
Proofs and Proof Transformations for Object-Oriented
Programs

Martin Nordio

2009

Diss. ETH N0 18689

PROOFS AND PROOF TRANSFORMATIONS

FOR OBJECT-ORIENTED PROGRAMS

DISSERTATION

Submitted to

ETH ZURICH

for the degree of

DOCTOR OF SCIENCES

by

DARÍO MARTÍN NORDIO

M.Sc. CS, Universidad de la República, Uruguay

born
March 30th, 1979

citizen of
Argentina

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. Gilles Barthe, co-examiner
Prof. Dr. Peter Müller, co-examiner

Prof. Dr. Jim Woodcock, co-examiner

2009

To Luciana
for her company and love.

Acknowledgements

I have arrived at the destination of my voyage, although, it may not be the final station.

In spite of the traveling facilities of the twenty first century having improved compared

to the ones in Phileas Fogg ’s times, this journey has been very exciting for me.

The preparations for the journey started around mid-2003. After finishing my basic

training1, I started to prepare my backpack. While waiting for my boat to depart, Jorge

Aguirre suggested that I start a shorter trip2 to Uruguay. Jorge was my guide in the rough

waters of Rı́o de la Plata, and I came back to Argentina in 2005.

My voyage started in the port of Córdoba on a cold day in June 2005; the sky was

cloudy and dark. The boat left on time for Madrid, where my cousin Pablo was waiting for

me. After visiting the Santiago Bernabéu stadium and eating tapas and jamón serrano, I

took a train to Zurich, where my guides were waiting for me.

Such an important voyage cannot be done without a guide who not only recommends,

during a cold and dark night, to turn left or to turn right, but also a guide who shows you

the uniqueness of the surroundings. The guides of my voyage have been Bertrand Meyer

and Peter Müller.

Around the middle of the trip, I was riding my dapple grey horse in the Üetliberg

hill. This hill is not high, but it is a very foggy area. I saw a tall man running; he was

wearing a genoa t-shirt. He told me he was training for the London marathon. His name

is Cristiano Calcagno.

One of the most interesting part of my trip was meeting other travelers, and shar-

ing experiences. The expedition was enriching thanks to the company of my fellow SE

and PM travelers3: Ilinca Ciupa, Ádám Darvas, Werner Dietl, Pietro Ferrara, Carlo Fu-

ria, Nicu Georgian Fruja, Claudia Günthart, Xiaohui (Jenny) Jin, Ioannis Kassios, Her-

mann Lehner, Andreas Leitner, Sebastian Nanz, Piotr Nienaltowski, Benjamin Morandi,

1Licenciate in computer science
2Master in computer science
3Past and present members of the chair of Software Engineering and Chair of Programming Method-

ology at ETH Zurich

ii

Manuel Oriol, Michela Pedroni, Marco Piccioni, Max (Yu) Pei, Nadia Polikarpova, Arsenii

Rudich, Joseph Ruskiewicz, Bernd Schoeller, Marco Trudel, Julian Tschannen, Stephan

van Staden, Jason (Yi) Wei, Scott West, Volkan Arslan, Till Bay, and Patrick Eugster. I

have met other travelers who were heading to different destinations, still I had the oppor-

tunity to share part of the trip with them; they are Michel Guex, Bruno Hauser, Manuel

Hess, and Hasan Karahan.

One day in the cold winter of Zürich, I found a small flyer about an outsourced

expedition called DOSE. The expedition consisted of discovering different cultures; in

particular, I visited Russia, Ukraine, Italy, India, and Vietnam. I travelled with Peter

Kolb, Roman Mitin, and Bertrand Meyer.

My family and my argentinean friends could not board the boat with me, however,

they accompanied me from afar. Without their understanding and support, this trip could

not have been done. A special thanks goes to my mother Lilian, Germán, Mariela, and my

niece Sof́ıa, my sister Luciana, my aunt Lili, the Espamer family, and Pablo and Mariana.

My life fellow traveller Luciana was my company for the whole voyage; I am thankful for

her company and love.

Today, my trip finishes: the day is sunny and the sky is blue. The results of this trip

are described in the next pages, and it is known as PhD thesis.

Mart́ın, Zürich 2009

Contents

I Overview 3

1 Carrying Proofs from Source to Target 5

2 Overview and Main Results 9
2.1 A Verification Process based on Proof Transforming Compilation 9
2.2 Contributions . 11

2.2.1 Proofs for Object-Oriented Programs 12
2.2.2 Proof-Transformations for Object-Oriented Programs 12

II Proofs 15

3 A Sound and Complete Logic for Object-Oriented Programs 17
3.1 The Core Language and its Semantics . 18

3.1.1 The Mate Language . 18
3.1.2 The Memory Model . 19
3.1.3 Operational Semantics . 22
3.1.4 A Programming Logic for Mate . 27
3.1.5 Example . 32

3.2 A Logic for Eiffel . 36
3.2.1 The Eiffel Language . 36
3.2.2 Operational Semantics . 36
3.2.3 A Programming Logic for Eiffel . 44
3.2.4 Example . 46

3.3 A Logic for Java-like Programs . 48
3.3.1 The Java Language . 48
3.3.2 Operational Semantics . 48
3.3.3 A Programming Logic for Java . 53
3.3.4 Example . 55

3.4 Soundness and Completeness . 57

iv CONTENTS

3.5 Related Work . 58
3.6 Lessons Learned . 59

4 Reasoning about Function Objects 63
4.1 The Agent Mechanism . 64
4.2 Agent Examples and their Verification Challenge 66

4.2.1 Formatter . 66
4.2.2 Multi-Level Undo-Redo . 67
4.2.3 Archive Example . 68

4.3 Verification Methodology . 69
4.3.1 Specifying Function Objects . 69
4.3.2 Axiomatic Semantics . 71

4.4 Automatic Proofs . 73
4.4.1 Reasoning about agents with open arguments 73
4.4.2 Reasoning about Closed Arguments 75
4.4.3 Framing . 77
4.4.4 Framing for Agents with Closed Arguments 79
4.4.5 Applications . 81
4.4.6 Experiments . 86

4.5 Related Work . 87

III Proof Transformations 89

5 The CIL Language and its Logic 91
5.1 The CIL Bytecode Language . 91
5.2 A Bytecode Logic for CIL . 93

5.2.1 Method and Instruction Specifications 93
5.2.2 Rules . 95
5.2.3 Exception Handling . 97
5.2.4 Example . 103

6 Proof-Transforming Compilation for the Core Language 107
6.1 Translation Basics . 107
6.2 Proof Translation of Routines . 108

6.2.1 Class Rule . 109
6.2.2 Subtype Rule . 109
6.2.3 Routine Implementation Rule . 110
6.2.4 Language-Independent Rules for Routines 111

6.3 Proof Translation of Expressions . 115
6.3.1 Constants . 116

CONTENTS v

6.3.2 Variables . 116

6.3.3 Binary Expressions . 116

6.3.4 Unary Expressions . 117

6.4 Poof Translation of Instructions . 117

6.4.1 Assignment Axiom . 118

6.4.2 Compound Rule . 119

6.4.3 Conditional Rule . 119

6.4.4 Check Axiom . 121

6.4.5 Loop Rule . 121

6.4.6 Read Attribute Axiom . 122

6.4.7 Write Attribute Axiom . 123

6.4.8 Routine Invocation Rule . 124

6.4.9 Local Rule . 125

6.4.10 Creation Rule . 127

6.5 Poof Translation of Language-Independent Rules 127

6.5.1 Strength Rule . 128

6.5.2 Weak Rule . 128

6.5.3 Conjunction/Disjunction Rules . 129

6.5.4 Invariant Rule . 130

6.5.5 Substitution Rule . 131

6.5.6 All rule and Ex rule . 131

6.6 Applications . 132

6.7 Soundness Theorems . 134

7 Eiffel-Specific Aspects of Proof-Transforming Compilation 137

7.1 Contract Translator . 138

7.1.1 Translation Basics . 138

7.1.2 Datatype Definitions . 139

7.1.3 Mapping Eiffel Types to CIL . 140

7.1.4 Translation Functions . 141

7.1.5 Example Translation . 144

7.2 Proof Translator . 145

7.2.1 Transformation Function Basics . 146

7.2.2 Proof Translation of Eiffel Expressions 146

7.2.3 Proof Translation of Instructions 148

7.3 Applications . 152

7.4 Soundness of the Contact Translator . 154

vi CONTENTS

8 Java-Specific Aspects of Proof-Transforming Compilation 155

8.1 Poof Translation using CIL . 156

8.1.1 Translation Basics . 156

8.1.2 Compound . 156

8.1.3 While Rule . 157

8.1.4 Break Rule . 158

8.1.5 Throw Rule . 158

8.1.6 Try-catch Rule . 159

8.1.7 Try-finally Rule . 160

8.1.8 Soundness Theorem . 161

8.2 Proof Translation using Java Bytecode . 162

8.2.1 Translation Basics . 163

8.2.2 Compound . 164

8.2.3 While Rule . 165

8.2.4 Try-Finally Rule . 165

8.2.5 Break Rule . 167

8.2.6 Soundness Theorem . 169

8.3 Applications . 170

8.4 Related Work . 172

9 Implementation of the Proof-Transforming Compiler Scheme 179

9.1 A Proof-Transforming Compiler . 179

9.2 Proof Checker . 181

9.2.1 Instructions . 182

9.2.2 Exception Tables . 182

9.2.3 CIL Proofs . 183

9.2.4 Weakest Precondition Function . 184

9.2.5 Verification Condition Generator 185

9.2.6 Checking the CIL Proofs . 187

9.3 Experiments . 188

10 Conclusions and Future Work 191

10.1 Conclusions . 191

10.2 Future Work . 192

10.2.1 Proofs . 192

10.2.2 Proof-Transforming Compilation 193

A Notation 195

CONTENTS vii

B Soundness and Completeness Proof of the Logic 197
B.1 Definitions and Theorems . 198
B.2 Soundness Proof . 200

B.2.1 Assignment Axiom . 200
B.2.2 Compound Rule . 201
B.2.3 Conditional Rule . 203
B.2.4 Check Axiom . 204
B.2.5 Loop Rule . 205
B.2.6 Read Attribute Axiom . 206
B.2.7 Write Attribute Axiom . 207
B.2.8 Local Rule . 208
B.2.9 Creation Rule . 209
B.2.10 Rescue Rule . 210
B.2.11 Once Functions Rule . 213
B.2.12 Routine Implementation Rule . 217
B.2.13 Routine Invocation Rule . 218
B.2.14 Class Rule . 219
B.2.15 Subtype Rule . 220
B.2.16 Language-Independent Rules . 221

B.3 Completeness Proof . 224
B.3.1 Assignment Axiom . 225
B.3.2 Compound Rule . 226
B.3.3 Conditional Rule . 226
B.3.4 Check Axiom . 227
B.3.5 Loop Rule . 227
B.3.6 Read Attribute Axiom . 228
B.3.7 Write Attribute Axiom . 228
B.3.8 Local Rule . 229
B.3.9 Rescue Rule . 230
B.3.10 Routine Implementation Rule . 232
B.3.11 Routine Invocation Rule . 232
B.3.12 Virtual Routines . 235

C Soundness Proof of the Eiffel Proof-Transforming Compiler 237
C.1 Theorems . 237
C.2 Soundness Proof of the Routine Translator 238

C.2.1 Class Rule . 238
C.2.2 Conjunction Rule . 240

C.3 Soundness Proof of the Expression Translator 240
C.3.1 Constants . 241
C.3.2 Variables . 242

viii CONTENTS

C.3.3 Binary Expressions . 242
C.3.4 Unary Expressions . 243

C.4 Soundness Proof of the Instruction Translator 244
C.4.1 Assignment Axiom . 244
C.4.2 Compound Rule . 245
C.4.3 Conditional Rule . 247
C.4.4 Check Axiom . 248
C.4.5 Loop Rule . 249
C.4.6 Read and Write Attribute Rule . 250
C.4.7 Routine Invocation Rule, Local Rule, and Creation Rule 250
C.4.8 Rescue Rule . 250
C.4.9 Once functions Rule . 253

D Soundness Proof of the Java Proof-Transforming Compiler 257
D.1 Soundness of the Proof Translator using CIL 257

D.1.1 Theorem . 257
D.1.2 Compound Rule . 258
D.1.3 While Rule . 260
D.1.4 Break Rule . 261
D.1.5 Throw Rule . 262
D.1.6 Try-catch Rule . 263
D.1.7 Try-finally Rule . 266

D.2 Soundness of the Proof Translator using Java Bytecode 266
D.2.1 Theorem . 266
D.2.2 Proof of Lemmas 3 and 4 . 267
D.2.3 Compound Rule . 269
D.2.4 While Rule . 272
D.2.5 Try-finally Rule . 274
D.2.6 Break Rule . 278

Abstract

In modern development schemes the processing of programs often involves an intermediate
step of translation to some intermediate code, often called “bytecode”. This intermediate
code is executed through interpretation or a second phase of compilation known as “jit-
ting”. The execution of bytecode programs can produce unexpected behavior, which may
compromise security and correctness of a software system. An important issue to address
is the verification of these programs also known as mobile code.

Expanding on the ideas of Proof-Carrying Code (PCC), we have introduced a ver-
ification process for bytecode programs based on proof-transforming compilation. The
approach consists of translating proofs of object-oriented programs to bytecode proofs.
The verification process is performed at the level of the source program making interaction
easier than verifying bytecode programs. Then, a proof-transforming compiler translates
automatically a contract-equipped program and its proof into bytecode representing both
the program and the proof. Our approach addresses not only type safety properties, as
in the original PCC work, but full functional correctness as expressed by the original
contracts.

This thesis develops the foundations of proof-transfoming compilation for object-
oriented programs. The main results are: (1) operational and axiomatic semantics for
a subset of C#, Eiffel, and Java; (2) a verification methodology for function objects;
and (3) proof-transforming compilers for these languages. This thesis shows that certifi-
cates for bytecode programs can be generated automatically from certificates of object-
oriented programs. The implemented prototype suggests that proof-transforming compil-
ers can be applied to real programming languages.

x CONTENTS

Abstract

Moderni metodi di sviluppo software utilizzano un processo di traduzione da codice sor-
gente a codice di livello intermedio, detto “bytecode”. Questo codice viene eseguito da un
interprete, o gestito in una seconda fase di compilazione detta “jitting”. L’esecuzione di
bytecode puó produrre risultati incorretti, che potrebbero compromettere la sicurezza e
la correttezza dei sistemi di software. Un aspetto importante da considerare e’ anche la
presenza di codice mobile.

Partendo dall’idea di Proof-Carrying Code (PCC), abbiamo proposto un’estensione
del processo di verifica per bytecode basata sull’idea di proof-transforming compilation.
L’approccio consiste nella traduzione di dimostrazioni di programmi object oriented. Il
processo di verifica avviene automaticamente a partire da un programma provvisto di di-
mostrazione, e produce un nuovo programma annotato con una dimostrazione. L’approccio
proposto si applica non solo a proprieta’ di tipo, come nel PCC originale, ma e’ in grado
di esprimere correttezza funzionale.

Questa tesi sviluppa gli aspetti fondamentali di proof-transfoming compilation per lin-
guaggi object-oriented. I risultati principali sono: (1) semantica operazionale e assiomatica
per un sottoinsieme di C#, Eiffel e Java; (2) metodologia di verifica per oggetti funzion-
ali; (3) compilatori proof-transforming per questi linguaggi. Questa tesi dimostra che
certificati per programmi bytecode possono essere generati automaticamente a partire da
programmi object-oriented. L’implementazione di un prototipo suggerisce che i compi-
latori proof-transforming possono essere applicati a linguaggi di programmazione in uso
corrente.

2 Abstract

Part I

Overview

Chapter 1

Carrying Proofs from Source to
Target

The problem of software verification, hard enough in a traditional context, takes on new
twists as advances in computing, designed to bring convenience and flexibility to users,
also bring further headaches to verifiers. The problem arises because of the increased
sophistication of our computing architectures. Along with new modes of computing orig-
inating from the role of the Internet, new modes of software deployment have emerged.
Once we have written a program in a high-level language, instead of compiling it once
and for all into machine code for execution on a given machine, we may generate inter-
mediate code, often called “bytecode” (CIL on .NET, or JVM bytecode) and distribute
it to numerous users who will execute it through either interpretation or a second phase
of compilation known as “jitting”. What then can and should we verify?

If we trust the interpreter or the jitter, the verification effort could apply to the
bytecode; but this is a difficult proposition because typical bytecodes (CIL, JVM) discard
some of the high-level information, in particular about types and control flow, which was
present in the original and can be essential for a proof. In addition, proofs in the current
state of the art can seldom be discharged in an entirely automatic fashion (for example
by compilers, as a by-product of the compilation process): they require interactive help
from programmers. But then the target of the proof should be the program as written,
not generated code which means nothing to the programmer. This suggests sticking to
the traditional goal of proving correctness at the source level.

The problem now becomes to derive from a proof of the source code a guarantee of
correctness of the generated bytecode. Unlike the interpreter or jitter, the compiler is
often outside of the operating system; even if it is trusted, there is no guarantee against
a third party tampering with the intermediate code.

The notion of Proof-Carrying Code (PCC) [85] was developed to address this issue;
with PCC, a program producer develops code together with a formal proof (a certificate)

6 Carrying Proofs from Source to Target

that it possesses certain desirable properties. The program consumer checks the proof
before executing the code or, in the above scheme, before interpreting or jitting it. To
achieve full automation, such work has mostly so far addressed a subset of program
properties – those associated with security. In this work, we are interesting in proofs of
full functional correctness, which typically require interactive verification and are beyond
the capabilities of today’s certifying compilers.

Outline

This thesis addresses the problem of verifying functional correctness properties for byte-
code programs. In Chapter 2 we describe our approach of proof-transforming compilation,
and we briefly outline the main results and contributions.

In the second part, proofs, Chapter 3 presents a sound and complete logic for object-
oriented programs. The chapter defines an operational and axiomatic semantics for a
common subset of C#, Eiffel, and Java. Then, we extend the language to a subset of
Eiffel that handles exception handling, once routines, and multiple inheritance. Finally,
we develop a semantics for a subset of Java that handles abrupt termination using break,
throw, try-catch, and try-finally instructions.

Chapter 4 develops a specification and verification methodology for function objects.
We illustrate the methodology using Eiffel agents. The chapter first gives a brief intro-
duction to the Eiffel agent mechanism, and then it shows some challenging examples. The
chapter concludes with the verification methodology, applications, and related work.

In the third part, proof-transformations, Chapter 5 describes the bytecode language,
CIL, and summarizes the bytecode logic developed by Bannwart and Müller [6]. This
chapter also extends Bannwart and Müller’s logic with the CIL instructions .try catch,
and .try .finally.

The proof-transforming compilation technique is presented in three chapters. Chap-
ter 6 develops a proof-transforming compiler for a common subset of C#, Eiffel, and Java.
This chapter presents: (1) the translation of virtual routine and routine implementation
rules, (2) the translation of expressions, (3) the translation of basic instructions such as
assignment and compound, and (4) the translation of language-independent rules. The
chapter concludes with an example of the application of proof-transforming compilers.

Chapter 7 describes the Eiffel proof-transforming compiler. The compiler takes a proof
in a Hoare-style logic for Eiffel, and produces a proof for CIL. This compiler consists of a
contract translator, and an instruction translator. The chapter concludes with an example
of the application of Eiffel PTC.

Chapter 8 develops the Java proof-transforming compiler. The Proof-Transforming
Compiler (PTC) handles abrupt termination using break, throw, try-catch, and
try-finally instructions. This chapter shows the translation using both CIL and JVM
bytecode. The chapter concludes with a discussion of related work. Chapter 9 describes

7

the implementation of the proof-transforming compiler schema. Conclusions and future
work are presented in Chapter 10.

Finally, Appendix A shows the notation used in the thesis; Appendix B proves sound-
ness and completeness of the Eiffel logic; and Appendices C and D prove soundness of the
Eiffel and Java PTC, respectively.

8 Carrying Proofs from Source to Target

Chapter 2

Overview and Main Results

The work reported in this thesis addresses the problem of verifying mobile code and other
programs deployed through intermediate formats such as bytecode. We tackle the entire
issue of functional correctness by introducing a proof-transforming compiler (PTC).

2.1 A Verification Process based on Proof Transform-

ing Compilation

A process for building verified software with the help of the concepts developed in this
thesis would involve the following steps:

• Verify the source program, taking advantage of proof technology at the programming
language level. This step can involve interaction with the programmer or verification
expert.

• Translate both the source program and the proof into intermediate code, using the
proof-transforming compiler. This step is automatic.

• Before a user runs the code (through interpretation or jitting), check the proof. This
checking is again an automatic task; it can be performed by a simple proof-checking
tool.

A traditional compiler has as input a program in source form and, in the kind of
architectures considered here, produces bytecode as output. With a proof-transforming
compiler, the source program must be equipped with verification conditions to enable a
proof of correctness; the input of the proof-transforming compiler includes, along with
this source program, a proof of its correctness; and the output generates, along with
the generated bytecode, the corresponding proof of its correctness. Figure 2.1 shows the

10 Overview and Main Results

Fig. 2.1: General Architecture of Proof-Transforming Compilation.

architecture of this approach. The code producer develops a program and a proof of
the source program using a prover. Then, the PTC translates the proof producing the
bytecode and its proof, which are sent to the code consumer. The proof checker verifies
the proof of the bytecode program. If the bytecode proof is incorrect, the proof checker
rejects the code; otherwise the bytecode program is executed. Similar to PCC, if a third
party modifies the bytecode or the bytecode proof making the proof invalid, the proof
checker would detect it, and the code would be rejected.

An important property of proof-transforming compilers is that they are not part of
the trusted computing base of the Proof-Carrying Code infrastructure. If the compiler
produces a wrong specification or a wrong proof for a component, the proof checker will
reject the component. This approach combines the strengths of certifying compilers and
interactive verification.

2.2 Contributions 11

Our approach inherits the advantages of PCC: (1) the process of checking the proof
is fast and automatic; (2) there is no loss of performance in the bytecode program since
first, the proof is checked, and then the code is executed (without inserting any run-time
checks); (3) the overhead of developing the proof is done once and for all by the code
producer; (4) the code consumer does not need to trust the code producer.

The main advantage of the verification process based on proof-transforming compila-
tion against Proof-Carrying Code is that our approach addresses functional correctness.
The approach supports heterogeneity of source programming languages and verification
techniques for the proofs. Proofs can be developed for programs written in different pro-
gramming languages such as C#, Eiffel, or Java, and then translated to a uniform format.

To cover a wide range of features of object-oriented languages, we have applied our
approach to subsets of C#, Eiffel, and Java. These programming languages have many
interesting object-oriented features such as two different exception handling mechanisms,
single and multiple inheritance, and abrupt termination (for example using break instruc-
tions). We have studied these languages from two different point of views: the semantics
and the proof transformation point of view. The first one allows us to analyze and to
compare the different features such as the Eiffel and the Java exception handling mech-
anisms. The second one allows us to study how proofs can be translated for different
programming languages. The proof translation for C# and Java is interesting because it
shows how abrupt termination can be mapped to bytecode. The proof translation from
Eiffel to CIL is interesting because of the difference in the support for inheritance; while
Eiffel handles multiple inheritance, CIL supports single inheritance.

The novel concept of proof-transforming compilation has also attracted the interest
of other researchers [15, 103, 114]. The main difference of the approach developed in
this thesis and other approaches is how the proof-transforming compiler works. Previous
work [15, 103, 114] has shown that proof obligations are preserved by compilation; the
aim is to prove the equivalence between the verification conditions generated over the
source code and the bytecode. Our approach demonstrates how proofs of programs using
Hoare-style logic can be translated to proofs in bytecode. An advantage of our approach
against the preservation of proof obligation (PPO) approach is that the trusted computing
base of our approach consists only of a proof checker; in the PPO approach, the trusted
computing base consists of a verification condition generator for the bytecode and a proof
checker. For a detailed comparison of these approaches see Section 8.4.

2.2 Contributions

The contributions of this thesis can be classified into proofs for object-oriented programs
and proof-transformations for object-oriented programs.

12 Overview and Main Results

2.2.1 Proofs for Object-Oriented Programs

Semantics for C#, Eiffel, and Java. The first main contribution is a formal seman-
tics for object-oriented programs. This semantics consists of an operational and axiomatic
semantics that handles features of C#, Eiffel, and Java.

The contribution of the semantics for the subset of Java is the treatment of abrupt ter-
mination, which includes try-catch, try-finally, and break instructions. This subset
is interesting from the semantics point of view due to the combination of while, break,
try-catch, and try-finally instructions which interact in subtle ways. This formaliza-
tion work highlighted some surprising aspects of Java exception semantics, of which many
Java programmers and even experts are generally unaware.

The semantics for Eiffel includes exception handling, once routines, and multiple in-
heritance. This semantics handles the main Eiffel features, although generics are omitted.
During this work, we have found that Eiffel’s exception mechanism was not ideal for formal
verification. The use of retry instructions in a rescue clause complicates its verification.
For this reason, a change in the Eiffel exception handling mechanism has been proposed.
The change was suggested by the work described in this thesis, and will be adopted by a
future revision of the language standard. As far as we know, this is the first semantics for
Eiffel that includes exception handling, once routines, and multiple inheritance. We have
proved soundness and completeness of the Eiffel semantics.

It is important to remark that one of the main design goals of the axiomatic semantics
was to develop a Hoare-style logic that can be automatically translated to a bytecode logic.
For this reason, we decided that postconditions in Hoare triples consist of a postcondition
for normal termination, and a postcondition for exceptions1.

Function Objects. The second main contribution is a methodology to reason about
function objects such as delegates in C#, agents in Eiffel, and function objects in Scala.
Function objects bring a new level of abstraction to the object-oriented programming
model, and require a comparable extension to specification and verification techniques.
The verification methodology described in this thesis equips each function object with side-
effect free routines (methods) for its pre- and postcondition, respectively. These routines
can be used to specify client code relatively to the contract of the function object.

To illustrate the application of the methodology for function objects, a prototype
verifier for Eiffel has been implemented. This verifier can automatically prove challenging
examples proposed but left unsolved by Leavens, Leino, and Müller [63].

2.2.2 Proof-Transformations for Object-Oriented Programs

Proof-Transforming Compiler for Eiffel. An outcome of this work is the develop-
ment of a proof-transforming compiler that translates proofs of Eiffel programs to byte-

1Java Hoare triples also have an extra postcondition for break instructions.

2.2 Contributions 13

code proofs. The task of the proof-transforming compiler is made particularly challenging
by the impedance mismatch between the source language, Eiffel, and the target code,
.NET CIL, which does not directly support such important Eiffel mechanisms as multiple
inheritance.

The Eiffel proof-transforming compiler consists of two modules: (1) a specification
translator that translates Eiffel contracts to CIL contracts; and (2) a proof translator that
translates Eiffel proofs to CIL proofs. The specification translator takes an Eiffel contract
based on Eiffel expressions, and generates a CIL contract based on first order logic. The
proof translator takes a proof in a Hoare-style logic and generates a CIL bytecode proof.

Proof-Transforming Compiler for Java. We have developed a proof-transforming
compiler for a subset of Java, which handles abrupt termination. We formalize the proof
translation using both CIL on .NET and JVM bytecode. The subset resulting from the
combination of while, break, try-catch, and try-finally instructions raises interesting
compilation issues in JVM. A try-finally instruction is compiled using code duplication:
the finally block is put after the try block. If try-finally instructions are used inside
of a while loop, the compilation of break instructions first duplicates the finally blocks
and then inserts a jump to the end of the loop. Furthermore, the generation of exception
tables in JVM is harder than the generation of .try and .catch blocks in CIL. The
code duplicated before the break may have exception handlers different from those of the
enclosing try block. Therefore, the exception table must be changed so that exceptions
are caught by the appropriate handlers.

The formalizations of these proof-transforming compilers show that the translation of
CIL is simpler than JVM bytecode due to CIL supports try-catch and try-finally

instructions. The code duplication used by the JVM compiler for try-finally instruc-
tions increases the complexity of the compilation and translation functions, especially the
formalization and its soundness proof.

Implementation of the Proof-Transforming Compilation Scheme. To show the
practicability of the proof-transforming compilation approach, we have implemented a
prototype. The implementation consists of a proof-transforming compiler for a subset of
Eiffel and a proof checker. The proof checker has been formalized in Isabelle [90].

14 Overview and Main Results

Part II

Proofs

Chapter 3

A Sound and Complete Logic for
Object-Oriented Programs

Program verification relies on a formal semantics of the programming language, typically a
program logic such as Hoare logic [48]. Program logics have been developed for mainstream
object-oriented languages such as Java and C#. For instance, Poetzsch-Heffter and Müller
presented a Hoare-style logic for a subset of Java [108]. Their logic includes the most
important features of object-oriented languages such as abstract types, dynamic binding,
subtyping, and inheritance. However, exception handling is not treated in their work.
Although, logics that handle C# and Java’s exception handling [52, 57, 109] have been
developed, these logics do not handle try-finally and break instructions.

Eiffel has several distinctive features not present in mainstream languages, for instance,
a different exception handling mechanism, once routines, and multiple inheritance. Eiffel’s
once routines (methods) are used to implement global data, similar to static fields in Java.
Only the first invocation of a once routine triggers an execution of the routine body;
subsequent invocations return the result of the first execution. The development of formal
techniques for these concepts does not only allow formally verifying Eiffel programs, but
also allows comparing the different concepts, and analyzing which concepts are more
suitable for formal verification.

In this chapter, we present a logic for object-oriented programs based on Poetzsch-
Heffter and Müller’s logic [108]. The logic is presented in three parts. First, we present the
logic for the core object-oriented language, a common subset of C#, Eiffel, and Java. This
logic handles object-oriented features such as object creation, attribute read and write,
routine invocation, and standard instructions such as assignments, if then else, and loops.

In the second section of this chapter, the language is extended to a subset of Eiffel. This
subset handles multiple inheritance, exception handling, and once routines. Agents are
deferred until Chapter 4. The third and final part of the logic is presented in Section 3.3.
In that section, the core language is extended to a subset of Java. The subset includes

18 A Sound and Complete Logic for Object-Oriented Programs

Java’s exception handling mechanism (try-catch, try-finally, and throw instructions)
and break instructions.

The logic is sound and complete. The soundness and completeness proofs are presented
in Appendix B. The chapter concludes with related work, and a discussion about the
different object-oriented features that have been formalized.

This chapter is partially based on the published works [93, 80, 94]

3.1 The Core Language and its Semantics

3.1.1 The Mate Language

The source language, called Mate1, is a subset of Eiffel, which includes several features
also used in C# and Java. The most interesting features of the language are (1) single
inheritance, (2) routine invocations, (3) attributes (fields), and (4) exception handling.
Since the exception handling mechanisms for C#, Java, and Eiffel are different (C# and
Java support try-catch instructions, and Eiffel supports rescue clauses), expressions in
assignments can trigger exceptions but the language does not include any instruction to
catch exceptions. The exception handling mechanism is extended to the Eiffel and the
Java exception handling mechanisms in Section 3.2 and Section 3.3, respectively.

A Mate program is a sequence of class declarations. A class declaration consists of
an optional inheritance clause, and a class body. The inheritance clause supports single
inheritance. A class body is a sequence of attribute declarations or routine declarations.
For simplicity, routines are functions that take always one argument, named p, and return
a result. However, we do not assume that functions are side-effect free, that is, our logic
fully handles heap modifications.

Figure 3.1 presents the syntax of the Mate language. Class names, routine names,
variables and attributes are denoted by ClassId, RoutineId, VarId, and AttributeId, re-
spectively. The set of variables is denoted by Var ; VarId is an element of Var ; list of
denotes a comma-separated list.

Boolean expressions and expressions (BoolExp and Exp) are side-effect-free, and do
not trigger exceptions2. In addition, we write ExpE for the expressions which might raise
exceptions. For simplicity, expressions ExpE are only allowed in assignments. This assump-
tion simplifies the presentation of the logic, especially the rules for routine invocation, if
then else, and loop instructions. However, the logic could be easily extended.

The syntax of the Mate language is similar to the Eiffel syntax. In particular, the
loop instruction until e loop s end iterates until the expression e evaluates to true.
This instruction first evaluates the expression e, and then if this evaluation returns true,

1Mate is pronounced | ′mate |; the name comes from the Argentinean mate: http://en.wikipedia.
org/wiki/Mate_(beverage)

2The necessary checks are delegated to the compiler.

http://en.wikipedia.org/wiki/Mate_(beverage)
http://en.wikipedia.org/wiki/Mate_(beverage)

3.1 The Core Language and its Semantics 19

Program ::= ClassDecl∗
ClassDecl ::= class ClassId [inherit Type] ClassBody end
Type ::= BoolT | IntT | ClassId | VoidT
ClassBody ::= MemberDecl∗
MemberDecl ::= AttributeId Type

| Routine
Routine ::= RoutineId (Type) : Type

[local list of (VarId : Type)]
do

Instr
end

Instr ::= VarId := ExpE
| Instr ; Instr
| until BoolExp loop Instr end
| if BoolExp then Instr else Instr end
| check BoolExp end
| VarId := create {Type}.make (Exp)
| VarId := VarId .Type@AttributeId
| VarId .Type@AttributeId := Exp
| VarId := VarId .Type : RoutineId (Exp)

Exp ::= Literal | VarId | Current | Result | Exp Op Exp | BoolExp
BoolExp ::= Literal | VarId | Current | Result | BoolExp Bop BoolExp

| Exp CompOp Exp
Op ::= + | − | ∗
Bop ::= and | or
CompOp ::= < | > | <= | >= | = | / =
ExpE ::= Exp | ExpE //ExpE

Fig. 3.1: Syntax of the Mate Language.

the instruction s is executed (opposite to the do s while e instruction3, where first s is
executed, and then e is evaluated) . The check instruction has the same semantics as
the assert instruction in C# and Java. Furthermore, local variables are declared at the
beginning of the routine using the keyword local.

3.1.2 The Memory Model

The state of a Mate program describes the current values of local variables, arguments, the
current object, and the current object store $. A value is either a boolean, an integer, the
void value, or an object reference. An object is characterized by its class and an identifier
of infinite sort ObjId . The data type Value models values; its definition is the following:

3The do s while e instruction is also known as repeat s until e instruction (for example in Pascal).

20 A Sound and Complete Logic for Object-Oriented Programs

data type Value = boolV Bool
| intV Int
| objV ClassId ObjId
| voidV

The function τ : Value → Type returns the dynamic type of a value. This function is
defined as follows:

τ : Value → Type
τ(boolV b) = BoolT
τ(intV n) = IntT
τ(objV cId oId) = cId
τ(voidV) = VoidT

The function init yields a default value for every type. The default value of boolean
is false, the default value of integer is zero, and the default value of references is void. Its
definition is as follows:

init : Type → Value
init(BoolT) = (boolV false)
init(IntT) = (intV 0)
init(cId) = voidV
init(VoidT) = voidV

The state of an object is defined by the values of its attributes. The sort Attribute
defines the attribute declaration T @a where a is an attribute declaration in the class T .
We use a sort Location, and a function instvar where instvar(V ,T @a) yields the instance
of the attribute T @a if V is an object reference and the object has an attribute T @a;
otherwise it yields undef . The datatype definitions and the signature of instvar are the
following:

data type Attribute = Attr Type AttributeId
data type Location = Loc ObjId AttributeId

instvar : Value × Attribute → Location ∪ {undef }

The object store models the heap describing the states of all objects in a program
at a certain point of execution. An object store is modeled by an abstract data type
ObjectStore. We use the object store presented by Poetzsch-Heffter and Müller [107, 108].
The following operations apply to the object store: OS (L) denotes reading the location L

3.1 The Core Language and its Semantics 21

in the object store OS ; alive(O ,OS) yields true if and only if the object O is allocated
in the object store OS ; new(OS ,C) yields a reference of type C to a new object in the
store OS ; OS 〈L := V 〉 updates the object store OS at the location L with the value V ;
OS 〈C 〉 denotes the store after allocating a new object of type C .

() : ObjectStore × Location → Value
alive : Value ×ObjectStore → Bool
new : ObjectStore × ClassId → Value

〈 := 〉 : ObjectStore × Location × Value → ObjectStore
〈 〉 : ObjectStore × ClassId → ObjectStore

In the following, we present Poetzsch-Heffter and Müller’s axiomatization [107] of
these functions with a brief description. The function obj : Location → Value takes a
location and yields the object it belongs to. The function ltyp : Location → Type yields
the dynamic type of a location. The function ref : Value → Bool takes a value v , and
yields true if v is a reference to an object.

Axiom 1. Updating a location does not affect the values of other locations:
∀OS ∈ ObjectStore, L1,L2 ∈ Location, X ∈ Value :

L1 6= L2 ⇒ OS 〈L1 := X 〉(L2) = OS (L2)

Axiom 2. Reading a location updated with a value produces the same value if both the
location and the value are alive:
∀ OS ∈ ObjectStore, L ∈ Location, X ∈ Value :

alive(obj (L),OS) ∧ alive(X ,OS) ⇒ OS 〈L := X 〉(L) = X

Axiom 3. Reading a location that is not alive produces the default value of the type of
the location:
∀ OS ∈ ObjectStore, L ∈ Location : ¬alive(obj (L),OS) ⇒ OS (L) = init(ltyp(L))

Axiom 4. Updating a location that is not alive does not modify the object store:
∀ OS ∈ ObjectStore, L ∈ Location, X ∈ Value : ¬alive(X ,OS) ⇒ OS 〈L := X 〉 = OS

Axiom 5. Allocating a type in the object store does not change their values:
∀ OS ∈ ObjectStore, L ∈ Location, cId ∈ ClassId : OS 〈cId〉(L) = OS (L)

Axiom 6. Updating a location does not affect the aliveness property:
∀ OS ∈ ObjectStore, L ∈ Location, X ,Y ∈ Value :

alive(X ,OS 〈L := Y 〉)⇔ alive(X ,OS)

Axiom 7. An object is alive if only if the object was alive before an allocation or the
object is the new object:
∀ OS ∈ ObjectStore, X ∈ Value, cId ∈ ClassId :

alive(X ,OS 〈cId〉)⇔ alive(X ,OS) ∨ X = new(OS , cId)

22 A Sound and Complete Logic for Object-Oriented Programs

Axiom 8. Objects held by locations are alive:
∀ OS ∈ ObjectStore, L ∈ Location : alive(OS (L),OS)

Axiom 9. Non reference values are alive:
∀ OS ∈ ObjectStore : ¬ref (X)⇒ alive(X ,OS)

Axiom 10. A created object is not alive in the object store from which it was created:
∀ OS ∈ ObjectStore, cId ∈ ClassId : ¬alive(new(OS , cId),OS)

Axiom 11. The dynamic type of a creation object of class id cId is cId:
∀ OS ∈ ObjectStore, cId ∈ ClassId : τ(new(OS , cId)) = cId

3.1.3 Operational Semantics

Program states are mappings from local variables and arguments to values, and from the
current object store $ to ObjectStore. The program state is defined as follows:

State ≡ Local × Heap
Local ≡ VarId ∪ {Current , p,Result} → Value ∪ {undef }
Heap ≡ {$} → ObjectStore

Local maps local variables, the receiver object Current (this in Java), arguments, and
Result to values. Arguments are denoted by p. The variable Result is a special variable
used to store the result value, but this variable is not part of VarId. For this reason, this
variable is included explicitly.

For σ ∈ State, σ(e) denotes the evaluation of the expression e in the state σ. Its
signature is the following:

σ : ExpE → Value ∪ {exc}
The evaluation of an expression e can yield exc meaning that an exception was triggered
in e. For example, σ(x/0) yields exc. Furthermore, the evaluation σ(y 6= 0 ∧ x/y = z) is
different from exc because σ first evaluates y 6= 0 and then evaluates x/y = z only if y 6= 0
evaluates to true. The state σ[x := V] denotes the state obtained after the replacement
of x by V in the state σ.

The transitions of the operational semantics have the form:

〈σ, S 〉 → σ′, χ

where σ and σ′ are states, S is an instruction, and χ is the current status of the pro-
gram. The value of χ can be either the constant normal or exc. The variable χ is required
to treat abrupt termination. The transition 〈σ, S 〉 → σ′, normal expresses that execut-
ing the instruction S in the state σ terminates normally in the state σ′. The transition
〈σ, S 〉 → σ′, exc expresses that executing the instruction S in the state σ terminates with
an exception in the state σ′. In the following, we present the operational semantics.

3.1 The Core Language and its Semantics 23

Basic Instructions

Figure 3.2 presents the operational semantics for basic instructions such as assignment,
compound, conditional, and loop instructions.

Assignment Instruction. The semantics for assignments consists of two rules: one when
the expression e throws an exception and one when it does not. In rule (3.2.1), if the
expression e throws an exception, then the assignment terminates with an exception and
the state is unchanged. The state does not change since expressions are side-effect free.
In rule (3.2.2), if e does not throw any exception, after the execution of the assignment
instruction, the variable x is updated with the value of the expression e in the state σ.

Compound. Compound is defined by two rules: in rule (3.2.3) the instruction s1 is
executed and an exception is triggered. The instruction s2 is not executed, and the state
of the compound is the state produced by s1. In rule (3.2.4), s1 is executed and terminates
normally. The state of the compound is the state produced by s2.

Check Instruction. The check instruction helps to express a property that one believes
will be satisfied. If the property is satisfied then the system does not change. If the property
is not satisfied then an exception is triggered. In rule (3.2.5), if the condition of the check
instruction evaluates to true, then the instruction terminates normally; otherwise the
check instruction triggers an exception, rule (3.2.6).

Conditional Instruction. In rule (3.2.7) the resulting state is the produced by the
execution of s1 since e evaluates to true. In rule (3.2.8) the state produced by the execution
of the conditional is the one produced by s2 due to the evaluation of e yields false.

Loop Instruction. In rule (3.2.9), since the until expression is true, then the body of
the loop is not executed. If the until expression is false, in rule (3.2.10), the instruction
s1 is executed, and it triggers and exception. Thus, the state of the loop is σ′ and the
status is exc. Finally, in rule (3.2.11), the condition evaluates to false, and s1 terminates
normally. The returned state is the one produced by the new execution of the loop.

Read Attribute Instruction. The semantics of read attribute is defined by two rules
depending if the target object is void or not. In rule (3.2.12), if the value of y is not Void ,
x is updated with the value of the attribute a. In (3.2.13), if y is Void , the instruction
terminates with an exception, and the state does not change.

Write Attribute Instruction. Similar to read attribute: in rule (3.2.14) the attribute a
of the object y is updated with the value e since y is not void. If y is Void , the instruction
terminates with an exception, and the state does not change, rule (3.2.15).

Routine Invocations

Poetzsch-Heffter and Müller [108] have developed an operational and axiomatic seman-
tics for Java-like languages which handle inheritance, dynamic binding, subtyping, and
abstract types. The source language used in their work does not handle exceptions. In this
section, we extend the operational semantics for routine invocation including exception

24 A Sound and Complete Logic for Object-Oriented Programs

Assignment Instruction
σ(e) = exc

〈σ, x := e〉 → σ, exc
(3.2.1)

σ(e) 6= exc
〈σ, x := e〉 → σ[x := σ(e)],normal

(3.2.2)

Compound
〈σ, s1〉 → σ′, exc
〈σ, s1; s2〉 → σ′, exc

(3.2.3)
〈σ, s1〉 → σ′,normal 〈σ′, s2〉 → σ′′, χ

〈σ, s1; s2〉 → σ′′, χ
(3.2.4)

Check Instruction
σ(e) = true

〈σ, check e end〉 → σ,normal
(3.2.5)

σ(e) = false
〈σ, check e end〉 → σ, exc

(3.2.6)

Conditional Instruction
σ(e) = true 〈σ, s1〉 → σ′, χ

〈σ, if e then s1 else s2 end〉 → σ′, χ
(3.2.7)

σ(e) = false 〈σ, s2〉 → σ′, χ

〈σ, if e then s1 else s2 end〉 → σ′, χ
(3.2.8)

Loop Instruction
σ(e) = true

〈σ, until e loop s1 end〉 → σ,normal
(3.2.9)

σ(e) = false 〈σ, s1〉 → σ′, exc
〈σ, until e loop s1 end〉 → σ′, exc

(3.2.10)

σ(e) = false 〈σ, s1〉 → σ′,normal
〈σ′, until e loop s1 end〉 → σ′′, χ

〈σ, until e loop s1 end〉 → σ′′, χ
(3.2.11)

Read Attribute Instruction
σ(y) 6= voidV

〈σ, x := y .T@a〉 → σ[x := σ($) (instvar(σ(y),T@a))],normal
(3.2.12)

σ(y) = voidV
〈σ, x := y .T@a〉 → σ, exc

(3.2.13)

Write Attribute Instruction
σ(y) 6= voidV

〈σ, y .T@a := e〉 → σ[$:= σ($)〈instvar(σ(y),T@a) := σ(e)〉],normal
(3.2.14)

σ(y) = voidV
〈σ, y .T@a := e〉 → σ, exc

(3.2.15)

Fig. 3.2: Operational Semantics for Basic Instructions

3.1 The Core Language and its Semantics 25

handling.

Poetzsch-Heffter and Müller distinguish between virtual routines and routine imple-
mentation. A class T has a virtual routine T :m for every routine m that it declares or
inherits. A class T has a routine implementation T @m for every routine m that it defines
(or redefines). We assume in the following that every invocation is decorated with the
virtual routine being invoked. The semantics of routine invocations uses two functions:
body and impl . The function impl(T ,m) yields the implementation of routine m in class
T . This implementation could be defined by T or inherited from a superclass. The func-
tion body yields the instruction constituting the body of a routine implementation. The
signatures of these functions are as follows:

impl : Type × RoutineId → RoutineImpl ∪ {undef }
body : RoutineImpl → Instr

The operational semantics of routine invocation is defined with the following rules:

σ(y) = voidV
〈σ, x := y .T:m(e)〉 → σ, exc

(3.1)

σ(y) 6= voidV 〈initSt [Current := σ(y), p := σ(e), $:= σ($)], body(impl(τ(σ(y)),m))〉 → σ′,normal
〈σ, x := y .T:m(e)〉 → σ[x := σ′(Result), $:= σ′($)],normal

(3.2)

σ(y) 6= voidV 〈initS [Current := σ(y), p := σ(e), $:= σ($)], body(impl(τ(σ(y)),m))〉 → σ′, exc
〈σ, x := y .T:m(e)〉 → σ[$:= σ′($)], exc

(3.3)

In rule (3.1), since the target y is Void , the state σ is not changed and an exception
is triggered. In rules (3.2) and (3.3), the target is not Void, thus, the Current object
is updated with y , and the argument p by the expression e, and then the body of the
routine is executed. To handle dynamic dispatch, first, the dynamic type of y is obtained
using the function τ . Then, the routine implementation is determined by the function
impl . Finally, the body of the routine is obtained by the function body. If the routine m
terminates normally, then x is updated with the result of m (rule 3.2). If an exception is
triggered in m, x is not updated, and the state is σ′ (rule 3.3).

Local Variables Declaration

Local variables, as well as the Result variable, have default initialization values. Thus, the
operational semantics first initialize the local variables and Result and then it executes
the body of the routine. Given a routine declaration rId (contracts omitted):

26 A Sound and Complete Logic for Object-Oriented Programs

rId (x : T) : T ′

local

v1 : T1; ... vi : Ti

do

s
end

the function body returns the following result:

local v1 : T1; ... vi : Ti ; Result : T ′; s

Note that the function body adds the declaration of the variable Result . This decla-
ration allows proving properties about the Result . In particular, it allows initializing the
variable Result with its initial value.

Local variables are initialized using rule (3.4). The values of the variables v1...vn are
updated with their default value according to their types. The function init , given a type
T returns its default value; init(INTEGER) returns 0; init(BOOLEAN) returns false and
init(T) where T is a reference type returns Void . The rule is the following:

〈σ[v1 := init(T1), ..., vn := init(Tn)], s〉 → σ′, χ

〈σ, local v1 : T1; ... vn : Tn ; s〉 → σ′, χ
(3.4)

Creation Instruction

The creation instruction is similar to the Eiffel creation instruction. First, a new object of
type T is created and assigned to Current . The current object store $ is updated with the
store σ($)〈T 〉 and the argument p is updated with the expression e. Then, the routine
make is invoked. Similar to the invocation rule, the body of the routine make is obtained
using the function body . The semantics is defined with the following rules:

〈initSt [Current := new(σ($),T), $:= σ($)〈T 〉, p := σ(e)], body(impl(T ,make))〉 → σ′,normal
〈σ, x := create T .make(e)〉 → σ[x := σ′(Current), $:= σ($)],normal

(3.5)

〈initSt [Current := new(σ($),T), $:= σ($)〈T 〉, p := σ(e)], body(impl(T ,make))〉 → σ′, exc
〈σ, x := create T .make(e)〉 → σ[$:= σ($)], exc

(3.6)

In rule (3.5), the routine make terminates normally, and the object x is updated
with the Current object in σ′. In Mate, when a new object is created, its attributes are
initialized with the default value. In the semantics, this is done by the function new which
creates the new object initializing its attributes. If the routine make triggers an exception
(rule 3.6), the state produced by the creation instruction is σ′, and x is not updated.

3.1 The Core Language and its Semantics 27

3.1.4 A Programming Logic for Mate

The logic for Mate is based on the programming logic presented by Poetzsch-Heffter and
Müller [108, 109]. We take over many of the rules, especially all the language-independent
rules such as the rules of consequence. Poetzsch-Heffter et al. [109] uses a special variable
χ to capture the status of the program such as normal or exceptional status. We instead
use Hoare triples with two postconditions to encode the status of the program execution.

The logic is a Hoare-style logic. Properties of routines and routine bodies are expressed
by Hoare triples of the form

{
P
}

S
{

Qn , Qe

}
, where P ,Qn ,Qe are formulas in

first order logic, and S is a routine or an instruction. The third component of the triple
consists of a normal postcondition (Qn), and an exceptional postcondition (Qe).

The triple
{

P
}

S
{

Qn , Qe

}
defines the following refined partial correctness

property: if S ’s execution starts in a state satisfying P , then (1) S terminates normally
in a state where Qn holds, or (2) S throws an exception and Qe holds, or (3) S aborts
due to errors or actions that are beyond the semantics of the programming language, e.g.,
memory allocation problems, or (4) S runs forever.

Since one of our design goals of the logic is to be able to automatically translate it
to a bytecode logic, and the bytecode logic supports partial correctness, we restrict the
source logic to partial correctness. Extending the source logic, the byteocde logic, and the
proof transformation to full functional correctness is part of future work.

Boolean Expressions

Preconditions and postconditions are formulas in first order logic (FOL). We encode the
programming language expressions in FOL using a shallow embedding. This encoding is
the classical encoding of FOL; thus it is omitted. Since expressions in the programming
language might trigger exceptions, we introduce a function safe that takes the expression,
and yields a safe expression. A safe expression is an expression whose evaluation does
not trigger an exception. Thus, the encoding takes a safe expression in the programming
language and produces a FOL formula such that:

embed(e)(σ) ⇔ σ(e) = boolV true

This embedding is trivial, thus it is omitted.

Definition 1 (Safe Expression). An expression e is a safe expression if and only if
∀ σ : σ(e) 6= exc.

Definition 2 (Function Safe). The function safe : ExpE → Exp returns an expression
that expresses if the input expression is safe or not. The definition of this function is the

28 A Sound and Complete Logic for Object-Oriented Programs

following:

safe : ExpE → Exp
safe (e1 oper e2) = safe(e1) and safe(e2) and safe op (oper , e1, e2)
safe (e) = true

safe op : Op × ExpE × ExpE → Exp
safe op (//, e1, e2) = (e2 / = 0)
safe op (oper , e1, e2) = true

Lemma 1. For each expression e, safe(e) satisfies:
σ(safe(e)) = true ⇔ σ(e) 6= exc

Proof. By induction on the structure of e, and definition of safe.

Lemma 2 (Substitution). If the expression e is a safe expression, then:

∀ σ : (σ |= P [e/x] ⇔ σ[x := σ(e)] |= P)

Proof. By induction on the structure of P , and definition of |=.

We define σ |= P as the usual definition of |= in first order logic.

Signatures of Contracts

Contracts refer to attributes, variables, and types. We introduce a signature Σ that rep-
resents the constant symbols of these entities. Given a Mate program, Σ denotes the
signature of sorts, functions, and constant symbols as described in Section 3.1.1. Ar-
guments, program variables, and the current object store $ are treated syntactically as
constants of Value and ObjectStore. Preconditions and postconditions of Hoare triples
are formulas over Σ ∪ {Current , p,Result} ∪ Var(r) where r is a routine, and Var(r)
denotes the set of local variables of r . Note that we assume Var(r) does not include the
Result variable, it only includes the local variables declared by the programmer. Routine
preconditions are formulas over Σ ∪ {Current , p, $}, routine postconditions for normal
termination are formulas over Σ ∪ {Result , $}, and routine exceptional postconditions
are formulas over Σ ∪ $

We treat recursive routines in the same way as Poetzsch-Heffter and Müller [108]. We
use sequents of the form A ` A where A is a set of routine annotations and A is a triple.
Triples in A are called assumptions of the sequent, and A is called the consequent of the
sequent. Thus, a sequent expresses that we can prove a triple based on the assumptions
about routines. In the following, we present the logic for Mate.

3.1 The Core Language and its Semantics 29

Basic Rules

Figure 3.3 presents the axiomatic semantics for basic instructions such as assignment,
compound, loop, and conditional instructions. In the assignment rule, if the expression e
is safe (it does not throw any exception) then the precondition is obtained by replacing x
by e in P . Otherwise the precondition is the exceptional postcondition. In the compound
rule, first the instruction s1 is executed. If s1 triggers an exception, s2 is not executed, and
Re holds. If s1 terminates normally, s2 is executed, and the postcondition of the compound
is the postcondition of s2.

In the conditional rule, the instruction s1 is executed if e evaluates to true, and the
result of the conditional is the postcondition of s1. If e evaluates to false, s2 is executed,
and the result of the conditional is the postcondition of s2. In the check axiom, if the
condition evaluates to true, then the instruction terminates normally and P ∧ e holds.
If e is false, an exception is triggered and P ∧ ¬e holds. Note that for conditionals,
check instructions, and loops, the expression e is syntactically restricted not to trigger an
exception, which simplifies the rules significantly.

In the loop rule, if the until expression e does not hold, the body of the loop (s1) is
executed. If s1 finishes in normal execution then the invariant I holds, and if s1 throws an
exception, Re holds. In the read attribute axiom, if y is not Void the value of the attribute
a defined in the class T of the object y is assigned to x . Otherwise, an exception is triggered
and Qe holds. Similar to read attribute, in the write attribute axiom, if y is not Void ,
the attribute a defined in the class T of the object y is updated with the expression e.
Otherwise, an exception is triggered and Qe holds.

Routine Invocation

Routine invocations are verified based on properties of the virtual routine being called. A
routine specification for T:m reflects the common properties of all implementations that
might be executed on invocation of T :m . In the routine invocation rule, if the target
y is not Void , the current object is replaced by y and the formal parameter p by the
expression e in the precondition P . Then, in the postcondition Qn , Result is replaced by
x to assign the result of the invocation. If y is Void the invocation triggers and exception,
and Qe holds.

Routine Invocation Rule:

A `
{

P
}

T:m
{

Qn , Qe

}
A `

{
(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

}
x := y .T:m(e)

{
Qn [x/Result] , Qe

}
The following rule expresses the fact that local variables different from the left-hand

side variable are not modified by an invocation. This rule allows one to substitute logical
variables Z in preconditions and postconditions by local variables w (w different from x).

30 A Sound and Complete Logic for Object-Oriented Programs

Assignment Axiom:

`
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
Compound Rule:

A `
{

P
}

s1

{
Qn , Re

}
A `

{
Qn

}
s2

{
Rn , Re

}
A `

{
P
}

s1; s2

{
Rn , Re

}
Conditional Rule:

A `
{

P ∧ e
}

s1

{
Qn , Qe

}
A `

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
A `

{
P
}

if e then s1 else s2 end
{

Qn , Qe

}
Check Axiom:

A `
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

Loop Rule:
A `

{
¬e ∧ I

}
s1

{
I , Re

}
A `

{
I
}

until e loop s1 end
{

(I ∧ e) , Re

}
Read Attribute Axiom:

A `
{

(y 6= Void ∧ P [$(instvar(y ,T@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .T@a

{
P , Qe

}
Write Attribute Axiom:

A `
{

(y 6= Void ∧ P [$ 〈instvar(y ,T@a) := e 〉/$]) ∨
(y = Void ∧ Qe)

}
y .T@a := e

{
P , Qe

}

Fig. 3.3: Axiomatic Semantics for Basic Instructions

Invoc-var-rule:

A `
{

P
}

x := y .T:m(e)
{

Qn , Qe

}
A `

{
P [w/Z]

}
x := y .T:m(e)

{
Qn [w/Z] , Qe [w/Z]

}
To prove a triple for a virtual routine T :m , one has to derive the property for all

possible implementations, that is, impl(m,T) and S :m for all subclasses S of T . The
corresponding rule is the following:

3.1 The Core Language and its Semantics 31

Class Rule:

A `
{
τ(Current) = T ∧ P

}
impl(T ,m)

{
Qn , Qe

}
A `

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
A `

{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
In the subtype rule, if S is a subtype of T , an invocation of T:m on an object of type

S is equivalent to an invocation of S :m. The function � denotes the subtype relation,
and ≺ denotes the irreflexive subtype relation where S ≺ T ⇔def S � T ∧ S 6= T .

Subtype Rule:

S � T

A `
{

P
}

S:m
{

Qn , Qe

}
A `

{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}

Routine Implementation

The following rule is used to derive properties of routine implementations from their
bodies. To handle recursion, the assumption {P} T @m {Qn , Qe} is added to the set of
routine annotations A.

Routine Implementation Rule:

A, {P} T @m {Qn , Qe} `
{

P
}

body(T @m)
{

Qn , Qe

}
A `

{
P
}

T @m
{

Qn , Qe

}
Local

In Mate, local variables have default values. To initialize local variables we use the function
init . The following rule is used to initializes default values:

Local Rule:

A `
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
A `

{
P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
where P , Qn , and Qe are routine specifications.

32 A Sound and Complete Logic for Object-Oriented Programs

Creation

The creation instruction creates an object of type T and then invokes the rou-
tine make. In the following rule, the object creation is expressed by the replacement
new($,T)/Current , $〈T 〉/$. The replacement e/p is added due to the routine invocation.
Finally, in the postcondition, the Current object is replaced by x . The rule is the follow-
ing:

Creation Rule:

A `
{

P
}

T : make
{

Qn , Qe

}
A `

{
P
[

new($,T)/Current ,
$〈T 〉/$, e/p

] }
x := create {T}.make(e)

{
Qn [x/Current] , Qe

}
Language-Independent Rules

The rules we have presented in the above sections depend from the specific instructions
and features of the programming language. Figure 3.4 presents rules that can be applied to
any programming language. The false axiom allows us to prove anything assuming false.
The assumpt-axiom allows proving a triple A assuming the triple holds. The assumpt-
intro-axiom and the assumpt-elim-axiom allow introducing and eliminating a triple A0 in
the hypothesis.

The strength rule allows proving a Hoare triple with a stronger precondition if the
precondition P ′ implies the precondition P , and the Hoare triple can be proved using the
precondition P . The weak rule is similar but it weakens the postcondition. This rule can
be used to weaken both the normal postcondition Qn , and the exceptional postcondition
Qe . The conjunction and disjunction rule, given the two proofs for the same instruction
but using possible different pre- and postconditions, it concludes the conjunction and dis-
junction of the pre- and postcondition respectively. The invariant rule conjuncts W in
the precondition and postcondition assuming that W does not contain neither program
variables or $. The substitution rule substitutes Z by t in the precondition and postcon-
dition. Finally, the all-rule and ex-rule introduces universal and existential quantifiers
respectively.

