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Abstract—Reliable and secure system design re-
quires an increasing number of methods, algorithms,
and tools for automatic program manipulation. Any
program change corresponds to a transformation that
affects the semantics at some given level of abstrac-
tion. We call these techniques model deformations.
In this paper we propose a mathematical foundation
for completeness-driven deformations of transition
systems w.r.t. a given abstraction, and we introduce
an algorithm for systematic deformation of Kripke
structures for inducing strong preservation in ab-
stract model checking. We prove that our model
deformations are deeply related with must and may
transitions in modal transition systems.

I. Introduction
In this paper, we exploit a recently proposed idea of

transforming models of computation for guaranteeing
observational precision for a fixed semantics [1]. Our idea
is to control the change of a model, later called model
deformation, in order to induce strong preservation in
model checking. Strong preservation means that proper-
ties hold in a concrete system iff they hold in the cor-
responding abstraction. The idea is that a desirable be-
havior (in our case, strong preservation) can be induced
by modifying a system in such a way that an abstract
model checker becomes precise for the modified system.
It is well known that the lack of strong preservation
corresponds to the presence of spurious counterexamples
(abstract traces with no concrete counterpart) to the
given specification. On the other hand, it is also well-
known that completeness avoids spuriousness [2], [3], [4].
As observed in [1] we can induce completeness either
acting at the abstraction level (e.g., see [2] for abstract
interpretation and [4] for abstract model checking) or
by modifying the underlying concrete system. In this
paper we induce strong preservation by modifying the
underlying concrete model. The comparison between the
original model and the deformed one may provide an
information about behaviors that are not preserved by
the abstractions and set up an innovative framework for
completeness-driven model design.

We propose both a mathematical foundation and an
algorithm for the systematic design of completeness-
driven deformations of Kripke structures. The mathe-
matical foundation consists of specifying how the frame-

work for transforming semantics, proposed in [1], can
be instantiated in a particular context of partitions of
the set of states of a transition system. The choice of
partitions simplifies the framework, since they corre-
spond to abstractions with very specific features, i.e.,
they preserve additivity and complementation. On the
other hand, the choice of transition systems requires the
model deformation, i.e., the modified transition relation,
to preserve additivity which in general may not be
preserved in the transformations introduced in [1]. We
instantiate our results to modal transition systems. In
particular, we prove that in the deformed models must
andmay transitions coincide, and they also coincide with
the must or may transitions of the original transition
system, depending on the model deformation method
we use. We then introduce CEGMOD, a parameterized
counterexample-guided model deformation algorithm for
inducing strong preservation by model deformation.
CEGMOD provides a systematic procedure for minimally
deforming Kripke structures in order to guarantee strong
preservation of safety properties.

II. Background
Basic notions. Let Σ be a (possibly infinite) set of
states. A partition P of Σ is a set of non-empty subsets
of Σ called blocks, that are pairwise disjoint and whose
union is Σ. Let Part(Σ) denote the set of partitions of
Σ, then 〈Part(Σ),4〉 is a complete lattice, where the
partial order 4 (finer than) is defined as: P1 4 P2 iff
∀B ∈ P1.∃B ′ ∈ P2.B ⊆B ′. For the sake of simplicity, let
us denote any set {a, b, c} by [abc]. Let →⊆Σ×Σ be a
transition relation, then we define its pre and post func-
tions on ℘(Σ) as: post→

def= λS .{σ ∈Σ | ∃σ′ ∈ S .σ′ → σ}
and pre→

def= λS .{σ∈Σ | ∃σ′∈S .σ → σ′}.
Abstract interpretation. An upper closure operator
(uco) ρ : C→C on a poset C is monotone, idempotent
(∀x ∈C .ρ(x )=ρ ◦ ρ(x )), and extensive (∀x ∈ C .x ≤c

ρ(x )) map. Every uco ρ is uniquely determined by the set
of its fixpoints ρ(C ), and if it is additive, then its right
adjoint ρ+ def=

∨
{y |ρ(y)≤c x} exists. Let P∈Part(Σ) and

let αP
def= λS .{B ∈P | B ∩ S 6= ∅} and γP

def= λT .
⋃

B∈T B .
Then we define µP

def= γP ◦ αP∈uco(℘(Σ)), the additive
uco inducing P. The function par maps an uco to the
induced partition: par(µP) def= P. Precision of an abstract



interpretation typically relies upon the structure of the
abstract domain [2]. Depending on where we compare
the concrete and the abstract computations we obtain
two different notions of completeness: if the results are
compared in the abstract domain, we deal with backward
completeness (B); if the results are compared in the
concrete domain we deal with forward completeness (F)
[5], [2], [3]. This paper considers only F-completeness,
and we define it formally: given a monotone function
f : C →C and an uco ρ ∈ uco(C ), we say that ρ is F-
complete for f if ρ ◦ f ◦ρ = f ◦ρ. The problem of making
abstract domains F-complete has been solved in [2], [3].
Model checking and Kripke structures. Temporal
logic model checking is a technique for verifying that a
system satisfies its specification by (i) representing the
system as a Kripke structure (k.s.) K, (ii) writing the
specification ϕ in a suitable temporal logic (CTL, CTL∗,
ACTL, etc.), and (iii) algorithmically checking that K is
a model of ϕ [6], [4]. Abstract model checking is one of the
most important techniques dealing with the well-known
state explosion problem. It relies on abstract Kripke
structures (abstract k.s.) which are based on partitions
of the state space of the original model [7]. Given a set
AP of atomic propositions (of some language), a k.s. over
AP is defined by a tuple K=(Σ,→, l), where →⊆Σ×Σ
is a transition relation, while l : Σ→ ℘(AP) is a state
labelling function. Moreover, Kripke structures may con-
tain a non-empty set I ⊆Σ of initial states. The notation
σ �K ϕ means that a state σ ∈ Σ satisfies in K a state
formula ϕ, while K � ϕ means that there exists σ ∈ I
such that σ �K ϕ. K is finitely branching when ∀σ ∈Σ,
post→({σ}) is a finite set. An abstract k.s. A=(P,→], l ])
is defined over a set of abstract states, corresponding to
the blocks of a state partition P∈Part(Σ), chosen as an
abstract domain, where →]⊆P× P and l ] : P→℘(AP)
are abstract transition relation and abstract state la-
belling function on P respectively. It is worth noting that
→] and l ] can be instantiated to→∃∃ and lP, defined as:
∀B1,B2 ∈ P, B1 →∃∃ B2 iff ∃c1 ∈ B1.∃c2 ∈ B2.c1 → c2,
and lP

