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Abstract—Can we reuse some of the huge code-base developed
in C to take advantage of modern programming language
features such as type safety, object-orientation, and contracts?
This paper presents a source-to-source translation of C code into
Eiffel, a modern object-oriented programming language, and the
supporting tool C2Eif. The translation is completely automatic
and supports the entire C language (ANSI, as well as many
GNU C Compiler extensions, through CIL) as used in practice,
including its usage of native system libraries and inlined assembly
code. Our experiments show that C2Eif can handle C applications
and libraries of significant size (such as vim and libgsl), as well
as challenging benchmarks such as the GCC torture tests. The
produced Eiffel code is functionally equivalent to the original C
code, and takes advantage of some of Eiffel’s features to produce
safe and easy-to-debug translations.

I. INTRODUCTION

Programming languages have significantly evolved since the
original design of C in the 1970’s as a “system implemen-
tation language” [1] for the Unix operating system. C was
a high-level language by the standards of the time, but it is
pronouncedly low-level compared with modern programming
paradigms, as it lacks advanced features—static type safety,
encapsulation, inheritance, and contracts [2], to mention just
a few—that can have a major impact on programmer’s pro-
ductivity and on software quality and maintainability.

C still fares as the most popular general-purpose program-
ming language [3], and countless C applications are still being
actively written and maintained, that take advantage of the
language’s conciseness, speed, ubiquitous support, and huge
code-base. An automated solution to translate and integrate
C code into a modern language would combine the large
availability of C programs in disparate domains with the
integration in a modern language that facilitates writing safe,
robust, and easy-to-maintain applications.

The present paper describes the fully automatic translation
of C applications into Eiffel, an object-oriented programming
language, and its implementation C2Eif. While the most
common approaches to re-use C code in other host languages
are based on “foreign function APIs” (see Section V for exam-
ples), source-to-source translation solves a different problem,
and has some distinctive benefits: the translated code can take
full advantage of the high-level nature of the target language
and of its safer runtime.

Main features of C2Eif. Translating C to a high-level
object-oriented language is challenging because it requires
adapting to a more abstract memory representation, a tighter

type system, and a sophisticated runtime that is not directly
accessible. There have been previous attempts to translate C
into an object-oriented language (see the review in Section V).
A limitation of the resulting tools is that they hardly handle the
trickier or specialized parts of the C language [4], which it is
tempting to dismiss as unimportant “corner cases”, but figure
prominently in real-world programs; examples include calls to
pre-compiled C libraries (e.g., for I/O), inlined assembly, and
unrestricted branch instructions including setjmp and longjmp.

One of the distinctive features of the present work is that it
does not stop at the core features but extends over the often
difficult “last mile”: it covers the entire C language as used in
practice. The completeness of the translation scheme is attested
by the set of example programs to which the translation was
successfully applied, as described in Section IV, including
major utilities such as the vim editor (276 KLOC), major
libraries such as libgsl (238 KLOC), and the challenging
GCC “torture” tests for C compilers.

C2Eif is open source and available for download1:
http://se.inf.ethz.ch/research/c2eif

Sections II–III describe the distinctive features of the
translation: it supports the complete C language (including
pointer arithmetic, unrestricted branch instructions, and
function pointers) with its native system libraries; it complies
with ANSI C as well as many GNU C Compiler extensions
through the CIL framework [5]; it is fully automatic, and
it handles complete applications and libraries of significant
size; the generated Eiffel code is functionally equivalent to
the original C code (as demonstrated by running thorough
test suites), and takes advantage of some advanced features
(such as classes and contracts) to facilitate debugging of
programming mistakes.

In our experiments, C2Eif translated completely
automatically over 900,000 lines of C code from
real-world applications, libraries, and testsuites,
producing functionally equivalent2 Eiffel code.

Safer code. Translating C code to Eiffel with C2Eif is quite
useful to reuse C applications in a modern environment, but
it also implies several valuable side-benefits—demonstrated in
Section IV. First, the translated code blends well with hand-
written Eiffel code because it is not a mere transliteration

1The webpage includes C2Eif’s sources, pre-compiled binaries, source and
binaries of all translated programs in Table I, and a user guide.

2As per standard regression testsuites and general usage.

http://se.inf.ethz.ch/research/c2eif


from C; it is thus modifiable with Eiffel’s native tools and
environments (EiffelStudio and related analysis and verifica-
tion tools). Second, the translation automatically introduces
simple contracts, which help detect recurring mistakes such
as out-of-bound array access or null-pointer dereferencing.
To demonstrate this, Section IV-C discusses how we easily
discovered a few unknown bugs in widely used C programs
(such as libgmp) just by translating them into Eiffel and
running standard tests. While the purpose of C2Eif is not
to debug C programs, the source of errors is usually more
evident when executing applications translated in Eiffel—
either because a contract violation occurs, or because the
Eiffel program fails sooner, before the effects of the error
propagate to unrelated portions of the code. The translated
C code also benefits from the tighter Eiffel runtime, so that
certain buffer overflow errors are harder to exploit than in
native C environments. Thus, Eiffel code generated by C2Eif
is often safer and easy to maintain and debug.

Why Eiffel? We chose Eiffel as the target language not only
out of our familiarity with it, but also because it offers features
that complement C’s, such as an emphasis on correctness [6]
through the native support of contracts. In addition, Eiffel
uncompromisingly epitomizes the object-oriented paradigm,
hence translating C into it cannot take the shortcut of merely
transliterating similar constructs (as it would have been pos-
sible, for example, with C++). The results of the paper are
thus likely applicable with little effort to other object-oriented
languages such as Java and C#; we plan to pursue this direction
in future work.

An extended version of this paper, including a few more
examples and details, is available as technical report [7]. A
companion paper presents the tool C2Eif from the user’s point
of view [8].

