π be the number of its actual arguments (this included). Then, for each 1 ≤ w ≤ q , and every
σ = 〈〈l ‖ vπ−1 :: . . . :: v1 :: null : s〉, µ〉 ∈ γτ(A) (σ assigns null to the receiver of insC right before it
is executed), where A ∈ Aliasτ is an arbitrary abstract element, we have:

〈〈l ‖ `〉, µ[` 7→ npe]〉 ⊆ γτ′ (Π(A)),

where ` is a fresh location, and npe is a new instance of NullPointerException.

Proof. Let dom(τ) = L ∪ S contain local variables L and j ≥ π stack elements S = {s0, . . . , sj−π, . . . , sj−1},
where π is the number of parameters of method mw (including this). Consider an arbitrary abstract element
A ∈ Aliasτ and a state σ = 〈ρ, µ〉 = 〈〈l ‖ vπ−1 :: . . . :: v1 :: null : s〉, µ〉 ∈ γτ(A). Then, by Rule 3 from
Fig. 7, we have that dom(τ′) = L ∪ {s0}, and the resulting state σ′ = 〈ρ′, µ′〉 is such that for each a ∈
dom(τ′)r {s0}, ρ′(a) = ρ(a), ρ(s0) = `, where ` is a fresh location and µ′ = µ[` 7→ npe], where npe is a new
instance of NullPointerException. Hence, σ′ = 〈〈l ‖ `〉, µ[` 7→ npe]〉. Moreover, according to Rule #19,

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

∅ if r = i .

We must prove that σ′ ∈ γτ′ (Π(A)), i.e., (Definition 19) that

for each 0 ≤ r ≤ i and every E ∈ Ar , ~E�σ′ = ~vr�σ′.

Let Er ∈ A′r , for an arbitrary 0 ≤ r ≤ i . We distinguish the following cases:

– If r , i then E ∈ Ar and, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, noStackElements(E) entails variables(E) ⊆ dom(τ′), hence for every v ∈ variables(E),
ρ′(v ) = ρ(v ). Then, by Corollary 1, we have:

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

The only difference between µ and µ′ is object o associated to a fresh location, which is not reachable
from any other location. Therefore, µ and µ′ behave like they were the same memory. Hence, for every
E ∈ Eτ′ ,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

– If r = i then A′n = ∅, and therefore ∀E ∈ A′n .~E�〈ρ′, µ′〉 = ρ′(vn ) trivially holds.

Therefore, 〈〈l ‖ `〉, µ[` 7→ npe]〉 = σ′ ∈ γτ′ (Π(A)). ut
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exit@mw: t
insN

#22
〈A′0, . . . ,A′|τC |−π〉

#23

C

E
N

〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉

〈R0, . . . ,R|τE |−1〉

call m1 . . .mq

Fig. 16 Arcs going into the node corresponding to insN .

B.3.4 Soundness of Parameter Passing Arcs

We show that the propagation rules of the parameter passing arcs are sound. Namely, this rule soundly ap-
proximates the behavior of the makescope function. Lemma 13 shows that this property actually holds.

Lemma 13 The propagation rule Rule #21 introduced by Definition 24 is sound. More precisely, consider
a parameter passing arc from a method invocation insC = call m1 . . .mn to the first bytecode of a callee
mw , for some w ∈ [1..k ], and its propagation rule Π . Assume that insC has static type information τ at its
beginning and that τ′ is the static type information at the beginning of mw . Then, for every A ∈ Aliasτ we
have:

(makescope mw )(γτ(A)) ⊆ γτ′ (Π(A))

Proof. Let dom(τ) = L∪S contains local variables L and j ≥ π stack elements S = {s0, . . . , sj−π, . . . , sj−1},
where π is the number of parameters of method mi (including this). Then, dom(τ′) = {l0, . . . , lπ−1}. We
choose an arbitrary abstract element A = 〈A0, . . . ,An−1〉 ∈ Aliasτ, an arbitrary state σ′ = 〈ρ′, µ′〉 ∈
(makescope mi )(γτ(A)), and we show that σ′ ∈ γτ′ (Π(A)) i.e., (Definition 19) that

for each 0≤r <n ′ and every E ∈ Ar , ~E�σ′ = ~vr�σ′.

Note that, by the choice of σ′, there exists σ = 〈ρ, µ〉 ∈ γτ(A) such that σ′ = ins(σ) and such that, for each
0≤r <n and every E ∈ Ar , ~E�σ = ~vr�σ = ρ(vr ).