3.1.5 Example

In this section, we illustrate the application of the programming logic for the Mate lan-
guage. The function sum is defined in the class MATH, and it implements a function that
returns the sum from 1 to n where n > 1. Its postcondition is Result = (n ∗ (n + 1))/2.
To simplify the proof, we assume that the class MATH does not have descendants. The
implementation is as follows:

3.1 The Core Language and its Semantics 33

Assumpt-axiom False axiom

A ` A `
{

false
}

s1

{
false , false

}
Assumpt-intro-axiom Assumpt-elim-axiom

A ` A
A0,A ` A

A ` A0

A0,A ` A
A ` A

Strength Weak

P ′ ⇒ P
A `

{
P
}

s1

{
Qn , Qe

}
A `

{
P ′
}

s1

{
Qn , Qe

}
A `

{
P
}

s1

{
Qn , Qe

}
Qn ⇒ Q ′n
Qe ⇒ Q ′e

A `
{

P
}

s1

{
Q ′n , Q ′e

}

Conjunction Disjunction
A `

{
P ′
}

s1

{
Q ′n , Q ′e

}
A `

{
P ′′

}
s1

{
Q ′′n , Q ′′e

}
A `

{
P ′ ∧ P ′′

}
s1

{
Q ′n ∧Q ′′n , Q ′e ∧Q ′′e

}
A `

{
P ′
}

s1

{
Q ′n , Q ′e

}
A `

{
P ′′

}
s1

{
Q ′′n , Q ′′e

}
A `

{
P ′ ∨ P ′′

}
s1

{
Q ′n ∨Q ′′n , Q ′e ∨Q ′′e

}

Invariant Substitution
A `

{
P
}

s1

{
Qn , Qe

}
A `

{
P ∧W

}
s1

{
Qn ∧W , Qe ∧W

} A `
{

P
}

s1

{
Qn , Qe

}
A `

{
P [t/Z]

}
s1

{
Qn [t/Z] , Qe [t/Z]

}
where W is a Σ− formula, i .e. does not contain where Z is an arbitrary logical variable and
program variables or $. t a Σ− term.

all-rule ex-rule
A `

{
P [Y /Z]

}
s1

{
Qn , Qe

}
A `

{
P [Y /Z]

}
s1

{
∀Z : Qn , ∀Z : Qe

} A `
{

P
}

s1

{
Qn [Y /Z] , Qe [Y /Z]

}
A `

{
∃Z : P

}
s1

{
Qn [Y /Z] , Qe [Y /Z]

}
where Z , Y are arbitrary , but distinct logical where Z , Y are arbitrary , but distinct logical
variables. variables.

Fig. 3.4: Language-Independent Rules

34 A Sound and Complete Logic for Object-Oriented Programs

sum (n: INTEGER): INTEGER
require

positive : n>1
local

i : INTEGER
do

from
Result := 1
i := 2

invariant
Result = ((i−1)∗i)/2) and n+1 ≥ i and i > 1

until
i = n+1

loop
Result := Result+i
i := i+1

end
ensure

Result = (n∗(n+1))/2
end

Applying the logic, we have proven that the routine sum satisfies the following speci-
fications: {

n > 1
}

MATH:sum
{

Result = (n ∗ (n + 1))/2 , false
}

To be able to prove the specifications for the virtual routine MATH:sum, we first prove
the same specification for the routine implementation MATH@sum. Figure 3.5 presents a
sketch of the proof for:{

n > 1
}

body(MATH@sum)
{

Result = (n ∗ (n + 1))/2 , false
}

In the proof of Figure 3.5, we have applied the assignment, loop, and compound rule,
and the weak and strength rules. The most interesting part of the proof is the application
of the weak and the strength rule. In lines 13-15, one shows that the invariant of the loop
holds at the entry of the loop using the weak rule. In lines 21-23, we show that the loop
invariant implies the weakest precondition of the loop body, applying the strength rule.

Applying the routine implementation rule (presented on page 31), one can prove that
the routine implementation MATH@sum satisfies its specification:

{
τ(Current) = MATH ∧ n > 1

}
body(MATH@sum)

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) = MATH ∧ n > 1

}
MATH@sum

{
Result = (n ∗ (n + 1))/2 , false

}
The class MATH does not have any descendent. Thus, we can show:

3.1 The Core Language and its Semantics 35

sum (n: INTEGER): INTEGER
require

positive : n>1
local

i : INTEGER
do
{ n > 1 }
from
{ n > 1 }
Result := 1
{ n > 1 and Result = 1 }
i := 2
{ n > 1 and Result = 1 and i = 2}
⇒ [Weak Rule]
{ Result = ((i−1)∗i)/2) and n+1 ≥ i and i > 1 }

invariant
Result = ((i−1)∗i)/2) and n+1 ≥ i and i > 1

until
i = n+1

loop
{ i 6= n+1 and Result = ((i−1)∗i)/2) and n+1 ≥ i and i > 1 }
⇒ [Strength Rule]
{ i 6= n+1 and Result + i = (i∗(i+1))/2) and n+1 ≥ i and i > 1 }
Result := Result+i
{ i 6= n+1 and Result = (i∗(i+1))/2) and n+1 ≥ i and i > 1 }

i := i+1
{ Result = ((i−1)∗i)/2) and n+1 ≥ i and i > 1 }

end
ensure

Result = (n∗(n+1))/2
end

Fig. 3.5: Proof of the sum Function

36 A Sound and Complete Logic for Object-Oriented Programs

τ(Current) ≺ MATH ∧ n > 1 ⇒ false

Then, applying the strength rule we show:

{
false

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) ≺ MATH ∧ n > 1

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}
Since sum is implemented in the class MATH, we have impl(MATH, sum)=MATH@sum.

Therefore, we can conclude the proof by applying the class rule (presented on page 29)
using the above two proofs:

{
τ(Current) ≺ MATH ∧ n > 1

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) = MATH ∧ n > 1

}
impl(MATH, sum)

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) � MATH ∧ n > 1

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}
3.2 A Logic for Eiffel

In Section 3.1, we have presented an operational and axiomatic semantics for an object-
oriented language which handles basic instructions, single inheritance, and dynamic bind-
ing. In the Mate language, we assume assignments might trigger exceptions, but there
is no instruction to catch them. In this section, we extend the language to a subset of
Eiffel [72]. In particular, the subset of Eiffel supports exception handling using the rescue
clause.

3.2.1 The Eiffel Language

The subset of Eiffel includes the most important features, although agents are omitted
(a methodology to reason about agents is presented in Chapter 4) The most interesting
supported concepts are: (1) multiple inheritance, (2) exception handling, and (3) once
routines. Figure 3.6 presents the syntax of the subset of Eiffel.

In Eiffel, contracts are checked at runtime. One of the design goals of our logic is
that programs behave in the same way when contracts are checked at runtime and when
they are not. For this reason, we demand that expressions occurring in contracts to be
side-effect-free, and to not trigger exceptions.

3.2.2 Operational Semantics

The memory model used in the semantics of the subset of Eiffel is the same memory
model presented in Section 3.1.2. The program state is extended as follows:

3.2 A Logic for Eiffel 37

Program ::= ClassDecl∗
ClassDecl ::= class ClassId [Inheritance] ClassBody end
Type ::= BoolT | IntT | ClassId | VoidT
Inheritance ::= inherit Parent+
Parent ::= Type [Undefine] [Redefine] [Rename]
Undefine ::= undefine list of RoutineId
Redefine ::= redefine list of RoutineId
Rename ::= rename list of (RoutineId as RoutineId)
ClassBody ::= MemDecl∗
MemDecl ::= AttributeId Type | Routine
Routine ::= RoutineId (Type) : Type

[local list of (VarId : Type)]
(do | once)

Instr
[rescue Instr]

end
Instr ,Exp,
ExpE ,BoolExp ::= //as defined in Figure 3.1

Fig. 3.6: Syntax of the Subset of Eiffel.

State ≡ Local × Heap
Local ≡ VarId ∪ {Current , p,Result ,Retry} → Value ∪ {undef }
Heap ≡ {$} → ObjectStore

The Retry variable is a special variable used to store the retry value but this variable
is not part of VarId. For this reason, this variable is included explicitly. The transitions
of the operational semantics have the same for as defined in Section 3.1.3:

〈σ, S 〉 → σ′, χ

Exception Handling

Exceptions [73] raise some of the most interesting problems addressed in this chapter.
A routine execution either succeeds - meaning that it terminates normally - or fails,
triggering an exception. An exception is an abnormal event, which occurred during the
execution. To treat exceptions, each routine may contain a rescue clause. If the routine
body is executed and terminates normally, the rescue clause is ignored. However, if the
routine body triggers an exception, control is transferred to the rescue clause. Each
routine implicitly defines a boolean local variable Retry (in a similar way as for Result). If
at the end of the clause the variable Retry has value true, the routine body (do clause) is
executed again. Otherwise, the routine fails, and propagates the exception. If the rescue

clause triggers another exception, the exception is propagated, and it can be handled

38 A Sound and Complete Logic for Object-Oriented Programs

through the rescue clause of the caller. The Retry variable can be assigned to in either
a do clause or a rescue clause.

This specification slightly departs from the current Eiffel standard, where retry is an
instruction, not a variable. The change was suggested in our previous work [93, 96] and
will be adopted by a future revision of the language standard.

The operational semantics for the exception handling mechanism is defined by rules
(3.7)-(3.10) below. If the execution of s1 terminates normally, then the rescue clause is not
executed, and the returned state is the one produced by s1 (rule 3.7). If s1 terminates with
an exception, and s2 triggers another exception, the rescue terminates in an exception
returning the state produced by s2 (rule 3.8). If s1 triggers an exception and s2 terminates
normally, but the Retry variable is false, then the rescue terminates with an exception
returning the state produced by s2 (rule 3.9). In the analogous situation with Retry being
true, the rescue is executed again and the result is the one produced by the new execution
of the rescue (rule 3.10). Note that the rescue is a loop that iterates over s2; s1 until s1

terminates normally or Retry is false.

〈σ, s1〉 → σ′, normal

〈σ, s1 rescue s2〉 → σ′, normal
(3.7)

〈σ, s1〉 → σ′, exc 〈σ′, s2〉 → σ′′, exc

〈σ, s1 rescue s2〉 → σ′′, exc
(3.8)

〈σ, s1〉 → σ′, exc 〈σ′, s2〉 → σ′′, normal ¬σ′′(Retry)

〈σ, s1 rescue s2〉 → σ′′, exc
(3.9)

〈σ, s1〉 → σ′, exc 〈σ′, s2〉 → σ′′, normal σ′′(Retry)
〈σ′′, s1 rescue s2〉 → σ′′′, χ

〈σ, s1 rescue s2〉 → σ′′′, χ
(3.10)

Once Routines

The mechanism used in Eiffel to access a shared object is once routines. This section
focuses on once functions; once procedures are similar. The semantics of once functions
is as follows. When a once function is invoked for the first time in a program execution,
its body is executed and the outcome is cached. This outcome may be a result in case
the body terminates normally or an exception in case the body triggers an exception.
For subsequent invocations, the body is not executed; the invocations produce the same
outcome (result or exception) like the first invocation.

Note that whether an invocation is the first or a subsequent one is determined solely
by the routine implementation name. Thus, if a once routine m is implemented in class C ,
descendants of C that do not redefine m access to the same shared objects. For example,

3.2 A Logic for Eiffel 39

let the dynamic type of x be C , and the dynamic type of y be a subtype of C . If the first
invocation x .m returns 1, subsequent invocations y .m will also return 1.

To be able to develop a semantics for once functions, we also need to consider recursive
invocations. As described in the Eiffel ECMA standard [75], a recursive call may start
before the first invocation finished. In that case, the recursive call will return the result
that has been obtained so far. The mechanism is not so simple. For example the behavior
of the following recursive factorial function might be surprising:

factorial (i : INTEGER): INTEGER
−− A once factorial function.

require
i>=0

once
if i<=1 then

Result := 1
else

Result := i
Result := Result ∗ factorial (i−1)

end
end

This example is a typical factorial function but it is also a once function, and the
assignment Result := i ∗ factorial(i − 1) is split into two separate assignments. If one
invokes factorial(3) we observe that the returned result is 9. The reason is that the first
invocation, factorial(3), assigns 3 to Result . This result is stored for a later invocation since
the function is a once function. Then, the recursive call is invoked with argument 2. But
this invocation is not the first invocation, so the second invocation ignores the argument
and returns the stored value (in this case 3). Thus, the result of invoking factorial(3) is
3 ∗ 3. If we did not split the assignment, the result would be 0 because factorial(2) would
return the result obtained so far which is the default value of Result . This corresponds to
a semantics where recursive calls are replaced by Result .

To be able to develop a sound semantics for once functions, we need to consider all
the possible cases described above. To fulfil this goal, we present a pseudo-code of once
functions. Given a once function m with body b, the pseudo-code is the following:

40 A Sound and Complete Logic for Object-Oriented Programs

if not m done then
m done := true
execute the body b
if body triggers an exception then

m exc := true
end

end
if m exc then

throw new exception
else

Result := m result
end

We assume the variables m done, m exc, and m result are global variables, which exist
one per routine implementation and can be shared by all invocations of that function. Fur-
thermore, we assume the body of the function sets the result variable m result whenever
Result is assigned to. Now, we can see more clearly why the invocation of factorial (3)
returns 9. In the first invocation, first the global variable m done is set to false, and then
the function’s body is executed. The second invocation returns the stored value 3 because
m done is false.

To define the semantics for once functions, we introduce global variables to store the
information whether the function was invoked before or not, to store whether it triggers
an exception or not, and to store its result. These variables are T @m done, T @m result ,
and T @m exc. There is only one variable T @m done per every routine implementation
T @m. Descendants of the class T that do not redefine the routine m inherit the routine
implementation T @m, therefore they share the same global variable T @m done.

Given a once function m implemented in the class T , T @m done returns true if the
once function was executed before, otherwise it returns false; T @m result returns the
result of the first invocation of m; and T @m exc returns true if the first invocation of
m produced an exception, otherwise it returns false. Since the type of the exception is
not used in the exception mechanism, we use a boolean variable T @m exc, instead of
a variable of type EXCEPTION. We omit the definition of a global initialization phase
T @m done = false, T @m result = default value, and T @m exc = false.

The invocation of a once function is defined in four rules (rules 3.11-3.14, Figure 3.7).
Rule (3.11) describes the normal execution of the first invocation of a once function. Before
its execution, the global variable T @m done is set to true. Then, the function body is
executed. We assume here that the body updates the variable T @m result whenever it
assigns to Result . Rule (3.12) models the first invocation of a once function that terminates
with an exception. The function is executed and terminates in the state σ′. The result of
the once function m is the state σ′ where the variable T @m exc is set to true to express
that an exception was triggered. In rule 3.13, the first invocation of the once function

3.2 A Logic for Eiffel 41

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = false

〈σ[T @m done := true,Current := y , p := σ(e)], body(T @m)〉 → σ′, normal

〈σ, x := y .S:m(e)〉 → σ′[x := σ′(Result)], normal
(3.11)

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = false

〈σ[T @m done := true,Current := y , p := σ(e)], body(T @m)〉 → σ′, exc

〈σ, x := y .S:m(e)〉 → σ′[T @m exc := true], exc
(3.12)

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = true
σ(T @m exc) = false

〈σ, x := y .S:m(e)〉 → σ[x := σ(T @m result)], normal
(3.13)

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = true
σ(T @m exc) = true

〈σ, x := y .S:m(e)〉 → σ, exc
(3.14)

Fig. 3.7: Operational Semantics for Once Routines

terminates normally, the remaining invocations restore the stored value using the variable
T @m result . In rule 3.14, the first invocation of m terminates with an exception, so the
subsequent invocations of m trigger an exception, too.

The previous rules are still valid for non-once routines. Since the assignment to Result
in a once routine updates the variable T @m result , we need to extend its semantics. Let
T @m be the routine implementation where the assignment takes place, the semantics is
defined as follows:

σ(e) = exc

〈σ,Result := e〉 → σ, exc
(3.15)

σ(e) 6= exc T @m is a once routine

〈σ,Result := e〉 → σ[Result := σ(e),T @m result := σ(e)], normal
(3.16)

42 A Sound and Complete Logic for Object-Oriented Programs

Multiple Inheritance

The complications of multiple inheritance can be elegantly captured by a revised defi-
nition of the function impl . While impl(T ,m) traverses T ’s parent classes, it can take
redefinition, undefinition, and renaming into account. In particular, impl is undefined for
deferred routines (abstract methods) or when an inherited routine has been undefined.
Figure 3.8 shows an example of inheritance using the features rename and redefine.
Table 3.1 presents an example of the application of the function impl using the class
declarations of Figure 3.8.

class A
feature m do ... end

end

class B
feature m do ... end

end

class C
inherit A

B rename m as n end
end

class D
inherit C redefine m end

feature m do ... end
end

class E
inherit C rename m as m2 end

end

Fig. 3.8: Example of Inheritance using Rename and Redefine.

Tab. 3.1: Example of the Application of the Function impl .

impl(A,m) = A@m
impl(B,m) = B@m
impl(C,m) = A@m
impl(C,n) = B@m

impl(D,m) = D@m
impl(D,n) = B@m
impl(E,m) = undefined
impl(E,m2) = A@m
impl(E,n) = B@m

Definition of the function impl. Following, we present the definition of the function
imp. In particular, impl is undefined for deferred routines (abstract methods) or when an
inherited routine has been undefined.

3.2 A Logic for Eiffel 43

Given a class declaration list env (the list of classes that defines the program), a type
t , and a routine r , impl returns the routine implementation where the routine r is defined.
To do it, it takes the class t and looks for the routine declaration in t . If r is defined in t
then it returns the routine implementation t@r ; otherwise it searches in all the ancestors
of t .

The impl function is defined as follows:

impl : ClassDeclaration list × Type × RoutineId → RoutineImp
impl env t rId = if (defined t rId) then t@rId

else (implementation env (list inherits env t rId))

The impl function is generalized using the function implementation. This function
takes a list of types and routines. The routine is used to handle renaming. Its definition
is as follows:

implementation : ClassDeclaration list × ((Type × RoutineId) list) → RoutineImp
implementation env (t , rId)#xs = if (deep defined env t rId) then

(impl env t rId)
else (implementation env xs)

The function deep defined yields true if only if given a class declaration list env , a
type t , and a routine r , r is defined in t or in any of its ancestors classes. This function
uses the auxiliary function deep defined list which takes a list of types and routines to
handle redefinition. The definitions are as follows:

deep defined : ClassDeclaration list × ((Type × RoutineId) list) → Bool
deep defined env cDecl rId = undefined
deep defined env cDecl rId = if (defined cDecl rId) then true

else (deep defined list env (list inherits env cDecl rId))

deep defined list : ClassDeclaration list × ((Type × RoutineId) list) → Bool
deep defined list env [] = false
deep defined list env (t , rId)#xs = (deep defined env t rId) ∨

(deep defined listenv xs)

Given a type t , and a routine r , the function list inherits yields a list of the par-
ents classes and routines where the routine r might be defined. This function considers
renaming and undefining of routines. Its definition is the following:

44 A Sound and Complete Logic for Object-Oriented Programs

list inherits : ClassDeclaration list × Type × RoutineId → (Type × RoutineId) list
list inherits [] t rId = []
list inherits env t rId = (list inh env (parents t) rId)

Given a list of class declarations env , an inheritance clause inh, and a routine r ,
the function listInh yields a list of types and routines where the routine r might be
defined. If the routine is undefined in the parent class, the function does not search its
implementation. If the routine is renamed, it searches for the new routine name. This
function is defined as follows:

list inh : ClassDeclaration list → Inheritance → RoutineId →
((ClassDeclaration × RoutineId) list)

list inh env [] rId = []
list inh env ((t1, (undef , redef , rename))#xs) rId =

if (isUndefined undef rId) then
(listInh env xs rId)

else (renamed type env t1 rename rId)#(list inh env xs rId)

where the function is undefined yields true if the routine is undefined in the inheritance
clause, and the function renamed type yields the name of the routine considering renaming
(if the routine r is not renamed, it yields the same routine r).

3.2.3 A Programming Logic for Eiffel

The logic for Eiffel is a Hoare-style logic; it is an extension of the logic for Mate (presented
in Section 3.1.4). Properties of routines and routine bodies are also expressed by Hoare
triples of the form

{
P
}

S
{

Qn , Qe

}
, where P ,Qn ,Qe are formulas in first order

logic, and S is a routine or an instruction. The third component of the triple consists of
a normal postcondition (Qn), and an exceptional postcondition (Qe).

Since the subset of Eiffel includes exception handling using rescue clauses and retry

variable, we have to extend the signatures of contracts. Preconditions and postconditions
of Hoare triples are formulas over Σ ∪ {Current , p,Result ,Retry} ∪ Var(r) where r
is a routine, and Var(r) denotes the set of local variables of r . In the case of Eiffel, Σ
also contains the special variables for once routines. Note that we assume Var(r) does
not include the Result variable and the Retry variable, it only includes the local variables
declared by the programmer. Routine preconditions are formulas over Σ ∪ {Current , p, $},
routine postconditions for normal termination are formulas over Σ ∪ {Result , $}, and
routine exceptional postconditions are formulas over Σ ∪ $

3.2 A Logic for Eiffel 45

Exception Handling

The operational semantics presented in Section 3.2.2 shows that a rescue clause is a loop.
The loop body s2; s1 iterates until no exception is thrown in s1, or Retry is false. To be
able to reason about this loop, we introduce an invariant Ir . We call this invariant rescue
invariant. The rule is defined as follows:

P ⇒ Ir

A `
{

Ir

}
s1

{
Qn , Qe

}
A `

{
Qe

}
s2

{
(Retry ⇒ Ir) ∧ (¬Retry ⇒ Re) , Re

}
A `

{
P
}

s1 rescue s2

{
Qn , Re

}
This rule is applied to any routine with a rescue clause. If the do clause, s1, terminates

normally then the rescue clause is not executed and the postcondition is Qn . If s1 triggers
an exception, the rescue clause executes. If the rescue clause, s2, terminates normally,
and the Retry variable is true then control flow transfers back to the beginning of the
routine and Ir holds. If s2 terminates normally and Retry is false, the routine triggers
an exception and Re holds. If both s1 and s2 trigger an exception, the last one takes
precedence, and Re holds.

Once Routines

To define the logic for once routines, we use the global variables T @m done, T @m result ,
and T @m exc, which store if the once routine was executed before or not, the result, and
the exception. Let P be the following precondition, where T M RES is a logical variable:

P ≡

 (¬T@m done ∧ P ′)∨(
T@m done ∧ P ′′ ∧ T@m result = T M RES ∧ ¬T@m exc

)
∨

(T@m done ∧ P ′′′ ∧ T@m exc)


and let Q ′n and Q ′e be the following postconditions:

Q ′n ≡
{

T@m done ∧ ¬T@m exc ∧(
Qn ∨ (P ′′ ∧ Result = T M RES ∧ T@m result = T M RES)

) }
Q ′e ≡

{
T@m done ∧ T@m exc ∧ (Qe ∨ P ′′′)

}
The rule for once functions is defined as follows:

A, {P} T @m {Q ′n , Q ′e} `{
P ′[false/T @m done] ∧ T @m done

}
body(T @m)

{
Qn , Qe

}
A `

{
P
}

T @m
{

Q ′n , Q ′e
}

46 A Sound and Complete Logic for Object-Oriented Programs

In the precondition of the body of T @m (the hypothesis of the rule), T @m done
is true to model recursive call as illustrated in the example presented in Section 3.2.2.
The replacement P ′[false/T @m done] is done because P ′ can refer to T @m done. In
the postcondition of the rule, under normal termination, either the function T @m is
executed and Qn holds, or the function is not executed since it was already executed, and
P ′′ holds. In both cases, T @m done is true and T @m exc false. In the case an exception
is triggered, Qe ∨ P ′′′ holds.

To conclude the presentation of once routine, the following rule is defined to assign to
Result in a once routine. Let T @m be the routine implementation where the assignment
takes place. The rule is:

T @m is a once routine

`
{

(safe(e) ∧ P [e/Result , e/T @m result]) ∨
(¬safe(e) ∧ Qe)

}
Result := e

{
P , Qe

}
3.2.4 Example

In this section, we present an application of the logic for Eiffel. The function safe division,
defined in the class MATH, implements an integer division which always terminates nor-
mally. If y (the second operand) is zero, this function returns x (the first operand);
otherwise it returns the integer division x//y . This function is implemented in Eiffel us-
ing a rescue clause. If the division triggers an exception, this exception is handled by
the rescue clause setting z to 1 and retrying. The local variable z is needed due to, in
Eiffel, arguments cannot be assigned to. For simplicity, we assume the class MATH has
no descendants. The function is implemented as follows:

safe division (x,y: INTEGER): INTEGER
local

z : INTEGER
do

Result := x // (y+z)
ensure

zero : y = 0 implies Result = x
not zero : y /= 0 implies Result = x // y

rescue
z := 1
Retry := true

end

Applying the logic for Eiffel, we have proven that the routine safe division satisfies
the following specification:

3.2 A Logic for Eiffel 47

{
true

}
MATH:safe division

{
Q , false

}
where

Q ≡ (y = 0⇒ Result = x) ∧ (y/ = 0⇒ Result = x//y)

Figure 3.9 presents the proof for the body of the routine safe division. To verify this,
we first apply the rescue rule (presented on Section 3.2.3). The retry invariant is:

(y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0))

Finally, we verify the body of the do block and the body of the rescue clause using
the assignment, and the compound rules. Thus, we prove:

safe division (x,y: INTEGER): INTEGER
local

z : INTEGER
do
{ (y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0)) }
Result := x // (y+z){(

(y = 0⇒ Result = x) ∧
(y 6= 0⇒ Result = x/y)

)
, (y = 0 ∧ z = 0)

}
ensure

zero : y = 0 implies Result = x
not zero : y /= 0 implies Result = x // y

rescue
{ y = 0 ∧ z = 0 }
z := 1
{ (y = 0 ∧ z = 1), false }
Retry := true{(

Retry ∧ (y = 0 ∧ z = 1)
)
, false

}
end

Fig. 3.9: Example of an Eiffel Source Proof.

{
true

}
body(MATH@safe division)

{
Q , false

}
Similar to the example of the function sum (presented on Section 3.1.5), we can show

that the routine implementation MATH@safe division satisfies its specification applying
the routine implementation rule:

48 A Sound and Complete Logic for Object-Oriented Programs

{
true

}
body(MATH@safe division)

{
Q , false

}{
true

}
MATH@safe division

{
Q , false

}
Since safe division is implemented in the class MATH, we have:

impl(MATH, safe division)=MATH@safe division

Finally, we can apply the class rule, and we prove:

{
τ(Current) ≺ MATH ∧ true

}
MATH:safe division

{
Q , false

}{
τ(Current) = MATH ∧ true

}
impl(MATH, safe division)

{
Q , false

}{
τ(Current) � MATH ∧ true

}
MATH:safe division

{
Q , false

}
3.3 A Logic for Java-like Programs

In the previous section, we have presented a logic for Eiffel. The subset of Eiffel includes
exception handling, multiple inheritance, and once routines. In this section, we extend
the Mate language to a subset of Java.

3.3.1 The Java Language

Figure 3.10 presents the syntax of the subset of Java. This subset supports while and
break instructions, and try-catch, try-finally, and throw instructions. To avoid return

instructions, we assume that the return value of every method is assigned to a special local
variable named Result . These are the only discordance with respect to Java.

3.3.2 Operational Semantics

To define the operational semantics for the subset of Java, we use the same memory
model described in Section 3.1.2. Furthermore, the program state is the same as the Mate
program state. To model break instructions, we extend definition of the transitions of the
operational semantics. These transitions have the form:

〈σ, S 〉 → σ′, χ

where σ and σ′ are states, S is an instruction, and χ is the current status of the program.
The value of χ can be either the constant normal , or exc, or break . The transition
〈σ, S 〉 → σ′, normal expresses that executing the instruction S in the state σ terminates
normally in the state σ′. The transition 〈σ, S 〉 → σ′, exc expresses that executing the
instruction S in the state σ terminates with an exception in the state σ′. The transition

3.3 A Logic for Java-like Programs 49

Program ::= ClassDecl∗
ClassDecl ::= class ClassId [: Type] ClassBody
Type ::= BoolT | IntT | ClassId | VoidT
ClassBody ::= MemDecl∗
MemDecl ::= Type AttributeId

| Routine
Routine ::= Type RoutineId (Type)

{
Instr
}

Instr ::= VarId := ExpE
| Instr ; Instr
| if BoolExp then Instr else Instr end
| VarId := new Type()
| VarId := VarId .Type@AttributeId
| VarId .Type@AttributeId := Exp
| VarId := VarId .Type : RoutineId (Exp)
| while (BoolExp) Instr
| break
| try Instr catch (Type VarId) Instr
| try Instr finally Instr
| throw Exp
| assert Exp

Instr ,Exp,
ExpE ,BoolExp ::= //as defined in Figure 3.1

Fig. 3.10: Syntax of the Subset of Java.

〈σ, S 〉 → σ′, break expresses that executing the instruction S in the state σ terminates
with the execution of a break instruction in the state σ′.

While loops and break instructions

In this section, we define the operational semantics for while and break instructions.
Since the transition 〈σ, S 〉 → σ′, χ introduces a new value for χ, we need to extend the
operational semantics for Mate to Java. Here, we extend this transition for compound,
the remaining instructions are similar. Figure 3.11 shows the operational semantics for
compound, break, and while instructions.

Compound. Compound is defined by three rules: in rule (3.11.1) the instruction s1 is
executed and an exception is triggered. The instruction s2 is not executed, and the state of
the compound is the state produced by s1. In rule (3.11.2), the instruction s1 is executed
and a break instruction is executed. The instruction s2 is not executed, and the state of
the compound is the state produced by s1. In rule (3.11.3), s1 is executed and terminates
normally. The state of the compound is the state produced by s2.

50 A Sound and Complete Logic for Object-Oriented Programs

Break Instruction. The break instruction changes the program status χ to break with-
out modifying the state σ, rule (3.11.4).

While Instruction. In rule (3.11.5), since the condition of the while evaluates to false,
then the body of the loop is not executed producing the state σ. If the condition of the
while is true, in rule (3.11.6), the instruction s1 is executed, but it triggers an exception.
Thus, the state of the loop is σ′, and the status is exc. In rule (3.11.7), the instruction
s1 executes a break instruction, then the while terminates in the state σ′; the program
status is normal . Finally, in rule (3.11.8), s1 terminates normally and the condition is
evaluated to false, the returned state is the one produced by the new execution of the
loop.

Compound
〈σ, s1〉 → σ′, exc
〈σ, s1; s2〉 → σ′, exc

(3.11.1)
〈σ, s1〉 → σ′, break
〈σ, s1; s2〉 → σ′, break

(3.11.2)

〈σ, s1〉 → σ′,normal 〈σ′, s2〉 → σ′′, χ

〈σ, s1; s2〉 → σ′′, χ
(3.11.3)

Break Instruction

〈σ, break〉 → σ, break
(3.11.4)

While Instruction
σ(e) = false

〈σ, while (e) s1〉 → σ,normal
(3.11.5)

σ(e) = true 〈σ, s1〉 → σ′, exc
〈σ, while (e) s1〉 → σ′, exc

(3.11.6)

σ(e) = true 〈σ, s1〉 → σ′, break
〈σ, while (e) s1〉 → σ′,normal

(3.11.7)

σ(e) = true 〈σ, s1〉 → σ′,normal
〈σ′, while (e) s1〉 → σ′′, χ

〈σ, while (e) s1〉 → σ′′, χ
(3.11.8)

Fig. 3.11: Operational Semantics for Compound, while, and break Instructions in Java

Exception Handling

The Java exception handling mechanism is different to the Eiffel mechanism. This dif-
ference does not only lie in try-catch instructions but also it lies in the fact that Java
supports exception types. The semantics of try s1 catch (T e) s2 expresses that if the
instruction s1 triggers an exception, then exception is caught if the type of the exception
is a subtype of T , otherwise the exception is propagated.

3.3 A Logic for Java-like Programs 51

Throw Instruction

〈σ, throw e〉 → σ[excV := e], exc
(3.12.1)

Try-Catch Instruction

〈σ, s1〉 → σ′, normal

〈σ, try s1 catch (T e) s2〉 → σ′, normal
(3.12.2)

〈σ, s1〉 → σ′, exc τ(σ′(excV)) 6� T

〈σ, try s1 catch (T e) s2〉 → σ′, exc
(3.12.3)

〈σ, s1〉 → σ′, exc τ(σ′(excV)) � T 〈σ′, s2〉 → σ′′, χ

〈σ, try s1 catch (T e) s2〉 → σ′′, χ
(3.12.4)

Fig. 3.12: Operational Semantics for throw and try-catch Instructions

To define the semantics of try-catch and throw, we use a variable excV that stores
the current exception. Figure 3.12 presents the operational semantics for try-catch and
throw instructions.

In the semantics of the throw instruction, rule (3.12.1), the exception value excV is
assigned with the expression e, and the instruction terminates in the status exc. The
semantics for try-catch is defined by three rules. In rule (3.12.2) the instruction s1

terminates normally, so the instruction s2 is not executed, and the state of the try-catch

is the state produced by s1. In rule (3.12.3), the instruction s1 is executed and triggers an
exception. Since the dynamic type of the exception is not a subtype of T (expresses as
τ(excV) 6� T), the exception is propagated, and the state of the try-catch is the state
produced by s1. In rule (3.12.4), the instruction s1 triggers an exception and the exception
is caught by the catch block. The state of the try-catch is the state produced by s2.

Semantics for try-finally Instructions. The combination of while, break, try-catch, and
try-finally instructions produces an interesting subset of Java, especially from the point
of view of the semantics of try-finally instructions. The following example illustrates
a special case that we have to treat:

52 A Sound and Complete Logic for Object-Oriented Programs

void foo (int b) {
b = 1;
while (true) {

try {
throw new Exception(); }

finally {
b++;
break;

}
}
b++;

}
In the foo routine, an exception is triggered in the try block but it is never caught.

However, the loop terminates normally due to the execution of the break instruction in
the finally block transfers control to the end of the loop. Thus, the value of b at the
end of the function foo is 3. If an exception occurs in a try block, it will be re-raised
after the execution of the finally block. If both the try and the finally block throw
an exception, the latter takes precedence. The following table summarizes the status of
the program after the execution of the try-finally (exc1 denotes the exception triggered
by the instruction s1, and exc2 the exception triggered by s2):

finally
normal break exc2

normal normal break exc2

try break break break exc2

exc1 exc1 break exc2

The operational semantics for try-finally instructions is defined as follows:

〈σ, s1〉 → σ′, χ 〈σ′, s2〉 → σ′′, normal

〈σ, try s1 finally s2〉 → σ′′, χ
(3.17)

〈σ, s1〉 → σ′, χ 〈σ′, s2〉 → σ′′, break

〈σ, try s1 finally s2〉 → σ′′, break
(3.18)

〈σ, s1〉 → σ′, χ 〈σ′, s2〉 → σ′′, exc

〈σ, try s1 finally s2〉 → σ′′, exc
(3.19)

In these rules, the state is produced by the execution of the instruction s2 starting
with the sate produced by s1; the status of the program changes in each case. In rule 3.17,
if the instruction s2 terminates normally, the status of the try-finally is the status
produced by s1. In rule 3.18, the instruction s2 terminates with a break, and the status
of the try-finally is break . Similarly, in rule 3.19, s2 terminates with an exception and
the status of the try-finally is exc.

3.3 A Logic for Java-like Programs 53

3.3.3 A Programming Logic for Java

The logic for Java is a Hoare-style logic extended from the logic for Mate (presented in
Section 3.1.4). Since instructions can execute break instructions, properties of methods
and properties of instructions are expresses using different Hoare triples.

Properties of methods are expressed by Hoare triples of the form{
P
}

m { Qn , Qe } , where P , Qn , Qe are first-order formulas and m is a virtual
method T :m , or a method implementation T @m. The third component of the triple
consists of a normal postcondition (Qn), and an exceptional postcondition (Qe). We call
such a triple method specification.

Properties of instructions are specified by Hoare triples of the form{
P
}

S
{

Qn ,Qb ,Qe

}
, where P , Qn , Qb , Qe are first-order formulas and S is an

instruction. For instructions, we have a normal postcondition (Qn), a postcondition after
the execution of a break (Qb), and an exceptional postcondition (Qe).

The triple
{

P
}

S
{

Qn ,Qb ,Qe

}
defines the following refined partial correctness

property: if S ’s execution starts in a state satisfying P , then (1) S terminates normally
in a state where Qn holds, or S executes a break instruction and Qb holds, or S throws
an exception and Qe holds, or (2) S aborts due to errors or actions that are beyond the
semantics of the programming language, e.g., memory allocation problems, or (3) S runs
forever.

Rules

Figure 3.13 shows the rules for compositional, while, break, try-catch, and throw in-
structions. In the compositional rule, the instruction s1 is executed first. The instruction
s2 is executed if and only if s1 terminates normally. In the while rule, the execution
of the instruction s1 can produce three results: either (1) s1 terminates normally and I
holds, or (2) s1 executes a break instruction and Qb holds, or (3) s1 throws an exception
and Re holds. The postcondition of the while instruction expresses that either the loop
terminates normally and (I ∧ ¬e) ∨ Qb holds or throws an exception and Re holds. The
break postcondition is false, because after a break within the loop, execution continues
normally after the loop.

The break axiom sets the normal and exception postcondition to false and the break

postcondition to P due to the execution of a break instruction. Similar to break, the
throw axiom modifies the postcondition P by updating the exception component of the
state with the just evaluated reference.

In the try-catch rule, the execution of the instruction s1 can produce three different
results: (1) s1 terminates normally and Qn holds or terminates with a break and Qb holds.
In these cases, the instruction s2 is not executed and the postcondition of the try-catch
is the postcondition of s1; (2) s1 throws an exception and the exception is not caught.
The instruction s2 is not executed and the try-catch finishes in an exception mode. The

54 A Sound and Complete Logic for Object-Oriented Programs

Compositional Rule: While Rule:{
P
}

s1

{
Qn ,Rb ,Re

}
{

Qn

}
s2

{
Rn ,Rb ,Re

}
{

P
}

s1; s2

{
Rn ,Rb ,Re

}
{

e ∧ I
}

s1

{
I ,Qb ,Re

}
{

I
}

while (e) s1

{
((I ∧ ¬e) ∨ Qb), false,Re

}
Break Axiom: Throw Axiom:{

P
}

break
{

false,P , false
} {

P [e/excV]
}

throw e
{

false, false,P
}

try-catch Rule:{
P
}

s1

{
Qn ,Qb ,Q

}
{

Q ′e [e/excV]
}

s2

{
Qn ,Qb ,Re

}
{

P
}

try s1 catch (T e) s2

{
Qn ,Qb ,R

}
where

Q ≡ ((Q ′′e ∧ τ(excV) 6� T) ∨ (Q ′e ∧ τ(excV) � T))

R ≡ (Re ∨ (Q ′′e ∧ τ(excV) 6� T))

try-finally Rule: {
P
}

s1

{
Qn ,Qb ,Qe

}
{

Q
}

s2

{
R,R′b ,R

′
e

}
{

P
}

try s1 finally s2

{
R′n ,R

′
b ,R

′
e

}
where

Q ≡

 (Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

) 
R ≡

(
(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e [eTmp/excV] ∧ XTmp = exc)

)

Fig. 3.13: Rules for Composition, while, break, try-catch, and throw Instructions.

3.3 A Logic for Java-like Programs 55

postcondition is Q ′′e ∧ τ(excV) 6� T , where τ yields the runtime type of an object, excV
is a variable that stores the current exception, and � denotes subtyping; (3) s1 throws an
exception and the exception is caught. In the postcondition of s1, Q ′e ∧ τ(excV) � T
specifies that the exception is caught. Finally, s2 is executed producing the postcondition.
Note that the postcondition is not only a normal postcondition: it also has to take into
account that s2 can throw an exception or can execute a break.

To define the rule for try-finally, we use the fresh variable eTmp to store the
exception occurred in s1. This variable is needed because another exception might be
raised and caught in s2, and one still needs to have access to the first exception of s1. To
model all possible executions of a try-finally (as described in Section 3.3.2), we use
the fresh variable XTmp, which stores the status of the program after the execution of
s1. The possible values of XTmp are: normal , break , and exc. Depending on the status
after the execution of s2, one needs to propagate an exception or change the status of the
program to break .

3.3.4 Example

Figure 3.14 presents an example of a proof of a Java function using while, break, and
try-finally instructions. In the foo function, an exception is thrown in the try block
with precondition b = 1. The finally block increases b and then executes a break

instruction changing the status of the program to break mode (the postcondition is b =
2). Using the logic for Java, we have shown that the routine foo satisfies the following
specification: {

true
}

MATH:foo
{

b = 3 , false
}

To prove that the body of the routine foo satisfies the following specification:{
true

}
body(MATH@foo)

{
b = 3, false, false

}
we apply the try-finally, throw, break rules, and the assignment and compound rules.
The throw instruction changes the precondition b = 1 to an exceptional postcondition.
Using the try-finally rule, we can prove that postcondition of the try-finally is
{false, b = 2, false}. To prove the loop, we use the break condition b = 2 and the invariant
false. Thus, we obtain the postcondition {b = 2, false, false}. Figure 3.14 presents a sketch
of this proof.

Applying the routine implementation rule, we can connect the specification of the body
of foo and the method specification. The body of foo uses three postconditions to express
the condition after a break, in the method specification, we only need two postconditions
(the normal and the exceptional postcondition). Thus, we show:{

true
}

body(MATH@foo)
{

b = 3, false, false
}{

true
}

MATH@foo
{

b = 3 , false
}

56 A Sound and Complete Logic for Object-Oriented Programs

void foo (int b) {{
true

}
b = 1;{

b = 1, false, false
}

while (true) {{
b = 1, false, false

}
try {{

b = 1, false, false
}

throw new Exception();{
false, false, b = 1

}
}
finally {{

b = 1 ∧Xtmp = exc
}

b = b+1;{
b = 2 ∧Xtmp = exc, false, false

}
break;{

false, b = 2 ∧Xtmp = exc, false
}

}{
false, b = 2, false

}
}{

b = 2, false, false
}

b = b+1;{
b = 3, false, false

}
}

Fig. 3.14: Example of a Proof of a Java Function using while, break, and try-finally

Instructions.

3.4 Soundness and Completeness 57

The rest of the proof is similar to the proofs presented in Section 3.1.5 and Sec-
tion 3.2.4. Since the class MATH does not have descendent, we can prove:

τ(Current) ≺ MATH ∧ n > 1 ⇒ false

Then, applying the strength rule we show:{
false

}
MATH:foo

{
b = 3 , false

}{
τ(Current) ≺ MATH ∧ true

}
MATH:foo

{
b = 3 , false

}
Since foo is implemented in the class MATH, we have impl(MATH, foo)=MATH@foo.

Therefore, we can conclude the proof by applying the class rule (page 29) using the above
two proofs: {

τ(Current) ≺ MATH ∧ true
}

MATH:foo
{

b = 3 , false
}{

τ(Current) = MATH ∧ true
}

impl(MATH, foo)
{

b = 3 , false
}{

τ(Current) � MATH ∧ true
}

MATH:foo
{

b = 3 , false
}

3.4 Soundness and Completeness

We have proved soundness and completeness of the logic. The soundness proof runs by
induction on the structure of the derivation tree for

{
P
}

s
{

Qn , Qe

}
. The com-

pleteness proof runs by induction on the structure of the instruction s using a sequent
which contains a complete specification for every routine implementation T @m. In this
section, we state the theorems. The proofs are presented in Appendix B.

Definition 3. The triple |=
{

P
}

s
{

Qn , Qe

}
if and only if:

for all σ |= P : 〈σ, s〉 → σ′, χ then

• χ = normal ⇒ σ′ |= Qn , and

• χ = exc ⇒ σ′ |= Qe

Theorem 1 (Soundness Theorem).

`
{

P
}

s
{

Qn , Qe

}
⇒ |=

{
P
}

s
{

Qn , Qe

}
Theorem 2 (Completeness Theorem).

|=
{

P
}

s
{

Qn , Qe

}
⇒ `

{
P
}

s
{

Qn , Qe

}

58 A Sound and Complete Logic for Object-Oriented Programs

3.5 Related Work

Abadi and Leino [1] have developed a logic to verify object-oriented programs. The lan-
guage is a simple object-oriented language that handles objects with fields and methods.
The operational semantics allows aliasing. They have proved soundness of the logic with
respect to the operational semantics. Poetzsch-Heffter [105] describes how to integrate
Larch-stype specifications with Hoare-style logics. The technique is applied to object-
oriented programs supporting subtyping. Hensel et al. [46] develop a formal language
to describe specifications of classes in object-oriented languages. The source language
includes object-oriented features such as classes with inheritance, and overriding. They
briefly describe how to extend their system to multiple inheritance. The languages used
in those works are simpler than the languages we use in this chapter; their works do not
handle exception handling. Furthermore, our work not only proves soundness of the logic
with respect to the operational semantics but it also proves completeness.

More recent works [57, 52, 124] have extended logics to cover exception handling and
abrupt termination. For example, Huisman and Jacobs [52, 53] have developed a Hoare-
style logic with abrupt termination. It includes not only exception handling but also
while loops which may contain exceptions, breaks, continues, returns, and side-effects. The
logic is formulated in a general type theoretical language and not in a specific language
such as PVS or Isabelle. Oheimb [123, 124] has developed a Hoare-style calculus for a
subset of JavaCard. The language includes side-effecting expressions, mutual recursion,
dynamic method binding, full exception handling, and static class initialization. Oheimb
has proven soundness and completeness of the logic. These logics formalize a Java-like
exception handling which is different to the Eiffel exception handling presented in this
chapter. Our work includes try-finally instructions, and it shows interesting aspects of
the Java semantics which are not covered in Huisman and Jacobs’ work [52], and Oheimb’s
work [123, 124]. This chapter also covers other object-oriented features such as the Eiffel
once routines and multiple inheritance.

Schirmer [115, 116] defines a programming model for sequential imperative programs
in Isabelle/HOL. The source language handles abrupt termination, side-effect expressions,
and dynamic procedure calls. However, try-finally instructions are not discussed in that
work. We extend the logic for dynamic procedure calls (function objects) in Chapter 4.
Nipkow [89] presents a big and small step operational semantics for a Java-like language.
The semantics handles try-catch and throw instructions. The big and small operational
semantics are shown equivalent; the proof is formalized in Isabelle/HOL.

Logics such as separation logic [111, 97, 17], dynamic frames [59, 119, 120], and re-
gions [4] have been proposed to solve a key issue for reasoning about imperative programs:
framing. Separation logic has been adapted to verify object-oriented programs [101, 102,
36]; Parkinson [100] has extended separation logic to reason about Java programs; Parkin-
son and Bierman [101, 102] introduce abstract predicates: a powerful means to abstract
from implementation details and to support information hiding and inheritance. Distefano

3.6 Lessons Learned 59

and Parkinson [36] develop a tool to verify Java programs based on the ideas of abstract
predicates. Our work does not address how to structure the heap, however, it covers a
wider range of features of object-oriented languages.

Logics have been also developed for bytecode languages. Bannwart and Müller [6] have
developed a Hoare-style logic for a bytecode similar to Java Bytecode and CIL. The logic
is based on Poetzsch-Heffter and Müller’s logic [107, 108], and it supports object-oriented
features such as inheritance and dynamic binding. However, the bytecode logic does not
include exception handling; so it does not include the CIL instructions .try catch and
.try .finally. The Mobius project [76] has also developed a program logic for bytecode.
The logic has been proved sound with respect the operational semantics, and it has been
formalized in Coq. Other works [70, 110, 69] have formalized Java Bytecode programs. For
example, Liu and Moore [69] have defined a deep embedding of Java Bytecode in ACL2;
Quigley [110] formalizes Java Bytecode in Isabelle; and Luo et al. [70] extend separation
logic to Java Bytecode.

With the goal of verifying bytecode programs, Pavlova [103] has developed an opera-
tional semantics, and a verification condition generator (VC) for Java Bytecode. Further-
more, she has shown the equivalence between the verification condition generated from
the source program and the one generated from the bytecode.

An operational semantics and a verification methodology for Eiffel has been presented
by Schöller [117]. The methodology uses dynamic frame contracts to be able to address
the frame problem, and applies to a substantial subset of Eiffel. However, Schöller’s work
only presents an operational semantics, and it does not include exceptions. Paige and
Ostroff [99] define a refiniment calculus for a subset of Eiffel. The subset of Eiffel includes
simple instructions, but it does not handle attributes, exception handling, once routines,
and multiple inheritance.

Our logic is based on Poetzsch-Heffter and Müller’s work [107, 108, 79], which we
extended by new rules for Eiffel instructions and the Java instructions try-catch,
try-finally, and break. This chapter is based on our earlier work [93, 80, 94].

3.6 Lessons Learned

We have presented a sound and complete logic for object-oriented programs. Here we
report on some lessons on programming language design learned in the process.

Abrupt Termination

During the development of this work, we have formalized the current Eiffel exception
handling mechanism. In the current version of Eiffel, retry is an instruction that can
only be used in a rescue clause. When retry is executed, control is transferred to the
beginning of the routine. If the execution of the rescue clause finishes without invoking

60 A Sound and Complete Logic for Object-Oriented Programs

a retry, an exception is triggered. Developing a logic for the current Eiffel would require
the addition of a third postcondition, to model the execution of retry (since retry is
another way of transferring control flow). Thus, we would use Hoare triples of the form{

P
}

s
{

Qn , Qr , Qe

}
where s is an instruction, Qn is the postcondition under

normal termination, Qr the postcondition after the execution of a retry, and Qe the
exceptional postcondition.

Such a formalization would make verification harder than the formalization we use
in this chapter, because the extra postcondition required by the retry instruction would
have to be carried throughout the whole reasoning. In this chapter, we have observed that
a rescue clause behaves as a loop that iterates until no exception is triggered, and that
retry can be modeled simply as a variable which guards the loop. Since the retry instruc-
tion transfers control flow to the beginning of the routine, a retry instruction has a similar
behavior to a continue in Java or C#. Our proposed change of the retry instruction to
a variable will be introduced in the next revision of the language standard [75].

Since Eiffel does not have return instructions, nor continue, nor break instructions,
Eiffel programs can be verified using Hoare triples with only two postconditions. To model
object-oriented programs with abrupt termination in languages such as Java or C#, one
needs to introduce extra postconditions for return, break or continue (or we could
introduce a variable to model abrupt termination). If we wanted to model the current
version of Java, for example, we would also need to add postconditions for labelled breaks
and labelled continues. Thus, one would need to add as many postconditions as there are
labels in the program. These features for abrupt termination make the logic more complex
and harder to use.

Another difference between Eiffel and Java and C# is that Eiffel supports exceptions
using rescue clauses, and Java and C# using try-catch and try-finally instructions.
The use of try-finally makes the logic harder. The combination of try-finally and
break instructions makes the rules more complex and harder to apply because one has to
consider all possible cases in which the instructions can terminate (normal, break, return,
exception, etc).

However, we cannot conclude that the Eiffel’s exception handling mechanism is always
simpler for verification; although it eliminates the problems produced by try-finally,
break, and return instructions. Since the rescue clause is a loop, one needs a retry
invariant. When the program is simple, and it does not trigger many different exceptions,
defining this retry invariant is simple. But, if the program triggers different kinds of
exception at different locations, finding this invariant can be more complicated. Note
that finding this retry invariant is more complicated than finding a loop invariant since
in a loop invariant one has to consider only normal termination (and in Java and C#,
also continue instructions), but in retry invariants one needs to consider all possible
executions and all possible exceptions.

3.6 Lessons Learned 61

Multiple Inheritance

Introducing multiple inheritance to a programing language is not an easy task. The type
system has to be extended, and this extension is complex. However, since the resolution
of a routine name can be done syntactically, extending Poetzsch-Heffter and Müller’s
logic [108] to handle multiple inheritance was not a complicated task. The logic was
easily extended by giving a new definition of the function impl . This function returns the
body of a routine by searching the definition in the parent classes, and considering the
clauses redefine, undefine, and rename. The experience with this chapter indicates that
the complexity of a logic for multiple inheritance is similar to a logic for single inheritance.

Once Routines

To verify once routines, we introduce global variables to express whether the once routine
has been executed before or not, and whether the routine triggered an exception or not.
With the current mechanism, the use of recursion in once functions does not increase
the expressivity of the language. In fact, every recursive call can be equivalently replaced
by Result . However, the rule for once functions is more complicated than it could be if
recursion were omitted.

Recursive once functions would be more interesting if we changed the semantics of once
routines. Instead of setting the global variable done before the execution of the body of the
once function, we could set it after the invocation. Then the recursive once function would
be invoked until the last recursive call finishes. Thus, for example, the result of the first
invocation of factorial(n) would be n! (the function factorial is presented in Section 3.2.2).
Later invocations of factorial would return the stored result. This change would work only
for single recursion, and not for double recursions such as f (x) = f (x − 1) + f (x − 2).
However, this change would not simplify the logic, and we would need to use global
variables to mark whether the once function was invoked before or not.

Analyzing the EiffelBase libraries, and the source code of the EiffelStudio compiler,
we found that the predominant use of once functions is without arguments, which makes
sense because arguments of subsequent calls are meaningless. Even though our rules for
once functions are not overly complicated, verification of once functions is cumbersome
because one has to carry around the outcome of the first invocation in proofs. It is unclear
whether this is any simpler than reasoning about static methods and fields [66].

62 A Sound and Complete Logic for Object-Oriented Programs

Chapter 4

Reasoning about Function Objects

Object-oriented design makes a clear choice in dealing with the basic duality between
objects and operations (data and functions): it bases system architecture on the object,
more precisely the object types as represented by classes, and attaching any operation to
one such class. Functional programming languages, on the other hand, use functions as the
primary compositional elements. The two paradigms are increasingly borrowing from each
other: functional programming languages such as OCaml integrate object-oriented ideas,
and a number of object-oriented languages now offer a mechanism to package operations
(routines, methods) as objects. In the dynamically typed world, the idea goes back at
least to Smalltalk with its blocks; among statically typed languages, C# has introduced
delegates, Eiffel agents, and Scala function objects.

The concept of agent or delegate is, in its basic form, very simple, with immediate
applications. A typical one, in a Graphical User Interface system, is for some part of a
system to express its wish to observe (in the sense of the Observer pattern [40]) events of
a certain type, by registering a procedure to be executed in response:

US map. left click . subscribe (agent show state votes)

This indicates that whenever a left click event occurs on the map, the given procedure
show state votes should be executed. The routine subscribe takes as argument an agent
representing a procedure. Since the agent is a formal argument, subscribe does not know
which exact procedure, such as show state votes, it might represent; but it can call it all
the same, through a general procedure call applicable to any agent, and any target and
argument object.

Agents (we will stay with this term but much of the discussion applies to other language
variants) appear in such examples as a form of function pointers as available for example
in C and C++. But they go beyond this first analogy. First, they are declared with
a signature and hence provide a statically typed mechanism, whereas a function pointer
just denotes whatever is to be found in the corresponding memory address. Next, an agent
represents a true routine abstraction with an operation to call the underlying routine.

64 Reasoning about Function Objects

These mechanisms have proved attractive to object-oriented programmers but they
also raise new verification challenges: how do we prove programs taking advantage of
them?

In the previous chapter, we have presented a semantics for a subset of Eiffel and Java.
The semantics for Eiffel handles most of Eiffel’s main features, however, it omits agents.
This chapter extends the Eiffel subset, and introduces a specification and verification
technique for agents. Our approach uses side effect free (pure) routines to specify the pre-
and postcondition of agents. To specify routines that take agents as arguments, we use
these pure routines. The basic idea, developed in the following sections, is that to prove a
property of an agent call, a.call(t , arg)1, it suffices to prove that the precondition of the
agent a holds before the invocation, and then we can assume that the postcondition of
a holds. Although we focus on Eiffel agents, it should be possible to apply the results to
mechanisms addressing similar goals in other languages, in particular, C# delegates.

To show the practicability of our verification methodology, we have developed an
automatic verifier for agents. Our verifier follows the architecture of the Spec# verifier [8].
Given an Eiffel program, the tool generates a BoogiePL file, and then it uses the Boogie [8]
verifier to prove the generated file. Using previous work on pure routines [33, 67], we have
encoded the pre and postconditions of agents as mathematical functions, which yields the
value of the agent pre- and postcondition.

The four main technical contributions of this chapter are: (1) the idea of using pure
routines to model abstractly the agent pre- and postcondition; (2) a specification and ver-
ification methodology for function objects; (3) an automatic verification tool; and (4) the
demonstration of the approach’s practicality through a set of proofs, of a sequence of
examples of increasing difficulty, including one previously described as an open problem,
and more agent-intensive programs which implement graphical user interfaces.

The chapter is organized as follows: Section 4.1 describes the agent mechanism; Sec-
tion 4.2 shows example applications of agents and their verification challenge. Section 4.3
presents the verification method. The development of the automatic verifier for agents is
described in Section 4.4. Section 4.5 discusses related work.

This chapter is based on the published works [91, 92].

4.1 The Agent Mechanism

Agents represent a routine abstraction. The type of an agent expression is based on one
of four library classes with an inheritance structure shown in Figure 4.1. FUNCTION (if
the underlying routine is a function, returning a result), PREDICATE (for a function
returning a boolean result) or PROCEDURE. These classes all descend from ROUTINE
which introduces the procedure call to call the associated routine with a tuple argument.

1To simplify the notation, we use a slight variant of the Eiffel.

4.1 The Agent Mechanism 65

Fig. 4.1: Kernel Library Classes for Agents.

For a FUNCTION or PREDICATE agent the result of the last call is available through
the routine last result , or one can use fa.item([a, ...]) which calls fa and returns the result.
The agent classes are generic; the type of agent f , built on a function f (a : T) : V from
a class C , is FUNCTION [C, TUPLE [T], V]. The second generic parameter is a tuple
type, representing the open arguments2. PROCEDURE and PREDICATE have the same
generic parameters except the last.

The agent mechanism provides flexibility, in particular by allowing open arguments,
as in agent g(?, ?, z) where g has three arguments but the agent has only two, to be
provided to call (the question marks indicate where these open arguments lie). The
basic syntax agent g is simply an abbreviation for keeping all arguments open, as in
the more explicit form agent g(?, ?, ?). Furthermore, it is possible to keep open not
only arguments as in these examples but also the target of future calls, as in agent
{STATE}.show votes(a, b, ?). Then a call will be of the form a.call([s , z]) where s is a
STATE and z is of the type of the last argument of show votes. This possibility is not
available with C# delegates.

The mechanism does not distinguish between open target and open formal argument.
For example, FUNCTION [INTEGER, TUPLE[INTEGER], INTEGER] declares a func-
tion defined in the class INTEGER, with one open argument INTEGER, and return type
INTEGER. Thus, this declaration can be instantiated with agent i.plus(?), which defines

2Open arguments are the arguments provided at the invocation of the agent; closed arguments are the
arguments provided at the creation of the agent.

66 Reasoning about Function Objects

an agent with open formal argument. But this declaration can be also used with
agent {INTEGER}.plus(j), which declares an agent with open target.

4.2 Agent Examples and their Verification Challenge

We present some typical applications of agents. To simplify the notation, we assume agents
are procedures and have at most one argument.