def= λB ∈P. ∪c∈B l(c).
Bisimulation equivalence. A relation R ⊆ Σ×Σ is a
bisimulation on K if for every σ, σ′∈Σ such that σ R σ′:
(i) l(σ) = l(σ′); (ii) for any ω ∈ Σ such that σ → ω,
there exists ω′ ∈ Σ such that σ′ → ω′ and ω R ω′; (iii)
σ′Rσ. There exists the largest bisimulation relation, it is
an equivalence relation (called bisimulation equivalence)
and PKBis ∈Part(Σ) denotes the partition corresponding
to this equivalence relation. A partition P ∈ Part(Σ)
induces a bisimulation on K if P 4 PKBis.
Weak and strong preservation. Given a specification
language L of state formulae, a k.s. K = (Σ,→, l)
and its abstraction A induced by P ∈ Part(Σ), we say
that A weakly preserves L if for any formula ϕ ∈ L
holding on A, ϕ also holds on K, i.e., ∀ϕ ∈ L .∀B ∈

P.∀σ ∈ γP(B).B �A ϕ ⇒ σ �K ϕ. If also the converse
holds, i.e., if ∀ϕ ∈ L .∀B ∈ P.∀σ ∈ γP(B).B �A ϕ ⇔
σ �K ϕ, we say that A strongly preserves L . We
define: Pl

def= {[σ]l | σ ∈ Σ} ∈ Part(Σ), where for any
σ ∈ Σ, [σ]l

def= {σ′ ∈ Σ | l(σ) = l(σ′)}. It is well-known
[7], [4], [6] that if P∈Part(Σ) satisfies P 4 Pl , then we
call it appropriate and the abstract k.s. (P,→∃∃, lP) is
strong preserving for ACTL∗. Moreover, if P=PKBis, then
(P,→∃∃, lP) is strong preserving for CTL∗.Bisimulation
vs. Completeness. Ranzato et al. [9] deal with generic
temporal languages and they study relations between F-
completeness and strong preservation of state partitions
for different temporal languages. In particular, it turns
out that given a k.s. K = (Σ,→, l) and an appropriate
state partition P ∈ Part(Σ), we have that P induces a
bisimulation on K iff µP is F-complete for pre→. A direct
consequence of this result is that F-completeness of µP

for pre→ implies that the abstract k.s. A= (P,→∃∃, lP)
is strongly preserving for CTL. We use P↔K to denote
that P is a bisimulation on K.

III. Completeness-Driven Model Deformation
A model deformation is any operation modifying mod-

els, e.g., the semantics of a programming language.
In this section we propose a mathematical foundation
and a methodology for the systematic design of k.s.
deformations. In particular, we fix a desired behavior of
an abstraction of the original system, and we modify the
concrete system making it satisfy the desired constraints.

We now turn our attention to CTL only and we
introduce our general idea: suppose we are given a
k.s. K=(Σ,→, l) and an appropriate state partition
P 4 Pl ∈Part(Σ) and that we want P ↔ K to hold.
First of all, we check whether this request is already
satisfied, and we can do it by controlling whether µP
is F-complete for pre→ [9]. If the answer is positive, we
can define an abstract k.s. which is strong preserving
for CTL. But what happens if it is not the case? Then
our task is to induce F-completeness of µP for pre→.
There exist several approaches to this problem, and some
well-known solutions are refinements of µP [4], [3], [2] or
simplifications of µP [2], [10]. Our approach is a little
bit different, and it follows the general idea of [1]: we
show how we can modify K, obtaining K′, such that
P ↔ K′, i.e., we change the relation → of K in such
a way that µP becomes F-complete for pre→. We can
move upwards or downwards, meaning that our resulting
transition relation can be greater (↗P ⊇→) or smaller
(↘P ⊆→) than the initial one. Since the hint that guides
us through these deformations is F-completeness, we
call them completeness-driven. Let us introduce the two
approaches mentioned above.
Moving upwards. In this paragraph, we characterize
a transition relation↗P ⊇→ such that µP is F-complete