II. OVERVIEW AND ARCHITECTURE

C2Eif is a compiler with graphical user interface that translates
C programs to Eiffel programs. The translation is a complete
Eiffel application that replicates the functionalities of the C
source application. C2Eif is implemented in Eiffel.

C application
or library CIL C file

Eiffel
application or

library
Binary

Helper
Classes

CIL C2Eif Eiffel
Compiler

Fig. 1. Overview of how C2Eif works.

High-level view. Figure 1 shows the overall picture of how
C2Eif works. C2Eif inputs C projects (applications or libraries)
processed with the C Intermediate Language (CIL) framework.
CIL [5] is a C front-end that simplifies programs written in
ANSI C or using the GNU C Compiler extensions into a
restricted subset of C amenable to program transformations;
for example, there is only one form of loop in CIL. Using
CIL input to C2Eif ensures complete support of the whole

set of C statements, without having to deal with each of
them explicitly. C2Eif then translates CIL programs to Eiffel
projects consisting of collections of classes that rely on a small
set of Eiffel helper classes (described below). Such projects
can be compiled with any standard Eiffel compiler.

Incremental translation. C2Eif implements a translation
T from CIL C to Eiffel as a series T1, . . . , Tn of successive
incremental transformations on the Abstract Syntax Tree.
Every transformation Ti targets exactly one language aspect
(for example, loops or inlined assembly code) and produces a
program in an intermediate language Li which is a mixture of
C and Eiffel constructs: the code progressively morphs from
C to Eiffel code. The current implementation uses around 40
such transformations (i.e., n = 40). Combining several sim-
ple transformations improves the decoupling among different
language constructs and facilitates reuse (e.g., to implement
a translator of C to Java) and debugging: the intermediate
programs are easily understandable by programmers familiar
with both C and Eiffel.

Helper classes. The core of the translation from C to Eiffel
must ensure that Eiffel applications have access to objects
with the same capabilities as those of their counterparts in
C; for example, an Eiffel class that translates a C struct
has to support field access and every other operation defined
on structs. Conversely, C external pre-compiled code may
also have to access the Eiffel representations of C constructs;
for example, the Eiffel translation of a C program calling
printf to print a local string variable str of type char∗ must
grant printf access to the Eiffel object that translates str, in
conformance with C’s conventions on strings. To meet these
requirements, C2Eif includes a limited number of hand-written
helper Eiffel classes that bridge the Eiffel and C environments;
their names are prefixed by CE for C and Eiffel. Rather
than directly replicating or wrapping commonly used external
libraries (such as stdio and stdlib), the helper classes
target C fundamental language features and in particular types
and type constructors. This approach works with any external
library, even non-standard ones, and is easier to maintain
because it involves only a limited number of classes. We now
give a concise description of the most important helper classes;
Section III shows detailed examples of their usage.
• CE POINTER [G] represents C pointers of any type

through the generic parameter G. It includes features to
perform full-fledged pointer arithmetic and to get pointer
representations that C can access but the Eiffel’s runtime
will not modify (in particular, the garbage collector will
not modify pointed addresses nor relocate memory areas).

• CE CLASS defines the basic interface of Eiffel classes
translating unions and structs. It includes features (mem-
bers) that return instances of class CE POINTER pointing
to a memory representation of the structure that C can
access.

• CE ARRAY [G] extends CE POINTER and provides con-
sistent array access to both C and Eiffel (according to
their respective conventions). It includes contracts that
check for out-of-bound access.



• CE ROUTINE represents function pointers. It supports
calls to Eiffel routines through agents—Eiffel’s con-
struct for function objects (closures or delegates in other
languages)—and calls to (and callbacks from) external C
functions through raw function pointers.

• CE VA LIST supports variadic functions, using Eiffel
class TUPLE (sequences of elements of heterogeneous
type) to store a variable number of arguments. It offers
an Eiffel interface that extends the standard C’s (declared
in stdarg.h), as well as output in a format accessible
by external C code.

III. TRANSLATING C TO EIFFEL

This section presents the major details of the translation
T from C to Eiffel implemented in C2Eif, and illustrates
the general rules with a number of small examples. The
presentation breaks down T into several components that
target different language aspects (for example, TTD maps C
type declarations to Eiffel classes); these components mirror
the incremental transformations Ti of C2Eif (mentioned in
Section II) but occasionally overlook inessential details for
greater presentation clarity.

External functions in Eiffel. Eiffel code translated from C
normally includes calls to external C pre-compiled functions,
whose actual arguments correspond to objects in the Eiffel
runtime. This feature relies on the external Eiffel language
construct: Eiffel routines can be declared as external and
directly execute C code embedded as Eiffel strings3 or call
functions declared in header files. For example, the following
Eiffel routine (method) sin twice returns twice the sine of its
argument by calling the C library function sin (declared in
math.h):

sin twice (arg: REAL 32): REAL 32
external C inline use <math.h> alias return 2*sin($arg); end

Calls using external can exchange arguments between the
Eiffel and the C runtimes only for a limited set of primitive
type: numeric types (that have the same underlying machine
representation in Eiffel and C) and instances of the Eiffel
system class POINTER that corresponds to raw untyped C
pointers (not germane to Eiffel’s pointer representation, unlike
CE POINTER). In the sin twice example, argument arg of
numeric type REAL 32 is passed to the C runtime as $arg.
Every helper class (described in Section II) includes an at-
tribute c pointer of type POINTER that offers access to a C-
conforming representation usable in external calls.

A. Types and Type Constructors

C declarations T v of a variable v of type T become Eiffel
declarations v :TTY(T), where TTY is the mapping from C
types to Eiffel classes described in this section.

Numeric types. C numeric types correspond to Eiffel
classes INTEGER (signed integers), NATURAL (unsigned in-

3For readability, we will omit quotes in external strings.

tegers), REAL (floating point numbers) with the appropriate
bit-size as follows4:

C TYPE T EIFFEL CLASS TTY(T )
char INTEGER 8

short int INTEGER 16
int, long int INTEGER 32
long long int INTEGER 64

float REAL 32
double REAL 64

long double REAL 96

Unsigned variants follow the same size conventions as
signed integers but for class NATURAL; for example
TTY(unsigned short int) is NATURAL 16.