4.2.1 Formatter

The first example comes from a paper by Leavens et al. [63] and is recouched in Eiffel
below. It is of particular interest since they describe it as a verification challenge beyond
current techniques. The class FORMATTER models paragraph formatting with two align-
ment routines. The class PARAGRAPH includes a procedure to format the current para-
graph. For illustration purposes, the routines align left and align right require that the
paragraph is not left aligned and not right aligned, respectively. The routines left aligned
and right aligned are pure routines (side effect free) defined in the class PARAGRAPH,
and return true if the paragraph is left aligned or right aligned, respectively. These classes
are implemented in Eiffel as follows:

class FORMATTER

align left (p: PARAGRAPH) align right (p: PARAGRAPH)
require require

not p. left aligned not p. right aligned
do do

... Operations on p Operations on p ...
ensure ensure

p. left aligned p. right aligned
end end

end

class PARAGRAPH
format (proc: PROCEDURE [FORMATTER, PARAGRAPH]; f: FORMATTER)

do
proc . call (f , Current)

end
end

4.2 Agent Examples and their Verification Challenge 67

The signature proc: PROCEDURE [FORMATTER, PARAGRAPH]3 declares a proce-
dure proc with two open arguments (the target of type FORMATTER and a parameter of
type PARAGRAPH). Open arguments are the arguments provided in the invocation of the
agent. An example of the use of the format routine is shown in the routine apply align left.
This routine is implemented as follows:

apply align left (f : FORMATTER; p: PARAGRAPH)
require

not p. left aligned
do

p. format (agent { FORMATTER }.align left , f)
ensure

p. left aligned
end

The verification challenge in this case is to specify and verify the routine format in
an abstract way, abstracting the pre and postcondition of the agent. Then, one should
be able to invoke the routine format with a concrete agent, here align left, and to show
that the postcondition of align left holds. If the format routine is called with another
routine, say align right, one should be able to show that the postcondition of align left
holds without modifying the proof of format. Another issue is framing; one should be able
to express what the routine format modifies, but abstracting from the specific routines
align left and align right. When the routine format is invoked using the agent align left,
we should be able to show that format only modifies what align left modifies.

4.2.2 Multi-Level Undo-Redo

The command pattern [40] can be used to implement multi-level undo-redo mechanisms.
The standard implementation uses a class COMMAND with features execute and cancel.
This example involves a history list, of type LIST [COMMAND], such that is possible to
undo all previously recorded commands through the following routine:

undo all (history list : LIST [COMMAND])
do

history list . do if (agent {COMMAND}.cancel, agent {COMMAND}.cancelable)
end

The routine cancelable returns true if the command can be canceled; in other words
it satisfies the precondition of cancel. The iteration routine do if is available to all list

3To simplify the notation, we do not use TUPLE in the declaration of the agent. Thus, we write PRO-
CEDURE [FORMATTER, PARAGRAPH] instead of PROCEDURE [FORMATTER, TUPLE [FOR-
MATTER, PARAGRAPH].

68 Reasoning about Function Objects

classes through their declaration in the ancestor class LINEAR, where its implementation
is:

do if (f : PROCEDURE [ANY]; test: PREDICATE [ANY])
do

from
start

until
after

loop
if test .item (item) then

f . call (item)
end
forth

end
end

The declaration f: PROCEDURE [ANY] indicates that f can come from any class and
takes no arguments besides the target; similarly for test. (ANY is the most general class,
from which all classes descend; cf. “Object” in Java.) The loop follows a standard scheme
moving a cursor: start brings the cursor to the first element, forth moves it by one position,
after indicates whether the cursor is past the last element, and item gives the element at
cursor position. The invocation test .item(item) calls the agent test with the element at
the cursor position, and returns the result4.

The verification challenge in this example is to reason about the pre- and postcondition
of the agent applied to several objects (in this example the elements of the list), where
each agent invocation changes the properties of a single object. Verifying these kinds of
examples is challenging because the invocation of the agent on one target might change
the properties of the other targets. The use of multiple targets also illustrates one of the
differences between agents and delegates in C#: applying an agent to multiple objects
requires the ability to pass function objects with open target.

4.2.3 Archive Example

In this section we describe the archive example presented by Leavens et al. [63] and
proved by Müller and Ruskiewicz [83]. This example illustrates the application of agents
with closed arguments (closed arguments are the arguments of an agent provided at
declaration of the agent).

4In test .item(item), the first occurrence of item is the routine item in class FUNCTION (which calls
the agent and returns the result); the second occurrence of item is the attribute item of the class LIST
(which gives the element at cursor position).

4.3 Verification Methodology 69

Figure 4.2 presents the implementation of the archive example in Eiffel. The class
TAPE ARCHIVE defines a tape with a routine store which stores objects if the device is
loaded. An application of agents passed as parameter is implemented in the class CLIENT,
which calls the agent log file with the string s. Finally, the class MAIN shows an example
of the invocation of the routine log in the CLIENT class.

The invocation log file.call(s) invokes the procedure log file with the parameter s . The
declaration PROCEDURE[ANY;TAPE]5 indicates that log file is a procedure with closed
target of type TAPE and AN open argument of type ANY. The target of the invocation
is defined in the creation of the agent. In this example, the target object is t defined in
agent t.store.

The verification challenge in this case is to verify the routine log in an abstract way,
and being able to show that the precondition of the agent store holds before its invocation.
In the routine log, the methodology has to assume that the target is closed but the exact
target is unknown.

4.3 Verification Methodology

A verification technique should address both the specification of routines that uses func-
tion objects and the verification of invocation of function objects. Section 4.3.1 considers
the first issue; the remainder of this section examines the second one. To simplify the
methodology, we do not handle exceptions. Extending the methodology to exception han-
dling is part of future work.

4.3.1 Specifying Function Objects

The difficulty of specifying the correctness of agents is that while a variable of an agent
type represents a routine, it is impossible to know statically which routine that is. The
purpose of agents is to abstract from individual routines. The specification must reflect
this abstraction.

What characterizes the correctness of a routine is its precondition and its postcon-
dition. For an agent, these are known abstractly through the functions precondition and
postcondition of class ROUTINE and its descendants. These functions enable us to per-
form the necessary abstraction on agent variables and expressions. The approach makes
it possible for example to equip the routine format with a contract:

5This is a simplification of the declaration in Eiffel. The declaration in Eiffel is
PROCEDURE[TAPE,TUPLE[ANY]].

70 Reasoning about Function Objects

class TAPE
save(o: ANY)

do
...

end
−− other routines omitted

end

class TAPE ARCHIVE

tape : TAPE

is loaded : BOOLEAN
ensure

Result = (tape /= void)

make
do

create tape
end

store (o: ANY)
require

is loaded
do

tape .save (o)
end

−− other routines omitted
end

class CLIENT
log (log file : PROCEDURE [ANY; TAPE];

s : STRING)
do

log file . call (s)
end

end

class MAIN
main (c: CLIENT)

local
t : TAPE ARCHIVE

do
create t.make
c. log (agent t . store , ‘‘ Hello World”)

end
end

Fig. 4.2: Source Code of the Archive Example.

4.3 Verification Methodology 71

format (proc: PROCEDURE [FORMATTER, PARAGRAPH]; f: FORMATTER)
require

proc . precondition (f ,Current)
do

proc . call (f ,Current)
ensure

proc . postcondition (f ,Current)
end

Note that the precondition of format uses the routine precondition to query the pre-
condition of the procedure proc.

Finally, we need to specify the routine call in the class ROUTINE. Its specification is
the following:

call (target : ANY; p: ANY)
require

Current.precondition (target,p)
ensure

Current.postcondition (target,p)

4.3.2 Axiomatic Semantics

This section describes an axiomatic semantics for agents. To simplify the semantics, we
assume agents with open arguments. In Section 4.4, we show the development of an auto-
matic prover for reasoning about agents. The prover handles open and closed arguments.

Agent Pre- and Postconditions

The semantics uses two functions to model the pre- and postcondition of the agent. The
function6 @precondition takes three values (the agent, the target and the parameter)
and an object store, and yields the evaluation of the agent’s precondition. The function
@postcondition takes a second object store to evaluate old expressions. The signatures of
these functions are defined as follows7:

@precondition : Value × Value × Value ×ObjectStore ⇀ Bool
@postcondition : Value × Value × Value ×ObjectStore ×ObjectStore ⇀ Bool

In the source language, every routine pr has a pre- and postcondition. The mathemat-
ical functions @prepr , and @postpr evaluates the pre- and postcondition of the routine pr .
The signatures of these functions are as follows:

6We use the prefix @ in the mathematical functions to distinguish them from the Eiffel routines.
7⇀ denotes partial functions.

72 Reasoning about Function Objects

@prepr : Value × Value ×ObjectStore ⇀ Bool
@postpr : Value × Value ×ObjectStore ×ObjectStore ⇀ Bool

We treat an agent a as a normal variable, which denotes a routine. The following two
axioms relates the agent pre- and postcondition with the routine pre- and postcondition,
respectively.

Axiom 12 (Preconditions).
∀t , p :ObjectId ; pr :Routine; h :ObjectStore : @precondition(pr , t , p, h) = @prepr(t , p, h)

Axiom 13 (Postconditions).
∀t , p :ObjectId ; pr :Routine; h, h ′ :ObjectStore :

@postcondition(pr , t , p, h, h ′) = @prepr(t , p, h, h ′)

In the following, we present an axiomatic semantics for the routine call and for agent
initialization.

Routine call

To prove calls to agents, represented as calls to the routine call of the class ROUTINE, it
suffices to rely on the specification of this routine. We assume that the implementation of
call in ROUTINE is correct with respect to this specification. The following axiom defines
this assumption:

{
@precondition(Current , t , p, $)

}
ROUTINE:call(t , p)

{
@postcondition(Current , t , p, $, $′)

}
In the pre- and postcondition of the rule, Current denotes an agent (the current

routine). Furthermore, in the expression @postcondition(Current , t , p, $, $′), $′ denotes
the old object store.

This rule makes possible to rely on standard proof techniques, to prove properties of
the form{

@precondition(a, t , p, $)
}

a.call(t , p)
{

@postcondition(a, t , p, $, $′)
}

So to prove properties of the form
{

P
}

a.call(t , p)
{

Q
}

, it will suffice to prove
that P implies @precondition(a, t , p, $) and that @postcondition(a, t , p, $, $′) implies Q .

Agent Initialization

The agent initialization is treated as a normal assignment, where the routine pr is assigned
to the agent a.

4.4 Automatic Proofs 73

{
P [pr/a]

}
a := agent pr

{
P
}

4.4 Automatic Proofs

One of the goals of our verification effort is to support automatic verification of programs
using function objects. To fulfill this goal, we have implemented an automatic verifier for
agents, called EVE Proofs.

EVE Proofs follows the architecture of the Spec# verifier [8]. Given an Eiffel pro-
gram, the tool generates a Boogie2 [56] file, and uses the Boogie verifier to prove the
generated program. The tool handles a subset of Eiffel with single inheritance, and basic
instructions such as assignments, compound, if then else, loops, and routine calls (the
tool does not support neither exception handling nor once routines). The tool is inte-
grated to EVE [38] (the Eiffel Verification Environment), and it can be download at
http://eve.origo.ethz.ch/. Once the user has specified pre- and post-conditions, and
invariants, the verification is completely automatic. Using EVE Proofs we have auto-
matically proved a significant number of examples including the examples presented in
Section 4.2.1 and Section 4.2.3.

In the following, we describe the foundations of our verification tool presenting the
encoding of our verification methodology into BoogiePL. First, we handle agents with
open arguments (Section 4.4.1). Second, we extend the methodology to closed arguments
(Section 4.4.2). We describe framing for open and closed arguments (Section 4.4.3 and
Section 4.4.4, respectively). Finally, Section 4.4.5 applies the method to the examples from
Section 4.2, and section 4.4.6 extends the experiments to more agent-intensive programs
which implement graphical user interfaces. More details about the implementation of EVE
Proofs see [122].

4.4.1 Reasoning about agents with open arguments

Agent Pre- and Postconditions

The methodology uses two functions to model the pre- and postcondition of the agent.
The function $precondition takes three values (the agent, the target and the parameter),
and the current heap, and yields the evaluation of the agent’s precondition. The function
$postcondition takes a second heap to evaluate old expressions. The signatures of these
functions are defined as follows:

$precondition : Value × Value × Value × Heap ⇀ Bool
$postcondition : Value × Value × Value × Heap × Heap ⇀ Bool

http://eve.origo.ethz.ch/

74 Reasoning about Function Objects

Initializing Agents

Given the agent initialization a := agent pr where pr is a procedure8, the methodology
generates the following assumptions:

assume ∀t , p : ObjectId ; h1 : Heap : $precondition(a, t , p, h1) = $prepr(t , p, h1)
assume ∀t , p : ObjectId ; h1, h2 : Heap : $postcondition(a, t , p, h1, h2) = $postpr(t , p, h1, h2)

where $prepr and $postpr denotes the pre- and postcondition of the procedure pr , t the
target object, and p the argument respectively.

Invoking Agents

Invoking an agent a with target t and argument p, a.call(t , p), first asserts the precon-
dition of the agent, and then assumes its postcondition. The proof obligations are the
followings:

assert $precondition(a, t , p,Heap)
h0 := Heap
havoc Heap
assume $postcondition(a, t , p,Heap, h0)

The current heap is denoted by Heap. The assignment h0 := Heap saves the current
heap, then h0 is used to evaluate the postcondition of the agent. The havoc command
assigns an arbitrary value to the heap.

This translation is based on the translation of pure routines [33, 67]. The novel concepts
are the introduction of the functions $precondition and $postcondition to model the agent
pre- and postcondition, and the generation of assumptions for the initialization of the
agent, which relates the pre- and postcondition of the agent with the concrete pre- and
postcondition of the procedure.

Noninterference

Agents can be declared with open arguments. If the target is open, the same agent can
be invoked with different target objects. To reason about these invocations, we need the
notion of noninterference. Given a partial function f : Heap ⇀ X , we call footprints the
elements of its domain. In this work we only consider functions f such that, for each heap
h on which f is defined, there exists a (unique) minimal sub-heap h0, so that the value
of f on larger heaps is completely determined from its value on h0. Functions of type
Heap ⇀ X are obtained from preconditions and bodies of agents by fixing the target and

8The syntax agent pr is an abbreviation for keeping all arguments open, as in agent pr(?)

4.4 Automatic Proofs 75

parameter, and from postconditions by also fixing the old heap (we are interested in the
footprint expressed in terms of the new heap only).

Given functions f : Heap ⇀ X and g : Heap ⇀ Y , we write the noninterference
predicate f #g : Heap → Bool which returns true iff both f and g are defined and their
minimal footprints are disjoint.

We now lift the disjointness predicate # to objects. Let C be a class and F the set of
state functions (preconditions, postconditions with fixed pre-heap, and bodies of features)
which it provides. For o, o ′ ∈ ObjectId objects of class C , we define

o#o ′ : Heap → Bool

(o#o ′)(h) , ∀v , v ′ ∈ Value, ∀f , f ′ ∈ F . (f (o, v)#f ′(o ′, v ′))(h)

The role of the # predicate is to generalize from concrete mechanisms for establishing
noninterference, namely ownership [28, 65, 82], separation logic [111, 97], regional logic [4].
The idea is that each such formalism is sufficiently expressive to imply instances of o#o ′

facts on a per-example basis. We use this # predicate in both the specification language
and the logic.

4.4.2 Reasoning about Closed Arguments

The above section presents a methodology to reason about agents with open arguments.
In this section, we extend the methodology to agents with closed arguments. Framing for
agents with closed arguments is omitted here, however, it is presented in Section 4.4.4.

To model closed arguments, we introduce two functions:

$precondition1 and $postcondition1
9

These functions yield the evaluation of pre- and postcondition of an agent with one closed
argument (either closed target or closed parameter). The function $precondition1 takes two
values (the agent and the open argument) and the current heap, and yields the evaluation
of the precondition of the agent. The function $postcondition1 takes also a second heap
to evaluate old expressions. The signature of these functions are defined as follows:

$precondition1 : Value × Value × Heap ⇀ Bool
$postcondition1 : Value × Value × Heap × Heap ⇀ Bool

To handle arbitrary number of arguments in a routine, say n arguments, the method-
ology can be extended by adding the functions $precondition0...$preconditionn and the
functions $postcondition0...$postconditionn . The functions

$preconditioni : Value i+i × Heap ⇀ Bool
$postconditioni : Value i+i × Heap × Heap ⇀ Bool

can be used to model agents with i open arguments.

9As a reminder, we assume that routines have only one parameter, although, the methodology can be
easily extended.

76 Reasoning about Function Objects

Initializing Agents

To handle closed arguments, the methodology generates new assumptions using the func-
tions $precondition1 and $postcondition1. In the following, we present these assumptions
for closed target and closed arguments.

Closed Target. Given the agent initialization a := agent t1.pr where t1 is the closed
target, and pr a procedure, the methodology generates the following assumptions:

assume ∀p : ObjectId ; h1 : Heap : $precondition1(a, p, h1) = $prepr(t1, p, h1)
assume ∀p : ObjectId ; h1, h2 : Heap : $postcondition1(a, p, h1, h2) = $postpr(t1, p, h1, h2)

These assumptions quantify only over one parameter, p. The target object t1 is known,
and it is used in the function $prepr . The difference with the assumptions generated for
open arguments (Section 4.4.1) is that the assumptions for open arguments quantify over
both the target and the parameter.

Closed Parameter. Given the agent initialization a := agent pr(p1) where p1 is the
closed parameter, and pr a procedure, the methodology generates the following assump-
tions:

assume ∀t : ObjectId ; h1 : Heap : $precondition1(a, t , h1) = $prepr(t , p1, h1)
assume ∀t : ObjectId ; h1, h2 : Heap : $postcondition1(a, t , h1, h2) = $postpr(t , p1, h1, h2)

Invoking Agents

The invocation of an agent with closed arguments takes as arguments the agent and the
open parameter. Given the agent a which declares a procedure with one open argument
(it can be open target or open parameter) the agent invocation a.call(p) with argument
p, defines the following proof obligations:

assert $precondition1(a, p,Heap)
h0 := Heap
havoc Heap
assume $postcondition1(a, p,Heap, h0)

where Heap denotes the current heap.
Note that Eiffel does not distinguish between an agent with open target and an agent

with open parameter. Both agents are declared with the same notation. Thus, the method-
ology uses the functions $precondition1 and $postcondition1 to express the precondition
and postcondition with open arguments, and then it uses the assumptions generated in the
initialization of the agent. An example of the application of open arguments is presented
in Section 4.4.5.

4.4 Automatic Proofs 77

4.4.3 Framing

One of the most interesting parts of routines’ specification is the modifies clause, which
defines the locations that are modified by the routine. The problem of defining these
locations is known as frame problem. The frame problem has been solved for example
using dynamic frames [59, 119]. However, this problem has to be solved for routines that
take other routines as arguments (agents). This section presents a solution for framing
agents. First, framing is solved for agents with open arguments, and then the methodology
is extended for agents with closed arguments.

Framing for Agents with Open Arguments

In Section 4.2.1 we have specified the routine format , however, one needs to define what
locations this routine modifies:

format (proc: PROCEDURE [FORMATTER, PARAGRAPH]; f: FORMATTER)
do

proc . call (f , Current)
end

A candidate solution to this problem is to assume that format modifies the target of
the agent proc. However, this assumption is too strong since format may only modify a
few attributes of proc’s target. Note that format can be invoked with any routine, and
each routine might modify different locations.

To solve the frame problem for agents, we adapt dynamic frames. Instead of using
a set of locations as in Kassios’s work [59], we define a routine modifies (in the source
language) which takes an agent a, its target and argument’s values, and returns the
locations modified by the agent a with target t and argument p. Thus, the modifies
clause of format can be defined as follows (pre and postconditions are omitted):

format (proc: PROCEDURE [FORMATTER, PARAGRAPH]; f: FORMATTER)
modify

modifies (proc , f , Current)
do

proc . call (f , Current)
end

This modifies clause expresses that the routine format modifies the locations that are
modified by the procedure proc. Depending of the routine used to invoke format , the
function modifies will yield a different set of locations.

Modifies Clauses. We have extended Eiffel with modifies clauses. Each routine con-
tains a modifies clause which is defined as a comma separated list of locations. To express

78 Reasoning about Function Objects

what locations are modified by an agent, we introduce the function modifies . The defini-
tion of modifies clauses and routines declarations is the following:

Modifies clause ::= Modifies clause,Modifies clause
| VarId
| modifies(VarId ,VarId ,VarId)

Routine ::= RoutineId (VarId : Type) : Type
require BoolExp
modify Modifies clause
do

Instr
ensure BoolExp
end

where boolExp are boolean expressions, RoutineId routine identifiers, VarId variable iden-
tifiers, and Instr instructions.

Encoding of Modifies Clauses. To encode the modifies clauses, we introduce a func-
tion $modifies which takes an agent a, its target and argument’s values, the current heap,
an object value o, and a field name f , and yields true if the agent a with its target
and argument modifies the field f of the object o. The signature of this function is the
following:

$modifies : Value × Value × Value × Heap × Value × FieldId ⇀ Bool

For example, the modifies clause of the routine format can be encoded using this
function as follows:

ensures ∀o : ObjectId ; fId : FieldId :
not $modifies(proc, f ,Current ,Heap, o, fId)⇒ Heap[o, fId] = old(Heap)[o, fId]

This property expresses that for all objects o, and all fields fId that are not modified
by the agent proc with the target f and argument Current , the value of the field o.fId in
the current heap is equal to the value of o.fId in the old heap. The expression Heap[o, fId]
yields the value of the field fId of the object o in the current heap, and Heap denotes the
current heap.

Generalizing, modifies clauses are list of application of the function $modifies and
variable identifiers. Given the modifies clause:

$modifies(a1, t1, p1), ..., $modifies(an , tn , pn), v1, ..., vm

this clause is encoded as:

4.4 Automatic Proofs 79

ensures ∀o : ObjectId ; fId : FieldId :
not $modifies(a1, t1, p1,Heap, o, fId)
∧ ... ∧
not $modifies(an , tn , pn ,Heap, o, fId)
∧ o! = v1 ∧ o! = vm

⇒ Heap[o, fId] = old(Heap)[o, fId]

Initializing Agents. To solve the frame problem for agents, we need to link the function
$modifies(proc, t , p) with the locations that the routine proc modifies. We solve this by
applying the same approach to reasoning about agent’s pre- and postcondition. Thus,
our methodology generates assumptions of the function $modifies , when the agent is
initialized. Given a procedure pr , the agent initialization a := agent pr generates the
following assumptions:

assume ∀t , p : ObjectId ; h1 : Heap : $precondition(a, t , p, h1) = $prepr(t , p, h1)
assume ∀t , p : ObjectId ; h1, h2 : Heap :

$postcondition(a, t , p, h1, h2) = $postpr(t , p, h1, h2)

assume ∀t , p, o : ObjectId ; fId : FieldId ; h1 : Heap :
$modifies(a, t , p, h1, o, fId) = $modifiespr(t , p, o, fId)

The assumptions for the functions $precondition and $postcondition are the same as-
sumptions described in Section 4.4.1. The third assumption relates the function $modifies
with the modifies clause of pr . The function $modifiespr yields true if the procedure pr
modifies the field o.fId for the target t and argument p. For example, assuming that the
routine align left in the class FORMATTER (Section 4.2.1) modifies its argument p, then
modifiesalign left is defined as follows:

$modifiesalign left(Current , p, o, fId) , (o = p)

Generalizing, the function modifiespr takes a target object, an argument, and the object
id and field id. The definition of this function can be generated from the modifies clause
of each procedure pr .

4.4.4 Framing for Agents with Closed Arguments

Modifies Clauses. To define the locations that an agent with closed arguments mod-
ifies, we introduce a function modifies1. This function takes an agent a and its open

80 Reasoning about Function Objects

argument, and returns the locations modified by the agent a with the argument p. The
definition of the modifies clause is extended as follows:

Modifies clause ::= Modifies clause,Modifies clause
| VarId
| modifies(VarId ,VarId ,VarId)
| modifies1(VarId ,VarId)

Using the function modifies1, the modifies clause of the routine log (Section 4.2.3) can
be defined as follows:

log (log file : PROCEDURE [ANY;TAPE]; s: STRING)
modify

modifies1(log file ,s)
do

log file . call (s)
end

Encoding of Modifies Clauses. The encoding of the modifies clauses follows the same
ideas of the above section. We define a function $modifies1 which takes an agent a, its
open argument’s value, the current heap, an object value o, and a field name fId , and
yields true if the agent a with argument p modifies the field o.fId . The signature of this
function is the following:

$modifies1 : Value × Value × Heap × Value × FieldId ⇀ Bool

For example, the modifies clause of log can be encoded as follows:

free ensures ∀o : ObjectId ; fId : FieldId :
not $modifies1(log file, s ,Heap, o, fId)⇒ Heap[o, fId] = old(Heap)[o, fId]

Initializing Agents. To conclude with the framing for closed arguments, the method-
ology generates assumptions in a similar way to the above section. We describe the as-
sumptions generated for initialization of agents with closed target, closed parameter is
analogous.

Given the agent initialization a := agent t1.pr where t1 is the closed target, and pr
a procedure, the methodology generates the following assumptions:

4.4 Automatic Proofs 81

assume ∀p : ObjectId ; h1 : Heap : $precondition1(a, p, h1) = $prepr(t1, p, h1)
assume ∀p : ObjectId ; h1, h2 : Heap : $postcondition1(a, p, h1, h2) = $postpr(t1, p, h1, h2)

assume ∀o, p : ObjectId ; fId : FieldId :
$modifies1(a, p, o, fId) = $modifiespr(t1, p, o, fId)

4.4.5 Applications

In this section we study the applicability of our methodology to a range of examples which
illustrate challenging aspects of reasoning about function objects.

Formatter Example

In this section, we show how to verify the formatter example presented in Section 4.2.1.
To verify this routine, the methodology generates the following proof obligations:

format(proc : PROCEDURE [FORMATTER,PARAGRAPH]; f : FORMATTER)
1 assume $precondition(proc, f ,Current ,Heap)
2 assert $precondition(proc, f ,Current ,Heap)
3 h0 := Heap
4 havoc Heap
5 assume $postcondition(proc, f ,Current ,Heap, h0)
6 assume ∀o : ObjectId ; fId : FieldId :

not $modifies(proc, f ,Current ,Heap, o, fId)⇒ Heap[o, fId] = h0[o, fId]
7 assert $postcondition(proc, f ,Current ,Heap, h0)
8 assert ∀o : ObjectId ; fId : FieldId :

not $modifies(proc, f ,Current ,Heap, o, fId)⇒ Heap[o, fId] = h0[o, fId]

The pre- and postcondition of format are translated in the lines 1 and 7, respectively.
The modifies clause of format is translated in line 8. The agent invocation is translated in
the lines 2-6. This translation assumes the postcondition and the modifies clause of call
in lines 5 and 6. The proof is straightforward since the assume and assert instructions in
lines 1-2, lines 5-7, and lines 6-8 refer to the same heap.

The most interesting case in the verification of function object is the verification of
clients that use function objects, such as apply align left. Applying our methodology to
this routine generates the following assumptions and assertions:

82 Reasoning about Function Objects

apply align left(f : FORMATTER; p : PARAGRAPH)
1 assume not p.$left aligned
2 a := agent{FORMATTER}.align left
3 assume ∀t1, p1 : ObjectId ; h : Heap :

$precondition(a, t1, p1, h) = $prealign left(t1, p1, h)
4 assume ∀t1, p1 : ObjectId ; h, h ′ : Heap :

$postcondition(a, t1, p1, h, h
′) = $postalign left(t1, p1, h, h

′)
5 assume ∀t1, p1, o : ObjectId ; fId : FieldId ; h : Heap :

$modifies(a, t1, p1, h, o, fId) = $modifiesalign left(t1, p1, o, fId)
6 assert $precondition(a, f , p,Heap)
7 h0 := Heap
8 havoc Heap
9 assume $postcondition(a, f , p,Heap, h0)
10 assume ∀o : ObjectId ; fId : FieldId :

not $modifies(proc, f , p,Heap, o, fId)⇒ Heap[o, fId] = h0[o, fId]
11 assert p.$left aligned
12 assert ∀o : ObjectId ; fId : FieldId : o! = p ⇒ Heap[o, fId] = h0[o, fId]

Similar to the previous example, lines 1 and 11 are generated by the translation of the
pre- and postcondition; line 12 is the translation of the modifies clause. The declaration
agent {FORMATTER}.align left generates lines 2-5. The precondition and postcondition
of the routine align left is denoted by $prealign left and $postalign left respectively; the modi-
fies clause of align left is denoted by $modifiesalign left . The invocation of the routine format
produces lines 6-10. The current heap is stored in h0 in line 7 to be able to evaluate the
postcondition in line 9.

The key points in the proof are the assert instructions at lines 6, 11 and 12. By the
definition of $prealign left , $postalign left , and $modifiesalign left we know:

∀t1, p1 : ObjectId ; h : Heap : $prealign left(t1, p1, h) = not p1.$left aligned (4.1)

∀t1, p1 : ObjectId ; h, h ′ : Heap : $postalign left(t1, p1, h, h
′) = p1.$left aligned (4.2)

$modifiesalign left(Current , p, o, fId) = o! = p (4.3)

In particular, $prealign left(f , p,Heap) = not p.$left aligned . Then, the assertion at
line 6 is proven using the assumptions at lines 1 and 3, and (4.1). The assertion at line
11 is proven in a similar way using the assumptions at lines 4 and 9, and (4.2). Finally,
the assertion at line 12 is proven in a similar way using the assumptions at lines 5 and
10, and (4.3).

4.4 Automatic Proofs 83

Multi-Level Undo-Redo Example

In this section, we discuss how to prove the routine do if presented in Section 4.2.2. The
proof of routine undo all is similar to apply align left.

The first step is to give an specification of the routine do if . The idea of do if (f , test)
is to execute f on all the elements which satisfy test. There is, however, a problem in
specification of this routine in the EiffelBase library: test can be arbitrary and it might
not imply that the precondition of f holds. A first try at improving the contract of the
routine do if could be the following:

do if (f : PROCEDURE [ANY]; test: FUNCTION [ANY])
require

forall 1≤i≤count: test (ith (i)) implies f.precondition(ith (i))
ensure

forall 1≤i≤count: (old test (ith (i)) implies f.postcondition(ith (i)))

This contract uses two more features of the class LINEAR: ith and count. Function ith
returns the i-th element of the current structure, and attribute count contains the length
of the structure.

However, this improved contract is still not sufficient. Consider the list l = [c, c] where
the command c satisfies the query cancelable. Consider an invocation of do if with the
agents cancel and cancelable. Since the precondition of cancel holds for all the elements
of the list l, the routine can be invoked. Thus, the first agent is invoked. But assume that
this invocation breaks the property cancelable, then since the list contains two repeated
elements, the second agent invocation does not satisfy cancelable and an exception is
trigged.

The root of the problem lies in the fact that the invocation of the agent on one element
of the list could break the precondition of the next element. To prevent the problem we
must impose further conditions. We do that using the noninterference predicate # pre-
sented in Section 4.4.1. These assertions are then treated as proof obligations which need
to be discharged by appropriate mechanisms in the target language. Example mechanisms
are richer type systems based on ownership [7, 28] (as in our experiments with Spec#), or
richer program logics based on separation logic [111, 97]. In other words, the # operator
specifies that objects do not interfere (they occupy disjoint memory in case of separation
logic, or they belong to different contexts in case of ownership). Here, we use the property
that agent invocations only modify the target object, and that noninterference still holds
after the invocation. Using this extension, we can have another go at writing the contract
for do if :

84 Reasoning about Function Objects

do if (f : PROCEDURE [ANY]; test: FUNCTION [ANY])
require

forall 1≤i≤count: test (ith (i)) implies f.precondition(ith (i)) and
forall 1 ≤ i < j ≤ count: ith (i) # ith(j)

ensure
forall 1≤i≤count: (old test (ith (i)) implies f.postcondition(ith (i)))

The new precondition says in addition that there is no interference between the ele-
ments of the list. We now present a sketch of the proof of the routine do if. Section 4.4
shows how this example is encoded and automatically proved in Spec#.

Let do if pre be the precondition of the routine do if and loop invariant be the loop
invariant defined as follows:

do if pre , Inv(α) ∧ forall 1 ≤ i < j ≤ count : ith(i)#ith(j) ∧
forall 1 ≤ i ≤ count : ((αi .$test ⇒ $precondition(f , αi ,Heap)) ∧ (αi .$test = βi))

loop invariant , 1 ≤ j ≤ count + 1 ∧ forall j ≤ i < k ≤ count : ith(i)#ith(k) ∧
forall 1 ≤ i ≤ j − 1 : (βi ⇒ $postcondition(f , αi ,Heap, h0) ∧
forall j ≤ i ≤ count : (αi .$test ⇒ $precondition(f , αi ,Heap))

We use the auxiliary variable α to represent the current structure, which is a sequence
of length count . The i -th element is denoted αi . The expression Inv(α) denotes the invari-
ant of the class parameterized by the sequence α. To translate away the old operator, we
introduce auxiliary variable β, also denoting a sequence of length count . In the precondi-
tion, we assume αi .$test = βi . In the postcondition, expression old αi .test is translated
as βi .

Figure 4.3 presents the sketch of the proof of the routine do if. The auxiliary variable
j represents the index of the current structure. After the invocation f.call(item), we have
to show that there is still no interference between the elements of the list. This is exactly
the property of the operator #, which we have introduced in Section 4.4.1. The assertion
at line 6 is proved using the loop invariant. The loop invariant is re-established using the
property of the # operator.

Archive Example

To verify the archive example, we apply the methodology described in Section 4.4.2. The
most interesting part is the proof of the routine main.

The proof for the routine log is similar to the proof of the format routine. The only
change is the use of the function $precondtion1 which takes only three arguments (the
procedure log file, the string s and the heap). The proof obligations are:

4.4 Automatic Proofs 85

do if (f : PROCEDURE [ANY]; test : FUNCTION [ANY])
do

2 assume do if pre
h0 := Heap

4 from start until after loop
if test(item) then

6 assert $precondition(f , αj ,Heap)
h1 := Heap

8 f .call(item)
assume $postcondition(f , αj ,Heap, h1)

10 end
forth

12 assert loop invariant
end

14 assert

(
Inv(α) ∧ forall 1 ≤ i < k ≤ count : ith(i)#ith(k) ∧
(forall 1 ≤ i ≤ count : (βj ⇒ $postcondition(f , αj ,Heap, h0))

)
end

Fig. 4.3: Sketch of the Proof of the Routine do if.

log(log file : PROCEDURE [ANY ; TAPE]; s : STRING)
1 assume $precondition1(log file, s ,Heap)
2 assert $precondition1(log file, s ,Heap)
3 log file.call(s)

The proof of routine main translates the agent initialization in lines 3-5. The function
precondition1 is used to express the precondition of the agent with closed target. Using
the assumption at line 4 and the knowledge of line 2, we can prove the assert instruction
at line 7. The sketch of the proof is:

main(c : CLIENT)
1 create t .make
2 assert t .$is loaded
3 a := agent t .store
4 assume ∀p1 : ObjectId ; h : Heap :

$precondition1(a, p1, h) = $prestore(a, t , p1, h)
5 assume ∀p1 : ObjectId ; h, h ′ : Heap :

$postcondition1(a, p1, h, h
′) = $poststore(a, t , p1, h, h

′)
6 assert $precondition1(a, “HelloWorld”,Heap)
7 c.log(a, “HelloWorld”)

86 Reasoning about Function Objects

Name Classes Routines Agents LOC Eiffel LOC Boogie Time [s]
1. Formatter 3 8 2 116 414 1.57
2. Archiver 4 7 1 119 440 1.58
3. Command 3 5 2 120 435 1.61
4. Calculator 3 10 15 243 817 25.14
5. ATM 4 18 13 486 1968 73.72
6. Cell / Recell 3 7 4 151 497 1.71
7. Counter 2 5 2 96 356 1.53
8. Sequence 5 9 2 200 526 1.78

Total 27 69 41 1513 5453 108.64

Tab. 4.1: Examples automatically verified by EVE Proofs

4.4.6 Experiments

Using the implemented tool, EVE Proofs, we have automatically proven a suite of exam-
ples: the examples presented in Section 4.2, and several more extensive agent-intensive
programs to model graphical user interfaces. The examples can be downloaded from
http://se.ethz.ch/people/tschannen/examples.zip. The experiments were run on
a machine with a 2.71 GHz dual core Pentium processors with 2GB of RAM.

Table 4.1 presents the results of the experiments. For each example, the table shows
the number of classes, routines, agents, and lines of code in Eiffel, as well as the number
of lines of the encoding in Boogie. The last column shows the running time of Boogie (the
dominant factor in the verification).

The formatter and archiver examples have been discussed in the previous sections.
The third example is a typical implementation of the command pattern [40]. It defines
a command class that uses an agent to store an action, which will be executed when
the command’s execute function is called. This pattern is also used in the calculator and
ATM examples, which model applications using graphical user interfaces (GUI). The
calculator example implements the GUI of a simple calculator with buttons for the digits,
and basic arithmetic operations such as addition, subtraction, and multiplication. The
ATM example implements a GUI for an ATM machine, and it also implement client code
where a pin number is entered, and money is deposited and withdrawn from an account.
These two examples are of particular interest because the GUI libraries in Eiffel typically
use agents to react on events.

The cell/recell example is an extension of an example by Parkinson and Bierman [102]
with agents. The counter example implements a simple counter class with increase and
decrease operations. The last example defines a class hierarchy for integer sequences in-
troducing an arithmetic and Fibonacci sequence.

http://se.ethz.ch/people/tschannen/examples.zip

4.5 Related Work 87

4.5 Related Work

Jacobs [54] as well as Müller and Ruskiewicz [83] extend the Boogie verification method-
ology to handle C# delegates. They associate pre- and postconditions with each delegate
type. When the delegate type is instantiated, they prove that the specification of the
method refines the specification of the delegate type. At the call site, one has to prove
the precondition and may assume the postcondition of the delegate. By contrast, the
methodology presented here “hides” the specification behind abstract predicates. Callers
will in general require the predicates to hold that they need in order to call an agent. The
approach taken by Jacobs, Müller, and Ruskiewicz splits proof obligations into two parts,
the refinement proof when the delegate is instantiated and the proof of the precondition
when the delegate is called. This split makes it difficult to handle closed parameters, in
particular, the closed receiver of C# delegates. Both previous works use some form of own-
ership [65] to ensure that the receiver of a delegate instance has the properties required by
the method underlying the delegate. Our methodology requires only one proof obligation
when the agent is called and, avoids the complications and restrictions of ownership and
can be generalized to several closed parameters more easily.

Börger et al. [25] present an operational semantics of C# including delegates. The
semantics is given using abstract state machines. However, this work does not describe
how to apply this model to specify and verify C# programs.

Contracts have been integrated into higher-order functions. Findler et al. [39] integrate
contracts using a typed lambda calculus with assertions for higher-order functions. Honda
et al. [18, 51] introduce a sound compositional program logic for higher-order functions.
However, these solutions cannot be applied to object-oriented languages with their use of
the heap and side effects.

A key issue of reasoning about object-oriented programs is framing, that is, how to
conclude which heap changes affect which predicates. In this chapter, we simply assumed a
noninterference predicate # without prescribing a particular way of enforcing it. Suitable
candidates are separation logic [111, 97, 26], dynamic frames [59, 119, 118], or regions [4].
Separation logic offers separating conjunction to express noninterference. Both dynamic
frames and regions effect specifications for predicates and routines.

Parkinson and Bierman [101, 102] introduce abstract predicates to verify object-
oriented programs in separation logic. Abstract predicates are a powerful means to ab-
stract from implementation details and to support information hiding and inheritance.
Distefano and Parkinson [36] show the applicability of abstract predicates implementing
a tool to verify Java programs. The tool handles several design patterns such as the vis-
itor pattern, the factory pattern, and the observer pattern. The predicates we use for
the preconditions and postconditions of agents are inspired by abstract predicates. Even
though Parkinson and Bierman’s work and Distefano and Parkinson’s work do not handle
function objects, we believe that the ideas presented in this chapter also apply to their
setting.

88 Reasoning about Function Objects

Birkedal et al. [21] present higher-order separation logic, a logic for a second-order pro-
gramming language, and use it to verify an implementation of the Observer pattern [60].
In contrast to separation logic, the methodology presented in this chapter works with
standard first-order theorem provers.

Our encoding of the routines precondition and postcondition is based on previous work
on pure routines by Darvas [32], and Leino and Müller [67].

Part III

Proof Transformations

Chapter 5

The CIL Language and its Logic

Our proof-transforming compiler generates proofs in a logic for CIL. This chapter describes
a subset of the CIL language and the bytecode logic used in the proof transformation.
The subset of the CIL language includes push and pop instructions, branch instructions,
fields, object creation, method invocations, and exception handling using .try catch, and
.try .finally instructions. The bytecode logic is based on the logic developed by Bannwart
and Müller [6, 5]. The only contribution of this chapter is the extension of their logic to
exception handling. This contribution is presented in Section 5.2.3.

5.1 The CIL Bytecode Language

The bytecode language consists of interfaces and classes. Each class consists of methods
and fields. Methods are implemented as method bodies consisting of a sequence of labeled
bytecode instructions. Bytecode instructions operate on the operand stack, local variables
(which also include parameters), and the heap.

The bytecode language we use is a slight variant of CIL. We treat local variables
and routine arguments using the same instructions. Instead of using an array of local
variables like in CIL, we use the name of the source variable. Furthermore, to simplify
the translation, we assume the bytecode language has a type boolean. The bytecode
instructions and their informal description are the following (more detail about CIL see
[43]).

• ldc v : pushes a constant v onto the stack.

• ldloc x : pushes the value of a local variable or a method parameter x onto the stack.

• stloc x : pops the top element off the stack and assigns it to x .

92 The CIL Language and its Logic

• opf : assuming that f is a function that takes n input values to m output values,
opf removes the n top elements from the stack by applying f to them, and puts
the m output values onto the stack. We write binop if op is a binary function. We
consider the following binary instructions:

1. add, rem, mul, div: these instructions take 2 input values, and remove the 2 top
elements from the stack applying the operation addition, subtraction, multi-
plication or division respectively, and put the result onto the stack.

2. ceq, clt, cgl: these instructions take 2 input values, remove the 2 top elements
from the stack applying the operation equal, less than, greater than respec-
tively, and put the result onto the stack.

• brtrue l : transfers control to the point l if the top element of the stack is true and
unconditionally pops it.

• brfalse l : transfers control to the point l if the top element of the stack is false and
unconditionally pops it.

• br l : transfers control to the point l .

• leave l : exits from .try catch and .try .finally blocks transferring control to the point l .

• endfinally: exits the .finally block transferring control to the end of the block.

• checkcast T : checks whether the top element is of type T or a subtype thereof.

• newobj instance void Class::.ctor(). T : allocates a new object of type T and pushes
it onto the stack.

• callvirt M and call M : invokes the method M on an optional object reference and
parameters on the stack and replaces these values by the return value of the invoked
method (if M returns a value). The instruction call invokes non-virtual and static
methods, callvirt invokes virtual methods. The code depends on the actual type of
the object reference (dynamic dispatch).

• ldfld F : replaces the top element by its field F (an instance field).

• ldsfld F : replaces the top element by its field F (a static field).

• stfld F : sets the field F (an instance field) of the object denoted by the second-
topmost element to the top element of the stack, and pops both values.

• stsfld F : sets the field F (a static field) of the object denoted by the second-topmost
element to the top element of the stack, and pops both values.

5.2 A Bytecode Logic for CIL 93

• ret: returns to caller.

• nop: has no effect.

• .try { seq1 } catch T { seq2 }: executes the sequence of CIL instructions seq1. If any
instruction in seq1 throws an exception of type T , control is transferred to the first
instruction in seq2.

• .try { seq1 } .finally { seq2 }: executes the sequence of CIL instructions seq1, and
then it executes the sequence seq2 (even if an exception is triggered in seq1).

Example

Figure 5.1 shows an example of a bytecode program. This program is the result of the
compilation of the function sum presented in Section 3.1.5. The default initialization of
the variables i and Result is compiled in lines IL001− IL004. The from body is compiled
in lines IL005− IL009. The instruction at line IL009 transfers control to the label IL020
where the until expression is evaluated. This expression is compiled in lines IL020−IL025.
At label IL025, if the until expression evaluates to false, control is transferred to label
IL012. Lines IL012− IL019 translate the body of the loop.

5.2 A Bytecode Logic for CIL

The bytecode logic we use is an extension of the logic developed by Bannwart and
Müller [6]. It is a Hoare-style program logic, which is similar in its structure to the
source logic. In particular, both logics treat methods in the same way, contain the same
language-independent rules, and triples have a similar meaning. These similarities make
proof transformation feasible.

In the following sections, we present the bytecode logic. Section 5.2.1 and Section 5.2.2
are based on Bannwart and Müller’s logic. Section 5.2.3 is a contribution of this chapter.

5.2.1 Method and Instruction Specifications

Properties of methods are expressed by method specifications of the form
{P} m {Qn , Qe} where Qn is the postcondition after normal termination, Qe is the
exceptional postcondition, and m is a virtual method T : m or a method implemen-
tation T @m. Properties of method bodies are expressed by Hoare triples of the form
{P} comp {Q}, where P, Q are first-order formulas and comp is a method body. The
triple {P} comp {Q} expresses the following refined partial correctness property: if the
execution of comp starts in a state satisfying P, then (1) comp terminates in a state where

94 The CIL Language and its Logic

.method public int sum (int n) {
IL001 : ldc 0
IL002 : stloc Result
IL003 : ldc 0
IL004 : stloc i

// from body
IL005 : ldc 1
IL006 : stloc Result
IL007 : ldc 2
IL008 : stloc i
IL009 : br IL020

// loop body
IL012 : ldloc Result
IL013 : ldloc i
IL014 : add
IL015 : stloc Result
IL016 : ldloc i
IL017 : ldc 1
IL018 : add
IL019 : stloc i

// until expression
IL020 : ldloc i
IL021 : ldloc n
IL022 : ldc 1
IL023 : add
IL024 : ceq
IL025 : brfalse IL012
IL026 : ret Result

Fig. 5.1: Bytecode Program compiled from the Function sum presented on Section 3.1.5.

Q holds, or (2) comp aborts due to errors or actions that are beyond the semantics of the
programming language, or (3) comp runs forever.

In Bannwart and Müller’s logic, method specifications have the form {P} m {Q}. We
have extended the logic to handle exceptions; for this reason, method specifications have
the form {P} m {Qn , Qe}.

Each instruction is treated individually in the logic since the unstructured control
flow of bytecode programs makes it difficult to handle instruction sequences. Each indi-
vidual instruction Il in a method body p has a precondition El . An instruction with its
precondition is called an instruction specification, written as {El} l : Il .

The meaning of an instruction specification cannot be defined in isolation. The in-
struction specification {El} l : Il expresses that if the precondition El holds when the
program counter is at position l , then the precondition of Il ’s successor instruction holds
after normal termination of Il .

5.2 A Bytecode Logic for CIL 95

5.2.2 Rules

Rules for Instruction Specifications

The rules for instructions, except for method calls, have the following form:

El ⇒ wp(Il)

A ` {El} l : Il

where wp(Il) denotes the local weakest precondition of instruction Il . The rule specifies
that El (the precondition of Il) has to imply the weakest precondition of Il with respect
to all possible successor instructions of Il . The precondition El denotes the precondition
of the instruction Il . The precondition El+1 denotes the precondition of Il ’s successor
instruction. Table 5.1 shows the definition of wp.

Il wp(Il)

ldc v unshift(El+1[v/s(0)])

ldloc x unshift(El+1[x/s(0)])

stloc x (shift(El+1))[s(0)/x]

binop (shift(El+1))[s(1) op s(0)/s(1)]

brtrue l ′ (¬s(0)⇒ shift(El+1)) ∧ (s(0)⇒ shift(El ′))

brfalse l ′ (s(0)⇒ shift(El+1)) ∧ (¬s(0)⇒ shift(El ′))

br l ′ El ′

leave l ′ El ′

nop El+1

checkcast T El+1 ∧ τ(s(0)) � T

newobj T unshift(El+1[new($,T)/s(0), $〈T 〉/$]

ldfld T @a El+1[$(iv(s(0),T @a))/s(0)] ∧ s(0) 6= null

stfld T @a (shift2(El+1))[$〈iv(s(1),T @a) := s(0)〉/$] ∧ s(1) 6= null

ret true

Tab. 5.1: Definition of function wp.

Within an assertion, the current stack is referred to as s , and its elements are denoted
by non-negative integers: element 0 is the topmost element, etc. The interpretation
[El] : State × Stack → Value for s is defined as follows:

96 The CIL Language and its Logic

[s(0)] 〈S , (σ, v)〉 = v and
[s(i + 1)] 〈S , (σ, v)〉 = [s(i)]〈S , σ〉

The functions shift and unshift define the substitutions that occur when values are
pushed onto and popped from the stack, respectively. Their definitions are the following:

shift(E) = E [s(i + 1)/s(i) for all i ∈ N] and
unshift = shift−1

shiftn denotes n consecutive applications of shift .

Connecting Instruction and Method Specifications

To show that a CIL method m satisfies its specification, we have to prove that all the
instruction specifications of m holds, and that the precondition of m implies the precondi-
tion of the first CIL instruction, and that the postcondition of the last instruction implies
the normal postcondition of m. Instruction and method specifications are connected using
the following rule:

P ⇒ E0 E|body(T@m)|−1 ⇒ Qn

∀i : {0, .., | body(T @m) | −1} : A ` {Ei}i : Ii

A `
{

P
}

body(T @m)
{

Qn , Qe

}
{P} body (T @m) {Qn , Qe} must be an admissible method specification, in particular
P ,Qn ,Qe must not refer to local variables.

Rules for Method Specifications

The rules for method specifications are identical to Poetzsch-Heffter and Müller’s [108]
rules in the source logic (presented in Section 3.1.4). In the following, we present the
routine implementation rule, the class rule, and the subtype rule.

Routine Implementation Rule:

A, {P} T @m {Qn , Qe} `
{

P
}

body(T @m)
{

Qn , Qe

}
A `

{
P
}

T @m
{

Qn , Qe

}

5.2 A Bytecode Logic for CIL 97

Class Rule:

A `
{
τ(Current) = T ∧ P

}
impl(T ,m)

{
Qn , Qe

}
A `

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
A `

{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}

Subtype Rule:
S � T

A `
{

P
}

S:m
{

Qn , Qe

}
A `

{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}

Language-Independent Rules

The bytecode logic has the same language-independent rule as the source logic. However,
these rules are only applied to virtual routines T:m , or routine implementations T @m.

Figure 5.2 shows the language-independent rules. The false axiom allows us to prove
anything assuming false. In the assumpt-axiom, assuming that a triple A holds, one can
conclude the same triple. The assumpt-intro-axiom allows us to introduce a triple A0 in
the hypothesis. The assumpt-elim-axiom allows eliminating a triple A0 in the hypothesis.

The strength rule allows proving a Hoare triple with an stronger precondition if the
precondition P ′ implies the precondition P , and the Hoare triple can be proved using the
precondition P . The weak rule is similar but it weakens the postcondition. This rule can be
used to weaken both the normal postcondition Qn , and the exceptional postcondition Qe .
The conjunction and disjunction rule, given two proofs for the same instruction but using
possible different pre- and postconditions, it concludes the conjunction and disjunction of
the pre- and postcondition respectively. The invariant rule conjuncts W in the precondi-
tion and postcondition assuming that W does not contain neither program variables or $.
The substitution rule substitutes Z by t in the precondition and postcondition. Finally,
the all-rule and ex-rule introduces universal and existential quantifiers respectively.

5.2.3 Exception Handling

The exception handling model of CIL is .try catch and .try .finally structures. These struc-
tures have a similar semantics to the try-catch and try-finally instructions in C# and
Java. The body of the .try, catch and .finally blocks are a sequence of CIL instructions.
Control can only exit a .try or catch block by triggering an exception or by the special

98 The CIL Language and its Logic

Assumpt-axiom False axiom

A ` A `
{

false
}

s1

{
false , false

}
Assumpt-intro-axiom Assumpt-elim-axiom

A ` A
A0,A ` A

A ` A0

A0,A ` A
A ` A

Strength Weak

P ′ ⇒ P
A `

{
P
}

s1

{
Qn , Qe

}
A `

{
P ′
}

s1

{
Qn , Qe

}
A `

{
P
}

s1

{
Qn , Qe

}
Qn ⇒ Q ′n
Qe ⇒ Q ′e

A `
{

P
}

s1

{
Q ′n , Q ′e

}

Conjunction Disjunction
A `

{
P ′
}

s1

{
Q ′n , Q ′e

}
A `

{
P ′′

}
s1

{
Q ′′n , Q ′′e

}
A `

{
P ′ ∧ P ′′

}
s1

{
Q ′n ∧Q ′′n , Q ′e ∧Q ′′e

}
A `

{
P ′
}

s1

{
Q ′n , Q ′e

}
A `

{
P ′′

}
s1

{
Q ′′n , Q ′′e

}
A `

{
P ′ ∨ P ′′

}
s1

{
Q ′n ∨Q ′′n , Q ′e ∨Q ′′e

}

Invariant Substitution
A `

{
P
}

s1

{
Qn , Qe

}
A `

{
P ∧W

}
s1

{
Qn ∧W , Qe ∧W

} A `
{

P
}

s1

{
Qn , Qe

}
A `

{
P [t/Z]

}
s1

{
Qn [t/Z] , Qe [t/Z]

}
where W is a Σ− formula, i .e. does not contain where Z is an arbitrary logical variable and
program variables or $. t a Σ− term.

all-rule ex-rule
A `

{
P [Y /Z]

}
s1

{
Qn , Qe

}
A `

{
P [Y /Z]

}
s1

{
∀Z : Qn , ∀Z : Qe

} A `
{

P
}

s1

{
Qn [Y /Z] , Qe [Y /Z]

}
A `

{
∃Z : P

}
s1

{
Qn [Y /Z] , Qe [Y /Z]

}
where Z , Y are arbitrary , but distinct logical where Z , Y are arbitrary , but distinct logical
variables. variables.

Fig. 5.2: Language-Independent Rules for the Bytecode Logic

5.2 A Bytecode Logic for CIL 99

instruction leave. Control can only exit a .finally block by triggering an exception or by
the special instruction endfinally. It is not possible to branch into .try, catch and .finally
blocks.

Since the only way to exit these block is triggering an exception or using the leave and
endfinally instructions, we assume that the last instruction of the .try and catch blocks is
a leave instruction, and the last instruction of a .finally block is a endfinally instruction.
This assumption is made to simplify the presentation of the rules. The syntax of these
instructions is as follows:

CilInstruction ::= Instruction // CIL instructions as described in Section 5.1
| TryCatchBlock
| TryFinallyBlock

TryCatchBlock ::= .try {
list of CilInstruction
Label : leave Label
}
catch CilType {

list of CilInstruction
Label : leave Label
}

TryFinallyBlock ::= .try {
list of CilInstruction
Label : leave Label
}
.finally{

list of CilInstruction
Label : endfinally
}

Formalization

If an exception is triggered in a .try block, control is transferred to the corresponding catch
block. We introduce the function handler , which returns the label where the exception is
caught. To formalize this function, we use an exception table similar to the JVM exception
table. This table can be constructed from the CIL program. The definition of this table
is the following:

ExcTable := List [ExcTableEntry]
ExcTableEntry := [start : Label , end : Label , target : Label , excType : Type]

In the type ExcTableEntry, the first label is the starting label of the exception line, the
second denotes the ending label, and the third is the target label. An exception of type T1

100 The CIL Language and its Logic

thrown at line l is caught by the exception entry [lstart , lend ,ltarg ,T2] if and only if lstart ≤
l < lend and T1 � T2. Control is then transferred to ltarg .

Given a CIL program, the definition of the exception table is given by the .try, catch,
and .finally blocks. We use the function table to build the exception table. Its definition
is the following:

table : CilProgram → ExcTable
table [] = []

table
(

.try{ w }
catch T { z }

)
#xs l T = [ln , lm+1, li ,T] + table w + table z + table xs

table
(

.try{ w }

.finally { z }

)
#xs l T = [ln , lm+1, li , any] + table w + table z + table xs

table x#xs = table xs

where w = ln : Instn , ..., lm : Instm and z = li : Instm , ..., lj : Instj

The function handler takes the exception table, the type of the current exception,
and the label where the exception is triggered, and it returns the label where control is
transferred. The function handler is defined as follows:

handler : ExcTable × Label × Type → Label
handler [] l T = arbitrary
handler (x#xs) l T = if (x .start ≤ l < x .end ∧ T � x .excType) then (x .target)

else (handler xs l T)

Rules

In the following, we present the rules for throw instruction, and .try catch and .try .finally
structures. Furthermore, we extent Bannwart and Müller’s method call rule [6] to handle
exceptions.

Throw. To prove the instruction specification { P } l: throw, we need to show that
the P implies the precondition of the instruction where the exception is caught. This
precondition is obtained using the function handler . To simplify the notation, we write
handler(l) for the application of the function handler with the exception table constructed
from the current CIL program, the label l , and the type of the current exception value.
The rule for throw is defined as follows:

5.2 A Bytecode Logic for CIL 101

P ⇒ Ehandler(l) [s(0)/excV]

A ` { P } l : throw

Similar to the source logic, we use the variable excV to store the current exception
value. The instruction throw takes the top of the stack (an object of type Exception), and
assigns it to excV . Then, control is transferred to the label where the exception is caught.
In the implication P ⇒ Ehandler(l) [s(0)/excV], the replacement [s(0)/excV] is used to
assign the top of the stack to excV . Note that the instruction throw does not pop the
exception; after control is transferred, the exception is still on top of the stack.

Try-catch. The body of the .try block as well as the body of the catch block is a sequence
of instruction specifications. The precondition of the .try instruction is defined by the
precondition of the first instruction in the .try block. In a similar way, the precondition of
the catch block is defined by the precondition of the first instruction of the catch block.
To show that a .try catch block is valid, we need to show that all the instructions in the
.try and the catch blocks are valid.

Let seq1 and seq2 be a list of instruction specifications, the rule is the following:

∀ InstSpec ∈ seq1 + seq2 : A ` InstSpec

A ` .try{ seq1 } catch T { seq2 }

Try-finally. The semantics of the .try .finally structure is as follows. First, the instruc-
tions of the .try block are executed. If any of these instructions triggers an exception,
control is transferred to the finally block, and after its execution the exception is propa-
gated. If there is no exception, then the .try block terminates with a leave l instruction.
Thus, control is transferred to the finally block, and after its execution control is trans-
ferred to the label l . In both cases, if the .finally block triggers an exception, control is
transfer to the place where the exception is caught.

The .try block is a sequence of CIL instructions. This sequence can contain several leave
instructions, and we assume that the last instruction of the block is a leave instruction
(thus, there is at least one leave instruction). The .finally block is also a sequence of CIL
instruction. The last instruction of the .finally is a endfinally instruction. To show that the
.try .finally is valid, we need to show the following:

1. All instructions in the .try and .finally blocks are valid (except for the leave instruc-
tions in the .try block).

2. For all instruction specifications { P} l: leave k in the .try block, the following holds:

• the precondition of the leave implies the precondition of the first instruction in
the .finally block.

102 The CIL Language and its Logic

• If the exception value is null, the precondition of the endfinally instruction
implies the precondition at the label k .

3. If the exception value is not null, the precondition of the endfinally instruction implies
the precondition where the exception is caught.