According to Rule #21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′π−1〉, where for each 0≤ r < π, A′r = ∅. Then,
for each r , ∀E ∈ Ar = ∅′.~E�〈ρ′, µ′〉 = ρ′(vr ) trivially holds. ut

B.3.5 Soundness of Return and Side-Effects Arcs at Non-Exceptional Ends

We show that the propagation rules related to the return and side-effects arcs of an ACG are sound at non-
exceptional end of a method or a constructor. Namely, in the case of a non-void method, the propagation
rule of the return value arc enriches the resulting approximation of the definite aliasing information imme-
diately after the call to that method by adding all those aliasing expressions that the returned value might
correspond to. On the other hand, that method might modify the initial memory from which the method has
been executed. These modifications must be captured by the propagation rules of the side-effects arcs. The
approximation of the property of interest after the call to the method is, therefore, determined as the join
(t) of the approximations obtained from the propagation rules of the return value and the side-effects arcs,
and it is sound, as Lemma 14 shows. Lemma 15 handles the case of a void method, and therefore only the
corresponding side-effects arc is considered there.

Lemma 14 The propagation rules Rule #22 and Rule #23 introduced by Definitions 29 and 30 are sound
at a non-void method return. Namely, let w ∈ [1..n] and consider a return value and a side-effect arc from
nodes C = call m1 . . .mn and E = exit@mw to a node Q = insq and their propagation rules Π#22 and

Π#23, respectively. We depict this situation in Fig. 16. Let τc , τq and τe be the static type information at C,
Q and E, respectively, and let d be the denotation of mw , i.e., a partial function from a state at its beginning
to the corresponding state at its end. Then, for every A ∈ Aliasτc and R ∈ Aliasτe , we have:

d((makescope mw )(γτc (A)) ∩ Ξτq ⊆ γτq (Π#22(A,R) t Π#23(A,R)).

Proof. In the following we assume: dom(τh ) = Lh∪Sh , where h ∈ {C ,E ,N }; dom(τh ) = {v0, . . . , v|τh |−1},
where vr = lr when 0 ≤ r < |Lh | and vr = sr−|Lh | when |Lh | ≤ r < |τa |; π is the number of parameters of
method m , |τC | − π≥|LC |, |τN |= |τC | − π + 1, LN =LC and SE = SN = {s0}.

Consider two abstract elements: A = 〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉 ∈ AτC and R = 〈R0, . . . ,R|τE |−1〉 ∈
AτE , two concrete states corresponding to these abstract elements σC = 〈ρC , µC 〉 ∈ γτC (A) and σE =

〈ρE , µE 〉 ∈ γτE (R) and state σN = 〈ρN , µN 〉 = d((makescope mw )(σC )) ∩ ΞτN . These states have to
satisfy the following conditions imposed by Definition 11:
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1. for every 0≤r < |τC | − π, ρN (vr ) = ρC (vr );
2. ρN (v|τC |−π) = ρE (v|τE |−1);
3. µN = µE .

Moreover, since σC ∈ γτC (A), and σE ∈ γτE (A), by Definition 19, the following condition holds:

∀0≤r < |τh |.∀E ∈ Ar .~E�σh = ρh (vr ), (18)

where h ∈ {C ,E }. Let us show that σN ∈ γτN (A′), where A′ = Π#22(A,R) t Π#23(A,R), i.e., that Equa-
tion 18 also holds for h =N . By Definitions 18 and 20, we haveΠ#22(A,R)tΠ#23(A,R) = 〈A′0, . . . ,A′|τC |−π〉,
where A′r are defined as follows:

A′r =



{E ∈ Ar | safeExecution(E, insc)} if r < |τC | − π

{
X︷                                                                                                                      ︸︸                                                                                                                      ︷

E = R[E0, . . . ,Eπ−1/l0, . . . , lπ−1]|R∈R|τE |−1 ∧ safeReturn(R,mw ) ∧ safeAlias(E,A, insc)}
∪ {E = E0.m(E1, . . . ,Eπ−1) | safeAlias(E,A, insc)}︸                                                            ︷︷                                                            ︸

Y

if r = |τC | − π

where maps noParameters, safeExecution, safeAlias and safeReturn are introduced in Definitions 25, 26,
27 and 28 respectively.

Let E ∈ Ar , for an arbitrary 0≤ r ≤ |τC | − π and let us show that ~E�σN = ρN (vr ). We distinguish the
following cases:

– if r , |τC | − π, then E ∈ Ar and safeExecution(E, insC ) hold. It entails:
1. E ∈ Ar , and therefore, by hypothesis (18),

~E�〈ρC , µC 〉 = ρC (vr );

2. noParameters(E) holds, and therefore variables(E)⊆{v0, . . . , v|τC |−π−1}⊆dom(τN ), which entails

E ∈ EτN ;

3. ¬canBeAffected(E, insC ), i.e., execution of insC cannot affect evaluations of E, and therefore

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉.

Therefore,
~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉 = ρC (vr ).