F↑
ρ(f)(x)=

{
ρf(x) if x∈ρ
f(x) if x /∈ρ F↓

ρ(f)(x)=

{
ρ+f(x) if x∈ρ
f(x) if x /∈ρ

Figure 1. "Up" and "Down" transformers

for pre↗P , although it might not be F-complete for pre→.
Note that, in general there exists a transformer F↑ρ (see
Fig. 1) that transforms a generic function f : C→C to
the closest gw f for which ρ∈uco(C ) is F-complete [1].
This operator cannot be directly applied to an additive
function like pre→ since it loses monotonicity, but it
highlights what (the pre→ images of the fixpoints of ρ)
has to be changed in order to induce completeness and
how. In order to better understand how this works we
instantiate the whole problem to the specific context of
partitions on transition systems. It is worth noting that
µP is F-complete for a function f : ℘(Σ)→℘(Σ) if f maps
fixpoints of µP into fixpoints of µP, i.e., (union of) blocks
of P into (union of) blocks of P. We want pre↗P to satisfy
this property and we induce it by changing all of the
points in which pre→ falsifies it. More precisely, suppose
that the pre→ image of a block B ∈P contains a (possibly
empty) set of complete blocks and a set of partial blocks
of P. Then we modify pre→(B) by completing its partial
blocks, which corresponds to applying µP to pre→(B).
Theorem 1: Let pre↗P : ℘(Σ) → ℘(Σ) be an additive

function such that for any fixpoint x of µP, pre↗P(x ) =
µP ◦ pre→(x ). Then µP is F-complete for pre↗P .

Proof: Recall that µP is F-complete for pre↗P , if the
latter maps fixpoints of µP to fixpoints of µP. For every
fixpoint of µP, x , we have that pre↗P(x )=µP ◦ pre→(x ),
is a fixpoint of µP, hence the result.

Theorem 1 determines which states should be added
to the pre→ images of the blocks of P, but it does not
specify how we can modify→ in order to obtain that. We
can, though, precisely characterize Kmax =(Σ,↗P

max
, l),

the maximal deformation of K, such that P↔Kmax by
defining ↗P

max

def= {(σ1, σ2) | σ1 ∈ pre↗P(µP(σ2))}. On
the other hand, we cannot characterize the minimal
deformation of K, because there can be more than one
such deformation. We illustrate our method by an exam-
ple. In our examples, circles (squares) represent concrete
(abstract) states, double-circled (double-squared) states
represent concrete (abstract) initial ones, and subscripts
determine the labelling function.
Example 1: Consider K = (Σ,→, l) in Fig. 2 (do

not consider the dashed arcs), an appropriate parti-
tion P = {[1, 2], [3, 5], 4}, and the abstract k.s. in-
duced by P, A = (P,→∃∃, lP). We apply pre→ to µP’s
atoms1: pre→({1, 2}) = {1, 2, 3} /∈ µP, pre→({3, 5}) =
{1, 2, 4, 5} /∈µP and pre→({4})={5} /∈µP, hence µP is F-
incomplete for pre→. An extension↗P⊇→ should satisfy
(Th. 1): pre↗P({1, 2}) = µP ◦ pre→({1, 2}) = {1, 2, 3, 5},
pre↗P({3, 5}) = {1, 2, 3, 4, 5} and pre↗P({4}) = {3, 5}.

1Atoms in boolean lattices are the elements covering the bottom.

[1, 2] p

[3, 5] p

[4] q

1
p

2
p

4
q

3
p

5
pKA

Figure 2. Example illustrating the "moving upwards" approach.

We enrich the pre→ image of {1, 2} with {5}, and
the pre→ images of {3, 5} and {4} with {3}. There
are several ways of modifying →: e.g., {5} can be
added to pre→({1, 2}) by enriching → with one of
the following sets: {(5, 1)}, {(5, 2)} or {(5, 1), (5, 2)}.
If we set ↗P =→ ∪{(5, 1), (5, 2), (3, 3), (3, 5), (3, 4)},
we induce Kmax . A minimal modification of K is ob-
tained by enriching → with one of the sets: {(5, 1),
(3, 3), (3, 4)}, {(5, 1), (3, 5), (3, 4)}, {(5, 2), (3, 3), (3, 4)}
or {(5, 2), (3, 5), (3, 4)}. The latter case is shown on the
right of Fig. 2, where the dashed transitions are the
added pairs, forming the resulting k.s. K′ = (Σ,↗P, l).
Note that A is abstraction of both K′ and K.
The following theorem states that although the con-

crete k.s. is changed, the abstract one remains the same,
as we noticed in the previous example.
Theorem 2: Given a state partition P ∈ Part(Σ) and

Kripke structures K=(Σ,→, l) and K′=(Σ,↗P, l) such
that P↔K′, it holds that →∃∃=↗P

∃∃.
Proof: Let B1,B2 ∈ P. Then, by definitions of ↗P

∃∃

and ↗P, B1↗P
∃∃B2 ⇔ ∃σ1 ∈ B1.∃σ2 ∈ B2.σ1↗Pσ2 ⇔

∃ω1∈µP({σ1})=B1.∃ω2∈µP({σ2})=B2.ω1 → ω2, which
entails B1 →∃∃ B2.
Moving downwards. Let us now introduce the dual
approach: we want to model a (possibly empty) tran-
sition relation ↘P ⊆→ such that µP is F-complete for
pre↘P although it is not F-complete for pre→. In general,
there exists a transformer F↓ρ (Fig. 1) transforming a
generic function f : C → C to the closest function
g v f s.t. ρ ∈ uco(C ) is F-complete [1]. Note that, in
this case, the transformation is possible iff ρ is additive,
which means that ρ+ exists. In the context of partitions
on transition systems this transformation tells us that
we have to transform → in order to make it satisfy
the constraints fixed by transformer F↓ for pre→ and
µP: suppose that the pre→ image of a block B ∈ P
contains a (possibly empty) set of complete blocks and
a set of partial blocks of P. Then we modify pre→(B)
by eliminating all the partial blocks from it. Since only
complete blocks included in the initial value of pre→(B)
are kept, this deformation corresponds to µ+

