
A Rule-Based and Imperative Language for Biochemical
Modeling and Simulation

Ðurica Nikolić1,2, Corrado Priami1,3, and Roberto Zunino1,3

1 The Microsoft Research - University of Trento Centre for Computational and Systems Biology
2 University of Verona, Italy
3 University of Trento, Italy

Abstract. We present COSBI LAB Language (L for short), a simple model-
ing language for biochemical systems. L features stochastic multiset rewriting,
defined in part through rewriting rules, and in part through imperative code.

We provide a continuous-time Markov chain semantics forL at three different
abstraction levels, linked by Galois connections. We then describe a simulation al-
gorithm for the most concrete semantics, which is then adapted to work at higher
abstract levels while improving space and time performance. Doing so results
in the well-known Gillespie’s Direct Method, as well as in a further optimized
algorithm.

1 Introduction

In this paper we present a computer language, called L , for modeling and simulat-
ing biochemical systems. In such setting, we are concerned with the modeling of the
kinds of behaviour leading to the creation of biomolecular complexes and their mutual
interaction. Complexes are to be thought as an aggregation of smaller molecules, kept
together by chemical bonds on specific zones called interaction sites.

Different kinds of mathematical structures have been used to model such entities.
Often, these take inspiration from graphs and their generalizations, e.g., hypergraphs.
Here, the smaller molecules are represented by graph nodes, which are taken as prim-
itive stateful entities. We shall name these stateful nodes “boxes”. Boxes also have a
list of sites, from which they can be connected to other boxes by (undirected) edges.
In this framework, complexes are just the connected components of the graphs. System
evolution is then typically modeled via a stochastic transition system, hence provid-
ing a semantics based on continuous-time Markov chains; this is done to capture the
inherent uncertainty of the biological phenomena, which are “noisy” in their nature.
The actual definition of the transition system depends on the modeling language at
hand. For instance, BlenX [5] is a language which uses a graph-like representation of
complexes, whose boxes are equipped with a process in a stochastic process algebra.
There, the stochastic operational semantics of the processes inside the boxes form the
basis for defining the transition system for graphs. Kappa [2] instead resorts to stochas-
tic rewriting rules, borrowing from graph rewriting techniques. These rules can be used
to express in an intuitive way how the graph is affected by biochemical reactions.

Often, however, the precise graph structure of complexes, their chemical bonds, and
the nature of the interaction sites is still unknown to researchers in biology. Modelers

G. Eleftherakis, M. Hinchey, and M. Holcombe (Eds.): SEFM 2012, LNCS 7504, pp. 16–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 17

wishing to use graph-based modeling languages are then asked to provide more data
than those available. In such cases, it would be better to use a less detailed structure to
represent complexes. In our L language we use box multisets in lieu of box graphs.
Consequently, interaction sites are no longer represented, as well as exact chemical
bonds. Rather, we just represent the fact that two molecules belong to the same com-
plexes (or to different ones). This approach seem to be closer to the actual knowledge
available to researchers. As a bonus, we also get some performance improvements in
simulation, since e.g. graph isomorphism tests (untractable, but quadratic time under
certain assumptions [7]) are now replaced by multiset equality tests (linear time with
most representations).

In L , we use stochastic multiset rewriting rules to define the evolution of a system.
Three kind of rules are used: association rules (assoc) which merge two complexes,
dissociation rules (dissoc) which split them, and general dynamics dyn to model the
rest of the interactions. These rules are defined using complex patterns, selecting which
complexes are to be rewritten. Rewriting is, in part, automatic (for assoc and dissoc)
and can be augmented by imperative code whenever one needs to describe custom mul-
tiset manipulations. The effect of this code is atomic: no other rule firing is interleaved.
Having atomic “large” effects is useful, since otherwise such effects need to be carefully
programmed across many rules, often using “infinite” stochastic rates and dealing with
all the resulting concurrency issues [6]. For instance, if we want to model a vescicle re-
leasing at once all its carried molecules (the number of which is not statically known),
we can not use a basic rule, yet it is straightforward to program this behaviour.

We present the syntax of L in Sect. 2, and its semantics in Sect. 3. We then study
how the language can be efficiently simulated. In order to do so, we apply abstract
interpretation and construct two more abstract semantics in Sect. 4. We then apply this
to construct efficient simulation algorithms forL in Sect. 5. We start from a simple, yet
inefficient algorithm which is then adapted to exploit the abstract semantics. This results
in improvements to space and time performance. The algorithms constructed in this way
are the well-known Gillespie’s Direct Method [4] as well as a new improvement of it
which better takes advantage of the features of L .

2 Syntax

In Figure 1 we show the syntax of theL language. We give a short comment on the con-
structs in that figure. BasicType stands for a primitive type used in our language, while
BasicLiteral ranges over their values. The modeler can declare a box type, by specify-
ing a name for it and of a set of fields having basic types. More formally, FieldDecl is
a sequence of field declarations of form Field : BasicType, where Field is the name
of the field, and is unique inside the box. The field list can be empty (ε). Then, the
declaration of a box type BoxDecl has the form BoxType{FieldDecl}, where BoxType
is a name for the declared type. Moreover, FieldInit is a (possibly empty) sequence of
initialized fields, while BoxLiteral represents a box having all its declared fields instan-
tiated. For example, A{x : int; y : real} is a declaration of a box type A containing
fields x and y of the given types, and A{x = 3; y = 1.0} is an instantiation. We use Box
to denote the set of all possible box instantiations.