Let seq1 and seq2 be lists of instruction specifications defined as follows:

seq1 = {P1} l1 : I1 ... {Pi}li : leave ln
seq2 = {Pj} lj : Ij ... {Pk}lk : endfinally

Let seq ′1 denotes all the CIL instructions in seq1 except for the leave instructions. The
rule is defined as follows:

∀ InstSpec ∈ seq ′1 + seq2 : A ` InstSpec

for all leave instructions ∈ seq1 of the form {Pi ′}li ′ : leave ln ′ then
Pi ′ ⇒ Pj and

excV = null ∧ Pk ⇒ Eln′

excV 6= null ∧ Pk ⇒ handler(li)

A ` .try { seq1 } .finally { seq2 }

The rule uses the sequence seq ′1 instead of seq1 because the leave instructions in the
.try block of a .try .finally instruction have a special semantics. The precondition of the
leave has to imply the precondition of the first instruction of the .finally block (if the leave
instruction is used outside a .try .finally instruction, the precondition of the leave implies
the precondition of its target label).

Method Calls. In this section, we extend Bannwart and Müller’s method call rule [6]
to handle exceptions. To prove the call of a virtual routine T:m, one has to show:

1. T:m satisfies its method specification A `
{

P
}

T:m
{

Qn , Qe

}
,

2. If s(1) is not null, the precondition of the callvirt instruction, El , implies the precon-
dition of the method specification, P , with actual arguments replaced by the formal
parameters,

3. If s(1) is null, the precondition of the callvirt instruction, El , implies the precondition
where the null reference exception is caught,

4. If T:m does not trigger an exception (excV is null), the normal postcondition, Qn ,
implies the precondition of the successor instruction, El+1, with Result replaced by
top of the stack, and

5.2 A Bytecode Logic for CIL 103

5. If T:m triggers an exception (excV is not null), the exceptional postcondition, Qe ,
implies the precondition at the label where the exception is caught.

To simplify the rule, the function handler does not take the current exception table
explicitly. The rule is defined as follows:

A `
{

P
}

T:m
{

Qn , Qe

}
s(1) 6= null ∧ El ⇒ P [s(1)/this , s(0)/p][shift(w)/Z]

s(1) = null ∧ El ⇒ Ehandler(l ,NullReference)

excV = null ∧ Qn [s(0)/result][w/Z]⇒ El+1

excV 6= null ∧ Qe [w/z] ⇒ Ehandler(l , τ(excV))

A ` {El} l : callvirt T:m
cil invocation rule

where Z is a vector Z0, ...,Zn of logical variables and w is a vector w0, ...,wn of local
variables or stack elements (different from s(0)).

A method call does not modify the local variables and the evaluation stack of the
caller, except for popping the arguments and pushing the result of the call. To express
these frame properties, the invocation rule allows one to substitute logical variables in
the methods pre- and postcondition by local variables and stack elements of the caller.
However, s(0) must not be used for a substitution because it contains the result of the
call, that is, its value is not preserved by the call.

5.2.4 Example

In the following, we present part of the bytecode proof of the example in Figure 5.1. We
have applied the bytecode logic to the from body of the loop (lines IL005 − IL009). To
make the proof more interesting, we change the compiled bytecode. First, the constants
2 and 1 are pushed, and then the values are popped to the variables i and Result . The
complete proof of example 5.1 is presented in Section 6.6. The bytecode specifications are
the following:

{ n > 1 } IL005 : ldc 2
{ n > 1 ∧ s(0) = 2 } IL006 : ldc 1
{ n > 1 ∧ s(0) = 1 ∧ s(1) = 2 } IL007 : stloc Result
{ n > 1 ∧ Result = 1 ∧ s(0) = 2 } IL008 : stloc i
{ n > 1 ∧ Result = 1 ∧ i = 2 } IL009 : br IL020

To be able to show that the bytecode specifications at labels IL005− IL008 are valid,
we need to show:

104 The CIL Language and its Logic

for all l : {IL005, ..., IL008} :
El ⇒ wp(Il)

` {El} l : Il

We prove it applying the wp definition. In the following, we present this proof.

• Case IL005 :
(n > 1)⇒ wp(ldc 2)

` { n > 1 } IL005 : ldc 2

Applying the wp definition for ldc, we need to prove:

(n > 1)⇒ unshift((n > 1 ∧ s(0) = 2)[2/s(0)])

We prove this implication as follows:

(n > 1)⇒ unshift((n > 1 ∧ s(0) = 2)[2/s(0)])

[definition of replacement]

(n > 1)⇒ unshift(n > 1 ∧ 2 = 2)

[definition of unshift]

(n > 1)⇒ (n > 1 ∧ 2 = 2)

2

• Case IL006 :
(n > 1 ∧ s(0) = 2)⇒ wp(ldc 1)

` { n > 1 ∧ s(0) = 2 } IL006 : ldc 1

By the definition of wp for ldc, we need to prove:

(n > 1 ∧ s(0) = 2)⇒ unshift((n > 1 ∧ s(0) = 1 ∧ s(1) = 2)[1/s(0)])

We show that this implication holds applying the definitions of replacement and

unshift :

(n > 1 ∧ s(0) = 2)⇒ unshift((n > 1 ∧ s(0) = 1 ∧ s(1) = 2)[1/s(0)])

[definition of replacement]

(n > 1 ∧ s(0) = 2)⇒ unshift(n > 1 ∧ 1 = 1 ∧ s(1) = 2)

[definition of unshift]

(n > 1 ∧ s(0) = 2)⇒ (n > 1 ∧ 1 = 1 ∧ s(0) = 2)

2

5.2 A Bytecode Logic for CIL 105

• Case IL007 :
(n > 1 ∧ s(0) = 1 ∧ s(1) = 2)⇒ wp(stloc Result)

` { n > 1 ∧ s(0) = 1 ∧ s(1) = 2 } IL007 : stloc Result

By the definition of wp for stloc, we need to show:

(n > 1∧s(0) = 1∧ s(1) = 2)⇒ shift(n > 1 ∧ Result = 1 ∧ s(0) = 2) [s(0)/Result]

We prove this implication in the following way:

(n > 1 ∧ s(0) = 1 ∧ s(1) = 2)⇒ shift(n > 1 ∧ Result = 1 ∧ s(0) = 2)[s(0)/Result]

[definition of shift]

(n > 1 ∧ s(0) = 1 ∧ s(1) = 2)⇒ (n > 1 ∧ Result = 1 ∧ s(1) = 2)[s(0)/Result]

[definition of replacement]

(n > 1 ∧ s(0) = 1 ∧ s(1) = 2)⇒ (n > 1 ∧ s(0) = 1 ∧ s(1) = 2)

2

• Case IL008 :
(n > 1 ∧ Result = 1 ∧ s(0) = 2)⇒ wp(stloc i)

` { n > 1 ∧ Result = 1 ∧ s(0) = 2 } IL008 : stloc i
.

By the definition of wp for stloc, we need to show:

(n > 1 ∧ Result = 1 ∧ s(0) = 2)⇒ shift(n > 1 ∧ Result = 1 ∧ i = 2)[s(0)/i]

We prove it as follows:

(n > 1 ∧ Result = 1 ∧ s(0) = 2)⇒ shift(n > 1 ∧ Result = 1 ∧ i = 2) [s(0)/i]

[definition of shift]

(n > 1 ∧ Result = 1 ∧ s(0) = 2)⇒ (n > 1 ∧ Result = 1 ∧ i = 2) [s(0)/i]

[definition of replacement]

(n > 1 ∧ Result = 1 ∧ s(0) = 2)⇒ (n > 1 ∧ Result = 1 ∧ s(0) = 2)

2

106 The CIL Language and its Logic

Chapter 6

Proof-Transforming Compilation
for the Core Language

Our proof-transforming compiler translates Hoare-style proofs of source programs into
bytecode proofs. This chapter presents a proof-transforming compiler for the core object-
oriented language. The compiler is based on four transformation functions: one function
∇P to translate the source proof, one function, ∇B to translate a proof tree, one function
∇S for instructions, and one for expressions ∇E . The function ∇P yields a list of CIL
proofs (a derivation in the bytecode logic); and the function ∇B yields a CIL proof. The
functions∇E and∇S yield a sequence of CIL bytecode instructions and their specification.

This chapter is organized as follows. First, we present the basics for the translation.
Second, we present the translation of virtual routine and routine implementations, the
translation of expressions, the translation of instructions, and the translation of language-
independent rules. Finally, the chapter shows an application of the proof transformation,
and it concludes with the soundness theorem and related work.

This chapter is based on the technical report [81].

6.1 Translation Basics

The proof of the source program consists of a list of proof trees, where a proof tree is a
derivation in the source logic as defined in Chapter 3, Section 3.1. The definition is:

datatype Proof = list of ProofTree

Bytecode proofs consist of a list of CIL proof trees, where a CIL proof tree is a
derivation in the CIL logic as defined in Chapter 5. This derivation is the application of
the CIL method specification rules such as the routine implementation rule, the class rule,
and the language independent rules. The leaves of the CIL proof trees are bytecode proofs

108 Proof-Transforming Compilation for the Core Language

(a list of instruction specifications). These leaves connect the CIL method specification
rules and the instruction specifications. The connection is done by applying the cil method
body rule (Section 5.2.2). An instruction specification consists of a precondition, a label,
and a CIL intruction. The definition is:

datatype CILProof = list of CILProofTree
datatype BytecodeProof = list of InstrSpec
datatype InstrSpec = Precondition Label Instruction

Translating Source Proofs. The main translation function ∇P takes a source proof,
and yields a CIL proof. This function is defined using the function ∇B , which translates
the source proof tree. To be able to translate the source proof, we use the function ∇S

for the translation of instructions, and the function ∇E for expressions. The signatures of
these functions are defined as follows:

∇P : Proof → CILProof

∇B : ProofTree → CILProofTree

∇E : Precondition × Expression × Postcondition × Label → BytecodeProof

∇S : ProofTree × Label × Label × Label → BytecodeProof

The definitions of the function ∇P is straightforward. Given a source proof p defined
as the list tree1, ..., treen , where treei is a proof tree in the source logic, the function ∇P

is defined as follows:

∇P (p) = ∇B(tree1) + ...+∇B(treen)

The definition of the function ∇B is presented in the following section. The functions
∇E and ∇S are defined in Section 6.3 and Section 6.4, respectively.

6.2 Proof Translation of Routines

The logic for the source language and the logic for bytecode treat routine specifications
in the same way: using virtual routines T :m and routine implementations T @m. In the
bytecode logic, the rules for method specifications are similar to the rules in the logic of
the source language. Furthermore, the bytecode logic has language-independent rule that
can be applied to method specifications. This treatment of routine specifications makes
the proof transformation simpler.

6.2 Proof Translation of Routines 109

The translation of virtual routines and routine implementations are performed using
the function ∇B . This function takes a proof tree of a routine specification (a derivation in
the source logic) and produces a CIL proof tree (a derivation in the CIL logic). Thus, we
define the function ∇B for all rules that allows proving routine specifications. These rules
are the class rule, subtype rule, routine implementation rule, and the language-independent
rules. Following, we present the translation of these rules.

6.2.1 Class Rule

Let Timp and Ttm be the following proof trees:

Timp ≡
Tree1

A `
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
Ttm ≡

Tree2

A `
{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
where Tree1 and Tree2 are the derivations used to prove the Hoare triples
of imp(T ,m) and T:m respectively.

The definition of the translation is the following:

∇B

 Timp Ttm

A `
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
 =

∇B(Timp) ∇B(Ttm)

A `
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

} cil class rule

Note that the translation of the class rule produces a derivation in the logic for CIL
that applies the CIL class rule. The hypothesis of this CIL rule is the translation of the
proof trees Timp and Ttm . To produce this translation, we apply the translation function
∇B to Timp and Ttm .

6.2.2 Subtype Rule

Let Tsm be the following proof tree:

110 Proof-Transforming Compilation for the Core Language

Tsm ≡
Tree1

A `
{

P
}

S:m
{

Qn , Qe

}
The definition of the translation of the subtype rule is the following:

∇B

 S � T Tsm

A `
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
 =

S � T ∇B(Tsm)

A `
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

} cil subtype rule

The translation of the subtype rule produces the CIL derivation that applies the CIL
subtype rule. The hypothesis of this derivation is the translation of the proof tree Tsm

and the expression S � T . The expression S � T does not need to be translated because
the class structures of the source and the bytecode are the same. (The CIL subtyping
function is also denoted with �).

6.2.3 Routine Implementation Rule

Let Tbody be the following proof tree:

Tbody ≡
Tree1

A, {P} T @m {Qn , Qe} `
{

P
}

body(T @m)
{

Qn , Qe

}
The translation is defined as follows:

∇B

 Tbody

A `
{

P
}

T @m
{

Qn , Qe

}
 =

∇S (Tbody)

A, {P}T@m{Qn ,Qe} `
{

P
}

body cil(T@m)
{

Qn , Qe

} cil body rule

A `
{

P
}

T@m
{

Qn , Qe

} cil r. impl. rule

6.2 Proof Translation of Routines 111

This translation first applies the CIL routine implementation rule. The hypothesis of
this rule application is the application of the CIL body rule. The body rule allows connect-
ing the CIL method specification and the CIL instruction specification. The hypothesis
of the body rule is a list of bytecode specifications produced by the translation function
∇S . The function ∇S is defined in Section 6.4.

6.2.4 Language-Independent Rules for Routines

In the logic for the source language, languages-independent rules are applied to both rou-
tine specifications and instructions specifications. We translate these rules in two parts:
the translation of language-independent rules for routine specifications and the translation
for instructions. These two translation are needed because they produce different results.
The translation of routine specifications produces a derivation in the bytecode language,
and the translation of instructions produces a list of bytecode specifications. In this sec-
tion, we present the translation of language-independent rules for routine specifications;
Section 6.5 presents the translation of language-independent rules for instructions.

To translate these rules for routine specification, we use the language-independent
rules of the bytecode logic.

Assumpt-axiom

The assumpt axiom in the logic for the source language is translated using the assumpt
axiom of the bytecode logic as follows:

∇B

(
A ` A

)
=

A ` A
cil assumpt axiom

False axiom

To translate the false axiom, we use the false axiom of the bytecode logic. The translation
is :

∇B

(
`
{

false
}

s1

{
false , false

})
=

`
{

false
}

s1

{
false , false

} cil false axiom

Assumpt-intro-axiom

Let TA be the following proof tree:

112 Proof-Transforming Compilation for the Core Language

TA ≡
Tree1

A ` A
The assumpt-intro-axiom in the logic of the source program is mapped to the assumpt-

intro-axiom of bytecode logic using as hypothesis the translation of the hypothesis of the
source triple:

∇B

(
TA

A0,A ` A

)
=

∇B (TA)

A0,A ` A
cil assumpt-intro-axiom

Assumpt-elim-axiom

Let TA and TA0 be the following proof trees:

TA ≡
Tree1

A ` A0
TA0 ≡

Tree2

A0,A ` A

The assumpt-elim-axiom is translated using the CIL assumpt-elim-axiom where the
hypothesis are the translations of the hypotheses in the source rule. This translation is
defined as follows:

∇B

(
TA TA0

A ` A

)
=

∇B (TA) ∇B (TA0)

A ` A
cil assumpt-elim-axiom

Strength

Let TS1 be the following proof tree:

TS1 ≡
Tree1

A `
{

P
}

s1

{
Qn , Qe

}
The definition is:

∇B

(
P ′ ⇒ P TS1

A `
{

P ′
}

s1

{
Qn , Qe

})
=

P ′ ⇒ P ∇B (TS1)

A `
{

P ′
}

s1

{
Qn , Qe

} cil strength rule

This translation uses the CIL strength rule. We assume that the implication P ′ ⇒ P
is proved in a theorem prover. Since the translation does not modify the expressions P ′

and P , the same proof is used in the bytecode proof. We assume that the proof checker
verifies the proof with the same theorem prover used to develop the source proof. These
assumptions simplify the translation.

6.2 Proof Translation of Routines 113

Weak

Let TS1 be the following proof tree:

TS1 ≡
Tree1

A `
{

P
}

s1

{
Qn , Qe

}
The translation is defined as following:

∇B

(
TS1 Qn ⇒ Q ′n Qe ⇒ Q ′e

A `
{

P
}

s1

{
Q ′n , Q ′e

})
=

∇B (TS1) Qn ⇒ Q ′n Qe ⇒ Q ′e

A `
{

P
}

s1

{
Q ′n , Q ′e

} cil weak rule

Similar to the translation of the strength rule, the proofs of implications Qn ⇒ Q ′n
and Qe ⇒ Q ′e .

Conjunction

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1

A `
{

P ′
}

s1

{
Q ′n , Q ′e

} TS2 ≡
Tree2

A `
{

P ′′
}

s1

{
Q ′′n , Q ′′e

}
The translation of the conjunction rule yields the application of the CIL conjunction

rule. The definition is:

∇B

(
TS1 TS2

A `
{

P ′ ∧ P ′′
}

s1

{
Q ′n ∧Q ′′n , Q ′e ∧Q ′′e

})
=

∇B (TS1) ∇B (TS2)

A `
{

P ′ ∧ P ′′
}

s1

{
Q ′n ∧Q ′′n , Q ′e ∧Q ′′e

} cil conjunction rule

Disjunction

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1

A `
{

P ′
}

s1

{
Q ′n , Q ′e

} TS2 ≡
Tree2

A `
{

P ′′
}

s1

{
Q ′′n , Q ′′e

}

114 Proof-Transforming Compilation for the Core Language

Similar to the conjunction rule, this translation yields the application of the CIL
disjunction rule. The definition is:

∇B

(
TS1 TS2

A `
{

P ′ ∨ P ′′
}

s1

{
Q ′n ∨Q ′′n , Q ′e ∨Q ′′e

})
=

∇B (TS1) ∇B (TS2)

A `
{

P ′ ∨ P ′′
}

s1

{
Q ′n ∨Q ′′n , Q ′e ∨Q ′′e

} cil disjunction rule

Invariant

Let TS1 be the following proof tree:

TS1 ≡
Tree1

A `
{

P
}

s1

{
Qn , Qe

}
The translation is defined as follows:

∇B

(
TS1

A `
{

P ∧W
}

s1

{
Qn ∧W , Qe ∧W

})
=

∇B (TS1)

A `
{

P ∧W
}

s1

{
Qn ∧W , Qe ∧W

} cil invariant rule

Substitution

Let TS1 be the following proof tree:

TS1 ≡
Tree1

A `
{

P
}

s1

{
Qn , Qe

}
The translation is the following:

∇B

(
TS1

A `
{

P [t/Z]
}

s1

{
Qn [t/Z] , Qe [t/Z]

})
=

∇B (TS1)

A `
{

P [t/Z]
}

s1

{
Qn [t/Z] , Qe [t/Z]

} cil substitution rule

6.3 Proof Translation of Expressions 115

All-rule

Let TS1 be the following proof tree:

TS1 ≡
Tree1

A `
{

P [Y /Z]
}

s1

{
Qn , Qe

}
The translation is:

∇B

(
TS1

A `
{

P [Y /Z]
}

s1

{
∀Z : Qn , ∀Z : Qe

})
=

∇B (TS1)

A `
{

P [Y /Z]
}

s1

{
∀Z : Qn , ∀Z : Qe

}
Ex-rule

Let TS1 be the following proof tree:

TS1 ≡
Tree1

A `
{

P
}

s1

{
Qn [Y /Z] , Qe [Y /Z]

}
The translation is:

∇B

(
TS1

A `
{
∃Z : P

}
s1

{
Qn [Y /Z] , Qe [Y /Z]

})
=

∇B (TS1)

A `
{
∃Z : P

}
s1

{
Qn [Y /Z] , Qe [Y /Z]

}
6.3 Proof Translation of Expressions

Expressions are translated using the function ∇E . This function generates a bytecode
proof from a source expression and a precondition for its evaluation. This function is
defined as a composition of the translations of the subexpressions. The signature is:

∇E : Precondition × Expression × Postcondition × Label → BytecodeProof

In∇E the label is used as the starting label of the translation. Following, we present the
translation of constants, variables, unary and binary expressions. To simplify the transla-
tion, we do not distinguish between arguments and local variables. Thus, the translation
uses stloc or ldloc instead of starg and ldarg when the variable is an argument.

116 Proof-Transforming Compilation for the Core Language

6.3.1 Constants

Constants are translated using the ldc instruction. The constant is loaded on top of the
stack. The precondition of the instruction specification is Q ∧ unshift(P [c/s(0)]). The
translation is defined as follows:

∇E (Q ∧ unshift(P [c/s(0)]) , c , shift(Q) ∧ P , lstart) =

{Q ∧ unshift(P[c/s(0)])} lstart : ldc c

Although, the PTC is not part of the trusted computing base, it is interesting to prove
soundness. Soundness means that the compiler produces a valid proof. To show that the
translation is sound one needs to show that the precondition at label lstart implies the
weakest precondition of the instruction ldc using the postcondition shift(Q) ∧ P . This
implication holds as follows:

Q ∧ unshift(P [c/s(0)]) implies wp(ldc c, shift(Q) ∧ P)

⇔ [definition of wp]

Q ∧ unshift(P [c/s(0)]) implies unshift(shift(Q) ∧ P [c/s(0)])

⇔ [definition of unshift]

Q ∧ unshift(P [c/s(0)]) implies Q ∧ unshift(P [c/s(0)])

2

6.3.2 Variables

Similar to the translation of constants, variables are translated loading the variable on
top of the stack using the instruction ldloc. The definition is:

∇E (Q ∧ unshift(P [x/s(0)]) , x , shift(Q) ∧ P , lstart) =

{Q ∧ unshift(P[x/s(0)])} lstart : ldloc x

6.3.3 Binary Expressions

To translate binary expressions e1 op e2, first the expression e1 is translated applying
the function ∇E , then the expression e2 is translated, and finally the binary operation is
added. The translation is defined as follows:

6.4 Poof Translation of Instructions 117

∇E (Q ∧ unshift(P [e1 op e2/s(0)]) , e1 op e2 , shift(Q) ∧ P , lstart) =

∇E (Q ∧ unshift(P [e1 op e2/s(0)]) , e1 , shift(Q) ∧ P [s(0) op e2/s(0)] , lstart)

∇E (shift(Q) ∧ P [s(0) op e2/s(0)] , e2 , shift2(Q) ∧ shift P [s(1) op s(0)/s(1)] , lb)

{ shift2(Q) ∧ shift(P [s(1) op s(0)/s(1)]) } lc : binopop

The instruction binop pops the top two values from the stack, then it applies the binary
operation, and finally pushes the result on top of the stack. To obtain this translation, we
have applied the weakest precondition starting with the postcondition shift(Q) ∧ P . The
definition of wp of binop is (shift(El+1))[(s(1)ops(0))/s(1)], so we get:

shift2(Q) ∧ shift(P [s(1) op s(0)/s(1)])

The precondition of the translation of e2 is obtained replacing s(0) by e2, and then
applying unshift (this result is the application of wp definition for ldloc). Finally, the
precondition of e1 is the obtained replacing s(0) by e1, and applying the function unshift .

6.3.4 Unary Expressions

Unary expressions are translated in a similar way to binary operations. The subexpression
e is translated using the translation function ∇E . The definition is:

∇E (Q ∧ unshift(P [unop e/s(0)]) , unop e , shift(Q) ∧ P , lstart) =

∇E (Q ∧ unshift(P [unop e/s(0)]) , e , shift(Q) ∧ P [unop s(0)/s(0)] , lstart)

{shift(Q) ∧ P [unop s(0)/s(0)]} lb : unopop

6.4 Poof Translation of Instructions

Instructions are translated using the function ∇S . This function takes a proof tree (a
derivation in the source logic), and yields a sequence of Bytecode instructions and their
specifications. The function ∇S is defined as a composition of the translations of the
proof’s sub-trees. The signature is:

118 Proof-Transforming Compilation for the Core Language

∇S : ProofTree × Label × Label × Label → BytecodeProof

In∇S , the three labels are: (1) start for the first label of the resulting bytecode; (2) next
for the label after the resulting bytecode; this is for instance used in the translation of an
else branch to determine where to jump at the end; (3) exc for the jump target when an
exception is thrown. In this chapter, the label exc always refer to the last instruction of the
routine since the source language does not contain instructions for catching exceptions.
The translation is extended in Chapter 7 with the translation of rescue clauses, and in
Chapter 8 with the translation of try-catch, try-finally, and throw instructions.

6.4.1 Assignment Axiom

In the assignment translation, first the expression e is translated using the function ∇E .
Then, the result is stored to x using stloc. The definition of the translation is the following:

∇S


A `

{
(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

} , lstart , lnext , lexc

 =

∇E

((
(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

)
, e , (shift(safe(e) ∧ P [e/x]) ∧ s(0) = e) , lstart

)

{
shift(safe(e) ∧ P [e/x]) ∧ s(0) = e

}
lb : stloc x

The precondition of the application of the function ∇E is the precondition of the
assignment rule. The postcondition of application of the function ∇E is

(shift(safe(e) ∧ P [e/x]) ∧ s(0) = e)

because if e triggers an exception, control is transferred to the end of the routine. The
precondition of the assignment is equal to the precondition of application of ∇E . Also,
the postcondition of ∇E implies the precondition at the label lb . Applying the definition
of the weakest precondition of stloc x to P we can show that the instruction specification
at lb is valid:

6.4 Poof Translation of Instructions 119

shift(safe(e) ∧ P [e/x]) ∧ s(0) = e implies wp(stloc x ,P)

⇔ [definition of wp]

shift(safe(e) ∧ P [e/x]) ∧ s(0) = e implies shift(P [s(0)/x])

2

Therefore, the translation produces a sequence of valid instruction specifications. Sec-
tion 6.7 discusses soundness.

6.4.2 Compound Rule

Compound instructions are the simplest instructions to translate. The translation of s2

is added after the translation of s1 where the starting label is updated to lb . Let TS1 and
TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn , Re

} TS2 ≡
Tree2{

Qn

}
s2

{
Rn , Re

}
The definition of the translation is the following:

∇S

 TS1 TS2{
P
}

s1; s2

{
Rn , Re

} , lstart , lnext , lexc

 =

∇S (TS1 , lstart , lb , lexc)

∇S (TS2 , lb , lnext , lexc)

The bytecode for s1 establishes Qn , which is the precondition of the first instruction
of the bytecode for s2. Therefore, the concatenation of the bytecode as the result of the
translation of s1 and s2 produces a sequence of valid instruction specifications.

6.4.3 Conditional Rule

Let TS1 and TS2 be the following proof trees:

120 Proof-Transforming Compilation for the Core Language

TS1 ≡
Tree1

A `
{

P ∧ e
}

s1

{
Qn , Qe

}
TS2 ≡

Tree2

A `
{

P ∧ ¬e
}

s2

{
Qn , Qe

}
The translation is defined as follows:

∇S


TS1 TS2

A `
{

P
} if e then s1

else s2 end

{
Qn , Qe

} , lstart , lnext , lexc

 =

∇E (P , e , (shift(P) ∧ s(0) = e) , lstart)

{shift(P) ∧ s(0) = e} lb : brtrue le

∇S (TS2 , lc, ld , lexc)

{Qn} ld : br lnext

∇S (TS1 , le , lnext , lexc)

In this translation, the expression of the conditional is translated using ∇E . After
the translation ∇E , the expression is on top of the stack (thus, s(0) = e). If e is true,
control is transferred to le , and the translation of s1 is obtained using ∇S . Otherwise, s2

is translated and control is transferred to the next instruction. Here, the argument lnext is
used to obtain the label of the next instruction. This argument avoids the generation of
nop instructions at the end of the translation.

The translation of the expression e establishes (shift(P) ∧ s(0) = e) because the
evaluation of the expression pushes the result on top of the stack. This postcondition
implies the precondition of the successor instruction lb . If the top of the stack evaluates
to true, then the precondition at lb implies the precondition of s1 since e = true. If the
top of the stack evaluates to false, then the precondition at lb implies the precondition of
s2. Both postconditions of lc and le implies Qn . Therefore, the produced bytecode proof
is valid.

6.4 Poof Translation of Instructions 121

6.4.4 Check Axiom

When a check instruction is translated, first the expression e is pushed on top of the
stack. If e evaluates to true, control is transferred to the next instruction. Otherwise, an
exception is thrown putting a new exception object on the top of the stack. The definition
of the translation is the following:

∇S

(
A `

{
P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
} , lstart , lnext , lexc

)
=

∇E (P , e, {shift(P) ∧ s(0) = e}, lstart)

{shift(P) ∧ s(0) = e} lb : brtrue lnext

{P ∧ ¬e} lc : newobj Exception()

{shift(P) ∧ ¬e ∧ s(0) = new($,Exception)} ld : throw

The translation of the expression e establishes shift(P) ∧ s(0) = e. This postcondition
implies the precondition at label lb . If s(0) evaluates to true, then e holds, and the
precondition shift(P) ∧ s(0) = e implies the normal postcondition of the check rule. If
s(0) evaluates to false, shift(P) ∧ s(0) = e implies P ∧ ¬e, and the precondition at lb
implies the precondition at ld . Finally, shift(P) ∧ ¬e ∧ s(0) = new($,Exception) implies
the exceptional postcondition of the check rule. Therefore, the produced bytecode proof
for the check rule is valid.

6.4.5 Loop Rule

Let TS1 be the following proof tree:

TS1 ≡
Tree1

A `
{
¬e ∧ I

}
s1

{
I , Re

}
The first step to translate the loop is to transfer control to lc where the until expression

is evaluated. The body of the loop, s1, is translated at label lb . Finally, the instruction
brfalse transfer control to the instruction at label lb if the until expression is false. The
definition is:

122 Proof-Transforming Compilation for the Core Language

∇S

 TS1

A `
{

I
}

until e loop s2 end
{

(I ∧ e) , Re

} , lstart , lnext , lexc

 =

{I } lstart : br lc

∇S (TS1 , lb , lc , lexc)

∇E (I , e, {shift(I) ∧ s(0) = e}, lc)

{shift(I) ∧ s(0) = e} ld : brfalse lb

The instruction br at label lstart preserves I , which is the precondition of the successor
instruction. The translation of the expression e establishes shift(I) ∧ s(0) = e because
the evaluation of the expression pushes the result on top of the stack. This postcondition
implies the precondition of the successor instruction ld . The precondition of ld implies both
possible successor instructions, namely ¬e ∧ I for the successor lb (the first instruction
of the translation of TS1) and I ∧ e for lnext . Finally, the translation of TS1 establishes I ,
which implies the precondition of its successor. Therefore, the produced bytecode proof
is valid.

6.4.6 Read Attribute Axiom

Let P ′ be the following precondition:

P ′ ≡


(y 6= Void ∧ P [$(instvar(y , S@a))/x]) ∨

(y = Void ∧ Qe

[
$〈NullPExc〉/$,
new($,NullPExc)/excV

]
)


The translation is the following:

∇S


A `

{
P ′
}

x := y .S@a
{

P , Qe

} , lstart , lnext , lexc

 =

{ P ′ } lstart : ldloc y

{ s(0) = y ∧ shift(P ′)} lb : ldfld S@a

{ s(0) = $(iv(y , S@a)) ∧ shift(P [$(iv(y , S@a))/x])} lc : stloc x

6.4 Poof Translation of Instructions 123

The translation of read attribute axiom first pushes the target object y on top of the
stack. Then, the value of the attribute a of the object y is obtained using the instruction
ldfld (load field). This instruction pops the target object and pushes the value of the field
S@a on top of the stack. Finally, this value is assigned to x . If the object y is void, then
an exception is triggered at label lb . The precondition of label lc expresses that the top of
stack is equal to the attribute S@a of the object y . Thus, one knows that y 6= void , and
P [$(instvar(y , S@a))/x] holds.

6.4.7 Write Attribute Axiom

Let P ′ be the following precondition:

P ′ ≡


(y 6= Void ∧ P [$〈instvar(y , S@a) := e〉/$]) ∨

(y = Void ∧ Qe

[
$〈NullPExc〉/$,
new($,NullPExc)/excV

]
)


The definition of the translation is the following:

∇S


A `

{
P ′
}

y .S@a := e
{

P , Qe

} , lstart , lnext , lexc

 =

{ P ′ } lstart : ldloc y

∇E ({s(0) = y ∧ shift(P ′)}, e, {s(1) = y ∧ s(0) = e ∧ shift2(P ′)} , lb)

{s(1) = y ∧ s(0) = e ∧ shift2(P ′)} lc : stfld S@a

Similar to the read attribute axiom, this translation pushes the target object y and
the expression e on top of the stack. The attribute S@a is updated using the instruction
stfld. If the target object y is void, then the instruction stfld triggers an exception.

The instruction ldloc y establishes s(0) = y ∧ shift(P ′) because it pushes y on top of
the stack. The translation of the expression e establishes

s(1) = y ∧ s(0) = e ∧ shift2(P ′)

because the evaluation of the expression pushes the result on top of the stack. This post-
condition implies the precondition of the successor lc. Therefore, the produced bytecode
proof is valid.

124 Proof-Transforming Compilation for the Core Language

6.4.8 Routine Invocation Rule

Let P ′ be the following precondition:

P ′ ≡


(y 6= Void ∧ P [y/Current , e/p]) ∨

(y = Void ∧ Qe

[
$〈NullPExc〉/$,
new($,NullPExc)/excV

]
)


The translation is defined as follows:

∇S


Tree1

A `
{

P
}

T : m(p)
{

Qn , Qe

}
A `

{
P ′
}

x = y .T : m(e)
{

Qn [x/result] , Qe

} , lstart , lnext , lexc

 =

{P ′} lstart : ldloc y

∇E ({shift(P ′) ∧ s(0) = y}, e, {shift2(P ′) ∧ s(1) = y ∧ s(0) = e} , lb)

{shift2(P ′) ∧ s(1) = y ∧ s(0) = e} lc : callvirt T : m

{Qn [s(0)/result]} ld : stloc x

The translation for routine invocations first pushes the target object on top of the
stack. Second, it pushes the argument e. Then, it calls the routine using the callvirt
instruction. Finally, it pops the result of the invocation to the variable x .

The most interesting part of this translation is the callvirt instruction. To show that

` {shift2(P ′) ∧ s(1) = y ∧ s(0) = e} lc : callvirt T : m

is valid, one has to apply the virtual call rule of the bytecode logic. We obtain the deriva-
tion of the virtual call rule as follows. Let Ttm be the following proof tree:

Ttm ≡
Tree1

A `
{

P
}

T : m(p)
{

Qn , Qe

}
The translation of the CIL method invocation is:

6.4 Poof Translation of Instructions 125

∇B (Ttm)

s(1) 6= null ∧ shift2(P ′) ∧ s(1) = y ∧ s(0) = e ⇒ P
s(1) = null ∧ shift2(P ′) ∧ s(1) = y ∧ s(0) = e ⇒ Elexc

excV = null ∧ Qn [s(0)/result]⇒ Qn [s(0)/result]
excV 6= null ∧ Qe ⇒ Elexc

A ` {shift2(P ′) ∧ s(1) = y ∧ s(0) = e} lc : callvirt T : m
cil invocation rule

The function ∇B (defined in Section 6.2) generates the CIL proof of the routine T:m
from the proof of the routine T :m in the source. The first implication in the hypothesis
shows that the precondition of the instruction callvirt implies the precondition of the
routine T :m , if the target object is not null. The second implication shows that if the
target object is null, the precondition of callvirt implies the precondition at the label lexc.
The third implication shows that the postcondition of T :m implies the precondition
of the successor instruction ld , if the routine m does not trigger an exception. Finally,
the last implication shows that if the routine m triggers an exception, the exceptional
postcondition Qe implies the precondition at the label lexc.

Translation of the invok-var Rule

The invok-var rule is translated in a similar way to the invocation rule. Let Ttm be the
following proof tree:

Ttm ≡
Tree1

A `
{

P
}

x := y .T:m(e)
{

Qn , Qe

}
In the translation:

∇S

(
Ttm

A `
{

P [w/Z]
}

x := y .T:m(e)
{

Qn [w/Z] , Qe [w/Z]
} , lstart , lnext , lexc

)

we first apply the translation function ∇S to the hypothesis Ttm . Finally, we apply the
replacement [w/Z] to every bytecode specification generated by the translation of Ttm .

6.4.9 Local Rule

The local rule initializes the local variables v1, ..., vn with the default values. To translate
this rule, we first obtain the translation of the initialization using the translation function

126 Proof-Transforming Compilation for the Core Language

∇S . The variables are initialized using the assignment vi := init(Ti) for all variables v1,
..., vn . After that, the translation of the instruction s is added using ∇S . The translation
is defined as follows:

∇S



Tree1

A `

{
P ∧ v1 = init(T1)
∧ ... ∧ vn = init(Tn)

}
s
{

Qn , Qe

}
A `

{
P
}

local T1 v1; ... Tn vn ; s
{

Qn , Qe

} , lstart , lnext , lexc


=

∇S

 Tree1

A `
{

P
}

v1 := init(T1)
{

P ∧ v1 = init(T1) , false
} , lstart , lb , lexc



∇S


Tree1

A `

{
P ∧
v1 = init(T1)

}
v2 := init(T2)




P ∧
v1 = init(T1) ∧
v2 = init(T2)

 , false


, lb , lc , lexc


...

∇S



Tree1

A `


P ∧
v1 = init(T1)

∧...∧
vn−1 = init(Tn−1)

 vn := init(Tn)




P ∧
v1 = init(T1)

∧...∧
vn = init(Tn)

 , false



, lc , ld , lexc


∇S

 Tree1

A `
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

} , ld , lnext , lexc


The bytecode for v1 := init(T1) establishes P ∧ v1 = init(T1), which is the pre-

condition of the first instruction of the bytecode for v2 := init(T2). Applying the same

6.5 Poof Translation of Language-Independent Rules 127

reasoning, we know that the translation for vi := init(Ti) establishes the precondition of
its successor. Finally, the bytecode for s establishes Qn , which is the postcondition of the
rule. Therefore, the translation produces a sequence of valid instruction specifications.

6.4.10 Creation Rule

The translation of creation rule first creates an object of type T . Second, it pops the
result in the variable x . Finally, the routine make is invoked. To invoke the routine make,
the target object x and the argument e are pushed on top of the stack. Then, the routine
is invoked using the instruction callvirt. The proof of the callvirt is obtained in a similar
way as in the translation of the invocation rule (Section 6.4.8). The translation is defined
as follows:

∇S



{
P
}

T@make(p) { Qn , Qe }

A `

P

 new($,T)/Current ,
$〈T 〉/$,
e/p


x := create {T}.make(e){

Qn [x/Current], Qe

}

, lstart , lnext , lexc



=

{P [new($,T)/Current , $〈T 〉/$, e/p]} lstart : newobj T

{(shift(P)[s(0)/Current , e/p])} lb : stloc x

{x 6= Void ∧ P [x/Current , e/p]} lc : ldloc x

∇E ({x 6= Void ∧ shift(P [x/Current , e/p]) ∧ s(0) = x}, e,
{x 6= Void ∧ shift2(P [x/Current , e/p]) ∧ s(1) = x ∧ s(0) = e}, ld)

{x 6= Void ∧ shift2(P [x/Current , e/p]) ∧ s(1) = x ∧ s(0) = e} le : callvirt T @make

6.5 Poof Translation of Language-Independent Rules

In Section 6.2.4 we have presented the translation of language-independent rules for vir-
tual routines and routine implementations. That translation produces a derivation in

128 Proof-Transforming Compilation for the Core Language

the bytecode logic. When the language-independent rules are applied to instructions, the
translation has to produce bytecode specifications. For this reason, we present the trans-
lation in two parts. In this section, we present the translation of language-independent
rules that are applied to instructions.

6.5.1 Strength Rule

To translate the strength rule for instructions, the instruction nop instruction is used
with precondition P ′, and then we translate s1 using ∇S . We assume that the implication
P ′ ⇒ P (in the source language) is proven in the same theorem prover used to check
the bytecode proof. Since the expressions P and P ′ are not modified by the translation,
the same proof can be used in the bytecode proof to check the implication P ′ ⇒ P . The
definition is:

∇S


Tree1

A `
{

P
}

s1

{
Qn , Qe

}
P ′ ⇒ P

A `
{

P ′
}

s1

{
Qn , Qe

} , lstart , lnext , lexc

 =

{P ′} lstart : nop

∇S

 Tree1

A `
{

P
}

s1

{
Qn , Qb

}
Qe

, lb , lnext , lexc


The instruction nop at label lstart preserves P ′. Its successor instruction establishes P .

Therefore, the translation is valid since we know P ′ ⇒ P .

6.5.2 Weak Rule

The weak rule is translated to CIL in a similar way to the strength rule. First, the
instruction s1 is translated using ∇S . Then, we add a nop instruction with precondition
Qn . The proofs of the implications Qn ⇒ Q ′n and Qe ⇒ Q ′e in the source are used in
the bytecode proof since the expressions Qn , Q ′n , Qe , and Q ′e are not modified by the
translation. The translation is defined as follows:

∇S


Tree1

A `
{

P
}

s1

{
Qn , Qe

} Qn ⇒ Q ′n
Qe ⇒ Q ′e

A `
{

P
}

s1

{
Q ′n , Q ′e

} , lstart , lnext , lexc

 =

6.5 Poof Translation of Language-Independent Rules 129

∇S

 Tree1

A `
{

P
}

s1

{
Qn , Qe

} , lstart , lb , lexc


{Qn} lb : nop

6.5.3 Conjunction/Disjunction Rules

The conjunction and disjunction rules are translated to CIL in a similar way. Here, we
present the translation for the conjunction rule, the translation of the disjunction rule is
analogous. Let Ta and Tb be proof trees defined as follows:

Ta ≡
Tree1

A `
{

P ′
}

s1

{
Q ′n , Q ′e

} Tb ≡
Tree2

A `
{

P ′′
}

s1

{
Q ′′n , Q ′′e

}
To translate the conjunction rule:

∇S

 Ta Tb{
P ′ ∧ P ′′

}
s1

{
Q ′n ∧ Q ′′n , Q ′e ∧ Q ′′e

} , lstart , lnext , lexc

 =

we first create the CIL proofs for the two hypotheses:

∇S (Ta , lstart , lnext , lexc)

and

∇S (Tb , lstart , lnext , lexc)

Since the translation is applied to the same instruction s1, the embedded instructions
in the CIL proofs are by construction the same. With these two proofs, we assemble a
third proof by merging, for all instructions except callvirt, their bytecode specification:

{Ai} li : instri

and

{Bi} li : instri

we obtain

130 Proof-Transforming Compilation for the Core Language

{Ai ∧ Bi} li : instri

If the generated instruction is callvirt, the proof trees have the following form:

Tree1

A `
{

P ′
}

T:m
{

Q ′n , Q ′e
}

Ai ⇒ s(1) 6= null ∧ P ′[s(1)/this , s(0)/p][shift(w ′)/Z ′]

Q ′n [s(0)/result][w ′/Z ′]⇒ Eli+1

A ` {Ai} li : callvirt T:m
cil invocation rule

Tree2

A `
{

P ′′
}

T:m
{

Q ′′n , Q ′′e
}

Bi ⇒ s(1) 6= null ∧ P ′′[s(1)/this , s(0)/p][shift(w ′′)/Z ′′]

Q ′′n [s(0)/result][w ′′/Z ′′]⇒ Eli+1

A ` {Bi} li : callvirt T:m
cil invocation rule

where we assume w ′ 6= w ′′ and Z ′ 6= Z ′′, and the logical variables used in the proofs are
disjoint.

Using these generated proofs, we obtain the conjunction A ` {Ai∧ Bi} li : callvirt T:m
applying the CIL conjunction rule as follows:

Tree1

A `
{

P ′
}

T:m
{

Q ′n , Q ′e
} Tree2

A `
{

P ′′
}

T:m
{

Q ′′n , Q ′′e
}

A `
{

P ′ ∧ P ′′
}

T:m
{

Q ′n ∧ Q ′′n , Q ′e ∧ Q ′′e
} conj rule

(Ai ∧ Bi)⇒ s(1) 6= null ∧ (P ′ ∧ P ′′)[s(1)/this, s(0)/p][shift(w ′)/Z ′][shift(w ′′)/Z ′′]

(Q ′n ∧ Q ′′n)[s(0)/result][w ′/Z ′][w ′′/Z ′′]⇒ Eli+1

A ` {Ai ∧ Bi} li : callvirt T:m
invok

The translation produces a valid bytecode proof because w ′ 6= w ′′, and Z ′ 6= Z ′′, and
the precondition Ai does not contain Z ′′, and Bi does not contain Z ′.

6.5.4 Invariant Rule

To translate the invariant rule, we first generate the translation of the instruction s1.
Then, we add a conjunct W to every specification produced by that translation. In the

6.5 Poof Translation of Language-Independent Rules 131

case that the instruction is a callvirt instruction, we apply the same translation as the
conjunction rule translation (presented on page 129). The rule is translated as follows:

∇S


Tree1

A `
{

P
}

s1

{
Qn , Qe

}
A `

{
P ∧ W

}
s1

{
Qn ∧ W , Qe ∧ W

} , lstart , lnext , lexc

 =

∇S

(
Tree1{

P
}

s1

{
Qn , Qe

} , lstart , lnext , lexc

)
where the conjunct W is added to every specification produced by the translation of s1.

6.5.5 Substitution Rule

Similar to the invariant rule, the translation of the substitution rule first translates the
instruction s1, and then we replace Z by t in each bytecode specification generated by
s1. The instruction callvirt instruction is translated applying a similar translation as the
conjunction rule translation (presented on page 129).

The definition is:

∇S


Tree1

A `
{

P
}

s1

{
Qn , Qe

}
A `

{
P [t/Z]

}
s1

{
Qn [t/Z] , Qe [t/Z]

} , lstart , lnext , lexc

 =

∇S

(
Tree1{

P
}

s1

{
Qn , Qe

} , lstart , lnext , lexc

)
where the replacement [t/Z] is applied to every bytecode specification generated by s1.

6.5.6 All rule and Ex rule

To be able to translate the all-rule and the ex-rule, we assume that the proofs are in a
normal form. We assume that the all-rule and ex-rule are applied at the level of routine
specifications, so they are not used in the instruction specifications. Thus, these rules are
translated in Section 6.2.4.

132 Proof-Transforming Compilation for the Core Language

6.6 Applications

This section illustrates the application of the proof-transforming compiler for the Mate
language. In Section 3.1.5 (Chapter 3) we have presented the proof of the function sum
(this function returns the sum from 1 to n). The PTC takes the derivation in the source
logic, and produces a derivation in the bytecode logic. In this example, the first rule applied
to prove the sum function is the class rule. The proof-transforming compiler produces the
following application of the CIL class rule:

{
τ(Current) ≺ MATH ∧ n > 1

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) = MATH ∧ n > 1

}
impl(MATH, sum)

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) � MATH ∧ n > 1

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}
In the hypothesis, the proof for the virtual routine MATH:sum is obtained applying

the translation function ∇B to the hypothesis of the source rule. This application returns
the following application of the strength rule:

{
false

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) ≺ MATH ∧ n > 1

}
MATH:sum

{
Result = (n ∗ (n + 1))/2 , false

}
The proof for the second hypothesis is obtained by the translation function ∇B . In this

case, the translation of the routine implementation rule is applied. The proof of the body
of the routine sum is obtained by the translation function ∇S . This proof is presented in
Figure 6.1.

proof Figure 6.1{
τ(Current) = MATH ∧ n > 1

}
body cil(MATH@sum)

{
Result = (n ∗ (n + 1))/2 , false

}{
τ(Current) = MATH ∧ n > 1

}
MATH@sum

{
Result = (n ∗ (n + 1))/2 , false

}
To translate the body of the routine sum, the proof-transforming compiler takes the

proof of Figure 3.5 (presented on page 32), and produces as result the bytecode proof in
Figure 6.1. The translation of default type initialization produces lines IL001-IL004. Lines
IL005-IL008 are produced by the translation of the body of the from part of the loop. The
weak and strength rules are translated in lines IL009−IL011. Lines IL012−IL019 translate
the body of the loop. Finally, the until expression is translated in lines IL020− IL025.

To show that the bytecode proof is a valid proof, one has to show that each precondition
implies the weakest precondition of the successor instruction. In most of the cases, this
proof is done by applying the definition of weakest precondition (a detailed example
is shown in Section 5.2.4, page 103). The most interesting cases of this proof are lines
IL009 − IL010, and lines IL011 − IL012 (the translation of the weak and strength rule).
These two implications are proven since the proofs have been developed for the source

6.6 Applications 133

{ n > 1 } IL001 : ldc 0
{ n > 1 ∧ s(0) = 0 } IL002 : stloc Result
{ n > 1 ∧ Result = 0 } IL003 : ldc 0
{ n > 1 ∧ Result = 0 ∧ s(0) = 0 } IL004 : stloc i

// from body
{ n > 1 ∧ Result = 0 ∧ i = 0 } IL005 : ldc 1
{ n > 1 ∧ Result = 0 ∧ i = 0 ∧ s(0) = 1 } IL006 : stloc Result
{ n > 1 ∧ Result = 1 ∧ i = 0 } IL007 : ldc 2
{ n > 1 ∧ Result = 1 ∧ s(0) = 2 } IL008 : stloc i
// weak and strength rules
{ n > 1 ∧ Result = 1 ∧ i = 2 } IL009 : nop
{ Result = ((i − 1) ∗ i)/2) ∧ n + 1 ≥ i ∧ i > 1 } IL010 : br IL020
{ i 6= n + 1 ∧ Result = ((i − 1) ∗ i)/2) ∧ n + 1 ≥ i ∧ i > 1 } IL011 : nop

// loop body{
i 6= n + 1 ∧ Result + i = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1

}
IL012 : ldloc Result{

i 6= n + 1 ∧ Result + i = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1 ∧ s(0) = Result

}
IL013 : ldloc i{

i 6= n + 1 ∧ Result + i = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1 ∧ s(1) = Result ∧ s(0) = i

}
IL014 : add{

i 6= n + 1 ∧ Result + i = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1 ∧ s(0) = Result + i

}
IL015 : stloc Result{

i 6= n + 1 ∧ Result = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1

}
IL016 : ldloc i{

i 6= n + 1 ∧ Result = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1 ∧ s(0) = i

}
IL017 : ldc 1{

i 6= n + 1 ∧ Result = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1 ∧ s(1) = i ∧ s(0) = 1

}
IL018 : add{

i 6= n + 1 ∧ Result = (i ∗ (i + 1))/2 ∧
n + 1 ≥ i ∧ i > 1 ∧ s(0) = i + 1

}
IL019 : stloc i

// until expression{
Result = ((i − 1) ∗ i)/2 ∧ n + 1 ≥ i ∧ i > 1

}
IL020 : ldloc i{

Result = ((i − 1) ∗ i)/2 ∧ n + 1 ≥ i ∧ i > 1 ∧
s(0) = i

}
IL021 : ldloc n{

Result = ((i − 1) ∗ i)/2 ∧ n + 1 ≥ i ∧ i > 1 ∧
s(1) = i ∧ s(0) = n

}
IL022 : ldc 1{

Result = ((i − 1) ∗ i)/2 ∧ n + 1 ≥ i ∧ i > 1 ∧
s(2) = i ∧ s(1) = n ∧ s(0) = 1

}
IL023 : add{

Result = ((i − 1) ∗ i)/2 ∧ n + 1 ≥ i ∧ i > 1 ∧
s(1) = i ∧ s(0) = n + 1

}
IL024 : ceq{

Result = ((i − 1) ∗ i)/2 ∧ n + 1 ≥ i ∧ i > 1 ∧
s(0) = (i = n + 1)

}
IL025 : brfalse IL011

Fig. 6.1: Bytecode Proof generated by the PTC from the Source Proof of Figure 3.5.

134 Proof-Transforming Compilation for the Core Language

program, and these proofs are translated to CIL. Thus, the translation introduces two
lemmas that show the precondition at IL009 implies the precondition at IL010, and that
the precondition at IL011 implies the precondition at IL012. The proofs of these lemmas
are identical to the proofs in the source.

6.7 Soundness Theorems

To be able to execute mobile code in a safe way, a soundness proof is required only for
components of the trusted code base. Although PTCs are not part of the trusted code
base, from the point of view of the code producer, the PTC should always generate valid
proofs to avoid that the produced bytecode is rejected by the proof checker.

It is thus desirable to prove the soundness of the translation. Soundness informally
means that the translation produces valid bytecode proofs. It is not enough, however, to
produce a valid proof, because the compiler could generate bytecode proofs where every
precondition is false. The theorem states that if we have a valid source proof for the
routine m, then (1) the generated bytecode proof tree is valid, and (2) the evaluation of
the pre and postcondition of the routine m is equal to the evaluation of the translation
to CIL of the pre and postcondition of m respectively. We split the theorem into two
theorems, one expresses soundness of the proof translation, and the other one expresses
soundness of the contract translation:

Theorem 3 (Soundness of Routine Translation).

Tree1

A `
{

P
}

m
{

Qn , Qe

} then

` ∇B

 Tree1

A `
{

P
}

m
{

Qn , Qe

}


To prove Theorem 3, we define a soundness theorem of the proof transformation for
instructions.

The theorem for instruction translation states that if (1) we have a valid source proof
for the instruction s1, and (2) we have a proof translation from the source proof that
produces the instructions Ilstart ...Ilend

, and their respective preconditions Elstart ...Elend
, and

(3) the normal postcondition in the source logic implies the next precondition of the
last generated instruction (if the last generated instruction is the last instruction of the
method, we use the normal postcondition in the source logic), and (4) the exceptional
postcondition in the source logic implies the precondition at the target label lexc but

6.7 Soundness Theorems 135

considering the value stored in the stack of the bytecode, then every bytecode specification
holds (` {El} Il). The theorem is the following:

Theorem 4 (Soundness of Instruction Translator).

` Tree1

A `
{

P
}

s1

{
Qn , Qe

} ∧

(Ilstart ...Ilend
) = ∇S

 Tree1

A `
{

P
}

s1

{
Qn , Qe

} , lstart , lend+1, lexc

 ∧(
Qn ⇒ Elend+1

)
∧

((Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc) ∧
⇒
∀ l ∈ lstart ... lend : ` {El} Il

The full proofs can be found in Appendix C The proof runs by induction on the
structure of the derivation tree for {P} s1 {Qn ,Qe}.

136 Proof-Transforming Compilation for the Core Language

Chapter 7

Eiffel-Specific Aspects of
Proof-Transforming Compilation

In the previous chapter, we have presented a proof-transforming compiler for a core object-
oriented language. The translation is fairly straightforward because the source and the
target language are very similar. This is also the case of other PTCs that have been
developed from Java to bytecode [6, 15, 103]. But the difficulty of the problem grows with
the conceptual distance between the semantic models of the source and target languages.
In this chapter, the source language is Eiffel, whose object model and type system differ
significantly from the assumptions behind CIL, the target language. In particular, Eiffel
supports multiple inheritance and a specific form of exception handling. This has required,
in the implementation of Eiffel for .NET (which goes through CIL code), the design of
original compilation techniques. In particular [74], the compilation of each Eiffel class
produces two CIL types: an interface, and an implementation class which implements it.
If either the source proof or the source specification expresses properties about the type
structure of the Eiffel program, the same property has to be generated for the bytecode.

The translation of these properties raises challenges illustrated by the following exam-
ple (interface only, implementation omitted) involving a reflective capability: the feature
type, which gives the type of an object.

merge (other: LINKED LIST [G]):LINKED LIST [G]
- - Merge other into current structure returning a new LINKED LIST

require
is linked list : other . type .conforms to (LINKED LIST [G].type)

same type: Current.type.is equal(other . type)
ensure

result type : Result.type. is equal (LINKED LIST [G].type)

138 Eiffel-Specific Aspects of Proof-Transforming Compilation

The function merge is defined in the class LINKED LIST. The precondition of merge
expresses that the type of other is a subtype of LINKED LIST and the types of Current
and other are equal. The first precondition is for illustration propose. The postcondition
expresses that the type of Result is equal to LINKED LIST.

The compilation of the class LINKED LIST produces the CIL interface
LINKED LIST INTERF and the implementation class LINKED LIST IMP. A correct PTC
has to map the type LINKED LIST in the clause is linked list (line 4) to the
CIL interface LINKED LIST INTERF because in the target model decedents of the Eiffel
class LINKED LIST inherit from the interface LINKED LIST INTERF in CIL and not
from LINKED LIST IMP. To translate the postcondition, we use the implementation class
LINKED LIST IMP because this property expresses that the type of Result is equal to
LINKED LIST. Thus, the PTC has to map Eiffel classes to CIL interfaces or Eiffel classes
to CIL classes depending of the function used to express the source property.

This example illustrates that the proof-transforming compiler cannot always treat
Eiffel in the same way: while in most circumstances it will map them to CIL interfaces,
in some cases (such as this one, involving reflection) it must use a CIL class.

The main problems addressed in this chapter are the definition of contract translation
functions and proof translation functions from Eiffel to CIL. These translations are com-
plex because CIL does not directly support important Eiffel mechanisms such as multiple
inheritance and exceptions with rescue clauses. To be able to translate both contracts
and proofs, we use deeply-embedded Eiffel expressions in the contracts and the source
proof. The main contributions of this chapter are: (1) a contract translation function
from Eiffel to CIL which handles the lack of multiple inheritance in CIL; (2) a proof
translation function from Eiffel to CIL which maps rescue clauses into CIL instructions.

The rest of this chapter explores the translation of programs and associated proofs:
issues such as the above example, and the solutions that we have adopted.

This chapter is based on the published works [96, 95].

7.1 Contract Translator

The contract translator maps Eiffel contracts into first order logic (FOL). In Chapter 6,
the contract translator is straightforward. (Its definition is ∇C (e) = e). The challenging
problem in the contract translator in this chapter is produced by the impedance mismatch
between Eiffel and CIL. To be able to translate contracts, we use deeply-embedded Eiffel
expressions.

7.1.1 Translation Basics

In Hoare triples, pre- and postconditions may refer to the structure of the Eiffel program.
Therefore, in our logic, pre- and postconditions are deeply-embedded Eiffel expressions,

7.1 Contract Translator 139

extended with universal and existential quantifiers. The proof translation proceeds in two
steps: first, translation of pre-and postconditions into FOL using the translation function
presented in this section; then, translation of the proof using the functions presented
in Section 7.2. We have defined a deep embedding of the Eiffel expressions used in the
contract language. Then, we have defined translation functions to FOL. The datatype
definitions, the translation functions and their soundness proof are formalized in Isabelle
(this formalization can be found in our technical report [95]).