P which, in
this context, is determined as µ+

P =λS .{B ∈P |B ⊆ S}.
Theorem 3: Let pre↘P : ℘(Σ)→ ℘(Σ) be an additive

function such that for every µP’s fixpoint x , pre↘P(x )=
µ+

P ◦ pre→(x ) holds. Then, µP is F-complete for pre↘P .
Proof: µP is F-complete for pre↘P , if the latter maps

fixpoints of µP to fixpoints of µP. For every µP’s fixpoint



[1, 2] p

[3, 5] p

[4] q

1
p

2
p

4
q

3
p

5
p

Figure 3. Example illustrating the "moving downwards" approach

x , pre↘P(x ) =µ+
P ◦ pre→(x ), which is a fixpoint of both

µ+
P and µP, since they have the same fixpoints [1].
Theorem 3 determines which states should be removed

from the pre→ images of the blocks of P, but it does not
specify how we modify → in order to do that. However,
we can characterize both Kmax and Kmin , i.e., maximal
and minimal modification of K respectively: ↘P

max
=∅

and ↘P
min

={(σ1, σ2) | σ1 → σ2 ∧ σ1 ∈ pre↘P(µP(σ2))}.
Example 2: Consider K and P from Ex. 1. We re-

call that µP is not F-complete for pre→. A reduc-
tion ↘P ⊆→ should satisfy (Th. 3): pre↘P({1, 2}) =
µ+

P ◦ pre→({1, 2}) = {1, 2}, pre↘P({3, 5}) = {1, 2, 4}
and pre↘P({4}) = ∅. Hence we should remove {3}from
pre→({1, 2}) of {3}, while pre→({3, 5}) and pre→({4})
should be deprived of {5}. We determine ↘P

min
=

{(1, 2), (1, 3), (2, 1), (2, 5), (4, 3)}. Kmin is given on the
right of Fig. 3 (the bold dashed arcs represent the
pairs that we removed), and on the left we give the
corresponding abstract k.s. Amin = (P,↘P

∃∃, lP), which
is strong preserving for µP. Note that ↘P

∃∃
min
⊂→∃∃.

In this case the induced abstract k.s. changes, and we
formalize this fact.
Theorem 4: Given a state partition P ∈ Part(Σ) and

Kripke structures K = (Σ,→, l) and K′ = (Σ,↘P
min
, l)

such that P↔K′, it holds that ↘P
∃∃
min
⊆→∃∃.

Proof: If B1,B2 ∈ P then, by definitions of ↗P
∃∃
min

and ↘Pmin
, we have B1↘P

∃∃
min

B2 ⇔ ∃σ1 ∈ B1, σ2 ∈
B2.σ1↘P

min
σ2 ⇔ ∃σ1 ∈ B1, σ2 ∈ B2.σ1 → σ2 ∧ σ1 ∈

pre↘P(µP(σ2)), which entails B1 →∃∃ B2.
Correction. The main problem of the approach we have
just introduced is that we can induce a (possibly empty)
transition relation ↘P which might not be total. The
majority of model checking algorithms require models
defined on total relations. We propose a simple modifi-
cation of the induced transition relation. Suppose that
there exists a concrete state σ belonging to a block B ∈P
such that post↘P({σ}) = ∅, i.e., σ has no↘P successors.
We enrich↘P by adding a pair (σ, σ). In order to be sure
that this modification does not damage F-completeness
of µP for pre↘P , we apply the same modification to all
states belonging to B . F-completeness still holds, as we
show in Theorem 5. Moreover it is easy to show that in
this case the current value pre→(B) is enriched with B .
Theorem 5: Let us define the correctness relation

�P ⊆ Σ×Σ as �P def=↘P ∪ {(σ1, σ1) | ∃σ.post↘P({σ}) =
∅ ∧ σ1∈µP({σ})}. Then, µP ↘P F-complete for pre�P .

Proof: Let B ∈ P and σ ∈ B . If we enrich ↘P with

〈σ, σ〉, then we add 〈σ1, σ1〉 for every σ1∈µP({σ}), hence
pre�P(B)=pre↘P(B) ∪ B , which is a fixpoint of µP.
Example 3: Consider the resulting model Kmin of

Ex. 2 presented on the right of Fig. 3. We can notice that
states 3 and 5 do not have any post↘P successors. There-
fore we induce �P by enriching ↘P with {(3, 3), (5, 5)}.
May-Must transitions. While developed indepen-
dently, and from a different perspective, abstract Kripke
structures bear some resemblance to the modal tran-
sition systems (MTS) [11], which contain two types of
transition relations - may (→∃∃) and must (→∀∃). MTSs
have been developed in the area of specification where
must transitions specify what is required while may
transitions specify what is admissible (they precisely
correspond to the transitions →∃∃ that we have already
used above). We define →∃∃ and →∀∃ transitions in our
context of interest, i.e., partitions on transition systems.
Definition 1: Consider a k.s. K=(Σ,→, l) and a par-

tition P∈Part(Σ). We define an abstract modal k.s. as
M def= 〈P,→∃∃,→∀∃〉, where ∀B1,B2 ∈ P, (i) B1 →∃∃ B2
iff ∃σ1 ∈ B1.∃σ2 ∈ B2.σ1 → σ2; (ii) B1 →∀∃ B2 iff
∀σ1∈B1.∃σ2∈B2.σ1 → σ2.
It turns out that F-completeness of state partitions

on transition systems implies equivalence of must and
may transitions, as we show below.
Theorem 6: Consider a k.s. K=(Σ,→, l) and a state

partition P∈Part(Σ). If µP is F-complete for pre→, then
→∃∃=→∀∃.