18 Ð. Nikolić, C. Priami, and R. Zunino

BasicType ::= bool | int | real
BasicLiteral ::= BoolLiteral | IntLiteral | RealLiteral
Field ::= Ide
FieldDecl ::= ε | Field : BasicType; FieldDecl
FieldInit ::= ε | Field = BasicLiteral; FieldInit
Exp ::= BasicLiteral | null | Ide | Exp ∧ Exp | ¬Exp

| Exp + Exp | Exp − Exp | Exp ∗ Exp | Exp = Exp | Exp < Exp
| Exp.Field | Exp.count(BoxType) | Exp.first(BoxType)

BoxType ::= Ide
BoxDecl ::= BoxType{FieldDecl}
BoxLiteral ::= BoxType{FieldInit} NOTE: all declared fields must be instantiated
CplxLiteral ::= [IntLiteral : BoxLiteral; CplxLiteralTail]
CplxLiteralTail ::= ε | IntLiteral : BoxLiteral; CplxLiteralTail
Complexes ::= IntLiteral : CplxLiteral; ComplexesTail
ComplexesTail ::= ε | IntLiteral : CplxLiteral; ComplexesTail
Pattern ::= [BoxType{FieldInit} PatternTail]
PatternTail ::= ε | , BasePattern
Assoc ::= assoc Pattern Pattern rate Exp react Block
Dissoc ::= dissoc Pattern Patternno∗ rate Exp react Block
Dyn ::= dyn Pattern1 . . . Patternn rate Exp react Block
Block ::= var Ide := Exp; Block | CmdBlock
CmdBlock ::= end | Cmd ; CmdBlock
Cmd ::= skip | Ide := Exp | if Exp then Block else Block

| while Exp do Block | BoxCommand
BoxCommand ::= Ide := Exp.spawn(BoxLiteral, . . .) | Exp.spawn(Exp)

| Exp.remove(Exp) | Exp.merge(Exp) | Exp.move(Exp, Exp)
| foreach Ide : BoxType in Exp do Block | Exp.Ide := Exp

Decl ::= Assoc | Dissoc | Dyn | BoxDecl
Run ::= run Complexes end
Model ::= Run | Decl; Model

Fig. 1. Syntax of the L language

For any set S, we write mset S for the set of multisets over S, which we sometimes
identify with the set of functions S → N. A complex is a multiset of boxes, which we
represent in our syntax by a CplxLiteral. The latter is a non-empty sequence of the form
IntLiteral : BoxLiteral, where IntLiteral denotes how many instances of BoxLiteral
are present in the complex. When IntLiteral = 1, we omit to write it. For instance,
[2 : A{x = 3; y = 1.0}, B{}] is a complex. We use Cplx = mset Box to denote the set
of all possible complexes. The whole system state is then defined via the Run clause,
which specifies an initial sequence of Complexes, having form IntLiteral : CplxLiteral
where IntLiteral represents the initial population of the complex in the system at hand.

The dynamics of the system is given by multiset rewriting rules, which continuously
modify the system at hand (if no rule applies, the system does not evolve further).
Our rules are based on complex patterns. A Pattern is a sequence of literals of form
BoxType{FieldInit}, possibly followed by a wildcard ∗. Intuitively, a pattern without ∗
matches with complexes having exactly the specified boxes, while the wildcard allows
matching with complexes including other boxes as well. More formally, we say that a
box B1{ f1 = v1, . . . , fn = vn} matches with a box B2{g1 = h1, . . . , gm = hm} if B1 = B2,

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 19

n ≤ m and for each i ∈ [1..n] there exists j ∈ [1..m] such that fi = g j and vi = h j. Then,
we say that a complex c ∈ Cplx matches with a pattern p, denoted with c |= p, if one of
the following conditions holds:

– p does not end with ∗, and there is a bijective correspondence between boxes in p
and those in c, where correspondent boxes match.

– p does end with ∗, and there is an injective correspondence between boxes in p and
those in c, where correspondent boxes match.

The following example illustrates some pattern matchings.

Example 1. Consider complexes c1 = [A{x = 1}], c2 = [B{}], c3 = [A{x = 0}, A{x = 1}],
c4 = [A{x = 1}, B{}] and c5 = [A{x = 1, y = 4}] and patterns p1 = [A], p2 = [A, A],
p3 = [A, ∗], p4 = [B], p5 = [B, ∗] and p6 = [A{x = 1}]. Then, only the following
relations hold: c1 |= p1, c1 |= p3, c1 |= p6, c2 |= p4, c2 |= p5, c3 |= p2, c3 |= p3, c4 |= p3,
c4 |= p5, c5 |= p1, c5 |= p3, c5 |= p6. �

Having defined patterns, we can now discuss the rewriting rules which lead the evo-
lution of the system. Our language features three kinds of such rules, namely Assoc,
Dissoc and Dyn. A rule assoc p1 p2 rate Exp react Block allows pairs of complexes
matching with p1 and p2 to associate. When that happens, the two reactant complexes
merge their boxes and form a new larger complex, mimicking the association of two
macromolecules in biological systems. The rate expression Exp provides the rate for the
stochastic transition, thus defining the “speed” of the association. The rate expression is
allowed to inspect the boxes in the two reactants via two special variables reactant1
and reactant2. For instance, assoc [A] [B, ∗] rate 5.2 ∗ reactant1.first(A).mass de-
fines a rate proportional to the mass of the first reactant. When an assoc rule is fired,
after the complexes are associated the code block specified in the react part is run. This
can access the newly formed product (via a special product variable) and modify it
further, e.g. by changing box fields, or adding/removing boxes. The react code block
can also spawn entirely new complexes.

A rule dissoc p1 p2 rate Exp react Block specifices the dual operation, namely
dissociation of a complex into two subcomplexes. Here, p1 specifies the complex to
break up, while p2 matches with a subcomplex to separate (no wildcard ∗ is allowed in
p2). The rate expression Exp can access reactant1 to provide a dissociation stochas-
tic rate, which is intended to define how fast is the reactant to split. In the case p2 has
multiple matches inside the reactant, we let all of them define an equally probable dis-
sociation, hence effectively dividing the rate among all the possible splits. After the rule
triggers and the split is performed, the react code block is run, and can access the new
complexes using the variables product1 and product2.

Rule dyn is used to define a generic molecular dynamics. Its semantics is as for
assoc, except that no complex merge is performed, and the react code block still has ac-
cess to the unmerged complexes reactant1 and reactant2. This rule effectively sub-
sumes assoc and dissoc, in that association/dissociation can be programmed manually
in the code block. However, associations and dissocations are so common to deserve
a special construct. Instead, the typical use for dyn is the modeling of monomolecular
reactions, in which only one reactant is present.