– if r = |τC |−π, we distinguish two cases. In the first case, E ∈ X , and therefore it has the following form:
E = R[E0, . . . ,Eπ−1/l0, . . . , lπ−1], where R ∈ R|τE |−1, safeReturn(R,mw ) and safeAlias(E,A, insC )
hold. According to Definition 27, the latter entails:

1. for each 0≤ k < π, noParameters(Ek ) holds, thus variables(Ek )⊆ {v0, . . . , v|τC |−π−1} ⊆ dom(τN ),
which entails

Ek ∈ EτN ;

2. for each 0≤k <π, Ek ∈ A|τC |−π+k , and therefore, by hypothesis (18),

~Ek�〈ρC , µC 〉 = ρC (v|τC |−π+k );

3. for each 0 ≤ k < π, ¬canBeAffected(Ek , insC ) holds, i.e., execution of insC cannot affect evalua-
tions of Ek , and therefore

~Ek�〈ρN , µN 〉 = ~Ek�〈ρC , µC 〉;
4.

no evaluation of E (hence of E0, . . . ,Eπ−1,R) might modify
any field that might be read by E (hence by E0, . . . ,Eπ−1,R)

or any element of an array of type t[ ] when E (hence E0, . . . ,Eπ−1,R)
might read an element of an array of type t′[ ] where t′ ∈ compatible(t).

(19)

In other words, any evaluation of one of these expressions does not affect the value of any other of
these expressions.
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Since R ∈ R|τE |−1, by hypothesis (18) and by Definition 11,

~R�〈ρE , µE 〉 = ρE (v|τE |−1) = ρN (v|τC |−π).

Moreover, according to Definition 28, safeReturn(R,mw ) entails that variables(R) ⊆ {l0, . . . , lπ−1}, i.e.,
every variable occurring in R corresponds to a formal parameter of mw , and for each lk ∈ variables(R),
lk is not modified by mw , and therefore it has the same value at the beginning and at the end of execution
of mw . Since formal parameter lk at E corresponds to the actual parameter v|τC |+k at C , we obtain that
for every lk ∈ variables(R),

ρE (lk ) = ρC (v|τC |+k ).

Evaluation of a variable lk occurring in R in 〈ρE , µE 〉 gives

~lk�∗〈ρE , µE 〉 = 〈ρE (lk ), µE 〉 = 〈ρE (lk ), µN 〉.
It is worth noting that the resulting memory does not change. On the other hand, evaluation of an alias
expression Ek ∈ A|τC |−π+k of v|τC |+k at C in 〈ρN , µN 〉 might update the memory:

~Ek�∗〈ρN , µN 〉 = 〈~Ek�〈ρC , µC 〉, µ′N 〉 [since ¬canBeAffected(Ek , insC ) holds]
= 〈ρC (sp+k ), µ′N 〉 [by hypothesis (18)]
= 〈ρE (lk ), µ′N 〉 [since safeReturn(R,mw ) holds]

Therefore, Ek in 〈ρN , µN 〉 and lk in 〈ρE , µE 〉 have the same value, but the resulting memory might be
different. Nevertheless, (19) guarantees that of any E0, . . . ,Eπ−1,R in 〈ρN , µ′N 〉 produces the same value
which would be obtained if that expression were evaluated in 〈ρN , µN 〉, since µ′N and µN might differ
only on the fields and array elements that are not read by these expressions. Therefore, the results of these
evaluations are ρE (l0), . . . , ρE (lπ−1) respectively and evaluation of E = R[E0, . . . ,Eπ−1/l0, . . . , lπ−1] in
〈ρN , µN 〉 gives the same value as the evaluation of R in 〈ρE , µE 〉. That value is

ρE (v|τE |−1) = ρN (v|τC |−π).

In the second case, E ∈ Y , and E = E0.m(E1, . . . ,Eπ−1), where safeAlias(E,A, insC ) holds. The latter
entails:

1. for each 0≤ k < π, noParameters(Ek ) holds, thus variables(Ek )⊆ {v0, . . . , v|τC |−π−1} ⊆ dom(τN ),
which entails Ek ∈ EτN . Hence, E ∈ EτN ;

2. for each 0≤k <π, Ek ∈ A|τC |−π+k , and therefore, by hypothesis (18),

~Ek�〈ρC , µC 〉 = ρC (v|τC |−π+k );

3. for each 0≤ k <π, ¬canBeAffected(Ek , insC ), i.e., execution of insC cannot affect evaluations of
Ek , and therefore

~Ek�〈ρN , µN 〉 = ~Ek�〈ρC , µC 〉;
4. Analogously to (19), any evaluation of one of these expressions does not affect the value of any

other of these expressions;
Statements 2, 3 and 4 above take us to the following conclusions:

~v|τC |−π�
∗〈ρC , µC 〉 = 〈ρC (v|τC |−π), µC 〉

~E0�∗〈ρC , µC 〉 = 〈ρC (v|τC |−π), µ0
C
〉

~E0�∗〈ρN , µN 〉 = 〈ρC (v|τC |−π), µ0
N
〉


µC , µ0

C
and µ0

N
agree on

all fields and all array elements
that might be read by E0, . . . ,Eπ−1,m

. . .
~v|τC |−1�∗〈ρC , µC 〉 = 〈ρC (v|τC |−1), µC 〉
~Eπ−1�∗〈ρC , µπ−2

C
〉 = 〈ρC (v|τC |−1), µπ−1

C
〉

~Eπ−1�∗〈ρN , µπ−2
N
〉 = 〈ρC (v|τC |−1), µπ−1

N
〉


µC , µπ−1

C
and µπ−1

N
agree on

all fields and all array elements
that might be read by E0, . . . ,Eπ−1,m

These facts imply that the evaluations of v|τC |−π.m(v|τC |−π+1, . . . , v|τC |−1) in 〈ρC , µC 〉 and of E =

E0.m(E1, . . . ,Eπ−1) in 〈ρN , µN 〉 give the same value: namely, we execute method m on the object
µC (ρC (v|τC |−π)) = µπ−1

N
(ρC (v|τC |−π)) with parameters ρC (v|τC |−π+1), . . . , ρC (v|τC |−1) on memories µC

and µπ−1
N

which agree on all the fields and all the array elements that might be read by m . Therefore, they
will return the same value, and that value is, by Definition 11, memorized in ρE (v|τE |−1) = ρN (v|τC |−π).
Hence,

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉 = ρN (v|τC |−π).
ut
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Lemma 15 The propagation rule Rule #23 introduced by Definition 30 is sound at a void method return.
Namely, let w ∈ [1..n] and consider a side-effect arc from nodes C = call m1 . . .mn and E = exit@mw to

a node Q = insq and its propagation rule Π#23. We depict this situation in Fig. 16, where the return value

arc with the propagation rule #22 is omitted. Let τc , τq and τe be the static type information at C, Q and
E, respectively, and let d be the denotation of mw , i.e., a partial function from a state at its beginning to the
corresponding state at its end. Then, for every A ∈ Aliasτc and R ∈ Aliasτe , we have:

d((makescope mw )(γτc (A)) ∩ Ξτq ⊆ γτq (Π#23(A,R)).

Proof. The proof of this lemma is analogous to the case r , |τC | − π of the proof of Lemma 14. ut

B.3.6 Soundness of Side-Effects and Exceptional Arcs at Exceptional Ends

This paragraph deals with the exceptional executions of the methods. Namely, the approximation of the
definite aliasing information at the catch which captures the exceptional states of the method we are interested
in, has to be affected by all possible modifications of the initial memory due to the side-effects of the method.
This is the task of the propagation rules of the side-effects arcs. On the other hand, the final approximation of
the definite expression aliasing property at the point of interest (catch) has to be affected by the exceptions
raised by the method when it is invoked on null. As in the previous case, the approximation of the definite
expression aliasing information is determined as the join (t) of the two approximations mentioned above,
and Lemma 16 shows that it is correct.

Lemma 16 The propagation rules Rule #19 and Rule #23 introduced by Definitions 23 and 30 s are
sound when a method throws an exception. Namely, given nodes Q = catch , C = call m1 . . .mn and

E = exception@mw , for a suitable w ∈ [1..n], consider an exceptional arc from C to Q and a side-effect

arc from C and E to Q, with their propagation rules Π#19 and Π#23, respectively. We depict this situation
in Fig. 17. Let τc , τq and τe be the static type information at C, Q and E, respectively, and let d be the
denotation of mw , i.e., a partial function from a state at its beginning to the corresponding state at its end.
Then, for every A ∈ Aliasτc and R ∈ Aliasτe , we have:

d((makescope mw )(γτc (A)) ∩ Ξτq ⊆ γτq (Π#19(A) t Π#23(A,R)).

Proof. In the following we assume: dom(τh ) = Lh∪Sh , where h ∈ {C ,E ,N }; dom(τh ) = {v0, . . . , v|τh |−1},
where vr = lr when 0 ≤ r < |Lh | and vr = sr−|Lh | when |Lh | ≤ r < |τa |; π is the number of parameters of
method m , |τC | − π≥|LC |, |τN |= |τC | − π + 1, LN =LC and SE = SN = {s0}.

Consider two abstract elements: A = 〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉 ∈ AτC and R = 〈R0, . . . ,R|τE |−1〉 ∈
AτE , two concrete states corresponding to these abstract elements σC = 〈ρC , µC 〉 ∈ γτC (A) and σE =

〈ρE , µE 〉 ∈ γτE (R) and a state σN = 〈ρN , µN 〉 = d((makescope mw )(σC )) ∩ ΞτN . These states have to
satisfy the following conditions imposed by Definition 11:

1. for every 0≤r < |τC | − π, ρN (vr ) = ρC (vr );
2. ρN (v|τC |−π) = ρE (v|τE |−1);
3. µN = µE .