Proof: Since every must transition is also a may
transition, we should show that under hypotheses of the
theorem, every may transition is a must transition. Let
P={B1, . . . ,Bn}. By a slight abuse of notation we denote
atoms of µP by blocks of P, i.e., we use Bi to denote
γP(Bi), ∀i ∈ [1..n]. Suppose µP is F-complete for pre→,
i.e., for any σ∈Σ. pre→ ◦ µP({σ})=µP ◦ pre→ ◦ µP({σ}).
It means that the pre→ image of a fixpoint of µP is a
fixpoint of µP. Let us fix σ ∈ Σ, then it is clear that
there exist i1, . . . , im ∈ [1..n] such that pre→ ◦ µP({x})=
∪k∈{i1,...,im}Bk . Suppose there exists Bk ,Bj ∈ P such
that Bk →∃∃ Bj , i.e., ∃σ ∈ Bk , ω ∈ Bj .σ → ω. Then,
for every concrete state σ1 ∈ Bk there exists ω1 ∈ Bj

such that σ1→ω1. Otherwise, there exists σ1 such that
post→({σ1}) ∩ Bj = ∅ and therefore σ1 /∈ pre→(Bj ).
On the other hand, σ ∈ pre→(Bj ), and therefore there
exists a block of P (Bk ) partially included in the pre→
image of Bj . This entails F-incompleteness of µP, which
contradicts assumptions of the theorem. Thus, Bk →∃∃
Bj⇒∀σ∈Bk .∃ω∈Bj .σ→ω ⇔ Bk →∀∃ Bj .
Note that, in general, every must is also a may

transition, but not vice versa. Let ¬must be the may
transitions which are not must. It turns out that all
¬must transitions of K become must in the system
induced by ↗P, while they disappear from the system
induced by ↘P.



Theorem 7: Consider a k.s. K = (Σ,→, l), a state
partition P∈Part(Σ), and two induced relations↗P⊇→
and ↘P⊆→. We show that the following relations hold:
↗P
∃∃ =↗P

∀∃ =→∃∃ and ↘P
∃∃ =↘P

∀∃ =→∀∃.
Proof: By Th. 2 we have that↗P

∃∃ =→∃∃. Since µP
is F-complete for pre↗P (Th. 1), we conclude, by Th. 6,
that ↗P

∃∃ =↗P
∀∃. Thus, ↗P

∃∃ =↗P
∀∃ =→∃∃.

Consider blocks Bk ,Bj ∈ P. Then, Bk↘P
∃∃Bj iff

∃σk ∈ Bk .∃σj ∈ Bj .σk↘Pσj , and by definition of ↘P it
is possible iff ∀σk ∈Bk .∃σj ∈Bj .σk→σj iff Bk →∀∃ Bj .
Hence,↘P

∃∃ =→∀∃. On the other hand, since↘P is such
that µP is F-complete for pre↘P , we have by Theorem 6
that ↘P

∃∃ =↘P
∀∃. Therefore, ↘P

∃∃ =↘P
∀∃ =→∀∃.

The following figure shows three abstract modal k.s.:
dashed and solid arcs represent may and must transi-
tions respectively. System a) corresponds to the struc-
tures considered in Ex. 1 and 2, while b) and c)
correspond to the structures induced in these examples.

[1, 2] p

[3, 5] p

[4] q

[1, 2] p

[3, 5] p

[4] q

[1, 2] p

[3, 5] p

[4] q

a) b) c)

It is worth noting that all
¬must transitions of sys-
tem a), namely [3, 5] →
[1, 2], [3, 5]→ [3, 5], [3, 5]→
[4] become must in b) and
disappear from c).

IV. CounterExample-Guided MOdel
Deformation

In this section we introduce the CounterExample-
Guided MOdel Deformation (CEGMOD) algorithm as an
implementation of completeness-driven model deforma-
tion. If we consider the problem of abstract model
checking, it is well-known that given a concrete and an
abstract k.s. K and A, related by an appropriate state
partition P∈Part(Σ) and a specification ϕ∈ACTL∗, if
ϕ holds in A, then it holds in K as well, i.e., A � ϕ ⇒
K � ϕ [7], [4]. The converse does not hold in general, i.e.,
strong preservation is not guaranteed. It means that it
is possible to generate an abstract counterexample (CE),
namely an abstract path falsifying ϕ, which has no con-
crete counterpart. In this case the CE is called spurious.
Existence of spurious CEs damages strong preservation,
and therefore we aim to induce K′, a deformation of K,
whose abstraction A′ does not give rise to any spurious
CEs to ϕ, namely, such that A′ � ϕ⇔ K′ � ϕ.
If we focus on safety properties only, it turns out

that our method guarantees that the resulting model
is strong preserving for a given specification. We recall
that the safety properties stipulate that bad things do not
happen during execution [12]. We deal with the safety
properties of the following form: AGψ, where ψ is a
propositional formula, i.e., a formula not containing any
temporal combinators. Let ϕ = AGψ, then a CE to ϕ
is a finite loop-free path 〈s1, . . . , sn〉, where ∀i ∈ [1..n]
si is a (concrete or abstract) state of the system that is

Input: K, ϕ, P

Generate A

NuSmv
Any

counterexample
(t]) found?