20 Ð. Nikolić, C. Priami, and R. Zunino

The code blocks in rules are written in an imperative language, the constructs of
which are mostly standard. Therefore, we just briefly discuss the more peculiar ones.
Since the state ofL is stored in complexes, i.e. in multisets of boxes, we need constructs
to inspect and modify those. We provide a way to loop over all the boxes of a given type
in a complex (foreach b : BoxType in complex). To precisely define the semantics of
such loop, we require that the visit order follows the lexicographic order of box values.
The expression complex.first(BoxType) returns the first box in such ordering. Further
commands allows one to add (complex.spawn) and remove (complex.remove) boxes in
a complex. Similar operations can be done at the complex level: new complexes can be
created, and existing ones removed. We provide also ways to move boxes between com-
plexes (move) as well as to merge two complex as it happens for association (merge).

Example 2. As a simple example, we provide an L model for the enzymatic reaction
shown below:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ EI

k3−→ E + P

The first double arrow models an enzyme molecule (E) associating and dissociating to
a substrate molecule (S). When associated, the complex ES can react (second arrow):
the enzyme changes the substrate into some intermediate molecule (I). This reaction is
not reversible. Then, the intermediate molecule can dissociate from the enzyme, which
releases a product (P) in the system (third arrow). In L , we can model this behaviour
as follows. Below, the react blocks are used to change S into I, and then I into P.

E{} S {} I{} P{}
assoc [E] [S] rate k1;
dissoc [E, S] [S] rate k−1;
dyn [E, S] rate k2 react
reactant1.remove(reactant1.first(S));
reactant1.spawn(I{});
end;

dissoc [E, I] [I] rate k3 react
product2.remove(product2.first(I));
product2.spawn(P{});
end;

run 100 : [E]; 100 : [S]; end

�

3 Semantics

In this section we provide a semantics for the rules of ourL language. To keep our pre-
sentation short, we focus on the semantics of the assoc rule, only. The formal semantics
of the dissoc and dyn rules can be indeed defined similarly.

Suppose we are given a set of complexes annotated with their names. Names
uniquely identify the instances of complexes present in the system, so that complexes
comprised by exactly the same boxes are still distinguishable. For the sake of simplic-
ity, we assume that complexes’ names are natural numbers. Then, suppose that we are

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 21

given an assoc rule which states that all the pairs of complexes satisfying patterns p1

and p2 react with a stochastic rate specified by an expression e. The semantics of the
assoc rule then collects the stochastic transitions involving all such pairs of complexes,
and their corresponding rates.

We start by defining two auxiliary binary set operators, which are similar to the
cartesian product. Operator⊗ defines the set of unordered pairs ({x1, x2}), while operator
⊗̂ defines the set of unordered pairs of distinct elements (hence requiring x1 � x2).

Definition 1 (⊗ and ⊗̂). Given two arbitrary sets S1 and S2, we define

S1 ⊗ S2= {{x1, x2} | x1∈S1 ∧ x2∈S2} S1⊗̂S2= {{x1, x2} | x1 ∈S1 ∧ x2∈S2 ∧ x1� x2}.
The following definition introduces the notion of system, representing a set of com-
plexes enriched with their names, and the notion of transition, representing two different
complexes that can react with a certain rate.

Definition 2 (Systems and Transitions). A system σ� is a set of annotated complexes,
i.e., ordered pairs 〈n, c〉 ∈ N × Cplx, where c and n represent a complex and its unique
name, respectively. We write Sys0 = ℘(N × Cplx) to denote the set of all the possible
systems. A transition is an ordered pair whose first element determines the reactants,
while the second element is the rate of the reaction. The reactants are characterized by
an unordered pair of annotated complexes. We write Tr0 = ((N×Cplx)⊗̂(N×Cplx))×R+
to denote the set of all possible transitions. Moreover, we let Res0 = ℘(Tr0).

It is worth noting that Res0 denotes all possible sets of transitions, and therefore repre-
sents the set of all possible semantics of an assoc rule.

Example 3. Let c1 = [A{x = 0}], c2 = [A{x = 1}] and c3 = [B] be three complexes, and
suppose that a system σ� is composed of 2, 1 and 2 instances of c1, c2 and c3 respec-
tively. Then, we represent σ� as follows: σ� = {〈0, c1〉 , 〈1, c1〉 , 〈0, c2〉 , 〈0, c3〉 , 〈1, c3〉}.
If we suppose that 〈0, c1〉 and 〈0, c2〉 can react with a rate 1.0, the corresponding transi-
tion is given as: 〈{〈0, c1〉 , 〈0, c2〉}, 1.0〉. �

We now define a function which selects from a system only those annotated complexes
which match with a given pattern.

Definition 3. Given a pattern p, we define a map �p�0 : Sys0 → Sys0 called the
evaluation of p in Sys0 as: �p�0σ� = {〈n, c〉 ∈ σ� | c |= p}, for any σ� ∈ Sys0.

Example 4. Consider the system σ� defined in Example 3 and a pattern [A] denoting
the complexes composed of only one box whose its type is A. Since complexes c1 and
c2 match with [A], while c3 does not, we have �[A]�0σ� = {〈0, c1〉 , 〈1, c1〉 , 〈0, c2〉}. �

We now define to the actual semantics of the assoc rule. Its general form is the follow-
ing: assoc p1 p2 rate e react Block. Starting from a system σ�, we evaluate patterns
p1 and p2 (Definition 3), obtaining two systems σ�1 and σ�2 whose complexes match
with patterns p1 and p2 respectively. Our goal is to determine all possible transitions
whose first reactant belongs to σ�1, and the second one belongs to σ�2. The rate of each

22 Ð. Nikolić, C. Priami, and R. Zunino

transition is determined by evaluating the expression e. This evaluation depends on an
environment, i.e., a function which maps special variables reactant1 and reactant2

to their values. These values are the complexes which take part in the transition. The
following definition explains how it is possible to evaluate the rate characterized by an
expression e of a reaction between two complexes c1 and c2.

It is worth noting that the rate expression e should be “symmetric” in reactant1 and
reactant2: swapping their values should not affect the resulting association rate. This
reflect the fact that in biology association happens between unordered complex pairs.
To stress and enforce this symmetry, below we compute the rate as the average of the
rates resulting from both orders.

Definition 4. Let c1 and c2 be two complexes and let e be an expression characterizing
the rate of the reaction between these complexes. We determine the rate of this reaction
as follows:

rate(c1, c2, e) =
�e�expρ1 + �e�expρ2

2
,

where ρ1= [reactant1 �→c1, reactant2 �→c2] and ρ2= [reactant1 �→c2, reactant2 �→c1].