7.1.2 Datatype Definitions

Eiffel contracts are based on boolean expressions, extended (for postconditions) with
the old notation. They can be constructed using the logical operator ¬, ∧, ∨, AndThen,
OrElse, Xor , implies , expressions equality<,>,≤,≥, and the type functions ConformsTo,
IsEqual , and IsNotEqual . Expressions are constants, local variables and arguments, at-
tributes, routine calls, precursor expressions, creation expressions, arithmetic expressions,
old expressions, boolean expressions, and Void . Arguments are treated as local variables
using the sort RefVar to minimize the datatype definition. Furthermore, boolean variables
are not introduced in the definition BoolExp. They are treated as local variables using the
sort RefVar . We assume routines have exactly one argument.

datatype EiffelContract = Require BoolExpr
| Ensure BoolExpr

datatype BoolExpr = Const Bool
| Neg BoolExpr
| And BoolExpr BoolExpr
| Or BoolExpr BoolExpr
| AndThen BoolExpr BoolExpr
| OrElse BoolExpr BoolExpr
| Xor BoolExpr BoolExpr
| Impl BoolExpr BoolExpr
| Eq Expr Expr
| NotEq Expr Expr
| Less Expr Expr
| Greater Expr Expr
| LessE Expr Expr
| GreaterE Expr Expr
| Type TypeFunc

datatype TypeFunc = ConformsTo TypeExpr TypeExpr
| IsEqual TypeExpr TypeExpr
| IsNotEqual TypeExpr TypeExpr

140 Eiffel-Specific Aspects of Proof-Transforming Compilation

datatype TypeExpr = EType EiffelType
| Type Expr

datatype Expr = ConstInt Int
| RefVar VarId
| Att ObjID Attrib
| CallR CallRoutine
| Precursor EiffelType Routine Argument
| Create EiffelType Routine Argument
| Plus Expr Expr
|Minus Expr Expr
|Mul Expr Expr
| Div Expr Expr
| Old Expr
| Bool BoolExpr
| Void

datatype CallRoutine = Call Expr Routine Argument

datatype Argument = Argument Expr

EiffelTypes are Boolean, Integer , classes with a class identifier, or None. The notation
(cID : classID) means, given an Eiffel class c, cID(c) returns its classID .

datatype EiffelType = Boolean
| Integer
| EClass (cID : ClassID)
| None

Variables, attributes and routines are defined as follows:

datatype Var = Var VarID EiffelType
| Result EiffelType
| Current EiffelType

datatype Attrib = Attr (aID : attribID) EiffelType
datatype Routine = Routine RoutineID EiffelType EiffelType

7.1.3 Mapping Eiffel Types to CIL

To define the translation from Eiffel contracts to FOL, it is useful first to define CIL
types, and mapping functions that map Eiffel types to the CIL types: boolean, integer,
interfaces, classes and the null type.

7.1 Contract Translator 141

datatype CilType = CilBoolean
| CilInteger
| Interface classID
| CilClass classID
| NullT

The translation then uses two functions that map Eiffel types to CIL: (1) ∇Interface

maps an Eiffel type to a CIL interface; (2) ∇Class maps the type to a CIL implementation
class. These functions are defined as follows:

∇Interface : EiffelType → CilType
∇Interface(Boolean) = CilBoolean
∇Interface(Integer) = CilInteger
∇Interface(EClass n) = Interface n
∇Interface(None) = NullT

∇Class : EiffelType → CilType
∇Class(Boolean) = CilBoolean
∇Class(Integer) = CilInteger
∇Class(EClass n) = CilClass n
∇Class(None) = NullT

The translation of routine calls needs method signatures in CIL and a translation
function that maps Eiffel routines to CIL methods. The function ∇Interface serves to map
types t1 and t2 to CIL types.

datatype CilMethod = Method methodID CilType CilType

∇R : Routine → CilMethod
∇R(Routine n t1 t2) = (Method n (∇Interface t1) (∇Interface t2))

7.1.4 Translation Functions

The translation of the specification relies on five translation functions: (1) ∇C takes a
boolean expression and returns a function that takes two stores and a state and returns
a value; (2) ∇Exp translates expressions; (3) ∇T translates type functions (conforms to,
is equal, and is not equal); (4) ∇Call translates a routine call; and (5) ∇Arg translates
arguments. These functions use two object stores, the second one is used to evaluate old
expressions. State is a mapping from variables to values (VarId → Value). The signatures
of these functions are the following:

∇C : BoolExpr → (ObjectStore → ObjectStore → State → Value)
∇Exp : Expr → (ObjectStore → ObjectStore → State → Value)
∇T : TypeFunc → (ObjectStore → ObjectStore → State → Value)
∇Call : CallRoutine → (ObjectStore → ObjectStore → State → Value)
∇Arg : Argument → (ObjectStore → ObjectStore → State → Value)

142 Eiffel-Specific Aspects of Proof-Transforming Compilation

To clarify the translation of contracts, we repeat the definition of the data type Value:

data type Value = boolV (aB : Bool)
| intV (aI : Int)
| objV ClassId ObjId
| voidV

where the notation (aB : Bool) means, given a value v of type boolean, aB(v) returns its
boolean expression. The definition of the function ∇C is the following:

∇C (Const b) = λ (h1, h2 : ObjectStore) (s : State) : (boolV b)

∇C (Neg b) = λ (h1, h2 : ObjectStore) (s : State) :

(boolV ¬(aB(∇C b h1 h2 s)))

∇C (And b1 b2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aB(∇C b1 h1 h2 s)) ∧ (aB(∇C b2 h1 h2 s)))

∇C (Or b1 b2) = λ (h1, h2 : ObjectStore) (s : State) :

(boolV (aB(∇C b1 h1 h2 s)) ∨ (aB(∇C b2 h1 h2 s)))

∇C (AndThen b1 b2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aB(∇C b1 h1 h2 s)) ∧ (aB(∇C b2 h1 h2 s)))

∇C (OrElse b1 b2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aB(∇C b1 h1 h2 s)) ∨ (aB(∇C b2 h1 h2 s)))

∇C (Xor b1 b2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aB(∇C b1 h1 h2 s)) ∨ (aB(∇C b2 h1 h2 s)))

∇C (Impl b1 b2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aB(∇C b1 h1 h2 s)) −→ (aB(∇C b2 h1 h2 s)))

∇C (Eq e1 e2) = λ (h1, h2 : ObjectStore) (s : State) :

(boolV (aI (∇Exp e1 h1 h2 s)) = (aI (∇Exp e2 h1 h2 s)))

∇C (NotEq e1 e2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aI (∇Exp e1 h1 h2 s)) 6= (aI (∇Exp e2 h1 h2 s)))

∇C (Less e1 e2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aI (∇Exp e1 h1 h2 s)) < (aI (∇Exp e2 h1 h2 s)))

∇C (Greater e1 e2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aI (∇Exp e1 h1 h2 s)) > (aI (∇Exp e2 h1 h2 s)))

7.1 Contract Translator 143

∇C (LessE e1 e2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aI (∇Exp e1 h1 h2 s)) ≤ (aI (∇Exp e2 h1 h2 s)))

∇C (GreaterE e1 e2) = λ(h1, h2 : ObjectStore) (s : State) :

(boolV (aI (∇Exp e1 h1 h2 s)) ≥ (aI (∇Exp e2 h1 h2 s)))

∇C (Type e) = λ (h1, h2 : ObjectStore) (s : State) : (∇T e h1 h2 s))

The function ∇T maps the Eiffel types to CIL. The Eiffel function ConformsTo is
mapped to the function �c (subtyping in CIL). Its types are translated to interfaces
using the function ∇Interface . The function IsEqual is translated using the function =
(types equality in CIL), and the function IsNotEqual to 6=

Its types are translated to CIL classes using the function ∇Class . The function ∇t is
defined as follows:

∇T (ConformsTo t1 t2) = λ (h1, h2 : ObjectStore)(s : State) :

(boolV (∇Interface(∇Type t1)) �c (∇Interface(∇Type t2)))

∇T (IsEqual t1 t2) = λ (h1, h2 : ObjectStore)(s : State) :

(boolV (∇Class(∇Type t1)) = (∇Class(∇Type t2)))

∇T (IsNotEqual t1 t2) = λ (h1, h2 : ObjectStore)(s : State) :

(boolV (∇Class(∇Type t1)) 6= (∇Class(∇Type t2)))

The function ∇type given a type expression returns its Eiffel type:
∇Type : TypeExp → EiffelType
∇Type(EType t) = t
∇Type(Expression e) = (typeOf e)

The function ∇Exp translates local variables using the state s . Creation instructions
are translated using the functions of the object store new and (). The translation of
old expressions uses the second store to map the expression e to CIL. To facilitate the
description of this translation, we first repeat the signatures of the functions that are
applied to the object store (for more detail about these functions see Section 3.1.2):

() : ObjectStore × Location → Value
alive : Value ×ObjectStore → Bool
new : ObjectStore × ClassId → Value

〈 := 〉 : ObjectStore × Location × Value → ObjectStore
〈 〉 : ObjectStore × ClassId → ObjectStore

The definition of ∇Exp is:

144 Eiffel-Specific Aspects of Proof-Transforming Compilation

∇Exp(ConstInt i) = λ (h1, h2 : ObjectStore)(s : State) : (intV i)
∇Exp(RefVar v) = λ (h1, h2 : ObjectStore)(s : State) : (s(v))
∇Exp(Att ob a) = λ (h1, h2 : ObjectStore)(s : State) :

h1 ((Loc (aID a) ob))
∇Exp(CallR crt) = λ (h1, h2 : ObjectStore)(s : State) :

(∇Call crt h1 h2 s)
∇Exp(Precursor t1 rt par) = λ(h1, h2 : ObjectStore)(s : State) :

(invokeValCIL h1 (∇r rt) (s (Currentt1)) (∇arg par h1 h2 s))
∇Exp(Create t rt p) = λ (h1, h2 : ObjectStore)(s : State) :

(new (h1〈(cID t)〉) (cID t))
∇Exp(Plus e1 e2) = λ(h1, h2 : ObjectStore)(s : State) :

(intV ((aI (∇Exp e1 h1 h2 s)) + (aI (∇Exp e2 h1 h2 s))))

∇Exp(Minus e1 e2) = λ(h1, h2 : ObjectStore)(s : State) :
(intV ((aI (∇Exp e1 h1 h2 s))− (aI (∇Exp e2 h1 h2 s))))

∇Exp(Mul e1 e2) = λ(h1, h2 : ObjectStore)(s : State) :
(intV ((aI (∇Exp e1 h1 h2 s)) ∗ (aI (∇Exp e2 h1 h2 s))))

∇Exp(Div e1 e2) = λ(h1, h2 : ObjectStore)(s : State) :
(intV ((aI (∇Exp e1 h1 h2 s))div(aI (∇Exp e2 h1 h2 s))))

∇Exp(Old e) = λ (h1, h2 : ObjectStore)(s : State) :
(∇Exp e h2 h2 s)

∇Exp(Bool b) = λ (h1, h2 : ObjectStore)(s : State) :
(∇C b h1 h2 s)

∇Exp(Void) = λ (h1, h2 : ObjectStore)(s : State) : (VoidV)

The function ∇Call is defined as follows:
∇Call(Call e1 rt p) = λ (h1, h2 : ObjectStore)(s : State) :

(CilInvokeVal h1 (∇R rt) (∇Exp e1 h1 h2 s)(∇Arg p h1 h2 s))

The function CilInvokeVal takes a CIL method m and two values (its argument p and
invoker e1) and returns the value of the result of invoking the method m with the invoker
e1 and argument p.

The definition of the function ∇Arg is the following:
∇Arg(Argument e) = λ (h1, h2 : ObjectStore)(s : State) : (∇Exp e h1 h2 s)

7.1.5 Example Translation

To be able to translate contracts, first we embed the contracts in Isabelle using the above
data type definitions. Then, we apply the translation function ∇C which produces the

7.2 Proof Translator 145

contracts in FOL. Following, we present the embedding of the contracts of the function
merge presented in the introduction of this chapter. Its precondition is embedded as
follows:

Type (ConformsTo (Type (RefVar other)) (EType LINKED LIST [G]))
Type (IsEqual (Type (RefVar Current)) (Type (RefVar other)))

The deep embedding of merge’s postcondition is as follows:

Type (IsEqual (Type (RefVar Current)) (EType LINKED LIST [G]))

The application of the function ∇C to the precondition produces the following expres-
sion:

λ (h1, h2 : ObjectStore)(s : State) :

boolV (typeOf other) �c (interface LINKED LIST [G])

λ (h1, h2 : ObjectStore)(s : State) : boolV (typeOf Current) = (typeOf other)

The result of the application of the function ∇C to the deep embedding of merge’s
postcondition is the following:

λ (h1, h2 : ObjectStore)(s : State) :
boolV (typeOf Current) = (CilClass LINKED LIST [G])

In the precondition, the type LINKED LIST[G] is translated to the interface
LINKED LIST[G] because the precondition uses the function ConformsTo. However, in
the postcondition, the type LINKED LIST[G] is translated to the class LINKED LIST[G]
because it uses the function IsEqual . The PTC can translate these types because it takes
deeply-embedded Eiffel expressions as input.

7.2 Proof Translator

In Section6.1 and Section 6.2, we have presented the proof-transforming compilation of vir-
tual routines and routines implementations, and the translation of language-independent
rules. The Eiffel proof-transforming compiler uses the same functions to translate rou-
tines specifications. This PTC extends the definitions of the transformation functions
∇S and ∇E to handle the Eiffel expressions and then and or else, and rescue clauses
and once routines. These functions yield a sequence of Bytecode instructions and their
specifications.

146 Eiffel-Specific Aspects of Proof-Transforming Compilation

7.2.1 Transformation Function Basics

The function ∇E generates a bytecode proof from a source expression and a precondition
for its evaluation. The function ∇S generates a bytecode proof from a source proof. These
functions are defined as a composition of the translations of the proof’s sub-trees. They
have the signatures:

∇E : Precondition × Expression × Postcondition × Label → BytecodeProof
∇S : ProofTree × Label × Label × Label → BytecodeProof

In∇E the label is used as the starting label of the translation. ProofTree is a derivation
in the source logic. In ∇S , the three labels are: (1) start for the first label of the resulting
bytecode; (2) next for the label after the resulting bytecode; this is for instance used in
the translation of an else branch to determine where to jump at the end; (3) exc for the
jump target when an exception is thrown. The BytecodeProof type is defined as a list of
instruction specifications.

The proof translation will now be presented for the Eiffel expressions and then and
or else, and the rescue clauses and once routines. The definition of ∇E is presented in
Section 7.2.2. The function ∇S is presented in Section 7.2.3.

7.2.2 Proof Translation of Eiffel Expressions

In Chapter 6, Section 6.3, we have presented a translation for expressions. The transla-
tion includes simple expressions such unary and binary expressions. Eiffel introduces the
expressions and then, and or else. The semantics of e1 and then e2 is as follows: if the
evaluation of e1 yields false, then the evaluation of e1 and then e2 yields false without
evaluating e2; otherwise the evaluation of e1 and then e2 yields the result of the evalua-
tion of e2. The semantics of e1 or else e2 is: if the evaluation of e1 yields true, then this
expression yields true without evaluating e2; otherwise it yields the evaluation of e2.

The CIL language does not contain any instructions to evaluate the expressions and
then, and or else. Thus, the translation for expressions needs to be extended.

Expressions and then

To translate the expression and then, first, the expression e1 is pushed on top of the
stack. If e1 evaluates to false (label lb), control is transferred to le , and the constant false
is pushed on top of the stack because e1 and then e2 evaluates to false. If e1 evaluates
to true, then the expression e2 is pushed on top of the stack (at label lc), and control is
transfer to the next instruction. Thus, the evaluation e1 and then e2 returns e2 because e1

evaluates to true. To be able to translate and then expressions, we assume the expression
e1 ∧ e2 is evaluated left to right; if e1 evaluates to false, then e2 is not evaluated. The
translation is defined as follows:

7.2 Proof Translator 147

∇E (Q ∧ unshift(P [e1 ∧ e2/s(0)], e1 and then e2 , shift(Q) ∧ P , la , lend) =

∇E (Q ∧ unshift(P [e1 ∧ e2/s(0)], e1, shift(Q) ∧ P [s(0) ∧ e2/s(0)], la , lend)

{shift(Q) ∧ P [s(0) ∧ e2/s(0)]} lb : brfalse le

∇E (Q ∧ unshift(P [(true ∧ e2)/s(0)], e2, shift(Q) ∧ P [(true ∧ s(0)/s(0)], lc, lend)

{shift(Q) ∧ P [true ∧ s(0)/s(0)]} ld : br lend

{Q ∧ unshift(P [false ∧ e2/s(0)])} le : ldc false

The translation for e1 establishes shift(Q)∧P [s(0)∧e2/s(0)] which is the precondition
of the instruction at lb . The instruction brfalse, has two possible successors: lc and le . If
the top of the stack is true then applying the weakest precondition one proves

Q ∧ unshift(P [(true ∧ e2)/s(0)]

holds. If the top of the stack is false, we can prove

shift(Q) ∧ P [true ∧ s(0)/s(0)]

applying the definition of wp. Finally, the translation for e2 establishes

shift(Q) ∧ P [(true ∧ s(0)/s(0)]

which is the precondition of its successor. Therefore, the translation is valid.

Expressions or else

The expressions or else are translated in a similar way than and then expressions. At
label la , the expression e1 is translated using the function ∇E . This translation pushes
the evaluation of e1 on top of the stack. If e1 is true, control is transferred to le where
the constant true is pushed on top the stack. If e1 evaluates to false, the expression e2

is translated (at label lc), and control is transferred to the next instruction. Similar to
and then expressions, we assume the expression e1 ∨ e2 is evaluated left to right, if e1

evaluates to true then e2 is not evaluated. The definition is:

148 Eiffel-Specific Aspects of Proof-Transforming Compilation

∇E (Q ∧ unshift(P [e1 or else e2/s(0)], e1 or else e2, shift(Q) ∧ P , la , lend) =

∇E (Q ∧ unshift(P [e1 ∨ e2/s(0)], e1 , shift(Q) ∧ P [s(0) ∨ e2/s(0)], la , lend)

{shift(Q) ∧ P [s(0) ∨ e2/s(0)]} lb : brtrue le

∇E (Q ∧ unshift(P [(false ∨ e2)/s(0)], e2 , shift(Q) ∧ P [(false ∨ s(0))/s(0)], lc, lend)

{shift(Q) ∧ P [false ∨ s(0)/s(0)]} ld : br lend

{Q ∧ unshift(P [true ∨ e2/s(0)])} le : ldc true

The translation for e1 establishes shift(Q)∧P [s(0)∨e2/s(0)] which is the precondition
of its successor lb . The precondition at label lb implies the weakest precondition of its two
successors lc and le . The translation for e2 establishes shift(Q) ∧ P [(false ∨ s(0))/s(0)]
which is the precondition of its successor ld . Therefore, the translation for e1 or else e2 is
valid.

7.2.3 Proof Translation of Instructions

In this section, we extend the translation function ∇S presented in Section 6.4 to rescue

clauses, and once routines.

Rescue clause

The translation of rescue clauses to CIL is one of the most interesting translations for
the Eiffel PTC. Since rescue clauses do not exist in CIL, this translation maps rescue

clauses to .try and catch CIL instructions. Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

Ir

}
s1

{
Qn , Qe

} TS2 ≡
Tree2{

Qe

}
s2

{
(Retry ⇒ Ir) ∧
(¬Retry ⇒ Re)

, Re

}
First, the instruction s1 is translated to a .try block. The exception label is updated

to lc because if an exception occurs in s1, control will be transferred to the catch block at
lc. Then, the instruction s2 is translated into a catch block. For this, the exception object
is first stored in a temporary variable and then s2 is translated. In this translation, the
Retry label is updated to lstart (the beginning of the routine). Finally, between labels le
and li , control is transferred to lstart if Retry is true; otherwise, the exception is pushed
on top of the stack and re-thrown. The definition is:

7.2 Proof Translator 149

∇S

 TS1 TS2{
P
}

do s1 rescue s2

{
Qn , Re

} , lstart , lnext , lexc

 =

.try{
∇S (TS1 , lstart , lb , lc)

{Qn} lb : leave lnext

}
catch System.Exception {

{Qe ∧ excV 6= null ∧ s(0) = excV } lc : stloc last exception

{Qe } ∇S (TS2 , ld , le , lexc)

{(Retry ⇒ Ir) ∧ (¬Retry ⇒ Re)} le : ldloc Retry

{(Retry ⇒ Ir) ∧ (¬Retry ⇒ Re) ∧ s(0) = Retry} lf : brfalse lh

{Ir} lg : br lstart

{Re } lh : ldloc last exception

{Re ∧ s(0) = last exception} li : rethrow

}

The bytecode for s1 establishes Qn , which is the precondition of lb . The instruction at
label lb establishes Qn , which implies the precondition of its successor. The bytecode for
s2 establishes Retry ⇒ Ir ∧ ¬Retry ⇒ Re , which implies le ’s precondition. Finally, it is
easy to see that the instruction specifications of lf , lg , lh , and li are valid (by applying the
definition of weakest precondition).

Once functions

The translation of once functions uses the variables T @m done, T @m exc, and
T @m result . Let P be the following precondition, where T M RES is a logical variable:

P ≡

 (¬T@m done ∧ P ′)∨(
T@m done ∧ P ′′ ∧ T@m result = T M RES ∧ ¬T@m exc

)
∨

(T@m done ∧ P ′′′ ∧ T@m exc)


and let Q ′n and Q ′e be the following postconditions:

Q ′n ≡
{

T@m done ∧ ¬T@m exc ∧(
Qn ∨ (P ′′ ∧ Result = T M RES ∧ T@m result = T M RES)

) }
Q ′e ≡

{
T@m done ∧ T@m exc ∧ (Qe ∨ P ′′′)

}

150 Eiffel-Specific Aspects of Proof-Transforming Compilation

Let Tbody be the following proof tree:

Tbody ≡
Tree1

A, {P} T @m {Q ′n , Q ′e} `{
P ′[false/T @m done] ∧ T @m done

}
body(T @m)

{
Qn , Qe

}

In this translation, the variable T @m done is evaluated at label lstart . If its value is
true, control is transferred at the end of the function (label lk). If T @m done evaluates
to false, this variable is set to true, and the body of the function is translated using
the translation function ∇S . This translation assumes that the variable T @m result is
updated whenever the body of the function assigns to Result . If the body of the function
triggers an exception, the exception is caught by the catch block at labels li − ll . The
translation is defined as follows:

∇S

 Tbody

A `
{

P
}

T@m
{

Q ′n , Q ′e
} , lstart , lnext , lexc

 =

7.2 Proof Translator 151

{ P } la : ldsfld T@m done

{ shift(P) ∧ s(0) = T@m done} lb : brtrue lm
{ P ′ ∧ ¬T@m done} lc : ldc true

{ shift(P ′) ∧ ¬T@m done ∧ s(0) = true} ld : stsfld T@m done

.try

{
∇S (Tbody , le , lf , li)

{Qn} lf : ldloc result

{shift(Qn) ∧ s(0) = result} lg : stsfld T@m result

{Qn ∧ result = T@m result} lh : leave lm
}
catch System.Exception

{
{shift(Qe) ∧ excV 6= null ∧ s(0) = excV } li : stloc last exc

{Qe ∧ last exc 6= null } lj : ldc true

{shift(Qe) ∧ last exc 6= null ∧ s(0) = true} lk : stsfld T@m exc

{Qe ∧ last exc 6= null ∧ T@m exc = true } ll : rethrow

}
{Q ′} lm : ldsfld T@m exc

{shift(Q ′) ∧ s(0) = T@m exc} ln : brfalse lq
{T@m done ∧ T@m exc = true ∧ P ′′′ } lo : ldsfld last exc{

T@m done ∧ T@m exc = true ∧ P ′′′ ∧
s(0) = last exc

}
lp : throw

T@m done ∧ T@m exc = false ∧(
Qn ∨

(
P ′′ ∧ result = T@m RESULT ∧
T@m result = T@m RESULT

))  lq : ldsfld T@m result


T@m done ∧ T@m exc = false ∧(

Qn ∨

(
P ′′ ∧ result = T@m RESULT ∧
T@m result = T@m RESULT

))
∧

s(0) = T@m result


lr : ret

152 Eiffel-Specific Aspects of Proof-Transforming Compilation

where Q ′ ≡



T@m done ∧
(Qn ∨(

P ′′ ∧ T@m result = T@m RESULT ∧
T@m exc = false

)
∨

(P ′′′ ∧ T@m exc = true)





7.3 Applications

In this section, we show an example of the translation of Eiffel proofs. The source proof
is presented in Section 3.2.4. This example implements an integer division, which always
terminates normally. If the second operand is zero, it returns the first operand; otherwise
the result is equal to the integer division x//y . The Eiffel proof-transforming compiler
takes that proof, and generates a derivation in the bytecode logic. Similar to the example
presented in Section 6.6, the PTC starts with the translation of the class rule. Then,
the compiler generates the translation of the routine implementation rule, and finally it
applies the instruction translation. The bytecode derivation is the following:

{
τ(Current) ≺ MATH ∧ true

}
MATH:safe division

{
Q , false

}{
τ(Current) = MATH ∧ true

}
impl(MATH, safe division)

{
Q , false

}{
τ(Current) � MATH ∧ true

}
MATH:safe division

{
Q , false

}
where

Q ≡ (y = 0⇒ Result = x) ∧ (y/ = 0→ Result = x//y)

The triple
{
τ(Current) ≺ MATH ∧ true

}
MATH:safe division

{
Q , false

}
is proved using the false axiom due to the class MATH has no descendants. Since the rou-
tine safe division is implemented in the class MATH, then impl(MATH , safe division) =
MATH @safe division. The second hypothesis is obtained by the translation of the routine
implementation rule. The proof in CIL is as follows:

proof Figure 7.1{
true

}
body(MATH@safe division)

{
Q , false

}{
true

}
MATH@safe division

{
Q , false

}
Figure 7.1 illustrates the translation of the body of the routine safe division. This

example is the result produced by the translation ∇S of the example proof presented in
Figure 3.9. The generated bytecode for the body of the routine is enclosed in a try block
(lines IL001 to IL007). Since the routine always terminates normally, the precondition of
the instructions at labels IL017 and IL018 is false.

7.3 Applications 153

.try {
{(y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0))} IL001 : ldloc x{

(y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0)) ∧
s(0) = x

}
IL002 : ldloc y

{
(y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0)) ∧
s(1) = x ∧ s(0) = y

}
IL003 : ldloc z

{
(y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0)) ∧
s(1) = x ∧ s(1) = y ∧ s(0) = z

}
IL004 : binop+

{
(y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0)) ∧
s(1) = x ∧ s(0) = y + z

}
IL005 : binop//

{
(y 6= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0)) ∧
s(0) = x/(y + z)

}
IL006 : stloc Result

{
(y = 0⇒ Result = x) ∧
(y 6= 0⇒ Result = x/y)

}
IL007 : leave IL019

}
catch System.Exception {

{y = 0 ∧ z = 0 ∧ excV 6= null ∧ s(0) = excV } IL009 : stloc last exception
{y = 0 ∧ z = 0} IL010 : ldc 1
{y = 0 ∧ z = 0 ∧ s(0) = 1} IL011 : stloc z
{y = 0 ∧ z = 1} IL012 : ldc true
{y = 0 ∧ z = 1 ∧ s(0) = true} IL013 : stloc Retry
{¬Retry ⇒ false ∧ Retry ⇒ (y = 0 ∨ z = 1)} IL014 : ldloc Retry{
¬Retry ⇒ false ∧
Retry ⇒ (y = 0 ∨ z = 1) ∧ s(0) = Retry

}
IL015 : brfalse IL017

{y = 0 ∨ z = 1} IL016 : br 01
{false} IL017 : ldloc last exception
{false ∧ s(0) = last exception} IL018 : rethrow

}{
(y = 0⇒ Result = x) ∧
(y 6= 0⇒ Result = x/y)

}
IL019 : ldloc Result

{
(y = 0⇒ Result = x) ∧
(y 6= 0⇒ Result = x/y) ∧ s(0) = Result

}
IL020 : ret

Fig. 7.1: Bytecode Proof generated by the PTC from the Example Proof of Figure 3.9.

154 Eiffel-Specific Aspects of Proof-Transforming Compilation

7.4 Soundness of the Contact Translator

The soundness theorem of the instruction translator has been presented on Section 6.7. In
this section, we describe the soundness theorem of the contract translator. The theorem
expresses: given two heaps and a state, if the expression e is well-formed then the value of
the translation of the expression e is equal to the value returned by the evaluation of e. The
functions valueC , valueT , valueExp , valueCall and valueArg evaluate boolean expressions,
Eiffel types, expressions, routine calls and arguments respectively. The theorem is the
following:

Theorem 5 (Soundness of the Eiffel Contract Translator).

∀b : BoolExp, t : TypeFunc, e : Expr , c : CallRoutine, p : Argument :
(wellFC b)⇒ (valueC b h1 h2 s) = ((∇C b) h1 h2 s) and
(wellFT t)⇒ (valueT t h1 h2 s) = ((∇T t) h1 h2 s) and
(wellFExp e)⇒ (valueExp e h1 h2 s) = ((∇Exp e) h1 h2 s) and
(wellFCall c)⇒ (valueCall c h1 h2 s) = ((∇Call c) h1 h2 s) and
(wellFArg p)⇒ (valueArg p h1 h2 s) = ((∇Arg p) h1 h2 s)

The soundness proof of the specification translator has been formalized and proved in
Isabelle. The proof runs by induction on the syntactic structure of the expression. The
full proofs can be found in our technical report [95].

Chapter 8

Java-Specific Aspects of
Proof-Transforming Compilation

Proof-transforming compiles are a powerful approach to translate proofs. Recent works [9,
96, 80, 103] have shown that proofs can be translated from object-oriented languages to
bytecode. If the source and the target language are close, the proof translation is simple,
for example the proof translation presented in Chapter 6. However, if these languages are
not close, the translation can be hard. One example is the translation from Eiffel to CIL,
which is described in Chapter 7. The main difficulties in the Eiffel proof-transforming
compiler are the translation of contracts and the translation of exception handling.

Although our proof-transforming compiler from Java to bytecode has a straightfor-
ward contract translation, this translation is also hard. The main difficult comes from
the translation of try-catch, try-finally, and break instructions. If one uses a byte-
code language similar to CIL, this translation is simpler than using Java Bytecode. The
main problem translating proofs to Java Bytecode is the formalization of the compilation
function, and the soundness proof of the translation.

In Java Bytecode, a try-finally instruction is compiled using code duplication: the
finally block is put after the try block. If try-finally instructions are used inside of
a while loop, the compilation of break instructions first duplicates the finally blocks
and then inserts a jump to the end of the loop. Furthermore, the generation of exception
tables is also harder. The code duplicated before the break may have exception handlers
different from those of the enclosing try block. Therefore, the exception table must be
changed so that exceptions are caught by the appropriate handlers.

In this chapter, we present a proof-transforming compiler for a subset of Java, which
handles try-catch, try-finally, and break instructions. In Section 8.1, we present the
proof translation using CIL bytecode. In Section 8.2, we show the proof translation using
Java Bytecode.

This chapter is partially based on the published work [80].

156 Java-Specific Aspects of Proof-Transforming Compilation

8.1 Poof Translation using CIL

This section presents proof-transformation for a subset of Java using CIL. We assume
break instructions are not used inside of a try-finally instruction. This assumption
simplifies the translation function and the soundness proof. In Section 8.2, we remove
this assumption and we formalize the translation of try-catch, try-finally, and break

instructions using Java Bytecode.

8.1.1 Translation Basics

The Java proof-transforming compiler is based on two translation functions, ∇S and ∇E

for instructions and expressions respectively. The translation of expression is done with
the same function ∇E presented in Section 6.3. To be able to handle the Java exception
handling, the translation function ∇S also takes a mapping function that maps exception
types to labels. Given an exception type T , this mapping yields the label where the
exception of type T is caught. The signature of these functions are defined as follows:

∇E : Precondition × Expression × Postcondition × Label → BytecodeProof
∇S : ProofTree × Label × Label × Label × [ExcType → Label]→ BytecodeProof

ProofTree is a derivation in the logic presented in Section 3.3. The labels are: (1) lstart

for the first label of the resulting bytecode; (2) lnext for the label after the resulting
bytecode; (3) lbreak for the jump target for break instructions. ExcType is an exception
type (a descendent type of the type Exception). As a convention, given the mapping
function m : ExcType → Label , m[T] yields the label where the exception T is caught.
The application m[T → l] updates the mapping function m where the value of the
parameter T is replaced by l .

In the following sections, we present the translation for compound, while, break,
throw, try-catch, and try-finally instructions. The translation of basic instructions
such as assignment, if then else, and loops is similar to the translation presented in
Section 6.4.

8.1.2 Compound

The translation of the compound for Java is similar to the translation presented in Sec-
tion 6.4.2. Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Rb ,Re

} TS2 ≡
Tree2{

Qn

}
s2

{
Rn ,Rb ,Re

}

8.1 Poof Translation using CIL 157

The definition of the translation is the following:

∇S

 TS1 TS2{
P
}

s1; s2

{
Rn ,Rb ,Re

} , lstart , lnext , lbreak ,m

 =

∇S (TS1 , lstart , lb , lbreak ,m)

∇S (TS2 , lb , lnext , lbreak ,m)

In this translation, the mapping function m is used as an argument in the translation
of s1 and s2. The bytecode is valid because the bytecode for s1 establishes Qn , which is
the precondition of the first instruction of the bytecode for s2.

8.1.3 While Rule

Let TS1 and Twhile be the following proof trees:

TS1 ≡
Tree1{

e ∧ I
}

s1

{
I ,Qb ,Re

}
Twhile ≡

TS1{
I
}

while (e) s1

{
(I ∧ ¬e) ∨ Qb , false,Re

}
In this translation, first the loop expression is evaluated at lc. If this expression evalu-

ates to true, control is transferred to lb , the start label of the loop body. In the translation
of TS1 , the start label and next labels are updated with the labels lb and lc. Furthermore,
the break label is updated with the label at the end of the loop (lnext). The definition of
the translation is the following:

∇S (Twhile , lstart , lnext , lbreak , m) =

{I } la : br lc

∇S (TS1 , lb , lc, lnext , m)

∇E (I , e, (shift(I) ∧ s(0) = e) , lc)

{shift(I) ∧ s(0) = e} ld : brtrue lb

158 Java-Specific Aspects of Proof-Transforming Compilation

The instruction br establishes I , which is the precondition of the successor instruction
(the first instruction of the translation of s1). The translation of s1 establishes I , which
implies the precondition of its successor. The translation of e establishes

shift(I) ∧ s(0) = e

because the evaluation of the expression pushes the result on top of the stack. This
postcondition implies the precondition of the successor instruction bbrtrue. Finally, the
instruction brtrue establishes the preconditions of both possible successor instructions,
namely e ∧ I for the successor lb (the first instruction of s1), and I ∧ ¬e for lnext .
Therefore, the produced bytecode proof is valid.

8.1.4 Break Rule

The translation of the break instruction transfers control to the end of the loop. The
label that represents the end of the loop is stored in the parameter lbreak . Thus, the break

instruction is translated using a br instruction. The definition of the translation is the
following:

∇S

({
P
}

break
{

false,P , false
} , lstart , lnext , lbreak ,m

)

{P} lstart : br lbreak

To argue that the bytecode proof is valid, we have to show that the postcondition P
implies the precondition of lbreak . This can be proven using the hypothesis of the soundness
theorem presented in Section 8.1.8.

8.1.5 Throw Rule

The throw instruction is translated using the CIL athrow instruction. The translation first
pushes the expression e on top of the stack, and then it adds the instruction athrow. We
assume that the instruction athrow takes the expression e on the top of the stack, then
assigns it to the variable excV , and finally control is transferred to the label where the
exception is caught. Here, the mapping function m is used to prove soundness (the proof
is presented in Appendix D). The translation is defined as follows:

8.1 Poof Translation using CIL 159

∇S

 {
P [e/excV]

}
throw e

{
false, false,P

} , lstart , lnext , lbreak , m

 =

∇E (P [e/excV] , e, (shift(P [e/excV]) ∧ s(0) = e) , lstart)

{ shift(P [e/excV]) ∧ s(0) = e } lb : athrow

The translation for e establishes shift(P [e/excV]) ∧ s(0) = e because it pushes the
expression e on top of the stack. This postcondition implies the precondition at label lb .
Therefore, the translation is valid.

8.1.6 Try-catch Rule

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Qb ,Q

}

TS2 ≡
Tree2{

Q ′e [e/excV]
}

s2

{
Qn ,Qb ,Re

}
where

Q ≡ ((Q ′′e ∧ τ(excV) 6� T) ∨ (Q ′e ∧ τ(excV) � T))

Let R be the following postcondition:

R ≡ (Re ∨ (Q ′′e ∧ τ(excV) 6� T))

To translate try-catch instructions, we use the CIL instructions .try and catch. First,
the instruction s1 is translated in the body of .try. This translation updates the mapping
function m, where the label of the exception type T is changed by lc. This update is
done to express that the exceptions of type T are caught at the label lc. If s1 triggers an
exception, control is transferred to the catch block. In this catch block, first the exception
value is stored in e (at label lc), and then the translation of s2 is added. The definition of
the translation is:

160 Java-Specific Aspects of Proof-Transforming Compilation

∇S

 TS1 TS2{
P
}

try s1 catch (T e) s2

{
Qn ,Qb ,R

} , lstart , lnext , lbreak ,m

 =

.try {
∇S

(
TS1 , lstart , lb , lbreak , m

[
T → lc

])
{Qn} lb : leave lnext

}
catch System.Exception {{

shift(Q ′e) ∧ excV 6= null

∧ τ(excV) � T ∧ s(0) = excV

}
lc : stloc e

∇S (TS2 , ld , lnext , lbreak , m)

{Qn} le : leave lnext

}

The bytecode for the instruction s1 establishes Qn , which is the precondition of the
successor instruction lb . The precondition at lb , Qn , implies the precondition of its suc-
cessor lnext . The precondition at label lc is established by the translation of s1. Finally,
the translation of s2 establishes Qn . which is the precondition at label le . Therefore, the
translation is valid.

8.1.7 Try-finally Rule

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Qb ,Qe

} TS2 ≡
Tree2{

Q
}

s2

{
R,R′b ,R

′
e

}

8.1 Poof Translation using CIL 161

where

Q ≡

 (Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

) 
and

R ≡

(
(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e [eTmp/excV] ∧ XTmp = exc)

)

The try-finally instruction is translated using .try and .finally instructions. In the
body of the .try instruction, first, the instruction s1 is translated using ∇S , and then the
instruction leave is added. In the finally block, the instruction s2 is translated using ∇S .
The definition of the translation is:

∇S

 TS1 TS2{
P
}

try s1 finally s2

{
R′n ,R

′
b ,R

′
e

} , lstart , lnext , lbreak ,m

 =

.try {

∇S (TS1 , lstart , lb , lbreak , m)

{Qn} lb : leave lnext

}

.finally {

∇S (TS2 , lc , ld , lbreak , m)

{R} ld : endfinally

}

8.1.8 Soundness Theorem

In this section, we extend the soundness theorem of the instruction translator presented
in Section 6.7. The translation described in the above sections handles break instructions
and the Java exception handling mechanism. This soundness theorem adds hypothesis
that relates the break postcondition with the preconditions where the break is translated,
and the exceptional postcondition with the precondition where the exception is caught.

The theorem states that if (1) we have a valid source proof for the instruction s1,
and (2) we have a proof translation from the source proof that produces the instructions

162 Java-Specific Aspects of Proof-Transforming Compilation

Ilstart ...Ilend
, and their respective preconditions Elstart ...Elend

, and (3) the normal postcon-
dition in the source logic implies the next precondition of the last generated instruction
(if the last generated instruction is the last instruction of the method, we use the normal
postcondition in the source logic), and (4) the break postcondition implies the precon-
dition at the target label lbreak , and (5) for all subtypes T of Throwable the exceptional
postcondition in the source logic implies the precondition at the target label stored in the
mapping function m (m[T]) but considering the value stored in the stack of the bytecode,
then every bytecode specification holds (` {El} Il). The theorem is the following:

Theorem 6 (Soundness of the Java Instruction Translator).

` Tree1{
P
}

s1

{
Qn ,Qb ,Qe

} ∧

(Ilstart ...Ilend
) = ∇S

 Tree1{
P
}

s1

{
Qn ,Qb ,Qe

} , lstart , lend+1, lbreak ,m

 ∧(
Qn ⇒ Elend+1

)
∧

(Qb ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ lstart ... lend : ` {El} Il

The full proofs can be found in Appendix D. The proof runs by induction on the
structure of the derivation tree for {P} s1 {Qn ,Qe}.

8.2 Proof Translation using Java Bytecode

In Chapter 6 and Chapter 7, we have described proof-transforming compilation for a
core object-oriented language and for a subset of Eiffel respectively. These translations
generate proofs in a logic for CIL. These PTCs can be easily adapted to generate other
bytecode such as JVM. The main change is the use of exception tables instead of .try catch
instructions. However, this is not the case for the translation presented in Section 8.1.

The main difference between JVM and CIL is the exception handling mechanism. In
CIL, exceptions are handled using a similar mechanism to C# and Java: .try and catch
instructions. To handle exceptions, JVM uses exception tables. To compile try-finally

instructions, the Java compiler uses code duplication. Consider the following example:

8.2 Proof Translation using Java Bytecode 163

while (i < 20) {
try {

try {
try {

... break; ...
}
catch (Exception e) {

i = 9;
}

}
finally {

throw new Exception();
}

}
catch (Exception e) {

i = 99;
}

}

The finally body is duplicated before the break. But the exception thrown in the
finally block must be caught by the outer try-catch. To achieve that, the compiler cre-
ates, in the following order, exception lines for the outer try-catch, for the try-finally,
and for the inner try-catch. When the compiler reaches the break, it divides the excep-
tion entry of the inner try-catch and try-finally into two parts so that the exception
is caught by the outer try-catch.

This code duplication increases the complexity of the compilation and translation
functions, especially the formalization and its soundness proof. In the following, we present
the proof translation using a similar language to Java Bytecode. In particular, we use the
CIL instructions names instead of the JVM (for example we write ldloc instead of pushv).

8.2.1 Translation Basics

The instruction translation is done using the function ∇S . The function ∇S generates a
bytecode proof and an exception table from a source proof. This function is defined as a
composition of the translations of its sub-trees. The signature is the following:

∇S : ProofTree × Label × Label × Label × List [Finally] ×
ExcTable → [BytecodeProof × ExcTable]

ProofTree is a derivation in the source logic. The three labels are: (1) lstart for the first
label of the resulting bytecode; (2) lnext for the label after the resulting bytecode; (3) lbreak

for the jump target for break instructions.

164 Java-Specific Aspects of Proof-Transforming Compilation

The BytecodeProof type is defined as a list of InstrSpec, where InstrSpec is an instruc-
tion specification. The Finally type, used to translate finally instructions, is defined as
a tuple [ProofTree,ExcTable]. Furthermore, the function ∇S takes an exception table as
parameter and produces an exception table. This is necessary because the translation of
break instructions can lead to a modification of the exception table as described above.

The ExcTable type is defined as follows:

ExcTable := List [ExcTableEntry]
ExcTableEntry := [Label ,Label ,Label ,Type]

In the ExcTableEntry type, the first label is the starting label of the exception line,
the second denotes the ending label, and the third is the target label. An exception of
type T1 thrown at line l is caught by the exception entry [lstart , lend ,ltarg ,T2] if and only if
lstart ≤ l < lend and T1 � T2. Control is then transferred to ltarg .

In the following, we present the proof translation using Java Bytecode for compound,
while, try-finally, and break.

8.2.2 Compound

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Rb ,Re

} TS2 ≡
Tree2{

Qn

}
s2

{
Rn ,Rb ,Re

}
In the translation of TS1 , the label lnext is the start label of the translation of s2, say
lb . The translation of TS2 uses the exception table produced by the translation of TS1 ,
et1. The translation of TS1;S2 yields the concatenation of the bytecode proofs for the
sub-instructions and the exception table produced by the translation of TS2 .

Let [BS1 , et1] and [BS2 , et2] be of type [BytecodeProof , ExcTable], and defined as follows:

[BS1 , et1] = ∇S (TS1 , lstart , lb , lbreak , f , et)

[BS2 , et2] = ∇S (TS2 , lb , lnext , lbreak , f , et1)

The translation is defined as follows:

∇S

(
TS1 TS2{

P
}

s1; s2

{
Rn ,Rb ,Re

} , lstart , lnext , lbreak , f , et

)
=

[BS1 + BS2 , et2]

The bytecode for s1 establishes Qn , which is the precondition of the first instruction of
the bytecode for s2. Therefore, the concatenation BS1 + BS2 produces a sequence of valid
instruction specifications. We will formalize soundness in Section 8.2.6.

8.2 Proof Translation using Java Bytecode 165

8.2.3 While Rule

Let TS1 be the following proof tree:

TS1 ≡
Tree1{

e ∧ I
}

s1

{
I ,Qb ,Re

}
In this translation, the finally list is set to the empty set, because a break instruction
inside the loop jumps to the end of the loop without executing any finally block.

Let bbr and bbrtrue be instruction specifications, and let BS1 and Be be bytecode proofs
defined as follows:

bbr = {I } la : br lc

[BS1 , et1] = ∇S (TS1 , lb , lc, lnext , ∅, et)

Be = ∇E (I , e, (shift(I) ∧ s(0) = e) , lc)

bbrtrue = {shift(I) ∧ s(0) = e} ld : brtrue lb

The definition of the translation is the following:

∇S

(
TS1{

I
}

while (e) s1

{
(I ∧ ¬e) ∨ Qb , false,Re

} , lstart , lnext , lbreak , f , et

)
=

[bbr + BS1 + Be + bbrtrue , et1]

The instruction bbr establishes I , which is the precondition of the successor instruction
(the first instruction of BS1). BS1 establishes I , which implies the precondition of its suc-
cessor Be , I . Be establishes shift(I) ∧ s(0) = e because the evaluation of the expression
pushes the result on top of the stack. This postcondition implies the precondition of the
successor instruction bbrtrue. The instruction specification bbrtrue establishes the precondi-
tions of both possible successor instructions, namely e ∧ I for the successor lb (the first
instruction of BS1), and I ∧ ¬e for lnext . Therefore, the produced bytecode proof is valid.

8.2.4 Try-Finally Rule

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Qb ,Qe

} TS2 ≡
Tree2{

Q
}

s2

{
R,R′b ,R

′
e

}

166 Java-Specific Aspects of Proof-Transforming Compilation

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

))
R ≡

(
(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e [eTmp/excV] ∧ XTmp = exc)

)
In this translation, the bytecode for s1 is followed by the bytecode for s2. In the

translation of TS1 , the finally block is added to the finally-list f with TS2 ’s source proof
tree and its associated exception table. The corresponding exception table is retrieved
using the function getExcLines . The signature of this function is as follows:

getExcLines : Label × Label × ExcTable → ExcTable

Given two labels and an exception table et , getExcLines returns, per every exception type
in et , the first et ’s exception entry (if any) for which the interval made by the starting
and ending labels includes the two given labels.

Then, the translation of s1 adds a new exception entry for the finally block, to the
exception table et . Finally, the bytecode proof for the case when s1 throws an excep-
tion is created. The exception table of this translation is produced by the predecessor
translations.

Let et1 and et ′ be the following exception tables:

et1 = et + [lstart , lb , ld , any]
et ′ = getExcLines(lstart , lb , et1)

Let bbr, bstloc, bldloc, and bathrow be instructions specifications, and let BS1 , BS2 , and B ′S2

be bytecode proofs:

[BS1 , et2] = ∇S (TS1 , lstart , lb , lbreak , [TS2 , et ′] + f , et1)

[BS2 , et3] = ∇S (TS2 , lb , lc, lbreak , f , et2)

bbr = {R′n} lc : br lnext

bstloc =


shift(Qe) ∧
excV 6= null

∧ s(0) = excV

 ld : stloc eTmp

[BS ′
2
, et4] = ∇S (TS2 , le , lf , lbreak , f , et3)

bldloc =
{

R′n ∨ R′b ∨ R′e

}
lf : ldloc eTmp

bathrow =

 (R′n ∨ R′b ∨ R′e)

∧ s(0) = eTmp

 lg : athrow

8.2 Proof Translation using Java Bytecode 167

The translation is defined as follows:

∇S

 TS1 TS2{
P
}

try s1 finally s2

{
R′n ,R

′
b ,R

′
e

} , lstart , lnext , lbreak , f , et

 =

[BS1 + BS2 + bgoto + bpop + BS ′
2

+ bpushv + bathrow , et4]

It is easy to see that the instruction specifications bbr, bstloc, bldloc, and bathrow are valid
(by applying the definition of the weakest precondition). However, the argument for the
translation of TS1 and TS2 is more complex. Basically, the result is a valid proof because
the proof tree inserted in f for the translation of TS1 is a valid proof and the postcondition
of each finally block implies the precondition of the next one. Furthermore, for normal
execution, the postcondition of BS1 (Qn) implies the precondition of BS2 (Q).

8.2.5 Break Rule

To specify the rules for break, we use the following recursive function:

divide : ExcTable × ExcTableEntry × Label × Label → ExcTable

The definition of divide assumes that the exception entry is in the given exception
table and the two given labels are in the interval made by the exception entry’s starting
and ending labels. Given an exception entry y and two labels ls and le , divide compares
every exception entry, say x , of the given exception table to y . If the interval defined by
x ’s starting and ending labels is included in the interval defined by y ’s starting and ending
labels, then x must be divided to have the appropriate behavior of the exceptions. Thus,
the first and the last interval of the three intervals defined by x ’s starting and ending
labels, ls , and le are returned, and the procedure is continued for the next exception
entry. If x and y are equal, then recursion stops as divide reached the expected entry. The
formal definition of divide is the following:

168 Java-Specific Aspects of Proof-Transforming Compilation

divide : ExcTable × ExcTableEntry × Label × Label → ExcTable
divide : ([], e ′, ls , le) = [e ′]
divide : (e : et , e ′, ls , le) = [lstart , ls , ltarg , T1] + [le , lend , ltarg , T1]+

divide(et , e ′, ls , le) if e ⊆ e ′ ∧ e 6= e ′

| e : et if e = e ′

| e : divide(et , e ′, ls , le) otherwise
where

e ≡ [lstart , lend , ltarg ,T1] and e ′ ≡ [l ′start , l
′
end , l

′
targ ,T2]

⊆ : ExcTableEntry × ExcTableEntry → Boolean
⊆ : ([lstart , lend , ltarg ,T1], [l

′
start , l

′
end , l

′
targ ,T2]) = true if (l ′st ≤ lst) ∧ (l ′end ≥ lend)

| false otherwise

When a break instruction is encountered, the proof tree of every finally block the
break has to execute upon exiting the loop is translated. Then, control is transferred to
the end of the loop using the label lbreak . Let fi = [TFi , et ′i] denote the i -th element of the
list f , where

TFi =
Treei{

U i
}

si

{
V i

}
and U i and V i have the following form, which corresponds to the Hoare rule for try-
finally:

U i ≡
{

(U i
n ∧ XTmp = normal) ∨ (U i

b ∧ XTmp = break) ∨(
U i

e [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV
) }

V i ≡


 (V ′in ∧ XTmp = normal) ∨

(V ′ib ∧ XTmp = break) ∨
(V ′ie ∧ XTmp = exc)

 , V i
b , V i

e


Let BFi be a BytecodeProof for TFi such that:

[BFi , eti+1] = ∇S (TFi , lstart+i , lstart+i+1, lbr , fi+1...fk , divide(eti , et ′i [0], lstart+i , lstart+i+1))

bbr = {Bk
b } lstart+k+1 : br lbr

The definition of the translation is the following:

∇S

({
P
}

break
{

false,P , false
} , lstart , lnext , lbr , f , et0

)

= [BF1 + BF2 + ...+ BFk
+ bbr, etk]

8.2 Proof Translation using Java Bytecode 169

To argue that the bytecode proof is valid, we have to show that the postcondition of BFi

implies the precondition of BFi+1 and that the translation of every block is valid. This
is the case because the source rule requires the break-postcondition of s1 to imply the
normal precondition of s2.

The exception table has two important properties that hold during the translation. The
first one (Lemma 3) states that the exception entries, whose starting labels appear after
the last label generated by the translation, are kept unchanged. The second one (Lemma
4) expresses that the exception entry is not changed by the division. These properties are
used to prove soundness of the translation. The proof of theses lemmas are presented in
Appendix D

Lemma 3.
If

∇S

(
Tree{

P
}

s
{

Qn ,Qb ,Qe

} , la , lb+1, lbreak , f , et

)
= [(Ila ...Ilb), et ′]

and lstart ≤ la < lb ≤ lend then,
for every ls , le : Label such that lb < ls < le ≤ lend , and
for every T : Type such that T � Throwable ∨ T ≡ any, the following holds:

et [lstart , lend ,T] = et ′[ls , le ,T]

Lemma 4. Let r : ExcTableEntry and et ′ : ExcTable be such that r ∈ et ′.
If et : ExcTable and ls , le : Label are such that et = divide(et ′, r , ls , le), then

et [ls , le ,T] = r [T]

8.2.6 Soundness Theorem

The theorem states that if (1) we have a valid source proof for the instruction s1, and
(2) we have a translation from the source proof that produces the instructions Ilstart ...Ilend

,
their respective preconditions Elstart ...Elend

, and the exception table et , and (3) the excep-
tional postcondition in the source logic implies the precondition at the target label stored
in the exception table for all types T such that T � Throwable∨T ≡ any but considering
the value stored in the stack of the bytecode, and (4) the normal postcondition in the
source logic implies the next precondition of the last generated instruction (if the last
generated instruction is the last instruction of the method, we use the normal postcondi-
tion in the source logic), (5) the break postcondition implies finally properties. Basically,
the finally properties express that for every triple stored in f, the triple holds and the
break postcondition of the triple implies the break precondition of the next triple. And

170 Java-Specific Aspects of Proof-Transforming Compilation

the exceptional postcondition implies the precondition at the target label stored in the
exception table eti but considering the value stored in the stack of the bytecode. Then,
we have to prove that every bytecode specification holds (` {El} Il).

In the soundness theorem, we use the following abbreviation: for an exception table et ,
two labels la , lb , and a type T , et [la , lb ,T] returns the target label of the first et ’s exception
entry whose starting and ending labels are less or equal and greater or equal than la and
lb , respectively, and whose type is a supertype of T .

The soundness theorem is defined as follows:

Theorem 7 (Soundness of the Translation from Java to Java Bytecode).

` Tree{
P
}

s1

{
Qn ,Qb ,Qe

} ≡ TS1 ∧

[(Ilstart ...Ilend
), et] = ∇S (TS1 , lstart , lend+1, lbreak , f , et ′)∧

(∀ T : Type : (T � Throwable ∨ T ≡ any) :

(Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′[lstart ,lend ,T])∧(
Qn ⇒ Elend+1

)
∧

(Qb ⇒ (f = ∅ ⇒ (Qb ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(Qb ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r1
i + r2

i + ...+ rm
i : (r1

i ∩ r2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et ′))






⇒
∀ l ∈ lstart ... lend : ` {El} Il

The proof runs by induction on the structure of the derivation tree for {P} s1 {Qn ,Qb ,Qe}.
The proof is presented in Appendix D, Section D.2.

8.3 Applications

This section presents an example of the application of the Java proof-transforming com-
piler. This example uses Java Bytecode and illustrates the translation presented in Sec-
tion 8.1. The PTC takes the proof described in Section 3.3.4, and produces a bytecode
proof. The translation starts with the class rule, then the PTC translates the routine im-
plementation rule, and finally it applies the instruction translation. The bytecode deriva-
tion is as follows:

8.3 Applications 171

{ true } IL001 : ldc 1
{s(0) = 1} IL002 : stloc b
{b = 1} IL003 : br IL014

// try block
{b = 1} IL004 : newobj Exception
{b = 1} IL005 : athrow

// finally block
{b = 1 ∧ excV 6= null ∧ s(0) = excV } IL007 : stloc eTmp
{b = 1 ∧ eTmp = excV } IL008 : ldc 1
{b = 1 ∧ s(0) = 1} IL009 : ldloc b
{b = 1 ∧ s(1) = 1 ∧ s(0) = b} IL010 : binop+

{b = 1 ∧ s(0) = b + 1} IL011 : stloc b
{b = 2} IL012 : br IL017
{ false } IL013 : ldloc eTmp
{ false } IL014 : throw

{b = 1} IL015 : ldc true
{b = 1 ∧ s(0) = true } IL016 : brtrue IL004
{b = 2} IL017 : ldc 1
{b = 2 ∧ s(0) = 1} IL018 : ldloc b
{b = 2 ∧ s(1) = 1 ∧ s(0) = b} IL019 : binop+

{b = 2 ∧ s(0) = 1 + b} IL020 : stloc b

Exception Table
From to target type
IL004 IL007 IL007 any

Fig. 8.1: Bytecode Proof generated by the Java PTC from the Example Figure 3.14.

{
τ(Current) ≺ MATH ∧ true

}
MATH:foo

{
b = 3 , false

}{
τ(Current) = MATH ∧ true

}
impl(MATH, foo)

{
b = 3 , false

}{
τ(Current) � MATH ∧ true

}
MATH:foo

{
b = 3 , false

}
The first hypothesis:{

τ(Current) ≺ MATH ∧ true
}

MATH:foo
{

b = 3 , false
}

is the result of the translation of the false axiom. The second hypothesis is obtained
applying the translation of the routine implementation rule. The produced routine imple-
mentation rule is the following:

172 Java-Specific Aspects of Proof-Transforming Compilation

proof Figure 8.1{
true

}
body(MATH@foo)

{
b = 3 , false

}{
true

}
MATH@foo

{
b = 3 , false

}
Figure 8.1 presents the bytecode proof for the body of the routine foo. The try-finally

instruction in the source is translated in lines IL004− IL014. The body of the loop is be-
tween lines IL004 and IL016. The break translation yields at line IL012 a br instruction
whose target is the end of the loop, i.e., line IL017. Due to the execution of a break

instruction, the code from IL017 to IL018 is not reachable (this is the reason for their
false precondition).

8.4 Related Work

Proof-Carrying Code and Certifying Compilation

The proof-transforming compilation approach has been inspired by Proof-Carrying Code
(PCC) [84, 85, 88]. In PCC, the code producer provides a proof, a certificate that the code
does not violate the security properties of the code consumer. Before the code execution,
the proof is checked by the code consumer. Only if the proof is correct, the code is
executed. With the goal of generating certificates automatically, Necula and Lee [87] have
developed certifying compilers. Certifying compilers are compilers that take a program
as input and produce bytecode and its proof. Examples of certifying compilers are the
Touchstone compiler [85] for a subset of C, and the Special J compiler [29] for a subset
of Java.

One of the advantages of Proof-Carrying Code is that mobile code carries a mathemat-
ical proof machine checkable. Furthermore, the overhead of producing the proof is done
by the code producer. One of the disadvantages of PCC is that the trusted computing
base is big, consisting of a verification condition generator, a safety policy, and a proof
checker. Furthermore, certifying compilers only work automatically with a restricted set
of provable properties such as type safety. Since our approach supports interactive ver-
ification of source programs, we can handle more complex properties such as functional
correctness. Similar to Foundation Proof-Carrying Code [2], our trusted computing base
is reduced to a proof checker.

The open verifier framework for foundational verifiers [27] verifies untrusted code using
customized verifiers. The architecture consists of a trusted checker, a fixpoint module,
and an untrusted extension (a new verifier developed by untrusted users). The approach
is based on Foundation Proof-Carrying Code [2], and it reduces the trusted computing
base to the proof checker. However, the properties that can be proved automatically are
still limited.

8.4 Related Work 173

Certified Compilation

Compilers are complex software system. Proving that the implementation of the compiler
is correct is hard. A certified compiler [41, 22, 106] is a compiler that generates a proof
that the translation from the source program to the assembly code preserves the semantics
of the source program. Together with a source proof, this gives an indirect correctness
proof for the bytecode program. Leroy [68] defines a certified compiler as a compiler Comp
which satisfies the following property:

∀s : Source, t : Target : Comp(s) = t implies Sem(s , t)

Leroy [68] proves that the semantics of a C program is preserved after compilation
to PowerPC assembly code. The innovation of Leroy’s work is that the certified compiler
compiles a subset of C commonly used for critical embedded software. The compilation
chain is done through four intermediate languages. The compiler has been written in the
Coq specification language [19]. The proof is a machine-checked proof, and it has been
also formalized in Coq.

Blech and Poetzsch-Heffter [24] have implemented a certified compiler for a subset of
C. The compiler produces a machine-checkable proof in Isabelle. Blech and Gregoire [23]
extended that work using the Coq theorem prover.