Pointers. Pointer types are translated to Eiffel using class
CE POINTER[G] with the generic parameter G instantiated
with the pointed type:

TTY(T ∗) = CE POINTER [TTY(T)]

with the convention that TTY(void) maps to Eiffel class
ANY, ancestor to every other class (Object in Java). The
definition works recursively for multiple indirections; for
example, CE POINTER[CE POINTER[REAL 32]] stands for
TTY(float ∗∗).

Function pointers. Function pointers are translated to Eiffel
using class CE ROUTINE:

TTY(T0 (∗) (T1, ...,Tn)) = CE ROUTINE

CE ROUTINE inherits from CE POINTER [ANY], hence it
behaves as a generic pointer, but it specializes it with ref-
erences to agents that wrap the functions pointed to; Sec-
tion III-B describes this mechanism.

Arrays. Array types are translated to Eiffel using class
CE ARRAY[G] with the generic parameter G instantiated
with the array base type: TTY(T [n]) = CE ARRAY[TTY(T)].
The size parameter n, if present, does not affect the dec-
laration, but initializations of array variables use it (see
Section III-B). Multi-dimensional arrays are defined recur-
sively as arrays of arrays: TTY(T [n1][n2]...[nm]) is then
CE ARRAY[TTY(T[n2]...[nm])].

Enumerations. For every enum type E defined or used,
the translation introduces an Eiffel class E defined by the
translation TTD (for type definition):
TTD(enum E {v1 = k1, . . . , vm = km}) =

class E feature v1: INTEGER 32 =k1; . . . ; vm: INTEGER 32 =km end

Class E has as many attributes as the enum type has values,
and each attribute is an integer that receives the corresponding
value in the enumeration. Every C variable of type E also
becomes an integer variable in Eiffel (that is, TTY(enum E )
= INTEGER 32), and class E is only used to assign constant
values according to the enum naming scheme.

Structs and unions. For every compound struct type S
defined or used, the translation introduces an Eiffel class S:

class S inherit CE CLASS feature TF(T1 v1) . . . TF(Tm vm) end

for TTD(struct S {T1 v1; . . . ;Tm vm}). Correspondingly,
TTY(S)= S; that is, variables of type S become references of
class S in Eiffel. The translation TF(T v) of each field v of

4We implemented class REAL 96 specifically to support long double on
Linux machines.



the struct S introduces an attribute of the appropriate type
in class S, and a setter routine set v that also updates the
underlying C representation of v:

v: TTY(T) assign set v −− declares ‘set v’ as the setter of v
set v (a v: TTY(T)) do v := a v ; update memory field (”v”) end

Class CE CLASS, of which S is a descendant, implements
update memory field using reflection, so that the underlying C
representation is created and updated dynamically only when
needed during execution (for example, to pass a struct in-
stance to a native C library), thus avoiding any data duplication
overhead whenever possible.

The translation of union types follows the same lines as
that of structs, with the only difference that classes translating
unions generate the underlying C representation in any case
upon initialization, even if the union is not passed to the
C runtime; calls to update memory field update all attributes
of the class to reflect the correct memory value. We found
this to be a reasonable compromise between performance and
complexity of memory management of union types where,
unlike structs, fields share the same memory space.
Example 1. Consider a C struct car that contains an integer
field plate num and a string field brand:
typedef struct { unsigned int plate num; char∗ brand; } car;

The translation TTD introduces a class CAR as follows:
class CAR inherit CE CLASS feature

plate num: NATURAL 32 assign set plate num

brand: CE POINTER [INTEGER 8] assign set brand

set plate num (a plate num: NATURAL 32)
do plate num := a plate num; update memory field (”plate num”) end

set brand (a brand: CE POINTER [INTEGER 8])
do brand := a brand; update memory field (”brand”) end

end

B. Variable Initialization and Usage
Initialization. Eiffel variable declarations v : C only allocate
memory for a reference to objects of class C, and initialize
it to Void (null in Java). The only exceptions are, once
again, numeric types: a declaration such as n: INTEGER 64
reserves memory for a 64-bit integer and initializes it to zero.
Therefore, every C local variable declaration T v of a variable v
of type T may also produce an initialization, consisting of calls
to creation procedures of the corresponding helper classes, as
specified by the declaration mapping TDE:

TDE(T v;) =


v : TTY(T ) (NT)
v : TTY(T ); create v.make(�n1, . . . , nm�) (AT)
v : TTY(T ); create v.make (OT)

where definition (NT) applies if T is a numeric type; (AT)
applies if T is an array type S[n1],. . ., [nm]; and (OT) applies
otherwise. The creation procedure make of CE ARRAY takes
a sequence of integer values to allocate the right amount of
memory for each array dimension; for example int a[2][3] is
initialized by create a.make(�2,3�).

Memory management. Helper classes are regular Eiffel
classes, therefore the Eiffel garbage collector disposes in-
stances when they are no longer referenced (for example,

when a local variable gets out of scope). Upon collection, the
dispose finalizer routines of the helper classes ensure that the C
memory representations are also appropriately deallocated; for
example, the finalizer of CE ARRAY frees the array memory
area by calling free on the attribute c pointer.