Given an assoc rule and a system, we define the set of all possible transitions that can
occur between complexes of the system.

Definition 5 (Semantics of assoc). Consider a rule assoc p1 p2 rate e react B and a
state σ� ∈ Sys0. We define the map �p1, p2, e�assoc−nc

0 : Sys0 → Res0 as

�p1, p2, e�assoc−nc
0 σ� ={

〈{〈n1, c1〉 , 〈n2, c2〉}, rate(c1, c2, e)〉 ∈ Tr0 | 〈n1, c1〉 ∈ �p1�0σ� ∧ 〈n2, c2〉 ∈ �p2�0σ�
}
.

The collecting semantics �p1, p2, e�assoc
0 : ℘(Sys0) → ℘(Res0) is defined as follows:

�p1, p2, e�assoc
0 Σ� =

{
�p1, p2, e�assoc−nc

0 σ� | σ� ∈ Σ�
}
.

Note that the semantics of the assoc rule contains only transitions of type Tr0, i.e., the
ones in which reactants must be different. This does not prevent two identical complexes
to react, since they have different names. However, a complex is prevented to react with
itself, which would be unwanted.

Example 5. Let us consider, one more time, the system σ� defined in Example 3 and let
us determine the semantics of the rules

rule1 : assoc [A] [B] rate 1.0 rule2 : assoc [A] [A] rate 1.0.

In Example 4 we showed that �[A]�0σ� = {〈0, c1〉 , 〈1, c1〉 , 〈0, c2〉}. We can, similarly
show that �[B]�0σ� = {〈0, c3〉 , 〈1, c3〉}. The following table represents the semantics of
the rules: rule1 gives rise to transitions 1.-6. from the following table, while rule2 gives
rise to transitions 7.-9.

rule1
1. 〈{〈0, c1〉 , 〈0, c3〉}, 1〉 2. 〈{〈0, c1〉 , 〈1, c3〉}, 1〉 3. 〈{〈1, c1〉 , 〈0, c3〉}, 1〉
4. 〈{〈1, c1〉 , 〈1, c3〉}, 1〉 5. 〈{〈0, c2〉 , 〈0, c3〉}, 1〉 6. 〈{〈0, c2〉 , 〈1, c3〉}, 1〉

rule2 7. 〈{〈0, c1〉 , 〈0, c2〉}, 1〉 8. 〈{〈1, c1〉 , 〈0, c2〉}, 1〉 9. 〈{〈0, c1〉 , 〈1, c1〉}, 1〉
Transitions 1.-6. occur between a complex matching with [A] and a complex matching
with [B] and their rate is 1, while in transitions 7.-9. both complexes match with [A]. �

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 23

℘(Sys0)

αsys
1 γsys

1

℘(Res0)
�[p1], [p2], e�

assoc
0

αres
1 γres

1

℘(Sys1)

℘(Sys2)

℘(Res1)

αres
2 γres

2

℘(Res2)

�[p1], [p2], e�
assoc
1

�[p1], [p2], e�
assoc
2

S
ys

1
=
S
ys

2

Fig. 2. Relationships between different levels of abstraction

Below, we state a simple property of the semantics of our expressions and commands.
As it happens in nominal calculi and in most languages with references, we have that the
actual names (n) used to annotate the “objects” (the complexes 〈n, c〉) are immaterial.

Lemma 1. The semantics of expressions, commands, and rewriting rules are stable
w.r.t. the renaming of annotated complexes. In particular, renaming does not affect the
computed transition rates for rules, or their modifications of the state.

4 Abstraction

There might be a huge number of annotated complexes satisfying the two patterns spec-
ified by an assoc rule that react. Hence, the number of reactions they give rise can
becomes enormous. Although precise, the provided semantics for rules can lead to an
inefficient simulation, as we will see. In this section we define two levels of abstraction
which we shall exploit to perform some optimization in the simulation ofL models. We
call the actual semantics of the assoc rules defined in Section 3 the semantics of level
0, while we refer to our new abstraction levels as level 1 and level 2. For both of them,
we define some opportune abstractions of Sys0 (Sys1 and Sys2) and Res0 (Res1 and
Res2), show how they can be related (via pairs of functions αsys−γsys and αres−γres) and
define two abstract semantics (�p1, p2, e�assoc

1 and �p1, p2, e�assoc
2) representing a sound

approximation of the actual semantics �p1, p2, e�assoc
0 of the assoc rules. In Figure 2

we give a brief outline of this idea which we then formalize in Sections 4.1 and 4.2.

4.1 Abstraction at Level 1

In Section 3 we have stated that the information about complexes’ names is not relevant
for the actual semantics of the assoc rules. Therefore, it is possible to abstract away
this piece of information and define another, more abstract semantics of these rules. In
the following we will define counterparts of Definitions 2, 3 and 5.

Although the names of complexes are not relevant for the computation of reaction
rates, it is important to know the exact amount of each complex present in a system,

24 Ð. Nikolić, C. Priami, and R. Zunino

i.e. its population. This fact gives rise to another definition of the notion of system, on a
different level of abstraction. More precisely, for each complex, we memorize the num-
ber of instances of that complex present in a system. Then we remove information about
complexes’ names from the definition of transitions as well. The following definition
formalizes these intuitions.

Definition 6. A system σ is a multiset of complexes, i.e., σ ∈ mset Cplx = Sys1. A
transition is an ordered pair whose first element determines the set of reactants, while
the second element is the rate of the reaction. The set of reactants can be composed of
1 or 2 elements. The former case occurs when two identical complexes react, while the
latter case occurs when the reactants are not identical. We write Tr1 = (Cplx⊗Cplx)×R+
to denote the set of all possible transitions. Moreover, we let Res1 = ℘(Tr1).

Example 6. Under the hypotheses of Example 3 regarding the structure of complexes
c1, c2 and c3 and their populations which are, respectively 2, 1 and 2, we define the state
σ = [c1 �→ 2, c2 �→ 1, c3 �→ 2]. �

Definition 7. We define a function function names : Cplx × Sys0 → ℘(N) which for
every complex c ∈ Cplx and every system σ� ∈ Sys0 returns all possible names that c
might have in σ� as names(c, σ�) = {n ∈ N | 〈n, c〉 ∈ σ�}.
It is worth noting that

〈
℘(Sys0),⊆,∪,∩,∅,Sys0

〉
, and

〈
℘(Sys1),⊆,∪,∩,∅,Sys1

〉
(or

shortly,
〈
℘(Sys0),⊆〉 and

〈
℘(Sys1),⊆〉) are complete lattices. In the following we show

that they are also related by a Galois connection [1].