Proof-transforming compilers generate the bytecode proof directly, which leads to
smaller certificates compared to certified compilers.

Translation Validation

Pnueli et al [104] have develop the concept of translation validation. Instead of proving
that the compiler always generates a correct target code, in translation validation each
translation is validated showing that the target code correctly implements the source
program. The approach compares the input and the output, using an analyzer, indepen-
dently of how the compiler is implemented. Thus, a change in the compiler does not affect
the analyzer. The analyzer takes both the source and target program, and produces a
proof script if the target program correctly implements the source program; otherwise,
it generates a counter example. Pnueli et al [104] develop a translation from the syn-
chronous multi-clock data-flow language SIGNAL to sequential C code. They generate
proof obligations that are solved by a model checker.

Necula [86] implements a translation validation for an optimizing GNU C compiler us-
ing symbolic execution. The optimizations include branch optimizations, common subex-
pression elimination, register allocation, and code scheduling. The experiments developed
by Necula reports that the translation validator slows down compilation by a factor of
four. Zuck et al. [128] extend the optimizations to structure modifying optimizations such
as loop distribution and fusion, loop tiling, and loop interchange.

174 Java-Specific Aspects of Proof-Transforming Compilation

Tristan and Leroy [121] observes that translation validation provides formal correctness
similar to compiler verification if the validator is formally verified. The validator can be
formalized as a function V : Source×Target → Bool ; then, one has to prove that if V (s , t)
holds, then the source code s is semantically equivalent to the target code t . They analyze
the usability of the verified validator approach for optimizer compilers. The optimizations
are list scheduling and trace scheduling (used to improve instruction-level parallelism).

In translation validation, a proof checker can be used to check that the generated proof
script is correct. However, the certificate consist of the proof script, the source program,
and the target program. To be able to apply translation validation in a similar setting as
proof-transforming compilers, one would also need to check that the proof of the source
program is valid. Thus, one would need another proof checker, and the certificate would
be also bigger.

Proof-Transforming Compilation

There has been several works on proof-transforming compilation [6, 15, 103, 81, 95].
The closer related work to our proof-transforming compilers are the works by Barthe et
al. [15, 9, 10, 13] on proof preserving compilation.

Figure 8.4 shows the general architecture of proof preserving compilation. In the code
producer side, the verification condition generator on the source language (VCGen on
Source) takes the annotated program and its contracts, and generates the verification
condition for the source program (Source VC). This verification condition is proven using
an interactive or automatic prover. The prover generates a certificate which is sent to the
code consumer. Together with the certificate, the code consumer receives the bytecode
program with annotations and contracts. A verification condition (VC) for the bytecode is
generated using the VCGen on Bytecode. The VC for the bytecode and the certificate are
taken by the proof checker. If the certificate is valid, the bytecode program is executed;
otherwise the program is rejected.

Although the certificate was proven using the verification condition generated from
the source program, Barthe et al. [15] show that proof obligations are preserved by com-
pilation. Thus, if the certificate proves the source VC, then the certificates also proves
the bytecode VC. In an initial work [15], the source language is a subset of Java, which
includes method invocation, loops, and exception handling using throw and try-catch

instructions. However, they do not consider try-finally instructions, which make the
translation significantly more complex. Our translation supports try-finally and break

instructions.
Pavlova et al. [103, 10] extends the aforementioned work to a subset of Java (which

includes try-catch, try-finally, and return instructions). They prove equivalence be-
tween the VC generated from the source program and the VC generated from the bytecode
program. The translation of the above source language has a similar complexity to our
Java PTC. However, Pavlova avoided the code duplication for finally blocks by disallow-

8.4 Related Work 175

Fig. 8.2: General Architecture of Proof Preserving Compilation.

ing return instructions inside the try blocks of try-finally instructions. This simplifies
not only the verification condition generator, but also the translation and the soundness
proof.

Comparing our Eiffel PTC and Barthe et al.’s work [15, 103, 10], the translation in
their case is less difficult because the source and the target languages are closer. However,
their work does not address the translation of specifications. Our translation is more
complicated due to the translation of contracts.

The Mobius project develops proof-transforming compilers [77, 78]. They translate
JML specifications and proof of Java source programs to Java Bytecode. The translation
is simpler than our Eiffel PTC because the source and the target language are closer.

In these works on proof preserving compilation [15, 103, 10], the certificate that proves
the VC on the source is also used to prove the VC on bytecode. This certificate does
not need to be changed because the Java and Java bytecode language are closed1. To
apply the proof preserving compilation approach to Eiffel, we would need to translate the
generated certificate.

1The certificate is not changed since they use a bytecode language which has a boolean type, and they
assume identifiers for variables are the same as the source language.

176 Java-Specific Aspects of Proof-Transforming Compilation

Fig. 8.3: General Architecture of Proof Preserving Compilation for Eiffel.

In Figure 8.3, we show how to extend the proof preserving compilation approach to
Eiffel. In the code producer, the Eiffel program and the contracts are taken by the VCGen
on Source, and the VCGen produces the verification condition. This Source VC is proven
using an interactive or automatic prover. Since the class structure of Eiffel programs is
different to the class structure of CIL programs, the source certificate has to be translated
to a CIL certificate. This task is performed by the Certificate Translator. The Eiffel
program is compiled to a bytecode program with annotations, and the Eiffel contracts
are translated to CIL by the Contract Translator. An example of the definition of the
contract translator is the contract translator defined in Section 7.1. Finally, the bytecode
VC is generated by the VCGen on Bytecode, and the CIL certificate is checked using the
Proof Checker.

The above described works have been applied to non-optimizing compilers. Barthe
et al. [9] and Saabas and Uustalu [114] have extended proof-transforming compilation
to optimizing compilers. Barthe et al. [9] translate certificates for optimizing compilers
from a simple imperative language to an intermediate RTL language (Register Transfer
Language). The translation is done in two steps: first the source program is translated
into RTL and then optimizations are performed building the appropriate certificate. The
source language used in their work is simpler than ours. Saabas and Uustalu [112, 114, 113]
describe how optimizations can be applied to proof-transforming compilers. They apply

8.4 Related Work 177

their technique to a simple while language. We will investigate optimizing compilers for
object-oriented languages as part of future work.

Kunz et al. [13] extend the preservation of proof obligations for hybrid verification
methods based on static analysis and verification condition generation. They have applied
their technique to an imperative language. Barthe and Kunz [12, 61] study certificate
translation for program transformation using abstract interpretation [31]. They define
the certificate as an abstract notion of proof algebra that includes a set of functions
used to define a certificate translator for program transformation. Instead of handling
concrete program optimizations, they consider arbitrary program transformations such
as code duplication, and subgraph transformation. The same authors [11] study proof
compilation for aspect oriented programming.

This chapter extends Müller and Bannwart’s work [6] on proof-transforming compi-
lation. They present a proof-transforming compiler from a subset of Java which includes
loops, conditional instructions and object-oriented features. The architecture of Müller
and Bannwart’s PTC is the same as our compiler: the PTC takes a proof of the source
program (a derivation in a Hoare-style logic), and produces a bytecode proof (a derivation
in the bytecode logic). The logic used in Müller and Bannwart’s work is different from
the logic used in this chapter. In Chapter 6, our work handles assignment which might
trigger exception, while their work does not handle exceptions. Then, we have extended
the PTC to Eiffel and Java, which produces a more complex translation. Furthermore,
we have formalized and proven soundness.

Bytecode Verification

Verification techniques for Bytecote programs have been developed. The approach consists
of developing the proof on the bytecode program instead of developing the proof on
the source program. An example of bytecode verification is the work developed by the
Mobius project [76]; they present a program logic for a bytecode language similar to Java
bytecode. The logic has been proved sound with respect the operational semantics, and
it has been formalized in Coq. The logic is part of the proof-transforming compilation
approach described in the above section.

Liu and Moore [69] have defined a deep embedding of Java Bytecode in ACL2. They
show that Java program verification via a deep embedding of the Java bytecode into the
logic of ACL2 is a viable approach. They reason about the Java programs by compiling
the programs to Java bytecode, and then applying the verification on the compiled code.
Our approach verifies the source program, and then it produces the bytecode proof auto-
matically. We think verifying the source program is simpler than verifying the bytecode
program.

Other logics for bytecode have been developed such as Quigley’s logic [110] which
formalizes Java Bytecode in Isabelle; Dong et al. [37] develop a Hoare-style logic for
bytecode; Luo et al. [70] extend separation logic to Java Bytecode. Benton [16] presents

178 Java-Specific Aspects of Proof-Transforming Compilation

a Hoare-style logic for a stack-based imperative language with unstructured control ow
similar to .NET CIL. However, the logic does not support object-oriented features such
as inheritance. Bannwart and Müller [6] have developed a Hoare-style logic for a bytecode
similar to Java Bytecode and CIL. The logic supports object-oriented features such as
inheritance and dynamic binding. However, the bytecode logic does not include exception
handling; so it does not include the CIL instructions .try catch and .try .finally.

Chapter 9

Implementation of the
Proof-Transforming Compiler
Scheme

To show the feasibility of proof-transforming compilers, we have implemented a proof-
transforming schema for a subset of Eiffel. Figure 9.1 shows the architecture of the imple-
mentation. An Eiffel program is verified using a Prover (the implementation of the Prover
is out of the scope of this thesis). The generated proof is encoded in an XML format. The
proof-transforming compiler takes as input the source proof encoded in XML, and pro-
duces as output a CIL proof. The CIL proof is embedded in an Isabelle theory [90]. The
proof checker, which has been implemented in Isabelle, takes this embedded proof, and
checks if the proof is valid or not. If the proof is valid, the program can be executed,
otherwise the program is rejected.

In the following sections we describe the implementation of the proof-transforming
compiler and the formalization of proof checker in Isabelle. More details can be found in
the ETH reports [45, 47, 58, 44]

9.1 A Proof-Transforming Compiler

The proof-transforming compiler takes the Eiffel proof in a XML file, and produces an
Isabelle theory. This PTC consists of an XML Parser, a Proof Translator, a Contract
Translator, and an Isabelle Generator. The architecture of the Eiffel PTC compiler is
presented in Figure 9.2.

The XML Parser takes the Eiffel proof, and generates an abstract syntax tree (AST).
This parser not only generates an AST for the Hoare triples but also for the pre and
postconditions used in these triples. Furthermore, it generates an AST for the contracts.

180 Implementation of the Proof-Transforming Compiler Scheme

Fig. 9.1: General Architecture of the Implementation of the Proof-Transforming Compiler
Schema.

These ASTs are needed to be able to translate contracts, preconditions, and postcondition
to CIL. Also, the ASTs are used to embed the proof into Isabelle.

After parsing the proof, the Contract Translator visits the generated AST, and trans-
lates to CIL the contracts, and pre and postconditions of the proof. The Contract Trans-
lator implements the translation functions described in Section 7.1. This translation does
not generates the CIL proof jet, it only maps Eiffel expressions to CIL.

Once the Eiffel contracts, and pre and postconditions have been translated to CIL, the
Proof Translator generates the CIL proof. The Proof Translator produces a representation
of the CIL proof in an AST. This module is implemented visiting the AST for the Eiffel
proof, and generating the AST for the CIL proof. The complexity of the implementation
of the Proof Translator is similar to a standard compiler.

One of the most interesting part in the implementation of the Proof Translator is the
translation of weak and strength rules. The application of these rules contains a proof of
the form P ′ ⇒ P . To be able to translate these proofs, we assume that the proofs have
been developed in Isabelle. The XML file has the Isabelle proof that shows P ′ ⇒ P . The
Proof Translator generates a lemma Q ′ ⇒ Q where Q ′ and Q are the translation of the

9.2 Proof Checker 181

Fig. 9.2: General Architecture of the Implementation of the Eiffel Proof-Transforming
Compiler.

expressions P ′ and P resp. into Isabelle (Q ′ = ∇C (P ′) and Q = ∇C (P)). To prove this
lemma, we use the proof provided in the XML file.

Finally, the Isabelle Generator produces an Isabelle [90] theory from the AST of the
bytecode proof. This module embeds CIL contracts, preconditions, and bytecode instruc-
tions into Isabelle. Furthermore, it generates a proof script that shows that the bytecode
proof is valid. This proof script, first, unfolds the class, method, instruction and precon-
dition definitions. Second, it applies the definition of wp, shift, and unshift, and finally it
simplifies the expressions.

9.2 Proof Checker

We have implemented a proof checker for a subset of the CIL logic. The subset includes the
rules for the main CIL instructions. However, it omits the rules for method specifications
(such as the routine implementation rule, the class rule, and the subtype rule), and the
language-independt rules (applied to method specifications).

The proof checker takes a list of instruction specifications. The rules for the CIL
instruction specifications have the form:

El ⇒ wp(Il)

A ` {El} l : Il

To check the proof, the proof checker verifies that the implications El ⇒ wp(Il) hold
for all instruction specifications. We have implemented the proof checker as a verification
condition generator (VCGen). Given a CIL proof embedded in Isabelle, the VCGen gen-

182 Implementation of the Proof-Transforming Compiler Scheme

erates verification conditions (VC) of the form El ⇒ wp(Il). If these VCs are true, then
the CIL proof is valid. To define the VCGen, we first introduce the data type definitions
for CIL instructions, exception tables, and CIL proofs. Then, we define the VCGen using
the weakest precondition function (defined in Section 5.2.2).

Following, we present the core of the proof checker, for a complete definition formalized
in Isabelle see [98].

9.2.1 Instructions

The following data type defines CIL instructions. This definition includes load and store
instructions, binary operations such as add and ceq, branch instructions, load and store
fields, object creation, method invocation, and throw instruction. Variables, field names,
and method names are denoted by VarId , FldId , and MethodId respectively; while values,
labels, and types are denoted by Value, Label , and Type respectively. The definition is:

datatype Instruction = ldloc VarId
| ldcValue
| stloc VarId
| add | sub
| mul | div
| cneq | ceq
| cgt | clt
| cgte | clte
| and | or
| neg
| br Label
| brtrue Label
| brfalse Label
| nop
| ret
| ldfld FldId
| stfld FldId
| newobj Type
| castc Type
| callvirt Type MethodId Value
| throw

9.2.2 Exception Tables

Exception tables are formalized as a list of exception entries (ExcEntry). An exception
entry is defined as a starting label ls , an ending label le , a target label lt , and a type T .

9.2 Proof Checker 183

The definition is:

datatype ExcEntry = Label × Label × Label × Type
datatype ExcTable = list of ExcEntry

The function is handled is used to query if an exception is caught by an exception
entry or not. Given an exception entry [ls , le , lt ,T], a label l , and a type T ′, this function
yields true if only if T ′ is a subtype of T , and ls ≤ l and l < le . The function handlerEntry,
given an exception entry, returns the target label. The definitions of these functions are:

is handled : ExcEntry × Label × Type → bool
is handled (ls , le , lt ,T) l T ′ = if (ls ≤ l ∧ l < le ∧ T ′ � T) then true

else false

handlerEntry : ExcEntry → Label
handlerEntry (ls , le , lt , T) = lt

Given an exception table et , a label l , and a type T , the function is caught returns
true if only if the exception T at label l is caught by the exception table et . The definition
is:

is caught : ExcTable × Label × Type → bool
is caught [] l T = false
is caught (x#xs) l T = if (is handled x l T) then true

else (is caught xs l T)

The function handler, given an exception table, a label l , and a type T , returns the
target label where the exception of type T is caught (if the exception table does not
catch the exception T at label l , this function returns an arbitrary label). This function
is defined as follows:

handler : ExcTable × Label × Type → Label
handler [] l T = arbitrary
handler (x#xs) l T = if (is handled x l T) then (handlerEntry x)

else (handler xs l T)

9.2.3 CIL Proofs

In the implementation of the proof checker, CIL proofs are defined as a list of class decla-
rations. A class declaration consists of a type and a class body. The class body is defined
as a list of method declarations. This method declaration is implemented as a method id,

184 Implementation of the Proof-Transforming Compiler Scheme

a precondition, a CIL method body proof, an exception table, and a postcondition. To
simplify the proof checker, we have not implemented the rules that are applied to virtual
routines or routine implementations (such as the class rule). Furthermore, we omitted the
language-independent rules. Thus, method body proofs are a list of instruction specifica-
tions. Extending the proof checker is part of future work.

Preconditions and postcondition are boolean expression. Postconditions are a tuple of
boolean expression: the first element stores the normal postcondition, and the second one
the exceptional postcondition. The definition of CIL proofs is the following:

datatype BoolExp = Bool
datatype Precondition = BoolExp
datatype Postcondition = BoolExp BoolExp
datatype InstSpec = BoolExp Label Instruction
datatype CilBodyProof = list of InstSpec
datatype MethodDecl = MethodID Precondition CilBodyProof ExcTable Postcondition
datatype ClassBody = list of MethodDecl
datatype ClassDecl = Type ClassBody
datatype CilProof = list of ClassDecl

9.2.4 Weakest Precondition Function

To be able to define the proof checker, we have formalized in Isabelle the definition of the
weakest precondition function presented in Section 5.2.2. For simplicity, we omit the load
and store field instructions as well as the newobj instruction. The complete definition can
be found in [98].

This formalization uses the substitution functions substx , substc, substc1, and substσ.
The function substx substitutes s(0) by a variable name. The function substc substitutes
s(0) by a constant c, and substc1 substitutes s(1) by a constant c. The function substσ
substitutes a variable name in state σ by s(0). The definition of Wp is the following:

9.2 Proof Checker 185

Wp : Instruction × BoolExp × CilProof × BoolExp → BoolExp
Wp inst sucPre proof post = case inst of

ldloc v → (unshift(substx sucPre v))
| ldc n → (unshift(substc sucPre n))
| stloc v → (λ s : Stack σ : State (substσ(shift sucPre) v)
| binop → (λs : Stack σ : State (substc1 (shift sucPre) (s(1) binop s(0))))
| unop → (λs : Stack σ : State (substc1 (shift sucPre) (unnop s(0))))
| br l2 → (PrecLabel proof l2)
| brtrue l2 → (λs : Stack σ : State (¬s(0) ⇒ (shift sucPre)) ∧

s(0) ⇒ (shift(PrecLabel proof l2)))
| brfalse l2 → (λs : Stack σ : State (s(0) ⇒ (shift sucPre)) ∧

¬s(0) ⇒ (shift(PrecLabel proof l2)))
| nop → sucPre
| ret → post

where PrecLabel (proof l) returns the precondition at label l .

9.2.5 Verification Condition Generator

The verification condition generator (VCGen) produces a proof obligation (a list of veri-
fication conditions). The verification condition (VC), and the proof obligation data types
are defined as follows:

datatype VC = bool
datatype ProofObligation = list of VC

The verification condition generator is defined by the functions VCGenInst, VCGen-
Method, VCGenClassBody, VCGen2, and VCGen. The function VCGenInst generates
verification conditions for instruction specifications. Except for callvirt and throw, this
function returns the implication of the precondition of the instruction specification and
the weakest precondition of the next instruction. To obtain the weakest precondition and
the precondition of the next instruction, this function takes a CIL body proof, and a
CIL proof. The proof obligations for callvirt and throw are generated by the functions
proof oblig call and proof oblig throw respectively. The definition is:

186 Implementation of the Proof-Transforming Compiler Scheme

VCGenInst : InstSpec × ExcTable × CilBodyProof × CilProof ×
BoolExp × BoolExp → VC

VCGenInst (pre, l , inst) et cilProof prog postN postE) = case i of
callvirt T m e → (proof oblig call prog T m e pre l cilProof postN))
| throw → (pre ⇒ (proof oblig throw et l postE cilProof))
| → (pre ⇒ (Wp inst l cilProof postN))

The function proof oblig call returns a boolean expression that express that (1) the
precondition of the instruction specification implies the precondition of the method where
the formal argument and this are replaced by s(0) and s(1) respectively, and (2) the post-
condition of the method, where the formal argument is replaced by e, and s(0) is replaced
by Result , implies the postcondition of the instruction specification. The definition is:

proof oblig call : CilProof × Type ×MethodID × Value × BoolExp × BoolExp → bool
proof oblig call prog T m e pre post =

(pre ⇒ (λ s : Stack σ : State.
substσ1(substσ(get prec prog T m) PARAM) THIS)) ∧
((substσ (substpv(get post prog T m) e) RESULT) ⇒ post)

where the function substσ substitutes a variable name in state σ by s(0), the function
substσ1 substitutes a variable name in state σ by s(1), substpv substitutes the expression e
by p, and get prec and get post returns the precondition and postcondition of a method
m respectively.

The function proof oblig throw defines the proof obligation for the throw instruction.
This function uses the function handlerPost, which returns the precondition of the in-
struction where control is transferred after an exception of type T is triggered at label l .
The definition is:

handlerPost : ExcTable × Label × Type × BoolExp × CilProof → BoolExp
handlerPost et l T post proof = if (is caught et l T) then

(PrecLabel proof (handler et l T))
else post

where PrecLabel (proof l) returns the precondition at label l

proof oblig throw : ExcTable × Label × BoolExp × CilProof → BoolExp
proof oblig throw et l post proof = (λs .(handlerPost et l (τ s(0))) post proof)

The function VCGenMethod produces proof obligations for a method body proof. This
function invokes VCGenInst per every instruction specification. The definition is:

9.2 Proof Checker 187

VCGenMethod : CilBodyProof × ExcTable × CilBodyProof × CilProof×
BoolExp × BoolExp → ProofObligation

VCGenMethod [] et cilProof prog postN postE = [true]
VCGenMethod (x#xs) et cilProof prog postN postE =

(VCGenInst x et cilProof prog postN postE) #
(VCGenMethod xs et cilProof prog postN postE)

The function VCGenClassBody generates proof obligations for a class body, and the
functions VCGen2 and VCGen produces proof obligations for CIL proofs. These functions
are defined as follows:

VCGenClassBody : ClassBody × CilProof → ProofObligation
VCGenClassBody [] prog = [true]
VCGenClassBody (x#xs) prog =

(case x of (m, pre, cilP , et , post)→
(case post of (postN , postE)→

(VCGenMethod cilP et cilP prog postN postE) + (VCGenClassBody xs prog)

VCGen2 : CilProof × CilProof → ProofObligation
VCGen2 [] prog = [true]
VCGen2 ((type, body)#xs) prog = (VCGenClassBody body prog) + (VCGen2 xs prog)

VCGen : CilProof → ProofObligation
VCGen c = VCGen2 c c

9.2.6 Checking the CIL Proofs

To verify that a CIL proof is valid, the proof checker, first, generates the proof obligations,
and then it tries to prove that these proof obligations are true. The PTC produces a proof
script that shows that the proof obligations holds. Using this proof script, the proof checker
can check the proof automatically.

To check that a bytecode proof is valid, we proof the following theorem:

Theorem 8 (Proof Checker). Given a CIL proof p : CilProof , then

is program safe(VCGen p) holds .

The function is program safe is used to prove that a proof obligation is valid. Given a
proof obligation (a list of verification conditions), this function checks that all verification
conditions are true. The function is defined as follows:

188 Implementation of the Proof-Transforming Compiler Scheme

is program safe : ProofObligation → bool
is program safe [] = true
is program safe (x#xs) = if x then (is program safe xs) else false)

9.3 Experiments

Using the implemented prototype, we have been able to perform some experiments. These
experiments show the size of the source proof, the size of the generated certificate, and
the time expended to check the certificate. Although the examples are small, they suggest
that proof transforming compilation can be applied to object-oriented programs. As future
work, we plan to develop a bigger case study to be able to conclude whether the technique
can be applied to real programs or not.

Table 9.1 shows the size of the source program, the size of the source proofs, and the
size of the certificates. The first four examples are simple example involving the use of
boolean expressions, attributes, conditionals, and loops respectively. The fifth example
is a typical bank account example with routines for withdraw and deposit. The Sum
Integer example takes an integer n and returns the sum of 1 to n; the subtype example
implements a class person with two descendants classes: students and teacher. The last
example contains all the previous examples and some other basic instructions. In average,
the size of the certificates are three times the size of the source proof.

Example #Classes #Routines #lines #lines #lines
in Eiffel source proof in Isabelle

1. Boolean expressions 1 3 50 111 459
2. Attributes 2 3 83 167 1141
3. Conditionals 1 2 55 154 510
4. Loops 1 1 31 73 305
5. Bank Account 1 5 57 130 596
6. Sum Integers 1 1 35 126 358
7. Subtyping 3 5 41 117 756
8. Demo 18 28 548 1306 3718

Tab. 9.1: Experiments with the implemented PTC scheme: lines of code of the source
program, the source proof, and the produced certificate.

Table 9.2 presents the time expended to check the bytecode proofs. The experiments
were run on a machine with a 2.5 GHz dual core Pentium processors with 2GB of RAM.
We have developed two generators for proof script. The first one adds all the definitions
to the simplifier and then invokes the tactic apply simp. The second one generates a proof
script that first unfolds the definition of the class proofs, routine proofs, and instructions

9.3 Experiments 189

specification proof; and then it applies the definition of the weakest precondition function,
and finally invokes the tactic apply simp. The results show that the optimized script
reduces the time expended to the half. However, we believe that the proof script can be
optimized to reduce the checking time.

Isabelle #lines in Simplifier Optimized
Example Isabelle Proof Script Proof Script
1. Boolean expressions 459 9.4 sec. 6.9 sec.
2. Attributes 1141 7.6 sec. 6.2 sec.
3. Conditionals 510 9.3 sec. 7.8 sec.
4. Loops 305 18.1 sec. 7.2 sec.
5. Bank Account 596 16.8 sec. 8.6 sec.
6. Sum Integers 358 45.2 sec. 6.3 sec.
7. Subtyping 756 8.3 sec. 4.3 sec.
8. Demo 3718 5 min. 2 min.

Tab. 9.2: Experiments with the implemented PTC scheme: time expended to check the
proof.

190 Implementation of the Proof-Transforming Compiler Scheme

Chapter 10

Conclusions and Future Work

10.1 Conclusions

We have presented an approach to verifying mobile code. The approach consists of devel-
oping a proof for the source program, and then translating it automatically to bytecode
using a proof-transforming compiler (PTC). This thesis has shown that it is feasible to
generate bytecode proofs from proofs for object-oriented programs. The approach is het-
erogeneous on the programming language: programs verified in multiple languages such
as C#, Eiffel, and Java can be translated to a common bytecode logic.

We have developed proof transformation for a wide range of features of object-oriented
programs such as different exception handling mechanisms, single and multiple inheri-
tance, and once routines. We have defined proof-transforming compilers for C#, Eiffel,
and Java. The formalization of the Eiffel PTC has risen challenges because of the differ-
ence between the source language, Eiffel, and the target language, CIL. The Java PTC
has shown the difficulties of formalizing proof transformation for try-finally and break

instruction. Furthermore, we have formalized the translation of a subset of Java using two
different bytecode languages: CIL and JVM. These PTCs have shown that the formaliza-
tion of a subset of Java with try-finally and break instruction is more complex than
formalizing only try-finally instructions.

To develop the proof of the source program, we have developed semantics for C#, Eif-
fel, and Java. The main new features that are included in the semantics are the treatment
of exception handling. The subset of Java includes abrupt termination using the break,
throw, try-catch, and try-finally instructions. The subset of Eiffel handles features
such as exception handling (through rescue clauses), multiple inheritance, and once rou-
tines. The semantics have been formalized using operational and axiomatic semantics. We
have proven soundness and completeness of the semantics.

Furthermore, we have presented a specification and verification methodology for func-
tion objects using Eiffel agents. We have shown the application of the agent methodology

192 Conclusions and Future Work

through a set of non-trivial examples, and we have implemented a prototype, which au-
tomatically proves these examples.

Proof-transforming compilers have been formalized not only for a subset of Eiffel,
but also for a subset of Java. In the case of the Eiffel proof-transforming compiler, the
semantics difference between Eiffel and CIL made the translation harder. The problems
were produced by the lack of multiple inheritance in CIL. Besides the translation of proofs
for Eiffel programs, the Eiffel PTC includes a contract translator to map Eiffel contracts to
CIL contracts. Although we have use CIL bytecode, the Eiffel translation can be adapted
to other bytecode languages such as JVM.

The proof-transforming compiler for Java has been developed for both CIL and JVM
bytecode. We have shown that the translation using JVM is more complex due to the
generation of exception tables. These complications were produced by the compilation of
break and try-finally instructions.

The trusted computing base (TCB) of our approach consist only of a proof checker.
Although proof-transforming compilers are not part of the TCB, a soundness result is
interesting from the point of view of the code producer. We have formalized and proven
soundness for the developed proof-transforming compilers.

To show a feasibility of the use of PTCs, we have implemented a PTC for Eiffel and a
proof checker. The compiler automatically generates a bytecode proof, and a proof script
that shows that the bytecode proof is valid. This proof script is checked (automatically)
by the proof checker. The proof checker has been formalized in Isabelle.

10.2 Future Work

10.2.1 Proofs

Semantics. We have formalized a semantics for C#, Eiffel, and Java. In the case of
Java, our formalization of try-finally instructions has clarified its semantics. In the
case of Eiffel, the formalization of exception handling has introduced interesting discus-
sions, and it has introduced changes in the language. To understand better the program-
ming languages, we would need to formalize the full language. Although previous works
have formalized subsets of C#, Eiffel and Java, there is not any work that formalizes
the semantics of the whole language. For example, the Eiffel ECMA standard [75] has
contributed to improve the understanding of the language. However, new concepts such
as object test, and attached types need to be formalized.

Specification Languages. In Chapter 4, we have proposed a specification and verifica-
tion methodology for agents. To specify routines that apply an agent to a sequence, such
as the routines do all and do if in the class LINEAR, we use a non-interference operator.
In practice, however, a sequence could have repeated elements; thus one could not invoke

10.2 Future Work 193

routines such as do all, and do if. Specification languages need to be extended to able to
specify more complex programs using agents.

Tools. One of the goals of the verification effort is to support automatic verification of
object-oriented programs. Tools such as Spec# [8] have made a good progress to achieve
this goal, however, there is still a long way to go until these tools are applied to real
object-oriented programs. Tools should be easy to use so that programmers can use them,
but also they should be powerful enough to be able to prove interesting programs.

Case studies have to be applied to real applications. These case studies will be useful
to discover limitations and to develop new approaches.

10.2.2 Proof-Transforming Compilation

Translations. The proof transformations presented in this thesis handles a subset of
C#, Eiffel, and Java. One direction for future work is to extend the translation of features
such as agents in Eiffel, and delegates in C#.

Another direction for future work is to study how to reduce the size of the certificates.
The certificates produced by our proof transforming compiler contains the precondition
of each instruction specification. In Barthe et al.’s work [15, 10, 12], these intermediate
steps are not part of the certificate. An interesting case of study is to analyze in depth
the different approaches comparing size of the certificate, and speed of the proof checker.
This study may conclude that some intermediate steps could be eliminated since the proof
checker could generate them.

Several assumptions about the bytecode language have been applied to simplify the
translation. We assume that the bytecode language has a boolean type, and we assumed
identifiers for variables and fields are the same as the source language. CIL and JVM do
not have a boolean type; booleans are compiled to integers. Furthermore, local variables
are encoded as elements of a register table. Thus, to apply the proof translation to a
real bytecode language, one would need to extend the presented translations. Although
the extension is simple, the changes would affect not only the translation of instructions
but also the translation of pre- and postconditions in the source proof, as well as the
translation of contracts.

Optimizations. To be able to develop PTCs for real programs, we need to extend the
translation functions described in this thesis to optimizing compilers. Proof-transforming
compilers for optimizing compilers have been studied by Barthe et al [9] and Saabas and
Uustalu [114]. However, we would need to investigate how to apply the optimizations to
our settings.

194 Conclusions and Future Work

Tools. An important part of future work is the implementation of the proof-transforming
compilation schema. Although we have implemented a prototype, a tool that can translate
a substantial subset of Eiffel or Java is still missing. This tool should be integrated as part
of the verification tool mentioned in the above section. Thus, the programmer could write
the program in the tool and automatically generate the bytecode proof. Furthermore, case
studies have to be developed to analyze the feasibility of the use of the approach in real
applications.

The only trusted component of our approach is the proof checker. Another direction
for future work is to prove that the proof checker is correct.

Appendix A

Notation

The following table presents the naming conventions used in this thesis.

Tab. A.1: Naming conventions

Type Typical use

Instructions s, s1, s2

Expressions e, e1, e2

Virtual Routines T:m , S:m

Routine implementations T@m, S@m

Attributes (fields in Java) T@a

Types T , T ′, T1, ..., Tn , S

States σ, σ′, σ′′, σ′′′

Object Store $, $′

Precondition P , P ′, P ′′, P ′′′

Normal Postcondition Qn ,Q ′n , Rn

Postcondition for Exceptions Qe , Q ′e , Q ′′e , Re

Postcondition for Break Qb , Rb , R′b
Loop Invariant I

Sequent A, A0

Label (for examples bytecode) IL001, ... IL026

Label (for the translation only) lstart , lexc , lnext , lbreak , lend , lend+1, la , lb , ..., lg
Continued on next page

196 Notation

Continued from previous page

Type Typical use

ProofTree (for source language only) TS1 ,TS2 ,Treei ,Tsm ,Timp ,Ttm ,

Tbody ,TA,TA0

Bytecode Instruction at label l Il

Precondition at Label l (for Bytecode Logic) El

ProofTree (for source language only) TS1 ,TS2 ,Treei

ProofTree (for finally only) TFi

List [Finally] f , fi
ExceptionTable eti

ExceptionTable (for finally only) et ′i
BytecodeProof BS1 ,BS2

InstrSpec bpushc, ..., bbrtrue

Label lstart , ,

lb , lc , ..., lg

Appendix B

Soundness and Completeness Proof
of the Logic

This Appendix presents the soundness and completeness proof of the logic for Eiffel. This
proof includes the soundness and completeness proof of the logic for the Mate language.

To handle recursive calls, we define a richer semantic relation →N where N captures
the maximal depth of nested routine calls which is allowed during the execution of the
instruction. The transition σ, S →N σ′, normal expresses that executing the instruction
S in the state σ does not lead to more than N nested calls, and terminates normally in
the state σ′. The transition σ, S →N σ′, exc expresses that executing the instruction S in
the state σ does not lead to more than N nested calls, and terminates with an exception
in the state σ′.

The rules defining →N are similar to the rule of → presented in Section 3.1.3 and
Section 3.2.2 except for the additional parameter N . For the rules that do not describe
the semantics of neither a routine call, nor a once routine, nor a creation procedure, we
replace → by →N . For example, the compound rule (3.2.4) (described on page 23) is
defined as follows:

〈σ, s1〉 →N σ′, normal 〈σ′, s2〉 →N σ′′, χ

〈σ, s1; s2〉 →N σ′′, χ

Routine Invocations. The routine invocation rule described in Section 3.1.3 is ex-
tended using the transition →N as follows:

T:m is not a once routine
σ(y) 6= voidV 〈σ[Current := σ(y), p := σ(e)], body(impl(τ(σ(y)),m))〉 →N σ′, χ

〈σ, x := y .T:m(e)〉 →N+1 σ
′[x := σ′(Result)], χ

(B.1)

198 Soundness and Completeness Proof of the Logic

Once Routines. The only rules of once routines that are extended using the transi-
tion →N are the rules that describe the execution of the first invocation. These rules are
extended as follows:

T ′@m = impl(τ(σ(y)),m) T ′@m is a once routine
σ(T ′@m done) = false

〈σ[T ′@m done := true,Current := y , p := σ(e)], body(T ′@m)〉 →N σ′, normal

〈σ, x := y .S:m(e)〉 →N+1 σ
′[x := σ′(Result)], normal

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = false

〈σ[T @m done := true,Current := y , p := σ(e)], body(T @m)〉 →N σ′, exc

〈σ, x := y .S:m(e)〉 →N+1 σ
′[T @m exc := true], exc

This appendix is based on the technical report [94].

B.1 Definitions and Theorems

To handle recursion, in the following we extend the semantics of Hoare triples [48, 50, 49],
and the soundness and completeness theorems.

Definition 4 (Triple |=). |=
{

P
}

s
{

Qn , Qe

}
is defined as follows:

• If s is an instruction, then

|=
{

P
}

s
{

Qn , Qe

}
if only if:

for all σ |= P : 〈σ, s〉 → σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

– χ = exc ⇒ σ′ |= Qe

• If s is the routine implementation T @m, then

for all σ |= P : 〈σ, body(T @m)〉 → σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

– χ = exc ⇒ σ′ |= Qe

• If s is the virtual routine T:m , then for all receivers x such that τ(x) = T ,
for all σ |= P : 〈σ, body(imp(τ(σ(x)),m))〉 → σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

B.1 Definitions and Theorems 199

– χ = exc ⇒ σ′ |= Qe

The definition of |=
{

P
}

s
{

Qn , Qe

}
(Definition 4) uses the transition →.

To handle recursive routine calls, we extend this definition using the transition →N as
follows:

Definition 5 (Triple |=N). |=N

{
P
}

s
{

Qn , Qe

}
is defined as follows:

• If s is an instruction, then

|=N

{
P
}

s
{

Qn , Qe

}
if only if:

for all σ |= P : 〈σ, s〉 →N σ′, χ then

– χ = normal ⇒ σ′ |= Qn , and

– χ = exc ⇒ σ′ |= Qe

• If s is the routine implementation T @m, then

|=0

{
P
}

T @m
{

Qn , Qe

}
always holds; and

|=N+1

{
P
}

T @m
{

Qn , Qe

}
if only if |=N

{
P
}

body(T @m)
{

Qn , Qe

}
• If s is the virtual routine T:m , then for all receivers x such that τ(x) = T

|=N

{
P
}

T:m
{

Qn , Qe

}
if only if |=N

{
P
}

imp(τ(x),m)
{

Qn , Qe

}
The above definition presents the semantics for Hoare Triples with empty assumptions.

The following definition introduces the semantics of sequent:

Definition 6 (Sequent Holds).

{P1}s1{Q1
n , Q1

e }, ..., {P j}sj{Q j
n , Q j

e} |= {P} s {Qn , Qe} if only if:

for all N: |=N {P1}s1{Q1
n , Q1

e } and ... and |=N {P j}sj{Q j
n , Q j

e} implies

|=N

{
P
}

s
{

Qn , Qe

}
Now, the theorems can be presented using the definition of sequent holds (Definition 6).

The theorems are the followings:

Theorem 9 (Soundness Theorem).

A `
{

P
}

s
{

Qn , Qe

}
⇒ A |=

{
P
}

s
{

Qn , Qe

}
Theorem 10 (Completeness Theorem).

|=
{

P
}

s
{

Qn , Qe

}
⇒ `

{
P
}

s
{

Qn , Qe

}
The following sections present the proofs of the soundness and completeness theorems.

200 Soundness and Completeness Proof of the Logic

B.2 Soundness Proof

The followings auxiliary lemmas are used to prove soundness:

Lemma 5 (Triple |=, Triple |=N).

|=
{

P
}

s
{

Qn , Qe

}
if only if ∀N : |=N

{
P
}

s
{

Qn , Qe

}
Proof. By induction on the length of the execution trace.

Lemma 6 (Monotone →N).

〈σ, s1〉 →N σ′, χ ⇒ 〈σ, s1〉 →N+1 σ
′, χ

Lemma 7 (→ iff →N).

〈σ, s1〉 → σ′, χ if only if ∃N : 〈σ, s1〉 →N σ′, χ

Lemma 8 (Monotone |=N).

|=N+1

{
P
}

s
{

Qn , Qe

}
implies |=N

{
P
}

s
{

Qn , Qe

}
The proof of soundness runs by induction on the structure of the derivation tree for:

A `
{

P
}

s
{

Qn , Qe

}
and the operational semantics.

Following, we present the soundness proof for the most interesting rules.

B.2.1 Assignment Axiom

We have to prove:

`
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
implies

|=
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
Let P ′ be defined as P ′ , (safe(e) ∧ P [e/x]) ∨ (¬safe(e) ∧ Qe).
Applying Definition 5, and Definition 6 to the consequence of the rule, we have to

prove:

B.2 Soundness Proof 201

∀σ |= P ′ : 〈σ, x := e〉 →N σ′, χ then

χ = normal ⇒ σ′ |= P , and

χ = exc ⇒ σ′ |= Qe

We prove it doing case analysis on χ:
Case 1: χ = exc. By the definition of the operational semantics, we have:

σ(e) = exc

〈σ, x := e〉 →N σ, exc

Thus, we have to prove σ |= Qe . Since σ(e) = exc, applying Lemma 1, we know
σ |= ¬safe(e). Since σ |= P ′, and σ does not change, then σ |= Qe .

Case 2: χ = normal. By the definition of the operational semantics, we get:

σ(e) 6= exc

〈σ, x := e〉 →N σ[x := σ(e)], normal

Thus, we have to prove σ[x := σ(e)] |= P . Since σ(e) 6= exc, applying Lemma 1, we
know σ |= safe(e). Since σ |= P ′, then σ |= safe(e) ∧ P [e/x]. Applying Lemma 2, then
σ[x := σ(e)] |= P .

2

B.2.2 Compound Rule

We have to prove:

A `
{

P
}

s1; s2

{
Rn , Re

}
implies A |=

{
P
}

s1; s2

{
Rn , Re

}
using the induction hypotheses:

A `
{

P
}

s1

{
Qn , Re

}
implies A |=

{
P
}

s1

{
Qn , Re

}
A `

{
Qn

}
s2

{
Rn , Re

}
implies A |=

{
Qn

}
s2

{
Rn , Re

}
Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents

(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1; s2

{
Rn , Re

}
using the hypotheses:

202 Soundness and Completeness Proof of the Logic

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1

{
Qn , Re

}
for all N : |=N A1, and ..., |=N An implies |=N

{
Qn

}
s2

{
Rn , Re

}
Since the sequent A is the same in the hypotheses and the conclusion, and since s1

and s2 are instructions, applying Definition 5, we have to show:

for all σ |= P : 〈σ, s1; s2〉 →N σ′′, χ then

χ = normal ⇒ σ′′ |= Rn , and

χ = exc ⇒ σ′′ |= Re

(B.2)

using the hypotheses:

for all σ |= P : 〈σ, s1〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Re

(B.3)

and

for all σ′ |= Qn : 〈σ′, s2〉 →N σ′′, χ then

χ = normal ⇒ σ′′ |= Rn , and

χ = exc ⇒ σ′′ |= Re

(B.4)

We prove it doing case analysis on χ:
Case 1: χ = exc. By the definition of the operational semantics for compound we get:

〈σ, s1〉 →N σ′, exc

〈σ, s1; s2〉 →N σ′, exc

Since σ |= P , then by the first hypothesis (B.3) we get σ′ |= Re .
Case 2: χ = normal. By the definition of the operational semantics for compound

we have:

〈σ, s1〉 →N σ′, normal 〈σ′, s2〉 →N σ′′, χ

〈σ, s1; s2〉 →N σ′′, χ

We can apply the first induction hypothesis (B.3) we get σ′ |= Qn since σ |= P . Then,
we can apply the second induction hypothesis (B.4) and get:

χ = normal ⇒ σ′′ |= Rn , and χ = exc ⇒ σ′′ |= Re

2

B.2 Soundness Proof 203

B.2.3 Conditional Rule

We have to prove:

A `
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}
implies

A |=
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}
using the induction hypotheses:

A `
{

P ∧ e
}

s1

{
Qn , Qe

}
implies A |=

{
P ∧ e

}
s1

{
Qn , Qe

}
A `

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
implies A |=

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents

(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An

implies
|=N

{
P
}

if e then s1 else s2 end
{

Qn , Qe

}
using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1

{
Qn , Qe

}
for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s2

{
Qn , Qe

}
Since the sequent A is the same in the hypotheses and the conclusions, and s1 and s2

are instructions, applying Definition 5 we have to prove:

∀σ |= P : 〈σ, if e then s1 else s2 end〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(B.5)

using the hypotheses:

∀σ |= (P ∧ e) : 〈σ, s1 〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(B.6)

and

∀σ |= (P ∧ ¬e) : 〈σ, s2 〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(B.7)

204 Soundness and Completeness Proof of the Logic

We prove this rule doing case analysis on σ(e):
Case 1: σ(e) = true. If σ(e) = true then by the definition of the operational semantics

we get:

〈σ, s1〉 →N σ′, χ σ(e) = true

〈σ, if e then s1 else s2 end〉 →N σ′, χ

Then applying the first hypothesis (B.6) we prove χ = normal ⇒ σ′ |= Qn , and
χ = exc ⇒ σ′ |= Qe .

Case 2: σ(e) = false. If σ(e) = false then by the definition of the operational seman-
tics we get:

〈σ, s2〉 →N σ′, χ σ(e) = false

〈σ, if e then s1 else s2 end〉 →N σ′, χ

Then applying the second hypothesis (B.7) we prove χ = normal ⇒ σ′ |= Qn , and
χ = exc ⇒ σ′ |= Qe .

2

B.2.4 Check Axiom

We have to prove:

`
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

implies

|=
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

Applying Definition 5 and Definition 6 to the consequence of the rule, we have to
prove:

∀σ |= P : 〈σ, check e end〉 →N σ, χ then

χ = normal ⇒ σ′ |= (P ∧ e), and

χ = exc ⇒ σ′ |= (P ∧ ¬e)

(B.8)

To prove it, we do case analysis on σ(e):
Case 1: σ(e) = true. By the definition of the operational semantics we have:

σ(e) = true

〈σ, check e end〉 →N σ, normal

Since the state σ is unchanged then σ |= P . Furthermore, σ(e) = true by this case
analysis, then applying the definition of |= we prove σ |= (P ∧ e))

B.2 Soundness Proof 205

Case 2: σ(e) = false. By the definition of the operational semantics we have:

σ(e) = false

〈σ, check e end〉 →N σ, exc

Similar to the above case, σ |= P since the state is unchanged and σ(e) = false by the
case analysis. Then σ |= (P ∧ ¬e) holds using the definition of |=.

2

B.2.5 Loop Rule

We have to prove:

A `
{

I
}

until e loop s1 end
{

(I ∧ e) , Re

}
implies

A |=
{

I
}

until e loop s1 end
{

(I ∧ e) , Re

}
using the induction hypotheses:

A `
{
¬e ∧ I

}
s1

{
I , Re

}
implies A |=

{
¬e ∧ I

}
s1

{
I , Re

}
I ⇒ I ′

Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents
(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

from ...
{

(I ∧ e) , Re

}
using the hypothesis:

for all N : |=N A1, and ..., |=N An implies |=N

{
¬e ∧ I

}
s1

{
I , Re

}
Since the sequent A is the same in the hypothesis and the conclusions, and s1 is an

instruction, applying Definition 5 we have to prove:

∀σ |= P : ∀σ |= P : 〈σ, until e loop s1 end〉 →N σ′, χ then

χ = normal ⇒ σ′ |= (I ∧ e), and

χ = exc ⇒ σ′ |= Re

using the hypothesis:

∀σ |= (¬e ∧ I) : 〈σ, s2 〉 →N σ′, χ then

χ = normal ⇒ σ′ |= I , and

χ = exc ⇒ σ′ |= Re

(B.9)

206 Soundness and Completeness Proof of the Logic

We prove this rule doing case analysis on σ(e):
Case 1: σ(e) = true. By the operational semantics, we get:

σ(e) = true

〈σ, until e loop s1 end〉 →N σ, normal

Applying the hypothesis we know σ |= I and σ |= e. Then by the definition of |= we
prove σ |= (I ∧ e).

Case 2: σ(e) = false. Then we do case analysis on χ:

Case 2.a: χ = exc. By the definition of the operational semantics we have:

σ(e) = false 〈σ, s1〉 →N σ′, exc

〈σ, until e loop s1 end〉 →N σ′, exc

By the first hypothesis we know σ |= I . Then since σ(e) = false and χ = exc, we
prove σ′ |= Re .

Case 2.b: σ(e) = false and χ = normal. By the definition of the operational seman-
tics we have:

σ(e) = false 〈σ, s1〉 →N σ′, normal
〈σ′, until e loop s1 end〉 →N σ′′, χ

〈σ, until e loop s1 end〉 →N σ′′, χ

By the hypothesis we know σ |= I . Then since σ(e) = false, we can apply the definition
of |= and the second hypothesis (B.9), and we get σ′ |= I . Now we can apply the induction
hypothesis and prove

χ = normal ⇒ σ′′ |= (I ∧ e), and χ = exc ⇒ σ′′ |= Re

2

B.2.6 Read Attribute Axiom

We have to prove:

`
{

(y 6= Void ∧ P [$(instvar(y ,T @a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .T @a

{
P , Qe

}
implies

|=
{

(y 6= Void ∧ P [$(instvar(y ,T @a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .T @a

{
P , Qe

}

B.2 Soundness Proof 207

Applying Definition 5, and Definition 6 to the consequence of the rule, we have to
prove:

∀σ |= P ′ : 〈σ, x := y .T @a〉 →N σ′, χ then

χ = normal ⇒ σ′ |= P , and

χ = exc ⇒ σ′ |= Qe

(B.10)

where P ′ is defined as follows:

P ′ ≡ (y 6= Void ∧ P [$(instvar(y ,T @a))/x]) ∨ (y = Void ∧ Qe)

To prove it, we do case analysis on χ:
Case 1: χ = normal. Applying the definition of the operational semantics we have:

σ(y) 6= voidV

〈σ, x := y .T @a〉 →N σ[x := σ($) (instvar(σ(y),T @a))], normal

Then applying Lemma 2 we get σ |= P .
Case 2: χ = exc. Applying the definition of the operational semantics:

σ(y) = voidV

〈σ, x := y .T @a〉 →N σ, exc

we get σ |= Qe .
2

B.2.7 Write Attribute Axiom

We have to prove:

`
{

(y 6= Void ∧ P [$〈instvar(y ,T@a) := e〉/$]) ∨
(y = Void ∧ Qe)

}
y .T@a := e

{
P , Qe

}
implies

|=
{

(y 6= Void ∧ P [$〈instvar(y ,T@a) := e〉/$]) ∨
(y = Void ∧ Qe)

}
y .T@a := e

{
P , Qe

}
Applying Definition 5, and Definition 6 to the consequence of the rule, we have to

prove:

∀σ |= P ′ : 〈σ, y .T @a := e〉 →N σ′, χ then

χ = normal ⇒ σ′ |= P , and

χ = exc ⇒ σ′ |= Qe

(B.11)

208 Soundness and Completeness Proof of the Logic

where P ′ is defined as follows:

P ′ , (y 6= Void ∧ P [$〈instvar(y ,T @a) := e〉/$]) ∨ (y = Void ∧ Qe)

To prove it, we do case analysis on χ:
Case 1: χ = normal. Applying the definition of the operational semantics we have:

σ(y) 6= voidV

〈σ, y .T @a := e〉 →N σ[$:= σ($)〈instvar(σ(y),T @a) := σ(e)〉], normal

Then applying Lemma 2 we get σ |= P .
Case 2: χ = exc. Applying the definition of the operational semantics:

σ(y) = voidV

〈σ, y .T @a := e〉 →N σ, exc

we get σ |= Qe .
2

B.2.8 Local Rule

We have to prove:

A `
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
implies

A |=
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
using the induction hypothesis:

A `
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
implies

A |=
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
Let A be the sequent A = A1, ...,An where A1, ...,AN are Hoare triples. By the

semantics of sequents (Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
using the hypothesis:

for all N : |=N A1, and ..., |=N An implies
|=N

{
P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)

}
s
{

Qn , Qe

}
Since the sequent A is the same in the hypothesis and the conclusion, and since s is

an instruction, applying Definition 5, we have to show:

B.2 Soundness Proof 209

∀σ |= P : 〈σ, local v1 : T1; ... vn : Tn ; s〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

using the hypothesis:

∀σ |= P ′ : 〈σ, s 〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(B.12)

where P ′ is defined as follows:

P ′ , P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)

Applying the definition of the operational semantics for locals, we get:

〈σ[v1 := init(T1), ..., vn := init(Tn)], s〉 →N σ′, normal

〈σ, local v1 : T1; ... vn : Tn ; s〉 →N σ′, normal

Then, applying Lemma 2 we know σ |= P ′. Finally, applying the hypothesis (B.12) we
prove:

χ = normal ⇒ σ′ |= Qn , and χ = exc ⇒ σ′ |= Qe

2

B.2.9 Creation Rule

We have to prove:

A `
{

P
[

new($,T)/Current ,
$〈T 〉/$, e/p

] }
x := create {T}.make(e)

{
Qn [x/Current] , Qe

}
implies

A |=
{

P
[

new($,T)/Current ,
$〈T 〉/$, e/p

] }
x := create {T}.make(e)

{
Qn [x/Current] , Qe

}
using the induction hypothesis:

A `
{

P
}

T : make
{

Qn , Qe

}
implies A |=

{
P
}

T : make
{

Qn , Qe

}
Applying Definition 5 and Definition 6 to the consequence of the rule, we have to

prove:

210 Soundness and Completeness Proof of the Logic

∀σ |= P ′ : 〈σ, x := create {T}.make(e)〉 →N+1 σ
′, χ then

χ = normal ⇒ σ′ |= Qn [x/Current], and

χ = exc ⇒ σ′ |= Qe

where P ′ is defined as follows:

P ′ , P
[

new($,T)/Current , $〈T 〉/$, e/p
]

using the hypothesis:
∀σ |= P : 〈σ, body(imp(T ,make))〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

We prove soundness of this rule with respect to the operational semantics of creation
instruction (defined in Section 3.1.3 on page 26) for an arbitrary N .

Since σ |= P [new($,T)/Current , $〈T 〉/$, e/p], then by Lemma 2, we know

σ[Current := new(σ($),T), $:= σ($)〈T 〉, p := σ(e)] |= P

Applying the definition of the operational semantics we get

χ = normal ⇒ σ′[x := σ′(Current)] |= Qn , and
χ = exc ⇒ σ′ |= Qe

Using Lemma 2 we prove:

χ = normal ⇒ σ′ |= Qn [x/Current], and χ = exc ⇒ σ′ |= Qe

2

B.2.10 Rescue Rule

We have to prove:

A `
{

P
}

s1 rescue s2

{
Qn , Re

}
implies

A |=
{

P
}

s1 rescue s2

{
Qn , Re

}
using the induction hypotheses:

A `
{

Ir

}
s1

{
Qn , Qe

}
implies A `

{
Ir

}
s1

{
Qn , Qe

}
and
A `

{
Qe

}
s2

{
(Retry ⇒ Ir) ∧ (¬Retry ⇒ Re) , Re

}
implies

A |=
{

Qe

}
s2

{
(Retry ⇒ Ir) ∧ (¬Retry ⇒ Re) , Re

}
and
P ⇒ Ir

B.2 Soundness Proof 211

Let A be A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents
(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

s1 rescue s2

{
Qn , Re

}
using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N

{
Ir

}
s1

{
Qn , Qe

}
for all N : |=N A1, and ..., |=N An implies

|=N

{
Qe

}
s2

{
(Retry ⇒ Ir) ∧ (¬Retry ⇒ Re) , Re

}
Since the sequent A is the same in the hypotheses and the conclusions, and s1 and s2

are instructions, applying Definition 5 we have to prove:
∀σ |= P : 〈σ, s1 rescue s2〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Re

using the hypotheses:

∀σ |= Ir : 〈σ, s1 〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(B.13)

and

∀σ |= Qe : 〈σ, s2 〉 →N σ′′, χ then

χ = normal ⇒ σ′′ |= ((Retry ⇒ Ir) ∧ (¬Retry ⇒ Re)), and

χ = exc ⇒ σ′′ |= Re

(B.14)

We prove this rule doing case analysis on χ:
Case 1: χ = normal. Since s1 terminates normally, by the definition of the operational

semantics we get:

〈σ, s1〉 →N σ′, normal

〈σ, s1 rescue s2〉 →N σ′, normal

Then we can apply the first hypothesis (B.13) since P ⇒ Ir . Thus, we prove σ′ |= Qn .

212 Soundness and Completeness Proof of the Logic

Case 2: χ = exc. If s1 triggers an exception, then by the operational semantics we
have:

〈σ, s1〉 →N σ′, exc

We have several cases depending if Retry evaluates to true or not, and if s2 terminates
normally or not:

Case 2.a: χ = exc. By the definition of the operational semantics we have:

〈σ, s1〉 →N σ′, exc 〈σ′, s2〉 →N σ′′, exc

〈σ, s1 rescue s2〉 →N σ′′, exc

By the first hypothesis (B.13), we prove σ′ |= Qe . Then, we can apply the second
hypothesis (B.14), and we get σ′′ |= Re .

Case 2.b: χ = normal. Here, we do case analysis on σ′′(Retry):

Case 2.b.1: σ′′(Retry) = false. By the definition of the operational semantics we
have:

〈σ, s1〉 →N σ′, exc 〈σ′, s2〉 →N σ′′, normal ¬σ′′(Retry)

〈σ, s1 rescue s2〉 →N σ′′, exc

By the first hypothesis (B.13), we prove σ′ |= Qe . Then, we can apply the sec-
ond hypothesis (B.14) and we get σ′′ |= ((Retry ⇒ Ir) ∧ (¬Retry ⇒ Re)). Since
σ′′(Retry) = false then by the definition of |= we prove σ′′ |= Re .

Case 2.b.2: σ′′(Retry) = true. The definition of the operational semantics is:

〈σ, s1〉 →N σ′, exc 〈σ′, s2〉 →N σ′′,normal σ′′(Retry) 〈σ′′, s1 rescue s2〉 →N σ′′′, χ

〈σ, s1 rescue s2〉 →N σ′′′, χ

Applying the first hypothesis (B.13), we prove σ′ |= Qe . Then, we can apply the second
hypothesis (B.14), and we get σ′′ |= (Retry ⇒ Ir ∧ ¬Retry ⇒ Re). Since σ′′(Retry) = true
then by the definition of |= we prove σ′′ |= Ir . Now we can apply the induction hypothesis
and we prove

χ = normal ⇒ σ′ |= Qn , and χ = exc ⇒ σ′ |= Re

2

B.2 Soundness Proof 213

B.2.11 Once Functions Rule

The proof of the rule for once functions (defined in Section 3.2.3 on page 45) is done in a
similar way than the creation procedure. We use the once function rule and the invocation
rule, and we prove they are sound with respect to the operation semantics of once (defined
in Section 3.2.2 on page 38).