To replicate the usage of malloc and free, we offer wrapper
routines that emulate the syntax and functionalities of their C
homonym functions, but operate on CE POINTER: they get
raw C pointers by external calls to C library functions, convert
them to CE POINTER, and record the dynamic information
about allocated memory size. The latter is used to check
that successive usages conform to the declared size (see
Section IV-C). Finally, the creation procedure make cast of
the helper classes can convert a generic pointer returned by
malloc to the proper pointed type, according to the following
translation scheme:

C CODE TRANSLATED EIFFEL CODE
T∗ p; p: CE POINTER[TTY(T)]
p = (T ∗)malloc(sizeof(T)); create p.make cast (malloc (σ(T)))
free(p); free(p)

where σ is an encoding of the size information.
Variable usage. The translation of variable usage is straight-

forward: variable reads in expressions are replicated verbatim,
and C assignments (=) become Eiffel assignments (:=); the lat-
ter is, for CE ARRAY, CE POINTER, and classes translating C
structs and unions, syntactic sugar for calls to setter routines
that achieve the desired effect. The only exceptions occur
when implicit type conversions in C must become explicit
in Eiffel, which may spoil the readability of the translated
code but is necessary with strong typing. For example, the
C assignment cr = ’s’—assigning character constant ’s’ to
variable cr of type char—becomes the Eiffel assignment
cr := (’s’).code.to integer 8 that encodes ’s’ with the proper
representation.

Variable address. Whenever the address &v of a C variable
v of type T is taken, v is translated as an array of unit size
and type T: TDE(T v) = TDE(T v[1]), and every usage of v is
adapted accordingly: &v becomes just v, and occurrences of
v in expressions become ∗v. This little hack makes it possible
to have Eiffel assignments translate C assignment uniformly;
otherwise, usages of v should have different translations ac-
cording to whether the information about v’s memory location
is copied around (with &) or not.

Dereferencing, pointer arithmetic. The helper class
CE POINTER features a query item that translates deref-
erencing (∗) of C pointers. Pointer arithmetic is translated
verbatim, because class CE POINTER overloads the arith-
metic operators to be aliases of proper underlying pointer
manipulations, so that an expression such as p + 3 in Eiffel,
for references p of type CE POINTER, hides the explicit
expression c pointer + 3∗element size.

Using function pointers. Class CE ROUTINE, which
translates C function pointers, is usable both in the Eiffel
and in the C environment (see Figure 2). On the Eiffel
side, its instances wrap Eiffel routines using agents—Eiffel’s
mechanism for function objects. A private attribute routine
references objects of type ROUTINE [ANY, TUPLE], an Eiffel



system class that corresponds to agents wrapping routines with
any number of arguments and argument types stored in a tuple.
Thus, Eiffel code can use the agent mechanism to create
instances of class ROUTINE. For example, if foo denotes a
routine of the current class and fp has type CE ROUTINE,
create fp.make agent (agent foo) makes fp’s attribute routine
point to foo. On the C side, when function pointers are
directly created from C pointers (e.g., references to external
C functions), CE ROUTINE behaves as a wrapper of raw C
function pointers, and dynamically creates invocations to the
pointed functions using the library libffi.

The Eiffel interface to CE ROUTINE will then translate
calls to wrapped functions into either agent invocations or
external calls with libffi according to how the class has
been instantiated. Assume, for example, that fp is an object of
class CE ROUTINE that wraps a procedure with one integer
argument. If fp has been created with an Eiffel agent foo as
above, calling fp.call ([42]) wraps the call foo (42) (edge 1
in Figure 2); if, instead, fp only maintains a raw C function
pointer, the same instruction fp.call ([42]) creates a native C
call using libffi (edge 2 in Figure 2).

Eiffel C1:agent

2:libffi

3:libffi

Fig. 2. Function pointers.

The services of class CR ROUTINE behave as an adapter
between the procedural and object-oriented representation of
routines: the signatures of C functions must change when they
are translated to Eiffel routines, because routines in object-
oriented languages include references to a target object as
implicit first argument. Calls from external C code to Eiffel
routines are therefore intercepted at runtime with libffi
callbacks (edge 3 in Figure 2) and dynamically converted to
suitable agent invocations.

C. Control Flow

This section discusses the translation TCF of instructions
directing the control flow. Sequential composition, condition-
als, and loops are quite similar in C and Eiffel, hence have a
straightforward translation (see [7]).

Jumps. Eiffel enforces structured programming, hence it
lacks control-flow breaking instructions such as C’s goto,
break, continue, return. The translation TCF eliminates them
along the lines of the global version—using Harel’s termi-
nology [9]—of the structured programming theorem. Every
C function foo using goto determines a list of instructions
s0, s1, . . . ,sn, where each si is a maximal sequential block of
instructions without labels after the first instruction or jumps
before the last one. TCF translates foo’s body into a single loop
over an auxiliary integer variable pc that emulates a program
counter:

TCF(〈s0, s1, . . . , sn〉) =



from pc := 0 until pc = −1 loop
inspect pc
when 0 then T(s0) ; upd(pc)
when 1 then T(s1) ; upd(pc)
...
when n then T(sn) ; upd(pc)

end
end

pc is initially zero; every iteration of the loop body executes
spc for the current value of pc, and then updates pc (upd(pc))
to determine the next instruction to be executed: blocks ending
with jumps modify pc directly, other blocks increment it by
one, and exit blocks set it to −1, which makes the overall loop
terminate.

This translation supports all control-flow breaking instruc-
tions, and in particular continue, break, and return, which are
special cases of goto. TCF, however, improves the readability
in these special cases by directly using auxiliary Boolean flag
variables (with the same names as the instruction they replace)
that are tested in the translated exit conditions and achieve the
same effect with smaller changes to the code structure. For ex-
ample, while (n > 0){ if (n == 3) break; n−−; } becomes:

from until break or not n >0 loop
if n = 3 then break := True end
if not break then n := n − 1 end

end

Functions. Function definitions and calls directly translate
to routine definitions and calls in Eiffel. Translations of
variadic function definitions use the Eiffel TUPLE class:

TCF(T0 var (T1a1, . . . , Tnan, . . .)) =

var (args: TUPLE[a1 : TTY(T1); . . . ; an :TTY(Tn)]):TTY(T0)