K is correct
No

Yes

t] is a spurious
counterexample? K is incorrect

No

Yes

Transform K

Repair K

Figure 4.

being verified, and it
holds that si 2 ϕ ⇔
i = n. It is worth
noting that some of
the most well-known
model checkers (e.g.,
Slam, Blast) deal
with safety properties
only. We now intro-
duce the CEGMOD algo-
rithm.
General idea. We
illustrate the general
idea of CEGMOD by a
flowchart depicted in Fig 4, and then we give a detailed
explanation of each step. Suppose we are given a k.s.
K=(Σ,→, l) and an appropriate partition P. We want
to understand whether K satisfies a safety specification
ϕ. In every iteration CEGMOD generates A=(P,→∃∃, lP),
an abstraction of the current model K, and we pass
it, together with ϕ to a model checker (e.g., NuSMV),
which tries to find an abstract CE to ϕ. If there is none,
CEGMOD terminates stating that K is correct, and this is
justified by the fact that P is appropriate [4]. Otherwise,
an abstract CE t] is found, and we check whether it is
spurious. If the answer is negative, CEGMOD terminates
stating that K is incorrect. Otherwise, we characterize
→1, a deformation of →, and determine K1 =(Σ,→1, l)
whose abstraction A1 does not give rise to t], i.e., the
model checker applied to A1 does not report t] as a CE
The induced transition relation →1 might not be total,
and in that case our algorithm enriches it in order to
obtain a relation satisfying both requirements: it is total
and it does not give rise to t]. This relation is used in
the next iteration of CEGMOD. Let us explain some of its
steps in detail.
Spurious conterexample. Suppose that a model
checker analyzes an abstract model and it detects a CE
t]. Since we deal with safety properties only, we are sure
that t] is represented by a (finite) sequence of abstract
states (blocks of P) without loops. Let ϕ = AGψ and
suppose that t]=〈B1, . . . ,Bn〉, where ∀i ∈ [1..n].Bi ∈ P.
Recall that Bi 2 ψ iff i =n, since t] represents a CE to
particular kind of safety specifications we are interested
in. By a slight abuse of notation we denote atoms of µP
by blocks of P, i.e., we use Bi to denote γP(Bi), ∀i ∈ [1..n].
In order to check whether t] is spurious, we follow the
idea of Clarke et al.[4] (SplitPATH): starting from the
initial states I , they follow the (abstract) path t] step
by step, and try to detect concrete steps corresponding
to each abstract one. At the i th step they determine the
set of reachable concrete states belonging to Bi . If at a
certain point we can still make an abstract step, but
the current set of reachable concrete states is empty,



it means that t] is spurious. More precisely, given the
set of initial states, I , we define S 1 def= I ∩ B1 and for
each i ∈ [2..n], S i+1 def= post→(S i) ∩ Bi+1. It is known
[4, Lemma 4.10] that t] is spurious iff there exists an
i ∈ [1..n] such that S i =∅. For the rest of this section
we suppose that t] is spurious, and that SplitPATH
returns index k , representing the smallest index such
that S k =∅.
Transforming model. In this paragraph we explain
our strategy for removing spurious counterexamples.
The SplitPATH method determines the exact point of
t] in which spuriousness occurs, i.e., Bk . It is known [3]
that Bk represents a point of F-incompleteness for µP
and pre→, namely µP ◦ pre→(Bk ) 6= pre→(Bk ).
The figure on the left represents a graphical explanation
of this fact. ∅ 6=S k−1⊂Bk−1 is the set of states of Bk−1
which can be reached from I following t], but from which
we cannot go any further (following t]), since we know
that S k = ∅. Hence, S k−1 ∩ pre→(Bk ) = ∅. We define

Bk−1 Bk

Bad

Sk−1 Sk=∅

post→(Bad) Baddef= pre→(Bk )∩Bk−1 6=
∅, a set containing all con-
crete states of Bk−1 which
can reach Bk via →, and
we call them bad states,
because they made us be-

lieve that there was a (feasible) transition between Bk−1
and Bk . The definition of Bad guarantees that there
exists at least a block of P partially contained in the pre→
image of Bk , i.e., Bk−1, and we have F-incompleteness.
We aim to modify → in order to induce a k.s. whose

abstraction does not give rise to t]. Since spuriousness of
t] damages F-completeness, one possible solution could
be to modify → in order to make µP F-complete for
pre→, i.e., to generate ↗ or ↘. Unfortunately, this
deformation could add/remove too many transitions,
which do not concern t]. At this point, since we want
our transformation to be counterexample-guided, we
propose to apply the downwards method (Section III)
only to the first source of incompleteness met in the CE
t], i.e., the block Bk . This way, we erase the CE since
we “break” the abstract path. Hence, the deformation
we propose is: ↘

t]
=→ \{(σ, ω) | σ ∈ Bad ∧ ω ∈ Bk},

namely, we remove all transitions from the states in Bad
to those in Bk . This way we are sure that the corre-
sponding abstract k.s. does not contain the transition
Bk−1↘∃∃Bk , and therefore t] could not be captured by
the model checker.
Repairing model. The deformation we have just pro-
posed might introduce an undesired effect: the induced
relation ↘

t]
may not be total. Since CEGMOD removes

only transitions from the states in Bad⊂Bk−1 to the
states in Bk , it is clear that potential states without any
outgoing transition have to be in Bad. In Section III
we dealt with this problem, and we introduced the cor-

rection relation �P. Theorem 5 states that given a non-
total relation ↘

t]
, the correction relation makes ↘

t]

total and preserves its F-completeness. In this particular
case, the correction relation becomes: �t]

def=↘
t]
∪ C ,

where C ={(σ, σ) |σ∈Bk−1} if there exists σ∈Bk−1 s.t.
post↘

t]
({σ})=∅}, and C =∅ otherwise.