Moreover, since σC ∈ γτC (A), and σE ∈ γτE (A), by Definition 19, the following condition holds:

∀0≤r < |τh |.∀E ∈ Ar .~E�σh = ρh (vr ), (20)

call m1 . . .mq

exit@mw : t
catch#23

#19C

E
N

〈A′0, . . . ,A′|τN |−1〉

〈A0, . . . ,A|τC |−1〉

〈R0, . . . ,R|τE |−1〉

Fig. 17 Arcs going into the node corresponding to catch.
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where h ∈ {C ,E }. Let us show that σN ∈ γτN (A′), where A′ = Π#19(A)tΠ#23(A,R), i.e., that Equation 20
also holds for h = N . By Definitions 18 and 20, we have Π#19(A) t Π#23(A,R) = 〈A′0, . . . ,A′|τN |−π〉, where
A′r are defined as follows:

A′r =

{E ∈ Ar | noStackElements(E) ∧ ¬canBeAffected(E, insC )} if r < |τC | − π
∅ if r = |τC | − π

where noStackElements(E) is true if and only if variables(E)∩SC = ∅, i.e., if E contains no stack elements.
Let E ∈Ar , for an arbitrary 0≤ r ≤ |τC | − π and let us show that ~E�σN = ρN (vr ). We distinguish the

following cases:

– if r < |τC | − π, then E satisfies the following conditions:
1. noStackElements(E) holds, and therefore variables(E) ⊆ LC = LN ⊆ dom(τN ), which entails

E ∈ EτN ;
2. E ∈ Ar , and therefore, by hypothesis (20),

~E�〈ρC , µC 〉 = ρC (vr );

3. ¬canBeAffected(E, insC ), i.e., execution of insC cannot affect evaluations of E, and therefore

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉.

Therefore,
~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉 = ρC (vr ).

– if r = |τC | − π, then A′r = ∅ and therefore ∀E ∈ A′N .~E�〈ρ′, µ′〉 = ρ′(vr ) trivially holds.
ut

B.3.7 Theorem 2 from Section 4.4

Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest

→
→

b1· · ·
bm
‖ σ〉 :: a be the execution of our operational semantics, from the

block bfirst(main) starting with the first bytecode instruction of method main, ins0, and an initial state ξ ∈ Στ0
(containing no aliasing information), to a bytecode instruction ins and assume that this execution leads to
a state σ ∈ Στ, where τ0 and τ are the static type information at ins0 and ins, respectively. Moreover, let
A ∈ Aliasτ be the reachability approximation at ins, as computed by our reachability analysis starting from
A0. Then, σ ∈ γτ(A) holds.

Proof. The blocks in the configurations of an activation stack, but the topmost, cannot be empty and with
no successor. This is because the configurations are only stacked by rule (2) of Fig. 7 and if rest is empty
there, then m ≥ 1 or otherwise, the code ends with a call bytecode with no return, which is illegal in Java
bytecode [22].

We proceed by induction on the length n of the execution

〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest

→
→

b1· · ·
bm
‖ σ〉 :: a .

Base case: If n = 0, the execution is just 〈bfirst(main) ‖ ξ〉. In this case, τ0 = τ1 and A0 = A1 = >τ0 , hence
σ = ξ ∈ γτ0 (A0) = γτ1 (A1) = γτ0 (>τ0 ) = Στ0 .
Inductive step: Assume now that the thesis holds for any such execution of length k ≤ n . Consider an

execution 〈bfirst(main) ‖ ξ〉 ⇒n+1 〈 insq
restq︸  ︷︷  ︸
bq

→
→

b1· · ·
bm
‖ σq 〉 :: aq , with insq(σq ) defined. This execution must

have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈

bp︷  ︸︸  ︷
insp
restp

→
→

b′1· · ·
b′
m′
‖ σp〉 :: ap ⇒n+1−np 〈bq ‖ σq 〉 :: aq (21)
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with 0 ≤ np ≤ n , that is, it must have a strict prefix of length np whose final activation stack has the topmost
configuration with a non-empty block bp . Let such np be maximal. Given a bytecode insa , let τa and Aa

be the static type information and the approximation of the property of interest at the ACG node insa
respectively. By inductive hypothesis we know that σp ∈ γτp (Ap ) and we show that also σq ∈ γτq (Aq )
holds. We distinguish on the basis of the rule of the operational semantics that is applied at the beginning of
the derivation⇒n+1−np in Equation 21.
Rule (1). Then insp (σp ) is defined and insp is not a call.

case a: insp is not a return nor a throw

If restp is non-empty then, by the maximality of np , (21) must be

〈bfirst(main) ‖ ξ〉 ⇒np 〈
insp
insq
restq︸  ︷︷  ︸
bp

→
→

b1· · ·
bm
‖ σp〉 :: ap (1)⇒〈

insq
restq︸  ︷︷  ︸
bq

→
→

b1· · ·
bm
‖ insp(σp)︸   ︷︷   ︸

σq

〉 :: ap︸︷︷︸
aq

.