Eiffel’s type system prescribes that every (n + m)-TUPLE
with types [T1, . . . , Tn, Tn+1, . . . , Tn+m], m ≥ 0, conforms
to any shorter n-TUPLE with [T1, . . . , Tn]. Therefore, calls to
variadic functions can use longer tuples to accommodate the
additional optional arguments:

TCF(var (e1, . . . , en, en+1, . . . , en+m)) =

var ([T(e1), . . . , T(en), T(en+1), . . . , T(en+m)])

We can access arguments in a TUPLE either with standard
Eiffel syntax, or using the helper class CE VA LIST. With
standard syntax, args.ai refers to the required argument with
name ai, 1 ≤ i ≤ n, whereas args.TTY(Tk) item(k) refers
to the k-th argument ak, for any 1 ≤ k ≤ n (required) or
k > n (optional), where TTY(Tk) is ak’s type. Alternatively,
CE VA LIST provides a uniform interface to both Eiffel and
C that accesses argument lists sequentially, replicating and
interoperable with stdarg’s:

argp: CE VA LIST
create argp.make (args, n+1)
e1 := va list.TTY(Tn+1) item −− first optional argument an+1

e2 := va list.TTY(Tn+2) item −− second optional argument an+2

...

Long jumps. The C library setjmp provides the functions
setjmp and longjmp to save an arbitrary return point and
jump back to it across function call boundaries. The wrapping
mechanism used for external functions (see Section III-D) does



not work to replicate long jumps, because the return values
saved by setjmp wrapped as an external function are no longer
valid after execution leaves the wrapper. Therefore, C2Eif
translates setjmp and longjmp by means of the helper class
CE EXCEPTION. As the name suggests, CE EXCEPTION
uses Eiffel’s exception propagation mechanism to go back in
the call stack to the allocation frame of the function that called
setjmp. There, translated goto instructions jump to the specific
point saved with setjmp within the function body.

D. Object-Oriented Encapsulation

Externals. For every included system header header.h,
T defines a class HEADER with wrappers for all external
functions and variables declared in header.h. The wrappers
are routines using the external mechanism and performing the
necessary conversions between the Eiffel and the C runtimes.
In particular, external functions using only numeric types,
which are interoperable between C and Eiffel, directly map
to wrapper routines; for example, exit in stdlib.h is:

exit (status: INTEGER 32) external C inline use <stdlib.h>
alias exit ($status); end

When external functions involve types using helper classes in
Eiffel, a routine passes the underlying C representation to the
external calls; for example, fclose in stdio.h generates:

fclose (stream: CE POINTER [ANY]): INTEGER 32
do Result := c fclose (stream.c pointer) end

c fclose (stream: POINTER): INTEGER 32
external C inline use <stdio.h>
alias return fclose($stream); end

In some complex cases—typically, with variadic external
functions—the wrapper can only assemble the actual call on
the fly at runtime. This is done using CE ROUTINE; for
example, printf is wrapped as:

printf (args: TUPLE[format: CE POINTER[INTEGER 8]]): INTEGER 32
do
Result := (create {CE ROUTINE}.make shared (c printf)).integer 32 item (args)

end
c printf: POINTER

external C inline use <stdio.h> alias return &printf; end

The translation can also inline assembly code, using the
same mechanisms as external function calls.

Globals. For every source file source.c, T defines a class
SOURCE that includes translations of all function definitions
(as routines) and global variables (as attributes) in source.c.
Each class also inherits from classes created from external
functions corresponding to included system headers, to access
their features. For example, if foo.c includes stdio.h,
FOO is declared as class FOO inherit STDIO.

IV. EVALUATION

This section evaluates the translation T and its implementation
in C2Eif with 10 programs and 4 testsuites.

A. Correct Behavior

Table I shows data about 10 C open-source programs and
a testsuite translated to Eiffel with C2Eif running on a

GNU/Linux box (kernel 2.6.37) with a 2.66 GHz Intel dual-
core CPU and 8 GB of RAM, GCC 4.5.1, CIL 1.3.7, Eif-
felStudio 7.0.8. For each application, library, and testsuite
Table I reports: (1) the size (in lines of code) of the CIL
version of the C code and of the translated Eiffel code; (2) the
number of Eiffel classes created; (3) the time (in seconds)
spent by C2Eif to perform the source-to-source translation (not
including compilation from Eiffel source to binary); (4) the
size of the binaries (in MBytes) generated by EiffelStudio.5

The 10 programs include 7 applications and 3 libraries; all
of them are widely-used in Linux and other “*nix” distribu-
tions. hello world is the only toy application, which is
however useful as baseline of translating from C to Eiffel with
C2Eif. The other applications are: micro httpd 12dec2005,
a minimal HTTP server; xeyes 1.0.1, a widget for the X
Windows System that shows two googly eyes following the
cursor movements; less 382-1, a text terminal pager; wget
1.12, a command-line utility to retrieve content from the web;
links 1.00, a simple web browser; vim 7.3, a powerful
text editor. The libraries are: libcurl 7.21.2, a URL-based
transfer library supporting protocols such as FTP and HTTP;
libgmp 5.0.1, for arbitrary-precision arithmetic; libgsl
1.14, a powerful numerical library. The gcc “torture tests”
are short but semantically complex pieces of C code, used as
regression tests for the GCC compiler.

We ran extensive trials on the translated programs to verify
that they behave as in their original C version, hence validating
the correctness of the translation T and its implementation in
C2Eif. In addition to informal usage, we performed systematic
performance tests for some of the applications (described
below), and ran standard testsuites on the libraries. libcurl
comes with a client application and a testsuite of 583 tests
defined in XML and executed by a Perl script calling the
client; libgmp and libgsl respectively include testsuites
of 145 and 46 tests, consisting of client C code using the
libraries. All tests execute and pass on both the C and the
translated Eiffel versions of the libraries, with the same logged
output. For libcurl, C2Eif translated the library and the
client application. For libgmp and libgsl, it translated the
test cases as well as the libraries.