Let P be the following precondition, where T M RES is a logical variable:

P ≡

 (¬T@m done ∧ P ′)∨(
T@m done ∧ P ′′ ∧ T@m result = T M RES ∧ ¬T@m exc

)
∨

(T@m done ∧ P ′′′ ∧ T@m exc)


and let Q ′n and Q ′e be the following postconditions:

Q ′n ≡
{

T@m done ∧ ¬T@m exc ∧(
Qn ∨ (P ′′ ∧ Result = T M RES ∧ T@m result = T M RES)

) }
Q ′e ≡

{
T@m done ∧ T@m exc ∧ (Qe ∨ P ′′′)

}
To prove the once function rule, we have to prove:

A `
{

P
}

T @m
{

Q ′n , Q ′e
}

implies
A |=

{
P
}

T @m
{

Q ′n , Q ′e
}

using the induction hypothesis:

A, {P} T@m {Q ′n , Q ′e} `{
P ′[false/T@m done] ∧
T@m done

}
body(T@m)

{ (
Qn ∧ T@m done

)
,
(

Qe ∧ T@m done
) }

implies

A, {P} T@m {Q ′n , Q ′e} |={
P ′[false/T@m done] ∧
T@m done

}
body(T@m)

{ (
Qn ∧ T@m done

)
,
(

Qe ∧ T@m done
) }

Let A = A1, ...,An where A1, ...,AN are Hoare triples. By the semantics of sequents
(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

T @m
{

Q ′n , Q ′e
}

214 Soundness and Completeness Proof of the Logic

using the hypothesis:

for all N : |=N A1, and ..., |=N An and |=N {P} T@m {Q ′n , Q ′e}

implies

|=N

 P ′[false/T@m done]∧
T@m done

 body(T@m)
{

(Qn ∧ T@m done) , (Qe ∧ T@m done)
}

(B.15)

We prove it by induction on N .
Base Case: N = 0. Holds by Definition 5.
Induction Case: N ⇒ N + 1. Assuming the induction hypothesis

|=N A1, and ..., |=N An implies |=N

{
P
}

T @m
{

Q ′n , Q ′e
}

we have to show

|=N+1 A1, and ..., |=N+1 An implies |=N+1

{
P
}

T @m
{

Q ′n , Q ′e
}

Then, we can prove this as follows:

|=N+1 A1, and ..., |=N+1 An

implies [Lemma 8]
|=N A1, and ..., |=N An

applying induction hypothesis
|=N

{
P
}

T @m
{

Q ′n , Q ′e
}

Using |=N A1, and ..., |=N An , and |=N

{
P
}

T @m
{

Q ′n , Q ′e
}

, we can apply
the hypothesis (B.15), and we get:

|=N

{
P ′[false/T@m done] ∧
T@m done

}
body(T @m) { (Qn ∧ T@m done) , (Qe ∧ T@m done) }

(B.16)

Since we know (B.16) holds, we can prove |=N+1

{
P
}

T @m
{

Q ′n , Q ′e
}

using
the hypothesis (B.16). Applying Definition 5, we have to prove

|=N

{
P
}

body(T @m)
{

Q ′n , Q ′e
}

assuming

B.2 Soundness Proof 215

|=N

{
P ′[false/T@m done] ∧
T@m done

}
body(T @m) { (Qn ∧ T@m done) , (Qe ∧ T@m done) }

Then, applying Definition 5 (|=N), we have to prove:
∀σ |= P : 〈σ, body(T @m)〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Q ′n , and

χ = exc ⇒ σ′ |= Q ′e

using the hypothesis:
∀σ |= P ′[false/T @m done] ∧ T @m done : 〈σ, body(T @m)〉 →N σ′, χ then

χ = normal ⇒ σ′ |= Qn ∧ T @m done, and

χ = exc ⇒ σ′ |= Qe ∧ T @m done
(B.17)

We prove this with respect to the operational semantics of once routines (defined in
page 38) by case analysis on χ and T @m done:

Case 1: σ(T@m done) = false and χ = normal. By the definition of the opera-
tional semantics we have:

T ′@m = impl(τ(σ(y)),m) T ′@m is a once routine
σ(T ′@m done) = false

〈σ[T ′@m done := true,Current := y , p := σ(e)], body(T ′@m)〉 →N σ′, normal

〈σ, x := y .S:m(e)〉 →N+1 σ
′[x := σ′(Result)], normal

First, we show that T ′@m = T @m because the operational semantics assigns to T ′@m
and the rule uses T @m. Since the rule is derived applying the invocation rule, and the class
rule, we know T @m = imp(T ,m) and τ(Current) = T . However, T ′@m = imp(τ(y),m),
and we now τ(y) = τ(Current), then we can conclude that T @m = T ′@m.

Then, σ |= P ′[false/T @m done] ∧ T @m done because

σ[T ′@m done := true,Current := y , p := σ(e)] |= P ′

Now, we can apply the induction hypothesis B.17, and we get σ′ |= Qn ∧T @m done.
Since Qn ∧ T @m done ⇒ Q ′n then σ′ |= Q ′n .

Case 2: σ(T@m done) = false and χ = exc. By the definition of the operational
semantics we have:

216 Soundness and Completeness Proof of the Logic

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = false

〈σ[T @m done := true,Current := y , p := σ(e)], body(T @m)〉 →N σ′, exc

〈σ, x := y .S:m(e)〉 →N+1 σ
′[T @m exc := true], exc

Applying a similar reasoning to Case 1, we know T ′@m = T @m. Since:

σ |= P ′[false/T @m done] ∧ T @m done

because σ[T ′@m done := true,Current := y , p := σ(e)] |= P ′, we can apply the in-
duction hypothesis B.17, and we get σ′ |= Qe ∧ T @m done. Then σ′ |= Q ′e because
Qe ∧ T @m done ⇒ Q ′e

Case 3: σ(T@m done) = true and χ = normal. The definition of the operational
semantics is the following:

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = true
σ(T @m exc) = false

〈σ, x := y .S:m(e)〉 →N σ[x := σ(T @m result)], normal

We know T ′@m = T @m. Since σ |= P , and the state is unchanged except for the
variable x , and σ(T @m done) = true and σ(T @m exc) = false, then σ |= P ′′. Then
σ |= Q ′n .

Case 4: σ(T@m done) = true and χ = exc. By the definition of the operational
semantics we have:

T @m = impl(τ(σ(y)),m) T @m is a once routine
σ(T @m done) = true
σ(T @m exc) = true

〈σ, x := y .S:m(e)〉 →N σ, exc

We know T ′@m = T @m. Since σ |= P , and the state is unchanged, and σ(T @m done) =
true and σ(T @m exc) = true, then σ |= P ′′′. Therefore, σ |= Q ′e .

This concludes the proof.

2

B.2 Soundness Proof 217

B.2.12 Routine Implementation Rule

To prove this rule, we have to prove:

A `
{

P
}

T @m
{

Qn , Qe

}
implies A |=

{
P
}

T @m
{

Qn , Qe

}
using the induction hypothesis:

A, {P} T @m {Qn , Qe} `
{

P
}

body(T @m)
{

Qn , Qe

}
implies

A, {P} T @m {Qn , Qe} |=
{

P
}

body(T @m)
{

Qn , Qe

}
Let A be the sequent A = A1, ...,An where A1, ...,AN are Hoare triples. By the

semantics of sequents (Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

T @m
{

Qn , Qe

}
using the hypothesis:

for all N : |=N A1, and ..., |=N An , and |=N

{
P
}

T @m
{

Qn , Qe

}
implies

|=N

{
P
}

body(T @m)
{

Qn , Qe

} (B.18)

We prove it by induction on N .
Base Case: N = 0. Holds by Definition 5.
Induction Case: N ⇒ N + 1. Assuming the induction hypothesis

|=N A1, and ..., |=N An implies |=N

{
P
}

T @m
{

Qn , Qe

}
we have to show

|=N+1 A1, and ..., |=N+1 An implies |=N+1

{
P
}

T @m
{

Qn , Qe

}
Then, we can prove this as follows:

|=N+1 A1, and ..., |=N+1 An

implies [Lemma 8]
|=N A1, and ..., |=N An

applying induction hypothesis
|=N

{
P
}

T @m
{

Qn , Qe

}
Using |=N A1, and ..., |=N An , and |=N

{
P
}

T @m
{

Q ′n , Q ′e
}

, we can apply
the hypothesis (B.18), and we get |=N

{
P
}

body(T @m)
{

Qn , Qe

}
. Then, by

Definition 5 we prove |=N+1

{
P
}

T @m
{

Qn , Qe

}
2

218 Soundness and Completeness Proof of the Logic

B.2.13 Routine Invocation Rule

To prove this rule, we have to prove:

A `
{

(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

}
x := y .T:m(e)

{
Qn [x/Result] , Qe

}
implies

A |=
{

(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

}
x := y .T:m(e)

{
Qn [x/Result] , Qe

}
using the induction hypothesis:

A `
{

P
}

T:m
{

Qn , Qe

}
implies A |=

{
P
}

T:m
{

Qn , Qe

}
Let A be A1, ...,An where A1, ...,An are Hoare triples. By the semantics of sequents

(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An

implies

|=N

{
(y 6= Void ∧ P [y/Current , e/p])∨
(y = Void ∧Qe)

}
x := y .T:m(e)

{
Qn [x/Result] , Qe

}
using the hypothesis:

for all N : |=N A1, and ..., |=N An implies |=N

{
P
}

T:m
{

Qn , Qe

}
Let P ′ be (y 6= Void ∧ P [y/Current , e/p]) ∨ (y = Void ∧Qe). Since the sequent A is

the same in the hypothesis and the conclusion, applying Definition 5, we have to show:

for all σ |= P ′ : 〈σ, x := y .T:m(e)〉 →N σ′′, χ then

χ = normal ⇒ σ′′ |= Qn [x/Result], and

χ = exc ⇒ σ′′ |= Qe

(B.19)

using the hypothesis:

for all σ |= P : 〈σ, body(imp(τ(Current),m))〉 →N−1 σ
′, χ then

χ = normal ⇒ σ′ |= Qn , and

χ = exc ⇒ σ′ |= Qe

(B.20)

B.2 Soundness Proof 219

We do case analysis on σ(y):
Case 1: σ(y) = void. By the operational semantics we have:

T:m is not a once routine
σ(y) = voidV

〈σ, x := y .T:m(e)〉 →N σ, exc

Then, σ |= Qe since σ |= P and χ = exc.
Case 2: σ(y) 6= void. The definition of the operational semantics is:

T:m is not a once routine
σ(y) 6= voidV 〈σ[Current := σ(y), p := σ(e)], body(impl(τ(σ(y)),m))〉 →N σ′, χ

〈σ, x := y .T:m(e)〉 →N+1 σ
′[x := σ′(Result)], χ

Since σ |= P ′, then applying Lemma 2, σ |= P . Then since Current := σ(y), we can
apply the induction hypothesis and Lemma 2 again, and we get

χ = normal ⇒ σ′′ |= Qn [x/Result], and χ = exc ⇒ σ′′ |= Qe

2

B.2.14 Class Rule

We have to prove:

A `
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
implies

A |=
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
using the induction hypotheses:

A `
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
implies

A |=
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
and
A `

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
implies

A |=
{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
Let A be A1, ...,An where A1, ...,An are Hoare triples. By the semantics of sequents

(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies
|=N A |=

{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
using the hypotheses:

220 Soundness and Completeness Proof of the Logic

for all N : |=N A1, and ..., |=N An implies
|=N A |=

{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
and
for all N : |=N A1, and ..., |=N An implies
|=N A |=

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
We prove it as follows:

A `
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
⇒ [definition of τ]
A `

{
(τ(Current) ≺ T ∨ τ(Current) = T) ∧ P

}
T:m

{
Qn , Qe

}
⇒ [hypothesis]
A |=

{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
and
A |=

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
⇒ [definition of |=N]
A |=

{
τ(Current) = T ∧ P

}
T:m

{
Qn , Qe

}
and
A |=

{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
⇒
A |=

{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
2

B.2.15 Subtype Rule

We have to prove:

A `
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
implies

A |=
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
using the induction hypotheses:

A `
{

P
}

S:m
{

Qn , Qe

}
implies A |=

{
P
}

S:m
{

Qn , Qe

}
S � T

We have to prove:

A |=
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
iff [definition of |=N]
A |=

{
τ(Current) � S ∧ P

}
imp(τ(Current),m)

{
Qn , Qe

}

B.2 Soundness Proof 221

Since τ(Current) � S and from the hypothesis we knowA |=
{

P
}

S:m
{

Qn , Qe

}
,

then applying the induction hypothesis we prove:

A |=
{
τ(Current) � S ∧ P

}
T:m

{
Qn , Qe

}
2

B.2.16 Language-Independent Rules

In this subsection, we prove the soundness of the language-independent rules presented
in Section 3.1.4 on page 32.

Assumpt-axiom

We have to show that for all N : |=N A implies |=N A, which is true.

2

False-axiom

Let A be A1, ...,An where A1, ...,An are Hoare triples. By the semantics of sequents
(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N

{
false

}
s
{

false , false
}

This holds by the definition of |=N .

2

Assumpt-intro-rule

Let A be A1, ...,An where A1, ...,An are Hoare triples. By the semantics of sequents
(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An , and A0 implies |=N A

using the hypothesis:

for all N : |=N A1, and ..., |=N An implies |=N A

This holds by the hypothesis.

2

222 Soundness and Completeness Proof of the Logic

Assumpt-elim-rule

Let A be A1, ...,An where A1, ...,An are Hoare triples. By the semantics of sequents
(Definition 6), we have to show:

for all N : |=N A1, and ..., |=N An implies |=N A

using the hypotheses:

for all N : |=N A1, and ..., |=N An implies |=N A0

for all N : |=N A1, and ..., |=N An , and A0 implies |=N A

We prove it as follows:

|=N A1, and ..., |=N An (1)
⇒ [applying the first hypothesis]
|=N A0 (2)

⇒ [applying second hypothesis to (1) and (2)]
|=N A

2

Strength Rule

We have to prove:

A `
{

P ′
}

s1

{
Qn , Qe

}
implies A |=

{
P ′
}

s1

{
Qn , Qe

}
using the induction hypotheses:

A `
{

P
}

s1

{
Qn , Qe

}
implies A |=

{
P
}

s1

{
Qn , Qe

}
and
P ′ ⇒ P

Applying the definition of |=N , we have to prove:

for all σ |= P ′ : 〈σ, s1〉 →N σ′′, χ then

χ = normal ⇒ σ′′ |= Qn , and

χ = exc ⇒ σ′′ |= Qe

Since P ′ ⇒ P , then we get σ |= P , then by hypothesis we prove:

A |=
{

P ′
}

s1

{
Qn , Qe

}
2

B.2 Soundness Proof 223

Weak Rule

We have to prove:

A `
{

P
}

s1

{
Q ′n , Q ′e

}
implies A |=

{
P
}

s1

{
Q ′n , Q ′e

}
using the induction hypotheses:

A `
{

P
}

s1

{
Qn , Qe

}
implies A |=

{
P
}

s1

{
Qn , Qe

}
and
Qn ⇒ Q ′n
Qe ⇒ Q ′e

Applying the definition of |=N , we have to prove:

for all σ |= P : 〈σ, s1〉 →N σ′′, χ then

χ = normal ⇒ σ′′ |= Q ′n , and

χ = exc ⇒ σ′′ |= Q ′e

Applying the hypothesis we get:

χ = normal ⇒ σ′′ |= Qn , and
χ = exc ⇒ σ′′ |= Qe

Since Qn ⇒ Q ′n and Qe ⇒ Q ′e then we get

χ = normal ⇒ σ′′ |= Q ′n , and
χ = exc ⇒ σ′′ |= Q ′e

and we prove A |=
{

P
}

s1

{
Q ′n , Q ′e

}
2

Conjunction Rule

We have to prove:

A `
{

P1 ∧ P2
}

s1

{
Q1

n ∧Q2
n , Q1

e ∧Q2
e

}
implies

A |=
{

P1 ∧ P2
}

s1

{
Q1

n ∧Q2
n , Q1

e ∧Q2
e

}
using the induction hypotheses:

A `
{

P1
}

s1

{
Q1

n , Q1
e

}
implies A |=

{
P1
}

s1

{
Q1

n , Q1
e

}
A `

{
P2
}

s1

{
Q2

n , Q2
e

}
implies A |=

{
P2
}

s1

{
Q2

n , Q2
e

}
This holds applying the definition of |=N , and the hypotheses.
2

224 Soundness and Completeness Proof of the Logic

Disjunction Rule

The proof is similar to the conjunction rule proof.
2

B.3 Completeness Proof

As pointed out by Oheimb [124], the approach using weakest precondition cannot be used
to prove completeness [30] of recursive routine calls. The postcondition of recursive routine
calls changes such that the induction does not go through. Here, we use the Most General
Formula (MGF) approach introduced by Gorelick [42], and promoted by Apt [3], Boer et
al. [34], and others. The MGF of an instruction s gives the strongest poscondition for the
most general precondition, which is the operational semantics of s .

Following, we prove Theorem 10 by induction on the structure of the instruction s . In
this section, we present the proof for the most important cases.

Lemma 9 (Completeness Routine Imp). Let $ and $′ be object stores, and let
{QT@m

n ,QT@m
e } be the strongest postcondition defined as follows:

{QT@m
n ,QT@m

e } , SP(T @m, $ = $′)

Let A0 be the sequent defined as follows:

A0 =
∧

T@m

{
$ = $′

}
T @m

{
QT@m

n , QT@m
e

}
If |=

{
P
}

s
{

Qn , Qe

}
then A0 `

{
P
}

s
{

Qn , Qe

}
Before proving Lemma 9, we use it to prove the completeness theorem.

Lemma 10 (Sequent T@m).

A,
{

$ = $′
}

T @m
{

QT@m
n , QT@m

e

}
`
{

P
}

s
{

Qn , Qe

}
implies

A `
{

P
}

s
{

Qn , Qe

}
Proof. By induction on the derivation

A `
{

P
}

s
{

Qn , Qe

}

B.3 Completeness Proof 225

Now, we prove the completeness theorem:
Proof of Completeness Theorem We have to prove:

|=
{

P
}

s
{

Qn , Qe

}
⇒ `

{
P
}

s
{

Qn , Qe

}
Assume |=

{
P
}

s
{

Qn , Qe

}
. Then, applying the Lemma 9 we get:

A0 `
{

P
}

s
{

Qn , Qe

}
Then by repeated application of Lemma 10 we obtain:

`
{

P
}

s
{

Qn , Qe

}
In the rest of this section, we prove Lemma 9 by induction on the measure of s , defined

as follows:

• If s is an instruction, the measure is the size of s

• The measure of T:m is 0

• The measure of T @m is −1

With this definition of measure, one can reason about instructions using induction hy-
potheses about their sub-parts, about a routine invocation using induction hypotheses of
the form T:m , and about T:m using induction hypotheses of the form T @m.

B.3.1 Assignment Axiom

We have to prove:

|=
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
implies

A0 `
{

(safe(e) ∧ P [e/x]) ∨
(¬safe(e) ∧ Qe)

}
x := e

{
P , Qe

}
Let P ′ be (safe(e) ∧ P [e/x]) ∨ (¬safe(e) ∧ Qe).
Assume |=

{
P ′
}

x := e
{

Q ′n , Q ′e
}

, then |= P ′ ⇒ Q ′n [e/x]. Then by the
assignment axiom and the consequence rule we prove:

A0 `
{

P ′
}

x := e
{

Q ′n , Q ′e
}

2

226 Soundness and Completeness Proof of the Logic

B.3.2 Compound Rule

We have to prove:

|=
{

P
}

s1; s2

{
Rn , Re

}
implies A0 `

{
P
}

s1; s2

{
Rn , Re

}
using the hypotheses

|=
{

P
}

s1

{
Qn , Re

}
implies A0 `

{
P
}

s1

{
Qn , Re

}
and
|=
{

Qn

}
s2

{
Rn , Re

}
implies A0 `

{
Qn

}
s2

{
Rn , Re

}
Assume |=

{
P
}

s1; s2

{
Rn , Re

}
. Then

|=
{

P
}

s1

{
Tn , Te

}
and

|=
{

Tn

}
s2

{
R′n , R′e

}
where {Tn ,Te} and {R′n ,R′e} are the strongest postconditions defined as follows:

{Tn ,Te} , s1(P)

{Rn ,R
′
e} , s2(Tn)

By induction hypotheses we have:

A0 `
{

P
}

s1

{
Tn , Te

}
and

A0 `
{

Tn

}
s2

{
R′n , R′e

}
By the semantics of s1; s2 we have that R′n ⇒ Rn and R′e ⇒ Re and Te ⇒ Re . By the

rule of consequence applied with implications R′n ⇒ Rn and Te ⇒ Re and R′e ⇒ Re , we
obtain:

A0 `
{

P
}

s1

{
Tn , Re

}
and

A0 `
{

Tn

}
s2

{
Rn , Re

}
The conclusion A0 `

{
P
}

s1; s2

{
Rn , Re

}
follows by the compound rule.

2

B.3.3 Conditional Rule

We have to prove:

|=
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}
implies

A0 `
{

P
}

if e then s1 else s2 end
{

Qn , Qe

}

B.3 Completeness Proof 227

using the hypotheses

|=
{

P ∧ e
}

s1

{
Qn , Qe

}
implies A0 `

{
P ∧ e

}
s1

{
Qn , Qe

}
and
|=
{

Qn

}
s2

{
Rn , Re

}
implies A0 `

{
P ∧ ¬e

}
s2

{
Qn , Qe

}
Assume |=

{
P
}

if e then s1 else s2 end
{

Q ′n , Q ′e
}

. Then,

|=
{

P ∧ e
}

s1

{
Q ′n , Q ′e

}
|=
{

P ∧ ¬e
}

s2

{
Q ′n , Q ′e

}
where {Tn ,Te} is the strongest postcondition {Q ′n ,Q ′e} , s1(P ∧ e) ∪ s2(P ∧ ¬e)
Then by induction hypotheses, we know:

A0 `
{

P ∧ e
}

s1

{
Q ′n , Q ′e

}
A0 `

{
P ∧ ¬e

}
s2

{
Q ′n , Q ′e

}
Since Q ′n ⇒ Qn and Q ′e ⇒ Qe , applying the conditional rule and the rule of conse-

quence we obtain:

A0 `
{

P
}

if e then s1 else s2 end
{

Rn , Re

}
2

B.3.4 Check Axiom

We have to prove:

|=
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

implies

A0 `
{

P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
}

Assume |=
{

P
}

check e end
{

Q ′n , Q ′e
}

. For Q ′n , (P ∧ e) and Q ′e , (P ∧¬e),
the conclusion follows by applying the rule of consequence, and the check axiom.

2

B.3.5 Loop Rule

We have to prove:

|=
{

I
}

until e loop s1 end
{

(I ∧ e) , Re

}
implies
A0 `

{
I
}

until e loop s1 end
{

(I ∧ e) , Re

}

228 Soundness and Completeness Proof of the Logic

using the hypotheses

|=
{
¬e ∧ I

}
s2

{
I , Re

}
implies A0 `

{
¬e ∧ I

}
s2

{
I , Re

}
Assume |=

{
I
}

until e loop s1 end
{

Tn , Te

}
Let {P0

n ,R
′
e} be the strongest postcondition {P0

n ,P
0
e } , s1(P). Let {P i+1

n ,P i+1
e } be

the strongest postcondition {P i+1
n ,P i+1

e } , s2(P i
n). Let I ′ be the invariant I ′ , ∪iP

i
n and

R′e be R′e , ∪iP
i
e . Then by induction hypotheses we get:

A0 `
{
¬e ∧ I ′

}
s2

{
I ′ , R′e

}
Finally, since I ′ , ∪iP

i
n and R′e , ∪iP

i
e then I ′ ⇒ I and R′e ⇒ Re . Then applying

the loop rule and the rule of consequence we prove:
A0 `

{
I
}

until e loop s1 end
{

(I ∧ e) , Re

}
2

B.3.6 Read Attribute Axiom

We have to prove:

|=
{

(y 6= Void ∧ P [$(instvar(y , S@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .S@a

{
P , Qe

}
implies

A0 `
{

(y 6= Void ∧ P [$(instvar(y , S@a))/x]) ∨
(y = Void ∧ Qe)

}
x := y .S@a

{
P , Qe

}

Let P ′ be P ′ , (y 6= Void ∧ P [$(instvar(y , S@a))/x]) ∨ (y = Void ∧ Qe).
Assume that |=

{
P ′
}

x := y .S@a
{

Q ′n , Q ′e
}

holds, then
|= P ′ ⇒ Q ′n [(instvar(y , S@a))/x]. Then, by the read attribute axiom and the conse-

quence rule, we prove:

A0 `
{

P ′
}

x := y .S@a
{

Q ′n , Q ′e
}

2

B.3.7 Write Attribute Axiom

We have to prove:

B.3 Completeness Proof 229

|=
{

(y 6= Void ∧ P [$〈instvar(y , S@a) := e〉/$]) ∨
(y = Void ∧ Qe)

}
y .S@a := e

{
P , Qe

}
implies

A0 `
{

(y 6= Void ∧ P [$〈instvar(y , S@a) := e〉/$]) ∨
(y = Void ∧ Qe)

}
y .S@a := e

{
P , Qe

}
Let P ′ be P ′ , (y 6= Void ∧ P [$〈instvar(y , S@a) := e〉/$]) ∨ (y = Void ∧ Qe).
Assume |=

{
P ′
}

y .S@a := e
{

Q ′n , Q ′e
}

holds , then
|= P ′ ⇒ Q ′n [$〈instvar(y , S@a) := e〉/$]. Then, by the write attribute axiom and the

consequence rule, we prove:

A0 `
{

P ′
}

y .S@a := e
{

Q ′n , Q ′e
}

2

B.3.8 Local Rule

We have to prove:

|=
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
implies

A0 `
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
using the induction hypothesis:

|=
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
implies

A0 `
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Qn , Qe

}
Assume |=

{
P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
, then

|=
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Q ′n , Q ′e
}

where {Q ′n ,Q ′e} is the strongest postcondition:

{Q ′n ,Q ′e} , s(P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn))

By induction hypothesis we have:

A0 `
{

P ∧ v1 = init(T1) ∧ ... ∧ vn = init(Tn)
}

s
{

Q ′n , Q ′e
}

Since {Q ′n ,Q ′e} is the strongest postcondition, then Qn ⇒ Q ′n and Qe ⇒ Q ′e . Then, by
the consequence rule and the local rule, we prove:

230 Soundness and Completeness Proof of the Logic

A0 `
{

P
}

local v1 : T1; ... vn : Tn ; s
{

Qn , Qe

}
2

B.3.9 Rescue Rule

Figure B.1 shows a diagram of the states produced by the execution of the rescue clause.
The instruction is s1 rescue s2. The arrow with label s1 means that the execution of the
instruction s1 starting in the state P i

n terminates in the state {P ′in , P ′ie } where P ′in is the
postcondition after normal termination, and P ′ie is the postcondition when s1 triggers an
exception. In a similar way, the execution of the instruction s2 stating in the state P ′ie

terminates in the state {Q i
n , Q i

e} where Q i
n is the postcondition after normal termination,

and Q i
e is the postcondition when s1 triggers an exception. If Retry = true then the

postcondition Q i
n implies P i

n . If Retry = false then the postcondition Q i
n implies Q i

n ∧
¬Retry ∧ Q i

e . Furthermore, Q i
e implies Q i

n ∧ ¬Retry ∧ Q i
e

Fig. B.1: Completeness proof

We have to prove:

|=
{

P
}

s1 rescue s2

{
Qn , Re

}
implies
A0 `

{
P
}

s1 rescue s2

{
Qn , Re

}
using the hypotheses

B.3 Completeness Proof 231

|=
{

Ir

}
s1

{
Qn , Qe

}
implies A0 `

{
Ir

}
s1

{
Qn , Qe

}
and

|=
{

Qe

}
s2

{
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

}
implies
A0 `

{
Qe

}
s2

{
Retry ⇒ Ir ∧ ¬Retry ⇒ Re , Re

}
and

P ⇒ Ir

Assume |=
{

P
}

s1 rescue s2

{
Qn , Qe

}
. Let

P0
n , P (B.21)

{P ′in ,P ′
i
e} , s1(P i

n) (B.22)

{Q i
n ,Q

i
e} , s2(P ′

i
e) (B.23)

P i+1
n , Q i

n ∧ Retry (B.24)

Ir , ∪iP
i
n (B.25)

Tn , ∪iP
′i
n (B.26)

Te , ∪iP
′i
e (B.27)

Re , ∪i((Q i
n ∧ ¬Retry) ∨Q i

e) (B.28)

We have Tn ⇒ Qn and Re ⇒ Qe . Then,

|=
{

P i
n

}
s1

{
P ′in , P ′ie

}
, and

|=
{

P ′ie
}

s2

{
Q i

n , Q i
e

}
, for all i

Therefore,

|=
{
∪i P i

n

}
s1

{
∪i P ′in , ∪i P ′ie

}
and

|=
{
∪i P ′ie

}
s2

{
∪i Q i

n , ∪i Q i
e

}
Then by induction hypotheses

A0 `
{
∪i P i

n

}
s1

{
∪i P ′in , ∪i P ′ie

}
and

A0 `
{
∪i P ′ie

}
s2

{
∪i Q i

n , ∪i Q i
e

}
Since ∪i P i

n ⇒ P , and ∪i P ′in ⇒ Qn , and ∪i Q i
e ⇒ Qe , and the rule of consequence,

we get

A0 `
{

Ir

}
s1

{
Qn , Te

}
(B.29)

232 Soundness and Completeness Proof of the Logic

By (B.24) we know Q i
n ⇒ (Retry ⇒ P i

n) and by (B.28) Q i
n ⇒ ((¬Retry) ⇒ Re).

Then, since Ir = ∪iP
i
n we get Q i

n ⇒ (Retry ⇒ Ir) and since Re ⇒ Qe we get Q i
n ⇒

((¬Retry)⇒ Qe). Then ∪i Q i
n ⇒ (Retry ⇒ Ir ∧ ¬Retry ⇒ Qe).

Then, by (B.28) ∪i Q i
e ⇒ Re , Re ⇒ Qe , and the rule of consequence, we prove:

A0 `
{

Te

}
s2

{
(Retry ⇒ Ir ∧ ¬Retry ⇒ Qe , Qe

}
(B.30)

To finish the proof, we need to prove P ⇒ Ir . This holds because P = P0
n and

Ir = ∪iP
i
n . Then from B.29 and B.30, and applying the rescue rule we get:

A0 `
{

P
}

s1 rescue s2

{
Qn , Qe

}
2

B.3.10 Routine Implementation Rule

We have to prove:

|=
{

P
}

T @m
{

Qn , Qe

}
implies A0 `

{
P
}

T @m
{

Qn , Qe

}
Assume |=

{
P
}

T @m
{

Qn , Qe

}
.

A0 `
{

$ = $′
}

T@m
{

QT@m
n , QT@m

e

}
A0 `

{
$ = $′ ∧ P [$′/$]

}
T@m

{
QT@m

n ∧ P [$′/$] , QT@m
e ∧ P [$′/$]

}
A0 `

{
$ = $′ ∧ P [$′/$]

}
T@m

{
Qn , Qe

} B.31,B.32

A0 `
{

P
}

T@m
{

Qn , Qe

} ∃$′

where (B.31), (B.32) are the following implications:

QT@m
n ∧ P [$′/$] ⇒ Qn (B.31)

QT@m
e ∧ P [$′/$] ⇒ Qe (B.32)

B.3.11 Routine Invocation Rule

We have to prove:

|=
{

P
}

x := y .T:m(e)
{

Qn , Qe

}
implies
A0 `

{
P
}

x := y .T:m(e)
{

Qn , Qe

}
Assume |=

{
P
}

x := y .T:m(e)
{

Qn , Qe

}
. Then, by definition of |= we obtain:

B.3 Completeness Proof 233

|= { P [Result ′/Result] } Result := y .T:m(e) { Qn [Result ′/Result ,Result/x] , Qe [Result ′/Result] }

Let P ′,Q ′n and Q ′e be the following pre and postconditions:

P ′ , P

[
Result ′/Result , Current ′/Current ,
Current/y

]
∧ p = e

Q ′n , Qn

[
Result ′/Result , Result/x
Current ′/Current , Current/y

]

Q ′e , Qe

[
Result ′/Result , Current ′/Current ,
Current/y

]
By definition of |=, we get:

|=
{

P ′
}

Result := Current .T:m(p)
{

Q ′n , Q ′e
}

Then, by definition of |=, we obtain:

|=
{

P ′
}

T:m(p)
{

Q ′n , Q ′e
}

Then, we obtain the following derivation:

A0 `
{

P ′
}

T:m(p)
{

Q ′n , Q ′e
}

A0 `
{

P ′′
}

x := y .T:m(e)
{

Q ′′n , Q ′′e
} invocation rule

where P ′′, Q ′′n , and Q ′′e are defined as follows:

P ′′ ,
y 6= Void ∧ P ′[y/Current , e/p]
y = Void ∧ Q ′e [y/Current]

Q ′′n , Q ′n [y/Current , x/Result]

Q ′′e , Q ′e [y/Current]

Unfolding the definition of P ′, and Q ′e we obtain

234 Soundness and Completeness Proof of the Logic

P ′′ ,


y 6= Void ∧ P

[
Result ′/Result ,Current ′/Current ,
Current/y , y/Current ,

]
∧ e = e ∧

y = Void ∧ Q ′e

[
Current/y , y/Current ,
Result ′/Result , Current ′/Current

]


≡


y 6= Void ∧ P

[
Result ′/Result
Current ′/Current

]

y = Void ∧ Q ′e

[
Result ′/Result
Current ′/Current

]


Also, unfolding the definition of Q ′n and Q ′e we know:

Q ′′n , Qn

 Result ′/Result ,Current ′/Current ,
Current/y , y/Current ,
Result/x , x/Result


≡ Qn

[
Result ′/Result ,Current ′/Current

]

Q ′′e , Qe

[
Result ′/Result ,Current ′/Current ,
Current/y , y/Current

]
≡ Qe

[
Result ′/Result ,Current ′/Current

]
Thus, the only replacement used in P ′′, Q ′′n , and Q ′′e is Result ′/Result and Current ′/Current .

Now applying the invoc var rule with Result ′ and Current ′ we obtain the following deriva-
tion:

A0 `
{

P ′′
}

x := y .T:m(p)
{

Q ′′n , Q ′′e
}

A0 `
{

(y 6= Void ∧ P) ∨ y = Void ∧ Qe

}
x := y .T:m(p)

{
Qn , Qe

} invoc var rule

Finally, since we know (P ∧ y = Void)⇒ Qe from the hypothesis, applying the rule
of consequence we prove:

A0 `
{

P
}

x := y .T:m(e)
{

Qn , Qe

}
2

B.3 Completeness Proof 235

B.3.12 Virtual Routines

To prove this case, T:m , we use the following lemma:

Lemma 11 (Subtypes).

∀T ′ � T : |=
{

P ∧ τ(Current) = T ′
}

T:m
{

Qn , Qe

}
then

`
{

P ∧ τ(Current) = T ′
}

T ′ :m
{

Qn , Qe

}
Proof. The proof follows from the proof rule for

`
{

P ∧ τ(Current) = T ′
}

T ′ :m
{

Qn , Qe

}
and completeness for the routine implementation rule presented in Section B.3.10.

Now, we prove the case T:m as follows. We know:

|=
{

P
}

T:m
{

Qn , Qe

}
Applying Lemma 11 to all descendants of T , and applying the subtype rule and the

consequence rule get:

`
{

P
}

T:m
{

Qn , Qe

}
2

236 Soundness and Completeness Proof of the Logic

Appendix C

Soundness Proof of the Eiffel
Proof-Transforming Compiler

This section presents the soundness proof of the Eiffel proof-transforming compiler. This
proof includes the soundness proof of the core proof-transforming compiler (described in
Chapter 6), and the Eiffel-specific proof-transforming compiler (presented in Chapter 7).
The most interesting parts of the proof are the proof for the translation of rescue rule
and the proof for the translation of once routines.

Before presenting the proofs, we show the soundness theorems described in Sections 6.7
and 7.4. Then, we prove soundness for the routine translator. Finally, we present the
soundness proof for the expression translator and the instruction translator.

This appendix is based on the technical report [95].

C.1 Theorems

Soundness of the Eiffel proof-transforming compiler has been stated using three sound-
ness theorems: (1) soundness of the routine translation; (2) soundness of the instruction
translation; and (3) soundness of the contract translator. These theorems are defined as
follows (they are described in Section 6.7 and Section 7.4):

Theorem 3 (Section 6.7)

Tree1

A `
{

P
}

m
{

Qn , Qe

} then

` ∇B

 Tree1

A `
{

P
}

m
{

Qn , Qe

}


238 Soundness Proof of the Eiffel Proof-Transforming Compiler

Theorem 4 (Section 6.7)

` Tree1

A `
{

P
}

s1

{
Qn , Qe

} ∧

(Ilstart ...Ilend
) = ∇S

 Tree1

A `
{

P
}

s1

{
Qn , Qe

} , lstart , lend+1, lexc

 ∧(
Qn ⇒ Elend+1

)
∧

((Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc) ∧
⇒
∀ l ∈ lstart ... lend : ` {El} Il

Theorem 5 (Section 7.4)

∀b : BoolExp, t : TypeFunc, e : Expr , c : CallRoutine, p : Argument :
(wellFC b)⇒ (valueC b h1 h2 s) = ((∇C b) h1 h2 s) and
(wellFT t)⇒ (valueT t h1 h2 s) = ((∇T t) h1 h2 s) and
(wellFExp e)⇒ (valueExp e h1 h2 s) = ((∇Exp e) h1 h2 s) and
(wellFCall c)⇒ (valueCall c h1 h2 s) = ((∇Call c) h1 h2 s) and
(wellFArg p)⇒ (valueArg p h1 h2 s) = ((∇Arg p) h1 h2 s)

The proofs of Theorem 3 and Theorem 4 run by induction on the structure of the
derivation tree for {P} s1 {Qn ,Qe}. These proofs are presented in Section C.2 and Sec-
tion C.4. The proof of Theorem 5 runs by induction on the syntactic structure of the
expression. This proof has been formalized and proved in Isabelle . The proof of Theo-
rem 5 can be found in our technical report [95].

C.2 Soundness Proof of the Routine Translator

Since the logic for Eiffel and the logic for CIL support the same routine rules and the
same language-independent rules, the translation of these rules is straightforward. The
soundness proof is also simple. In this section, we present the proof for the class rule and
the conjunction rule. The proofs for subtype, routine implementation, and the language-
indepent rules are similar.

C.2.1 Class Rule

The translation of the class rule has been presented in Section 6.2.1 on page 109. Let
Timp and Ttm be the following proof trees:

C.2 Soundness Proof of the Routine Translator 239

Timp ≡
Tree1

A `
{
τ(Current) = T ∧ P

}
imp(T ,m)

{
Qn , Qe

}
Ttm ≡

Tree2

A `
{
τ(Current) ≺ T ∧ P

}
T:m

{
Qn , Qe

}
where Tree1 and Tree2 are the derivations used to prove the Hoare triples
of imp(T ,m) and T:m respectively.

We have to prove:

Timp Ttm

A `
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

}
implies

`
∇B(Timp) ∇B(Ttm)

A `
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

} cil class rule

using the induction hypotheses:

Timp implies ` ∇B(Timp)

Ttm implies ` ∇B(Ttm)

Since the application of the class rule in the source is a valid proof, then we know
Timp and Ttm are also valid. Then, we can apply the induction hypotheses and we get:

` ∇B(Timp)

` ∇B(Ttm)

Applying the class rule in the CIL logic using the above CIL proofs, we conclude:

`
∇B(Timp) ∇B(Ttm)

A `
{
τ(Current) � T ∧ P

}
T:m

{
Qn , Qe

} cil class rule

2

240 Soundness Proof of the Eiffel Proof-Transforming Compiler

C.2.2 Conjunction Rule

The translation of the conjunction rule is described in Section 6.2.4 on page 113. Let TS1

and TS2 be the following proof trees:

TS1 ≡
Tree1

A `
{

P ′
}

s1

{
Q ′n , Q ′e

} TS2 ≡
Tree2

A `
{

P ′′
}

s1

{
Q ′′n , Q ′′e

}
We have to prove:

TS1 TS2

A `
{

P ′ ∧ P ′′
}

s1

{
Q ′n ∧Q ′′n , Q ′e ∧Q ′′e

}
implies

∇B (TS1) ∇B (TS2)

A `
{

P ′ ∧ P ′′
}

s1

{
Q ′n ∧Q ′′n , Q ′e ∧Q ′′e

} cil conjunction rule

using the induction hypotheses:

TS1 implies ∇B (TS1)
TS2 implies ∇B (TS2)

Since the application of the conjunction rule in the source logic is valid, then applying
the induction hypotheses we get:

∇B (TS1)
∇B (TS2)

Using the conjunction rule in the CIL logic, we show:

∇B (TS1) ∇B (TS2)

A `
{

P ′ ∧ P ′′
}

s1

{
Q ′n ∧Q ′′n , Q ′e ∧Q ′′e

} cil conjunction rule

2

C.3 Soundness Proof of the Expression Translator

Before presenting the proof of the instruction translator, we prove soundness of the ex-
pression translation. Soundness of the expression translator is stated with the following
lemma:

C.3 Soundness Proof of the Expression Translator 241

Lemma 12 (Soundness of Expression Translator).

(Ilstart ...Ilend
) = ∇E (Q ∧ unshift(P [e/s(0)]), e, shift(Q) ∧ P , lstart) ∧

(shift(Q) ∧ P ⇒ Elend+1
)

⇒
∀ l ∈ lstart ... lend : ` {El} Il

The proof of the expression translator runs by induction on the syntactic structure of
the expression. Following, we present the proof for constants, variables, binary expressions
and unary expressions.

C.3.1 Constants

The translation of constants is presented in Section 6.3.1 on page 116. We have to prove:

Ilstart = ∇E (Q ∧ unshift(P [c/s(0)]), c, shift(Q) ∧ P , lstart) ∧
(shift(Q) ∧ P ⇒ Elstart+1)

⇒
` {Q ∧ unshift(P [c/s(0)])} lstart : ldc c

To prove that this bytecode specification is valid, we have to show that the precondi-
tion {Q ∧ unshift(P [c/s(0)])} implies the weakest precondition of ldc c. To show this
implication, first we prove:

Q ∧ unshift(P [c/s(0)]) implies wp(ldc c, shift(Q) ∧ P)

then, by the hypothesis we know (shift(Q) ∧ P ⇒ Elstart+1), and we prove

Q ∧ unshift(P [c/s(0)]) implies wp(ldc c, Elstart+1)

The implication holds as follows:

Q ∧ unshift(P [c/s(0)]) implies wp(ldc c, shift(Q) ∧ P)

[definition of wp]

Q ∧ unshift(P [c/s(0)]) implies unshift(shift(Q) ∧ P [c/s(0)])

[definition of unshift]

Q ∧ unshift(P [c/s(0)]) implies Q ∧ unshift(P [c/s(0)])

2

242 Soundness Proof of the Eiffel Proof-Transforming Compiler

C.3.2 Variables

The translation of variables is described in Section 6.3.2 on page 116. We have to show:

Ilstart = ∇E (Q ∧ unshift(P [x/s(0)]), x , shift(Q) ∧ P , lstart) ∧
(shift(Q) ∧ P ⇒ Elstart+1)

⇒
` {Q ∧ unshift(P [x/s(0)])} lstart : ldc x

To show that the bytecode specification for ldc x is valid, we prove:

Q ∧ unshift(P [x/s(0)]) implies wp(ldc x , shift(Q) ∧ P)

then, by the hypothesis we have shift(Q) ∧ P ⇒ Elstart+1 .

The proof is as follows:

Q ∧ unshift(P [x/s(0)]) implies wp(ldc x , shift(Q) ∧ P)

[definition of wp]

Q ∧ unshift(P [x/s(0)]) implies unshift(shift(Q) ∧ P [x/s(0)])

[definition of unshift]

Q ∧ unshift(P [x/s(0)]) implies Q ∧ unshift(P [x/s(0)])

2

C.3.3 Binary Expressions

Binary expressions has been translated in Section 6.3.3 on page 116. We have to prove:

Ilstart ...lc = ∇E (Q ∧ unshift(P [e1 op e2/s(0)]), e1 op e2, shift(Q) ∧ P , lstart) ∧
(shift(Q) ∧ P ⇒ Elc+1)

⇒
∀ l ∈ lstart ...lc ` {El} : Il

using the hypotheses:

C.3 Soundness Proof of the Expression Translator 243

l1start ...l1end =
∇E (Q ∧ unshift(P [e1 op e2/s(0)]) , e1 , shift(Q) ∧ P [s(0) op e2/s(0)] , l1start) ∧

(shift(Q) ∧ P [s(0) op e2/s(0)] ⇒ El1end
)

⇒
∀ l ∈ l1start ...l1end ` {El} : Il

and
l2start ...l2end =
∇E (shift(Q) ∧ P [s(0) op e2/s(0)] , e2 , shift2(Q) ∧ shift P [s(1) op s(0)/s(1)] , l2start)
∧ (shift(Q) ∧ P [s(0) op e2/s(0)] ⇒ El2end

)
⇒
∀ l ∈ l2start ...l2end ` {El} : Il

Since the precondition of lc is equal to the postcondition of the translation of the ex-
pression e2, we can apply the second induction hypothesis and we prove that the transla-
tion of the expression e2 is valid. In a similar way, since the precondition of the translation
of e2 is equal to the postcondition of the translation of e1, we can apply the first induction
hypothesis, and we show that the translation of e1 is valid. Finally, we can prove that the
instruction specification at label lc is valid applying the definition of wp.

C.3.4 Unary Expressions

The translation of unary expressions is described in Section 6.3.4 on page 117. We have
to prove:

Ilstart ...lb = ∇E (Q ∧ unshift(P [unop e/s(0)]), unop e, shift(Q) ∧ P , lstart) ∧
(shift(Q) ∧ P ⇒ Elb+1

)

⇒
∀ l ∈ lstart ...lb ` {El} : Il

using the hypothesis:

l1start ...l1end =
∇E (Q ∧ unshift(P [unop e/s(0)]) , e , shift(Q) ∧ P [unop s(0)/s(0)] , l1start) ∧

(shift(Q) ∧ P [unop s(0)/s(0)] ⇒ El1end
)

⇒
∀ l ∈ l1start ...l1end ` {El} : Il

244 Soundness Proof of the Eiffel Proof-Transforming Compiler

To apply the induction hypothesis, we need to show:

(shift(Q) ∧ P [unop s(0)/s(0)] ⇒ El1end
)

Since El1end
is equal to Elb , and Elb is defined as:

shift(Q) ∧ P [unop s(0)/s(0)]

then, the implication holds, and by induction hypothesis we get:

∀ l ∈ l1start ...l1end : ` {El} Il

Finally, we need to show that the instruction specification at lb holds. By definition of
wp, we need to show:

(shift(Q) ∧ P [unop s(0)/s(0)] implies wp(unopop , Elb+1
)

By hypothesis (shift(Q) ∧ P ⇒ Elb+1
), applying the definition of wp, we prove that

(shift(Q) ∧ P [unop s(0)/s(0)] implies wp(unopop , (shift(Q) ∧ P)

2

C.4 Soundness Proof of the Instruction Translator

The soundness proof of the instruction translator runs by induction on the structure of
the derivation tree for A `

{
P
}

s
{

Qn , Qe

}
. In this section, we present the proof

for the most interesting cases.

C.4.1 Assignment Axiom

The assignment axiom is translated in Section 6.4.1 on page 118. Let P ′ be a precondition
defined as follows:

P ′ ≡ (safe(e) ∧ P [e/x]) ∨ (¬safe(e) ∧ Qe)

We have to prove:

C.4 Soundness Proof of the Instruction Translator 245

`
A `

{
P ′
}

x := e
{

P , Qe

} ∧

(Ila ...Ilb) = ∇S


A `

{
P ′
}

x := e
{

P , Qe

} , la , lb+1, lexc

 ∧(
P ⇒ Elb+1

)
∧

((Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc) ∧
⇒
∀ l ∈ la ... lb : ` {El} Il

Applying Lemma 12 we show that the translation of the expression e produces a valid
bytecode proof. The bytecode specification for stloc x can be proved as follows:

shift(safe(e) ∧ P [e/x]) ∧ s(0) = e implies wp(stloc x ,P)

[definition of wp]

shift(safe(e) ∧ P [e/x]) ∧ s(0) = e implies shift(P [s(0)/x])

2

C.4.2 Compound Rule

The translation of compound rule is described in Section 6.4.2 on page 119. Let TS1 and
TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn , Re

} TS2 ≡
Tree2{

Qn

}
s2

{
Rn , Re

}
We have to prove:

`
TS1 TS2

A `
{

P
}

s1; s2

{
Rn , Re

} ∧

(Ila ...Ilb) = ∇S

(
TS1 TS2

A `
{

P
}

s1; s2

{
Rn , Re

} , la , lb+1, lexc

)
∧(

Rn ⇒ Elb+1

)
∧

((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)
⇒
∀ l ∈ la ... lb : ` {El} Il

246 Soundness Proof of the Eiffel Proof-Transforming Compiler

By the first induction hypothesis we get:

` Tree1

A `
{

P
}

s1

{
Qn , Re

} ∧

(Ila ...Ila end
) = ∇S

(
tree1

A `
{

P
}

s1

{
Qn , Re

} , la , lb , lexc

)
∧(

Qn ⇒ Ela end+1

)
∧

((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)
⇒
∀ l ∈ la ... la end : ` {El} Il

To be able to apply the first induction hypothesis we have to prove:

Qn ⇒ Ela end+1
(C.1)

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc (C.2)

The second implication is proven by hypothesis. The precondition Ela end+1
is equal to

Elb . After the translation, the label precondition at lb is Qn . Thus,Qn ⇒ Qn , and we prove
the first implication. Then, we can apply the induction hypothesis and get:

∀ l ∈ la ... la end : ` {El} Il

The second induction hypothesis is:

` Tree2

A `
{

Qn

}
s2

{
Rn , Re

} ∧

(Ilb ...Ilb end
) = ∇S

(
tree2

A `
{

Qn

}
s2

{
Rn , Re

} , lb , lb+1, lexc

)
∧(

Rn ⇒ Elb+1

)
∧

((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)
⇒
∀ l ∈ lb ... lb end : ` {El} Il

To apply the second induction hypothesis we have to show:

Qn ⇒ Elb+1
(C.3)

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc (C.4)

These implications hold by hypothesis. Thus, we get:

∀ l ∈ lb ... lb end : ` {El} Il

C.4 Soundness Proof of the Instruction Translator 247

Finally, we join both results and we get:

∀ l ∈ la ... lb : ` {El} Il

2

C.4.3 Conditional Rule

The conditional rule translation has been presented in Section 6.4.3 on page 119. Let TS1

and TS2 be the following proof trees:

TS1 ≡
Tree1

A `
{

P ∧ e
}

s1

{
Qn , Qe

}
TS2 ≡

Tree2

A `
{

P ∧ ¬e
}

s2

{
Qn , Qe

}
We have to show:

`
TS1 TS2

A `
{

P
} if e then s1

else s2 end

{
Qn , Qe

} ∧

(Ila ...Ile) = ∇S

 TS1 TS2

A `
{

P
} if e then s1

else s2 end

{
Qn , Qe

} , la , le+1, lexc

 ∧
(
Qn ⇒ Ele+1

)
∧

((Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)
⇒
∀ l ∈ la ... le : ` {El} Il

Applying Lemma 12 we prove that the translation of the expression e is valid. The
instruction specification at label lb holds applying the definition of wp. The specification
at label ld holds by hypothesis (Qn ⇒ Ele+1).

The proof of the translation for s1 is as follows. By the first induction hypothesis we
get:

248 Soundness Proof of the Eiffel Proof-Transforming Compiler

` Tree1

A `
{

P
}

s1

{
Qn , Qe

} ∧

(Ilc ...Ilc end
) = ∇S

(
tree1

A `
{

P
}

s1

{
Qn , Qe

} , lc, ld , lexc

)
∧

(Qn ⇒ Eld) ∧
((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)
⇒
∀ l ∈ lc ... lc end : ` {El} Il

Since Eld is equal to Qn , and (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc holds
by hypothesis, we can apply the induction hypothesis, and we prove:

∀ l ∈ lc ... lcend
: ` {El} Il

The proof of the translation of s2 is similar to the translation of s1. Thus, we have
proven:

∀ l ∈ la ... le : ` {El} Il

2

C.4.4 Check Axiom

The check axiom is translated in Section 6.4.4 on page 121. This proof is straight forward,
applying the definition of wp. We have to prove:

`
A `

{
P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
} ∧

(Ila ...Ild) = ∇S


A `

{
P
}

check e end
{

(P ∧ e) , (P ∧ ¬e)
} , la , ld+1, lexc

 ∧(
(P ∧ e) ⇒ Eld+1

)
∧

((P ∧ ¬e ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)

⇒
∀ l ∈ la ... ld : ` {El} Il

The translation of the expression e holds by Lemma 12. To prove that the instruction
at lb holds, we have to show:

shift(P) ∧ s(0) = e implies wp(brtrue ld+1)

C.4 Soundness Proof of the Instruction Translator 249

Applying the definition of wp, we have to prove:

(shift(P) ∧ s(0) = e) ⇒ (¬s(0)⇒ shift(Elc)) ∧ (s(0)⇒ shift(Eld+1
))

The first implication holds because shift(Elc) = P ∧ ¬e. The second implication holds
by the hypothesis: (P ∧ e) ⇒ Eld+1

. Then using the definition of wp we prove the
implication.

Applying the definition of wp, we show that the instructions specifications at lc and
ld are valid. Then, joining the proof we have:

∀ l ∈ la ... ld : ` {El} Il

2

C.4.5 Loop Rule

The translation of loop rule is developed in Section 6.4.5 on page 121. Let TS1 be the
following proof tree:

TS1 ≡
Tree1

A `
{
¬e ∧ I

}
s1

{
I , Re

}
We have to prove:

`
TS1

A `
{

I
}

until e loop s1

{
I ∧ e , Re

} ∧

(Ila ...Ild) = ∇S

 TS1

A `
{

I
}

until e loop s1

{
I ∧ e , Re

} , la , ld+1, lexc

 ∧(
(I ∧ e) ⇒ Eld+1

)
∧

((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)

⇒
∀ l ∈ la ... ld : ` {El} Il

Since the translation of the expression e establishes I , then the instruction specification
at la is valid. The bytecode produced by the translation of e is valid (applying Lemma 12).
Furthermore, the bytecode specification at ld holds by definition of wp and the hypothesis
(I ∧ e) ⇒ Eld+1

Now, we need to show that the translation of s1 is valid. By the first induction hy-
pothesis we get:

250 Soundness Proof of the Eiffel Proof-Transforming Compiler

` Tree1

A `
{
¬e ∧ I

}
s1

{
I , Re

} ∧

(Ilb ...Ilb end
) = ∇S

(
Tree1

A `
{
¬e ∧ I

}
s1

{
I , Re

} , lb , lc, lexc

)
∧

(I ⇒ Elc) ∧
((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)
⇒
∀ l ∈ lb ... lb end : ` {El} Il

The precondition at lc (Elc) is I , so I ⇒ Elc . The implication

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc

holds by hypothesis. Then, we can apply the induction hypothesis and get:

∀ l ∈ lb ... lb end : ` {El} Il

Thus, we prove

∀ l ∈ la ... ld : ` {El} Il

2

C.4.6 Read and Write Attribute Rule

The proofs are straightforward applying the definition of wp.

C.4.7 Routine Invocation Rule, Local Rule, and Creation Rule

These rules are proven applying the definition of weakest precondition.

C.4.8 Rescue Rule

The translation of the rescue rule is described in Section 7.2.3 on page 148. Let TS1 and
TS2 be the following proof trees:

TS1 ≡
Tree1{

Ir

}
s1

{
Qn , Qe

} TS2 ≡
Tree2{

Qe

}
s2

{
Retry ⇒ Ir ∧
¬Retry ⇒ Re

, Re

}

We have to prove:

C.4 Soundness Proof of the Instruction Translator 251

`
TS1 TS2

A `
{

P
}

s1 rescue s2

{
Qn , Re

} ∧

(Ila ...Ili) = ∇S

 TS1 TS2

A `
{

P
}

s1 rescue s2

{
Qn , Re

} , la , li+1, lexc

 ∧(
Qn ⇒ Eli+1

)
∧

((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)

⇒
∀ l ∈ la ... li : ` {El} Il

We first prove that the translations of the instructions s1 and s2 produce valid bytecode
proofs, and then we show that the specification of the remaining instructions hold. By
the first induction hypothesis we get:

` Tree1

A `
{

Ir

}
s1

{
Qn , Qe

} ∧

(Ila ...Ila end
) = ∇S

 Tree1

A `
{

Ir

}
s1

{
Qn , Qe

} , la , lb , lc

 ∧
(Qn ⇒ Elb) ∧
((Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Elc)

⇒
∀ l ∈ la ... la end : ` {El} Il

Due to the precondition Elb is Qn and the precondition Elc is:

(Qe ∧ excV 6= null ∧ s(0) = excV)

we can apply the first induction hypothesis and get:

∀ l ∈ la ... la end : ` {El} Il

The second induction hypothesis is:

252 Soundness Proof of the Eiffel Proof-Transforming Compiler

` Tree2{
Qe

}
s2

{
Retry ⇒ Ir ∧
¬Retry ⇒ Re

, Re

} ∧

(Ild ...Ild end
) = ∇S

 Tree2{
Qe

}
s2

{
Retry ⇒ Ir ∧
¬Retry ⇒ Re

, Re

} , ld , le , lexc

 ∧
((Retry ⇒ Ir ∧ ¬Retry ⇒ Re) ⇒ Ele) ∧
((Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)

⇒
∀ l ∈ ld ... ld end : ` {El} Il

To be able to apply the second induction hypothesis we have to prove:

(Retry ⇒ Ir ∧ ¬Retry ⇒ Re) ⇒ Ele

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc

The first implication holds because the precondition Ele is:

(Retry ⇒ Ir ∧ ¬Retry ⇒ Re)

The second implication holds by the hypothesis. So, we can apply the second induction
hypothesis and get:

∀ l ∈ ld ... ld end : ` {El} Il

The specification

{Qn} lb : leave li+1

holds by the definition of wp for leave, and the hypothesis Qn ⇒ Eli+1 .

Finally, the specifications at labels lc, le , lf , lg , lh , and li hold by the definition of wp.
For example, the instruction specification at label lf is proven as follows:

C.4 Soundness Proof of the Instruction Translator 253

(Retry ⇒ Ir ∧ ¬Retry ⇒ Re ∧ s(0) = Retry) implies wp (brfalse lh , Elg)

[definition of wp]

(Retry ⇒ Ir ∧ ¬Retry ⇒ Re ∧ s(0) = Retry) implies

(s(0)⇒ shift(Elg) ∧ ¬s(0)⇒ shift(Elh))

[definition of Elg and Elh]

(Retry ⇒ Ir ∧ ¬Retry ⇒ Re ∧ s(0) = Retry) implies

(s(0)⇒ shift(Ir) ∧ ¬s(0)⇒ shift(Re))

[definition of shift , and Ir and Re do not refer to the stack]

(Retry ⇒ Ir ∧ ¬Retry ⇒ Re ∧ s(0) = Retry) implies (s(0)⇒ Ir ∧ ¬s(0)⇒ Re)

[this holds since s(0) = Retry]

Joining the proofs we get:

∀ l ∈ la ... li : ` {El} Il

2

C.4.9 Once functions Rule

The translation of once functions is described in Section 7.2.3 on page 149. Let P be the
following precondition, where T M RES is a logical variable:

P ≡

 (¬T@m done ∧ P ′)∨(
T@m done ∧ P ′′ ∧ T@m result = T M RES ∧ ¬T@m exc

)
∨

(T@m done ∧ P ′′′ ∧ T@m exc)


and let Q ′n and Q ′e be the following postconditions:

Q ′n ≡
{

T@m done ∧ ¬T@m exc ∧(
Qn ∨ (P ′′ ∧ Result = T M RES ∧ T@m result = T M RES)

) }
Q ′e ≡

{
T@m done ∧ T@m exc ∧ (Qe ∨ P ′′′)

}
Let Tbody be the following proof tree:

254 Soundness Proof of the Eiffel Proof-Transforming Compiler

Tbody ≡
Tree1

A, {P} T @m {Q ′n , Q ′e} `{
P ′[false/T @m done] ∧ T @m done

}
body(T @m)

{
Qn , Qe

}

We have to prove:

`
Tbody

A `
{

P
}

T @m
{

Q ′n , Q ′e

} ∧

(Ila ...Ilr) = ∇S

 Tbody

A `
{

P
}

T@m
{

Q ′n , Q ′e
} , la , lr+1, lexc

 ∧(
Q ′n ⇒ Elr+1

)
∧

((Q ′e ∧ excV 6= null ∧ s(0) = excV) ⇒ Elexc)

⇒
∀ l ∈ la ... lr : ` {El} Il

The instruction specifications at labels la , ..., ld , lf , ..., lr hold by the definition of wp.
For example, we prove the instruction specification at la as follows:

P implies wp (ldsfld T @m done, shift(P) ∧ s(0) = T @m done)

[definition of wp]

P implies unshift(shift(P) ∧ s(0) = T @m done[T @m/s(0)])

[definition of replacement]

P implies unshift(shift(P) ∧ T @m = T @m done)

[definition of unshift and shift]

P implies (P ∧ T @m = T @m done)

2

The interesting case of the proof is the translation of Tbody . By the induction hypothesis
we get:

C.4 Soundness Proof of the Instruction Translator 255

` Tbody ∧
(Ile ...Ile end

) = ∇S (Tbody , le , lf , li) ∧(
Qn ⇒ Elf

)
∧

((shift(Qe) ∧ excV 6= null ∧ s(0) = excV) ⇒ Eli)

⇒
∀ l ∈ le ... le end : ` {El} Il

To be able to apply the induction hypothesis, we need to show:

(
Qn ⇒ Elf

)
((shift(Qe) ∧ excV 6= null ∧ s(0) = excV) ⇒ Eli)

(C.5)

The precondition at label Elf is Qn , so the first implication holds. The precondition
Eli is:

(shift(Qe) ∧ excV 6= null ∧ s(0) = excV)

then the second implication also holds, and we can apply the induction hypothesis and
get:

∀ l ∈ le ... le end : ` {El} Il

Finally, joining the proofs we get:

∀ l ∈ la ... lr : ` {El} Il

2

256 Soundness Proof of the Eiffel Proof-Transforming Compiler

Appendix D

Soundness Proof of the Java
Proof-Transforming Compiler

Chapter 8 describes a Java proof-transforming compiler using both CIL and Java Byte-
code. The translation using CIL is simpler due to CIL supports try-catch and try-finally

instructions. This chapter presents the soundness proofs for the CIL proof translation and
the Java Bytecode proof translation. The proofs run by induction on the structure of the
derivation tree for

{P} s1 {Qn ,Qb ,Qe}

Section D.1 presents the soundness proof of the CIL proof-transforming compiler. In
Section D.2 we prove soundness for the Java Bytecode PTC. The proof of the CIL PTC
is also simpler than the proof of the Java Bytecode PTC due to the use of try-catch

and try-finally instructions.
This appendix is partially based on the technical report [81].