Otherwise m ′ ≥ 1 must hold (legal Java bytecode can only end with a return or a throw κ) and, by the
maximality of np , it must be the case that bq = b′

h
for a suitable 1 ≤ h ≤ m ′, so that (21) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 insp︸ ︷︷ ︸
bp

→
→

b′1· · ·
b′
m′
‖ σp〉 ::ap

(1)⇒ 〈 →
→

b′1· · ·
b′
m′
‖

σq︷   ︸︸   ︷
insp(σp)〉 ::

aq︷︸︸︷
ap

(6)⇒ 〈bq ‖ σq 〉 :: aq .

In both cases, the ACG contains either a sequential or an exceptional arc from insp to insq and Aq =

Π(Ap ), where Π is the propagation rule of the arc. We have:

Ξτq 3 σq = insp (σp )

∈ insp (γτp (Ap )) ∩ Ξτp [By hypothesis and pointwise extension of insp ]

⊆ γτq (Π(Ap )) = γτq (Aq ) [By Lemmas 9 and 11].

case b: insp is a return t

We show the case when t , void, since the other case is simpler (there is no return value to consider).
Then restp is empty and m ′ = 0 (no code is executed after a return in legal Java bytecode, but the method
terminates) and since insp (σp )∈Ξ (definition of return t), (21) must be in one of these two forms, depending
on the emptiness of block b in Rule (4):

〈bfirst(main) ‖ ξ〉 ⇒np 〈 return t︸     ︷︷     ︸
bp

‖ 〈〈lp ‖ t :: sp〉, µp〉︸                 ︷︷                 ︸
σp

〉 ::

call-time︷                    ︸︸                    ︷
〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                            ︷︷                            ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ t〉, µp〉〉 :: 〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(4)⇒ 〈bq ‖
σq︷                 ︸︸                 ︷

〈〈lc ‖ t :: sc〉, µp〉〉 :: aq

(22)

or

〈bfirst(main) ‖ ξ〉 ⇒np 〈 return t︸     ︷︷     ︸
bp

‖ 〈〈lp ‖ t :: sp〉, µp〉︸                 ︷︷                 ︸
σp

〉 ::

call-time︷                               ︸︸                               ︷
〈 →
→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                                       ︷︷                                       ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ t〉, µp〉〉 :: 〈 →
→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(4)⇒ 〈 →
→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ t :: sc〉, µp〉〉 :: aq

(6)⇒ 〈bq ‖ 〈〈lc ‖ t :: sc〉, µp〉〉 :: aq



69

where, in the latter case, by maximality of np , we have bq = b′
h

for a suitable 1 ≤ h ≤ m ′. We only prove the
case for (22), the other being similar. Consider the configuration call-time. Since only Rule (2) can stack
configurations, call-time was the topmost one when a call was executed and, for a suitable 1 ≤ w ≤ n ,
(22) must have the form

〈bfirst(main) ‖ ξ〉

⇒nc 〈
call m1 . . .mn

insq
restq

→
→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉︸                                              ︷︷                                              ︸

σc

〉 :: aq

(2)⇒ 〈bfirst(mw ) ‖ 〈〈[vj−π :: . . . :: vj−1] ‖ ε〉, µc〉〉 :: ap
⇒np−nc−1 〈bp ‖ σp〉 :: ap
(1)⇒ 〈 ‖ 〈〈lp ‖ t〉, µp〉〉 :: ap
(4)⇒ 〈bq ‖ σq 〉 :: aq ,

where j is the number of stack elements before insc = call m1 . . .mq is executed, π is the number of param-
eters of method m , bfirst(mw ) is the block where the implementation of mw starts and the rules in the portion
⇒np−nc−1 never make the stack lower than at the beginning of that portion. Moreover, only in this proof we
slightly abuse notation and use v0, . . . , vj−1 to denote the values of variables v0, . . . , vj−1 in σc .

Consider σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉 and σp = 〈〈lp ‖ t :: sp〉, µp〉. By inductive hy-
pothesis for nc and np we know thatσc ∈ γτc (Ac) andσp ∈ γτp (Ap ). Letσe = return t(σp ) = 〈〈lp ‖ t〉, µp〉.
Then, the ACG contains a final arc from return t to exit@mw : t , for a suitable 1 ≤ w ≤ n , and Ae = Π(Ap ),
where Π is the propagation rule of the arc. The following relations hold

σe = return t(σp )
∈ return t(γτp (Ap )) [By hypothesis and monotonicity of return]
⊆ γτe (Π(Ap )) = γτe (Ae ) [By Lemma 10].