The gcc torture testsuite includes 1116 tests; the GCC
version we used fails 4 of them; CIL (which depends on
GCC) fails another 110 tests among the 1112 that GCC passes;
finally, C2Eif (which depends on CIL) passes 989 (nearly
99%) and fails 13 of the 1002 tests passed by CIL. Given
the challenging nature of the torture testsuite, this result is
strong evidence that C2Eif handles the complete C language
used in practice, and produces correct translations.

The 13 torture tests failing after translation to Eiffel target
the following unsupported features. 1 test reads an int from a
va list (variadic function list of arguments) that actually stores
a struct whose first field is a double; the Eiffel type-system
does not allow this, and inspection suggests that it is probably

5We do not give a binary size for libraries, because EiffelStudio cannot
compile them without a client.



SIZE (LOCS) #EIFFEL TRANSLATION BINARY SIZE
CIL EIFFEL CLASSES (S) (MB)

hello world 8 15 1 1 1.3
micro httpd 565 1,934 16 1 1.5
xeyes 1,463 10,661 78 1 1.8
less 16,955 22,545 75 5 2.6
wget 46,528 57,702 183 25 4.5
links 70,980 100,815 211 33 13.9
vim 276,635 395,094 663 144 24.2
libcurl 37,836 65,070 289 18 –
libgmp 61,442 79,971 370 21 –
libgsl 238,080 344,115 978 85 –
gcc (torture) 147,545 256,246 2,569 79 1,576
TOTAL 898,037 1,334,168 5,433 413 1,626

TABLE I
TRANSLATION OF 10 OPEN-SOURCE PROGRAMS AND A TESTSUITE.

a copy-paste error rather than a feature. 2 tests exercise GCC-
specific optimizations, which are immaterial after translation
to Eiffel. 6 tests target somehow exotic GCC built-in func-
tions, such as builtin frame address; 1 test performs explicit
function alignment; and 3 rely on special bitfield operations.

B. Performance

Table II shows the result of trials that analyze the performance
of 6 of the programs, plus the GCC torture testsuite, running
on the same system as Table I. For each program or test-
suite, Table II reports the execution time (in seconds), the
maximum percentage of CPU and the maximum amount of
RAM (in MBytes) used while running. The table compares the
performance of the original C versions (column C) against the
Eiffel translations with C2Eif (column T), and, for the simpler
examples, against manually written Eiffel implementations
(column E) that transliterate the original C implementations
using the closest Eiffel constructs (for example, putchar be-
comes Io.put character) with as little changes as possible
to the code structure. Maximum CPU and RAM usages are
immaterial for the libraries and for the GCC testsuite, because
their execution consisted of a large number of separate calls.

The performance of hello world demonstrates the base
overhead, in terms of CPU and memory usage, of the de-
fault Eiffel runtime (objects, automatic memory management,
and contract checking—which can however be disabled for
applications where sheer performance is more important than
having additional checks).

The test with micro httpd consisted in serving the local
download of a 174 MB file (the Eclipse IDE); this test boils
down to a very long sequence (approximately 200 million
iterations) of inputting a character from file and outputting
it to standard output. The translated Eiffel version incurs a
significant overhead with respect to the original C version,
but it is faster than the manually written Eiffel implementation.
This might be due to feature lookups in Eiffel or to the less
optimized implementation of Eiffel’s character services. As a
side note, we did the same exercise of manually transliterat-
ing micro httpd using Java’s standard libraries; this Java
translation ran the download example in 170 seconds, using
up to 99% of CPU and 150 MB of RAM.

The test with wget downloaded the same 174 MB Eclipse
package over the SWITCH Swiss network backbone. The
bottleneck is the network bandwidth, hence differences in
performance are negligible, except for memory consumption,
which is higher in Eiffel due to garbage collection (memory is
deallocated only when necessary, hence the maximum memory
usage is higher in operational conditions).

The test with libcurl consisted in running all 583 tests
from the standard testsuite mentioned before. The total runtime
is comparable in translated Eiffel and C.

The tests with libgmp and libgsl ran their respective
standard testsuites. The overall slow-down seems significant,
but a closer look shows that the large majority of tests run in
comparable time in C and Eiffel: 30% of the libgmp tests
take up over 95% of the running time; and 26% of the libgsl
tests take up almost 99% of the time. The GCC torture tests
incur only a moderate slow-down, concentrated in 3 tests
that take 97% of the time. In all these experiments, the tests
responsible for the conspicuous slow-down target operations
that execute slightly slower in the translated Eiffel than in the
native C (e.g., accessing a struct field) and repeat it a huge
number of times, so that the basic slow-down increases many-
fold. These bottlenecks are an issue only in a small fraction
of the tests and could be removed manually in the translation.

Finally, the interactive applications (xeyes, less, links,
and vim) run smoothly with good responsiveness comparable
to their original implementations.

In all, the performance overhead in switching from C to
Eiffel significantly varies with the program type but, even
when it is noticeable, it does not preclude the usability of
the translated application or library in normal conditions (as
opposed to the behavior in a few specific test cases).

C. Safety and Debuggability

What are the benefits of automatically porting C code to
Eiffel? One obvious advantage is the reusability of the huge
C code base. This section demonstrates that the higher-level
features of Eiffel can bring other benefits, in terms of improved
safety and easier debugging of applications automatically
generated using C2Eif.