Complexity. The total worst-time complexity of
CEGMOD depends on the model structure, complexity of
the model checker, and the order in which it detects
CEs. In this paragraph we determine the worst-time
complexity of each iteration of CEGMOD. Suppose that the
model checker detects an abstract CE t]=〈B1, . . . ,Bn〉,
that we use a set implementation that permits us to
perform the intersection in linear time and that post and
pre have time complexity cp . Then SplitPATH runs in
O(|Σ|×cp + |Σ|)=O(|Σ|) time, the transforming model
phase works in O(|Bk |×cp +max{Bk−1,Bk}+ |Bad|)=
O(|Σ|) time and the repairing model phase works in
O(|Bk−1| × cp) = O(|Σ|) time. Thus, the worst-time
complexity of each iteration is O(|Σ|), i.e., linear.
Correctness. At this point an iteration of CEGMOD is
completed, and we construct new concrete and abstract
k.s. using relations �t] and �∃∃t] respectively. The next
iteration begins with model checking of the abstract
k.s., and then we repeat all the steps explained above.
Theorem 8 proves the correctness of CEGMOD, and Ex. 4
illustrates one of its iterations.
Theorem 8: Let Ai be the abstract structure consid-

ered in the i th iteration of CEGMOD, (i ∈N), and suppose
that t] is a spurious counterexample returned by a model
checker applied to Ai . The following statements hold:

1) for any j > i , model checking of Aj does not report
t] as a counterexample;

2) the i th iteration of CEGMOD does not add any new
spurious abstract paths;

3) the i th iteration of CEGMOD does not introduce any
new real counterexamples.
Proof: Let ϕ = AGψ be a safety specification we

want to verify, where ψ does not contain any tempo-
ral combinators, and suppose t] = 〈B1, . . . ,Bn〉, where
∀i ∈ [1..n].Bi ∈ P. Recall that Bi 2 ψ iff i = n, since t]

represents a CE to particular kind of safety specifications
we are interested in. Moreover, suppose that in the
i th iteration concrete and abstract models have the
following forms: Ki =(Σ,→, l) and Ai = (P,→∃∃, lP).
1) Since t] is spurious, the SplitPATH method returns
an index k ∈ [2,n), representing the smallest index such
that S k = ∅. Recall that S k−1⊂Bk−1 represents the set
of states of Bk−1 which can be reached from the set of
initial states, I , following t], but from which we cannot
go any further (following t]) - since S k = ∅. We define
Bad⊂Bk−1, containing all the concrete states of Bk−1
which can reach Bk via →, and we call them bad states,



because they made us believe that there was a (feasible)
transition between Bk−1 and Bk . CEGMOD modifies → in
the following way:↘

t]
=→ \{(σ, ω)|σ ∈ Bad∧ω ∈ Bk},

and then it repairs ↘
t]

if it is necessary: �t]
def=↘

t]
∪

{(σ, σ) | σ ∈ Bk−1 ∧ ∃σ ∈ Bk−1.post↘
t]

({σ}) = ∅},
namely, we remove all the transitions from states in
Bad ⊂ Bk−1 to states in Bk , and if there is any state
in Bk−1 whose post↘

t]
is ∅, the relation is "corrected".

This way we are sure that the corresponding abstract
k.s. does not contain transition Bk−1 �∃∃t] Bk , since
there is no concrete state in Bk−1 r Bad reaching Bk

via →, and any potential correction would introduce
only this abstract transition: Bk−1 �∃∃t] Bk−1. We now
generate Ki+1 and Ai+1 using relations �t] and �∃∃t] . It
is obvious that any abstract path of Ai+1 cannot contain
Bk−1 and Bk as two adjacent states (in this order), and
therefore any abstract CE obtained by model checking
Ai+1 cannot contain it (since abstract counterexamples
represent particular paths of abstract systems that are
being checked). It implies that in the (i + 1)th iteration
we cannot obtain t] as an abstract CE. Moreover, since
CEGMOD only removes abstract transitions, and does not
add them (except from an abstract state to itself), it is
not possible to obtain any abstract transition relation
�

′∃∃
t] such that Bk−1�

′∃∃
t] Bk . Therefore, for any j > i ,

t] will not appear either as an abstract path or as an
abstract CE of Aj .
2) Recall that CEGMOD modifies → in the following way:

↘
t]

=→ \{(σ, ω) | σ ∈ Bad ∧ ω ∈ Bk}
�t]

def= ↘
t]

∪ {(σ, σ)∈B2
k−1|∃σ∈Bk−1.post↘

t]
({σ})=∅}.

In the repairing phase, CEGMOD may add some concrete
transitions, and if this phase is required, the transitions
CEGMOD would add arc (σ, σ), for any σ ∈ Bk−1. In
this case we would add even the abstract transition
Bk−1 �

′∃∃
t] Bk−1, but it is not spurious, since it is a must

transition (for every concrete state σ ∈ Bk−1, there is a
concrete state (σ) in Bk−1 such that σ �′t] σ.
3) Recall that the counterexamples of a safety speci-
fications are (finite) paths of (abstract) states. In our
case, we have that ∀i ∈ [1..n).Bi � ψ, and Bn 2 ψ. The
concrete transitions that may be added during the i th

iteration are (σ, σ), for all σ ∈ Bk−1. It means that
we add a may transition Bk−1 �

′∃∃
t] Bk−1, and it cannot

damage a verification of ϕ since this transition forms a
loop (counterexamples to the particular kind of safety
specifications we are interested in do not contain loops),
and since it goes from an abstract state satisfying ψ to
an abstract state satisfying ψ (since k −1 < n), we have
that Bk−1 � ψ, i.e., this transitions do not permit us to
reach a bad state.
Example 4: Consider k.s. K = ([1..12],→, l) and A=

(P,→∃∃, lP), where A is induced by K and a partition P=
{[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]} = {B1,B2,B3,B4}
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Figure 5.