Definition 8. Let βsys
1 : Sys0 → Sys1 be defined as βsys

1 (σ�) = λc. |names(c, σ�)|.
We define the abstraction map αsys

1 : ℘(Sys0) → ℘(Sys1) and the concretization map
γ

sys
1 : ℘(Sys1)→ ℘(Sys0) as:

α
sys
1 (Σ�) = {βsys

1 (σ�) | σ� ∈ Σ�} γ
sys
1 (Σ) =

⋃{Σ� | αsys
1 (Σ�) ⊆ Σ}.

Lemma 2.
〈〈
℘(Sys0),⊆〉 , αsys

1 , γ
sys
1 ,
〈
℘(Sys1),⊆〉

〉
is a Galois connection.

The abstraction map αsys
1 modifies a system σ� by substituting the names of the com-

plexes belonging to that system with their population. The definition of γsys
1 depends on

α
sys
1 and derives from a well-known result from the theory of abstract interpretation. Its

meaning is clarified by the following lemma.

Lemma 3. Let δsys
1 : Sys1 → ℘(Sys0) be a function defined as:

δ
sys
1 (σ) = {σ� ∈ Sys0 | ∀c ∈ Cplx. |names(c, σ�)| = σ(c)}.

Then, γsys
1 (Σ) =

⋃
σ∈Σ δ

sys
1 (σ).

In the following we perform a similar abstraction to the set of transitions Res0 by re-
moving all pieces of information regarding the names of the complexes that can react.
At this point, it might be the case that more than one transition has the same reactants.
We group all these transitions together and we assign them a rate obtained as sum of

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 25

the rates of each single transition. For instance, consider the transitions 5. and 6. from
Example 5: 〈{〈0, c2〉 , 〈0, c3〉}, 1〉 , 〈{〈0, c2〉 , 〈1, c3〉}, 1〉 ∈ Tr0. By removing complexes’
names, we have two transitions of the same form: 〈{c2, c3}, 1〉. The idea is then to sub-
stitute them with only one transition with rate 1+1 = 2: 〈{c2, c3}, 2〉 ∈ Tr1. This rate is
called propensity. We formalize our idea: the map comp we define below substitutes
the reactants of each transition by the set composed of their complexes, while the map
prop calculates the propensities of new transitions in the way we hinted at above.

Definition 9. We define maps comp : Res0 → ℘(Cplx ⊗ Cplx) and prop : (Res0 ×
(Cplx ⊗ Cplx))→ R as:

comp(R�) = {{c1, c2} | ∃n1, n2 ∈ N.∃r ∈ R+. 〈{〈n1, c1〉 , 〈n2, c2〉}, r〉 ∈ R�}
prop(R�, A) =

∑
〈B,r〉∈R� s.t. comp({〈B,r〉})=A r

Example 7. Let R� be the set composed of the 9 transitions obtained in Example 5.
Then, comp(R�) = {{c1}, {c1, c2}, {c1, c3}, {c2, c3}}. On the other hand, the propensities
are prop(R�, {c1}) = 1, prop(R�, {c1, c2}) = prop(R�, {c2, c3}) = 2, prop(R�, {c1, c3}) = 4
and prop(R�, A) = 0 for all other A ∈ ℘(Cplx ⊗ Cplx). �

We can now define another pair of abstraction and concretization maps in order to relate
Res0 and Res1.

Definition 10. We define the abstraction map αres
1 : ℘(Res0) → ℘(Res1) and the con-

cretization map γres
1 : ℘(Res1)→ ℘(Res0) as:

αres
1 (R�) = {{

〈
A, prop(R�, A)

〉
| A ∈ comp(R�)} | R� ∈ R�}

γres
1 (R) =

⋃{R� | αres
1 (R�) ⊆ R}.

Lemma 4.
〈
〈℘(Res0),⊆〉 , αres

1 , γ
res
1 , 〈℘(Res1),⊆〉

〉
is a Galois connection.

We define a map which removes from a system σ ∈ Sys1 corresponding to a multiset
of complexes (Definition 6) all those complexes not matching with a given pattern.

Definition 11. Given a pattern p and a system σ ∈ Sys1, the evaluation of p in σ is a
map �p�1 : Sys1 → Sys1 defined as:

�p�1σ = λc.

⎧⎪⎪⎨⎪⎪⎩
σ(c) if c |= p

0 otherwise.

Example 8. Consider the system σ defined in Example 6 and a pattern [A]. Since c1 and
c2 match with p, while c3 does not, we have �[A]�1σ = [c1 �→ 2, c2 �→ 1, c3 �→ 0]. �

Given a system σ ∈ Sys1, two complexes in it that may react, and the rate expression
specified by an assoc rule, the following definition specifies how the propensity of all
possible transitions induced by σwhich have these complexes as reactants is computed.

26 Ð. Nikolić, C. Priami, and R. Zunino

Definition 12. Let c1 and c2 be two complexes appearing in a system σ ∈ Sys1 and let
e be an expression characterizing the rate of the reaction between these complexes. We
determine the propensity of this reaction as follows:

pσ(c1, c2, e)=
σ(c) · (σ(c)−1)

2
· �e�ρ1 pσ(c1, c2, e)=σ(c1) · σ(c2) · �e�ρ2+�e�ρ3

2
,

where the first equation applies when c1 = c2 = c, otherwise the second applies; also,
above we let ρ1 = [reactant1 �→c, reactant2 �→c], ρ2 = [reactant1 �→c1, reactant2 �→c2]
and ρ3= [reactant1 �→c2, reactant2 �→c1].

In the following we define �p1, p2, e�assoc
1 , the abstract semantics at level 1 of the actual

semantics of the assoc rules (Definition 5).