Uncontrolled format string is a well-known vulnerabil-
ity [10] of C’s printf library function, which permits malicious



EXECUTION TIME (S) MAX % CPU MAX MB RAM
C T E C T E C T E

hello world 0 0 0 0 30 30 1.3 5.5 5.3
micro httpd 5 37 46 99 99 99 2.3 7.8 5.6
wget 16 16 – 22 22 – 4.4 69 –
libcurl 199 212 – – – – – – –
libgmp 44 728 – – – – – – –
libgsl 25 1501 – – – – – – –
gcc (torture) 0 5 – – – – – – –

TABLE II
PERFORMANCE COMPARISON FOR 3 OPEN-SOURCE APPLICATIONS AND 4 TESTSUITES.

clients to access data in the stack by supplying special format
strings. Consider for example the C program:

int main (int argc, char ∗ argv[])
{ char ∗secret = ”This is secret!”;

if (argc >1) printf(argv[1]); return 0; }

If we call it with ./a.out "{Stack: %x%x%x%x%x%x} -> %s", we
get the output {stack: 0b7[. . .]469} -> This is secret!, which
reveals the local string secret. The safe way to achieve
the intended behavior is printf (”%s”, argv[1]) instead of
printf (argv[1]), so that the input string is interpreted literally.

What is the behavior of code vulnerable to uncontrolled
format strings, when translated to Eiffel with C2Eif? In
simple usages of printf with just one argument as in the
example, the translation replaces calls to printf with calls
to Eiffel’s Io.put string, which prints strings verbatim with-
out interpreting them; therefore, the translated code is not
vulnerable in these cases. The replacement was possible in
65% of all the printf calls in the programs of Table I. C2Eif
translates more complex usages of printf (for example, with
more than one argument and no literal format string such as
printf (argv[1], argv[2])) into wrapped calls to the external
printf function, hence the vulnerability still exists. However, it
is less extensive or more difficult to exploit in Eiffel: primitive
types (such as numeric types) are stored on the stack in Eiffel
as they are in C, but Eiffel’s bulkier runtime typically stores
them farther up the stack, hence longer and more complex
format strings must be supplied to reach the stack data (for
instance, a variation of the example with secret requires 386
%x in the format string to reach local variables). On the other
hand, non-primitive types (such as strings and structs) are
wrapped by Eiffel classes in C2Eif, which are stored in the
heap, hence unreachable directly by reaching stack data. In
these cases, the vulnerability vanishes in the Eiffel translation.

Debugging format strings. C2Eif also parses literal format
strings passed to printf and detects type mismatches between
format specifiers and actual arguments. This analysis, neces-
sary when moving from C to a language with a stronger type
system, helps debug incorrect and potentially unsafe usages
of format strings. Indeed, a mismatch detected while running
the 145 libgmp tests revealed a real error in the library’s
implementation of macro TESTS REPS:

char ∗envval, ∗end; /∗ ... ∗/
long repfactor = strtol(envval, &end, 0);
if(∗end || repfactor ≤ 0) fprintf (stderr, ”Invalid repfactor: %s.\n”, repfactor);

String envval should have been passed to fprintf instead of
long repfactor. GCC with standard compilation options does
not detect this error, which may produce garbage or even
crash the program at runtime. Interestingly, version 5.0.2 of
libgmp patches the code in the wrong way, changing the
format specifier ”%s” into ”%ld”. This is still incorrect
because when envval does not encode a valid “repfactor”,
the outcome of the conversion into long is unpredictable.
Finally, notice that C2Eif may also report false positives, such
as long v = ”Hello!”; printf(”%s”, v) which is acceptable
(though probably not commendable) usage.

Out-of-bound error detection. C arrays translate to in-
stances of class CE ARRAY (see Section III-A), which in-
cludes contracts that signal out-of-bound accesses to the
array content. Therefore, out-of-bound errors are much easier
to detect in Eiffel applications using components translated
with C2Eif. Simply by translating and running the libgmp
testsuite, we found an off-by-one error causing out-of-bound
access (our patch is included in the latest library version);
the error does not manifest itself when running the original
C version. More generally, contracts help detect the precise
location of array access errors. Consider, for example:
/∗ 1 ∗/ int ∗ buf = (int ∗) malloc(sizeof (long long int) ∗ 10);
/∗ 2 ∗/ buf = buf − 10;
/∗ 3 ∗/ buf = buf + 29;
/∗ 4 ∗/ ∗buf = ’a’; buf++;
/∗ 5 ∗/ ∗buf = ’b’;

buf is an array that stores 20 elements of type int (which
has half the size of long long int). The error is on line 5,
when buf points to position 20, out of the array bounds; line
2 is instead OK: buf points to an invalid location, but it is
not written to. This program executes without errors in C; the
Eiffel translation, instead, stops exactly at line 5 and signals
an out-of-bound access to buf.

Array bound checking may be disabled, which is necessary
in borderline situations where out-of-bound accesses do
not crash because they assume a precise memory layout.
For example, links and vim use statements of the
form block ∗p = (block ∗)malloc(sizeof(struct block)+ len),
with len >0, to allocate struct datatypes of the form
struct block { /∗... ∗/char b[1]; }. In this case, p points
to a struct with room for 1 + len characters in p→b; the
instruction p→b[len]=‘i’ is then executed correctly in C,
but the Eiffel translation assumes p→b has the statically
declared size 1, hence it stops with an error. Another
borderline situation is with multi-dimensional arrays, such



as double a[2][3]. An iteration over a’s six elements with
double ∗p = &a[0][0] translated to Eiffel fails to go past the
third element, because it sees a[0][0] as the first element of
an array of length 3 (followed by another array of the same
length). A simple cast double ∗ p = (double∗)a achieves the
desired result without fooling the compiler, hence it works
without errors also in translated code. These situations are
examples of unsafe programming more often than not.

More safety in Eiffel. Our experiments found another
bug in libgmp, where function gmp sprintf final had three
formal input arguments, but was only called with one ac-
tual through a function pointer. Inspection suggests it is a
copy-paste error of the other function gmp sprintf reps. The
Eiffel version found the mismatch when calling the routine
and reported a contract violation. Easily finding such bugs
demonstrates the positive side-effects of translating widely-
used C programs into a tighter, higher-level language.