D.1 Soundness of the Proof Translator using CIL

This section describes the soundness proof of the CIL proof translator. We first present
the theorem, and then we prove soundness for compound, while, break, throw, try-catch,
and try-finally rules.

D.1.1 Theorem

The soundness theorem for the CIL proof translator adds an extra hypothesis to relate
the break postcondition with the precondition at the label lbreak . Furthermore, it uses the
mapping function m for the exception labels. The theorem is the following: (this theorem
has been described in Section 8.1.8 on page 161)

258 Soundness Proof of the Java Proof-Transforming Compiler

Theorem 6 (Section 8.1.8)

` Tree1{
P
}

s1

{
Qn ,Qb ,Qe

} ∧

(Ilstart ...Ilend
) = ∇S

 Tree1{
P
}

s1

{
Qn ,Qb ,Qe

} , lstart , lend+1, lbreak ,m

 ∧(
Qn ⇒ Elend+1

)
∧

(Qb ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ lstart ... lend : ` {El} Il

D.1.2 Compound Rule

The translation of the compound rule is described in Section 8.1.2 on page 156. Let TS1

and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Rb ,Re

} TS2 ≡
Tree2{

Qn

}
s2

{
Rn ,Rb ,Re

}
Replacing the compound rule in Theorem 6, we have to prove:

`
TS1 TS2{

P
}

s1; s2

{
Rn ,Rb ,Re

} ∧

(Ila ...Ilb) = ∇S

 TS1 TS2{
P
}

s1; s2

{
Rn ,Rb ,Re

} , la , lb+1, lbreak , lexc, m

 ∧(
Rn ⇒ Elb+1

)
∧

(Rb ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ la ... lb : ` {El} Il

By the first induction hypothesis we get:

D.1 Soundness of the Proof Translator using CIL 259

` Tree1{
P
}

s1

{
Qn ,Rb ,Re

} ∧

(Ila ...Ila end
) = ∇S

 tree1{
P
}

s1

{
Qn ,Rb ,Re

} , la , lb , lbreak , lexc, m

 ∧
(Qn ⇒ Elb) ∧
(Rb ⇒ Elbreak

) ∧
(∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ la ... la end : ` {El} Il

To be able to apply the first induction hypothesis we have to prove:

Qn ⇒ Elb (D.1)

Rb ⇒ Elbreak
(D.2)

∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T] (D.3)

The second and the third implications are proven by hypothesis since the break label
lbreak and the mapping function m are not modified by the translation. The precondition
Elb is Qn . Thus, Qn ⇒ Qn holds. Then, we can apply the first induction hypothesis and
get:

∀ l ∈ la ... la end : ` {El} Il

The second induction hypothesis is:

` Tree2{
Qn

}
s2

{
Rn ,Rb ,Re

} ∧

(Ilb ...Ilb end
) = ∇S

 tree2{
Qn

}
s2

{
Rn ,Rb ,Re

} , lb , lb+1, lbreak , lexc, m

 ∧(
Rn ⇒ Elb+1

)
∧

(Rb ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ lb ... lb end : ` {El} Il

260 Soundness Proof of the Java Proof-Transforming Compiler

To apply this hypothesis, we need to show:

Rn ⇒ Elb+1
(D.4)

Rb ⇒ Elbreak
(D.5)

∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T] (D.6)

These implications holds by hypothesis. So, we get:

∀ l ∈ lb ... lbend
: ` {El} Il

Finally, we join both results and we prove:

∀ l ∈ la ... lb : ` {El} Il

2

D.1.3 While Rule

The while rule is translated using CIL in Section 8.1.3 on page 157. Let TS1 and Twhile be
the following proof trees:

TS1 ≡
Tree1{

e ∧ I
}

s1

{
I ,Qb ,Re

}
Twhile ≡

TS1{
I
}

while (e) s1

{
(I ∧ ¬e) ∨ Qb , false,Re

}
We have to show:

` Twhile ∧
(Ila ...Ild) = ∇S (Twhile , la , ld+1, lbreak , lexc, m) ∧(
(I ∧ ¬e) ∨ Qb ⇒ Eld+1

)
∧

(false ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ la ... ld : ` {El} Il

D.1 Soundness of the Proof Translator using CIL 261

The instruction specifications at labels la and lb hold by definition of wp and the
hypothesis. The translation of the expression e holds by Lemma 12. To prove that the
translation of the instruction s1 produces a valid CIL proof, we use the following induction
hypothesis:

` TS1 ∧
(Ilb ...Ilb end

) = ∇S (TS1 , lb , lc, ld+1, lexc, m) ∧
(I ⇒ Elc) ∧(
Qb ⇒ Eld+1

)
∧

(∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])
⇒
∀ l ∈ lb ... lb end : ` {El} Il

To apply this hypothesis, we need to show:

I ⇒ Elc (D.7)

Qb ⇒ Eld+1
(D.8)

∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T] (D.9)

The first implication holds since Elc is equal to I . The second implication holds from
the hypothesis

(I ∧ ¬e) ∨ Qb ⇒ Eld+1

And the third implication is true by hypothesis. Then, applying the induction hypothesis
we get:

∀ l ∈ lb ... lb end : ` {El} Il

Joining the proofs, we show:

∀ l ∈ la ... ld : ` {El} Il

2

D.1.4 Break Rule

The break rule has been translated in Section 8.1.4 on page 158. The goal to prove is:

262 Soundness Proof of the Java Proof-Transforming Compiler

` {
P
}

break
{

false,P , false
} ∧

(Ilstart = ∇S

 {
P
}

break
{

false,P , false
} , lstart , lstart+1, lbreak , lexc, m

 ∧(
false ⇒ Elstart+1

)
∧

(P ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (false ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
{P} lstart : br lbreak

By definition of wp, we have to show:

P ⇒ Elbreak

The implication holds by hypothesis.
2

D.1.5 Throw Rule

The translation of this rule is presented in Section 8.1.5 on page 158.
We have to prove:

` {
P [e/excV]

}
throw e

{
false, false,P

} ∧

(Ila ...Ilb) = ∇S

 {
P [e/excV]

}
throw e

{
false, false,P

} , la , lb+1, lbreak , lexc, m

 ∧(
false ⇒ Elb+1

)
∧

(false ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (P ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ la ... lb : ` {El} Il

The translation of the expression e holds by Lemma 12. To show that the bytecode
specification at label lb is valid, one needs to show that its precondition implies the

D.1 Soundness of the Proof Translator using CIL 263

precondition at the label where the exception is caught. This precondition is Em[T], then
we need to show:

shift(P [e/excV]) ∧ s(0) = e implies wp(throw, Em[T])

This implication holds by the hypothesis:

∀T : Type : T � Throwable : (P ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T]

2

D.1.6 Try-catch Rule

The translation of the try-catch rule using CIL is described in Section 8.1.6 on page 159.
Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Qb ,Q

}

TS2 ≡
Tree2{

Q ′e [e/excV]
}

s2

{
Qn ,Qb ,Re

}
where

Q ≡ ((Q ′′e ∧ τ(excV) 6� T) ∨ (Q ′e ∧ τ(excV) � T))

Let R be the following postcondition:

R ≡ (Re ∨ (Q ′′e ∧ τ(excV) 6� T))

We need to show:

264 Soundness Proof of the Java Proof-Transforming Compiler

`
TS1 TS2{

P
}

try s1 catch (T e) s2

{
Qn ,Qb ,R

} ∧

(Ila ...Ile) = ∇S

 TS1 TS2{
P
}

try s1 catch (T e) s2

{
Qn ,Qb ,R

} , la , le+1, lbreak , lexc, m

 ∧(
Qn ⇒ Ele+1

)
∧

(Qb ⇒ Elbreak
) ∧

(∀T : Type : T � Throwable : (R ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])

⇒
∀ l ∈ la ... le : ` {El} Il

Applying the first induction hypothesis we get:

` Tree1{
P
}

s1

{
Qn ,Qb ,Q

} ∧

(Ila ...Ila end
) = ∇S

(
Tree1{

P
}

s1

{
Qn ,Qb ,Q

} , la , lb , lbreak , lexc,m
′
)
∧

(Qn ⇒ Elb) ∧
(Qb ⇒ Elbreak

) ∧
(∀T : Type : T � Throwable : (Q ∧ excV 6= null ∧ s(0) = excV) ⇒ Em ′[T])
⇒
∀ l ∈ la ... la end : ` {El} Il

where m ′ is defined as m
[

T → lc
]

To apply the induction hypothesis, we have to show:

Qn ⇒ Elb (D.10)

Qb ⇒ Elbreak
(D.11)

∀T : Type : T � Throwable : (Q ∧ excV 6= null ∧ s(0) = excV) ⇒ Em ′[T] (D.12)

The first two implications holds by hypothesis and the definition of Elb . In the third
implication, m ′ is defined as m

[
T → lc

]
. Then the implication holds for all exception

types except for T from the hypothesis:

∀T : Type : T � Throwable : (R ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T]

D.1 Soundness of the Proof Translator using CIL 265

In the case of T , m ′[T] is Elc . By the definition of Elc , we need to prove:

(Q ∧ excV 6= null ∧ s(0) = excV) ⇒
(

shift(Q ′e) ∧ excV 6= null
∧ τ(excV) � T ∧ s(0) = excV

)
Since the exception type is T , then τ(excV) � T . Then by definition of Q we have:(

Q ′e ∧ τ(excV) � T ∧
excV 6= null ∧ s(0) = excV

)
⇒

(
shift(Q ′e) ∧ excV 6= null
∧ τ(excV) � T ∧ s(0) = excV

)
By definition of shift , shift(Q ′e) = Q ′e because Q ′e does not refer to the stack. Then,

the implication holds, and we get by the first induction hypothesis:

∀ l ∈ la ... la end : ` {El} Il

The instructions at lb , lc, and le are proven by hypothesis and the definition of wp.
The second induction hypothesis is:

` Tree2{
Q ′e [e/excV]

}
s2

{
Qn ,Qb ,Re

} ∧

(Ild ...Ild end
) = ∇S

(
Tree1{

Q ′e [e/excV]
}

s2

{
Qn ,Qb ,Re

} , ld , le , lbreak , lexc,m

)
∧

(Qn ⇒ Ele) ∧
(Qb ⇒ Elbreak

) ∧
(∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T])
⇒
∀ l ∈ ld ... ld end : ` {El} Il

To apply this induction hypothesis, we need to show that the following implications
hold:

Qn ⇒ Ele (D.13)

Qb ⇒ Elbreak
(D.14)

∀T : Type : T � Throwable : (Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Em[T] (D.15)

Since the precondition Ele is Qn , the first implication holds. The second and the third
implication hold by hypothesis. Then we get

∀ l ∈ ld ... ld end : ` {El} Il

Joining the proofs we show:

∀ l ∈ la ... le : ` {El} Il

2

266 Soundness Proof of the Java Proof-Transforming Compiler

D.1.7 Try-finally Rule

The proof of the try-finally rule is similar to the try-catch rule.
2

D.2 Soundness of the Proof Translator using Java

Bytecode

This section proves the soundness theorem for the Java proof-transforming compiler using
Java Bytecode. The proof is more complex than the proof presented in the above section
due to the generation of the exception tables. First, we show the soundness theorem
described in Section 8.2.6. Then, we prove Lemmas 3 and 4, which define the properties
of the generated exception tables. These lemmas allow proving soundness of the proof
transformation. Finally, we present the proofs for compound, while, try-finally, and break
rules.

D.2.1 Theorem

The soundness theorem presented in Section 8.2.6 is the following:

Theorem 7 (Section 8.2.6)

` Tree{
P
}

s1

{
Qn ,Qb ,Qe

} , TS1 ∧

[(Ilstart
...Ilend

), et] = ∇S (TS1 , lstart , lend+1, lbreak , f , et ′)∧
(∀ T : Type : (T � Throwable ∨ T ≡ any) :

(Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet′[lstart ,lend ,T])∧(
Qn ⇒ Elend+1

)
∧

(Qb ⇒ (f = ∅ ⇒ (Qb ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(Qb ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r1
i + r2

i + ...+ rm
i : (r1

i ∩ r2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et ′))






⇒
∀ l ∈ lstart ... lend : ` {El} Il

We assume that the pre and postconditions U i and V i have a normal form defined
by the pre and postconditions of the try-finally rule (described in Section 8.2.4). This

D.2 Soundness of the Proof Translator using Java Bytecode 267

assumption is correct since the only translation that adds triples to the finally function f
is the translation of try-finally rule.

D.2.2 Proof of Lemmas 3 and 4

Lemma 3 (Section 8.2.5)
If

∇S

(
Tree{

P
}

s
{

Qn ,Qb ,Qe

} , la , lb+1, lbreak , f , et

)
= [(Ila ...Ilb), et ′]

and lstart ≤ la < lb ≤ lend then,
for every ls , le : Label such that lb < ls < le ≤ lend , and
for every T : Type such that T � Throwable ∨ T ≡ any, the following holds:

et [lstart , lend ,T] = et ′[ls , le ,T]

Proof of Lemma 3 (Section 8.2.5)

This proof is done by case analysis over the structure of the exception table et ′. Due to the
exception table et ′ is produced by the translation ∇S , it only can have the structure: et ′ =
et +eta where eta is a new exception table created by ∇S or et ′ = divide(et , r , l ′a , l

′
b) where

et is an exception table, r is an exception entry stored in f and defined as r , [la , lb , lt ,T],
and la ≤ l ′a < l ′b ≤ lb . This property holds because∇S only adds new lines to the exception
table taken as parameter (et) in the translation of try-catch and try-finally, and ∇S

only divides the table in the translation of break.

Case et′ = et + eta

The exception table eta is produced by:

∇S

(
tree{

P
}

s
{

Qn ,Qb ,Qe

} , la , lb+1, lbreak , f , et

)
The generated lines contains labels between la and lb . Then, the exception table eta only
contains exception lines between la and lb . We look for the exception label between ls
and le where lb < ls < le ≤ lend . So, this exception cannot be defined in the exception
table eta . Then if we look for the target label in et ′[ls , le ,T] is equivalent to look for in
et [ls , le ,T].

Since we know:
∀ ls , le : lb < ls < le ≤ lend

then lstart ≤ ls < le ≤ lend holds. Thus, searching for the target label between ls and
le (et [ls , le ,T]) is equivalent to searching for the target label between lstart and lend

268 Soundness Proof of the Java Proof-Transforming Compiler

(et [lstart , lend ,T]). Then et [ls , le ,T] = et [lstart , lend ,T]. So, this proves that et ′[ls , le ,T] =
et [lstart , lend ,T].

Case et′ = divide(et, r, l′a, l
′
b)

The definition of the function divide has been presented in Section 8.2.5 on page 167.
There are two possible results after the execution of divide(et , r , l ′a , l

′
b) either divide does

not modify the exception entry [lstart ′ , lend ′ , lt ,T] in et [lstart , lend ,T] with lstart ′ ≤ lstart and
lend ′ ≤ lend) or it does.

If divide(et , r , l ′a , l
′
b) does not modify the exception entry [lstart ′ , lend ′ , lt ,T], then using

a similar reasoning to the above case, we can conclude that et ′[ls , le ,T] = et [lstart , lend ,T].
If divide(et , r , l ′a , l

′
b) modifies the exception entry [lstart ′ , lend ′ , lt ,T] then it will be di-

vided as:
[lstart ′ , la ′ , lt ,T] + [lb′ , lend ′ , lt ,T]

We are looking for the target label between ls and le . But we know lb < ls < le ≤ lend

and la ≤ l ′a < l ′b ≤ lb . Then et ′[ls , le ,T] will return the target label in the divided line
[lb′ , lend ′ , lt ,T], which target label is the same than et [lstart , lend ,T]. So, we can conclude
et [lstart , lend ,T] = et ′[ls , le ,T].

2

Lemma 4 (Section 8.2.5) Let r : ExcTableEntry and et ′ : ExcTable be such that
r ∈ et ′.
If et : ExcTable and ls , le : Label are such that et = divide(et ′, r , ls , le), then

et [ls , le ,T] = r [T]

Proof of Lemma 4 (Section 8.2.5)

The proof runs by induction on et ′.

Base case: et ′ = []
By definition of divide, divide([], r , ls , le) = [r]. Then the lemma holds.

Inductive Case: divide(ri + et ′1, r , ls , le)
If r 6⊆ ri then the function divide either updates ri or not depending on whether

(r .from > ri .to ∧ r .to < ri .to) holds or not. But, it does not update r . Then by
induction hypothesis we get divide(ri + et ′1, r , ls , le)[ls , le ,T] = r [T].

If r ⊆ ri then the function divide returns ri +et ′1. Then ri +et ′1[ls , le ,T] = r [T] because
r ⊆ ri and divide does not change ri .

2

Following, we present the soundness proof for compound, while, try-finally, and break
rules.

D.2 Soundness of the Proof Translator using Java Bytecode 269

D.2.3 Compound Rule

The Java translation of the compound rule using Java Bytecode is described in Sec-
tion 8.2.2 on page 164. Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Rb ,Re

} TS2 ≡
Tree2{

Qn

}
s2

{
Rn ,Rb ,Re

}

Replacing the compound rule in Theorem 7, we have to prove:

`
TS1 TS2{

P
}

s1; s2

{
Rn ,Rb ,Re

} ∧

[(Ila ...Ilb), et2] = ∇S

 TS1 TS2{
P
}

s1; s2

{
Rn ,Rb ,Re

} , la , lb+1, lbreak , f , et

 ∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [la ,lb ,T]) ∧(
Rn ⇒ Elb+1

)
∧

(Rb ⇒ (f = ∅ ⇒ (Rb ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(Rb ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et))




⇒
∀ l ∈ la ... lb : ` {El} Il

By the first induction hypothesis, we get:

270 Soundness Proof of the Java Proof-Transforming Compiler

` TS1 ∧
[(Ila ...Ila end

), et1] = ∇S (TS1 , la , lb , lbreak , f , et) ∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [la ,la end ,T]) ∧
(Qn ⇒ Elb) ∧
(Rb ⇒ (f = ∅ ⇒ (Rb ⇒ Elbreak

)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(Rb ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et))




⇒
∀ l ∈ la ... la end : ` {El} Il

To be able to apply the first induction hypothesis we have to show that Qn ⇒ Elb .
The implication is true because the precondition Elb is Qn . Furthermore, we have to prove:

(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [la ,la end ,T])

We can prove this implication using the theorem hypothesis and the fact that la end <
lb . Finally, we need to show that the finally properties holds, and this property is proven
by hypothesis. Then, we get:

∀ l ∈ la ... la end : ` {El} Il

The second induction hypothesis is:

D.2 Soundness of the Proof Translator using Java Bytecode 271

` TS2 ∧
[(Ilb ...Ilb end

), et2] = ∇S (TS2 , lb , lb+1, lbreak , f , et1) ∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet1[lb ,lb end ,T]) ∧(
Rn ⇒ Elb+1

)
∧

(Rb ⇒ (f = ∅ ⇒ (Rb ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(Rb ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et1))




⇒
∀ l ∈ lb ... lb end : ` {El} Il

The implication Rn ⇒ Elb+1
holds by hypothesis. Furthermore, the implication

∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet1[lb ,lb end ,T]

holds by the hypothesis:

∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [la ,lb ,T]

and Lemma 3. The finally properties holds the hypothesis:

(Rb ⇒ (f = ∅ ⇒ (Rb ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :
(` {U i} si {V i} ∧ (V i

b ⇒ U i+1
b) ∧

(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(V i

e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧
(Rb ⇒ U 1

b) ∧ (V k
b ⇒ Elbreak

) ∧
(∀eti = r 1

i + r 2
i + ...+ rm

i : (r 1
i ∩ r 2

i ∩ ... ∩ rm
i = ∅) ∧ (eti ⊆ et))




and Lemma 3. Thus, we can apply the second induction hypothesis and prove:

272 Soundness Proof of the Java Proof-Transforming Compiler

∀ l ∈ lb ... lb end : ` {El} Il

Finally, we join both result and we get:

∀ l ∈ la ... lb : ` {El} Il

2

D.2.4 While Rule

The while rule is translated using Java Bytecode in Section 8.2.3 on page 165. Let TS1 be
the following proof tree:

TS1 ≡
Tree1{

e ∧ I
}

s1

{
I ,Qb ,Re

}
We have to prove:

` TS1{
I
}

while (e) s1

{
(I ∧ ¬e) ∨Qb , false,Re

} ∧

[(Ila ...Ild), et1] =

∇S

 TS1{
I
}

while (e) s1

{
(I ∧ ¬e) ∨Qb , false,Re

} , la , ld+1, lbreak , f , et

∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [la ,ld ,T]) ∧(
((In ∧ ¬e) ∨ Qb) ⇒ Eld+1

)
∧

(false ⇒ (f = ∅ ⇒ (false ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(false ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et))




⇒
∀ l ∈ la ... ld : ` {El} Il

D.2 Soundness of the Proof Translator using Java Bytecode 273

The instruction specification at labels la and ld hold by definition of wp. The translation
of the expression e is valid by Lemma 12. The most interesting part of the proof is the
translation of s1. By the induction hypothesis, we get:

` TS1 ∧
[(Ilb ...Ilb end

), et1] =

∇S (TS1 , lb , lc, ld+1, f , et)∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [lb ,lb end ,T]) ∧
(I ⇒ Elc) ∧
(Qb ⇒ (f = ∅ ⇒ (Qb ⇒ Eld+1

)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(Qb ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et))




⇒
∀ l ∈ lb ... lb end : ` {El} Il

Since the exception table et is the same than the theorem hypothesis, we know:

(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(Re ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [lb ,lb end ,T])

Since the finally function f is ∅, to be able to apply the induction hypothesis we have
to show that

Qb ⇒ Eld+1
(D.16)

I ⇒ Elc (D.17)

From the theorem hypothesis we have ((I ∧ ¬e) ∨ Qb) ⇒ Eld+1
. Then Qb ⇒ Eld+1

holds because Qb ⇒ ((In ∧ ¬e) ∨ Qb) ⇒ Eld+1
. The second implication holds since

the precondition Elc is I . Now, we can apply the induction hypothesis and we get:

274 Soundness Proof of the Java Proof-Transforming Compiler

∀ l ∈ lb ... lb end : ` {El} Il

Thus, we prove:

∀ l ∈ la ... ld : ` {El} Il

2

D.2.5 Try-finally Rule

The try-finally rule is translated using Java Bytecode in Section 8.2.4 on page 165.
Let TS1 , and TS2 be the following proof trees:

TS1 ≡
Tree1{

P
}

s1

{
Qn ,Qb ,Qe

} TS2 ≡
Tree2{

Q
}

s2

{
R,R′b ,R

′
e

}

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

))
R ≡

(
(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e [eTmp/excV] ∧ XTmp = exc)

)

We have to prove:

D.2 Soundness of the Proof Translator using Java Bytecode 275

`
TS1 TS2{

P
}

try s1 finally s2

{
R′n ,R

′
b ,R

′
e

} ∧

[
(Ila ...Ilg), et4

]
=

∇S

 TS1 TS2{
P
}

try s1 finally s2

{
R′n ,R

′
b ,R

′
e

} , la , lg+1, lbreak , f , et

 ∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(R′e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [la ,lg ,T]) ∧(
R′n ⇒ Elg+1

)
∧

(R′b ⇒ (f = ∅ ⇒ (R′b ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(R′b ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et))




⇒
∀ l ∈ la ... lg : ` {El} Il

Let f ′ be a list of Finally defined as:

f ′ =

[
Tree2{

Q
}

s2

{
R,R′b ,R

′
e

} , getExcLines(la , lb , et)

]
+ f

Let et ′ be an exception table defined as:

et ′ = et + [la , lb , ld , any]

By the induction hypothesis, we get:

276 Soundness Proof of the Java Proof-Transforming Compiler

` TS1 ∧
[(Ila ...Ila end

), et2] = ∇S (TS1 , la , lb , lbreak , f ′, et ′) ∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′[la ,lb ,T]) ∧
(Qn ⇒ Elb) ∧
(Qb ⇒ (f ′ = ∅ ⇒ (Qb ⇒ Elbreak

)) ∧

f ′ 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′′

i [T]) ∧
(Qb ⇒ U 1

b) ∧ (V k
b ⇒ Elbreak

) ∧
(∀et ′′i = r 1

i + r 2
i + ...+ rm

i : (r 1
i ∩ r 2

i ∩ ... ∩ rm
i = ∅) ∧ (et ′′i ⊆ et ′))




⇒
∀ l ∈ la ... la end : ` {El} Il

We have ` TS1 . Since et ′ = et + [la , lb , ld , any], then we can prove:

∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′[la ,lb ,T]

from the hypothesis (except for the type any). In the case of the type is any , we have
to prove:

(
Qe ∧ τ(excV) � T ∧
excV 6= null ∧ s(0) = excV)

)
⇒ Eld

since the target label of et ′[la , lb ,T] is ld . By definition of Eld , we have(
Qe ∧ τ(excV) � T ∧
excV 6= null ∧ s(0) = excV)

)
⇒

(
shift(Qe)[eTmp/excV] ∧
∧ eTmp = excV

)

The implication holds because Qe does not refer to the stack, and then shift(Qe) = Qe .

Finally, to be able to apply the first induction hypothesis, we need to prove:

D.2 Soundness of the Proof Translator using Java Bytecode 277

(Qb ⇒ (f ′ = ∅ ⇒ (Qb ⇒ Elbreak
)) ∧

f ′ 6= ∅ ⇒ ∀i ∈ 1..k :
(` {U i} si {V i} ∧ (V i

b ⇒ U i+1
b) ∧

(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(V i

e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′′
i [T]) ∧

(Qb ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀et ′′i = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (et ′′i ⊆ et ′))




Let et ′′i be the exception table for the current finally block. The exception table for

the last finally block is defined as et ′′i = getExcLines(la , lb , et). Using the definition of f ′,
and the hypothesis, we need to prove:

Qb ⇒ U 0
b (D.18)

V k
b ⇒ Elbreak

(D.19)

V 0
b ⇒ U 1

b (D.20)

(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(V i

e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′′
i [T])

(D.21)

(∀ et ′′i = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (et ′′i ⊆ et)) (D.22)

These expressions hold as follows:
(D.18): Qb ⇒ U 0

b holds since U 0
b ≡ Qb .

(D.19): V k
b ⇒ Elbreak

holds because V k
b is the same than the theorem hypothesis, and

the implication holds in the theorem hypothesis.
(D.20): V 0

b ⇒ U 1
b : from theorem hypothesis, we know that R′b ⇒ U 1

b . The postcon-
dition V 0

b is equal to R′b then V 0
b ⇒ U 1

b

(D.21): We have to prove

(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(R′e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′′

i [T]

because V 0
b ≡ R′e . We get the exceptions lines of et ′′i from et . Then the implication holds

by hypothesis.
(D.22): This property holds from the definition of getExcLines because getExcLines

returns different exception lines.
Now, we can apply the first induction hypothesis, and we get:

∀ l ∈ la ... la end : ` {El} Il

Applying a similar reasoning to the translation of s2, we get:

278 Soundness Proof of the Java Proof-Transforming Compiler

∀ l ∈ {lb , ...lb end} : ` {El} Il

The instructions specifications at lc, ... lg holds by definition of wp. Joining the proofs,
we get

∀ l ∈ la ... lg : ` {El} Il

2

D.2.6 Break Rule

The break rule is translated using Java Bytecode in Section 8.2.5 on page 167.
We have to prove:

` {
P
}

break
{

false,P , false
} ∧

[(Ila ...Ilb), etk] = ∇S

 {
P
}

break
{

false,P , false
} , la , lb+1, lbreak , f , et ′0

 ∧
(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(false ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′
0[la ,lb ,T]) ∧(

false ⇒ Elb+1

)
∧

(P ⇒ (f = ∅ ⇒ (P ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(P ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et ′0))




⇒
∀ l ∈ la ... lb : ` {El} Il

The translation of the break, first adds the translation of all finally blocks fi , and then
it adds a br instruction. Let fi = [TFi , et ′i] denote the i -th element of the list f , where

TFi =
Treei{

U i
}

si

{
V i

}

D.2 Soundness of the Proof Translator using Java Bytecode 279

and U i and V i have the following form, which corresponds to the Hoare rule for try-
finally:

U i ≡
{

(U i
n ∧ XTmp = normal) ∨ (U i

b ∧ XTmp = break) ∨(
U i

e [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV
) }

V i ≡


 (V ′in ∧ XTmp = normal) ∨

(V ′ib ∧ XTmp = break) ∨
(V ′ie ∧ XTmp = exc)

 , V i
b , V i

e


We can prove that the translation of fi by induction hypothesis. We show that the

hypotheses holds for fi arbitrary:

[bi , et ′i] = ∇S

(
TFi , lai , lai+1 , lbr , fi+1 + ...+ fk , divide(et ′i−1, eti , lai , lai+1)

)
Let et = divide(et ′i−1, eti , lai , lai+1). We have to prove:

` TFi ∧[
(Ilfi ...Ilfi end

), etk

]
= ∇S (TFi , lfi , lfi ′ , lbreak , fi+1...fk , et) ∧

(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [lfi ,lfi end ,T]) ∧(

V i
b ⇒ Elfi′

)
∧

(V i
b ⇒ (f = ∅ ⇒ (V i

b ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :

(` {U i} si {V i} ∧ (V i
b ⇒ U i+1

b) ∧
(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :

(V i
e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧

(V i
b ⇒ U 1

b) ∧ (V k
b ⇒ Elbreak

) ∧
(∀eti = r 1

i + r 2
i + ...+ rm

i : (r 1
i ∩ r 2

i ∩ ... ∩ rm
i = ∅) ∧ (eti ⊆ et))




⇒
∀ l ∈ lfi ... lfi end : ` {El} Il

We can prove:

(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(V i

e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet [lfi ,lfi end ,T])

280 Soundness Proof of the Java Proof-Transforming Compiler

using the hypothesis (case f 6= ∅):

(∀ T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(V i

e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T])

and Lemma 4 that says et [lfi , lfi end ,T] = eti [T].
Showing that V i

n ⇒ Elnext holds is equivalent to prove V i
n ⇒ Elfi+1

. The
precondition Elfi+1

is defined as U i+1. Then, we have to prove V i
n ⇒ U i+1. This

implication holds from the hypothesis (V i
b ⇒ U i+1 and V i

b ⇒ V i
n).

We can prove the finally proof fi ...fk

(V i
b ⇒ (f = ∅ ⇒ (V i

b ⇒ Elbreak
)) ∧

f 6= ∅ ⇒ ∀i ∈ 1..k :
(` {U i} si {V i} ∧ (V i

b ⇒ U i+1
b) ∧

(∀T : Type : ((T � Throwable) ∨ (T ≡ any)) :
(V i

e ∧ excV 6= null ∧ s(0) = excV) ⇒ Eeti [T]) ∧
(V i

b ⇒ U 1
b) ∧ (V k

b ⇒ Elbreak
) ∧

(∀eti = r 1
i + r 2

i + ...+ rm
i : (r 1

i ∩ r 2
i ∩ ... ∩ rm

i = ∅) ∧ (eti ⊆ et))




by hypothesis. The translation changes the list f by fi ...fk . But this property holds for
f1...fk .

Now we can apply the induction hypothesis and get ∀ l ∈ lfi ... lfi end : ` {El} Il

Finally, we have to prove that:

P ⇒ U i
b and

for all i : V i
b ⇒ U i+1

b and
V k

b ⇒ Elbreak

These implications hold by hypothesis.
2

Bibliography

[1] M. Abadi and K. Rustan M. Leino. A logic of object-oriented programs. In Theory
and Practice of Software Development (TAPSOFT), volume 1214. Lectures Notes
in Computer Science, 1997.

[2] A. Appel. Foundational Proof-Carrying Code. In LICS ’01: Proceedings of the 16th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society,
2001.

[3] K. R. Apt. Ten Years of Hoare’s Logic: A Survey—Part i. ACM Trans. Program.
Lang. Syst., 3(4):431–483, 1981.

[4] A. Banerjee, D. Naumann, and S. Rosenberg. Regional Logic for Local Reason-
ing about Global Invariants. In European Conference on Object-Oriented Program-
ming (ECOOP), volume 5142 of Lecture Notes in Computer Science, pages 387–411.
Springer-Verlag, 2008.

[5] F. Y. Bannwart and P. Müller. A Logic for Bytecode. Technical Report 469, ETH
Zurich, 2004.

[6] F. Y. Bannwart and P. Müller. A Logic for Bytecode. In F. Spoto, editor, Byte-
code Semantics, Verification, Analysis and Transformation (BYTECODE), volume
141(1) of ENTCS, pages 255–273. Elsevier, 2005.

[7] M. Barnett, R. Deline, M. Fähndrich, R. Leino, and W. Schulte. Verification of
object-oriented programs with invariants. Journal of Object Technology (JOT),
3(6):27–56, 2003.

[8] M. Barnett, R. Leino, and W. Schulte. The Spec# Programming System: An
Overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, volume 3362 of Lecture Notes in Computer Science, pages 49–69. Springer,
2004.

282 BIBLIOGRAPHY

[9] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate Translation for Opti-
mizing Compilers. In 13th International Static Analysis Symposium (SAS), LNCS,
Seoul, Korea, August 2006. Springer-Verlag.

[10] G. Barthe, B. Grégoire, and M. Pavlova. Preservation of proof obligations from
java to the java virtual machine. In IJCAR ’08: Proceedings of the 4th international
joint conference on Automated Reasoning, pages 83–99. Springer-Verlag, 2008.

[11] G. Barthe and C. Kunz. Certificate translation for specification-preserving advices.
In FOAL ’08: Proceedings of the 7th workshop on Foundations of aspect-oriented
languages, pages 9–18. ACM, 2008.

[12] G. Barthe and C. Kunz. Certificate translation in abstract interpretation. In Euro-
pean Symposium on Programming, pages 368–382, 2008.

[13] G. Barthe, C. Kunz, D. Pichardie, and J. Samborski-Forlese. Preservation of proof
obligations for hybrid verification methods. In Software Engineering and Formal
Methods. IEEE Press, 2008.

[14] G. Barthe, C. Kunz, and J. Sacchini. Certified reasoning in memory hierarchies. In
G. Ramalingam, editor, Asian Programming Languages and Systems Symposium,
Lecture Notes in Computer Science. Springer-Verlag, 2008.

[15] G. Barthe, T. Rezk, and A. Saabas. Proof obligations preserving compilation. In
Third International Workshop on Formal Aspects in Security and Trust, Newcastle,
UK, pages 112–126, 2005.

[16] N. Benton. A typed logic for stacks and jumps, 2004.

[17] J. Berdine, C. Calcagno, and P. W. Ohearn. Smallfoot: Modular automatic assertion
checking with separation logic. In In International Symposium on Formal Methods
for Components and Objects, pages 115–137. Springer, 2005.

[18] M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing in imperative
higher-order functions. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN
international conference on Functional programming, pages 280–293. ACM, 2005.

[19] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer-Verlag, 2004.

[20] J. Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. The verified software repos-
itory: a step towards the verifying compiler. Formal Asp. Comput., 18(2):143–151,
2006.

BIBLIOGRAPHY 283

[21] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines, higher-order sepa-
ration logic, and abstraction. ToPLAS, 2008. To appear.

[22] S. Blazy, Z. Dargaye, and X. Leroy. Formal Verification of a C Compiler Front-End.
In FM 2006: Formal Methods, pages 460–475, 2006.

[23] J. O. Blech and B. Grégoire. Certifying Code Generation with Coq. In Proceedings
of the 7th Workshop on Compiler Optimization meets Compiler Verification (COCV
2008), ENTCS, April 2008.

[24] J. O. Blech and A. Poetzsch-Heffter. A Certifying Code Generation Phase. In Pro-
ceedings of the 6th Workshop on Compiler Optimization meets Compiler Verification
(COCV 2007), ENTCS, March 2007.

[25] E. Börger, N. G. Fruja, V. Gervasi, and R. F. Stärk. A high-level modular definition
of the semantics of C#. Theoretical computer science, 336:235–284, 2005.

[26] C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. In
LICS ’07: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer
Science, pages 366–378, 2007.

[27] B. Chang, A. Chlipala, G. Necula, and R. Schneck. The Open Verifier Framework
for Foundational Verifiers. In ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI05), 2005.

[28] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, volume 37,
pages 292–310. ACM Press, November 2002.

[29] C. Colby, P. L. G. Necula, F. Blau, M. Plesko, and K. Cline. A certifying compiler
for java. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, pages 95–107. ACM, 2000.

[30] S. A. Cook. Soundness and Completeness of an Axiom System for Program Verifi-
cation. SIAM Journal on Computing, 7(1):70–90, 1978.

[31] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL ’77:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pages 238–252. ACM, 1977.

[32] Á. Darvas. Reasoning About Data Abstraction in Contract Languages. PhD thesis,
ETH Zurich, Switzerland, 2009. To appear.

284 BIBLIOGRAPHY

[33] A. Darvas and K. R. M. Leino. Practical reasoning about invocations and imple-
mentations of pure methods. In M. B. Dwyer and A. Lopes, editors, FASE, volume
4422 of LNCS, pages 336–351. Springer-Verlag, 2007.

[34] F. S. de Boer and C. Pierik. How to Cook a Complete Hoare Logic for Your Pet
OO Language. In Formal Methods for Components and Objects, Lecture Notes in
Computer Science, 2004.

[35] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1997.

[36] D. Distefano and M. J. Parkinson. jStar: Towards Practical Verification for Java.
In OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN conference on Object
oriented programming systems languages and applications, pages 213–226, 2008.

[37] Y. Dong, S. Wang, L. Zhang, and P. Yang. Modular certification of low-level in-
termediate representation programs. 33rd Annual IEEE International Computer
Software and Applications Conference, 1:563–570, 2009.

[38] EVE: Eiffel Verification Environment. http://eve.origo.ethz.ch.

[39] R. B. Findler and M. Felleisen. Contracts for higher-order functions. ACM SIG-
PLAN Notices, 37(9):48–59, 2002.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

[41] G. Goos and W. Zimmermann. Verification of Compilers. In Correct System Design,
Recent Insight and Advances, (to Hans Langmaack on the occasion of his retirement
from his professorship at the University of Kiel), pages 201–230. Springer-Verlag,
1999.

[42] G. Gorelick. A Complete Axiomatic System for Proving Assertions about Recursive
and Non-Recursive Programs. Technical Report TR-75, Department of Computer
Science, University of Toronto, 1975.

[43] J. Gough. Compiling for the .NET Common Language Runtime (CLR). .NET
series - Bertrand Meyer series editor. Prentice Hall, 2002.

[44] M. Guex. Implementing a Proof-Transforming Compiler from Eiffel to CIL. Tech-
nical report, ETH Zurich, 2006.

[45] B. Hauser. Embedding Proof-Carrying Components into Isabelle. Master’s thesis,
ETH Zurich, 2009.

http://eve.origo.ethz.ch

BIBLIOGRAPHY 285

[46] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In European Symposium on Program-
ming (ESOP), volume 1381 of Lecture Notes in Computer Science, pages 105–121.
Springer-Verlag, 1998.

[47] M. Hess. Integrating Proof-Transforming Compilation into EiffelStudio. Master’s
thesis, ETH Zurich, 2008.

[48] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of ACM, 12(10):576–580, 1969.

[49] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In Symposium
on Semantics of Algorithmic Languages, pages 102–116. Springer-Verlag, 1971.

[50] C. A. R. Hoare. An axiomatic definition of the programming language PASCAL.
In Proceedings of the International Symposium on Theoretical Programming, pages
1–16. Springer-Verlag, 1974.

[51] K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic
for imperative higher-order frame rules. In LICS ’05: Proceedings of the 20th Annual
IEEE Symposium on Logic in Computer Science, pages 260–279. IEEE Computer
Society, 2005.

[52] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt
termination. In E. Maibaum, editor, Approaches to Software Engineering, volume
1783 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

[53] M. Huisman, B. Jacobs, and J. van den Berg. A case study in class library veri-
fication: Java’s vector class. In Object-Oriented Technology: ECOOP’99 Workshop
Reader, volume 1743, pages 109–110. Springer-Verlag, 1999.

[54] B. Jacobs. A Statically Verifiable Programming Model for Concurrent Object-
Oriented Programs. PhD thesis, Katholieke Universiteit Leuven, 2007.

[55] C. B. Jones, P. W. O’Hearn, and J. Woodcock. Verified software: A grand challenge.
IEEE Computer, 39(4):93–95, 2006.

[56] K. Rustan M. Leino. This is boogie 2. Technical Report Manuscript KRML 178,
Microsoft Research, 2008.

[57] K. Rustan M. Leino and J. L. A. van de Snepscheut. Semantics of exceptions. In
PROCOMET, pages 447–466, 1994.

[58] H. Karahan. Proof-Transforming Compilation of Eiffel Contracts. Technical report,
ETH Zurich, 2008.

286 BIBLIOGRAPHY

[59] I. T. Kassios. Dynamic Frames: Support for Framing, Dependencies and Sharing
Without Restrictions. In FM 2006: Formal Methods, pages 268–283, 2006.

[60] N. Krishnaswami, J. Aldrich, and L. Birkedal. Modular verification of the subject-
observer pattern via higher-order separation logic. In Formal Techniques for Java-
like Programs, 2007.

[61] C. Kunz. Certificate Translation alongside Program Transformations. PhD thesis,
ParisTech, 2009.

[62] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A Notation for Detailed Design,
1999.

[63] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification
challenges for sequential object-oriented programs. Formal Aspects of Computing,
19(2):159–189, 2007.

[64] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
and P. Chalin. JML Reference Manual, 2006.

[65] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky,
editor, European Conference on Object-Oriented Programming (ECOOP), volume
3086 of Lecture Notes in Computer Science, pages 491–516. Springer-Verlag, 2004.

[66] K. R. M. Leino and P. Müller. Modular verification of static class invariants. In
J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, Formal Methods (FM), volume 3582
of Lecture Notes in Computer Science, pages 26–42. Springer-Verlag, 2005.

[67] K. R. M. Leino and P. Müller. Verification of equivalent-results methods. In Euro-
pean Symposium on Programming (ESOP), volume 4960 of Lecture Notes in Com-
puter Science, pages 307–321. Springer-Verlag, 2008.

[68] X. Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. POPL ’06: Proceedings of the 33nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 41(1):42–54, 2006.

[69] H. Liu and J. S. Moore. Java program verification via a jvm deep embedding in
acl2. In 17th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), pages 184–200, 2004.

[70] C. Luo, G. He, and S. Qin. A heap model for java bytecode to support separation
logic. Asia-Pacific Software Engineering Conference, 0:127–134, 2008.

[71] B. Meyer. Design by contract. In D. Mandrioli and B. Meyer, editors, Advances in
Object-Oriented Software Engineering, pages 1–50. Prentice Hall, 1991.

BIBLIOGRAPHY 287

[72] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[73] B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

[74] B. Meyer. Multi-language programming: how .NET does it. In 3-part article in
Software Development. May, June and July 2002, especially Part 2, available at
http://www.ddj.com/architect/184414864?, 2002.

[75] B. Meyer (editor). ISO/ECMA Eiffel standard (Standard ECMA-367: Eiffel:
Analysis, Design and Programming Language), June 2006. available at http:

//www.ecma-international.org/publications/standards/Ecma-367.htm.

[76] MOBIUS Consortium. Deliverable 3.1: Byte code level specification language and
program logic. Available online from http://mobius.inria.fr, 2006.

[77] MOBIUS Consortium. Deliverable 4.3: Intermediate report on proof-transforming
compiler. Available online from http://mobius.inria.fr, 2007.

[78] MOBIUS Consortium. Deliverable 4.5: Report on proof transformation for optimiz-
ing compilers. Available online from http://mobius.inria.fr, 2008.

[79] P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer-Verlag, 2002.

[80] P. Müller and M. Nordio. Proof-Transforming Compilation of Programs with
Abrupt Termination. In SAVCBS ’07: Proceedings of the 2007 conference on Spec-
ification and verification of component-based systems, pages 39–46, 2007.

[81] P. Müller and M. Nordio. Proof-Transforming Compilation of Programs with
Abrupt Termination. Technical Report 565, ETH Zurich, 2007.

[82] P. Müller and A. Rudich. Ownership transfer in Universe Types. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 461–478.
ACM, 2007.

[83] P. Müller and J. N. Ruskiewicz. A modular verification methodology for C# del-
egates. In U. Glässer and J.-R. Abrial, editors, Rigorous Methods for Software
Construction and Analysis, To appear.

[84] G. Necula. Proof-Carrying Code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL ’97), pages
106–119, 1997.

http://www.ddj.com/architect/184414864?
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr

288 BIBLIOGRAPHY

[85] G. Necula. Compiling with Proofs. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1998.

[86] G. Necula. Translation validation for an optimizing compiler. Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, 35(5):83–94, 2000.

[87] G. Necula and P. Lee. The Design and Implementation of a Certifying Compiler. In
Programming Language Design and Implementation (PLDI), pages 333–344. ACM
Press, 1998.

[88] G. Necula and P. Lee. Safe, Untrusted Agents Using Proof-Carrying Code. In
Mobile Agents and Security, pages 61–91. Springer-Verlag, 1998.

[89] T. Nipkow and T. U. Mnchen. Jinja: Towards a Comprehensive Formal Semantics
for a Java-like Language. In In Proceedings of the Marktoberdorf Summer School.
NATO Science Series. Press, 2003.

[90] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[91] M. Nordio, C. Calcagno, B. Meyer, and P. Müller. Reasoning about Function Ob-
jects. Technical Report 615, ETH Zurich, 2009.

[92] M. Nordio, C. Calcagno, B. Meyer, P. Müller, and J. Tschannen. Reasoning about
Function Objects. In J. Vitek, editor, TOOLS-EUROPE, Lecture Notes in Com-
puter Science. Springer-Verlag, 2010.

[93] M. Nordio, C. Calcagno, P. Müller, and B. Meyer. A Sound and Complete Program
Logic for Eiffel. In M. Oriol, editor, TOOLS-EUROPE 2009, volume 33 of Lecture
Notes in Business and Information Processing, pages 195–214, 2009.

[94] M. Nordio, C. Calcagno, P. Müller, and B. Meyer. Soundness and Completeness of
a Program Logic for Eiffel. Technical Report 617, ETH Zurich, 2009.

[95] M. Nordio, P. Müller, and B. Meyer. Formalizing Proof-Transforming Compilation
of Eiffel programs. Technical Report 587, ETH Zurich, 2008.

[96] M. Nordio, P. Müller, and B. Meyer. Proof-Transforming Compilation of Eiffel
Programs. In R. Paige and B. Meyer, editors, TOOLS-EUROPE, Lecture Notes in
Business and Information Processing. Springer-Verlag, 2008.

[97] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hid-
ing. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 268–280, 2004.

BIBLIOGRAPHY 289

[98] PACO: A Proof-Transforming Compiler for Eiffel. http://paco.origo.ethz.ch/.

[99] R. Paige and J. Ostroff. ERC: an Object-Oriented Refinement Calculus for Eiffel.
Formal Aspects of Computing, 16:51–79, 2004.

[100] M. J. Parkinson. Local Reasoning for Java. PhD thesis, University of Cambridge,
2005.

[101] M. J. Parkinson and G. Bierman. Separation logic and abstraction. In POPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, volume 40, pages 247–258. ACM, 2005.

[102] M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance.
In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 75–86. ACM, 2008.

[103] M. Pavlova. Java Bytecode verification and its applications. PhD thesis, University
of Nice Sophia-Antipolis, 2007.

[104] A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. In TACAS ’98:
Proceedings of the 4th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems, pages 151–166. Springer-Verlag, 1998.

[105] A. Poetzsch-Heffter. Specification and Verification of Object-Oriented Programs.
PhD thesis, Habilitation thesis, Technical University of Munich, January 1997.

[106] A. Poetzsch-Heffter and M. J. Gawkowski. Towards Proof Generating Compilers.
ENTCS, 132(1):37–51, 2005.

[107] A. Poetzsch-Heffter and P. Müller. Logical Foundations for Typed Object-Oriented
Languages . In D. Gries and W. De Roever, editors, Programming Concepts and
Methods (PROCOMET), pages 404–423, 1998.

[108] A. Poetzsch-Heffter and P. Müller. A Programming Logic for Sequential Java.
In S. D. Swierstra, editor, European Symposium on Programming Languages and
Systems (ESOP’99), volume 1576 of LNCS, pages 162–176. Springer-Verlag, 1999.

[109] A. Poetzsch-Heffter and N. Rauch. Soundness and Relative Completeness of a
Programming Logic for a Sequential Java Subset. Technical report, Technische
Universität Kaiserlautern, 2004.

[110] C. L. Quigley. A programming logic for java bytecode programs. In Theorem Proving
in Higher Order Logics, pages 41–54. Springer, 2003.

http://paco.origo.ethz.ch/

290 BIBLIOGRAPHY

[111] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, 2002.

[112] A. Saabas. Logics for Low-Level Code and Proof-Preserving Program Optimizations.
PhD thesis, Tallinn University of Technology, 2008.

[113] A. Saabas and T. Uustalu. Proof optimization for partial redundancy elimination.
In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation, pages 91–101. ACM Press, 2008.

[114] A. Saabas and T. Uustalu. Proof optimization for partial redundancy elimination.
Journal of Logic and Algebraic Programming, 2009. To appear.

[115] N. Schirmer. A verification environment for sequential imperative programs in Is-
abelle/HOL. In F. Baader and A. Voronkov, editors, Logic for Programming, Arti-
ficial Intelligence, and Reasoning, volume 3452 of LNAI, pages 398–414. Springer,
2005.

[116] N. Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München, 2006.

[117] B. Schoeller. Making classes provable through contracts, models and frames. PhD
thesis, ETH Zurich, 2007.

[118] J. Smans. Specification and automatic verification of frame properties for Java-like
programs. PhD thesis, Katholieke Universiteit Leuven, May 2009.

[119] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. In Formal Tech-
niques for Java-like Programs, 2008.

[120] J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames: Combining Dy-
namic Frames and Separation Logic. In European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Science. Springer-Verlag, 2009.

[121] J.-B. Tristan and X. Leroy. Formal verification of translation validators: a case
study on instruction scheduling optimizations. In POPL ’08: Proceedings of the an-
nual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
volume 43, pages 17–27. ACM, 2008.

[122] J. Tschannen. Automatic Verification of Eiffel Programs. Master’s thesis, ETH
Zurich, 2009.

[123] D. von Oheimb. Analyzing Java in Isabelle/HOL - Formalization, Type Safety and
Hoare Logic -. PhD thesis, Universität München, 2001.

BIBLIOGRAPHY 291

[124] D. von Oheimb. Hoare Logic for Java in Isabelle/HOL. In special issue of Con-
currency and Computation: Practice and Experience, volume 13, pages 1173–1214,
November 2001.

[125] J. Woodcock. Formal techniques and operational specifications. Software Engineer-
ing Notes, 14, 1989.

[126] J. Woodcock. First steps in the verified software grand challenge. IEEE Computer,
39(10):57–64, 2006.

[127] J. Woodcock and R. Banach. The verification grand challenge. Computer Society
of India Communications, 31(2)::33–36, 2007.

[128] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A Methodology for the Trans-
lation Validation of Optimizing Compilers. Journal of Universal Computer Science,
9(3):223–247, 2003.

CURRICULUM VITAE

General Information

Name: Daŕıo Mart́ın Nordio
Date of birth: March 30th, 1979
Nationality: Argentinean / Italian
E-mail address: martin.nordio@inf.ethz.ch
Web page: http://se.ethz.ch/people/nordio/index.html

Education

• Master in Computer Science
Universidad de la República, Uruguay (2005)

• Licentiate in Computer Science
National University of Rı́o Cuarto, Argentina (2002)

• Computer Analyst
National University of Rı́o Cuarto, Argentina (2001)

Career History

• July 2005 - November 2009: PhD student at the Chair of Software Engineering,
ETH Zurich (Swiss Federal Institute of Technology Zurich). Switzerland.

• July 2003 - June 2005: Research Assistant at Cordoba Agency of Scientific and
Technical Research (Agencia Cordoba Ciencia). Argentina.

• August 2002 - June 2005: Teaching assistant at National University of Rı́o Cuarto.
Argentina.

http://se.ethz.ch/people/nordio/index.html

	I Overview
	Carrying Proofs from Source to Target
	Overview and Main Results
	A Verification Process based on Proof Transforming Compilation
	Contributions
	Proofs for Object-Oriented Programs
	Proof-Transformations for Object-Oriented Programs

	II Proofs
	A Sound and Complete Logic for Object-Oriented Programs
	The Core Language and its Semantics
	The Mate Language
	The Memory Model
	Operational Semantics
	A Programming Logic for Mate
	Example

	A Logic for Eiffel
	The Eiffel Language
	Operational Semantics
	A Programming Logic for Eiffel
	Example

	A Logic for Java-like Programs
	The Java Language
	Operational Semantics
	A Programming Logic for Java
	Example

	Soundness and Completeness
	Related Work
	Lessons Learned

	Reasoning about Function Objects
	The Agent Mechanism
	Agent Examples and their Verification Challenge
	Formatter
	Multi-Level Undo-Redo
	Archive Example

	Verification Methodology
	Specifying Function Objects
	Axiomatic Semantics

	Automatic Proofs
	Reasoning about agents with open arguments
	Reasoning about Closed Arguments
	Framing
	Framing for Agents with Closed Arguments
	Applications
	Experiments

	Related Work

	III Proof Transformations
	The CIL Language and its Logic
	The CIL Bytecode Language
	A Bytecode Logic for CIL
	Method and Instruction Specifications
	Rules
	Exception Handling
	Example

	Proof-Transforming Compilation for the Core Language
	Translation Basics
	Proof Translation of Routines
	Class Rule
	Subtype Rule
	Routine Implementation Rule
	Language-Independent Rules for Routines

	Proof Translation of Expressions
	Constants
	Variables
	Binary Expressions
	Unary Expressions

	Poof Translation of Instructions
	Assignment Axiom
	Compound Rule
	Conditional Rule
	Check Axiom
	Loop Rule
	Read Attribute Axiom
	Write Attribute Axiom
	Routine Invocation Rule
	Local Rule
	Creation Rule

	Poof Translation of Language-Independent Rules
	Strength Rule
	Weak Rule
	Conjunction/Disjunction Rules
	Invariant Rule
	Substitution Rule
	All rule and Ex rule

	Applications
	Soundness Theorems

	Eiffel-Specific Aspects of Proof-Transforming Compilation
	Contract Translator
	Translation Basics
	Datatype Definitions
	Mapping Eiffel Types to CIL
	Translation Functions
	Example Translation

	Proof Translator
	Transformation Function Basics
	Proof Translation of Eiffel Expressions
	Proof Translation of Instructions

	Applications
	Soundness of the Contact Translator

	Java-Specific Aspects of Proof-Transforming Compilation
	Poof Translation using CIL
	Translation Basics
	Compound
	While Rule
	Break Rule
	Throw Rule
	Try-catch Rule
	Try-finally Rule
	Soundness Theorem

	Proof Translation using Java Bytecode
	Translation Basics
	Compound
	While Rule
	Try-Finally Rule
	Break Rule
	Soundness Theorem

	Applications
	Related Work

	Implementation of the Proof-Transforming Compiler Scheme
	A Proof-Transforming Compiler
	Proof Checker
	Instructions
	Exception Tables
	CIL Proofs
	Weakest Precondition Function
	Verification Condition Generator
	Checking the CIL Proofs

	Experiments

	Conclusions and Future Work
	Conclusions
	Future Work
	Proofs
	Proof-Transforming Compilation

	Notation
	Soundness and Completeness Proof of the Logic
	Definitions and Theorems
	Soundness Proof
	Assignment Axiom
	Compound Rule
	Conditional Rule
	Check Axiom
	Loop Rule
	Read Attribute Axiom
	Write Attribute Axiom
	Local Rule
	Creation Rule
	Rescue Rule
	Once Functions Rule
	Routine Implementation Rule
	Routine Invocation Rule
	Class Rule
	Subtype Rule
	Language-Independent Rules

	Completeness Proof
	Assignment Axiom
	Compound Rule
	Conditional Rule
	Check Axiom
	Loop Rule
	Read Attribute Axiom
	Write Attribute Axiom
	Local Rule
	Rescue Rule
	Routine Implementation Rule
	Routine Invocation Rule
	Virtual Routines

	Soundness Proof of the Eiffel Proof-Transforming Compiler
	Theorems
	Soundness Proof of the Routine Translator
	Class Rule
	Conjunction Rule

	Soundness Proof of the Expression Translator
	Constants
	Variables
	Binary Expressions
	Unary Expressions

	Soundness Proof of the Instruction Translator
	Assignment Axiom
	Compound Rule
	Conditional Rule
	Check Axiom
	Loop Rule
	Read and Write Attribute Rule
	Routine Invocation Rule, Local Rule, and Creation Rule
	Rescue Rule
	Once functions Rule

	Soundness Proof of the Java Proof-Transforming Compiler
	Soundness of the Proof Translator using CIL
	Theorem
	Compound Rule
	While Rule
	Break Rule
	Throw Rule
	Try-catch Rule
	Try-finally Rule

	Soundness of the Proof Translator using Java Bytecode
	Theorem
	Proof of Lemmas 3 and 4
	Compound Rule
	While Rule
	Try-finally Rule
	Break Rule