in Fig. 5. Let t]=〈B1,B2,B3,B4〉 be a CE produced by
a model checker. SplitPATH determines S 1 = {1, 2, 3},
S 2 ={4, 5, 6}, S 3 ={9}, S 4 =∅, and it returns k =4. We
consider blocks B3 = {7, 8, 9} and B4 = {10, 11, 12}, and
we notice that Bad={7}. CEGMOD removes the transition
7→ 12 (the dotted one) from K and the corresponding
one, B3 →∃∃ B4 from A. Then CEGMOD realizes that
there is no outgoing transition from 7, and it adjusts
the induced partial relation by enriching it with 7→ 7.
We induced a new system K′ whose abstraction does not
give rise to t]: in fact, in the induced system it is not
possible to reach B4 from B3, i.e., B3 6→∃∃ B4.
The following theorem states that the CEGMOD induces

strong preservation.
Theorem 9: Given a k.s. K, a specification ϕ=AGψ,

where ψ is a propositional formula and a partition P. Let
K′ be the deformation of K induced by CEGMOD and A′ its
abstraction induced by P. Then, A′ is strong preserving
for ϕ, i.e., A′ � ϕ⇔ K′ � ϕ.

Proof: Suppose that we are at the i th iteration of
CEGMOD, for some i ∈ N, and suppose that the current
concrete and abstract models are Ki and Ai respectively.
We distinguish the following cases:
Case 1. Suppose the model checker verifies Ai w.r.t.
ϕ and it states that it is correct. In this case, CEGMOD
returns Ki . Then, weak preservation guarantees that
even the concrete model, i.e., Ki is correct, and therefore
we can conclude that Ki � ϕ⇔ Ai � ϕ.
Case 2. Suppose the model checker verifies Ai w.r.t.
ϕ and it states that it is incorrect, reporting a real
counterexample t]. In this case CEGMOD returns an incor-
rect model Ki and we can state that Ki � ϕ⇔ Ai � ϕ.
It is worth noting that t] is a counterexample of the
original model as well, and it is guaranteed by the third
claim of Theorem 8, namely, CEGMOD does not add real
counterexamples.
Case 3. Suppose the model checker verifies Ai w.r.t. ϕ
and it states that it is incorrect, reporting a spurious
counterexample t]. In this case CEGMOD does not return
any model, but it modifies current model by eliminating
some spurious abstract paths and obtaining concrete
and abstract models Ki+1 and Ai+1. Moreover, CEGMOD
does not add any new spurious abstract path, and it is
guaranteed by the second claim of Theorem 8. Then the
CEGMOD loop is iterated again, on new induced models. In
the worst case, CEGMOD removes all possible transitions
from the original system, and the repairing phase adds



transitions from every concrete state to itself. Anyway,
the execution of CEGMOD eventually terminates. In this
case CEGMOD states that the obtained model is correct iff
all initial states satisfies ϕ.
It is worth noting that the k.s. returned by CEGMOD

depends on the order in which the model checker detects
the counterexamples. If CEGMOD returns a model K′
stating that it is correct, weak preservation guarantees
the correctness of this result. Otherwise, if CEGMOD states
that K′ is incorrect, we do not guarantee that K′ contains
no other spurious counterexamples to ϕ, but since a real
one has been detected, we are sure that both the induced
model and the original one are incorrect.

V. Related Work and Conclusion
In this paper, we introduce an orthogonal approach to

the one of [9]. Starting from a partition Pinit ∈Part(Σ)
and a k.s. Kinit, they show how it is possible to obtain
Pfin 4 Pinit such that Pfin↔Kinit, i.e., they fix Kinit and
modify Pinit. On the contrary, we obtain the model Kfin
from the original model Kinit such that Pinit↔Kfin, i.e.,
we fix Pinit and modify Kinit. As in [9] we deal with state
formulae only, and it would be interesting to investigate
how to deform models to induce strong preservation for
LTL. In [1] the authors introduce the theoretical foun-
dation of the operators making a predicate transformer
(semantics) complete w.r.t. a given abstraction; we use
the same idea and we characterize the corresponding
deformations in the particular context of partitions and
transition systems.

Moreover, we highlight some properties of the sys-
tems deformed by our upwards and downwards methods
in terms of must and may transitions: we induce the
abstract structures whose must and may transitions
coincide, and they also coincide with the must (may)
transitions of the original structures, in the case of the
upwards (downwards) deformation. These results relate
our work with [11], [8] and provide an interesting insight
into the relation between strong preservation and must
and may transitions.

Finally, in Section IV, we introduce the CEGMOD al-
gorithm for safety properties, based on the theoretical
results presented in Section III. Although it seems sim-
ilar to the CEGAR paradigm [4], these two approaches
represent two orthogonal perspectives to the problem of
strong preservation in abstract model checking. Starting
from a k.s. K, a state partition P and a specification
ϕ∈ACTL∗, CEGAR induces P′ 4 P such that the ab-
stract structure corresponding to K w.r.t. P′ is strong
preserving for ϕ. On the contrary, CEGMOD modifies K
and induces K′ whose abstraction related to P is strong
preserving for ϕ. In the worst case, CEGMOD removes
all possible transitions from the original system, and
the repairing phase adds transitions from every concrete

state to itself. Anyway, the execution of CEGMOD eventu-
ally always terminates. A similar approach is in CEGIS
[13], which also deals with modifying models, but with
a different aim. Indeed, CEGIS synthesizes models that
always satisfy a given starting specification. This is not
the case with CEGMOD, where strong preservation is the
only requirement and modified models may not satisfy
the original specification.
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