D. Limitations
The only significant limitations of the translation T imple-
mented in C2Eif in supporting C programs originate in the
introduction of strong typing: programming practices that
implicitly rely on a certain memory layout may not work in
C applications translated to Eiffel. Section IV-C mentioned
some examples in the context of array manipulation (where,
however, the checks on the Eiffel side can be disabled). An-
other example is a function int trick (int a, int b) that returns
its second argument through a pointer to the stack, with the
instructions int ∗p = &a; return ∗(p+1). C2Eif’s translation
assumes p points to a single integer cell and cannot guarantee
that b is stored in the next cell.

Another limitation is the fact that C2Eif takes input from
CIL, hence it does not support legacy C such as K&R C. The
support can, however, be implemented by directly extending
the pre-processing CIL front-end. Similarly, the GCC torture
testsuite highlighted a few exotic GCC features currently
unsupported by C2Eif (Section IV-B), which may be handled
in future work.

V. RELATED WORK

There are two main approaches to reuse source code written
in a “foreign” language (e.g., C) in a different “host” language
(e.g., Eiffel): define wrappers for the components written in
the foreign language; and translate the foreign source code
into functionally equivalent host code.

Wrapping foreign code. Wrappers enable the reuse of for-
eign implementations through the API of bridge libraries. This
approach (e.g., [11], [12], [13]) does not modify the foreign
code, whose functionality is therefore not altered; moreover,
the complete foreign language is supported. On the other hand,
the type of data that can be retrieved through the bridging API
is often restricted to a simple subset common to the host and
foreign language (e.g., primitive types). C2Eif uses wrappers
only to translate external functions and assembly code.

Translating foreign code. Industrial practices have long
encompassed manual migrations of legacy code. Some semi-
automated tools exist that help translate code written in legacy

programming languages such as old versions of COBOL [14],
[15], Fortran-77 [16], [17], and K&R C [18].

Some translators focus on the adaptation of code into an ex-
tension (superset) of the original language. Examples include
the migration of legacy code to object-oriented code, such as
Cobol to OO-Cobol [19], [20], [21], Ada to Ada95 [22], and
C to C++ [23], [24]. Some of such efforts try to go beyond the
mere hosting of the original code, and introduce refactorings
that take advantage of the object-oriented paradigm. Most
of these refactorings are, however, limited to restructuring
modules into classes. C2Eif follows a similar approach, but
it also takes advantage of some advanced features (such as
contracts) to improve the reliability of translated code.

Ephedra [25] is a tool that translates legacy C to Java.
It first translates K&R C to ANSI C; then, it maps data
types and type casts; finally, it translate the C source code to
Java. Ephedra handles a significant subset of C, but it cannot
translate frequently used features such as unrestricted gotos,
external pre-compiled libraries, and inlined assembly code.
A case study evaluating Ephedra [26] involved three small
programs: the implementation of fprintf, a monopoly game
(about 3 KLOC), and two graph layout algorithms. The study
reports that the source programs had to be manually adapted to
be processable by Ephedra. By contrast, C2Eif is completely
automatic, and it works with significantly larger programs.

Other tools (proprietary or open-source) to translate C
(and C++) to Java or C# include: C2J++ [27], C2J [28],
and C++2C# and C++2Java [29]. Table III shows a feature
comparison among the currently available tools that translate
C to an object-oriented language, showing:

• The target language.
• Whether the tool is completely automatic, that is whether

it generates translations that are ready for compilation.
• Whether the tool is available for download and usable.

In a couple of cases we could only find papers describing
the tool but not a version of the implementation working
on standard machines.

• An (subjective to a certain extent) assessment of the
readability of the code produced. In each case, we tried
to evaluate if the translated code is sufficiently simi-
lar to the C source to be readily understandable by a
programmer familiar with the latter. We judged C2J’s
readability negatively because the tool puts data into a
single global array to support pointer arithmetic. This is
quite detrimental to readability and also circumvents type
checking in the Java translation.

• Whether the tool supports unrestricted calls to exter-
nal libraries, unrestricted pointer arithmetic, unrestricted
gotos, and inlined assembly code.

The table demonstrates that C2Eif is arguably the first com-
pletely automatic tool that handles the complete C language
and produces readable object-oriented code.

In previous work, we developed J2Eif, an automatic source-
to-source translator from Java to Eiffel [30]; translating be-
tween two object-oriented languages does not pose some of the
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C2Eif Eiffel yes yes + yes yes yes yes
Ephedra Java no no + no no no no
C2J++ Java no no + no no no no
C2J Java no yes − no yes no no
C++2Java Java no yes + no no no no
C++2C# C# no yes + no no no no

TABLE III
TOOLS TRANSLATING C TO O-O LANGUAGES.

formidable problems of bridging wildly different abstraction
levels, which C2Eif had to deal with.

Safer C. Many techniques exist aimed at ameliorating the
safety of existing C code; for example, detection of format
string vulnerability [31], out-of-bound array accesses and other
memory errors [32], [33], or type errors [34]. C2Eif has a
different scope, as it offers improved safety and debuggability
as side-benefits of automatically porting C programs to Eiffel.
This shares a little similarity with Ellison and Rosu’s formal
executable semantics of C [4], which also finds errors in C
program as a “side effect” of a rigorous translation.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the complete translation of C applications
into Eiffel, and its implementation into the freely available tool
C2Eif. Experiments in the paper showed that C2Eif correctly
translates complete applications and libraries of significant
size, and takes advantage of some of Eiffel’s advanced features
to produce code that is safer.

Future work. Future work will improve the readability
and maintainability of the generated code. CIL, in particular,
optimizes the code for program analysis, which is sometimes
detrimental to readability of the Eiffel code generated by
C2Eif. For example, CIL does not preserve comments, which
are therefore lost in translation. Another aspect to be improved
is the object-oriented re-engineering of C code translated to
Eiffel. We will investigate more sophisticated encapsulation of
globals into classes, usage of inheritance, re-factoring routine
arguments into class attributes, command/query separation
practices [2], and replacing C data structure implementations
(e.g., hash tables) with their Eiffel equivalents.
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