Definition 13 (Level 1 semantics of assoc). Consider a state σ ∈ Sys1 and a rule
assoc p1 p2 rate e react B. We define the map �p1, p2, e�assoc−nc

1 : Sys1 → Res1 as

�p1, p2, e�assoc−nc
1 σ = {〈{c1, c2}, pσ(c1, c2, e)〉∈Tr1 | �p1�1σ(c1)�0 ∧ �p2�1σ(c2)�0}.

The collecting semantics �p1, p2, e�assoc
1 : ℘(Sys1) → ℘(Res1) is defined as follows:

�p1, p2, e�assoc
1 Σ = {�p1, p2, e�assoc−nc

1 σ | σ ∈ Σ}.
Example 9. Let us consider, one more time, rule1 and rule2 introduced in Example 5
and the system σ defined in Example 6. Let us determine the semantics at level 1 of
these rules in σ. In Example 8 we showed that �[A]�1σ = [c1 �→ 2, c2 �→ 1, c3 �→ 0].
We can, similarly show that �[B]�1σ = [c1 �→ 0, c2 �→ 0, c3 �→ 2]. By Definition 12, we
have:

pσ(c1, c3, 1) = 4 pσ(c2, c3) = 2
pσ(c1, c2, 1) = 2 pσ(c1, c1) = 1 pσ(c2, c2) = 0.

The following table represents the semantics at level 1 of our rules: rule1 gives rise to
transitions 1.-2., while rule2 gives rise to transitions 3.-4.

rule1 1. 〈{c1, c3}, 4〉 2. 〈{c2, c3}, 2〉
rule2 3. 〈{c1}, 1〉 4. 〈{c1, c2}, 2〉

It is worth noting that since pσ(c2, c2) = 0, transition 〈{c2}, pσ(c2, c2)〉 does not belong
to Tr1, and therefore cannot be in �[A], [A], e�assoc−nc

1 . �

The following lemma shows a relationship between the semantics at levels 0 and 1.

Lemma 5. Given an expression e and two patterns p1 and p2, the following condition
holds:

�p1, p2, e�assoc
1 = αres

1 ◦ �p1, p2, e�assoc
0 ◦ γsys

1 .

4.2 Abstraction at Level 2

In this section we propose an additional abstraction of Res1 which calculates the cumu-
lative propensity of all the reactions the assoc rule gives rise to. Abstraction of systems
is the same one we introduced in the previous subsection.

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 27

Definition 14. A system σ� is as a multiset of complexes, i.e., σ� ∈ Sys2 = Sys1 =

mset Cplx. Moreover, we let Res2 = R.

We shall sometimes write σ instead of σ# to stress the fact that Sys2 = Sys1. It is worth
noting that both 〈℘(Res1),⊆〉 and 〈℘(Res2),⊆〉 are complete lattices. In the following
we show that they are also related by a Galois connection [1].

Definition 15. We define the abstraction map αres
2 : ℘(Res1) → ℘(Res2) and the con-

cretization map γres
2 : ℘(Res2)→ ℘(Res1) as:

αres
2 (R) = {∑〈A,r〉∈R r | R ∈ R} γres

2 (R�) = ⋃{R | αres
2 (R) ⊆ R�}.

Lemma 6.
〈
〈℘(Res1),⊆〉 , αres

2 , γ
res
2 , 〈℘(Res2),⊆〉

〉
is a Galois connection.

We define �p1, p2, e�assoc
2 , the semantics of the assoc rules at level 2.

Definition 16 (Level 2 semantics of assoc). Consider a state σ ∈ Sys2 and a rule
assoc p1 p2 rate e react B. We define the map �p1, p2, e�assoc−nc

2 : Sys2 → Res2 as

�p1, p2, e�assoc−nc
2 σ =

∑

〈A,r〉∈�p1,p2,e�assoc−nc
1 σ

r.

The collecting semantics �p1, p2, e�assoc
2 : ℘(Sys2) → ℘(Res2) is defined as follows:

�p1, p2, e�assoc
2 Σ = {�p1, p2, e�assoc−nc

2 σ | σ ∈ Σ}.
The semantics of an assoc rule at level 1 determines all possible transitions Res1 the
rule gives rise to, and for each of them its propensity is calculated as well. At level 2 the
rule’s semantics determines only the cumulative propensity of the transitions obtained
at level 1.

Example 10. Consider the rules introduced in Example 5 and the system σ defined in
Example 6. Let us determine the semantics at level 2 of these rules in σ. In Example 9
we showed that the transitions obtained from rule1 are 〈{c1, c3}, 4〉 and 〈{c2, c3}, 2〉, so
their cumulative propensity is 4 + 2 = 6. On the other hand, rule2 gave transitions
〈{c1}, 1〉 and 〈{c1, c2}, 2〉 and their cumulative propensity is 1+2 = 3. Thus, the semantics
at level 2 of rule1 and rule2 are 6 and 3 respectively.

Although this is a quite simple example, we can notice that there is an actual reduc-
tion of numbers of transitions appearing in different semantics of these two rules: rule1

has 6 transitions Res0 at level 0, 2 transitions Res1 at level 1 and 1 transition Res2 at
level 2, while rule2 has 3 transitions Res0 at level 0, 2 transitions Res1 at level 1 and 1
transition Res2 at level 2. �

In order to compute the semantics of an assoc rule at level 2, we should first determine
the semantics of that rule at level 1 (Definition 16). Therefore, the complexity of the
computation of the semantics at level 2 appears to be higher then the one of semantics
at level 1. In some cases, however, we can compute the semantics at level 2 without
computing the one at level 1, as shown in the following lemma. The proofs relies on
well-known combinatorial properties.

28 Ð. Nikolić, C. Priami, and R. Zunino

Lemma 7. Let e be an expression with no occurrence of reactant1 and reactant2,
σ ∈ Sys2 be a system. Then, the following equation holds:

�p1, p2, e�assoc
2 σ = �e�ρ ·

(
|�p1�1σ| · |�p2�1σ| −

(|�p1�1σ∩�p2�1σ|
2

)
−
(|�p1�1σ∩�p2�1σ|

1

))
.