In this case there are two 2 − 1 arcs (a return value and a side-effect arc) going into insq (see Fig. 16),
and Ac and Ae represent the correct approximations of the property of interest at the sources of these arcs.
Let Aq = ΠRV (Ac ,Ae )tΠSE (Ac ,Ae ), where ΠRV and ΠSE are the propagation rules of the return value
and side-effect arcs respectively. We have

Ξτq 3 σq = d((makescope mw )(σc))
∈ d((makescope mw )(γτc (Ac))) ∩ Ξτq [By hypothesis and

monotonicity of d]
⊆ γτq (ΠRV (Ac ,Ae ) t ΠSE (Ac ,Ae )) [By Lemma 14]
= γτq (Aq ).

case c: insp is a throw

If restp is empty and m ′ > 0, the execution (21) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ︸     ︷︷     ︸
bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ e :: sp〉, µp〉︸                 ︷︷                 ︸

σp

〉 :: ap

(1)⇒ 〈 →
→

b′1· · ·
b′
m′
‖

σq︷          ︸︸          ︷
〈〈lp ‖ e〉, µp〉〉 :: ap

(6)⇒ 〈bq ‖ σq 〉 ::

aq︷︸︸︷
ap ,

where, by maximality of np , we have bq = b′
h

for a suitable 1 ≤ h ≤ m ′. If restp is non-empty, the execution
(21) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈
throw κ
catch
restq︸     ︷︷     ︸
bp

→
→

b1· · ·
bm
‖ 〈〈lp ‖ e :: sp〉, µp〉︸                 ︷︷                 ︸

σp

〉 :: ap

(1)⇒ 〈

bq︷   ︸︸   ︷
catch
restq

→
→

b′1· · ·
b′
m′
‖

σq︷          ︸︸          ︷
〈〈lp ‖ e〉, µp〉〉 ::

aq︷︸︸︷
ap
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since catch is the only bytecode whose semantics can be defined on the exceptional state σq ∈ Ξτq . In both
these cases, by inductive hypothesis we have σp ∈ γτp (Ap ), the ACG contains an exceptional arc from
throw κ to catch , and Aq = Π(Ap ), where Π is the propagation rule of the arc. We have

Ξτq 3 σq = throw κ(σp )
∈ throw κ(γτp (Ap )) ∩ Ξτq [By hypothesis and monotonicity of throw]
⊆ γτq (Π(Ap )) = γτq (Aq ) [By Lemma 11].

If restp is empty and m ′ = 0, the execution (21) must have one of these two forms, depending on the
emptiness of block b in Rule (5):

〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ︸     ︷︷     ︸
bp

‖ 〈〈lp ‖ e :: sp〉, µp〉︸                 ︷︷                 ︸
σp

〉 ::

call-time︷                            ︸︸                            ︷
〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                            ︷︷                            ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ e〉, µp〉〉 :: 〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(5)⇒ 〈bq ‖
σq︷          ︸︸          ︷

〈〈lc ‖ e〉, µp〉〉 :: aq ,

(23)

or

〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ︸     ︷︷     ︸
bp

‖ 〈〈lp ‖ e :: sp〉, µp〉︸                 ︷︷                 ︸
σp

〉 ::

call-time︷                                       ︸︸                                       ︷
〈 →
→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                                       ︷︷                                       ︸

ap

(1)⇒〈 ‖ 〈〈lp ‖ e〉, µp〉〉 :: 〈 →
→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(5)⇒〈
→
→

b′1· · ·
b′
m′
‖

σq︷          ︸︸          ︷
〈〈lc ‖ e〉, µp〉〉 :: aq

(6)⇒〈bq ‖ σq 〉 :: aq

where, by maximality of np , we have bq = b′
h

for a suitable 1 ≤ h ≤ m ′. We only prove (23), the other being
similar. Consider configuration call-time. Since only Rule (2) can stack configurations, it was the tompost
one when the call was executed and (23) must have the form

〈bfirst(main) ‖ ξ〉 ⇒nc 〈
call m1 . . .mn

insq
restq

→
→

b′1· · ·
b′
m′
‖

σc︷                                              ︸︸                                              ︷
〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉〉 :: aq

(2)⇒〈bfirst(mw ) ‖ 〈〈[vj−π :: . . . :: vj−1] ‖ ε〉, µq 〉〉 :: 〈bq ‖ 〈〈lq ‖ sq 〉, µq 〉〉 :: aq
⇒np−nc−1 〈bp ‖ σp〉 :: ap
(1)⇒〈 ‖ 〈〈lp ‖ e〉, µp〉〉 :: ap
(5)⇒〈bq ‖ σq 〉 :: aq ,

where j is the number of stack elements before insc = call m1 . . .mq is executed, π is the number of param-
eters of method m , bfirst(mw ) is the block where the implementation of mw starts and the rules in the portion
⇒np−nc−1 never make the stack lower than at the beginning of that portion. We recall that, only in this proof,
we slightly abuse notation and use v0, . . . , vj−1 to denote the values of variables v0, . . . , vj−1 in σc . By the
semantics of Java bytecode, since σq ∈ Ξ, the only possibility for insq is to be a catch.