Example 11. Let us consider one more time the system σ from Example 6 and the rule2

from Example 5. We compute rule2’s semantics at level 2 using Lemma 7. We showed
in Example 8 that �[A]�1σ = [c1 �→ 2, c2 �→ 1, c3 �→ 0], and therefore |�[A]�1σ| =
2+ 1+ 0 = 3. We have �[A], [A], 1�assoc

2 σ = 3 · 3−
(

3
2

)
−
(
3
1

)
= 3 · 3− 3·2

2 − 3 = 3, which
is equal to the semantics of rule2 computed by Definition 16 in Example 10. �

5 Simulation

In this section we discuss how to simulate biological models expressed in our rule-based
language. In doing that, we shall discuss how the abstractions provided in Sect. 4 can be
exploited so to build optimized algorithms. In order to keep our presentation concise,
we shall pretend that the model at hand is composed by assoc rules, only. Other kind
of rules (dissoc, dyn) can indeed be handled through the same techniques.

5.1 Level 0 Simulation

We start by considering the problem of simulating a level 0 system, described via an
initial state σ� ∈ S ys0 and a set of rules. A straightforward way to represent σ� is that
of storing the information relative to each complex 〈n, c〉 ∈ σ� in its own memory area.
That is, we allocate an “object” for every single complex in σ� in which we store n and
(a representation of) the multiset of the boxes in c, each one with its own state variables.

Simulating the system then can be done as follows. First, for each assoc rule, say
indexed by k ∈ K, we compute �[pk,1], [pk,2], e�assoc−nc

0 by enumerating all the anno-
tated complex pairs matching with the patterns. This provides us with sets of level 0
transitions {〈Ak, j, ak, j〉 | j ∈ J} (for some index set J), where each Ak, j mentions ex-
actly two annotated complexes. We assign to each transition the probability obtained
by normalizing the rates (i.e., ak, j/

∑
k, j ak, j), and then randomly choose one of them,

say 〈Aν,μ, aν,μ〉. Simulation time is advanced by a random amount, generated according
to the exponential distribution Exp(

∑
k, j ak, j). The two annotated complexes in Aν,μ are

removed from σ�, then associated by merging their multisets of boxes (say c1 and c2).
Finally we create a new annotated complex 〈n′, c1 ∪ c2〉 for some fresh n′, and insert
it in σ�. At this point, the react code block of the rule is run (possibly modifying the
newly created complex via its product variable, and spawning new complexes as well).
The whole procedure is then repeated.

Below, we provide pseudo-code for the whole simulation procedure. We let index
sets K, J to start counting from 1. Summing over the multi-index 〈k, j〉 ∈ K × J follows
the lexicographic ordering.

Level 0 simulation algorithm
1: {assoc [pk,1][pk,2] rate ek react ck | k ∈ K} := the set of rules of the model
2: σ� := the initial state ; simulation time t := 0

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 29

3: while t < tmax do
4: for all rule indexes k ∈ K do
5: compute the level 0 transitions {〈Ak, j, ak, j〉| j∈ J} :=�[pk,1], [pk,2], ek�assoc−nc

0 σ�

6: end for
7: compute a0 :=

∑
k, j ak, j ; generate a random number u := U(0, a0)

8: find the minimum rule-transition index 〈ν, μ〉 such that u ≤ ∑〈ν,μ〉〈k, j〉=〈1,1〉 ak, j

9: t := t + Exp(a0) ; apply reaction μ by associating complexes in Aν,μ, running
command cν, and updating state σ� accordingly

10: end while

The above simple algorithm is faithful to the continuous-time Markov chain which
define the stochastic behaviour of biochemical systems. However, its space and time
performance makes it unpractical for real-world applications. Indeed, one can note that
it allocates a rather large amount of memory. This is because biochemical systems can
involve a large number of complexes, hence allocating memory for each one of them
should be avoided. Fortunately, in typical models it is often the case that many dis-
tinct complexes actually have identical state, so one can actually reduce the memory
footprint by aggressively sharing the state data (and using copy-on-write to preserve
the semantics). Even with this optimization, time performance suffers by the explicit
enumeration of all possible reacting pairs. To overcome this problem, we abstract the
system to level 1.

5.2 Level 1 Simulation

Lemma 1 states that, since an expression e can not access to the n component of a com-
plex 〈n, c〉, evaluating e for distinct complexes sharing the same state yields the same
value. Because of this, one can then evaluate it only once, and multiply the result by the
number of complex pairs, hence obtaining the cumulative rate for all such transitions.
In order to do that, we do not need to actually enumerate all the complex pairs, but just
to compute their number, which can easily be done exploiting combinatorial formulae
while keeping track of the amount of complexes in each state, i.e. counting the popu-
lation for each species. This greatly improves the time performance of the simulation
algorithm.

Since we now need only a population count, we can avoid to store the names n for
each complex, so to furher improve the memory footprint. This essentially amount to
move to the level 1 abstraction, i.e. turningσ� ∈ S ys0 into aσ ∈ S ys1. Simulating at that
level results in a less detailed simulation output, which describes which species interact
without specifying the actual identities of the involved complexes. Since identities are
unimportant from a biological point of view, and quantities are, the result of simulation
still preserves all the relevant information of level 0.

Below, we adapt the level 0 simulation algorithm so to work at level 1. This actually
results in the well-known Gillespie’s Direct Method [4], which indeed works precisely
at that abstraction level. A minor difference worth mentioning is that in our models an
unbounded number of new chemical species (i.e., complexes) can be formed during
simulation, while in the reaction-based models considered by Gillespie the set of such
species is finite and statically known before simulation is started.

30 Ð. Nikolić, C. Priami, and R. Zunino

Level 1 simulation algorithm (Gillespie’s Direct Method)

1: {assoc [pk,1][pk,2] rate ek react ckmidk ∈ K} := the set of rules of the model
2: σ := the initial state ; simulation time t := 0
3: while t < tmax do
4: for all rule indexes k ∈ K do
5: compute the level 1 transitions {〈Ak, j, ak, j〉| j∈ J} :=�[pk,1], [pk,2], ek�assoc−nc

1 σ
exploiting Def. 12 to compute propensities ak, j

6: end for
7: compute a0 :=

∑
k, j ak, j ; generate a random number u := U(0, a0)

8: find the minimum rule-transition index 〈ν, μ〉 such that u ≤ ∑〈ν,μ〉〈k, j〉=〈1,1〉 ak, j

9: t := t + Exp(a0) ; apply reaction μ by associating complexes in Aν,μ, running
command cν, and updating state σ accordingly

10: end while

Comparing the above to the level 0 algorithm, we find the main, important difference in
line 5, where we exploit the combinatorial formula in Def. 12 to compute propensities.