Consider σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉 and σp = 〈〈lp ‖ e :: sp〉, µp〉. By inductive hy-
pothesis for nc and np we know thatσc ∈ γτc (Ac) andσp ∈ γτp (Ap ). Letσe = throw κ(σp ) = 〈〈lp ‖ e〉, µp〉.
Then, the ACG contains a final arc from throw κ to exit@mw : t , for a suitable 1 ≤ w ≤ n , Ae = Π(Ap ),
where Π is the propagation rule #13 (Definition 20), and the following relations hold

σe = throw t(σp )
∈ throw t(γτp (Ap )) [By hypothesis and monotonicity of throw]
⊆ γτe (Π(Ap )) = γτe (Ae ) [By Lemma 10].
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In this case there are two arcs (a side-effect and an exceptional arc) going into catch (see Fig. 17), and
Ac and Ae represent the correct approximations of the property of interest at the sources of these arcs. Let
Aq = ΠE (Ac) t ΠSE (Ac ,Ae ), where ΠE and ΠSE are the propagation rules of the exceptional and the
side-effects arcs respectively. We have

Ξτq 3 σq = d((makescope mw )(σc))
∈ d((makescope mw )(γτc (Ac))) ∩ Ξτq [By hypothesis and

monotonicity of d]
⊆ γτq (ΠE (Ac) t ΠSE (Ac ,Ae )) = γτq (Aq ) [By Lemma 16].

Rule (2). By definition of makescope, (21) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 call m1 . . .mn︸              ︷︷              ︸
bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µp〉︸                                              ︷︷                                              ︸

σp

〉 ::ap

(2)⇒ 〈
bq︷    ︸︸    ︷

bfirst(mw ) ‖
σq︷                                 ︸︸                                 ︷

〈〈[vj−π :: . . . :: vj−1] ‖ ε〉, µp〉〉 :: aq ,

where j is the number of stack elements before call m1 . . .mq is executed, π is the number of parameters of
method m and bfirst(mw ) is the block where the implementation of mw starts. In this case, the ACG contains
a parameter passing arc from call m1 . . .mq to first(mw ) , where first(mw ) is the first instruction of mw for
a suitable w ∈ [1..n] and Aq = Π(Ap ), where Π is the propagation rule of the arc. We have

σq = makescope(σp )
∈ makescope(γτp (Ap )) [By hypothesis and monotonicity of makescope]
⊆ γτq (Π(Ap )) = γτq (Aq ) [By Lemma 13].

Rule (3). Let i and j be the number of local variables and stack elements before insp = call m1 . . .mq is
executed and π be the number of parameters of methods mw . In this case, (21) must have the form

〈bfirst(main) ‖ ξ〉
⇒np 〈 call m1 . . .mn

restp︸              ︷︷              ︸
bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π+1 :: null :: . . . :: v0〉, µp〉︸                                                             ︷︷                                                             ︸

σp

〉 ::ap

(3)⇒〈

bq︷  ︸︸  ︷
restp

→
→

b′1· · ·
b′
m′
‖

σq︷                        ︸︸                        ︷
〈〈lp ‖ `〉, µp [` 7→ npe]〉〉 :: aq

when restp is non-empty, while otherwise it has the form

〈bfirst(main) ‖ ξ〉
⇒np 〈 call m1 . . .mn︸              ︷︷              ︸

bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π+1 :: null :: . . . :: v0〉, µp〉︸                                                             ︷︷                                                             ︸

σp

〉 ::ap

(3)⇒〈
→
→

b′1· · ·
b′
m′
‖

σq︷                        ︸︸                        ︷
〈〈lp ‖ `〉, µp [` 7→ npe]〉〉 :: aq

(6)⇒〈bq ‖ σq 〉 :: aq

where, by maximality of np , we have bq = b′
h

for a suitable 1 ≤ h ≤ m ′. In both cases, the ACG contains an
exceptional arc from insp to insq , and Aq = Π(Ap ), where Π is the propagation rule of the arc. We have

Ξτq 3 σq = d((makescope mw )(σp )) ∩ Ξτq
⊆ γτq (Π(Ap )) = γτq (Aq ) [By Lemma 12].

ut