Several further standard optimizations can be applied, e.g., after a transition has been
applied, we can avoid to recompute those propensities which are known to be unaffected
by that transition. This is typically done via a dependency graph [3].

5.3 Level 2 Simulation

We saw how abstracting the model from level 0 to level 1 improves the space and
time performance of the simulation. We now investigate the consequences of further
abstracting the model to level 2. As we shall see, under some assumptions, this may
lead to further improvements in time performance.

Recall that level 2 systems σ# ∈ S ys2 are actually identical to level 1 systems
σ ∈ S ys1, so no information about the complexes is actually lost here. Instead, level 2
abstract the transitions which are being generated by the semantics. More in detail, we
have that all the level 1 transitions (∈ Res1) which are being generated by any given
rule are collapsed into a single level 2 transition (∈ Res2) having as its rate the sum of
all the rates of level 1 transitions. In this way, the propensities of level 1 transitions are
combined to form a single cumulative propensity for the rule at hand. Also, in the com-
mon case in which the rate expression of such rule is simply a constant, the cumulative
propensity for the rule can be computed efficiently exploiting Lemma 7. This suggests
a possible modification to the level 1 simulation algorithm (Direct Method) which we
provide below.

Level 2 simulation algorithm
1: {assoc [pk,1][pk,2] rate ek react ck | k ∈ K} := the set of rules of the model
2: σ# := the initial state ; simulation time t := 0
3: while t < tmax do
4: for all rule indexes k ∈ K do
5: compute the level 2 transition rk := �[pk,1], [pk,2], ek�assoc−nc

2 σ# exploiting the
formula in Lemma 7

6: end for

A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 31

7: compute r0 :=
∑

k∈K rk and generate a random number u := U(0, r0)
8: find the minimum rule-index ν such that u ≤ ∑νk=1 rk ; let u := u −∑ν−1

k=1 rk

9: compute the level 1 transitions {〈A j, a j〉 | j ∈ J} := �[pν,1], [pν,1], eν�assoc−nc
1 σ#

exploiting Def. 12 to compute propensities a j

10: find the minimum transition index μ such that u ≤ ∑μj=1 a j

11: t := t + Exp(r0) ; apply reaction μ by associating complexes in Aμ, running
command cν and updating state σ# accordingly

12: end while

The main change with respect to level 1 can be summarized as follows. In level 1
simulation, we generate all the level 1 transitions and then randomly pick among them.
In level 2 simulation, we only generate one level 2 transition per rule from which we
randomly pick one. After such choice is done, we know the rule ν which is to be ap-
plied: we then generate level 1 transitions for that rule only, and then pick among those.
The net result is that we perform two random choices among two small sets instead of
one choice in a large set. Assume for the sake of illustration that a model features 20
association rules, and that each pattern in them matches with 5 complexes. Generating
all the level 1 transitions requires enumerating all the � 20 · 5 · 5 = 500 cases. Instead,
performing two separate choices for level 2 and level 1 transition requires enumerating
only � 20 + 5 · 5 = 45 cases.

In order to exploit the observation above, it is important to exploit Lemma 7 to com-
pute level 2 transitions efficiently. For that, we need to quickly compute, for each asso-
ciation rule, the quantities |�p1�1σ|, |�p2�1σ|, and |�p1�1σ∩ �p2�1σ|. This can be done
by keeping track for each rule of three sets of complexes: those matching with p1, p2,
and both. These sets need to be updated infrequently: updates are needed only when
a complex c is added to a system σ for which σ(c) = 0, i.e., when the first copy of
c appears in the system. Having these three sets, computing the wanted cardinalities is
done by summing all the populations of the complexes. An incremental approach which
adjusts such quantities at every step – without recomputing them – is also feasible.

Steps number 9 and 10 can be further optimized. There, we find the set of complexes
Aμ to be associated by generating all the level 1 transitions for rule ν, and then using
their rates as weights for the random choice of Aμ. This might be improved by using
an alternative way to extract Aμ from the same distribution, so to avoid the expensive
enumeration of all the level 1 transitions. One such way is as follows. Randomly extract
a complex c1 from those matching with pattern pν,1, using their population count as
weights. Complex c2 can be chosen similarly using pν,2. Here, however, in the case c1

also matches with pν,2, we decrement the population of c1 by one unit. This adjustment
reflects the fact that association must involve two distinct annotated complexes. This
alternative way of extracting Aμ = {c1, c2} is advantageous since it requires at most a
linear scan of all the complexes matching p1 and p2. By contrast, enumerating the level
1 transitions can generate a quadratic number of them.

6 Conclusions

We introducedL , a rule-based imperative language for the modeling and simulation of
biochemical systems. We provided a concrete semantics for it, as well as two abstract

32 Ð. Nikolić, C. Priami, and R. Zunino

ones. We then exploited the abstractions so to devise efficient simulation algorithms for
L . Future work will investigate extensions of L to more specific kinds of models,
e.g. those involving compartments or other formalisms to represent space.

References

1. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In: Proceedings of the 4th POPL,
pp. 238–252. ACM (1977)

2. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of Cellular
Signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
17–41. Springer, Heidelberg (2007)

3. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many
species and many channels. Journal of Physical Chemistry A 104(9), 1876–1889 (2000)

4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical
Chemistry 81(25), 2340–2361 (1977)

5. Priami, C., Quaglia, P., Romanel, A.: BlenX Static and Dynamic Semantics. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 37–52. Springer, Heidelberg (2009)

6. Priami, C., Quaglia, P., Zunino, R.: An imperative language of self-modifying graphs for bio-
logical systems. In: ACM Symposium on Applied Computing (SAC) (to appear, 2012)

7. Romanel, A., Priami, C.: On the decidability and complexity of the structural congruence for
beta-binders. Theor. Comput. Sci. 404(1-2), 156–169 (2008)

	A Rule-Based and Imperative Language for Biochemical Modeling and Simulation
	Introduction
	Syntax
	Semantics
	Abstraction
	Abstraction at Level 1
	Abstraction at Level 2

	Simulation
	Level 0 Simulation
	Level 1 Simulation
	Level 2 Simulation

	Conclusions
	References

